THE DEVELOPMENT OF A STRUCTURED
METHODOLOGY FOR THE CONSTRUCTION AND
INTEGRITY CONTROL OF SPREADSHEET MODELS

KAMALASEN RAJALINGHAM

A thesis submitted in partial fulfilment of the
requirements of the University of Greenwich
for the degree of Doctor of Philosophy

December 2002

HG 5(S
Q} T 'if

3 . KAD ¢

CR

Abstract

Numerous studies and reported cases have established the seriousness of the
frequency and impact of user-generated spreadsheet errors. This thesis presents a
structured methodology for spreadsheet model development, which enables improved
integrity control of the models. The proposed methodology has the potential to ensure
consistency in the development process and produce more comprehensible, reliable
and maintainable models, which can reduce the occurrence of user-generated errors.

An 1nsight into the nature and properties of spreadsheet errors is essential for the
development of a methodology for controlling the integrity of spreadsheet models. An
important by-product of the research is the development of a comprehensive
classification or taxonomy of the different types of user-generated spreadsheet errors
based on a rational taxonomic scheme.

Research on the phenomenon of spreadsheet errors has revealed the need to adopt a
software engineering based methodology as a framework for spreadsheet
development in practical situations. The proposed methodology represents a new
approach to the provision of a structured, software engineering based discipline for
the development of spreadsheet models.

It is established in this thesis that software engineering principles can in fact be
applied to the process of spreadsheet model building to help improve the quality of
the models. The methodology uses Jackson structures to produce the logical design of
the spreadsheet model. This is followed by a technique to derive the physical model,
which is then implemented as a spreadsheet. The methodology’s potential for
improving the quality of spreadsheet models is demonstrated.

In order to evaluate the effectiveness of the proposed framework, the various features
of the proposed structured methodology are tested on a range of spreadsheet models
through a series of experiments. The results of the tests provide adequate evidence of
the methodology's potential to reduce the occurrence of user-generated errors and
enhance the comprehensibility of the models.

Acknowledgements

I would like to express my heartfelt thanks and appreciation, first and foremost, to the
members of my supervisory team in the School of Computing and Mathematical
Sciences of the University of Greenwich (England). They are Professor Brian Knight,
Mr David Chadwick and Dr Dilwyn Edwards.

I am also grateful to the following individuals for their support, guidance, advice and
co-operation in the research programme:

e Mr Mike Shallcross, former Principal Consultant, Financial Modelling
Department, KPMG Management Consulting (London)

e Mr Chris Conlong, Principal Consultant, Financial Modelling Department, KPMG
Management Consulting (London)

e Mr David Colver, Joint Chief Executive, Operis Group plc (London)

e Dr Nadarajah Ramesh, Senior Lecturer (Statistics), School of Computing and
Mathematical Sciences, University of Greenwich (England)

e Mr Patrick Lees, Chair of the Information Systems Department, Cavendish School
of Computer Science, University of Westminster (London)

e Dr Dusko Dincov, Lecturer, School of Computing and Mathematical Sciences,
University of Greenwich (England)

e Mr Chris Rodger, Principal Consultant, Business Dynamics Consultancy Group,
PricewaterhouseCoopers (London)

e Dr Anthony Berglas (Developer of Spreadsheet Detective), Southern Cross
Software QId (Australia)

e Mr Ray Butler, Chief Technical Adviser to the Joint Head of Computer Audit
Services, HM Customs & Excise (United Kingdom) & Chairman of the North
England ISACA Chapter

e Professor Raymond Panko, Professor of Business Administration, University of
Hawai’1 (Honolulu)

I would also like to thank my parents for their constant support and encouragement.

Keywords

Spreadsheet, Spreadsheet Model, Error, Methodology, Taxonomy, Software

Engineering, Modularisation, Jackson Structured Programming (JSP), Integrity
Control, Structured Methods, Structured Spreadsheet Development

TABLE OF CONTENTS

ABSTRACT ...civiiiiiieiiiiiiiieiieriictietetensssssesssssossrsscsssssssscassssassssssnsenss 1

ACKNOWLEDGEMENTS ...iitiiiiiiiiieiiiiiiiriisrnisrissrcroisssasssscessnsensososes 2

KEYWORDS ..ccuiiiiiiiiiiiiiiiitiiiiiiiisiiiiisresesossrasssscssesssssnssssasssssassons 3

TABLE OF CONTENTScuiiiiiiiiiiiiiiiiiniiieiinsssiccetssssrorsecsssssssosnsene 4

CHAPTER 1

INTRODUCTION ...citiinininiiiiieceniececestieesessetsssssessssssssssesessssssssssssss 8
1.2 CONTRIBUTIONS OF THE THESIS 9
1.3 OUTLINEOF THETHESIS 10
1.4 TIME-LINE OF DEVELOPMENTS e 11
1.5 RESEARCH APPROACHES e 14

CHAPTER 2

BACKGROUND ...ciiitiiiiiiiiiiniciteieiiortiiecesssssasasassesssesssssesasesssasnsases 15
2.1 INTRODUCTIONcooooii .15
2.2 ANINSIGHT INTO SPREADSHEETS ... 15
2.3 THE PHENOMENON OF SPREADSHEET ERRORS 16
2.4 NEED FOR A DISCIPLINED AND STRUCTURED APPROACH 21
2.5 SUMMARY 23

CHAPTER 3

ANALYSIS AND CLASSIFICATION OF SPREADSHEET ERRORS 24
3.1 INTRODUCTIONcocoiiiiiiiiiiiiiieceeeceeeee e e 24
3.2 THE CONCEPT OF TAXONOMY OR CLASSIFICATION 24
3.3 RATIONALE FOR THE CLASSIFICATION OF THE ERRORS 25
3.4 DERIVATION OF THE TAXONOMIC SCHEME25
3.5 THE CLASSIFICATION OF ERRORScoooiviiomo e, 27

3.6

e 30

CHAPTER 4

PAST WORK AND EXISTING DEVELOPMENTSccciciiiiiiniiinmnnnnes 52

4.1 INTRODUCTION .. . e e D2
4.2 EXISTINGTOOLSANDTECHNIQUES e 92
4.3 SPREADSHEET DEVELOPMENT LIFE CYCLE

AND METHODOLOGY ... 62

CHAPTERS
PRELIMINARY INVESTIGATION AND DEVELOPMENTSccccouaeee 72

5.1 INTRODUCTION .. : e 12
5.2 ANALYSIS OF SPREADSHEET STRUCTURE 72
5.3 INITIAL APPROACHES EXPLORED AND DEVELOPED 75

CHAPTER 6

SOFTWARE ENGINEERING PRINCIPLES
AND JACKSON STRUCTURES ..cccutitiiieitiiniiiiintenccatecisecestcsmnessessans 83

6.1 INTRODUCTION .. : e e e 83
6.2 SOFTWARE ENGINEERING PRINCIPLES 83
6.3 RATIONALE FOR SELECTION OF JACKSON STRUCTURES 85
6.4 CONCEPTS AND NOTATIONS OF JACKSON STRUCTURES 86
6.5 JACKSON STRUCTURE RULES .. vt e e, 90
6.6 OTHER PRINCIPLES AND TECHNIQUES 91

CHAPTER 7
PROPOSED STRUCTURED METHODOLOGYccccetttiunniinienicnccnsaas 94

7.1 INTRODUCTION .. . e e . 94
7.2 DEVELOPMENT AND SYNTHESIS OF THE

PROPOSED METHODOLOGY .. : e, 94
7.3 THE PROPOSED STRUCTURED METHODOLOGY ceeveeeeen e 103
7.4 APPLICATION OF THE PROPOSED METHODOLOGY 116
7.5 POTENTIAL FOR QUALITY IMPROVEMENT 120

CHAPTER 8

EVALUATION STRATEGY AND EXPERIMENTS ...ccccitieiiiiniiiinnecncnnes 124
8.1 INTRODUCTION .. . e e e 124
8.2 THE EVALUATION STRATEGIES .. 126
8.3 THE EXPERIMENTS UNDERTAKENccccocoeniinniinccecenenn. 127

CHAPTER9

ANALYSIS OF RESULTS ciittitiitietntitcntietristrimnenseesemencascnssasassssscsones 142
9.1 INTRODUCTION .. : e e e e e 142
9.2 RESULTS OFEXPERI]\/[ENTS U TUPRUUPPROUPUPPRR [2/

CHAPTER 10

CONCLUSIONS AND FUTURE WORKciitiiiiiiiiiiiecntenncnscceresnsnconne 158

10.1 CONCLUSIONS e e 158

REFERENCESctiiiiiiiiiiiiiiiiiiiiiiitiiieiitiittiatitcinssescssnnsscrascessonsses 161
APPENDIX A
FREQUENCY OF SPREADSHEET ERRORS (Panko-96,98,00) 173
APPENDIX B

DESCRIPTIONS OF CORPORATE/WORKGROUP
POLICIES (PANKO-96) ...evevvveeeeereereereeeseeessessuseesesmsssessessessssssssnnnnns 176

APPENDIX C
EXAMPLES OF THE PROPOSED METHODOLOGYcccvoievierenrcencnnnn. 178
APPENDIX D
SPREADSHEET MODELS USED IN THE EXPERIMENTScccevuteeeeee. 206
APPENDIX E

NORMALITY TEST RESULTS (GRAPHS) ..cccuviiiiiininiinriecienircnennencssenes 231

APPENDIX F

RAW DATA FROM THE EXPERIMENTS

..

CHAPTER 1
INTRODUCTION

1.1 Overview

Over the years, spreadsheet users in business and academia have been completely
taken aback by the appalling rates of user-generated errors occurring in spreadsheet
models. Many publications have also described the adverse effect this phenomenon
has had on businesses and other organisations. As a result, many groups of users and
individuals from the commercial and non-commercial sectors have endeavoured to
find solutions to the problem.

Despite all the efforts, the problem has been prevalent. The initial efforts to establish
the magnitude of the problem of spreadsheet errors were based on measuring error
rates and studying the impact of the errors on organisations. All the experiments and
studies that were carried out proved beyond any doubt that this was indeed a very
critical problem (Brown-87, Davies-87, Panko-96, Freeman-96, Ward-97) which had
to be addressed urgently. However, there was very limited material available on
specific types of spreadsheet errors. Therefore, far more extensive research had to be
undertaken to identify, analyse and classify specific types of spreadsheet errors.

The focus of authors on the subject of spreadsheet model integrity subsequently
turned towards ascertaining the cause of and reasons for the occurrence of user-
generated spreadsheet errors. Many who carefully analysed the problem were able to
conclude that the principal cause of these errors was the absence of standards for or a
structured approach to designing and developing spreadsheet models (Ronen-89,
Cragg-93, Isakowitz-95, Hall-96). Such standards and structured methods have
however been adopted in other areas of software and systems development such as
programming and database development. Authors responded to this discovery by
recommending the adoption of software engineering principles and traditional
programming techniques in the process of spreadsheet model building (Benham-93,
Isakowitz-95, Panko-96, Davis-96, Kavanagh-97). However, none came up with a
comprehensive methodology based on this requirement.

In general, two distinct approaches can be adopted to address the problem of user-
generated spreadsheet errors. The first approach involves developing tools and
methods to help identify errors in spreadsheet models so that they can be corrected. In
a desperate pursuit for immediate solutions, this is the approach taken by most
organisations at present, as a large number of existing spreadsheet models are already
infested with errors. The second approach concentrates on preventing the errors from
occurring in the first place. In order to achieve this, an effective methodology for
controlling the integrity of spreadsheet models has to be developed and applied.

The principal objective of this research programme is to examine the possibility of
developing a structured methodology for the quality or integrity control of spreadsheet
models. This involves an investigation into the application of software engineering
principles and techniques to the process of spreadsheet design and development.

1.2 Contributions of the Thesis

Basic Questions Posed at the Outset of this Work

These are the questions which the work described in this thesis has been directed
towards:

Primary Question

o Can a structured methodology be developed for the integrity control of
spreadsheet models? Can such a framework for quality control of spreadsheet
models reduce the occurrence of user-generated errors?

Secondary Questions

e Can a classification of the different types of user-generated spreadsheet errors be
developed based on a rational taxonomic scheme?

o What framework for spreadsheet model development is most likely to be optimum
in a practical situation?

o How effective is the framework?

e C(Can software engineering principles be applied to the process of spreadsheet
model building to help improve the quality of the models?

Contributions

Several contributions are made in this thesis. Firstly, a diverse collection of user-
generated spreadsheet errors have been collected, analysed and categorised according
to a rational taxonomic scheme. The provision of this comprehensive classification of
the different types of spreadsheet errors is based on an analysis of the properties of
user-generated errors. The errors are accumulated from numerous spreadsheet models.
The spreadsheet error taxonomy is described in detail and supported by appropriate
examples.

Secondly, structured techniques and principles have been proposed as the basis of a
novel spreadsheet development methodology. The proposed structured methodology
fundamentally adopts a software engineering approach and is based on established
principles of structured analysis, design and development. It presents a systematic
algorithm, consisting of a set of coherent stages addressing the analysis, design and
development of spreadsheet models.

The main principle underpinning the proposed methodology has been derived from
data structure diagrams akin to those proposed by Jackson in Jackson Structured
Programming (Jackson-75, Ingevaldsson-86, Burgess-87). The methodology provides
models in a structured form, allowing indentation and all its concomitant advantages
in terms of comprehension and maintenance. It therefore enables improved integrity
control of spreadsheet models, facilitating understanding and interpretation of the
models in a standard and unambiguous manner. As a result of the structure and strict

discipline introduced in the process of spreadsheet building, the occurrence of user-
generated errors can be reduced.

In addition to that, the methodology has been tested on a wide spectrum of
spreadsheet errors for its effect on quality. The various features of the proposed
methodology are also tested on a wide range of spreadsheet models and users in
academia. The results have demonstrated that the methodology is indeed effective in
producing spreadsheet models that are more comprehensible and less prone to user-
generated errors. In conclusion, the research has contributed significantly to the
provision of additional knowledge and novel methods to the area of integrity control
of spreadsheet models.

1.3 Outline of the Thesis

Chapter 1 of this dissertation provides an overview, and outlines the contributions
made in this research programme. The chapter also includes a development story,
time-line and chronology of publications produced. The last section gives details of
the research approaches considered and adopted.

Chapter 2 presents an insight into spreadsheets and describes the problem of user-
generated spreadsheet errors in terms of their frequency and impact. It also distinctly
establishes the magnitude of the phenomenon of spreadsheet errors. At the end of the
chapter, the importance of applying software engineering and structured methods to
spreadsheet development is discussed.

Chapter 3 presents a framework for classifying user-generated spreadsheet errors
based on a rational taxonomic scheme. The spreadsheet error taxonomy is produced
by analysing the nature and characteristics of the different types and categories of
errors. The various types of spreadsheet errors are described and appropriate examples
are given.

Chapter 4 presents a review of a spectrum of existing tools and techniques for
controlling the integrity of spreadsheet models. An analysis of the effectiveness and
limitations of these techniques and methods is also carried out. Various life cycles and
methodologies proposed for the development of spreadsheet models are also critically
explored.

Chapter 5 presents findings of a preliminary investigation carried out into various
methods and approaches that are deemed to have some potential in improving the
quality of spreadsheet models. The core of this chapter is presented in the third
section, Section 5.3. The second section concerns an analysis of spreadsheet structure.

Chapter 6 conveys an insight into related software engineering concepts and
principles, especially Jackson Structures. This is in view of the fact that the main
techniques and principles of the proposed structured methodology are derived from
these methods and techniques. The discussion primarily covers the rationale for the
selection of Jackson structural forms and the concepts, notations and rules of Jackson
structures. This is followed by a discussion of the other relevant software engineering
principles and their application to spreadsheets.

10

Chapter 7 presents the proposed structured methodology for the development and
integrity control of spreadsheet models. It focuses on the synthesis of a framework or
methodology based on the established software engineering principles and structured
techniques described in Chapter 6. The various stages of the methodology are
described in detail and supported by suitable examples. The methodology's potential
for enhancing the quality of spreadsheet models is also addressed.

Chapter 8 begins by putting forth a plan for the evaluation of the proposed
methodology based on experimental trials. The evaluation strategies underpinning the
experiments are also discussed. The actual experiments conducted are subsequently
described in detail. The experiments are aimed at testing the various features of the
proposed structured methodology. The series of experiments involve a range of
spreadsheet models used in educational institutions and industry. The elements of the
methodology are tested on diverse groups of students.

Chapter 9 presents a detailed analysis of the results of the experiments conducted.
The experiments are described in Chapter 8.

Chapter 10 presents the conclusions drawn based on the results of the experiments
and from the doctoral research programme as a whole. The principal contributions of
the research project are presented. The degree to which the objectives of the research
have been achieved is also established. At the end of the chapter, future work to be
undertaken is proposed.

1.4 Time-line of Developments

At the outset of the programme, the primary and secondary research questions to be
answered were determined and specified (Chapter 1).

The research began with an investigation of the evolution and functions of
spreadsheets, and the problem of user-generated spreadsheet errors in terms of their
frequency and impact. The views and recommendations of authors and researchers on
the subject were considered to identify possible causes and potential approaches to
solving the problem (Chapter 2).

Having established the frequency and impact of spreadsheet errors, efforts were
concentrated on two sets of activities that were undertaken in parallel. These activities
were as follows:

* The examination and classification of specific types of user-generated spreadsheet
errors based on a rational taxonomic scheme (Chapter 3). This was carried out so
that the effects of improvements in methodology could be studied with regard to
error types.

* A review of existing tools and techniques for controlling the integrity of
spreadsheet models and the different life cycles and methodologies proposed for
their development (Chapter 4).

Upon completion of these activities, an investigation was carried out into various
methods and approaches that were deemed capable of improving the quality of

11

spreadsheet models. The development of these initial methods and approaches was
preceded by an analysis of spreadsheet structure (Chapter 5).

The next activity in the research programme was an elaborate examination of relevant
software engineering methods and structured techniques, and their potential
application to the design and development of spreadsheet models. The principal
method focused upon was the use of Jackson Structures due to its capacity to model
data dependencies, relative simplicity and likely acceptance in the spreadsheet
community (Chapter 6).

Based on the software engineering methods and techniques investigated, a
comprehensive structured methodology for the construction and integrity control of
spreadsheet models was developed. Various spreadsheet models were used to assess
the quality and effectiveness of the methodology (Chapter 7).

After the development of the proposed structured methodology, a plan was created for
the evaluation of the methodology based on experimental trials. Various factors such
as evaluation strategies, subjects, test models and other constraints were carefully
taken into account. Following the development of the plan, the experiments were
carried out accordingly (Chapter 8).

Various techniques and methods were subsequently employed to meticulously analyse
the results of the experiments. Appropriate conclusions were drawn based on the
results (Chapter 9).

Finally, overall conclusions were drawn based on the entire research programme, and
appropriate recommendations were made pertaining to future work that can be
undertaken (Chapter 10).

The following is a chronology of publications produced during the course of the
research programme:

e Rajalingham, K. and Chadwick, D. (1998) “Integrity control of spreadsheets:
organisation & tools”. In: Jajodia, S., List, W., McGregor, G.W. and Strous, L.
(eds) (1998) Integrity and internal control in information systems. Massachusetts:
Kluwer Academic Publishers, pp. 147-168.

¢ Rajalingham, K., Chadwick, D., Knight, B. and Edwards, D. (1999) “An
approach to improving the quality of spreadsheet models”. In: Hawkins, C., King,
G., Ross, M. and Staples, G. (eds) (1999) Software quality management VI[—
managing quality. Great Britain: British Computer Society, pp. 117-131.

e Chadwick, D., Rajalingham, K., Knight, B. and Edwards, D. (1999) “A

methodology for spreadsheet development based on data structure”, CMS Press,
99/IM/50.

12

Chadwick, D., Rajalingham, K., Knight, B. and Edwards, D. (1999) “An
approach to the teaching of spreadsheets using software engineering concepts”,
Proceedings of the Fourth International Conference on Software Process
Improvement, Research, Education and Training, INSPIRE’99, 9-11 September
1999, Crete, Greece. Great Britain: British Computer Society, pp. 261-273.

Rajalingham, K., Chadwick, D., Knight, B. and Edwards, D. (1999) “Efficient
methods for checking integrity: an integrated spreadsheet engineering
methodology (ISEM)”. In: van Biene-Hershey, M.E. and Strous, L. (eds) (1999)
Integrity and internal control in information systems — strategic views on the need
for control. Massachusetts: Kluwer Academic Publishers, pp. 41-58.

Rajalingham, K., Chadwick, D., Knight, B. and Edwards, D. (2000) “Quality
control in spreadsheets: a software engineering-based approach to spreadsheet
development”. In: Sprague, R.H., Jr. (ed.) (2000) Proceedings of the Thirty-Third
Annual Hawaii International Conference on System Sciences 2000 — abstracts and
CD-ROM of full papers. California: IEEE Computer Society.

Chadwick, D., Knight, B. and Rajalingham, K. (2000) “Quality control in
spreadsheets: a visual approach using color codings to reduce errors in formulae”,
Software Quality Journal, 9(2), pp. 133-143.

Knight, B., Chadwick, D. and Rajalingham, K. (2000) “A structured
methodology for spreadsheet modelling”. In: Chadwick, D. (ed.) (2000) EuSpRIG
2000 Symposium proceedings - spreadsheet risks, audit and development methods.
London: University of Greenwich, pp. 43-50.

Rajalingham, K., Chadwick, D. and Knight, B. (2000) “Classification of
spreadsheet errors”, British Computer Society (BCS) Computer Audit Specialist
Group (CASG) Journal, 10(4), pp. 5-10.

Rajalingham, K., Chadwick, D. and Knight, B. (2001) “An evaluation of the
quality of a structured spreadsheet development methodology”. In: Chadwick, D.
and Strous, L. (eds) (2001) Controlling the subversive spreadsheet — risks, audit
and development methods. The Netherlands: EuSpRIG, pp. 39-59.

Rajalingham, K., Chadwick, D. and Knight, B. (2002) “Efficient methods for
checking integrity: a structured spreadsheet engineering methodology”,
Informatica: An International Journal of Computing and Informatics, 26(1).

13

1.5 Research Approaches

The research methodology adopted for this work may be summarised by the following
steps:

Obtain an understanding of the problem domain.

Make a comprehensive study of what had already been done by others.
Synthesise possible high-level solutions.

Select the most promising high level solution.

Elaborate the chosen solution.

Test the efficacy of the solution.

AN S e

To obtain an understanding of the problem domain, several resources were used.
These were published literature, interviews with modellers and attendances at a
spreadsheet modelling training course and spreadsheet conferences. Among the main
conferences were the IFIP TCI] WGI1.5 Working Conferences on Integrity and
Internal Control in Information Systems, International Conferences on Software
Quality Management organised by the British Computer Society, International
Conferences on Software Process Improvement, Research, Education and Training
(INSPIRE), the Hawaii International Conferences on System Sciences and the Annual
European Spreadsheet Risks Interest Group (EuSpRIG) Spreadsheet Symposiums.

In order to gain an insight into what had already been done on the subject of integrity
control of spreadsheet models and spreadsheet development, a thorough review of
existing literature was deemed to be the most appropriate approach. The materal
reviewed included books, journal papers, conference proceedings and articles in other
publications. Interviews and face-to-face meetings were considered very important in
a research of this nature. Engaging in such interviews and meetings could provide a
direct insight into the various aspects of the research, especially the phenomenon of
spreadsheet errors and existing tools, techniques and methods used to control the
integrity of spreadsheet models. In order to effectively benefit from the use of this
research method, the people to be interviewed were carefully chosen. Interviews,
meetings and discussions were subsequently held with researchers on the subject,
spreadsheet users in academia and industry, people involved in the auditing of
spreadsheet models, facilitators of training in spreadsheet modelling and developers of
tools for spreadsheet auditing and quality control.

High-level solutions were generated by examining all existing software engineering
methodologies, and examining their applicability to the current problem. Pros and
Cons of each methodology were presented to the supervisory team, and a favoured
candidate emerged (Jackson Structures).

The selected methodology was elaborated in logical mode and tried out on some
standard business models. These were obtained from standard texts, and from
industrial users.

The testing for efficacy was carried out on real users who were students attending
courses where the researcher was lecturing. These users were used for trials, in view
of the need for statistical significance. This was preceded and guided by research into
relevant past experiments.

14

CHAPTER 2
BACKGROUND

2.1 Introduction

The primary and secondary research questions to be answered by this doctoral
research programme were identified and specified in Chapter 1. In order to begin
addressing these research questions, an investigation was undertaken into the
evolution and functions of spreadsheets, and the problem of user-generated
spreadsheet errors in terms of their frequency and impact. The views and
recommendations of authors and researchers on the subject were subsequently
explored to identify possible causes and potential approaches to solving the problem.

This chapter begins by presenting the results of the investigation into the evolution,
functions and benefits of spreadsheets. This is followed by a discussion of the
phenomenon of user-generated spreadsheet errors. The different aspects of the
problem addressed are the trends in spreadsheet errors, the frequency of the errors,
and their real-life impact and consequences. The views and recommendations of
authors and researchers on the subject are subsequently presented. This also involves
a discussion of the need to adopt software engineering and structured methods in
spreadsheet development.

2.2 An Insight into Spreadsheets

Prior to the investigation of spreadsheet errors, it is appropriate to gain a basic
understanding of spreadsheets as well as their evolution in recent years. Spreadsheet
programs attained widespread use since the development of the first electronic
spreadsheet package, VisiCalc, in 1979 (Brown-87). After the creation of VisiCalc,
Lotus 1-2-3 was built for the IBM PC, followed by Microsoft Excel, which is
presently used on the Windows platform (Butler-97).

The spreadsheet provides a large matrix of rows and columns. Each column is
assigned unique letters while each row is identified by a distinct number. Users
organise parameters, variables, formulae and components of the spreadsheet model
within this framework (Nardi-90). The intersection of a row and column defines a
cell. A cell can contain a numeric constant, label or formula. According to Ronen et al
(Ronen-89), the tremendous power of spreadsheets is attributable to its ability to relate
cells with formulae.

The underlying formula of a cell is not readily visible to the user. It is only the
numeric result of the calculation defined by the formula, which is displayed (Brown-
87). Formulae perform calculations on absolute values and references to other cells,
represented by the corresponding cell addresses. Users can model problems in a
spreadsheet and easily automate the calculation of large complex systems using cell
formulae (Igarashi-98). When Lotus 1-2-3 was developed in 1983, macros were
added. Creeth (Creeth-85) defines a macro as a single computer instruction that stands

15

for a sequence of operations. Macros further enhanced the functionality of
spreadsheets.

Igarashi et al (Igarashi-98) state that spreadsheets are one of the most successful
applications making use of visual language techniques, and have the capacity to
display and manipulate complex information in tabular form. With the advent of
spreadsheets, end-users in business could more easily computerise laborious and
time-consuming custom calculations that were needed for a wide range of commercial
activities (Butler-97). Bodily (Bodily-86) believes that an important function of the
electronic spreadsheet is its ability to support what-if analyses of all kinds.

Olsen and Nilsen (Olson-87-88) have described three major advantages offered by
spreadsheets. First, the spreadsheet can be easily edited. Second, the values of certain
cells can be automatically calculated from the contents of other cells by using
formulae. The third advantage is the ability to copy a formula from one cell to another
while keeping constant the relative location of cells that are referenced.

Spreadsheet based systems are an important part of end-user computing (Cragg-92).
They are used for a wide variety of applications. Ronen et al (Ronen-89) believe that
the most frequent use of spreadsheets is for decision support and personal
productivity. They, however, also state that many spreadsheet applications can in fact
be regarded as mainstream information systems applications.

It 1s important to have an understanding of the different roles taken on by people
involved in a spreadsheet project. The number of people needed to carry out a
particular role is mainly dependent on the size and complexity of the spreadsheet
model. Read and Batson (Read-99) define various roles in spreadsheet model
development and use. The model sponsor is the person who requests that the model be
built and ensures that the required resources are available. Agreement of the
objectives of the model is the responsibility of the model sponsor. The model
developer translates the sponsor's requirements into the actual spreadsheet model. The
model that has been built will have at least one user. The sponsor and developer of the

model may also be its users. The reviewer is the person who tests the spreadsheet
(Read-99).

2.3 The Phenomenon of Spreadsheet Errors

Numerous publications have recently demonstrated the seriousness of user-generated
spreadsheet errors and their adverse consequences or potential impact on businesses.
There is substantial anecdotal evidence suggesting that end-user developed
spreadsheets can be considered unreliable, inflexible, unmaintainable, and
unmanageable (Benham-93). According to Ray Butler of HM Customs and Excise
(United Kingdom), even in a domain such as indirect taxation, which involves
relatively simple calculations and well-documented calculation rules, spreadsheet
models are prone to errors, despite relatively high domain knowledge by developers
(Chadwick-00b).

According to Ronen et al (Ronen-89), spreadsheet packages have extended computing
to vast numbers of individuals. They argue that for many users, the spreadsheet

16

program represents their first experience with programming and documentatiop.
Ronen et al (Ronen-89) state that in general, these users have not been trained in
systems analysis and tend to overlook the concerns of the professional systems analyst
in designing a system. The practitioner literature has discussed a number of problems
with spreadsheet construction (Ronen-89).

The phenomenon and magnitude of spreadsheet errors can be viewed from three
different perspectives (Rajalingham-99). They are as follows:

¢ frequency of the errors
¢ impact and real-life consequences of spreadsheet errors
e types and classes of specific errors

The first two aspects of the problem of spreadsheet errors are discussed in this chapter
while the third is analysed and presented in the next chapter, Chapter 3: Analysis and
Classification of Spreadsheet Errors.

2.3.1 Overview of Trends in Spreadsheet Errors

There 1s more than sufficient evidence from various reliable sources that the problem
of spreadsheet errors has been experienced for decades. This also appears to be the
situation today despite the advent of various tools and techniques for controlling the
integrity of spreadsheet models.

In 1998, research carried out by Pricewaterhouse Coopers revealed that there was a
trend of increasing spreadsheet model size and complexity (Whittaker-99). Whittaker
argues that the trend towards larger model size and complexity is clear, and there is
every possibility that this trend will continue in future. A conclusion that can be
drawn from this statement is that the frequency of spreadsheet errors is steadily
increasing as in general, the number of errors is proportionate to the spreadsheet
model size and complexity.

Another factor that influences the escalating frequency of spreadsheet errors is the
speed and simplicity of building spreadsheet models. Howitt (Howitt-85) believes that
spreadsheets create the opportunity to make more mistakes and multiply them rapidly
due to the speed and simplicity of spreadsheet application development. This indicates
that with the increasing use of spreadsheets over the years, users have been making
more errors and quickly multiplying them.

There is extensive material clearly indicating an increasing use of spreadsheets,
resulting in a proportional increase in the frequency of spreadsheet errors. According
to Carlsson (Carlsson-89), in business, spreadsheet programs have become one of the
most frequently purchased and used personal computer programs. Isakowitz et al
(Isakowitz-95) state that there has been increasing sophistication and power of
commercial spreadsheet packages. They believe that spreadsheet programs have
transformed the concept of end-user computing, creating a new computational
paradigm that offers a unique combination of ease of use and unprecedented
modelling power. This has encouraged the widespread use of spreadsheets in business

17

and resulted in spreadsheet programs becoming the most popular decision support tool
in modern business (Isakow1tz-95).

Ray Butler of HM Customs and Excise, United Kingdom (Butler-97) states that
spreadsheets are among the most dangerous and error-prone development platforms.
The figures on the frequency of user-generated spreadsheet errors are truly astounding
and indicate a high probability of imminent disaster scenarios around the world
(Chadwick-00b). An important conclusion that can be drawn on the trends in
spreadsheet errors is that with the profound increase in the production and use of
spreadsheet models over the years, the frequency and impact of the errors have also
steadily increased.

2.3.2 Frequency of User-generated Spreadsheet Errors

There have been various publications containing information on the frequency of
spreadsheet errors. Despite the widespread use of spreadsheets, there has been
extensive anecdotal and experimental evidence that electronic spreadsheets are highly
susceptible to user-generated errors (Brown-87). Although electronic spreadsheets are
immensely beneficial to accountants and financial analysts, they may have a
disastrous impact on critical business decisions (Hayen-89). After a thorough review
of relevant literature, various cases have been selected and presented in this section to
demonstrate the appalling frequency of user-generated spreadsheet errors.

Based on the results of an experiment, Brown and Gould (Brown-87) concluded that
even a substantial percentage of spreadsheets created by experienced spreadsheet
users contained one or more errors. According to Freeman (Freeman-96), Coopers and
Lybrand (London), reported that over 90% of all spreadsheets they had examined,
with more than 150 rows, contained at least one significant formula error. This is an
extremely high figure and if the errors had gone undetected, they could have had a
devastating effect on the business.

An article in New Scientist (Ward-97) has reported that a decade’s worth of research
findings of Professor Raymond Panko at the University of Hawaii revealed that
spreadsheets had a dangerously high rate of errors. It appears that on average, 30% of
spreadsheets contain errors, many of which are serious. According to Professor
Panko, the problem is that spreadsheets demand a level of accuracy that people find
difficult to manage.

A financial model review by KPMG Management Consulting, London (KPMG-97)
stated that in 95% of the financial models audited, at least 5 errors had been found.
The review also revealed alarming statistics concerning defects and flaws in the
spreadsheet development process, addressing the project management, technical and
analysis aspects. An audit of spreadsheets from over 21 major UK banking and
financial organisations revealed that 92% of the spreadsheets dealing with tax issues
had significant errors while 75% had significant accounting errors (KPMG-98b).

An excellent compilation of studies on the frequency of spreadsheet errors has been

produced by Panko and Halverson (Panko-96,98,00). The findings are presented in
Appendix A.

18

There 1s also substantial anecdotal evidence from the commercial sector, of the high
frequency of user-generated errors in spreadsheet models. A selection of the relevant
cases 18 presented below in chronological order of publication.

* Creeth (Creeth-85) has stated that according to industry experts, one out of every
three spreadsheet printouts contains errors.

* An article from Personal Computing (Ditlea-87) reported that a Houston
consultant with Price Waterhouse had found 128 errors in 4 spreadsheet models
that had already been in use for months.

» Estimates from the trade press on the number of spreadsheets that contain errors
range from 20 to 40 percent (Brown-87).

* According to Davies & Ikin (Davies-87), out of 19 worksheets (from 10 different
firms) audited, 4 (21%) had serious errors, while 13 were considered to have
inadequate documentation, and 10 did not use cell protection.

* Roberts (Roberts-88) found one or more errors in 80% of spreadsheet models
audited.

* In an inspection of 20 operational models of 10 firms, errors were found in at least
25% of the models. Apart from that, other problems were also found (Cragg-93).

* In an Australian mining firm, an audit found that 30% of the spreadsheets audited
had been corrupted because cell protection had not been used, and users typed
numbers into formula cells (Dent-95).

2.3.3 Impact and Consequences of User-generated Errors

Spreadsheet errors can be devastating because the data is often the foundation on
which many organisations make critical decisions (Freeman-96). It is important to
examine the adverse consequences of the problem of spreadsheet errors in real life.
This enables a distinct comprehension of the magnitude of the problem and an
assessment of the seriousness of the situation.

The information presented in this section has been obtained from numerous
publications. It must however be noted that these are based only on reported cases. It
is believed that there are many other similar cases that have not been brought to public
attention due to fear that it might adversely affect the reputation of the organisation
involved.

There are publications from more than a decade ago with clear indications that user-
generated spreadsheet errors have caused serious disruption of business. Although
these cases are not based on formal research, they do show that spreadsheet errors
were considered important enough to be reported in the general business and
computing press.

19

A subset of significant reported cases is provided below in chronological order of
publication.

e According to an article in Business Week (Business Week-84), a Midwestern
firm's estimated taxes had been $5,000 off due to an incorrect formula for
assessing salvage value in the spreadsheet.

o The article (Business Week-84) has also stated that in the forecast for a new
product, the forecast sales was $8 million over. Fortunately, it was detected in
time to prevent any serious damage.

* In another case (Business Week-84), a person ordered 30,000 units at $4 each, but
the plan had changed and the company only needed 1500. Quite a lot of money
was therefore tied up in excess stock.

e Two spreadsheets with 15,000 cells were used to project the market for CAD
equipment. The numbers were rounded off to whole dollars and even the inflation
multiplier, which should have been 1.06 was rounded off to 1. Consequently, the
market was underestimated by $36 million (Business Week-84).

e A Dallas-based oil and gas company fired several executives for spreadsheet
model oversights that cost the company millions of dollars (Freeman-86).

e Work by Ditlea (Ditlea-87) published in Personal Computing, offer several cases
showing the adverse impact of spreadsheet errors on businesses. The controller of
James A. Cummings, Inc., a Florida construction company, was putting together a
Symphony spreadsheet model to bid on a $3 million office complex. His formula
to calculate the bid did not include a figure of $254,000 for overhead costs that he
had later inserted at the top of a column of figures. This entry fell outside the
range of numbers to be added by the @SUM (=SUM in MS Excel) function in his
formula. The undetected error resulted in a loss for the company when the bid was
won (Simkin-87).

* In another case (Simkin-87), a consultant called Larry Nipon found an error that
would have cost $1.5 million had it gone unchecked. The error was actually
identified by Cambridge Spreadsheet Analyst, a spreadsheet auditing program.

* Davies and Ikin (Davies-87) have found that out of 19 operational models audited
from 10 different firms, 4 (21%) had serious errors, including a $7 million error in
interdivisional transfers, different exchange rates for Australian dollars in the
same time period, and a negative balance for stock on hand. The effect errors like
these can have on the company is simply unimaginable.

* According to Woodbury G G (Woodbury-89), in a North Carolina election, results
of the election were about to be incorrectly posted. Mr Woodbury, using a
calculator, detected an inconsistency. Examination found an incorrect cross-
tabulation in the spreadsheet being used to post the results.

20

The following are three of the more recently reported cases:

e Dhebar (Dhebar-93) reported that a firm called Fortune 500 used discounted cash
flows to evaluate investment proposals and an important figure was not updated
for 8 years. The formula and discount rate had apparently been established long
ago, were never documented and made by a person who had left the company.
Although the prime rate rose from 8% to over 20% between 1973 and 1981, the
spreadsheet was kept at 8%. This is potentially detrimental to the business.

o At Fidelity, a spreadsheet was used to report distributions for various funds. For
the huge Magellan fund, a $4.32 per share capital gains distributions was forecast
in November, and investors were notified. However in December the company
announced there would be no distribution. A clerical worker put the wrong sign in
front of a $1.2 billion ledger entry. This "created" a $2.3 billion gain in place of
the real $0.1 billion loss. This may have affected buyers, some of whom may have
sold to avoid the distribution and missed a price rise, others of whom may have
waited to buy to avoid the distribution and also missed the price rise (Savitz-94).

* According to an article in New Scientist (Ward-97), a study by the Computer
Audit Unit of HM Customs and Excise (UK) found that as a result of errors,
spreadsheets were out by amounts ranging from a few hundred pounds to millions
of pounds. These errors were made by people when filling in computer
spreadsheets used by companies to keep track of their cash.

These reports demonstrate that the occurrence of user-generated spreadsheet errors is
indeed a critical problem for businesses and requires immediate attention. If this
situation prevails, organisations will, inevitably, be suffering great financial losses as
a result of incorrect decisions made based on their erroneous and unreliable
spreadsheet models.

2.4 Need for a Disciplined and Structured Approach

Spreadsheet models are increasingly being used in decision-making within
organisations (Cragg-93). However, much past research and published reports have
firmly established that there is no unified approach to spreadsheet development in
industry. Spreadsheet development can, in many ways, be compared to the days of
main-line software development before the advances due to structured programming,
analysis and design. Isakowitz et al (Isakowitz-95) state that in spite of the increasing
sophistication and power of commercial spreadsheet packages, there is still a lack of a
formal theory or methodology to support the development and maintenance of
spreadsheet models.

Findings from research carried out over several years have revealed the need for a
new approach or discipline for spreadsheet development. This is evident from the
constant call for a new structured approach, in many recent publications. Studies have
also discovered a general lack of policies on spreadsheet development. A collection of
these studies have been organised and presented by Panko and Halverson (Panko-96).
This can be found in Appendix B. Hall (Hall-96) argues that with the high probability

21

of the occurrence of spreadsheet errors, there is an obvious need for some formalised
control policy in the spreadsheet development process.

Panko and Halverson (Panko-96) state that surveys of spreadsheet development have
revealed that strict development disciplines have not been followed in spreadsheet
development, as they are in conventional programming. They also indicate that the
process of building spreadsheet models has been largely informal and emphasise on
the need to adopt programming disciplines in order to deal with complex
spreadsheets. Panko and Halverson also point out the fact that there is an obvious
need to adopt traditional programming disciplines due to the similarity between
spreadsheet and programming errors.

Spreadsheet applications are more vulnerable to poor design and errors compared to
conventional programs, as many spreadsheet users have not been trained in systems
analysis and software engineering (Davis-96). Benham et al (Benham-93) propose the
adoption of the techniques of structured analysis, design and programming to
spreadsheets, in order to enhance the quality of the applications. Their reason is that
such structured techniques were developed to address the shortcomings of early data
processing systems. Howitt (Howitt-85) states that users’ failure to employ a
consistent and thorough design methodology is due to the speed and simplicity of
spreadsheet model development.

According to the publications by Davies and Ikin (Davies-87) and Cragg and King
(Cragg-93), spreadsheet development, in most cases, has been found to be very
informal and lacking in the use of important development disciplines. David Finch,
Head of Internal Audit at Superdrug plc (United Kingdom) believes that there is often
inadequate control and standardisation in the process of spreadsheet development by
end-users 1in different departments (Chadwick-00b). Creeth (Creeth-85) has called for
quality control over the use of spreadsheet models.

An investigation carried out into the spreadsheet practices in ten firms revealed that
spreadsheet models were usually built in an informal, iterative manner, by people with
very little training (Cragg-93). This created an awareness of the need for increased
training as well as setting and enforcing organisational spreadsheet standards (Cragg-
93). According to Ray Butler (Butler-97), the problem with spreadsheet building is
that users do not regard spreadsheet models as computer programs requiring
specification, testing and documentation. Ray Butler believes that a reduction in the
risk of errors can be achieved by using a more formalised development and testing
methodology for spreadsheet applications (Chadwick-00b).

Hendry and Green (Hendry-94) have pointed out that the great disadvantage of
spreadsheets 1s that it is so easy. They suggest that instead of creating the whole
spreadsheet first and then checking for errors, errors ought to be checked for at
various stages of the development process. They believe that this would enable the
detection and correction of errors without missing many. This strategy of stage-by-
stage component testing is a software engineering-based technique.

Ronen et al (Ronen-89) express concemn over the lack of formal analysis or

documentation in spreadsheet development. They state that a structured approach to
spreadsheet design can help reduce the occurrence and seriousness of problems with

22

spreadsheets. According to Isakowitz et al (Isakowitz-95), a decrease in spreadsheet
errors can be achieved by adopting principles of structured methods from
software/system engineering. Kavanagh (Kavanagh-97) states that end-users are
putting their companies at risk by building spreadsheets without realising that this
demands the discipline of traditional programming.

Based on these studies and published reports, we can arrive at the firm conclusion that
the application of structured methods and the adoption of a disciplined approach
based on programming (or software engineering) principles in spreadsheet
development, is indeed imperative. This research programme investigates the
possibility of applying such methods in order to effectively address the phenomenon
of user-generated spreadsheet errors and enhance the integrity of spreadsheet models.

2.5 Summary

Spreadsheet programs have been in widespread use from the development of the first
electronic spreadsheet package, VisiCalc, in 1979, to the current windows-based
Microsoft Excel. The different roles in spreadsheet modelling include the model
sponsor, the model developer, the user and the reviewer. There are three important
perspectives to the phenomenon of spreadsheet errors. They are the frequency of the
errors, the real-life consequences of spreadsheet errors and the types and classes of
specific errors.

An important conclusion that can be drawn on the trends in spreadsheet errors is that
with the profound increase in the production and use of spreadsheet models over the
years, the frequency and impact of the errors have also steadily increased. Users have
been making more errors and quickly multiplying them.

It is evident from numerous publications that the frequency of user-generated
spreadsheet errors is indeed appallingly high. These publications contain extensive
anecdotal and experimental evidence of the vulnerability of spreadsheet models, from
both business and academia sources. This is further corroborated by research findings.

Numerous studies and audits have been carried out on the impact of user-generated
spreadsheet errors. These along with a huge collection of reported cases over two
decades, have clearly revealed the extent of damage that has been caused to
businesses, as well as potential future disruption.

Researchers on the problem of spreadsheet errors and authors of numerous relevant
publications have relentlessly stressed on the need for a new approach to spreadsheet
modelling. They have constantly recommended a structured and disciplined approach
to spreadsheet model development based on software engineering methods and
techniques.

23

CHAPTER 3
ANALYSIS AND CLASSIFICATION OF
SPREADSHEET ERRORS

3.1 Introduction

The previous chapter, Chapter 2, presented an insight into spreadsheets and described
the problem of user-generated spreadsheet errors in terms of their frequency and
impact. The importance of applying software engineering and structured methods to
spreadsheet development was also discussed. As mentioned in Chapter 2, the
phenomenon and magnitude of spreadsheet errors can be viewed from three distinct
perspectives. The first two perspectives were addressed in Chapter 2 by investigating
the frequency and real-life consequences of spreadsheet errors. This chapter focuses
on the third perspective, the types and classes of specific errors.

A thorough review of literature concerning spreadsheet development and the relevant
integrity issues, has revealed a significant deficiency. Very little research has been
devoted to the study and examination of specific errors that occur in spreadsheet
models. Therefore, an analysis of specific types of errors has been conducted as a
precursor to the development of strategies and solutions to deal with the problem
effectively.

There are numerous types of user-generated spreadsheet errors, with different
characteristics and attributes. As such, an essential and integral part of the analysis of
specific types of spreadsheet errors would be to develop a classification of these
errors. This chapter presents a more comprehensive classification or taxonomy of
spreadsheet errors than ever presented or published before, following a meticulous
analysis of specific types of user-generated spreadsheet errors from a wide variety of
sources. The classification is based on a rational taxonomic scheme and is supported
by a selection of generic and specific examples. The spreadsheet error taxonomy is
produced by analysing the nature and characteristics of the different types and
categories of specific errors. Earlier versions of the taxonomy have been published
(Rajalingham-98, 99, 99a, 00, 00a, 00b). The classification facilitates more effective
comprehension of the different types of spreadsheet errors.

3.2 The Concept of Taxonomy or Classification

In a broad sense, taxonomy is the science of classification, though more strictly, it
refers to the classification of living and extinct organisms. The term is derived from
the Greek raxis ("arrangement") and nomos ("law"). It is important to note, however,
that there is no special theory which lies behind modern taxonomic methods. In
attempting to define taxonomy within the context of spreadsheet errors, it would be
appropriate to investigate the definition of this term in other fields of study. In
biology, faxonomy refers to the establishment of a hierarchical system of categories on
the basis of presumed natural relationships among organisms. The goal of classifying
is to place an organism into an already existing group or to create a new group for it,

24

based on its resemblances to and differences from known forms. To this end, a
hierarchy of categories is recognised (Britannica.com-99-00).

Based on the definitions borrowed from other disciplines, we can extend the concept
of taxonomy to the classification of spreadsheet errors. For our purposes, the
spreadsheet error taxonomy can be defined as a hierarchical system of classes of
spreadsheet errors on the basis of common characteristics and relationships.

3.3 Rationale for the Classification of Spreadsheet Errors

There are various reasons for developing a classification of spreadsheet errors. The
most important purpose of creating a taxonomy is that it is a methodical approach to
problem analysis. The analysis of the different types of errors based on this approach
is likely to improve comprehensive testing of a spreadsheet development
methodology. The development of a taxonomy of spreadsheet errors also forces us to
gain a deeper understanding of the characteristics of an error as well as the nature of
its occurrence. A comparison can also be made with other related errors belonging to
the same category.

An insight into the features and nature of an error is of paramount importance, in
order to prevent the occurrence of the error or develop a method of detecting its
presence. The classification of spreadsheet errors would inevitably involve an
identification of similar characteristics and properties between certain errors. This can
be used as a basis for developing similar approaches to address spreadsheet errors
within the same category or taxonomic group. Knowledge of the characteristics of an
error also enables analysis of its potential impact and frequency. It is highly probable
that other errors in the same category would have the same degree of seriousness.

3.4 Derivation of the Taxonomic Scheme

This section discusses the factors and approaches that have been considered in the
development of the taxonomy. As indicated earlier, there is no special theory which
lies behind modern taxonomic methods. As such, an investigation had to be carried
out into the taxonomic methods used in other fields. These methods of classification
have been widely employed in the fields of zoology and botany.

Based on the principles of classification adopted in zoology and botany
(Britannica.com-99-00), spreadsheet errors can be classified using a similar
taxonomic scheme. The process of classification consists of the following steps:

e A specific type and example of a spreadsheet error is obtained.

o The error is compared with the known range of variation of spreadsheet errors.

e The error is correctly identified if it has been described, or a description showing

similarities to and differences from known categories, is prepared. If the error is of
a new type, it is assigned to a new category or class.

25

In order to address these limitations, the alternative binary approach was considered
and assessed. Like the bushy structure, this method is also based on a top-down
approach, resulting in a hierarchical taxonomy. However, at each stage of the
taxonomy, the binary approach uses dichofomies or divisions into two mutually
exclusive (non-overlapping) groups, to classify the errors. This eliminates the
possibility of positioning the same type of error in different parts of the taxonomy and
causing an overlap of the different categories of spreadsheet errors.

This feature of the binary approach enables a far more straight-forward way of
assigning a specific error to a taxonomic class. A simple IF-THEN-ELSE rule or
constraint can be used to navigate down the taxonomy tree and position errors in
appropriate classes. This is demonstrated in the next section. Furthermore, as a rule, at
each stage where a dichotomy is produced, only a single factor, representing a distinct
aspect of the error is used. This reduces ambiguity of class definition at each rank.

To this end, the following aspects of a particular type of spreadsheet error are
analysed:

(1) Manifestation of the error

(1) Cause of the error

(i) The role of the person responsible for the error

(iv) The cognitive state of the person responsible for the error

(v) The stage of the spreadsheet building life cycle where the error occurs

(vi) The relevant view of the spreadsheet model system

In view of the advantages of the binary method compared to the bushy method, the
binary approach has been adopted as the basis of a rational taxonomic scheme for
classifying spreadsheet errors. The taxonomic scheme also involves the conventional
process of classification (as used in zoology and botany) and an analysis of the nature,
properties and characteristics of spreadsheet errors.

3.5 The Classification of Spreadsheet Errors

An important point to be clarified at this stage is that the classification is confined to
only user-generated spreadsheet errors, as opposed to system or software-generated
errors. The issue of detecting or correcting flaws in the spreadsheet software is
beyond the scope of this research. User-generated errors can be defined as errors (or
potential errors) produced or caused by the developer(s) or end-users of the
spreadsheet model and can therefore be controlled or prevented by them.

Whenever, the term error is used in this thesis, it should be noted that it has a broader
definition encompassing both actual errors and potential errors. The errors include
flaws, slips and mistakes. Slips are errors that occur when the intention to act fits the
intended goal but the action is not carried out according to plan. Mistakes, on the
other hand, are errors that occur when an action is carried out as intended but the
action itself is not appropriate to the task (Chadwick-97).

It is also appropriate to state at this juncture that in the process of classifying certain
specific errors, assumptions had to be made about the precise cause of the errors,

27

where this is not clearly indicated by the source. It is possible for the same error to be
assigned to a different category, should the actual cause not match the assumed cause.

Figure 3.2 displays a comprehensive classification of user-generated spreadsheet
errors. At the highest level, spreadsheet errors can be divided into two major
categories, namely qualitative errors and quantitative errors. The classification factor
used at this stage is the manifestation of the error. Panko and Halverson (Panko-96)
have also broadly classified spreadsheet errors as being either quantitative or
qualitative.

By examining the manifestation of a specific type of spreadsheet error, it can be
clearly determined whether it is quantitative or qualitative, but not both. Any error or
flaw which is not quantitative has to be qualitative. Therefore, spreadsheet errors can
be divided into two non-overlapping categories of quantitative and qualitative errors.
This can be expressed in a form identical to a structured program.

For all user-generated spreadsheet errors,

IF numerical error causing incorrect bottom-line value
THEN quantitative error
ELSE NOT quantitative error (i.e. qualitative error)

28

6¢

sioug 1o3yspealdg pajersusas-1as) Jo Awouoxe] g7 ¢ 34n3g

UapPIH

XeAS

SIGISIA

[eINPNIS

21607

uoneuauwsidiug

Jesochuay

3AIBYRND

uolsiaqg UGB IIPOW uoliseg uoBsalipoN
uoljeluasaIday abpajamouy
ledijsuiayiely PLOA-(B3Y sjepdn uolpasy| sepdn uoljasy)
afpajAouY nduyy
uRuiog eleg jBinjonIS

fuoseay [eiUapI0Y

/ » lllllllll

3MBILBND

I.I\l..\l.llll.l

SHOYY3

133HSAYINES

3.5.1 Quantitative Errors

Quantitative errors are numerical errors that lead to incorrect bottom-line values
(Panko-96). They simply produce wrong data in the spreadsheet model. Based on an
analysis of the cause of the error, a dichotomy of accidental and reasoning errors can
be used to capture the different types of quantitative errors.

Any error or flaw which is quantitative and not accidental must have been produced
as a result of a mistake in reasoning and can therefore be considered to be a reasoning
error. Common sense would dictate that an error cannot be both accidental and caused
by a mistake in reasoning. Therefore, quantitative errors can be divided into two non-
overlapping categories of accidental and reasoning errors.

For all quantitative errors,

IF error is caused by negligence or carelessness
THEN accidental error
ELSE NOT accidental error (i.e. reasoning error)

It is important to state at this juncture that the dimension of fraud is not taken into
account when developing the classification framework for quantitative errors. This is
because any error can be deliberately produced with fraudulent or malicious intent
and disguised as an accidental or reasoning error, unless of course the criminal motive
1s blatantly obvious as in this example:

A user rewrites a payroll equation as follows (Stang-87):

I[F EMPLOYEEID = MINE
THEN PAYCHEQUEAMT = HOURS X RATE X 1.03
ELSE PAYCHEQUEAMT = HOURS X RATE.

1. Accidental Errors
Accidental
Structural Data
Input
Insertion Update Insertion Update
Modification Deletion Modification Deletion

Figure 3.3: Accidental Errors

30

Accidental errors are mistakes and slips caused by negligence, such as typographical
or pointing errors. Though quite frequently occurring, they have a high chance of
being spotted and corrected immediately by the person committing the error. Some,
however, do go undetected and could lead to incorrect values in the spreadsheet
model. After a close examination of various types of accidental errors, it has been
found that they can be further divided into two distinct categories. The taxonomic
factor used to achieve this is the user role responsible for the error. As such, an
accidental error can either be a structural error or a data input error.

Any user-generated error or flaw which is not produced by the model developer could
only have been caused by the end-user(s) of the model. Errors caused by end-users are
defined as data input errors as these errors occur when end-users insert, alter or
remove data in the models. The structures or templates of these models would have
already been constructed by the model developer. Based on this understanding of the
two distinct user roles, accidental errors can be divided into two non-overlapping
categories of structural and data input errors.

For all accidental errors,

IF error 1s caused by the model developer
THEN structural error
ELSE NOT structural error (i.€. data input)

(a) Structural Errors

Structural errors are errors produced by the developer of the spreadsheet model.
These errors are produced when creating or altering the structural or programmed
component of the spreadsheet model. Therefore, these errors can again be segregated
into two categories, namely, insertion and update errors. Though the structural
component of a spreadsheet model consists of schema and editorial sub-components
(described elaborately in Chapter 5), these errors primarily concern the schema of the
model. As the editorial parts of the model are mainly textual and not referenced by
any formulae, they do not produce numeric or bottom-line errors. As such they are not
classed as quantitative errors. They are in fact qualitative errors as these editorial
errors can degrade the quality of the model and distort its semantics.

Any developer-generated accidental error or flaw not produced while creating the
structural aspects of the spreadsheet model must have occurred while they are being
altered. This enables the disjointed division of accidental structural errors into
insertion and update errors.

31

For all structural errors,

IF error is produced when creating the structural aspects of the
spreadsheet model

THEN insertion error

ELSE NOT insertion error (i.e. update error)

(i) Insertion Errors

These errors occur while the developer is creating the structures of the spreadsheet
model. The model at this stage would be prone to accidental errors such as
typographical errors, pointing errors, duplication and omissions. As the activity is
carried out by the model developer, the cells affected would usually be formula cells.

Accidental

Structural Data

Input

Insertion Update Insertion Updete

Modification Deletion Modification Deletion

Figure 3.4: Insertion Errors (Structural)

Example 1: Omissions

Omissions are key factors or variables that are left out of the model (Cragg-93), that
should be there. They often result from a misinterpretation of the situation. Human
factors research has shown that omission errors are especially dangerous, because
they have low detection rates (Panko-96). This is a problem which is at the heart of
any modelling exercise. KPMG (KPMG-98) reported that references were made to
worksheets that does not exist (Cragg-93).

Example 2: Pointing Errors

Pointing errors refer to errors caused by references being made to wrong cells or cells
in the wrong location. The model developer types the wrong cell coordinates in
composing the formula (Brown-87). As a result of carelessly entering incorrect cell or
range addresses into formulae, the formulae themselves produce incorrect results.
Pointing errors could therefore also manifest themselves in the form of references to
blank cells and non-numeric cells or cause the presence of figures that are not used.

32

Therefore, reasoning errors can be exclusively divided into two categories: domain
knowledge and implementation errors. Research into the relative frequencies and real-
life impact of the different types of reasoning errors have shown that implementation
errors are far more common than domain knowledge errors. Domain knowledge errors
are, however, generally more serious than implementation errors.

For all reasoning errors,

IF error occurs owing to a lack of understanding of the
underlying problem or function to be modelled

THEN domain knowledge error

ELSE NOT domain knowledge error (i.c. implementation error)

(a) Domain Knowledge Errors

Domain knowledge errors are specifically caused by inadequate awareness or
knowledge required to identify, analyse and understand the business function or
problem underlying the spreadsheet model. This knowledge is essential for modelling
the problem and designing the corresponding conceptual or logical data model.

Domain knowledge errors, however, do not concern the specific features and
capabilities of any particular spreadsheet package. The matrix of data and formulae
that constitute the recognised spreadsheet model 1s an electronic representation of a
business function in the real world.

This category of errors consists of two distinct classes, namely real-world knowledge
and mathematical representation based errors. Any reasoning domain-knowledge
error which occurs despite selection of the right algorithm must have been caused by a
lack of understanding of how the algorithm is to be mathematically represented. It
would therefore seem appropriate to term these sorts of errors as mathematical
representation €ITors.

For all domain-knowledge errors,

IF error caused as a consequence of a lack of knowledge on the
underlying algorithm of a calculation or function

THEN real-world knowledge error

ELSE NOT real-world knowledge error
(1.e. mathematical representation error)

39

Example 1: RELATIVE and ABSOLUTE Copy Problem

The relative copy causes cell references in a copied formula to alter row and column
references relative to the original cell copied. People often make the false assumption
that the software will automatically adapt the cell references wherever they happen to
copy (Chadwick-97). On other occasions, the error is caused by the user copying a
formula hidden underneath a cell value, thinking that they are copying the value from
the cell (Brown-87). According to Hendry & Green (Hendry-94), novices experience
difficulties in learning about relative and absolute cell references, a feature of all
spreadsheets.

According to a report by KPMG Management Consulting, London (KPMG-98), in the
calculation of vehicle leasing costs, the element of the formula that referred to
directors had been lacking a $ sign (used for absolute copying instead of the default
relative copying of formulae), resulting in incorrect cell references when the formula

was copied from the original cell. This resulted in an understatement of the costs (e.g.
by $432k in 2006).

Example 2: Rounding Error

When writing any spreadsheet the problem of rounding must be considered. Rounding
can and should always be controlled. The best approach is to produce rounded
numbers, and perform all operations on them, so that one works with numbers that are
displayed, not with “hidden” values.

Based on Figure 3.18 (Batson-91), it can be seen that the “formatted” column does
not add up. The difference is small and can be attributed to rounding, but it affects the
credibility of the model. It is therefore vital that a spreadsheet modeller understands
what is occurring and takes measures to ensure that the rounding is controlled.

Actual] Formatted Rounded
Al 1.128431 1.13 1.13
A2 2.35625 2.36 2.36
A3 1.827994 1.83 1.83
=SUM(A1:A3) 5.312675 531 532

Figure 3.18: Rounding Error

In example shown in Figure 3.18, the “actual” column refers to how the number is
stored within the spreadsheet (often up to 15 significant figures). The “formatted”
column shows what appears on the screen if the column is formatted to two decimal
places; the numbers themselves, however, are still held in the spreadsheet to 15
significant figures, and it is “hidden” values which are used in subsequent
calculations. The “rounded” column shows what happens when each value is rounded
so that the spreadsheet holds the values to two decimal places only, in which case, as
shown, the column adds up correctly (Batson-91).

43

Stang (Stang-87) also provides an example of a rounding error. If users formg? to one
digit to the right of the decimal, and then enter values having greater precision, the
spreadsheet will round off the numbers. Thus 1.44 will round off to 1.4; the sum of
1.44 and 1.44 will round to 2.9 from 2.88. Such additions would appear to be
incorrect.

Example 3: Circular Reference

Circular references in formulae often indicate that there is an error in the logic of the
model and should therefore be avoided. Such references should be eliminated at the
specification stage (Batson-91). This error frequently occurs in totals where the
formula uses its own value in its calculation. This error will give a run-time error
message and so probably occurs infrequently (Chadwick-97). A common example of
a circular reference arises when calculating bank overdraft interest (Batson-86,91).
This is shown in Figure 3.19 (a) (Batson-91).

Cashflow £
Opening bank balance (overdrawn) (%)
Add: Receipts X
Less: Payments (%)
Less: Overdraft interest based on closing balance (%)
Closing bank balance (%)

Figure 3.19 (a): Circular Reference

Each time the spreadsheet is recalculated the overdraft interest will change and update
the closing bank balance ad infinitum. The error can be corrected by removing the
circular reference. The correct way is shown in Figure 3.19 (b) (Batson-91).

Cashflow £

Opening bank balance (overdrawn) (%)
Add: Receipts X

Less: Payments (x)
Balance before overdraft interest x)
Less: Overdraft interest on balance before interest (x)
Closing bank balance x)

Figure 3.19 (b): Circular Reference Resolved
According to Ditlea (Ditlea-87), a circular reference was adding the 11-month total

for a region to itself. As a result, the spreadsheet was mistakenly doubling a $10
million figure every time it recalculated.

44

3.5.2 Qualitative Errors

Qualtative

Temporal Structural

Visible Hidden

Figure 3.21: Qualitative Errors

Qualitative errors are errors that do not immediately produce incorrect numeric
values but degrade the quality of the model. The model also becomes more prone to
misinterpretation on the part of the user. As a result, it also becomes more difficult to
update and maintain the model. A more detailed investigation into qualitative errors
reveals that they can be generally divided into two different types, namely, temporal
errors and structural errors.

This dichotomy is obtained mainly based on an analysis of the three views of an
information system. It has been previously established that a spreadsheet system is
also a type of information system.

The three views of an information system: data, processing and behaviour, are also
applicable to spreadsheet models. Within the context of spreadsheet models, the
processing view of a model is the network of formulae used to perform calculations
on data and produce the computation results. This is also the schema of the model.
The data view represents the various input data required for the calculations of
formulae. The processing and data views are rather snapshot in nature. The
behavioural or temporal view represents the effects of time and real world events on
the spreadsheet model. Unlike the data and processing views, this is a dynamic view
of the spreadsheet model.

A qualitative error which is not temporal in nature can be considered a structural
error. This encompasses all forms of non-temporal factors or structural flaws which
degrade the quality of the spreadsheet model. The structural aspect of the model in
this context represents the binding of the model schema (formula network) and data.

For all qualitative errors,

IF error is caused by an elapse of time, which invalidates data
THEN temporal error
ELSE NOT temporal error (i.€. structural error)

46

Example 2: Complexity of Formulae

The calculation of distances between transit and non-neighbouring areas 1s appareqtly
based on a total area of 78,864 sqkm divided into 163 transit or 13 non-neighbouring
areas. The distance is taken as the diameter of a circle of such an area. The formula
could have been written more concisely using the PI function (KPMG-98). Stang
(Stang-87) suggests that any equation longer than 80 characters uses logic that 1s
difficult to follow (Stang-87). Ray Butler (Butler-97) identified that addition and
subtraction of numbers within single spreadsheet cells were done without thought for
the audit trail or auditability.

3.6 Summary

There has been inadequate research and examination of specific errors in spreadsheet
modelling. An analysis and classification of specific types of spreadsheet errors has
been carried out as a precursor to the development of approaches to effectively
address the problem. This chapter has presented a more comprehensive taxonomy of
spreadsheet errors than ever presented or published before, based on a rational
taxonomic scheme.

The main reasons for developing a classification of spreadsheet errors are as follows:

e It is a methodical approach to problem analysis.

e It has greater potential for improving comprehensive testing of a spreadsheet
development methodology.

e It provides a deeper insight into the nature and characteristics of the errors.

It is evident that there are no standard methods for producing a taxonomy. The
conventional generic process of classification widely used in zoology and botany has
been adopted in producing the spreadsheet error taxonomy.

The binary structure for an error taxonomy has been found to be more beneficial
compared to the previously adopted bushy method. The current taxonomy of
spreadsheet errors is based on a binary approach that uses dichotomies or IF-THEN-
ELSE rules to classify errors. Therefore, the taxonomy can be expressed in a

structured form. A summary of the entire classification in this form is presented in
Figure 3.27.

50

CHAPTER 4
PAST WORK AND EXISTING DEVELOPMENTS

4.1 Introduction

Chapter 2 mainly presented an insight into the problem of user-generated spreadsheet
errors in terms of their frequency and impact, while the previous chapter, Chapter 3,
concentrated on the analysis and classification of specific user-generated spreadsheet
errors.

This chapter presents a discussion of a spectrum of existing tools and techniques for
integrity control of spreadsheet models and the different life cycles and methodologies
proposed for their development. An analysis of the effectiveness and limitations of the
tools and techniques is also conducted along with a critical evaluation of the various
life cycles and methodologies proposed for the development of spreadsheet models.

Numerous software tools have been developed and marketed for the auditing and
integrity control of spreadsheet models. Various techniques have also been proposed
to enhance the quality the models. Apart from these tools and techniques, over the
years, several life cycles and methodologies for the development of spreadsheet
models have been proposed and presented in a host of publications.

4.2 Existing Tools and Techniques

4.2.1 Tools

Software audit tools have been around for almost as long as spreadsheets themselves
(Butler-97). The following are among the most popular computer-based tools that
have been developed to help combat the problem of spreadsheet errors. Not all of
them are in widespread use today.

Spreadsheet Auditor

Cambridge Spreadsheet Analyst

Microsoft Excel’s Built-in Auditing Functions

The Excel Auditor

Spreadsheet Professional Audit Tool for Microsoft Excel
Spreadsheet Detective

The Operis Analysis Kit (OAK)

Spreadsheet Auditing for Customs and Excise (SpACE)

The objective of this section is to only briefly introduce some of the main tools that
have been available. As such a detailed description of each tool is not given,

52

Spreadsheet Detective

The Spreadsheet Detective is also an Excel add-in, produced by Southern Cross
Software. Nixon (Nixon-01) states that there are two fundamental ways in which the
software attempts to assist users in the auditing of spreadsheets. The first is the
identification of formula schema while the second is the listing of potential problems
such as references to non-numeric cells or unprotected schema.

The Spreadsheet Detective's key patented features are the shading, which provides a
proper formula map over the existing cells, and the AutoNames. While the
Spreadsheet Detective's AutoNames make the use of Named Ranges largely
redundant, this is a useful feature for people who do still use Named Ranges.
Spreadsheet Detective can produce a report of all Named Ranges, including for which
sheet they have been defined and the range to which they refer. They are integrated
with the annotations or Formula report, and the report correlates them with cell labels
or AutoNames.

The Detective tends to produce reports of dubious formulae rather than selecting cells,
with the exception of some of its year 2000 analysis. The Spreadsheet Detective can
also compare different versions of a spreadsheet, which is very important to verify
that only specific changes have been made. The Detective can align both rows and
columns.

The Spreadsheet Detective's advanced features are as follows:
AutoNames

full annotations

useful Named range definition reports

Year 2000 analysis

3D formula indication

workbook precedent report

The Operis Analysis Kit (OAK)

OAK provides the basic map and formula report required for any spreadsheet audit.
This tool has been produced by Operis Business Engineering Limited, London and
takes the form of an add-in for Microsoft Excel. OAK provides the following features:
Basic Formula Map

Workbook Summaries, Formula Report

Named Range analysis

Selection of different types of cells

Spreadsheet Comparison

Insert/Delete Row/Column

Development History spreadsheet

The formula map essentially copies the original spreadsheet, and then replaces all
formulae in the original spreadsheet with symbols to indicate whether they are copies
of other formulae above or to their left. OAK can also shade the original spreadsheet
to show which cells have formulae. This is a much better option than producing a

35

separate map because one can see the shading and the formula results at the same
time, as well as being able to manipulate the formulae. However, the OAK shading
gives no indication of how formulae have been copied. It also uses cell colour rather
than patterns, which can corrupt existing formatting.

The workbook summaries provide a list of all the worksheets in a book and some
basic statistics about the size of each worksheet. More importantly, it provides a list of
all unique formulae. OAK provides some excellent facilities to be able to rename
Named Ranges and automatically update the formulae that use them. OAK can also
produce a report of all Named Ranges, including for which sheet they have been
defined and the range to which they refer. OAK can also automatically select cells
based on different criteria. For example, it can select functions with hardwired
constants or that refer to blank cells. It can also compare different versions of a
spreadsheet.

Spreadsheet Auditing for Customs and Excise (SpACE)

SpACE has been developed by the HM Customs and Excise, United Kingdom. It is
mainly used by VAT inspectors in auditing client spreadsheets. However, it is also
available to the public. SpACE works by using a combination of search facilities,
overlaid mapping options and the identification of unique formula, to highlight
potential errors in a spreadsheet. It also has more in-depth auditing functions such as
the ability to check lists of data for duplicates (Nixon-01).

4.2.2 Techniques

Apart from software tools developed to help control the integrity of spreadsheet
models, various techniques have also been proposed. The objective of these
techniques is to enhance the quality of spreadsheet models. The following list captures
a selection of significant techniques described in spreadsheet literature:

Benham’s (Benham-93) Structured Techniques for Spreadsheet Development
Kee’s (Kee-88) Standard Spreadsheet Design Format

Ronen et al’s (Ronen-89) Recommended Spreadsheet Structure

Ronen et al’s (Ronen-89) Spreadsheet Flow Diagrams (SFD)

Benham’s (Benham-93) Structured Techniques for Spreadsheet Development

Benham (Benham-93) proposes the arrangement of the spreadsheet into blocks or
sections along the spreadsheet’s diagonal. As a minimum, the spreadsheet should have
the following sections:

- Introductory Section

- Data and Assumption Section

- Model Section (work performed by the spreadsheet)
- Analysis Section (required outcomes or results)

- Macro Section

56

Ronen et al’s (Ronen-89) Recommended Spreadsheet Structure

Figure 4.6 presents Ronen et al’s recommended structure for a spreadsheet. The
purpose of the structure is to separate parts of a spreadsheet into blocks to reduce the
potential for errors. Figure 4.6 contains a number of blocks which, when taken
together, form the spreadsheet model.

Identification Macros
Owner
Developer Menus

User
Date Revised
File Name

Map of Model

Parameters
(Assumptions)

Mode!
Formuiae/Matrix
input Vector(s)
Decision Vector(s)
Parameter Vector(s)
Qutput Vector(s)

Figure 4.6: Ronen et al’s Spreadsheet Structure

The identification block presents the name of the developer, user, and model. It also
contains a list of revision dates and the name of the spreadsheet file. To the right of
the identification block i1s the macros/menus block. Immediately below the
identification block is a map or index to the spreadsheet. It contains a description of
where the various blocks may be found and acts as a table of contents for the model
(Ronen-89).

The large documentation block allows the spreadsheet developer to describe in
general terms how the model works and to annotate various rows in the model. The
parameter block contains variables that are used in the formulae. The final block in
the spreadsheet is the model itself (Ronen-89).

Ronen et al’s (Ronen-89) Spreadsheet Flow Diagrams (SFD)

Ronen et al (Ronen-89) endeavour to apply the notion of Data Flow Modelling in
spreadsheet development. This is due to its popularity in traditional systems analysis
and design as a way to promote structured, top-down design and to reduce
complexity. The proposed Spreadsheet Flow Diagrams (SFD) are used for the same

purpose.

Figure 4.7 shows the basic symbols of Ronen et al’s SFD. A simple rectangle is used
to represent input vectors, output vectors, decision vectors, and parameters. According

58

to Ronen et al (Ronen-89), the advantage of using a structured notation for
spreadsheets is the same as the merits of such notations used in Data Flow Diagrams.

Input Vector

&
Output Vector

Decision Vector
D

/ Parameter Vector
P

Formulae (Maodel)

> Data Fiow

Figure 4.7: Notations of Ronen et al’s SFD

4.2.3 Effectiveness and Limitations of the Tools and Techniques

This section presents a discussion of the effectiveness and limitations of the eight
tools and four techniques described in Sub-sections 4.2.1 and 4.2.2.

All the software tools described in Section 4.2.1 are primarily aimed at facilitating
auditing and error detection in spreadsheet models. Though these developments have
to an extent reduced errors in spreadsheets, they have not been entirely successful as
the phenomenon still persists. The main reason for the lack of success of the tools is
the fact that they concentrate on detecting errors rather than preventing the incidence
of the errors.

There are two criteria that can be used to assess the effectiveness of a software tool:
e Its capacity to detect existing errors
e Its capacity to caution the user on potential errors, flaws and problems

The Spreadsheet Auditor and Cambridge Spreadsheet Analyst have become obsolete
following the termination of their development. These tools were created to help audit
Lotus 1-2-3 file formats are would be not be very useful today with the more
widespread use MS Excel in the Windows platform. As the tools were produced in the
mid-80s, they lack the more advanced and sophisticated features of the other more
recently developed tools.

The Spreadsheet Detective 1s the most effective among the eight tools assessed. It
possesses an excellent capacity to detect existing errors and notify users of any

59

potential flaws or errors. The Spreadsheet Detective provides an overlay to a
worksheet with different types and colours of shading along with text descriptions.
This easily reveals errors such as overwritten formulae. It also produces reports of
named ranges and formulae, which can be used to effectively identify dubious and
potentially erroneous cells.

Among the tools evaluated (apart from Spreadsheet Auditor and Cambridge
Spreadsheet Analyst), the Excel Auditor is the least satisfactory. Though the Excel
Auditor offers various functions outside the usual scope of auditing software, it is
neither as effective as the other tools in detecting existing errors nor identifying any
potentially unsafe or problematic cells. A major limitation of the Fxcel Auditor is that
it performs a laborious cell-by-cell inspection rather than using more visual
techniques. However, it can be useful as a documentation tool.

Spreadsheet Auditing for Customs and Excise (SpACE) can be regarded as a very
good tool for both detecting existing errors and identifying potentially problematic
cells in a spreadsheet. Its effectiveness in accomplishing these is comparable to that of
the Spreadsheet Detective. SpACE has very good auditing tools but lacks the ability
to produce a formula description in natural language like the Spreadsheet Detective.

The Operis Analysis Kit (OAK) is highly effective in the detection of existing errors in
a spreadsheet model. This is attributable to OAK’s ability to produce a basic formula
map and shading of the original spreadsheet. A disadvantage is that this can
sometimes corrupt existing formatting. OAK does not fare as well as the Spreadsheet
Detective or SpACE on the second criterion. OAK 1is relatively less effective in
identifying potential problems, such as unprotected cells.

Spreadsheet Professional is satisfactory in both the detection of existing errors and
the identification of potentially unsafe or erroneous cells. The detection of existing
errors is mainly done with the help of the Cell Translation feature which enables
quick verification of the logic of formulae. The Spreadsheet Professional also
provides useful reports of potential problems or flaws such as unused operands of a
formula, hard-coded formulae and the referencing of blank or non-numeric cells. The
main limitation of this tool is that it does not offer more advanced features for error
detection like the Spreadsheet Detective, SpACE or OAK.

Microsoft Excel’s Built-in Auditing Functions do have a reasonable capacity to detect
existing errors in a spreadsheet by tracing the precedents and dependants of a cell.
However, the functions are not effective in identifying potential errors or potentially
unsafe cells, for instance, unprotected and hard-coded formulae. Like the Excel
Auditor, MS Excel’s built-in auditing functions also have the disadvantage of
concentrating on cell-by-cell inspection.

While most of the software tools focus on error detection, the techniques described in
Section 4.2.2 represent efforts to reduce, if not prevent, the occurrence of errors. The
advent of these techniques indicate an increased awareness of the importance of
adopting more structured or systematic approaches to the development of spreadsheet
models. All the techniques discussed in Section 4.2.2 have their advantages and
disadvantages or limitations.

60

There is a significant difference between the first three techniques (Benham's
Structured Techniques, Kee's Standard Spreadsheet Design Format and Ronen et al’s
Recommended Spreadsheet Structure) and the fourth technique (Ronen et al’s
Spreadsheet Flow Diagrams). The first three techniques are based on developing a
standard generic structure for the entire spreadsheet model, while the fourth technique
employs an established method within structured systems analysis to specifically
model the workings or calculations part of the spreadsheet. The main limitation of the
fourth technique (Ronen et al’s Spreadsheet Flow Diagrams) in this respect is that it
does not address the other important aspects of the spreadsheet model. Therefore, it is
recommended that this technique be applied within one of the first three techniques
discussed in Section 4.2.2.

A comparison of the first three techniques would immediately reveal a fundamental
difference between the first technique (Benham’s Structured Techniques for
Spreadsheet Development) and the next two techniques (Kee's Standard Spreadsheet
Design Format and Ronen et al’s Recommended Spreadsheet Structure). The first
technique, Benham's method, is based on a block diagonal structure while the other
two techniques are not. The advantage of this layout is that each section or module of
the spreadsheet model is not adversely affected by row or column insertions or
deletions in any other parts of the model.

There are certain important similarities among the first three techniques discussed in
Section 4.2.2. They all attempt to adopt a standard, structured and disciplined
approach to spreadsheet development. Apart from that, there is also an emphasis on
the division of the model into distinct modules or components. Applying a modular
structure to spreadsheet models makes them appear more organised and enhances
their comprehensibility. This can also reduce the potential for errors. An examination
of the proposed components or modules within each of the three techniques also
shows certain similarities. Benham's method and Kee'’s spreadsheet format explicitly
separate the input, workings and output components of the spreadsheet model. Ronern
et al’s spreadsheet structure performs this segregation within the model component.
The proposed spreadsheet layout of all three techniques contains a section that clearly
describes the spreadsheet model.

Based on the assessment of the advantages and limitations of the four techniques
described in Section 4.2.2, it 1s recommended that the most effective approach would
involve the use of Benham’s method combined with Ronen et al’s Spreadsheet Flow
Diagrams to model the data, model (workings) and analysis sections.

61

Stage 2: Specify

The key business risks which define the requirements for the model are identified. A
specification document is subsequently prepared. It contains an overview of the
model, outputs, inputs and calculations required.

Stage 3: Build

This stage involves three activities: model development, documentation and testing.
Stage 4: Review

The review may be either the core of a model review engagement, in which case the
scope of the review will be stated explicitly in the proposal document, or an
independent review following the Build stage of a model development engagement.
Stage S: Implement

The content of the implementation stage will depend very much on whether the model

1s a one-off project model or an ongoing management model.

Hayen and Peters’ (Hayen-89) Spreadsheet Development Life Cycle

The following steps form the Spreadsheet Development Life Cycle proposed by Hayen
and Peters (Hayen-89):

Step 1: Determine Feasibility

Determine if a spreadsheet is the appropriate tool for analysing the business problem
under consideration.

Step 2: Create Paper Model

The paper model can be considered in several different ways. It could be a workpaper
created manually or a form selected from a set of standardised forms.

Step 3: Collect and Prepare Data

Collect and prepare the data required by the model.

Step 4: Enter Spreadsheet

Create the worksheets.

Step 5: Verify Spreadsheet Logic

To verify logic, spreadsheet applications should have as many built-in accounting

tests as possible. The logic of the spreadsheet application can perform these tests
automatically.

64

Step 6: Enter Application Data

If several different sets of data are to be input, the developer can establish separate
areas of the spreadsheet for the input data and the equations.

Step 7: Produce Reports/Graphs

If more than one report or graph is to be produced, creating macros or command files
to do the job helps ensure that the correct data are displayed.

Step 8: Review Results
The results should be reviewed for reasonableness before they get final approval.
Step 9: Prepare Documentation

In the development of a spreadsheet, the documentation should evolve. A final step
should be to check its completeness.

Step 10: Sign off

After all the reviews, the final result can be signed off. Whenever a revision needs to
be made, the process starts over.

Panko & Halverson’s (Panko-96) Spreadsheet Development Life Cycle

Spreadsheet models, like programs, go through a series of development stages. These
development stages (in order) are identified by Panko and Halverson (Panko-96) to be
requirements, design, cell entry, draft, debugging and operational use.

Stage 1: Requirements and Design

As done in programming, it is extremely important to determine the requirements
before actual construction of the spreadsheet is begun.

Stage 2: Cell Entry

This is the stage when numbers and formulae are entered in the spreadsheet cells.
Many of the mistakes made at this stage are corrected immediately. However, some
errors may be more frequent or more difficult to correct than others.

Stage 3: Draft

The draft spreadsheet should be tested with a variety of types of data or inspected cell-
by-cell by the developer or an inspection team.

65

Stage 4: Debugging

In order to further reduce error rates, developers should engage in the debugging stage
that involves data testing and code inspection.

Stage S: Operational Stage
Even during the operational stage, errors are identified and corrected. However, this

can be expensive and sometimes produce even more errors. As the models are in

operation, extensive damage may have also been done before detection and correction
of the errors.

DiAntonio's Method for Spreadsheet Development

DiAntonio (DiAntonio-86) has proposed a structured method consisting of six distinct
steps for the construction of spreadsheets.

Step 1: The problem is understood and defined.

Step 2: Isolation of facts is done by splitting the spreadsheet into two parts,
one for the facts and one for the solution.

Step 3: The solution is formatted or designed and it uses data from the facts
part of the spreadsheet.

Step 4. The program is tested with sample data.

Step S: The program is evaluated in terms of functionality, headings, labels
and format.

Step 6: The program is documented either on the spreadsheet itself or in hard
copy.

66

Ronen et al’s (Ronen-89) Spreadsheet Development Life Cycle

Ronen et al’s Spreadsheet Development Life Cycle is based on the traditional systems
development life cycle. It is shown in Figure 4.10.

1. Problem identification 2. Definition ot model
' \ outcome/decision
T] variables

l

3. Construct the
Model

1

4. Test the Spreadsheet

l

5. Documentation

l

Errors 6. Audit the Spreadsheet
Models and Structure

Errors

...........................

...........................

..............

9. Installation [¢

..............

Figure 4.10: Ronen et al’s Spreadsheet Development Life Cycle
Step 1: Problem Identification
The designer defines the nature of the problem to be solved.
Step 2: Definition of Model Outcome/Decision Variables
The spreadsheet is usually developed to produce results. The outcome variables need

to be defined. An understanding of the outcome is generated is important. This part of
the model represents the calculations which are undertaken in the model.

Step 3: Construct the Model

This stage corresponds to the traditional notion of programming. Using the various
commands of the spreadsheet language, the model is built.

67

Step 4: Test

The results of the model are carefully tested. A hard-copy of the model and cell
formulae are printed. All calculations are checked independently from the
spreadsheet. The spreadsheet is also examined to see if there is an audit trail.

Step S: Documentation

The spreadsheet model is documented on the spreadsheet itself. This involves
inclusion of text on the spreadsheet that explains the model.

Step 6: Audit

The model and its structure are carefully reviewed. The use of audit packages is
recommended.

Step 7: Prepare a User Manual (Optional)

For systems designed for others to use, a manual is a necessity. For applications
created by the user, a manual is valuable if the application is to be used more than
once.

Step 8: Training (Optional)

If the model is to be used by others, they may need to be trained prior to installation.
Step 9: Installation

The spreadsheet is prepared for use, for example, by installing it on a user's computer

so that the model loads whenever the spreadsheet program is started.

Chadwick et al’s (Chadwick-97) 5-Step Methodology

Chadwick et al (Chadwick-97) have proposed a five-step methodology for
spreadsheet auditing, that incorporates the 3A’s (appropriateness, accuracy, about-
right) approach. An outline of the methodology is presented here.

Step 1: Appropriateness

Checking the appropriateness of the formula applied, from a logical point of view.
Appropriateness is the correctness of the formula according to the underlying data
model of the business process being modelled. The spreadsheet builder can verify
appropriateness by entering the real-world description of the formula in the cell note
for the cell. An example of this is shown in Figure 4.11.

68

4.3.2 Critical Evaluation of the Life Cycles and Methodologies

The life cycles and methodologies presented in Section 4.3.1 have various similarities
and differences. They mainly vary in terms of level of detail and focus.

Apart from Chadwick D et al’s 5-step Methodology, all the other life
cycles/methodologies cover most of, if not all, the stages of spreadsheet development.
Chadwick D et al’s 5-step Methodology is therefore the least comprehensive
approach. Its advantage, however, is that it places more emphasis on spreadsheet
auditing compared to the other life cycles or methodologies proposed. It is
recommended that this methodology be used within one of the other more
comprehensive frameworks.

The most comprehensive life cycles or methodologies proposed are PWC'’s Modelling
Life Cycle and the KPMG Modelling Process. To a large extent, both these
frameworks have common steps or stages. These include scoping, specification,
design, building, testing and operation. However, the precise sequence and scope of
the constituent stages are different. Within each stage, the frameworks provide a
detailed description or specification of the application of the relevant steps to the
spreadsheet development process. The depth and comprehensiveness of both these
approaches are mainly attributable to the fact that they have been developed by large
multinational accounting/auditing firms. Apart from that, both frameworks are also
more recently developed compared to the other life cycles/methodologies.

The other four life cycles/methodologies (Hayen and Peters’ life cycle, Panko and
Halverson's life cycle, DiAntonio's method and Ronen et al’s life cycle) do not
provide a detailed description of each stage of the life cycle. They do however address
all stages of the spreadsheet development process. Apart from Ronen et al’s life cycle,
the other life cycles consist of a set of sequential stages. A study of the stages of the
four life cycles shows that they are similar to the stages of the traditional systems
development life cycle, especially Ronen et al’s life cycle. The advantage of
DiAntonio’s method over the other frameworks is that it proposes the division of the
spreadsheet into a facts (data) part and a solutions (workings and output) part. This
produces a more organised model structure.

Among the life cycles and methodologies proposed for spreadsheet development, the
most effective approach would be based on PWC’s Modelling Life Cycle or the
KPMG modelling process. In order to further enhance the quality of the framework,
Didntonio’s method can be applied in the specification/design and building stages,
and Chadwick D et al’s 5-step methodology can be adopted in the resting or review
stage.

4.4 Summary

This chapter has presented a discussion of a range of existing tools and techniques for
improving the quality of spreadsheet models, and various life cycles and
methodologies proposed for spreadsheet development. The merits and demerits of the
tools and techniques, and a critical assessment of the life cycles and methodologies
have also been provided.

70

Among the principal computer-based tools that have been developed to facilitate
auditing and error detection in spreadsheet models are the Spreadsheet Auditor,
Cambridge Spreadsheet Analyst, MS Excel’s Built-in Auditing Functions, the Excel
Auditor, Spreadsheet Professional Audit Tool for MS Excel, Spreadsheet Detective,
the Operis Analysis Kit (OAK), and Spreadsheet Auditing for Customs and Excise
(SpACE). On the other hand, some of the main technigues that have been proposed for
the quality control of spreadsheet models include Benham'’s Structured Techniques for
Spreadsheet Development, Kee’s Standard Spreadsheet Design Format, Ronen et al’s

Recommended Spreadsheet Structure and Ronen et al’s Spreadsheet Flow Diagrams
(SFD).

The Spreadsheet Detective has been found to be the most effective among the eight
tools considered, having an excellent capacity to detect both existing errors and
potential flaws. On the other hand, the Excel Auditor appeared to be the least
satisfactory. Based on an analysis of the four techniques described in this chapter, the
most highly recommended approach would involve the use of Benham's method
combined with Ronen et al’s SFDs to model the data, workings and analysis sections.

Various life cycles and methodologies have been proposed for spreadsheet
development. They include PricewaterhouseCoopers (PWC'’s) Modelling Life Cycle,
the KPMG Modelling Process, Hayen and Peters’ Spreadsheet Development Life
Cycle, Panko and Halverson’s Spreadsheet Development Life Cycle, DiAntonio's
Method for Spreadsheet Development, Ronen et al’s Spreadsheet Development Life
Cycle, and Chadwick et al’s 5-step Methodology incorporating the 34’s Approach.

Chadwick et al’s 5-step methodology is the least comprehensive approach but has the
benefit of placing relatively more emphasis on spreadsheet auditing. It has been found
that the most comprehensive life cycles/methodologies are PWC’s Modelling Life
Cycle and the KPMG Modelling Process. The most effective methodology would be a
hybrid approach based on either PWC’s Modelling Life Cycle or the KPMG Modelling
Process, combined with Didntonio’s method in the specification/design and building
stages, and Chadwick et al’s 5-step methodology in the testing or review stage.

71

CHAPTER 5
PRELIMINARY INVESTIGATION AND DEVELOPMENTS

5.1 Introduction

In Chapter 3, a framework for classifying user-generated spreadsheet errors based on
a rational taxonomic scheme was presented, while Chapter 4 provided a discussion
and evaluation of existing tools and techniques for the quality control of spreadsheet
models, as well as life cycles and methodologies for spreadsheet development. Both
these sets of activities were carried out in parallel.

Having gained an insight into the nature, characteristics and categories of specific
types of spreadsheet errors and the existing tools, techniques, life cycles and
methodologies, an investigation was carried out into various methods and approaches
deemed to have the potential for enhancing the quality of spreadsheet models. This
was preceded by an analysis of spreadsheet structure.

This chapter begins with a discussion of spreadsheet structure. The different aspects
of spreadsheet structure considered are the components of a spreadsheet model, the
structure of formulae and data dependencies. The outcome and findings of the
preliminary investigation into the relevant techniques, methods and approaches, are
subsequently presented. This is the main part of this chapter and represents the first
step in the research programme, towards developing a comprehensive methodology
for the integrity control and development of spreadsheet models.

5.2 Analysis of Spreadsheet Structure

5.2.1 Overview

A spreadsheet is a large matrix consisting of rows and columns. Rows are identified
by numbers, while columns are identified by letters. The intersection of a particular
row and column of a spreadsheet is an individually identifiable cell. A cell address is
composed of a column label and a row label, e.g. A7 (column A, row 7). Brown
(Brown-87) defines an electronic spreadsheet as a two-dimensional matrix of cells
displayed on a computer screen. The contents of the cells can be text, numeric
constants, or formulae that reference other cells. The underlying contents of a cell are
not readily visible to the user; instead, what is displayed is the numeric result of the
computation indicated within the cell. The formula can be viewed by moving the
cursor to the cell (Brown-87).

A spreadsheet usually consists of connected components. It has a two-level structure,
namely a visible (two-dimensional) surface and a hidden formula network
(Saariluoma-91). Therefore, within the context of spreadsheet calculation, there are
two levels: one which is visible and concrete, and the other which is more abstract and
'hidden' below the first. According to Saariluoma and Sajaniemi (Saariluoma-91), the
surface level of a spreadsheet consists of a set of cells occupied by visible values. At
the deep or hidden level, these cells are connected to each other and form a network

72

defined by a set of mathematical formulae in which variables are bound to the
numerical contents of specified cells. The surface level displays data and numeric
results of the formulae. Knowledge of the surface and deep levels of a spreadsheet is
important when making deletions or changes to formulae. This helps in identifying the
source of errors produced by the changes (Saariluoma-91).

5.2.2 Components of a Spreadsheet Model

Isakowitz et al (Isakowitz-95) propose two distinct perspectives to view spreadsheet
models: logical and physical. The logical perspective consists of a formal and
implementation-free description of the model’s logic and data structures, while the
physical level concerns storage, formatting, user interface, and other aspects that
affect the model’s implementation. From a physical perspective, a spreadsheet model
is a collection of addressable cells, arranged in a two-dimensional grid (Isakowitz-95).

Isokowitz et al state that every spreadsheet model embeds an implicit logical view,
which can be regarded as a set of functional relations. A functional relation consists
of one or more attributes and of one or more tuples. However, unlike ordinary
relations, functional relations have two types of attributes: data attributes and
functional attributes. Data attributes define slots that store constants, whereas
functional attributes are bound to functions that are calculated. Isakowitz et al
(Isakowitz-95) use the term model's schema to refer to the set of functional relation
definitions within a particular spreadsheet.

According to Isakowitz et al (Isakowitz-95), there are four principal components that
characterise any spreadsheet model: schema, data, editorial and binding. The schema
provides the spreadsheet's skeleton and stores a concise and formal definition of the
spreadsheet's underlying logic. The data property is the structured collection of
constants on which schema operates. The editorial property can be defined as what is
left over in the spreadsheet model after schema and data have been carved out: titles,
column and row headings, and documentation. Finally, the binding property is a
logical-to-physical mapping that binds schema, data, and editorial to the spreadsheet
grid, using cell addresses (Isakowitz-95).

5.2.3 Structure of a Spreadsheet Formula

SPREADSHEET
FORMULA
[COMPUTATION | /L OPERANDS]
MATHEMATICAL OPERATORS [__CONSTANTS | VARIABLES 7
FUNCTIONS CELL ADDRESSES

Figure 5.1: Components of a Spreadsheet Formula

73

Davis (Davis-96) also uses arrows to define data dependencies between cells.
Referring to Figure 5.3 (Davis-96), the formula in cell H2 is A4*B4, which makes A4
and B4 are direct precedents of H2. H2 is a direct dependant of A4 and of B4. This
shows that precedence and dependence are inverse relationships. As the formula in B4
1s C6/100, C6 is an indirect precedent of cell H2.

(Tax amount)

H2 A4*B4

(Pre-tax income)

A4 100.00 B4 Ca/100

(Tax rate as decimul)

Cé 0.33

Figure 5.3: Davis’ Data Dependency Diagram

5.3 Initial Approaches Explored and Developed

5.3.1 Overview

Prior to the development of the proposed structured spreadsheet modelling
methodology presented in Chapter 7, various other approaches were explored and
analysed. Some of the significant developments preceding the development of the
proposed methodology are described in this section.

The approach of this research has been to examine the applicability of main-line
software-engineering techniques to the needs of spreadsheet developers. These needs
are partly determined by the visual nature of spreadsheets and their heavy reliance on
referencing and intermediate data, and partly by the likely acceptance of techniques
within the industry.

5.3.2 Modularisation Based on the Concept of an Extent

A technique or process of modularisation based on the concept of an exrent was
initially proposed (Rajalingham-98,99). The modular approach employs principles of
software engineering such as modularisation and coupling. Support for the modular
approach came from DiAntonio (DiAntonio-86) and Chadwick et al (Chadwick-97)
but was weakly defined in both these sources. Within the context of spreadsheet
development, modularisation refers to the structuring of the spreadsheet model into
distinct blocks or modules with data being passed between them. An important
justification for this approach is that the human mind finds it difficult to interpret and

75

process large chunks of data. When data is logically and systematically split into
smaller parts, it simplifies analysis.

The modular approach dictates the division of the physical model (spreadsheet data)
into distinct modules. The fact that the spreadsheet is separated into separate blocks or
modules suggests that a modular approach is being taken, based on an analysis of
spreadsheet structure. The term given to a distinct module of the spreadsheet is an
extent. An exfent can be defined as a matrix representing a logical area or module of
the spreadsheet. An extent is a range with special properties. It has various special
characteristics. A spreadsheet model is defined as a collection of inter-related extents.

The minimum size of an extent is a 2 by 2 range (4 cells). The first column of an
extent contains the row headings while the first row of an extent bears the column
headings. Every cell within a particular column (except the first column) is associated
with the same column heading, which occupies the top cell of that column. Similarly,
Every cell within a particular row (except the first row) is associated with the same
row heading, which occupies the left-most cell of that row.

Column headings and row headings of an extent must be defined by the user. No two
cells can have exactly the same combination of column heading and row heading as
there cannot be two or more column headings or row headings with the same name,
although a column heading can share the same name with a row heading.

The following steps are taken in defining an extent (Rajalingham-98,99):

Step 1

Every value must be placed at the intersection of a particular labelled column and a
labelled row, and must be semantically consistent with the meaning the pair has in
real life.

Step 2

Every new entry or value for which there already exists both a corresponding column
label and a corresponding row label, must be entered in the cell at the intersection of
the particular column and row.

Step 3

If a new entry only has either a corresponding column label or a corresponding row
label present within the existing structure, then the missing column/row label is added
to the extent. If the new entry has column and row labels that do not semantically
match any of the existing column and row labels, it must be placed in a different
extent. The resulting generic structure of an extent is shown in Figure 5.4
(Rajalingham-98). The spreadsheet model shown in Figure 5.5 is an example of an
extent. The process of modularisation, based on a similar approach, was subsequently
presented more elaborately with examples by Chadwick et al (Chadwick-99a).

76

= A1+B1 = Al/Bl i.e. Al=Bl
¥ 7
Al Bl Al |
= A1(B1/B2)
N
Al /
Bl B2

Figure 3.7: Formulae Represented Using Tree Structures

As all functions are of the same form, = name (argumentl, argument2 ...), we can
represent each in the form of a tree (not necessarily a binary tree). The root would
now contain the function name while each argument would form a node. An example
is given 1n Figure 5.8 (Rajalingham-99,00).

Function name

N\

Arg, Arg,

Al=SUM(B3:D5, B4)

Al<SUM

/ ~

B3:D5 B4

Figure 5.8: Formulae Represented Using Tree Structures

Tree structures can also be used to represent the logical aspect of the formula,
independent of physical location. Examples of this are given in Figure 5.9
(Rajalingham-00). In Figure 5.9, cost of goods sold is the sum of opening stock,
purchases and carriage inwards. Based on Figures 5.7, 5.8 and 5.9, it can be seen
how these tree structures can be used to facilitate comprehension, analysis and
documentation of formulae. The use of tree structures have been proposed in the
analysis and design stages of the Integrated Spreadsheet Engineering Methodology
presented by Rajalingham et al (Rajalingham-99a). This methodology is mainly based
on the classical systems development life cycle by Aktas (Aktas-87).

81

Cost of goods sol
less Closing Stock

Figure 5.9: Logical Aspect of Formulae

5.4 Summary

A spreadsheet is a two-dimensional matrix of cells that has a two-level structure
consisting of a visible surface and a hidden formula network. A spreadsheet model
can be viewed from both a logical and physical perspective. It is made up of four main
components: schema, data, editorial and binding. A spreadsheet performs calculations
through formulae. A spreadsheet formula consists of a computation component and an
operands component. If a cell x contains a formula that refers to cell y, x is the
dependant while y is the precedent.

An initial software engineering based method developed was a technique of
modularisation based on the concept of an extent. Using this technique, the physical
spreadsheet model is split into distinct but logically related modules (or matrices) with
special characteristics, called extents. This technique was subsequently enhanced
through the diagonalisation of the spreadsheet model. This involves placing extents
diagonally on the spreadsheet to 1solate cell entries from row or column insertions or
deletions in other parts of the model.

A by-product of the modular approach is a technique for visually representing
elements of a spreadsheet formula in a more comprehensible form. This facilitates
more effective validation and audit of spreadsheet formulae. Alternative methods of
presenting formulae in such a form include algebraic English, fully English and
Graphic Display. By combining the techniques of visual modelling and hierarchical
decomposition, free structures can be used to model data dependencies during
spreadsheet analysis and design. These tree structures can represent both the logical
and physical views of a formula. This enables better comprehension, analysis and
documentation of spreadsheet formulae.

82

CHAPTER 6
SOFTWARE ENGINEERING PRINCIPLES
AND JACKSON STRUCTURES

6.1 Introduction

The flexibility and freedom offered by a spreadsheet has set it apart from conventional
applications and programming languages. However, as discussed in Chapters 2 and 3,
spreadsheets are more prone to errors compared to conventional programs and
applications. Even these conventional programs and applications had numerous errors
and flaws that were successfully reduced with the application of structured methods.
A natural approach to enhancing the quality of spreadsheets should therefore involve
the application of structured methods and software engineering principles.

Chapter 5 presented the outcome and findings of a preliminary investigation into
various methods and approaches deemed to have some potential in improving the
quality of spreadsheet models. This was followed by a more thorough examination of
relevant software engineering principles and structured techniques, and their potential
application to the design and development of spreadsheet models.

This chapter discusses related software engineering principles and methods, as well as
their application to spreadsheet development. The main techniques and principles
underpinning the proposed structured methodology are derived from these methods
and techniques. Extensive emphasis is placed on Jackson structural forms as the
application of these structures is an essential part of the proposed methodology. A
general discussion of software engineering principles and their application to
spreadsheet development is first presented. The rationale for the selection of Jackson
structural forms is then explained along with the concepts, notations and rules of
Jackson structures. This is followed by a discussion of other relevant software
engineering principles. In the next chapter, Chapter 7, the proposed structured
methodology for the development and integrity control of spreadsheet models is
elaborately described and presented with illustrative examples.

6.2 Software Engineering Principles

This section presents a general discussion of software engineering principles and their
application to spreadsheet development. There is no universally accepted definition of
software engineering (Jones-90). It has numerous definitions.

Sommerville (Sommerville-01) defines software engineering as an engineering
discipline which is concerned with all aspects of software production from the early
stages of system specification through to maintaining the system after it has gone into
use. The [EEE Standard Glossary of Software Engineering defines software
engineering as the systematic approach to the development, operation, maintenance,
and retirement of software (IEEE-83). Steward (Steward-87) states that the field of
software engineering is concerned with all of the activities involved in the solution of
problems through the development of computer systems.

83

These and most of the other definitions offered, clearly establish the scope of and
general approach to software engineering. It is a systematic approach that
encompasses all aspects, stages and activities involved in the development of software
systems. This can be applied to spreadsheet development. Spreadsheet development
should adopt a systematic and organised approach that covers all stages and activities
of the spreadsheet building process.

There are various principles of software engineering that are applicable to spreadsheet
development. Many publications (Bell-00, Sommerville-01, Jones-90) state that
software engineering is concerned with the selection and development of the most
appropriate methods, tools and techniques used for producing software. According to
Sommerville (Sommerville-01), software engineering methods are structured
approaches to software development which include system models, notations, rules,
design advice and process guidance. Most of the methods and techniques are based on
a graphical representation of system models as the basis for system specification or
design. This principle can be employed in spreadsheet development. In order to adopt
a structured approach, appropriate methods, tools and techniques can be borrowed or
developed, and used within the spreadsheet building process.

The investigation of the field of software engineering has revealed that other
important principles are also applicable to spreadsheet development. They are as
follows:

e an emphasis on finding out and defining the exact requirements of users (Bell-00,
Steward-87)

e formal specification of the requirements of a system (Bell-00)
e greater emphasis on quality control and eliminating errors (Bell-00, Jones-90)

e look at the broad picture first, ignoring details, then look at successive smaller
parts in greater detail (Steward-87).

The normal stages of the software life cycle (van Vliet-96, Jones-90) are:
Specification

(Requirements) Analysis

Design

Implementation

Testing

Operation and Maintenance

Each software system passes through these stages. A software development process
model describes how, and in what order, these stages are organised and carried out.
The following are the main software development process models that have been
proposed or developed (Jones-90, van Vliet-96, Bell-00):

(traditional) waterfall

prototyping

formal methods

spiral

84

6.3 Rationale for Selection of Jackson Structures

This section contains a discussion of why Jackson structural forms are considered to
be the most appropriate for the proposed methodology described in the next chapter,
Chapter 7. A justification of why other approaches have been dismissed, is also
provided.

The problem of errors in spreadsheet development can, in many ways, be compared to
the days of main-line software development before the advances due to structured
programming, analysis and design. Numerous publications (Ronen-89, Benham-93,
Isakowitz-95, Panko-96, Kavanagh-97) have proposed the adoption of these
techniques to spreadsheet development, in order to overcome the problem.

Several programming and design methodologies originated during the 1960s and
1970s, with goals to systematise the process of software analysis and design, in order
to reduce errors and improve quality in the development process. Among the
important data-oriented methods proposed were M.A. Jackson's Jackson Structured
Programming (Jackson-75, Cameron-83, Ingevaldsson-86), Chen's Entity
Relationship (E-R) Data Modelling (Chen-76) and the Warnier-Orr methodology
(Warnier-81, Orr-81). In the 1980s and 1990s, these methods were supplemented by
object-oriented methods (Rumbaugh-91, Booch-94). As these methods concentrate
primarily on the logical structure of data, it was believed that they could be potentially
applied effectively in spreadsheet development.

There are several important reasons for selecting Jackson Structured Programming
(JSP). The principal purpose was for practical reasons. The spreadsheet user
community or market is varied and unsophisticated. This rules out more complex
methods such as Chen'’s E-R Data Modelling and Object-oriented Modelling. A
diagrammatic tool is essential for logical modelling. This is a basic software
engineering principle.

Among the various methods considered, it was found that the simplest tool in concept
is Jackson Structures based on JSP. This is primarily because it relies only on data
dependencies. Data dependencies are very well understood in the spreadsheet
community as a result of their familiarity with cell references and the use of auditing
tools. Therefore, as a first step, it was quite clear that the use of Jackson structural
forms seemed to be the most favoured candidate. This is primarily due to the current
state of spreadsheet users’ computing knowledge and experience. According to
Ingevaldsson L (Ingevaldsson-86), JSP notation can be easily taught to end users. The
other methods such as E-R modelling, the Warnier-Orr methodology and Object-
oriented methods require relatively high spreadsheet user skiils.

Jackson Structured Programming (JSP) has been fairly widely promulgated,
particularly in Europe, where it has been successful as a standard and in the
development of software systems (Cameron-83). Programmers using JSP have found
that it results in few, if any, logical errors (Ingevaldsson-86). He also states that the
clearly defined step-by-step approach adopted enables different programmers
applying JSP to present similar solutions to the same problem.

85

It appears that there are several possible advantages to the adoption of a structured

approach based on Jackson structures. These advantages may be summarised as
follows:

* a structured diagrammatic representation of the logical design of the spreadsheet
model’s schema

a well-defined approach to modularisation

a top-level overview of model and module structures

a structured indented format to the layout of the model as a whole and its modules

the possibility of automatic structuring of new spreadsheet models and
automatically re-structuring existing spreadsheet models

6.4 Concepts and Notations of Jackson Structures

Jackson structures (Jackson-75) are named after their originator Michael Jackson. The
essence of Jackson Structured Programming (JSP) is the structure diagram and its
relationship to block structure, with its three key constructs of sequence, selection and
iteration. Jackson structures offer an elegant diagrammatic way of showing sequence,
selection and iteration in program or data structures (Weaver-02).

Figure 6.1 shows a structure diagram, representing a typical block structured module.
The repeated parts of the structure are denoted by an asterisk (*) in the top right-hand
corner. The structure parts which are selections and therefore mutually exclusive, are
denoted by a small circle in the top right-hand corner of the box. The diagram shows
that A consists of a repeated block B, and each B is made up of either Cor D. Cis a
sequence of blocks E and F.

Figure 6.1: An Example Jackson Structure Diagram

The top box, A, contains the name of the structure. This name describes the contents
of the structure. The bottom boxes or 'end leaves' (i.e. those that have no other boxes
below them) are known as structure elements (Weaver-98) or leaves (Ingevaldsson-
86). In Figure 6.1, the leaves are D, E and F. Structure boxes (B and C) are all of the
intermediate boxes, between the top box and the end-leaves (Weaver-98).

86

6.4.1 Sequence

A sequence has two or more parts, occurring once each, in order (Jackson-75). The
sequence of the blocks or boxes of a Structure Diagram is read from left to right.
Based on Figure 6.2 (Ingevaldsson-86), A is a sequence of B, C and D. D in turn, is a
sequence of E and F. We refer to the bottom blocks/boxes, B, C, E and F as leaves
(Ingevaldsson-86) or structure elements (Weaver-98).

In Figure 6.3 (Weaver-02), X is a sequence of A, B, C and D. The diagram is read
from lefty to right. Therefore, A is followed by B, B is followed by C and so on so
forth (Weaver-02). X is the roof node or top box. It can also be regarded as the parent
of A, B, C and D. On the other hand, A, B, C and D are considered children of X.
There is effectively a one-fo-many relationship between a parent and a child with
parent at the one-end of the relationship. Though a parent can have one or more
children, each child box must belong to one and only one parent. A Jackson structure
always has one root node (Weaver-02) or top box. It appears at the top of the diagram.

SEQUENCES
#c_adog

L2l | e A

Level 2 —o

Lavel 3 ———-—’éw/

Programe : dat:
A. PERFORH 8. or A.
PERFORM C. 028 PICK.
PERFORM O. 02 ¢ PIC P9
— ort— Srv— 02 0»
D. PERFORM E. o as & comm.
PERFORM F. Q3 £ PIC X(7).

Figure 6.2: Sequences

87

* An iteration must have only a single iterated component in the next lower level
(Ingevaldsson-90).

6.6 Other Principles and Techniques
A meticulous study of various other principles and techniques from the fields of

software engineering, programming and information systems has revealed that some

of these techniques can be employed in the analysis, design and construction of
spreadsheet models.

Indentation and Translation of Data Structure into Structured Form

Indentation 1s an important technique used in structured programming. The
philosophy of structured programming, as outlined in (Dahl-72) promotes the
indented form for code. This form has led to huge improvements in the
comprehension of code, leading to improvements in productivity, auditing and
maintenance (Knight-00). Later work (Jackson-75) proposed methods for the
translation of data structure into structured form. Jackson proposed that the form of
the data structure diagram should be extracted from the natural structure existing in
the data to be processed.

Figures 6.9 (a) (Knight-00) and 6.9 (b) (Ingevaldsson-86) show examples of how the
structured form of data is extracted from the data structure. The indented structure on
the right of Figure 6.9 (a) is the structured programming equivalent of the structure
diagram. It can be seen that the indentation is consistent with the levels of data within
the Jackson structure.

A
REPEAT
B * B

/ \ S IF 7 THEN

C
0 o) E
F
e ELSE
E F D
END IF
END REPEAT

Figure 6.9 (a): Extraction of Indented Structured Form

91

' SEQUENCES
Lerel 1 — | A4 Headrg
Level 2 —v ——— Headlseg

ool

L3 —w N -

st theort last -

PW : dat:
A. PERFORM 8. or A.

PERFORM C. o028 P/ICK.

PERFORM D. 02 ¢C PIC IR

—_—— o2 0.
D PERFORM E. o a3 € comp.
PERFORM F. O3 £~ PIC X(7).

Figure 6.9 (b): Extraction of Indented Structured Form

Virtual Columns

The term 'virtual columns' is used as the multiple physical spreadsheet columns are
viewed as a single /ogical column. As such, each row can only contain exactly one
function or calculation. The formulae and inputs corresponding to their labels are
entered in a set of (virtual) columns consistent with the indentation of the labels. They
are located in different virfual columns, according to their position in the data
structure. When these formulae and inputs appear in different 'virtual columns', the
comprehensibility of the model is improved significantly. The precedents of each
calculation can be easily identified.

Separation of Inputs, Model Schema (Workings/Calculations) and Qutputs

According to Benham (Benham-93), the foundation for this separation is consistent
with Sprague and Carlson’s (Sprague-82) characterisation of decision support systems
as having a data component, model component and user-interface/presentation
component. Kee (Kee-88) proposes the use of a central data entry area to make data
entry easier and to prevent input errors.

Modularisation

The concept of modularising software lies at the heart of software engineering
methodologies. The idea of breaking down a complex piece of software into smaller,
relatively isolated sub-components is an appealing one from many points of view.
Maintenance, testing and de-bugging, re-use and estimation are all facilitated by
modularisation.

92

Modularisation can be used as a mechanism for segmenting or decomposing a
spreadsheet model into smaller parts. Each part is known as a module. Modularisation
is the key to successful software engineering, allowing complex systems to be broken
down into manageable sub-systems, for ease of comprehension and maintenance.
Indeed, the basic principle guiding modularisation can be said to characterise different
software engineering methodologies.

Object-oriented software engineering is characterised by Parnas’s information hiding
principle (Parnas-72), and Stevens, Constantine and Myers’ structured approach
(Stevens-74) 1s characterised by the concept of code cohesion. In the proposed
structured spreadsheet development methodology, modules are defined by graphical
properties of data structure diagrams.

6.7 Summary

Software engineering principles and methods, as well as their application to
spreadsheet development, have been discussed in this chapter. This includes a detailed
description of Jackson structural forms as the application of these structures is an
essential part of the proposed methodology. Although there is no standard definition
for sofiware engineering, it is widely accepted that software engineering is a
systematic approach that encompasses all aspects, stages and activities involved in the
development of software systems. Spreadsheet development can also adopt a
systematic approach that covers all stages of the spreadsheet building process.

Among the main software engineering principles that can be applied to spreadsheet
development include the development of appropriate methods, tools and techniques,
precise requirements definition, formal specification of requirements, greater focus on
quality control, and adopting a top-down approach. The normal stages of the software
life cycle are specification, analysis, design, implementation, testing and operation
and maintenance. The main software development process models include the
waterfall model, prototyping, formal methods and the spiral model.

The adoption of structured systems development techniques has been widely proposed
to effectively deal with the problem of spreadsheet errors. In systems development,
among the main methods developed include Jackson Structured Programming, Entity
Relationship Modelling, the Warnier-Orr method and Object-oriented methods. From
an investigation of the suitability of these methods to spreadsheet development,
Jackson structural forms based on Jackson Structured Programming has emerged as
the most desirable method. This is mainly due to its maturity, simplicity, relevance
and practicality. The Jackson method is far more likely to be accepted compared to
the other methods, which require relatively high spreadsheet user skills.

The three key constructs of sequence, selection and iteration form the basis of
Jackson structural forms based on Jackson Structured Programming. There are also
certain basic rules that must be followed when developing Jackson structures. Other
important principles and techniques that can also be employed in the development of
spreadsheet models include indentation and translation of data structure into
structured form, virtual columns, separation of inputs, workings and outputs, and
modularisation.

93

CHAPTER 7
THE PROPOSED STRUCTURED METHODOLOGY

7.1 Introduction

Chapter 6 provided an understanding of related software engineering concepts and
principles, and their potential application to the design and development of

spreadsheet models. The principal method focused upon was the use of Jackson
structures.

Based on the software engineering principles and structured techniques investigated, a
comprehensive structured methodology for the construction and integrity control of
spreadsheet models has been developed. This chapter presents the proposed
methodology in detail. It begins by discussing the development and synthesis of the
methodology from the material considered in Chapter 6. The various stages of the
methodology are described in detail with suitable examples. The methodology's
potential for quality improvement is also discussed.

The proposed structured methodology represents a significant development or
advance in the research into the development and integrity control of spreadsheet
models. Preliminary versions of the methodology are presented by Rajalingham,
Chadwick, Knight and Edwards (Rajalingham-01,02; Knight-00; Chadwick-99).

The proposed methodology imposes a strict discipline in the process of spreadsheet
development using software engineering principles. This reduces the occurrence of
errors as spreadsheet models are designed and constructed in a structured and
organised manner. The methodology distinctly describes a technique for modelling
the spreadsheet problem and subsequently mapping the design onto the physical
spreadsheet according to prescribed rules and a structured algorithm.

7.2 Development and Synthesis of the Proposed Methodology

This section provides an account of the development of the proposed methodology
and its synthesis from the material considered in the previous chapter, Chapter 6.

7.2.1 General Software Engineering Principles

Based on the discussion of software engineering principles in Chapter 6, it has been
found that many of these principles are applicable to the development of spreadsheet
models. Therefore, these principles have been incorporated into the proposed
methodology. It has been established that software engineering is a systematic
approach that encompasses all aspects, stages and activities involved in the
development of software systems. The proposed methodology adopts a systematic and
organised approach that covers all stages and activities of the spreadsheet building
process. Figure 7.1 shows the relationship between the proposed structured
methodology and the normal stages of the software development life cycle given in

94

Chapter 6. The different stages of the proposed methodology are described in detail in
the next section, Section 7.3.

Requirements Analysis and Devel opment of
Output Structures

'

Conceptual Design of the Madel Schema

SPECIFICATION

! !

Logical Design of the Model Schema

(REQUIREMENTS) ANALYSIS

! !

Physical Construction of the Mode! Schema
Layout on the Spreadsheet DESIGN

! !

Development of the Input Component and
Entry of Model Inputs IMPLEMENTATION

! !

Implementation of Formulae and Binding
Relationships in the Model Schema TESTING

! !

Implementation of Referencesin the Output
Component OPERATION AND MAINTENANCE

l Software Development Life Cycle

Testing, Docume ntation and Administration
of the Spreadsheet Model

Proposed Structured Methodology

Figure 7.1: The Proposed Methodology and the Software Development Life Cycle

Various other principles of software engineering discussed in the previous chapter
have also been used to develop the proposed methodology. Appropriate tools and
techniques are used within the methodology as software engineering is concerned
with the selection and development of the most appropriate methods, tools and
techniques used for producing software. These include Jackson structural forms,
indentation and translation of data structure into structured form, virtual columns,
separation of inputs, workings and outputs, and modularisation. The proposed
methodology also includes models, notations, rules and design advice. Techniques
such as Jackson structures are used to produce a graphical representation of the
spreadsheet model as a basis for specification or design.

95

Among the other important software engineering principles used to develop the

proposed methodology are as follows:

e An emphasis on eliciting and defining the exact requirements of users in Stage 1.

o Formal specification of the requirements of the spreadsheet system in Stage 2 and
Stage 3.

e Focus on a high-level view or broad picture first, followed by a look at successive
smaller parts in greater detail in Stage I, Stage 2 and Stage 3.

e Greater emphasis on quality control and eliminating errors in all stages of the
methodology.

7.2.2 Application of Jackson Structures

The suitability of a front-end of the proposed methodology for spreadsheet
development, based on the Jackson structural forms (described in Chapter 6) has been
investigated. It has been found that the conceptual or logical design of spreadsheet
models can be represented in a form identical to a Jackson structure. This technique is
used in Stages 2 and 3 of the proposed methodology.

When Jackson structures are used to represent the logical design of a spreadsheet
model, they can distinctly show all the relationships within the model's schema. As
described in Chapter 6, Jackson tree structures are based on three key constructs:
sequence, selection and iteration. These constructs can show the sequence, optionality
and iteration of data items. The three constructs of Jackson structures are also
applicable to the design of a spreadsheet model.

Sequence

Referring to Figure 7.2 (Staff Budget) based on Chadwick et al (Chadwick-97), there
is a need to calculate the average staff wages.

Number of Stafff Day Wages £] Night Wages £
Grade 1 1 17700.50 0.00
Grade 2 3 45540.00 1400.55
Grade 3 9 122340.00 2000.00
Grade 4 12 102350.25 0.00

Figure 7.2: Inputs for the Staff Budget Model

The formula is:
average staff wages = total wages / total number of staff

Total wages and total number of staff are therefore direct precedents of average staff
wages. Total wages being one of the operands of the formula is made up of total day
wages and total night wages. The formula 1s:

total wages = total day wages + total night wages

Based on this analysis, a partial Jackson structure can be constructed, comprising a set
of hierarchical sequences. This is presented in Figure 7.3.

96

Average
Staff Wages
/ \\\\
.
Total Wages Total Number
of Staff
?
Total Total
Day Wages Night Wages
? ?

Figure 7.3: Sequences
Selection

This feature of Jackson structures can be used in spreadsheet models to represent
mutually exclusive sets of direct precedents for a particular formula. For the purpose
of clarity, appropriate conditions can be attached to selection structures.

In the calculation of rax, the formula i1s:
IF taxable profit > 0
THEN tax = taxable profit * tax rate
ELSE tax =0

In a spreadsheet cell, the corresponding formula for tax would be written in the form:
= [F (taxable profit > 0, taxable profit * tax rate, 0)

In either case, faxable profit and the constant zero would be direct precedents of rax.
The operands forming the condition within the formula are mandatory precedents. As
such they are represented using sequence boxes.

Additionally, depending upon the value of taxable profit, tax would have either
taxable profit and tax rate, or zero, as its direct precedent(s). This part of the formula
can be shown using a selection structure. This would be represented in the form of a
Jackson structure as displayed in Figure 7.4.

97

Tax

Taxable Zero
Profit
O O
Zero
Taxable Tax
Profit Rate

Figure 7.4: Selection
Iteration

Within the context of spreadsheet models, iterations in Jackson structures can be used
to show parts of a model that may repeat several times. An iterated component
represents multiple instances, where each instance corresponds to a different time
period, group, category, etc.

Based on the Staff Budget model example, the average wage for each grade is also
required. The formula to calculate this for each grade is exactly the same. This part of
the logical design is shown in Figure 7.5.

Set of
Grades
*
Grade
Average
Wage
? ?

Figure 7.5: Iteration

98

It has also been identified that rofal day wages is defined as the sum of day wages for
each grade while total night wages is the sum of day wages for each grade.

?

PN

Total Day Total Night
Wages Wages
* *
Grade Day Grade Day
Wages Wages

Figure 7.6: Iteration

This part of the model can now be incorporated into the sequence structure shown in
Figure 7.3 and the iteration structure in Figure 7.5. The resulting Jackson structure is
displayed in Figure 7.7. This structure represents the logical design of the entire
model.

Staff
Budget
-\q__‘_q*
/ T N——
’\.\\‘!h
Average Set of
Staff Wages Grades
I
/ ™
.
*
Total Wages Total Humber Grade
of Staff’
N
/ \\

* Grade
Total Total Grade Nuber Average

Day Wages Night Wages of Staff Wage

* *
Grade Day Grade Day Grade Grade Nurber
Wages Wages Total Wages of Staff
/ K\
Grade Day Grate Day
Wages Wages

Figure 7.7: Logical Design

99

7.2.3 Other Principles and Techniques

There are other software engineering and programming principles and techniques

described in Chapter 6, that have also been used to further develop and enhance the
proposed methodology.

Indentation and Translation of Data Structure into Structured Form

Jackson (Jackson-75) has shown that there is direct correspondence between data and
program structures, and that structure diagrams can be directly mapped onto the
corresponding program code. This technique is used in Stage 4 of the proposed
methodology, to translate the logical design represented in the form of a Jackson
structure into a structured spreadsheet. This is illustrated using the example of the
Staff Budget model. Figure 7.8 shows the extraction of the structured spreadsheet
from part of the logical design produced earlier (displayed in Figure 7.7). The

indented structure on the right of Figure 7.8 is the structured programming equivalent
of the structure diagram.

... ’ Average Staﬁ' Wages
y Total Wages
Total Day Wages
Grade 1 Day Wages

.....
.....

Total Wages

T

Total Nunber
of Staff

Total
Night Wages

Grade Number
of Staff

Grade Day
Wages

Grade 2 Day Wages
Grade 3 Day Wages
Grade 4 Day Wages
Total Night Wages
Grade 1 Night Wages
Grade 2 Night Wages
Grade 3 Night Wages
Grade 4 Night Wages
otal Number of Staff
Grade 1 Number of Staff
Grade 2 Number of Staff
Grade 3 Number of Staff
Grade 4 Number of Staff

Figure 7.8: Translation of Jackson Structure to Structured Form

100

7.3

The Proposed Structured Methodology

The methodology consists of eight principal stages:

Requirements Analysis and Development of
Qutput Structures

l

Conceptual Design of the Model Schema

l

Logical Design of the Model Schema

l

Physical Construction of the Mode! Schema
Layout on the Spreadsheet

l

Development of the Input Component and
Entry of Model Inputs

l

Implementation of Formulae and Binding
Relationships in the Model Schema

l

Implementation of References in the Qutput
Component

:

Testing, Documentation and Administration
of the Spreadsheet Model

103

STAGE 1:
Requirements Analysis and Development of Output Structures

This stage is carried out from the perspective of the model sponsor(s) or
interpreter(s). The model sponsor is the person who requests that the model be built
and ensures the required resources are available. Agreement of the objectives of the
model is the responsibility of the model sponsor (Read-99). The model interpreters are
the end-users who interpret or use the output of the spreadsheet model for a particular
purpose or to make business decisions.

The first stage comprises two steps:
e Stepl: Requirements analysis and specification
e Step2: Design of outputs and development of output structures

In Step I, the requirements of the model sponsors or interpreters are elicited and
analysed. The overall objective or purpose of the spreadsheet model is also
established. Based on the information gathered, an assessment of the nature, scale and
complexity of the model is carried out. Read and Batson (Read-99) have defined a set
of tasks under the scope stage of their Spreadsheet Best Practice Methodology, some
of which are appropriate for application in this step. The model developer(s) have to
decide what needs to be included in the model and what can be omitted;
understand in outline how the model will work;

estimate the time and resource required for the model development; and

agree the above with the key stakeholders.

Step 2 of this stage involves translating the requirements of the model
sponsors/interpreters into a set of spreadsheet model outputs. Each spreadsheet model
would normally have one or more associated outputs. The methodology insists on the
presentation of outputs on one or more separate worksheets. They should neither
appear in the worksheet containing the spreadsheet model schema, nor the worksheet
containing the model inputs.

The structure of each output is designed and implemented on the physical spreadsheet.
Only the editorial aspects of each desired output are implemented at this stage. These
include titles, headings and descriptive labels for formula and data. Each desired
output of the spreadsheet model is designed from the perspective of the model
sponsors/interpreters.

There is a need to distinguish between inputs (or numeric constants) and formulae in
the model’s output(s). Having determined the various formulae required, the
underlying logic of each formula calculation and its domain are defined. This is
independent of any particular implementation platform. At the end of the
methodology, references to the model schema and model inputs are added to the
output component of the spreadsheet model. No calculations would be present in the
outputs. However, there could be multiple outputs presenting the same information at
different levels of detail or even in different layouts, to suit a variety of purposes.

The model sponsor/interpreters do not normally make changes to the outputs when the
spreadsheet model is in operation. However, they may alter the structure or format of

104

the outputs if deemed necessary. This will not affect the integrity of the underlying
spreadsheet model, which is embedded in the model schema.

STAGE 2:
Conceptual Design of the Model Schema

The model schema represents the workings or calculations component of the
spreadsheet model. The purpose of constructing the model schema is to systematically
and methodically perform the interim and final calculations based on the required or
desired model output(s). An essential characteristic of the proposed structured
methodology is the separation of inputs, calculations and outputs. The model schema,
representing the spreadsheet model’s underlying logic, is therefore separated from the
inputs and outputs. From a physical perspective, the model schema is created on a
separate worksheet.

In developing the conceptual model, the first step is to distinguish between inputs and
formulae contained within the model output(s). An analysis of all formulae is carried
out in order to construct the conceptual model.

The main steps involved in this stage are as follows:

e Stepl: Determine the operands of each output formula

e Step2: Establish relationships between formulae at a logical level

e Step3: Identify root formulae or formulae with no dependants

e Step4: Use a Jackson structure to represent the direct and indirect
precedents of each root formula

e StepS: Merge the structures of all the root formulae

The first step involves determining the operands of each output formula. This step is
carried out as a means of determining all root formulae appearing in the outputs. A
root formula is defined as a formula that has neither direct nor indirect dependants.
They are therefore not referenced by any other formula within the spreadsheet model.

The conceptual design of each root formula is represented in the form of a Jackson
structure (Jackson-75). In a large number of spreadsheet models, it is highly possible
that there is just one root formula.

Each node of a sequence or selection (depending on its position in the Jackson
structure) represents either a formula or a piece of data. If the node is a structure
element or leaf (or end-leaf), it represents data (numeric constant) or input. An iterated
component that is not a leaf represents a structure (or sub-structure) that can occur
zero or more times. Such iterated components have special properties, which will be
discussed later. If an iterated component is shown as an end-leaf in the Jackson
structure, it represents a set or range of inputs that is always manipulated or operated
as a group rather than individually.

The root formulae are placed at the top of the Jackson structure, hanging from a box
containing the title of the spreadsheet model. The direct precedents of each root
formula are then positioned immediately below 1t, adjacent to each other. Each node is
decomposed step by step, until every end-leaf or bottom node has been identified and

10S

represented. The conceptual design of the entire model schema is the combination of
the structures of all root formulae into a single Jackson structure with its root node
containing the title of the spreadsheet model.

When a top-down approach is adopted without showing duplication of nodes, the
structure of the model schema could take the form of a graph instead of the desired
tree structure. The purpose of this is to distinctly show instances of multiple

dependants of a particular formula of the model schema. This potentially results in a
structure as shown in Figure 7.11.

From the structure in Figure 7.11, we can observe the following points:

e A isaroot formula. 1t therefore represents a formula with no dependants.

e D and E are mutually exclusive (due to the selection constraint) precedents of A.
e The direct precedents of D are a sequence of F and G.

e The direct precedents of K are a sequence of L and M.

e M is a function of zero or more iterations of N.

e N is a range of zero or more related inputs (constants).

e B,C,F, H Jand L are /eaves as they do not have any precedents. This shows that
they are inputs (or constants). B, C, F, H, J and L are therefore read or referenced
from the input component, which will be constructed later.

e G has two dependants, D and E, and therefore forms a graph.

e Kalso has multiple dependants, E and I, another graph is formed.

106

B C / selection

p ° E
F / \ G /
H I
NE B
sequence
L b iteration
....... o

: . | represents a range of
related inputs (constants) treated and manipulated as a set. In order to effectively
model the conceptual and logical designs of a spreadsheet model, these notations have

been added to the conventional Jackson notations (Jackson-75) borrowed from
software engineering.

STAGE 3:
Logical Design of the Model Schema

The logical perspective consists of a formal and implementation-free description of
the model’s logic and data structures (Isakowitz-95). The purpose of Stage 3 is to
resolve sub-structures with formulae or data with multiple dependants. A formula or
data with multiple dependants normally form a graph. Structurally, the aim at this
stage is to transform all graph sub-structures in the conceptual model to frees so that
the entire model is in the form of a Jackson-like tree structure. From a more logical
perspective, the objective of performing this task is to enable the direct mapping of
the Jackson structure to the spreadsheet based on Jackson’s method of mapping the

data structure diagram to a computer program.

107

Figure 7.1] shows an example of a generic conceptual design containing graph sub-
structures. For instance, there is a loop in the relationships connecting E, G, I and K,
so that we no longer have a tree form. In this chart, K is a precedent of both E and L.
We can turn the graph into a tree-structure. In order to accomplish this, two important
steps prescribing the rules have to be observed:

Step 1

Each node or sub-structure with multiple dependants is duplicated and each
copy is assigned as a direct precedent of every dependant of that node. Nodes
with multiple dependants can be easily identified from the conceptual design
as they are represented by double-line boxes. This is illustrated in Figure 7.12.

By performing this task, the graph structure is resolved into a tree-structure. However,
in order to prevent multiple occurrence of the entire sub-structure, only the root node
of each duplicated sub-structure appears in the logical design of the model at this
point. Their precedents are therefore not included in the model.

Based on Figure 7.12, G and K are duplicated in order to resolve the graph structure,
into a tree structure. The precedents of G and K are not included in the model. K is
not even shown as a precedent of G in order to comply with the rule that precedents of
duplicated nodes are not included in the main structure of the logical design.

A
B C / \
DO EO
/ ~ AN
F G G K

Figure 7.12: The Logical Design of the Main Structure Based on Step 1
Step 2

If a duplicated node has precedents (and therefore forming a sub-structure or
branch), a distinct structured module is created, the logical design of which is
represented by a separate Jackson tree structure. The structured module
consists of the duplicated node as its root node/formula and the precedents of
the particular formula. The structures resulting from the application of this
step/rule are illustrated in Figures 7.13 (a) and 7.13 (b).

108

If the duplicated node is a /leaf and therefore has no precedents, there is no need to
define it as a separate module. As a rule, only a node or formula with precedents can
be defined as a common module.

AN

J K

Figure 7.13 (a): The Logical Design of Module G (Based on Step 2)

..............

Figure 7.13 (b): The Logical Design of Module K (Based on Step 2)

Based on Figures 7.13 (a) and 7.13 (b), the sub-structures G and K are defined as
separate modules, each of which will occur once in the implemented spreadsheet
model. This is discussed more elaborately in Stage 4.

The conceptual design shown in Figure 7.11 has now been transformed into a logical
design consisting of three modules, represented by three separate Jackson structures.
The modules consist of a main or primary module and two secondary modules. Figure
7.14 shows the relationship between the modules.

109

X references Y

[x]e—LY

SECONDARY
MODULE
G
MAIN/PRIMARY
MODULE
A
\ SECONDARY
T MODULE
K

Figure 7.14: Relationship Between Modules

In general, we can always reduce a graph structure to a tree by this method, which
conveniently produces a unique modularisation of the spreadsheet model.

STAGE 4:
Physical Construction of the Model Schema Layout on the Spreadsheet

The logical design of the model (represented as Jackson tree-like structures) is
systematically mapped onto the physical spreadsheet based on rigorous rules
prescribed by the methodology.

To maintain the structure modelled in the logical design in the spreadsheet view, the
indentation principle is used, both on the row labels and on the corresponding values
themselves. The values are indented by assigning a spreadsheet column to each level
of indentation. These columns can be referred to as virtual columns. Based on the
generic logical design shown in Figures 7.12, 7.13 (a) and 7.13 (b), the corresponding
structure of the spreadsheet view at this stage is shown in Figure 7.15.

110

input component contains all data and assumptions used in the spreadsheet model. It
is not always necessary to explicitly separate the two. Benham (Benham-93)
recommends that this section be partitioned into decision variables, environmental
variables, and parameters.

The design of this part of the user interface should be as free from constraints as
possible; so as not to hinder the main objective: ease of use and absence of data errors.
We are therefore, quite at liberty to put all data input cells into unstructured modules,
since there are never any dependencies between them. Any dependency relationship
in spreadsheet involves a calculated cell, and either other calculated cells or data input
cells. However, they do not exist between data input cells and other data input cells.

The model schema only holds absolute copies of the corresponding data in the input
section. It 1s also protected as a precaution against any overwriting of data, and can
only be manipulated by the programmer or model developer.

Based on the leaves identified in the Jackson structures, the input section can be
created. The input section is constructed on a separate worksheet and should be
labelled as such. The data input end-users must only be allowed to manipulate the
input section for the entry and update of data. They are responsible for entering all the
inputs to the spreadsheet model in this section. Based on Figures 7.12, 7.13 (a), 7.13
(b) and 7.14, the inputs to the model are B, C, F, H, J and L.

A problem that can be anticipated at this stage is the difficulty in adding or deleting
data from the inpur section while having the changes reflected in the model schema. In
view of this problem, the methodology requires that a group of related inputs be
defined as a range and only the range is referred to in the model schema. A reference
to a group of related inputs or an input set (range) 1s shown in the Jackson structure by
a leaf shown as a dashed-line box and represented as an iterated component.

Based on Figure 7.13 (b), N represents a group of related inputs. Therefore, the
elements of N are defined as a range in the input component. It can also be observed
in Figure 7.13 (b) that M is a function of N. In the model schema, M references the
range N. The elements of N are not physically present in the model schema. This way,
any changes that take place within N will not affect the integrity of the formulae or
calculations in the model schema. Figure 7.16 shows the input component derived
from the logical design of the spreadsheet model.

112

STAGE 7:
Implementation of References in the Output Component

References to corresponding formulae in the model schema and data in the input
component, can at this stage be entered into the relevant cells of the output
component.

STAGE 8:
Testing, Documentation and Administration of the Spreadsheet Model

There should be organisational standards in place for the testing, documentation, and
maintenance or administration of spreadsheet models (McMickle-89, Simkin-87: cited
in Isakowitz-95). This stage brings the spreadsheet model development process to a
conclusion. It consists of three principal steps:

o Stepl: Testing
e Step2: Documentation
e Step3: Administration

As this stage is not considered a core aspect of the methodology, each of its
constituent steps will be addressed only briefly and in passing. It is recommended that
conventional software engineering approaches and principles be used for the testing,
documentation and administration of the spreadsheet model.

Step 1 of this final stage requires that the entire spreadsheet model be rigorously
tested before it goes into operation. The spreadsheet model is tested with a
comprehensive set of test data. Ray Butler (Butler-97) proposes that the spreadsheet
model should also be reviewed by someone other than the developer for errors before
being brought into use.

In Step 2, documentation of the spreadsheet model is incorporated into the model
itself, typically on a separate worksheet. Kee (Kee-88) states that documentation
materials provide the instructions needed to apply a template properly, as well as the
technical details needed to understand its underlying structure. Without adequate
documentation, it is often easier to develop a new template than to review somebody
else’s program (Kee-88).

Step 3 addresses the administration of the spreadsheet model. After the spreadsheet
model goes into operational use, proper admimistration of the spreadsheet model is
essential. Mason and Keane (Mason-89) have proposed that a model administrator
regulates and monitors spreadsheet modelling activities across the organisation.

115

7.4 Application of the Proposed Methodology

In order to illustrate the application of the methodology in practice, three different
spreadsheet models are used as examples.

Example 1: Trading and Profit and Loss Account for a Particular Year

In this example, the methodology is applied in the construction of a spreadsheet
model comprising a single module (as defined by the methodology). It is based on a
Trading and Profit and Loss Account for a particular year (Ward-96). The original
model is shown in Figure 7.18.

This is a simple model which does not require resolution of graph structures, which
potentially result in the creation of separate modules, and recursive relationships.
Most of the essential concepts and principles of the methodology are demonstrated,
except the technique of modularisation. Module formation is shown in the second
example, based on a Post-tax Income Distribution Model.

T Howe Ltd
Trading and Profit and Loss Account for the year ended 31 December 19X4
Sales 135,486
Less Cost of goods sold
Opening stock 40,360
Add Purchases 72,360
Add Carriage inwards 1,570
14,290
Less Closing stock 52,360 61,930
Gross profit 73,556
Less Expenses
Salaries - ' 18,310
Rates and occupancy 4,515
Carriage outwards 1,390
Office expenses 3,212
Sundry expenses o : 1,896
Depreciation: Buildings 5,000
' Equipment : 9,000
Directors’ remuneration , 9,500 52,823
Net profit 20,733
Add Unappropriated profits from last year 15,286
36,019
Less Appropriations
Proposed dividend 10,000
General reserve 1,000
Foreign exchange 800 11,800
‘Unappropriated profits carried to next year , 24719

Figure 7.18: The Conventional Layout

The application of the proposed methodology in the analysis, design and
implementation of this model is presented in detail in Appendix C: Example 1.

116

Example 2: Post-tax Income Distribution Model

In this example, the methodology is applied in the construction of a spreadsheet
model composed of multiple modules. In this respect, it is deemed to be a more
complicated model than the spreadsheet model used in the first example. It is based on
a Post-tax Income Distribution Model (Slater-90). The original model is shown in
Figure 7.19 (a) and an abridged version of the same model in Figure 7.19 (b).

The technique of modularisation, a critical and integral part of the proposed
methodology, is demonstrated through this example, in addition to the other features
and characteristics of the methodology.

Table 3.5 Post-tax income distribution for 1975/6 and 1985/6
Number ‘ Income
Income after tax Number
197516 (thousands) Total income % Cumulative % % Cumulative %
675 butunder 750 357 255 1.63 1.63 0.45 0.45
750 but under 1000 1350 1190 6.15 7.78 211 2.57
1000 but under 1250 1780 2000 8.11 15.88 3.55 6.12
1250 but under 1500 1840 2530 8.38 24.27 4.50 10.62
1500 but under 1750 1850 - 3000 8.43 32.69 5.33 15.95
1750 but under 2000 1750 3280 7.97 40.66 5.83 21.78
2000 but under 2500 3270 7350 14.90 55.56 13.06 34.84
2500 but under 3000 2830 7760 12.89 68.45 13.79 48.63
3000 but under 4000 4150 14300 18.90 87.35 25.41 74.04
4000 but under 5000 1670 7360 7.61 94.96 13.08 87.12
5000 but under 6000 575 3120 2.62 97.58 5.54 92.67
6000 but under 8000 n 2550 1.72 99.30 4.53 97.20
8000 but under 10000 97 852 0.44 9.74 1.51 98.71
10000 and more 57 725 0.26 100.00 1.29 100.00
Income after tax
198516
1750 but under 2000 635 1190 2.89 2.89 0.83 0.83
2000 but under 2500 1470 3290 6.68 9.57 2.30 3.14
2500 but under 3000 1410 3850 6.41 15.97 2.70 5.83
3000 but under 3500 1670 5420 7.59 23.56 379 9.63
3500 but under 4000 1670 6250 7.59 31.15 4.38 14.00
4000 but under 4500 1530 6510 6.95 38.10 4.56 18.56
4500 but under 5000 1490 7070 6.77 44.87 4.95 23.51
5000 but under 5500 1280 6700 5.82 50.69 - 4.69 28.20
5500 but under 6000 1170 6710 5.32 56.00 4.70 32.90
6000 but under 7000 2110 13700 9.59 65.59 9.59 42.49
7000 but under 8000 1760 13100 8.00 73.59 9.17 51.67
8000 but under 10000 2560 22900 11.63 85.22 16.03 67.70
10000 but under 12000 1400 15300 6.36 91.58 10.71 78.41
12000 but under 15000 956 12700 4.34 95.93 8.89 87.31
15000 but under 20000 616 10500 2.80 98.73 7.35 94.66
20000 and more 280 7630 1.27 100.00 5.34 100.00
Source: Annual Abstract of Statistics. Reproduced with the permission of the Controller of Her Majesty’s Stationery Office.

Figure 7.19 (a): The Original Model

As the aim here is to illustrate how the proposed methodology would be applied in the
construction of the above model, its data content is reduced for simplicity. We are
more concerned about the structure of the model rather than its data. The abridged
version of the model is shown in Figure 7.19 (b).

117

Post-tax income distribution for 1975 and 1985
Number Income
Income after tax Number
1975 (thousands) Total income % Cumulative % % Cumulative %
675 but under 750 357 255
750 but under 1000 1350 1190
1000 but under 1250 1780 2000
1250 but under 1500 1840 2530
1500 but under 1750 1850 - 3000
Income after tax
1985
1750 but under 2000 635 1190
2000 but under 2500 1470 3290
2500 but under 3000 1410 3850
3000 but under 3500 1670 5420
3500 but under 4000 1670 6250

Figure 7.19 (b): Abridged Version of the Original Model

In Appendix C: Example 2, the application of the proposed methodology in the
analysis, design and implementation of this model is clearly demonstrated.

118

7.5 Potential for Quality Improvement

This section discusses the proposed methodology’s potential for enhancing the quality
of spreadsheet models. There are various features and characteristics within the
methodology that contribute to the quality improvement of the models.

The proposed methodology specifies a systematic and disciplined method for
analysing, designing and building spreadsheet models, and a standard structure for the
models. According to Kee (Kee-88), such an approach forces developers to build their
applications within a logical framework. This simplifies spreadsheet construction and
enhances reliability.

Without standards and a structured methodology in place, model developers would
develop spreadsheets in a wide variety of styles and layouts. Depending on the nature
of the models and the competence of the model developer, the models would vary in
terms of their comprehensibility, reliability and maintainability. By strictly
conforming to the proposed structured methodology, a group of model developers
asked to independently construct a spreadsheet model, should, generate models with
virtually identical structures. These models would also possess the various desirable
attributes of spreadsheet models. This gives scope for peer review at the logical
design stage. The fact that there is a standard for logical design (using Jackson
structures) means that design errors can be spotted much earlier in the process. This is
the essence of quality software production. Moreover, the structure diagrams (logical
model) also provide certain achievable sub-goals for the development. This also
facilitates peer group walkthroughs and review at an early stage in the design, and has
a benefit for quality control of the spreadsheet models.

The methodology essentially involves structured analysis of data, based on Jackson
structures. It is shown that this analysis allows a straightforward modularisation, and
that individual modules may be represented with indentation in the block-structured
form of structured programs. The benefits of this structured format are increased
comprehensibility, ease of maintenance, and reduction in errors. The model can be
interpreted in an unambiguous way. The methodology also has the capacity to provide
a global sense of the structure of a spreadsheet model using Jackson structures.

According to Brown and Gould (Brown-87), formulae are represented in a location
that is physically separate from the spreadsheet itself and that the user typically has a
“window” onto only one formula at a time. They have stated that an improved
interface might make formulae more visible and salient in the interface, and might
represent formulae integrated with, rather than separate from, the spreadsheet itself.
The proposed methodology caters for these requirements by organising the formula
and its operands in a structured manner, and in close proximity. This makes the
formulae highly visible in the interface. The inter-relationships between the various
formulae could also be easily inferred.

Figure 7.21 (a) shows the spreadsheet model resulting from the application of the
proposed methodology based on Appendix C: Example 1.

120

spreadsheet model development. Various methods, tools and techniques are
incorporated within the methodology, along with models, notations, rules and design
advice.

In the proposed methodology, a diagrammatic representation of the logical design of
the spreadsheet model is produced using Jackson structures. Other important software
engineering principles and techniques have also been applied in the various stages of
the methodology. They include indentation and translation of data structure into

structured form, virtual columns, separation of inputs, model schema and outputs, and
modularisation.

The proposed structured methodology consists of eight principal stages:
Requirements Analysis and Development of Queput Structures

Conceptual Design of the Model Schema

Logical Design of the Model Schema

Physical Construction of the Model Schema Layout on the Spreadsheet
Development of the Input Component and Entry of Model Inputs
Implementation of Formulae and Binding Relationships in the Model Schema
Implementation of References in the OQutput Component

Testing, Documentation and Administration of the Spreadsheet Model

The application of the methodology is demonstrated using three different examples of
spreadsheet models. They are a Trading and Profit and Loss Account for a Particular
Year, a Post-tax In<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>