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Abstract

Reasoning about actions and change based on common sense knowledge is one of the most

important and difficult tasks in the artificial intelligence research area. A series of such tasks

are identified which motivate the consideration and application of reasoning formalisms.

There follows a discussion of the broad issues involved in modelling time and constructing a

logical language. In general, worlds change over time. To model the dynamic world, the

ability to predict what the state of the world will be after the execution of a particular

sequence of actions, which take time and to explain how some given state change came

about, i.e. the causality are basic requirements of any autonomous rational agent.

The research work presented herein addresses some of the fundamental concepts and the

relative issues in formal reasoning about actions and change. In this thesis, we employ a new

time structure, which helps to deal with the so-called intermingling problem and the dividing

instant problem. Also, the issue of how to treat the relationship between a time duration and

its relative time entity is examined. In addition, some key terms for representing and

reasoning about actions and change, such as states, situations, actions and events are

formulated. Furthermore, a new formalism for reasoning about change over time is presented.

It allows more flexible temporal causal relationships than do other formalisms for reasoning

about causal change, such as the situation calculus and the event calculus. It includes effects

that start during, immediately after, or some time after their causes, and which end before,

simultaneously with, or after their causes. The presented formalism allows the expression of

common-sense causal laws at high level. Also, it is shown how these laws can be used to

deduce state change over time at low level. Finally, we show that the approach provided here

is expressive.
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CHAPTER 1

INTRODUCTION

Artificial Intelligence is a field of research that aims to understand and build

intelligent machines, especially intelligent computer programs. Beginning with John

McCarthy's classic paper, "Programs with Common Sense" [McC59], one of the main

goals of artificial intelligence research has been to develop a computer program

capable of common sense reasoning about action and change —specially, a program

that is able to perform such tasks as prediction, explanation, and planning. McCarthy

envisioned that a program of this kind might "reason" by manipulating explicit,

declarative representations of the relevant knowledge. Following this logical

approach, the central problems arc to discover what this knowledge is and how it

might be formalised. In this chaptcr, the role of common sense reasoning in the

research field of artificial intelligence and the motivation of this work arc discusscd.

1.1 Common-sense Reasoning

Common sense reasoning plays an important role in Artificial intelligence. Intuitively,

common sense is the practical, basic knowledge and inference technique that we, as

human beings, use every day. It provides us with a general feci for how the objects

and people around us behave, tells us what is likely to happen if wc perform ccrtain

actions, explains how simple physical systems behave, and generally helps us function

in the day-to-day world. Common sense knowledge includes the basic facts about

events (actions) and their effects, facts about knowledge and the way to obtain it, facts

about beliefs and desires. It also includes the basic facts about the material objects and

their properties. It is generally regarded that by "common sense" in the physical

world, we adopt the view of the classical Newtonian universe. Quantum physics

seems to be contrary to common sense in some ways, e.g. the result that a particle can

be in two placcs at the same time, or not at any place with certainty. Wc shall not

consider these "strange" effects in the thesis. Similarly, the Newtonian view is that

there is a time defined for all bodies in the universe. So by "common sense" wc
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exclude the concepts of relativity, where twins can age differently and gravity affects

time duration. The examples in this thesis all assume a Newtonian universe. One of

the features of common sense reasoning that makes it different from traditional

mathematical proofs is the use of defaults. The default is a proposition that is

postulated to be true in the absence of information to the contrary. The theory of

common sense reasoning provides an axiomatic basis for reasoning about the world

inhabited by "agents" like us—by agents who have beliefs and goals, who perform

actions in order to reach these goals and, by doing so, change the state of the world.

As claimed by McCarthy, one path to human-level Artificial Intelligence uses

mathematical logic to formalise common sense knowledge in such a way that

common sense problems can be solved by a logical reasoning approach [McC89].

This methodology requires understanding the common sense world well enough to

formalise facts about it and ways of achieving goals in it. Formalising common sense

knowledge brings with it two benefits. Firstly, the task of actually writing down

appropriate axioms, formulae and inference rules forces us to think about how

common sense reasoning works ~ something we normally just take for granted.

Secondly, by producing a formal theory of common sense reasoning we are laying a

foundation upon which implementations can be done. An AI system capable of

achieving goals in the common sense world will have to reason about what it and

other actors can and cannot do. For instance, consider a robot that must act in the

same world as people and perform tasks that people give it. In this case, we need to

answer the following question: What view shall we build into the robot about its own

abilities, i.e. how shall we make it reason about what it can and cannot do?

It has been stated that the common sense knowledge and reasoning is the area in

which AI is farthest from human-level, in spite of the fact that it has been an active

research area since the 1950s [McC98]. Common sense covers all aspects of the world

of human experience. Many rules for different types of knowledge interact with each

other in complex ways. To produce a universal theory for common sense knowledge

to model the human beings' behaviour would be a vast undertaking. However, it is

possible to identify smaller, more manageable, specialised areas of common sense that

can be formalised in isolation, e.g., common sense about time, space, actions and

change etc. Most of these special theories of common sense have immediate
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applications in artificial intelligence. More importantly, they could be employed as

building blocks with which to construct a full account of common sense reasoning in

future. That is the final objective for which the researchers working in this area do

their best. The roots of today's research on common sense reasoning are found in the

seminal paper by John McCarthy [McC59]. This paper contains the first proposals to

use logic in AI for representing and reasoning common sense knowledge, outlines the

major objectives of common sense reasoning research, and points out the difficult

problems associated with it.

1.2 The Role of Temporal Reasoning in Artificial Intelligence

Temporal information plays a very important role in communication between people

as well as in many specialised domains of human activity, such as common sense

reasoning. Therefore, work on artificial intelligence also comprises research on

representing and reasoning about temporal interdependencies.

Shoham [Sho88] claims that temporal reasoning can be divided according to four

main roles:

• Prediction ~ to determine the state of the world at a given future time or, more

generally, the evolution of the world until a given future time;

• Planning ~ given a description of a state at a given time and a goal, to produce a

sequence of actions which can be invoked to bring about the goal;

• Explanation ~ to produce a description of the world at some past time which

accounts for the world being the way it currently is;

• Learning about the physical behaviour of the world ~ given a description of the

world at different times, to produce a set of rules governing change which account

for the regularities in the world.

It is clear that all these four tasks are valuable components in the goals of common
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sense reasoning and would be equally valuable tools with which to provide AI

application systems. For the purpose of developing a common sense theory, general or

specialised, such as temporal reasoning about action and change, there are mainly two

tasks we have to deal with. The first is to construct a formalism for reasoning about

time. This formalism must reflect our own general common sense approach to

temporal reasoning and, at the same time, support more detailed temporal inferences

that might be needed in specialised AI domains. The second is to use this formalism

to formalise common sense notions, such as facts, actions, events and change etc.

Within the last three decades, there has been a strong interest in proposing approaches

that can formalise common sense, in terms of reasoning about action and change. A

great number of formalisms have been developed for this purpose. In many of these

approaches, temporal features are added for the purpose of enriching expression. The

key intuitions motivating this development are the following:

1) States persist over time (situations take time). Very few states are instantaneous.

Normally a state will hold over a period of time until some action occurs to

change it. For example, if John parks his car in the university's car park, the state

that his car is in the car park should persist over a period of time until John drives

it away or someone steals it.

2) Actions take time. Very few actions are instantaneous: a moment's reflection

reveals that the effects of many actions result from applying some force over a

period of time. For instance, to lift a quite heavy object up to a van from the

ground, it will take some time with positive duration for people to do it.

3) The relationship between actions/events and their effects is complex. Some effects

become true immediately after the end of the event and remain true for some time.

For example, when John parks his car in the street, this has the effect that the car

is in the street for at least a short time after the action/event. Other effects only

hold while the event is in progress. For instance, consider a flashlight with a

button for flashing it. The light is on only when the button is being pressed down.

Finally, some effects might start to hold some time after the event. For example, If

someone presses the button at the crosswalk, 25 seconds later the pedestrian
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crossing light will turn to yellow from red. That is there is a delay time between

the event and its effects.

4) Actions/events may interact in complex ways when they overlap or occur

simultaneously. In some cases, one action might interfere with or change the

effects of another action while it is occurring. In other cases, the effect of

performing two actions may be completely different from the effects of each in

isolation. As a radical case of this, consider a wristwatch that is controlled by two

buttons A, and B. Pressing A changes the mode of the display, while B shows the

alarm time setting. Pressing A and B simultaneously, however turns the alarm on

or off. The effect of performing the actions simultaneously has no causal relation

to the effects of the actions performed in isolation. There may be additional

effects, or some of the usual effects of one of the actions may not be realised. In

fact, the effect of two actions together could be virtually independent of the effects

of each action done alone. Many activities (e.g., carrying a piano) cannot be

accomplished without close co-ordination and simultaneous actions by multiple

agents.

5) Change may be continuous. The change caused by actions/events can be divided

into two classes: discrete change and continuous change. It is easier to represent a

discrete change. However sometimes we need to represent continuous change,

such as the height of a falling object, the level of water in a filling tank etc.

6) Actions may interact with external events beyond the agent's direct control: for

example, to sail across a lake, the agent may put up the sail and so on, but the

action will not succeed unless the wind is blowing.

7) Knowledge of the world is usually incomplete and unpredictable in detail. Thus

prediction can only be done on the basis of certain assumptions. Also, some

effects of actions may become uncertain, and actions themselves may occur

uncertainly. For example, consider a robot with a sensor. Since its sensor data may

be both incomplete, due to the robot's limited window, and uncertain, due to

sensor noise, the robot's activities can be uncertain as well.
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1.3 Logic-based Representation

Logic is a precise formalism that allows one to assign a clear meaning to the elements

of a theory through formal semantics, thus removing scope for the possibility of

ambiguity. By its very nature it encourages rigorous treatment of semantic issues that

might otherwise be overlooked. Logic does not commit us to using a particular

programming technique or language; instead it provides a general-purpose declarative

representation scheme. The argument for the fundamental importance of logic in

knowledge representation is very simple. Pat Hayes sums it up in the following two

questions.

One of the first tasks which faces a theory of representation is to give

some account of what a representation or representational language

means. Without such an account, comparisons between representations

and languages can only be very superficial. Logical model theory

provides such an analysis. [Hay77]

. . . virtually all known representationalschemes are equivalentto first-

order logic (with one or two notable exceptions, primarily to do with

nonmonotonic reasoning). [Hay85]

As point out by Moore [Moo82], the overall claim of such an argument is weaker than

the claim that the language of formal logic itself should be used as a representational

formalism in AI programs. In fact, the underlying meaning of any representational

scheme is supplied by logical model theory. The closer the actual representational

formalism is to the language of logic, the easier it is to reveal this meaning.

To make the argument more clearly and precisely, Shanahan summarises it as the

following three main steps [Sha97]:

• We need to supply an account of what the representations used in AI programs

mean. In logic, model theory provides the basis for such an account.
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• Almost all representational formalisms are equivalent to first-order logic.

• A model-theoretic account of the meaning of a representational formalism pins

down the notion of correct representation for that formalism. It can also play a

central role in pinning down the notion of correct reasoning, even if that

reasoning is non-deductive.

The formalisms of logics have been used to differing extents in AI. The use of logic

can be distinguished as four levels following John McCarthy's catalogue [McC89]:

• A machine may use no logical sentences—all its "beliefs" being implicit in its

states.

• The second level of use of logic involves computer programs that use sentences in

machine memory to represent their beliefs but use rules other than ordinary logical

inference to reach conclusions.

• The third level uses first order logic and also logical deduction.

• The fourth level is a goal. It involves representing general facts about the world as

logical sentences. Once put in a database, the facts can be used by any program.

A key problem for achieving the fourth level is to develop a language for a general

common-sense database. According to the above argument for logic, how to represent

the effects of actions and events in logic is a natural question. Therefore, developing

an approach for reasoning about action and change becomes one of the basic and main

tasks for achieving the fourth level of the use of logic.

1.4 The Motivation

To model the dynamic world, reasoning about action and change based on common

sense knowledge is one of the most important and difficult tasks in the Artificial

Intelligence research area. The problems that arise in, for example, either classical
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mechanics or the historical framework, are symptomatic of all systems for reasoning

about action and change. The general problem is how to express effectively what a

program knows and how it should reason.

Over the past half century, numbers of approaches have been proposed for dealing

with this problem, including McCarthy and Hayes' framework of the situation

calculus [McC63, McH69], which is probably the most influential formalism

regarding this area. It is an early proposal that takes evolution over time into account.

It is originally introduced as a general framework for the modelling of the dynamic

worlds; i.e., worlds that change over time. Since then several extensions to the

framework have been proposed to add temporal features into the situation calculus

(e.g., [Sch90, GLR91, PiR93, 95, MiS94]) in order to enrich the temporal ontology of

the formalism. Some other influential formalisms for dealing with this problem

include [McD82, A1184, K0S86, Sho88, A1F94, StM94, San94, Sha95, GoG96],

However, these approaches have not gone as far as one would like for dealing with

temporal issues in representing and reasoning about actions and their effects, and

there are still some problematic issues that have not been satisfactorily solved.

Generally speaking, it is assumed that the world persists in a given state until some

action is carried out to change it into another state; also, while some actions may be

instantaneous, most of them perform over some interval of time. Hence, intervals are

needed for expressing the time spans of situations and actions. Most existing

formalisms usually associate entities such as fluents, situations/states and actions with

some special time, where time elements are characterised as points and intervals are

constructed out of points. For instance, in Pinto and Reiter's formalism [PiR93, 95],

the time span of a given situation is characterised in terms of its starting point and

ending point during which no fluents change truth values. Some problematic issues

will arise when one is going to enrich the temporal ontology by adding a time line to

the situation calculus as suggested by Pinto and Reiter [PiR95]. As for the time

structure, there are mainly two problematic issues.

One issue is that only points are addressed as primitive and hence time intervals have

to be constructed from points. Therefore, for representing actions and situations (or, in

the terminology of the event calculus, events and processes) which may last for some
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possible duration, one has to explicitly express their corresponding starting time and

ending time. This may lead to the so-call dividing instant problem (DIP) [Vil94], i.e.,

the problem of specifying whether time spans of situations or actions are closed or

open at their starting/ending points. To deal with this problem, there are two

approaches. One is to take intervals including their ending-points, so that the adjacent

intervals would have ending-points in common. Hence, if two adjacent intervals

correspond to states of truth and falsity of a given fluent, there will be a point at which

the fluent is both true and false. Similarly, if all intervals don't include their ending-

points, there will be points at which the truth or falsity of some fluents is undefined.

Another approach is to take point-based intervals as semi-open (e.g., all intervals

include their left ending-points, and exclude their right ones) so that they may sit

conveniently next to one another. However, on the one hand, since this approach

insists that every interval contain only a single ending-point, the choice of which

ending-point of intervals should be included/excluded seems arbitrary, and hence

unjustifiable and artificial. On the other hand, although the approach may offer a

solution to some practical applications, there are some other critical questions which

remain problematic (examples are given in [Gal90, KnM92]). The fundamental reason

is that in a system where time intervals are all taken as semi-open, it will be difficult

to represent time points in a consistent structure so that they can stand between

intervals conveniently.

Another issue is that the negation of a given fluent, and the relationship between a

negative fluent and sentences which involve the fluent have not been formally

addressed. This is a very important issue that needs some careful treatments if time

intervals are allowed to be arguments to some global predicates [Sho87a] such as

"TRUE", "HOLDS", etc. In fact, we may face the possibility that some fluents might

be neither true nor false throughout some specified intervals. Additionally, in a logic

where some time intervals are characterised as infinitely decomposable, the so-called

intermingling problem [Ham71, Gal96] may arise, that is, the possibility of

indefinitely intermingled time intervals within each of which a fluent/takes both true

and false values. This will lead to some difficulties in characterising the relationships

between the negation of a fluent and the negation of the corresponding sentence

involving that fluent.
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Beyond the time structure itself there are some other problematic issues that have

been mostly neglected in most of the existing systems [GLR91, PiR93, MiS94, Sha95

etc.]. One of them is to express the temporal relationships between actions and their

effects. This is in fact quite complex and interesting. Normally, the effects of an

action become true immediately after the end of the action. However in some cases,

the effects of an action may start to hold true some time after the end of the action.

That is there is a delayed time between an action and its effects. In most of the

existing formalisms, only the former case has been dealt with. Gelfond et al. [GLR91]

propose an approach using the notation Duration of Actions and Actions that Involve

No Activity to describe an action with delayed effects. This action normally is called

Wait. Its main function is to fill the gap between action a and its effect, in case there is

a time delay there. That is: Result(So, a+Wait ), where the duration of Wait equals the

time delay. However the null actions only move time forward but have no effects. As

pointed out by Allen and Ferguson, it is "neither convenient nor intuitive" [A1F94].

Also, the treatment of Gelfond et al to the delayed effects of actions raises another

issue in temporal reasoning of actions and change. This issue is how to deal with the

relationship between a time duration and its relative time entity. To see this issue

more clearly, let us consider the example a ball thrown into the air. While the ball is

going up (say for just 8 seconds), the velocity is not zero (and again, not zero when

the ball is going down). Only at the apex (the stationary point) where the ball is

neither going up nor going down, the velocity becomes zero. Now, how to express the

(delayed) effects of the action of throwing the ball? If we take the approach proposed

by Gelfond et al, using an action called Wait to fill the duration, one may use

Result(So, Throw+Wait) to represent the situation 8 seconds after the action Throw

(here, we assume the duration of Wait is 8 seconds). However, in this result situation,

is the velocity zero or not? The answer is not unique.

In fact, there are two situations, one is the situation where the ball is at the stationary

point, another one is the situation immediately after the stationary point, where the

ball is going down. Both of them satisfy that the Wait action lasts for 8 seconds.

Gelfond's approach seems unable to distinguish these two delayed effects. This issue

has been in fact neglected in the existing temporal reasoning systems.
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Additionally, in existing systems, there is a restriction on causal relations, e.g. causes

strictly precede their effects , or similarly, there is no change during the performance

of actions. This restriction also implies that there are no situations defined during the

time an action is executing. This means that one can't assert anything about the world

during the time while an action is being performed. Rather, all effects of an action

must be packaged into the resulting situation. As a consequence, all effects start

simultaneously. This avoids the simultaneity of a cause and its effects. However, "it

may be argued that this is an overkill" [Sho88]. Consider a scenario in which the

status of a light is controlled by a button. The light is on only when the button is being

pressed down. Intuitively, it seems that the "cause" (pressing the button) coincides

with the "effects" (the light is on), rather than preceding it. How do we reason about

this scenario formally? Systems with such a restriction can not offer successful

solutions for this question.

The other problematic issue beyond the time structure is about the expression of

situations. In the various versions of the situation calculus, the word "situation" is

used just as a kind of context or time label referring to the set of facts which describe

the corresponding state of the closed world of discourse; and, sometimes, it is even

used interchangeably with the word "state" (e.g., [GeN87]). However, there are

indeed some fundamental differences between the concept of situations and the

concept of states of the world if temporal issues are taken into account. Hence, in

order to fully capture the temporal aspects of the dynamic world, the following

separation between the notion of states and situations is expected:

• The state of the world, which may be described by a certain set of facts, is time

independent - the state at a given time does not necessarily have to be different

from the state at another time.

• Situations are time dependent - a situation is an association of a given state of the

world with a particular time over which the world holds in that state. Hence, each

situation must be taken as unique. In other words, two situations that refer to two

states of the world associated with two different times, respectively, must be taken

as different, no matter whether the states of the world at these two times are the

same or not. Additionally, since each situation is associated with a particular time,
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there should be, on intuitive grounds, a constraint that excludes the case that an

action may change a situation to an earlier situation.

Another issue concerns is how to characterise the notion of actions and events. In the

literature, the two words, "action" and "event" are used in many different senses by

various researchers; sometimes they are also used interchangeably. In fact, similarly

to the separation between states and situations, as argued in chapter 6, actions and

events should be treated as different entities:

• Actions are time independent - they are simply some names denoting certain useful

and relevant activities that may be conducted over some time by the agents to

accomplish changes of the state of the world. E.g., "Shooting", "Striking",

"Running", "Sleeping", and so on. Following Gooday and Galton's idea [GoG96],

in this thesis, we shall call the association of a given action with a certain temporal

duration an action type, e.g., "Striking for 24 hours", "Running for three minutes",

and so on. It is important to note that the same action can contribute various action

types. For instance, "Running for three minutes" and "Running for two hours"

denote two different action types. Action types are high level entities - they are still

time independent: for any given action type, it may perform once, more than once

over different times, or may not even perform at all.

• Events are time dependent - each individual performance of an action type over a

given time constitutes an event at low level. E.g., the performance of action type,

"Striking for 24 hours", over the whole day of the 16th of September 1994

constitutes the event, e = <Striking, 16/09/1994>.

In addition, generally speaking, to reason about action and change, there are four main

questions that need to be answered. One is whether a proposition is true or not. The

second is when it becomes true. The third is how long it may persist. The final one is

what causes it to be true. Most of the existing formalisms only deal with some of these

questions. For instance, the situation calculus and its extensions answer the first, the

second and the fourth questions while the event calculus and its extensions answer the

first three questions. Therefore, an approach that may reduce such restrictions and



Chapter 1 Introduction 13

provide more power of expression, for instance, to deal with all four above questions,

is very desirable. This dissertation provides such an approach.

Finally, following Allen and Ferguson's view [A1F94], most of the approaches for

temporal reasoning about actions and change can be classified into two classes,

constructive models (state-transition-based) [McH69, Sch90, Lif87, PiR93, 95,

MiS94, GoG96, etc.] and non-constructive models (temporal-logic-based) [McD82,

A1184, K0S86, Sho88, A1F94, StM94, etc.]. Each class has its own advantages.

However, one may ask the following questions: Is it possible to develop a new

formalism that combines most of the benefits of both of those two classes? If yes,

how to do it? This is one of the problems that this thesis will deal with.

1.5 Contributions of the Work

The main contribution of this thesis is the development of a general formalism for

temporal reasoning about action and change. This new formalism allows expression

of high level common-sense knowledge about action and change, and also supports

explicit representation of time and occurrence of events at low level. The

contributions of this work can be detailed as follows:

• The formalism proposed here allows a comprehensive characterisation of the

relationship between the negation of a given fluent and that of involved sentences.

• A new time theory is introduced which can be seen in fact as a special model of the

time structure previously proposed by Knight and Ma in [KnM92, MaK94]. Based

on this time structure, a discrete model has been presented. This model

overcomes/bypasses the so-called intermingling problem and the dividing instant

problem , which beset most existing temporal theories involving time intervals, while

retaining most of the advantages of the general theory.

• For temporal reasoning about actions and change, the issue of how to deal with the

relationship between a time duration and its relative time entity is quite interesting

and important. The notion of duration type is introduced. The definition of

duration types specifies the end points of a time duration, in order to map one
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temporal duration to a unique time entity. Using this method, some problems,

such as representing delayed effects, coincident effects etc., which affect some of

existing systems, are successfully overcome.

• The formalism formulates some key terms for representing and reasoning about

actions and change, such as states, situations, actions and events. The distinction

between states and situations is formally made by defining a situation as a pair of a

state and a time over which the world holds in the state. In an analogous way, a formal

distinction between actions, action-types and events is proposed, which allows the

expression of common-sense causal laws at high level. It is shown how these laws

can be used to deduce state change over time at low level, when events occur under

certain preconditions. By using this formalism, it is possible to represent truth

value of any given fluent over various times, and model the concurrency of actions

and events.

• To deal with the frame problem, one of the most important and difficult problems in

reasoning about actions and change, two of the conventional nonmonotonic reasoning

techniques, i.e. causal minimisation and state-based minimisation are correctly

extended. As side effects, the other two related problems, e.g. the ramification

problem and the qualification problem, are also addressed.

• The formalism combines many of the existing techniques into a unified, formal

framework. It allows more flexible temporal causal relationships than do other

formalisms for reasoning about causal change, such as the situation calculus or the

event calculus. It includes effects that start during, immediately after, or some time

after their causes, and which end before, simultaneously with, or after their causes.

The causal axioms guarantee the common-sense assertion that "the beginning of

the effect cannot precede the beginning of the cause".

1.6 Outline of the Thesis

The outline of the rest of this thesis is as follows. In chapter 2, some basic and major

issues about temporal knowledge representation are addressed, such as times,

states/situations, actions/events and the causal relationships between actions/events
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and their effects etc. A review of some representative temporal reasoning systems is

given in chapter 3. The main features of these systems and comments upon the

relative merits and disadvantages of these are examined. In chapter 4, the discussion is

focused on the nonmonotonic techniques for the three classical problems, i.e. frame

problem, ramification problem and qualification problem. Firstly, what are these

problems and the brief discussion on each problem are described. Then the discussion

about the existing solutions to the frame problem in detail is presented. Chapter 5

introduces a time theory, which can be seen as a special model of the time structure

previously proposed by Knight and Ma in [KnM92, MaK94]. Based on such a time

structure, in chapter 6, a discrete model called Temporal State Transition Calculus is

presented, which gets some benefits from the time structure. Some key terms

regarding knowledge representation, such as duration types/action types,

states/situations, actions/events are formulated and the temporal relationships between

actions/events and their effects are explicitly examined. Chapter 7 presents the

expressive power of the formalism in terms of providing some example applications.

Finally, chapter 8 provides a summary and some concluding remarks.

In this thesis, I will be using the first-order predicate calculus with equality

throughout, with the following conventions:

and,

or,

equivalence,

implication,

entailment,

existential quantifier,

universal quantifier,

negation,

Also, generally, a variable is any string of alphanumeric characters beginning with a

lower case letter, while a constant, function symbol, or predicate symbol is any string

of alphanumeric characters beginning with an upper case letter. In any formula, for

the purpose of simplicity, unbounded variables are universally quantified.

A

V

<=>

3

V
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CHAPTER 2

MAJOR ISSUES IN

TEMPORAL KNOWLEDGE REPRESENTATION

An understanding of the elementary concepts of temporal knowledge representation

has been proved important for many AI applications, e.g., planning, diagnosis,

intelligent database and natural language understanding, etc. Elementary terms include

times, fluents, actions, change, effects and causation and so on. Among them, time

plays a fundamental role. However, the manner in which time is represented and used

in AI differs from that in rigorous formal disciplines such as mathematics and physics.

In the mathematician's approach, time is usually treated as an independent variable

expressed explicitly. AI researchers, on the other hand, sometimes avoid the use of

isolated times and instead use times with respect to some other elementary terms. The

advantages to the AI approach include expressive power and flexibility but it has

proved hard to produce a formal theory of common sense temporal reasoning without

compromising the explicitly expressed time. Typically, a trade-off must be reached in

which the expressiveness of the temporal language is balanced against its compactness

and implementability. This means we are facing the following choices: What

primitive temporal objects should be represented? What kind of time structure should

be introduced? What mechanisms should be used to relate facts to times? What

specialist features should be built in the theory? These issues will be examined in this

chapter and some further discussions will be given in chapter 6.

2.1 Intervals and points

In order to design a system for temporal reasoning, a selection of the underlying time

structure is necessary. This is the issue of what should be taken as the primitive

elements of time. The question of whether to represent time in terms of intervals,

points or both is an open one. Practically, the choice depends on the nature of the

intended application. However, in many domains both intervals and points are
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required and so even if we employ only one as a temporal primitive it will still be

necessary to have some method of deriving the other. As we shall see, this is not

always straightforward and can result in a number of practical and philosophical
.

difficulties.

2.1.1 Time intervals

The main feature of time interval is duration. In real world, most of temporal

information involves duration. For example, Allen [A1183]gives the following story:

Ernie entered the room and picked up a cup in each hand from the table. He

drank from the one in the right hand, put the cups back on the table, and left the

room.

In this account we can identify several time intervals, e.g. the time Ernie was in the

room, the time between entering the room and picking up each cup, the time between

putting down the cups and leaving the room, and many others. Therefore, the claim is

that intervals are sufficient for modelling all the temporal references in human accounts

such as this.

In fact, the observation is that the only times we can identify are times of occurrences

and properties. For any such time, say the time when Ernie opens the door, it appears

to be possible to look more closely at the occurrence and decompose it. For instance,

Ernie turns the handle first and then pushes the door to open. Hence, times can be

decomposed into subtimes. In other words, it seems that there is always a more

detailed causal explanation if one cares, and is able, to look for it. A good analogy,

then, is that times correspond to duration, i.e. to intervals on real line. For this reason

it is essential that we have some way of representing time intervals.

For the purpose of knowledge representation, an interval is a continuous chunk of

time with duration. Normally, there are two alternative ways of incorporating intervals

into a formal knowledge representation scheme. In the first, intervals are assumed to

consist of points, and hence, the corresponding systems may be considered as models of

AO
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point-based time theories. An example of this kind of interval is the time-segment of

Bruce's model for temporal references [Bru72]. However, as Allen has commented

[A1181,83], modelling intervals by taking their ending-points can lead to problems: the

annoying question of whether ending-points are in the interval or not must be addressed,

seemingly without any satisfactory solution. The second treatment takes intervals as

primitive objects without any definitions of the "ending-point" and "internal-point"

structures. Allen's interval logic [A1181, 83, A1H89], Vilain's temporal system [Vil82,

ViK86], Knight and Ma's extended temporal model [KnM92, KnM93], are examples

that treat intervals as primitive.

As an example of the first choice, let us look at Bruce's temporal model. Bruce's

model is an early attempt at mechanising part of the understanding of time within

artificial intelligence. In this system a formal framework, based upon first-order logic, is

established for the analysis of tenses, time relations, and other references to time in

natural language. The axioms of the framework are based on the following definitions:

A time-system is a pair, (time, <), where time is a set whose elements are called time-

points, and < is a partial order over time.

Bruce then defines point-based intervals, termed time-segments, as chains which are

convex in the sense that there are no points missing within the chains, where a chain is a

totally ordered subset of time-points. The related issues about time-segments, such as:

density and linearity, may hence be derived from the corresponding issues of the time-

points which make up the time-segments. The ordering relations between segments are

also inherited from the partial order over the time points. Bruce gives seven binary

relations between time-segments, which can be derived from the ordering relations over

their greatest lower bounds and the least upper bounds: Before, During, Same-time,

Overlaps, After, Contains and Overlapped.

Following Bruce's idea, briefly speaking, we can define an interval like this: given times

t, and t2 (integers, rationals or reals), the endpoints of an interval i, the interval i can be

defined as the set of all time points between t, and t2 (it will be convenient to write such

an interval as (t„ t2), where t, < t2). If we choose to include the endpoints within the

interval itself then we say that it is closed. If not, then the interval is open. If the interval
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includes t, but not t2, we say it is left-closed. Similarly, we can define the right-closed

intervals.

Additionally, as argued by Allen (see chapter 5), there are some problems in dealing

with the treatment of open or closed intervals. Mechanisms for duration reasoning are

not specified, although these may be defined by introducing a mapping from the time-

points to the reals.

Allen's model is a typical example of the second choice. Instead of adopting time
11 1 .points, Allen takes intervals as the primitive temporal quantity, as being the natural

means of human reference to time. Allen argues that even references to apparent point

events, such as the time Ernie entered the room, or the time that he put down a cup, are

best modelled as small time intervals.

In order to express temporal relationships over time intervals, Allen took originally as

Iprimitive a set of nine (mutually exclusive) basic binary relations between any two

intervals [A1181],extended later to 13 [A1183]: Equal, Before, Meets, Overlaps, Starts,

Started-by, During, Contains, Finishes, Finished-by, Overlapped-by, Met-by, After.

These are based on Bruce's seven relationships, but whereas Bruce's relations are

derived from the partial order within a point-based theory, Allen's are taken as primitive.

The most disputed aspect of Allen's system is its exclusion of time points as primitive,

although in the later paper [A1H89], Allen and Hayes define a point as the "meeting

place" of intervals, or as a maximal set termed " nest of intervals that share a common

intersection, at a subsidiary status within the theory; and use the concept of a "moment",

i.e., a very short interval which is non-decomposable, to model some instantaneous

events. The contention is that nothing can be true at a point, for a point is not an entity at

which things happen or are true [A1183]. Except for the assumption that moments have

positive length, while points have zero length, another obvious structural difference

between points and moments is that moments are treated as primitive objects, and hence

can meet other intervals (although they are not allowed to meet other moments), while

points are not treated as primitive objects and cannot meet anything at all [A1H89].
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2.1.2 Time points

A time point differs from an interval in that it has no duration. Although most of the

temporal information that we wish to represent can be expressed in terms of intervals

there are some critical cases that require points. For example, when two billiard balls

are rolled towards one another the exact moment at which they first touch (change

from being not in contact to being in contact) is clearly a time point rather than an

interval. In addition, sometimes we practically treat intervals as points. For instance,

consider an integrated circuit system, when we close a switch there will be a time

delay before current flows through the entire device, but it is simpler to ignore the

delay and assume that the circuit functions immediately or, in other words, the circuit

can be switched on or off at a point in time rather than over an interval.

McDermott's temporal logic gives an example of this case. McDermott [McD82]

develops a first-order temporal logic to provide a versatile "common-sense" model for

temporal reasoning. In accordance with the "naive physics" advocated by Hayes

[Hay78], McDermott adopts an infinite collection of states (points) as the primitive

temporal elements and adds several crucial axioms. Every state has a time of occurrence,

i/(s), a real number called its date. Time is assumed to be a continuum, with an infinite

numbers of states between any two distinct states, where states are partially ordered by

the "no later than" order relation "<". The future (not the past) is branching, that is, there

are many possible futures branching forward in time from the present. Each single

branch, called a "Chronicle ", consists of a connected series of states and is isomorphic to

the real line.

As argued by many researchers [e.g. Vil82, MaK94], for general treatments, both time

points and intervals are needed to represent the full spectrum of common sense temporal

knowledge. We have already examined the consequences of adopting points as primitive

objects and defining intervals in terms of these in last section. On another hand, in the

literature, there are many examples of points defined in terms of interval structures. In

different interval structures, time points can be defined by different ways [Haj96],
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2.2 Fluents, States and Situations

The treatment of temporal information from the artificial intelligence point of view is

concerned principally to represent the knowledge, especially the description domains.

Whatever domain is concerned in this kind of treatment, the first stage always consists

of defining a representation for temporal information, and it is at this level that we

find the fact that time is one of the important features. However, additionally, there

are some other features need to be declared. For example, to give a complete

description of the world, other than the relative times, we need to express the features

of status of the world, in terms of, e.g., facts, propositions, states, etc. In this section,

we will examine the definition and properties of these notions.

2.2.1 Fluents

An atemporal knowledge representation system can be used to represent facts about

an (unchanging) world in terms of the objects of that world and the corresponding

properties. Informally, we refer to these properties as fluents. Predicate calculus has

proved to be an idea vehicle for knowledge representation of this sort. For example, in

the Blocks world, "block A is on the table" and "block A is not on block B" are two

fluents in the Blocks world and can be represented as:

On(A, Table)

-nOn(A, B)

This kind of fluent denotes the relationship between two different objects. Here the

objects are blocks A, B and Table. Sometimes a fluent may just denote a status of one

object. For instance, On(Light) means that the Light is on.

The above discussion just talks about fluents as being simply true or false. This is not

the whole thing about fluents. We can extend this sort of representation scheme to the

temporal domain, therefore, the truth values of fluents are supposed to be dependent

on times and we need a method to associate fluents with times at (over) which they
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hold true. One way of doing this is to introduce a special temporal incidence

predicate, Holds, which takes a fluent and a time as arguments. This predicate

evaluates to true or false according to whether the fluent is true or false at (over) the

given time. One immediate problem is that we have already defined fluents to be

predicates. First order logic does not allow us to use predicates and functions as

variables. Fortunately, the logical device of reification can provide a successful

solution to this problem.

In non-reified formulations of situation calculus, fluents correspond to predicates that

take one or more arguments. A fluent, according to McCarthy and Hayes' definition

[McH69], is " a function whose domain is the space of situations (we will introduce

notion situations soon). They distinguish various types of fluents. If the range of the

function is {true, false), then it is called apropositional fluent. If its range is the space

of situations, then it is called a situational fluent. Normally, in the evolutionary

versions of the situation calculus, fluents usually are propositional fluents. Suppose

we want to represent the fact that it is raining in situation S0. One way to do this, using

the notion of a propositional fluent above, is to write,

Raining(S 0).

Here, following McCarthy and Hayes, the fluent Raining can be thought of as a

function whose domain is the space of situations and whose range is {true, false).

Strictly speaking, it is a predicate whose argument is a situation. An alternative way of

expressing the same fact is to write,

Holds(Raining, S0).

Here, the fluent Raining has been reified. It is awarded the status of object. Consider

another example, suppose we want to express the fact that block A is on the table in

situation S0. In non-reified version, it can be written as:

OnTable(A, S0).
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Again Ontable is a function whose range is {true, false) . On the other hand, in a

reified language, fluent OnTable is treated as an object, and OnTable(A ) would be a

fluent term and instead, we write

Holds(OnTable(A), S0).

In what follows, we will adopt the reified expression for fluents and other similar

terms. Specially, in temporal reified logics [Sho87b, MaK97], prepositional terms are

related to times or other propositional terms through an additional sort of "truth

predicate", such as Holds (or True), Causes etc. For example, one may use

Holds(OnTable(A), T) to represent the assertion "Block A is on the table at time T\

Compared with some non-reified approaches such as the method of temporal

arguments, it is argued that reified logics have the disadvantage of being more

complex in expressing assertions about some given object with respect to different

times e.g. an assertion such as "the President of 1962 died in 1963" [BTK91].

However, as summarized by Ma and Knight [MaK97], from the point of view of

expressiveness, since reified temporal logics accord a special status to time and allow

one to predicate and quantify over propositional terms, they are more expressive for

classifying different types of temporal occurrence and representing both non-temporal

and temporal aspects of causal relationships. For instance, Bacchus et al [BTK91]

and Vila [Vil94] claim that while it is difficult or even impossible to express

assertions such as "effects cannot precede their causes" in a non-reified logic like that

of Bacchus et al [BTK91], one can easily express such a statement in a reified logic.

A formal demonstration of this claim is provided in chapter 6 of this thesis. As further

evidence for the convenience of using reified fluents, notice that several approaches to

dealing with the frame problem appeal to the minimisation of the predicate Ab (details

can be seen in chapter 4). For instance, Baker's solution to the frame problem [Bak91]

uses a circumscription policy in which the predicate Ab is circumscribed with the

interpretation of the function symbol Result allowed to vary. Such a policy cannot be

expressed without reifying fluents.
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2.2.2 States

A fluent is a notion relative to some individual facts. For example, in the blocks

world, "Block A is on the table" and "Block A is on block B" are two fluents. There is

no information about the relationships between these two fluents. Also, there is no

information about whether they can be both true or not at the same time. At a

specified time, without further information, one can not make any definitive

conclusion about these two fluents. Therefore, to describe a status of the world, we

need to use fluents together with the information about the relations among fluents

such as whether some of the considered fluents can be true concurrently at a given

time or not. For instance, "Block A is on the table" together with the fluent "Block B

is on the table" describe a status of the two blocks world. But fluent "Block A is on

the table" together with the fluent "Block A is on block B" can not compose a state in

the real world. Therefore, to represent the relations between fluents and describe the

world in terms of specifying the truth values of a set of fluents, the notion of states is

employed.

In literature, the word "state" is used in various senses by different researchers. For

instance, McDermott defines a state as "an instantaneous snapshot of the universe"

[McD82]. This definition is very close to McCarthy and Hayes' definition of

situations. In [McH69], McCarthy and Hayes define a situation as "the complete state

of the universe at an instant of time", which "can be thought of as snapshot of the

world" [Sha97]. Sometimes, the word "state" is even used interchangeably with the

word "situation", e.g., Genesereth and Nilsson define that "a state , or situation , is a

snapshot of the world at a given point in time" [GeN87].

According to Lin and Shoham's idea of epistemological completion [LiS95], which is

presented based on the conventional situation calculus [McH69], a state can be

defined as follows. Let S be a fixed set of fluent constants, which includes all the

fluents in which we are interested. A set SI of fluents is a state of the situation Sit

(with respect of S) if

SI = {/| Holdsif, Sit),f e £} u { not(/) | Holdsif.\ Sit),fe
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where Holdsif, sit) asserts that fluent/holds in situation sit.

Therefore, if SI is a state of situation Sit, then for any fluent f e S, either Holds(J\ Sit)

is true or Holdsif, S) is true. Intuitively, states completely characterize situations

with respect to the fluents in a given set of fluents, such as S. In other words, a state

defined above completely specifies the truth values of fluents in a situation with

respect to S. For example, in the Two Blocks World, there are in total 4 fluents in

which we may be interested.

OnTable(A) OnTable(B)

On(A, B) On(B, A)

Let S include these 4 fluents, and let

S, = {OnTable{A), OnTable(B)} u {not (On(A, B)), not (On(B, /4))}

52 = {On(A, B), OnTable(B)} u {not (On(B, A)), x\o\{OnTable{A))}

53 = {On(A, B), OnTable(A)} u {not (On(B, A)), not(OnTable(B))}

be three sets of fluents with respect to the set S. In what follows, for simplicity, we

only list the positive fluents. As default their negatives are also considered. If it is

necessary, we can make the negatives mentioned. Therefore, the above three sets can

be expressed as:

S, = {OnTable(A), OnTable(B)}

52 = {On(A, B), OnTable(B)}

53 - {On(A, B), OnTable(A)}

It is easy to see that for some given situation, sets S, or S2 may contributes a state with
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respect to S, since all the fluents in S, (or S2) may hold in a given situation. But S3 can

not, because fluents On(A, B) and OnTable{A ) can not hold true in the same situation

(at the same time). Also, in any given situation, there should be one and only one state

that can hold true with respect to a fixed set of fluents. This definition has some

advantages, as Lin and Shoham pointed out that this definition captured an

epistemological complete representation. Also, in actual applications, it is most

convenient to talk about whether a description of a world is complete with respect to a

set of fluents in which we are interested. However, there are some limitations

regarding to this definition. For instance, since it associates a state with a given set of

fluents, it is difficult to cope with incomplete information.

The other way is defining a state simply as a set of fluents without any constraints

[Sha95]. Only the truth values of fluents in this set are specified, others are treated

uncertain. The reason for this treatment is simple as well. Since a world is too large

for complete description, it is impossible to completely describe a status of a world.

What one can do is only to give facts (fluents) about a relative part of the world.

Without having information other than that about this known relative part, one can not

make further conclusion. For example, in the above two Blocks world, all the three

sets of fluents, S„ S2 and S3 are states with respect to this definition. One of the

differences between these two definitions is that S3 can not contribute any state with

respect to the former definition, but it can compose one according to this definition.

Therefore, for this definition, a question is raised: Is it possible for the two fluents in

S3 to both hold true at the same time? This is a question about the notion of

consistency in states. The other difference between these two definitions is that with

respect to the latter any subset (including the trivial one - null) of the four fluents in

the two Blocks world can compose a state. This makes it possible to cope with

incomplete information. For example, Let S4 be a state which includes only one fluent,

OnTable(A). Suppose this fluent holds true at time t, that is:

True(OnTable(A), t).

Where Trueif, t) represents that fluent /holds true with respect to time t. Then we

know the information about the position of block A. However, in the absence of
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further information about block B, our conclusion does not include any statement

about block, B. If we add the knowledge that fluent OnTable(B) holds true at time t as

well, that is

True(OnTable(A), t ) a True(OnTable(B), t),

then our conclusion may include the information about the positions of both block A

and B. The main advantage of the definition is that it can handle incomplete

information. However, according to this definition, with respect to a given time, there

may exist more than one state. In chapter 6, for the purpose of developing a formalism

to reason about action and change, we are going to define states in a different way,

which gets benefits from both of the above definitions.

As shown above, the notion of fluents is independent of time. It claims a proposition,

but does not tell when the proposition holds true or false. For example, "Block A is on

table" is a fluent. However, given a time t, whether this fluent holds true over t is

unknown. The notion of states inherits this property of fluents. From this point of

view, the notions of states and situations have to be separated.

2.2.3 Situations

A situation differs from a state in the way that it has a strong temporal aspect. In the

original version of situation calculus, McCarthy and Hayes define a situation as "the

complete state of the universe at an instant of time". Following the discussion about

states, normally it is impossible to collect all the information to completely describe a

situation. This means one never knows a situation completely— instead, one only

knows some facts about a situation. In fact, we only need to deal with the information

in which we are interested. The basic mechanism used in situation calculus to define a

new situation is the Result function,

sit' = Result(a, sit)

In this formula sit is a situation, a is an action, and sit' is the result situation of

d
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performing action a in situation 5.

There are different ways to interpret the idea of a situation in the situation calculus.

One of them is that a situation can be defined by the set of fluents that hold in it.

According to this interpretation, there is an axiom as follows, which is called

situation-state axiom, since some researchers reserve the term "state" for a set of

fluents [Sha97].

sit, = sit2 <=>Vf{Holds(f, sit,) <=>Holdsif, sit2)

The other one is thinking of a situation as a unique node in the tree of situations

defined by the Result function. According to this interpretation, the following axioms,

which is called axioms of arboreality, can be written, since they insist that the space

of situations is tree-like:

Result(a„ sit,) = Result(a 2, sit2) =>a, = a2 a sit, = sit2

Sit0* Result(a, sit).

The above two interpretations are not inconsistent with each other. But the axioms of

arboreality for the second interpretation do rule out certain formulae that are

compatible with the first interpretation, such as,

(Tog) Result(Toggle, Result(Toggle, sit)) = sit.

This formulae's intended meaning is that toggling twice has no atemporal effect. The

inclusion of any such formula introduces a cycle to the structure which the Result

function superimposes on the space of situations, making it a graph rather than a tree.

The situation calculus carries no inherent commitment to time. Time can be

introduced as a fluent. In McCarthy and Hayes1 original paper about situation calculus

[McH69], fluent Time(sit) is used to associate a time with the situation. In reified

logic, we can use Holds{Time(t), sit) to denote that the time is t in situation sit.
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However, the two interpretations of situations lead to two alternative ways in which

this can be done.

In the second interpretation, the axioms of arboreality arise from the implicit

assumption that the Result function is essentially a temporal successor function. The

introduction of time as a fluent obviously would be incompatible with a formula like

(Tog), but such formulae are ruled out by the axioms of arboreality anyway.

The first interpretation also agrees to the introduction of time as a fluent. However, if

we abandon the axioms of arboreality to allow formulae like (Tog), a formula that

seems to make sense only in the context of the situation-state axiom, a different

approach is needed. This is one of the motivations for Miller and Shanahan to propose

another approach.

To incorporate narratives in the situation calculus, some of the researchers have

extended the original situation calculus by means of introducing a time line into it

[PiR93, 95, MiS94]. Pinto and Reiter associate a time point with each situation, while

Miller and Shanahan associate a situation with each time point in the time line. For

instance, Pinto and Reiter define a situation which has a starting time point and an

ending time point, and the ending time point of a situation sit is axiomatised as
.

identical to the starting time of the new situation Result(a, sit), that is the time point at

which action a occurs. During the time span of a situation no fluents change truth

values. They use Starts(sit, t,) to represents that the situation sit starts at time t,. In

Miller and Shanahan's formalism, to make their approach to narratives work, a
I

function State is introduced. The term State(t) denotes the situation at time t. This

kind of approach does not separate a state from a situation clearly, although it

successfully deals with narratives (See next chapter for the comparison of these two

approaches). However, their treatment of linking a situation with a time suggests a

way to distinguish a state from a situation more explicitly by means of further

combining a state with a time together to represent a situation. In chapter 6, this idea

will be discussed in detail.
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2.3 Actions and Events

Actions and events are so inextricably bound up with change that we can not seriously

exclude them from a temporal reasoning formalism. The differences between events

and actions have not yet been fully clarified. In this section, we are going to introduce

the basic features for each notion. In chapter 6, we will clarify them more formally.

2.3.1 Actions

Whereas the intuition behind the notion of state (situation) is persistence, the intuition

behind the notion of action is change. In common sense, the world persists in one state

until an action is performed to change it to a new state. In the formalism of situation

calculus, an action can be seen as a function from one situation to another, and can be

described by a set of preconditions on the initial situation and a set of effects that will

hold in the final situation.

Compared with states and situations, actions have some additional characteristics,

such as effects, preconditions etc. Whenever we want to talk about an action, first of

all, we have to examine whether it can be successfully performed or not. This means

we need to check the precondition of the action. In most cases, the execution of a

given action may be constrained by some precondition that must hold. For example, in

the Blocks World, suppose we want to perform the action that moves block A onto

block B. To guarantee this action can be successfully performed, the condition that

both block A and B are top-clear must be satisfied. As the effect of the successful

moving action, block A should be on the top of block B.

In addition, sometimes more than one action may perform at the same time. These

actions are called concurrent actions. For example, John wants to go for a walk, and is

trying to open the door; Mary wants him to stay home, and is trying to close the door.

In this case, there are two actions that occur concurrently. One is opening the door,

which is performed by John. The other is closing the door, which is performed by

Mary. To express this kind of actions, we have to separate the notion of actions to two

different notions: primitive or atomic action and global action. A global action may be
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conceived as the net result of the operation of several atomic actions. Practically,

whether two or more actions can be executed concurrently, and what their joint effects

would be, depend on how they interact. There are a variety of concurrent interactions,

e.g. Independent, Cancellation, Synergy and Conflicting.

• Independent In this case, the effects of a global action are the aggregation of its

subactions. The effects of a subaction can be simply added to the set of the effects

of the other subactions. For example, Mary and John are lifting a desk. Mary is

lifting the left-side of the desk, while John is lifting the right-side. The effect of

the global action is that the desk is in the air. This effect is the aggregation of left-

side in air and right-side in air, which are effects of performing subactions by

Mary and John respectively.

• Cancellation One of the subactions may cancel the effect of another subaction,

which may take place if the subaction execute by itself. For instance, while Mary

tries to open a door by performing a Push action, simultaneously, John pushes on

the door the other way. Then the door will not be open as expected by Mary. Thus,

we say that the two Push actions, performing in the opposite directions, cancelled

each other out. The effect of the global action is that the door remains closed.

• Synergy Subactions may have synergistic effects, i.e., two subactions, when

performed concurrently, will cause effects that would not be caused by any of the

subactions performed isolation. For example, consider a wristwatch that is

controlled by two buttons A and B. Pressing A changes the mode of the display,

while B shows the alarm time setting. Pressing A and B simultaneously, however,

turns the alarm on or off. The effect of performing the two actions simultaneously

has no causal relation to the effects of the actions performed in isolation. Another

example is the soup example. Whenever Mary tries to lift the bowl with one hand,

she spills the soup. When she uses both hands, she does not spill the soup. The

effect of the global action is that the bowl is lifted by Mary without any spilling.

• Conflicting One of the subactions may conflict with another subaction. For

example, John wants to go for a walk, and is trying to open the door; Mary wants
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him to stay home, and is trying to close the door. There are two subactions:

opening the door and closing the door. Intuitively, since we don't know whose

strength is bigger, we could not deduce any definite conclusion. So we'd better

leave the result of performing these two subactions undecided.

I
So far, much work has been done to deal with the concurrent actions, such as the work

of Gelfond, Lifschitz and Robinov [GLR91], the work of Lin and Shoham [LiS92],

the work of Pinto [PiR95] and the work of Miller and Shanahan [MiS94]. For

example, Lin and Shoham propose an approach to represent concurrent actions in

situation calculus [LiS92], They introduce the notions of global actions, primitive

actions , and the binary predicate In. A global action is a set of primitive actions, and

In expresses the membership relation between global actions and primitive actions.

When a global action is performed in a situation, all of the primitive actions in it are

assumed to be performed simultaneously.

In the programming language community, several approaches have been developed

based on modal logics, which incorporate models of concurrent computation [BKP86,

Sho90b, FiB91 etc.]. For example, the Concurrent METATEM is a language based

upon the direct execution of temporal formulae [Fis93], It consists of two distinct

aspects: an execution mechanism for temporal formulae in a particular form; and an
.

operational model that treats single executable temporal logic programs as

asynchronously executing objects in a concurrent object-based system. The detailed

discussion about this language and its relevant work can be found in [Fis94].
I

Although, approaches developed in common sense reasoning and programming
.

language communities are normally for different purposes, there must be some

techniques which can be used in both. Also the exchange of ideas between these two

can benefit both.
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2.3.2 Events

As mentioned above, an action can be seen as a mapping that maps a situation to

another situation. With respect to this explanation, actions can be seen without time

structure. Consider the usual emphasis in studies based on McCarthy and Hayes1

situation calculus [McH69, LiS92, Lif86, 90, PiR93, 95, MiS94 etc.]. In these

systems, an action like "moving A on to B" is reasoned about in terms of a mapping

that maps an initial situation, S0 to another situation: Result(Move, S0). The axioms of

the calculus deal entirely with the different facts which are true or false in the initial

situation S0 and the result situation Result(Move, S0). There is no mention of the

infinite number of states occurring during the move. In this case, actions just bring

about fact changes, which is just a list of two situations, i.e., {S 0, Result(Move, S0)}.

How long they took to reach the result situation is not describable. Further, it is

meaningless in those formalisms to ask what happens during the execution of an

action.

In the literature, many researchers use events to represent the entity that can occur and

cause some change with respect to time [e.g., McD82, A1184,K0S86, Sho88, A1F94,

MiS94, Sha95 etc.]. As McDermott shows, events are more difficult to handle than

fluents. Unlike fluents, the defining features of an event are the changes in facts that

the event brings about. Also a deeper problem is that many events are simply not fact

changes. Events take time: they can take either time points or time intervals. For

example, "John arrived at the train station" is an event with respect to a time point.

"John wrote a letter in an hour" is another event with respect to a time interval. In this

case, one may raise some questions, such as what happens in the middle of a fact

change? Consider the sentence "John ran around the track 3 times." The fact change

that occurs is that John is more tired. The amount of fatigue is not terribly different

from the amount ensuing on running around 4 times. In [A1184], the predicate Occurs

is introduced to represent the occurrences of events, which takes an event and a time

as its arguments and is true only if the event happened over time t, and if time t is an

interval, then there is no proper part of t over which the event happened. For example,

suppose ArriveAt(John ) denotes John arrived at the train station and P is a time point,
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then the occurrence of the event that "John arrived at the train station at time P" can

be expressed as:

Occurs(ArriveAt(John), P).

Noticing that states describe aspects that do not change and events describe change,

the most distinction between states and events exists in their relation to time. On one

hand, when a state holds over an interval i, one can conclude that the state also holds

over all subintervals of i. For example, if a ball is red during the entire day, then it is

also red during the morning and afternoon of that day. This property is termed

homogeneity in the temporal logic literature. Events, on the other hand, generally

have the opposite property and are anti-homogeneous: If an event occurs over an

interval i, then it doesn't occur over any subinterval of i, as it would not yet be

completed. For example, if a ball dropped from the table to the floor over interval i,

then over any subinterval of i, it would just be somewhere in the air between the table

and the floor. Thus for any event e, and times t and t\ we have the axiom

Occurs(e, t) a In(tt) =>-i Occurs(e, t')

where In is a predicate that denote the relationship between two times, in which one

time is wholly contained in another.

An additional aspect of events is their hierarchical nature. Consider the event of going

to work in the morning. This event contains a number of other simpler events, e.g.,

getting out of bed, taking a shower, having breakfast etc. Each of these may also

contain further, more basic events. Finally, similar to actions, some events may occur

concurrently. For example, John wrote a letter over time T, while Mary cooked the

dinner over the same time. There are two events in this case: John wrote a letter over

time T, and Mary cooked the dinner over time T,. The ability to construct structures of

this form and reason about them is also an important requirement.

2.4 Causal relations between events and their effects

Fluents, actions and events are central issues in temporal reasoning. To reason about

change, the causation of the change is crucial. The fact that people freely speak of A

f C&FFa/,
y\J iffa
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causing B is so common in everyday life such that it has convinced many researchers

that modeling causation is a necessity. Drawing conclusions about dynamically

changing worlds is grounded on formal specifications of what effects are caused by

the execution of a particular action/event. Temporal ambiguity arises when multiple

sequences of situations are consistent with the description presented. For example,

leaving an unlocked car with the keys in the ignition raises the question of whether it

will be there in an hour, particularly in the presence of known car thieves. The space

of possible interpretations, then, is the set of situation sequences consistent with the

problem description. Temporal reasoning provides an implicit preference over these

sequences of situations in the form of causation : we prefer sequences of situations in

which one situation leads causally to the next, rather than sequences in which one

situation follows another at random and without causal connection.

In addition to causation, temporal relationship between events and their effects is

another important issue in temporal reasoning. Some effects become true at the end of

the event and remain true for some time after the events. For example, in the blocks

world, as soon as action "moving a block from the top of another block onto the

table" completes, the block being moved should be on the table (immediately), and it

should remain on the table for some time after the action is completed. In some cases,

there may be a time delay between an action/event and its effect(s). For instance, if a

pedestrian presses the button at the crosswalk, the pedestrian crossing light will be

caused to turn to yellow from red. It is known that the change (from red to yellow) is

caused by the execution of pressing. Additionally, there is a delay time, e.g., 25

seconds, between the event and its effect. In other cases, effects only hold while the

event is in progress. For example, consider the flashlight with a button for flashing it.

The light is on only when the button is pressed down. Also there are some other cases,

e.g., effects might start to hold true sometime after the beginning of the event and to

stop being true before the end of the event.

In system/control theory there is a principle normally called the "causality principle"

which basically says that "actions cannot affect the past". If a model of a dynamic

system does not comply with this principle, it's considered "faulty" [Gef98].

Meanwhile, in some philosophical accounts of causation [Sup70], there is a similar
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property of causality that says: causes precede their effects. In temporal reasoning

about actions and change, we have a similar "causality principle ", that is the most

general temporal constraint: the beginning of the effects can not precede the beginning

of the cause [McD82, A1184,Sho88, TeT95, K.PM98]. Theoretically, there are in total

8 possible qualitative temporal relationships between actions/events and their effects,

which can be briefly classified as follows:

• Case 1 -- the effect becomes true after the beginning of its causal event, and the end

of the effect coincides with the end of its causal event;

• Case 2 ~ the effect becomes true at the same time as the beginning of its causal

event, and only holds true while the event is in progress;

• Case 3 ~ the effect becomes true at the same time as the beginning of its causal

event, and remains true for some time after the event;

• Case 4 -- the effect becomes true after the beginning of its causal event, and stops

being true before the end of its causal event;

• Case 5 ~ the effect becomes true at the same time as the beginning of its causal

event, and stops true before the end of its causal event;

• Case 6 — the effect becomes true immediately after the end of the event and

remains true for some time;

• Case 7 ~ the effect becomes true after the beginning of its causal event, and

remains true for some time after the event;

• Case 8 —the effect becomes true some time after the end of its causal event, and

remains true for some time.

In most existing formalisms for representing causal relationships between events and

their effects, the effect of an event is represented by the result immediately after the
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occurrence of the event. Expression of flexible temporal relationships between events

and their effects, which is in fact quite interesting and complicated, has been mostly

neglected. This issue will be discussed in detail in chapter 6.
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CHAPTER 3

PREVIOUS WORK

Since the introduction of McCarthy and Hayes' situation calculus, which is one of the

most influential formalisms for representing change in AI, many temporal approaches

have been proposed to address the problem of representing action and change in a

natural way by enriching the temporal ontology. These systems are similar in many

respects, but there are subtle differences in terminology and basic theory that derive

from the differences in approach. In this chapter we take a close look at a number of

formalisms that have proved popular within the AI community.

3.1 Situation calculus

Situation calculus (SC) is an aspect of the logic approach to AI. It was first discussed

in [McC63], but was not widely studied (did not become influential) until [McH69]

was published. The aim of the situation calculus is that from facts about situations and

general laws about the effects of actions and events, it is possible to infer something

about future situations.

Formally, A language of the situation calculus can be defined as: a language of many-

sorted first-order predicate calculus with equality, which includes,

• A sort for situations,

• A sort for fluents,

• A sort for actions,

• A function Result from actions and situations to situations,

• A predicate Holds whose arguments are a fluent and a situation.

The basic notions in situation calculus include situation, fluent, and action. A

situation is a snapshot of the world at some instant. Situations are rich objects in that it
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is not possible to completely describe a situation, only to say some things about it. A

fluent is a function whose domain is the space of situations. If the range of the

function is {true, false), then it is called a propositional fluent , or simply a fluent. For

example, Raining(S 0) is a fluent, which says that it is raining in situation S0. As

mentioned in previous chapter, this is an unreified representation, and we can express

the same fact in a reified way:

Holds(Raining, S0).

In what follows, I will adopt the reified representation for the discussion.

There is a key function in situation calculus, Result , which takes as its arguments an

action and a situation and returns the new situation resulting from applying the action

in the previous situation.

Let's use a simple example illustrate the general idea of situation calculus. Consider a

variation of the Blocks World in which there are just two blocks. Each block can be

somewhere on the table or on top of exactly one other block. Each block can have at

most one other block immediately on top of it. Different states of this world

correspond to different configurations of blocks. In this example, we have some

fluents such as:

On(A, B)

Table(B)

Clear(A).

These fluents say that block A is on block B, block B is on the table and there is no

block on block A respectively. Action Move(x, y) means that block * is moved onto

block y. Normally, there are some preconditions for actions. That is the execution of a

given action may be constrained by some pre-conditions that must hold. For instance,

if we want to perform the action Move(A, B), the precondition {Clear(A), Clear(B)}

must hold. Suppose in original situation S0, we have:
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Table(A)

Table(B)

Clear(A)

Clear(B).

Then action Move{A , B) is performed. What will happen as the result of the execution

of action Move(A, B)1 According to the commonsense knowledge, for any two blocks

x and blocks, if both of them are clear, and action Move(x, y) is performed, then in the

result situation block x should be on the top of block;;. This can be written as:

Holds(Clear(x), s ) a Holds(Clear(y), s ) a Move(x, y)

=>Holds(On(x, y), Result(Move(x, y), s)

By this axiom and the knowledge about situation S0, we obtain

Holds(Clear(A), S0) a Holds(Clear(B), S0) a Move(A, B)

=>Holds(On(A, B), Result(Move(A, B), S0))

Then we reach the expected conclusion that in situation Result(Move(A, B), S0), block

A is on block B.

McCarthy and Hayes' primary interest is in planning. They treat change through

functions from situations to situations, representing actions. This treatment allows us

to consider the construction of plans as the development of a series of situation-

changing actions that proceed from the initial situation to one in which the desired

final properties hold for the system.

Although the original situation calculus is now more than three decades old, it has

been studied and used as the basis for a number of recent reasoning formalism [Lif87,

Bak91, LiR94, MiS94, PiR93, PiR95]. For the past several years, the Cognitive

Robotics Group at the University of Toronto has been exploring the feasibility of the

situation calculus as a theoretical and computational foundation for modelling

autonomous agents dwelling in dynamic environments. Their purpose is to enrich the
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situation calculus to make it to be well suited to the general problem of providing a

formal and computational account of complex dynamic domains and agent

behaviours. Some modest success has been achieved in the research [Rei91, LRL97,

LLR99, Lin96, PiR95],

As discussed in [GLR91, A1F94, Sha97], since the original situation calculus is a

point-based temporal logic with branching time model, there are five most frequently

alleged drawbacks of the situation calculus.

• It cannot handle actions whose order of occurrence is unknown.

• It cannot handle concurrent actions.

• It cannot handle actions with duration.

• It cannot handle actions with delayed effects.

• It cannot handle continuous change.

• It cannot handle external events.

To overcome those drawbacks of the original situation calculus, many researchers

have proposed extensions by enriching the primitive objects and the temporal

ontology. In Gelfond, Lifschitz and Robinov's paper, "What are the limitations of the

situation calculus?" [GLR91], they challenge most of those issues. They suggest

extensions to the original situation calculus that enable the formalism to represent

some of the phenomena mentioned above. Their suggestions are taken up and

amplified by various authors [LiS95, MiS94, PiR95, Sha97]. Most of their

suggestions are acceptable and lead to some successful extensions. Lin and Shoham

tackled the concurrent issue by enriching primitive objects, actions, in their extension.

Based on the argument that "While situations are 'rich' objects, as manifested by the

various fluents that are true and false in them, actions are 'poor', primitive objects."

[LiS95]. They introduce the notions of global actions, primitive actions , and the

binary predicate In. In(a, g) means that the primitive action a is an element of the

global action g. They successfully integrate their approach to concurrent actions with

their attempt at the frame problem. However, they did not concern actions with

duration.
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Pinto and Reiter, and Miller and Shanahan's approaches [PiR95, MiS94] provide a

richer temporal ontology. In [PiR95], Pinto and Reiter extend the ontology of the

situation calculus for the representation of time and event occurrences. They do this

by defining a time line corresponding to a sequence of situations (called actual

situations) beginning with the initial situation. Actual situations are totally ordered

and the actions that lead to different actual situations are said to have occurred. In

their formalism, they endow a branching structure of time with a time line and

identify one path through the tree of situations as the actual course of events. Pinto

and Reiter define a situation which has a starting time and an ending time, and the

ending time of a situation sit is axiomatised as identical to the starting time of the new

situation Result(a, sit), that is the time point at which action a occurs. During the time

span of a situation no fluents change truth values. This extension enriches the

ontology of the situation calculus to provide for the representation of time and event

occurrences. However, their treatment of time may lead to the so-called Divided

Instant Problem (DIP) [Van83, Vil94], i.e., the problem of specifying whether time

spans of situations are closed or open at their starting/ending points.

In the extension of Miller and Shanahan [MiS94], they focus their attention on the

incomplete narrative information. The objective of their paper is to provide an

approach to bridge the gap between the situation calculus and the narrative-based

approach, such as event calculus. Comparing with the method by Pinto and Reiter,

they introduce a narrative time line, such as reals or the naturals, while each situation

is associated with a time point in the narrative time line by the introduction of a

function, State. The term State(t) denotes the situation at time point t. This is one of

the main differences between the approaches of Pinto and Reiter [PiR95] and Miller

and Shanahan [MiS94]. In the formalism of Miller and Shanahan, the frame problem

is overcome by extending the idea of Baker's solution. Also, it is able to cope with

actions with duration and overlapping actions in these extensions. In order to specify

that an action occurs over a real time interval (t,, t2), they use a three-argument version

of the predicate Happens. Formula Happens(a, t„ t2) means that action a starts to

occur at time point t, and finishes occurring at time point t2. By this interpretation of

the predicate Happens, it is not clear how to express the occurrence of an action

during a real time interval, which includes the right end point. Since their treatment of
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actions with duration follows the idea of that in Gelfond et al [GLR91], the DIP and

the problem of the uniqueness of the actual time with respect to a given duration may

arise. In chapter 6, a detailed discussion about these issues will be given.

There is a clear correspondence between these two extensions. In fact, the mapping Sit

of Miller and Shanahan's can be equated with the actual situations of Pinto and

Reiter's. Furthermore, Shanahan has shown that, under suitable conditions, both

extensions yield the same results [Sha97].

In addition, some sketchy accounts of how to represent continuous change in the

situation calculus were published in the early Nineties [Sch90, GLR91]. Recently,

some new formalisms based on situation calculus have been proposed in order to

represent continuous change [Pin94, Rei96, Mil96]. In all those representations, time

line plays an important role. However, Reiter [Rei96] shows that it is possible to do

without a distinguished narrative time line and still represent continuous change in the

situation calculus.

In most of these extensions of the situation calculus, there is a restriction on causal

relations, that is causes strictly precede their effects or similarly, there is no change

during the performance of actions. This omits some cases in which the causal action

and its effects occur simultaneously, or there may be a delay time between the end of

an event and its effects.

3.2 McDermott's temporal logic

In order to deal with the problem of reasoning with and about time and temporal

primitives in the context of planning, McDermott [McD82] proposes a first-order

temporal logic to provide a versatile "common-sense" model for temporal reasoning,

with a similar flavour to Hayes' naive physics [Hay78]. In this thesis, this logic is

stated as McDermott's Temporal Logic (MTL).

Like McCarthy and Hayes [McH69, Hay78], McDermott adopts states as the

primitive temporal element. He proposes several crucial axioms: Every state has a
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time of occurrence, d(s), a real number called its date. Time is assumed to be a

continuum, with an infinite number of states between any two distinct states, where

states are partially ordered by the "no later than ' order relation and the future

(not the past) is branching, that is, there are many possible futures branching forward

in time from the present. Each single branch, called a "Chronicle consists of a

connected series of states and is isomorphic to the real time line.

There are two key ideas in McDermott's logic. One is the "openness" of the future.

This is that more than one thing can happen starting at a given instant. McDermott

introduces a time structure with branching to treat this idea. The other idea is the

continuity of time. This idea is based on the fact that many things do not happen

discontinuously.

As pointed out by McDermott, his approach is not equivalent to that of McCarthy and

Hayes [McH69]. The main difference that he claims is in the treatment of actions and

change. McDermott argues that change is often a continuous process and the

continuous nature is fundamental to many processes of change. Thus, the treatment

that the Situation Calculus offers, in which change is instantaneous (the transition

from one state to the next) is inadequate. McDermott also argues that events brought

about by actions are not always best characterised by a transition between states, or

fact changes; he cites as examples such things as running around a track three times,

eating a gourmet meal and so on, where the discrete changes brought about by the

action are, at best, only partially relevant to the action. This is the main reason

McDermott made a distinction between facts and events. In his logic, a fact is defined

as a set of propositions that hold true at some indicated time. An event is defined as a

set of intervals over which one occurrence of the event takes place.

However, as Long pointed out [Lon89], McDermott's treatment of events (or facts) as

sets of intervals will face the following three problems:

1. The Dividing Instants Problem. Intervals are denoted by the states marking their

end points—the question of whether the end points are included in the intervals or
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not remains undetermined, with a rather inconclusive argument favouring closed

intervals [Van83, Vil94],

2. The Multimingling Problem. An event may consist of an infinite number of

intervals within a finitely bound super-interval [Ham71, Gal96]. McDermott

employs an axiom to ensure that no state can change infinitely often during a finite

interval.

3. In order to define an event in the way proposed by McDermott, one must begin by

knowing all the intervals over which it occurs, in every chronicle. This is

important, since it is only by considering the event over every chronicle that one is

able to discard irrelevant features of an event. In fact, it would appear that the only

way to ensure that the intervals chosen actually do characterise the required event

is to have the event defined in advance. Thus, this construction of events does not

allow an internal characterisation. Hence, it neither corresponds with intuition nor

offers any explanation of how events might be constructed initially.

Having developed a logic of time, McDermott examines three major problems that

temporal reasoners must face: reasoning about causality and mechanism, reasoning

about continuous change and planning actions. The examination can be briefly

described as follows:

• The treatment of causality. McDermott asserts that events can cause two kinds of

things: other events or facts. He introduces two basic predicates to deal with the

causality, predicate ECAUSE and PCAUSE. For instance, formula ECAUSEip, e„

e2, rf i) says that event e, is always followed by event e2 after a delay in the

interval i, unless p becomes false during interval i. Argument rf controls the

beginning of the delay. The delay interval i starts from the beginning of e„ if rf=

0; from the end of e„ if rf= 1.

• The treatment of persistence. Naturally, the truth value of a fact in the real world is

supposed to keep unchanged until some action happens to force it to change.

Many facts remain true for long enough to be depended on. For example, as the
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result of the event "a boulder fell down to the bottom of a mountain", that boulder

will probably stay at the bottom of the mountain for years. Based on this view, he

introduces a predicate persistence to deal with the persistence of facts. Formula

persistence (5, p, r) says that fact p persists from state s with a lifetime r. The

reason that McDermott does so is to take into account the fact that in many cases,

we simply lose information about a system for moments too far from our last

observation. However, the argument r seems not necessary here. According to the

explanation above, some problems may arise. For instance, normally, we don't

know how long the lifetime should be with respect to a given fact and a give state.

• The treatment of continuous change. McDermott has paid a great deal of attention

to the subject of continuous change. He claims that a system cannot reason about

time realistically unless it can reason about continuous change. McDermott uses

the term fluent to model continuously changing variables. A fluent is a thing

whose value changes with time. This term is used in almost exactly the same sense

as in situation calculus. Fluents are valuable, because physical quantities may be

thought of as fluents. For example, "the temperature in London" is a fluent, which

takes on values in temperature space. The changes of the fluent can then be

reasoned about. Then McDermott enforces an axiom which states that when a

quantity is changing continuously, then during any interval for which the values of

the quantity at the end point are known, the quantity must take all intermediate

values. McDermott also shows how this property of continuity can be used in

reasoning about the behaviour of a tank filling with water.

• The treatment of planning. McDermott notes the importance of choice in planning

—choice of actions. To do this, he introduces a branching time structure. He also

provides axioms that ensure that chronicles branch only into the future, although

this limits the expressiveness of the logic. In addition, it is arguable whether we

need to consider time as branching in order to model possible worlds. In fact, it is

possible to conceptualise the world number, or chronicle, as related to the event

data, and not to the time. [KnM94]
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3.3 Allen's interval calculus

In [A1184], Allen develops a formalism for reasoning about actions based on temporal

logic for the naive treatment of two major subareas of artificial intelligence: natural

language processing and problem solving. His interests include many topics, such as

actions, causation, intentions and planning.

Allen's interval calculus (IC) offers a very different approach to modelling time as

compared with that of McDermott. Instead of adopting time points (or states which

are associated with time points) he takes intervals as the primitive temporal quantity,

the natural means of human reference to time. In order to express temporal ordering of

these intervals, Allen takes as primitive a set of thirteen (mutually exclusive) basic

binary relations between any pair of intervals [A1183]: Equal, Before, Meets, Overlaps,

Starts, Started-by, During, Contains, Finishes, Finished-by, Overlapped-by, Met-by,

After. Not only does Allen take intervals as his primitive temporal quantity, but he

also specifically excludes time points in claiming that any quantity of time must be

subdivisible. This ruling eliminates the possibility of instantaneous events from

Allen's treatment. It seems strange that a theory intended to support the expressive

power of natural language does not support the expression of instantaneous events,

particularly instants such as "now" or the commencement or termination of intervals.

Allen's original contention is that nothing can be true at a time point, for a point is not

an entity at which things happen or are true [A1183].

To characterise the times that some "instant-like " events occupy, in a later paper

[A1H89], Allen and Hayes define time points as the "meeting places" of intervals or as a

maximal set, termed "nest", of intervals that share a common intersection, at a

subsidiary status within the theory; and use the concept of "moments", i.e., very short

intervals which is non-decomposable, to model some instantaneous events. Except for

the assumption that moments have positive length, while points have zero length,

another obvious structural difference between points and moments is that moments are

treated as primitive objects, and hence can meet other intervals (although they are not

allowed to meet other moments), while points are not treated as primitive objects and

cannot meet anything [A1H89].
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However, as Galton shows in his critical examination of Allen's interval logic, Allen's

theory of time is not adequate, as it stands, for reasoning correctly about continuous

change [Gal90]. This problem stems from Allen's determination to base his theory on

time intervals rather than on time points, either banishing points entirely, or relegating

them to a subsidiary status within the theory.

To reason about action and change, Allen introduces a fairly rich ontology of temporal

primitives: properties and occurrences. Further, Allen divides the class of occurrences

into two subclasses, processes and events. These notions may be distinguished by the

way in which they hold or occur in time. A property is described to hold over every

subinterval of any interval over which it holds. For example, if I was in London all

last week, then I was in London all of last Tuesday. For an event, on the other hand,

each occurrence defines a unique interval over which it occurs, and it does not occur

over any subinterval of that interval. Processes refer to some activity not involving a

culmination or anticipated result, such as the process denoted by the sentence, "I am

running". Processes fall between events and properties. To see this, consider the

process "I am running" over interval i. Unlike events, this process may also be

occurring over subintervals of i. Unlike properties, however, it is not the case that the

process must be occurring over all subintervals of For example, if I am running over

interval i, then I am running over the first half of i, however, there may be some

subinterval of i when I paused for a brief rest.

Allen uses three different predicates to relate elements from his three ontological

categories to the times over which they hold or occur. For a property, he uses the

predicate Holds(p, t) to state that property p holds true throughout the interval /; for an

events, Occur(e, t) to state that event e happens over interval t and there is no

subinterval of t over which event e happens; and for a process, Occurringip, t) state to

that process p is occurring over interval t.

In order to deal with causation, Allen employs one predicate and one function in his

theory. Event causality is denoted using the Ecause predicate. Ecause(e„ t„ e2, t2) says

that the occurrence of event e, at time t, causes the occurrence of event e2 at time t2.
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According to Allen, an action is an occurrence caused in a "certain" way by an agent.

So the action causality, termed agentive causality by Allen, is characterised by the

function Acause(agent, occurrence ), which for any agent and occurrence produces the

action of the agent causing the occurrence. As pointed out by Derek Long [Lon89],

there is a strange asymmetry in the treatment of these two forms of causation, taking

one form to be predicate and the other a function, and Allen offers no reason for this

treatment.

3.4 Event Calculus

The event calculus was first introduced by Kowalski and Sergot [K0S86], which is an

approach for representing and reasoning about time and events within a logic

programming framework. It is based in part on the situation calculus [McH69], but

focuses on the concept of event as highlighted in semantic network representations of

case semantics. As its name suggests, in this calculus, the notion 'event' is central.

Event descriptions imply the existence of time periods for which certain relationships

hold. The holding of relationships for periods of time, in turn, implies the holding of

relationships at time points. Events start and finish periods of time, during which

states are maintained. Events are considered to be after the time periods that they

finish and before the time periods that they start, not fully contained within either of

these periods.

The event calculus incorporates the idea of a distinguished narrative of events. Event

occurrence is described by predicates Act and Time. In later versions of event calculus,

which employed time points instead of time periods and which is normally called

simplified event calculus [Sad87, Sha89, Kow92], the Act and Time predicates are

combined into a single predicate Happens. Happens(a, t) means that an event of type

a occurs at time t. The effects of actions are described by predicates Initiates and

Terminates. Formula Initiates(a, f t) presents that an event of type a initiates the

property / at time t, and Terminates(a,f t) presents that an event of type a terminates

the property/at time t. For instance, suppose the event "Peter moves from room A1 to

room A2", denoted by Peter Move, happens on 1/1/90, denoted by T, causes the
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property/, "Peter is in room A2", to be true starting from time T,. Then the fact after

the occurrence of this event can be described as

Initiates(PeterMove, J), T,).

Events, in the event calculus, are considered to be structureless "points" in time,

where "points" is used here only to convey the lack of internal structure. Events start

and end periods of time, during which properties are maintained. The event calculus

makes use of negation as failure to deal with persistence. Kowaski and Sergot show

that this can, in the case of incomplete information about events starting and ending

time periods, lead to incorrect results about the equality of different time periods.

However, this problem has been bypassed in the later simplified version of event

calculus. As mentioned by Shanahan, "Periods are eliminated altogether. A simplified

set of axioms bypasses the need for them" [Sha97].

In [Sad87], Sadri illustrated a number of the general characteristics of the event

calculus:

(1) Event descriptions can be assimilated in any order, independent of the order in

which events actually take place;

(2) Events can act as temporal references and need not be associated with absolute

times.

(3) Events can be simultaneous.

(4) Events can be partially ordered.

(5) All updates are additive. The cffect of deletion is obtained by adding information

about the end of periods.

(6) The event calculus rules arc in Horn clause logic augmented by negation as

failure. These rules can be run as a logic program in Prolog.

(7) The event calculus allows events to be input with incomplete descriptions.

The event calculus is developed primarily as a means of supporting a temporal

database, rather than immediately concerning with the problem of modelling change.

Change is assumed to be associated with events and is reflected in the discrete
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transition from one state to another, punctuated by an intervening event. Shanahan

[Sha90] extends the event calculus with the ability to represent continuous change in a

manner that entails relatively little modification. He does this principally by the

introduction of a new predicates, Trajectory(q, t,, p, t2) which describes the evolution

of a property, p, by giving its precise value at time t2, when the property (continuous

change), q, was initiated at time t,. This predicate has been revised later as

Trajectory(f„ t,f 2 , d), which represents that if discrete fluent ft is initiated at time t

then continuous fluent/, holds at time t+d, where d is a time duration. This treatment

satisfactorily handles the phenomenon of events that are triggered when a

continuously varying quantity reaches a threshold value. For example, consider a

kitchen sink that's filling with water. When the water reaches the brim, the sink

overflows. In other words, an event occurs which is triggered because the water

attains a particular level. This event in turn initiates and terminates various fluents.

More recently, some researches have been done for purpose of either examining the

variants of the event calculus [SaK95], or studying the difference between event

calculus and situation calculus [VDD95, KoS97]. Sadri and Kowalski [SaK95] argue

that the original event calculus has the advantages of being more general than the later

simplified event calculus, but the disadvantage of being too complex and in some

cases erroneous. The simplified event calculus has the advantage of simplicity, but the

disadvantage of being too specialised. They also show that, in certain cases of

incomplete information about events, both original event calculus and simplified

event calculus give incorrect results. In [SaK95], Sadri and Kowalski claim that they

present a new variant of event calculus, which combines the generality of original

event calculus with the simplicity of the simplified event calculus and avoid the above

mentioned incorrect results.
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3.5 Shoham's theory of time and causation

Shoham has developed a theory of time and causation (TTC) based on a first order

modal logic, for representing and reasoning about temporal information. He claims

that "a prerequisite for reasoning about change is a language for representing temporal

information" [Sho88]. The logic that Shoham develops has a number of interesting

features, including a temporal nonmonotonic reasoning component, which will be

discussed in section 4.4.3.

Shoham takes time points as his fundamental temporal primitive objects, which are

related by <, the precedence relation. An interval is defined as an ordered pair of

points (its begin-point and end-point) such that the first either precedes or is equal to

the second (and thus a point P is identified with the interval <P, P>). So intervals with

zero duration are allowed. As pointed out by Shoham, the reason that the time

intervals are defined in term of time points is "any property of intervals can be

expressed as a property of their end points, and in fact we will see that the point-based

formulations are more concise as well as more intuitive." To associate an atemporal

assertion, such as "the house is red," with a time interval, following McDermott's and

Allen's lead, he adopts a predicate True. Formula True(t„ t2, p) states that proposition

p holds true over interval <t„ t2>. For example, the assertion "the house is red during

the year 1990" can be expressed as:

True(l/l/90, 31/12/90, Color(House, Reel))

To extend Allen's three distinct entities: properties, events, and processes, and

McDermott's facts and events, Shoham provides a new categorisation scheme which

includes facts, properties and events. He claims that the assertions "I ran more than

two miles" and "I ran less than two miles" do not fit into either of Allen's or

McDermott's categorisation schemes. However, within his new categorisation

scheme, these assertions can be classified clearly.

Rather than introduce facts, events, properties and so on as separate objects, Shoham

starts with the primitive notion of a temporal proposition, and then devises
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categorisations of proposition types, relying on the relation between the truth of the

proposition over one interval and its truth over others. The main advantage of this

approach is that one is not compelled to make any distinction when he has no need for

it. For example, when it is said that "x causes y", x and y may be facts, events, or

something else.

To specify how the truth of the proposition over one interval is related to its truth over

other intervals, Shoham adopts the notion of homogeneity: a homogeneous

proposition is true of an interval if and only if it is true over all its proper subintervals.

In addition, he extends the hierarchical scheme, providing six main classes:

1. Downward-hereditary (<Ip):a proposition which whenever it holds over an

interval, it also holds over all of its subintervals.

2. Upward-hereditary (1/?): a proposition which whenever it holds for all

proper subintervals of an nonpoint interval, it also holds over the nonpoint

interval itself.

3. Liquid (Ip): a proposition that is both upward-hereditary and down-

hereditary.

4. Concatenable: a proposition which whenever it holds over two consecutive

intervals, it also holds over their union.

5. Gestalt: a proposition that never holds over two intervals one of which

properly contains the other.

6. Solid: a proposition that never holds over two properly overlapping

intervals.

According to this classification, Liquid proposition types coincide with Allen's

properties and McDermott's facts. Allen's and McDermott's events correspond either

to gestalt propositions, or to solid ones, or to both.

Shoham extends his logic to handle causality by introducing a modal operator, •,

which he suggests should be read as either "it is known that ..." or "it is believed that

..." depending on the context that they appear in. A causal statement in Shoham's

theory is written in the form:
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(j) a 9 => d(p

where;

1. The latest time point of a formula, ltp, is the latest time point that appears in

it;

2. cpis a (positive or negative) atomic base sentence with ltp t,\

3. (()is a conjunction of sentences Dcpjwhere (ps is a (positive or negative) base

sentence with ltp t{ such that tt < t,\

4. 9 is a conjunction of sentences —i• —icpjwhere cp,is a (positive or negative)

base sentence with ltp tj such that tj < t,

Here, (j)is the causing and cp the caused part of a sentence. 9 represents the set of

background conditions that must be true in order that (J)causes (p. The idea here is that

the background conditions which Shoham refers to as the "causal field" are assumed

to be true unless there is explicit evidence to the contrary. This embodies the theory

with a kind of nonmonotonicity at the language level. It should be noted that if all of

the sentences in 9 were required to be false, rather than true, then the same effect

could be achieved using negation as failure.

As pointed out by Shoham [Sho88], his formulation can be viewed as a suggestion to

generalise McCarthy's approach in three ways:

1. Start with any standard logic, not necessarily first-order predicate logic. For

example, Shoham bases his formulations on a standard modal logic.

2. Allow any partial order on interpretations, not only the one implied by a particular

circumscription axiom. For example, he suggests a preference criterion that relies

on temporal precedence.

3. Shift the emphasis to the semantics, stressing the partial order on models and not

the particular way of defining that partial order. The various circumscription

axioms, either McCarthy's original ones or Lifschitz's more recent ones, are one

way of doing so, and they are more elegant. It remains to be seen whether that
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particular way of expressing the preference criterion on models, using a second-

order axiom, has additional advantages. In his own formulations he chooses other

means of defining preference criteria, such as chronological ignorance.

Shoham's basic temporal logic is an elegant, straightforward formalism with the

advantage of increased expressive power via his meta-level temporal classification.

However there are still some technical limitations in his theory. Firstly, it is less

straightforward to relax the discreteness requirement for time in his logic to deal with

the continuous change. Secondly, in both causal theories and inertial theories it was

assumed that, intuitively speaking, causes strictly precede their effects. This

restricting avoids some problems, but "it may be argued that this is an overkill"

[Sho88]. Finally, in Shoham's theory, two types of causation are recognised: potential

causation, e.g., "X generally causes Y", and actual causation, e.g., "Some X actually

caused some Y" [Sho90]. Shoham gives no explanation for incorporating such

distinctions into his theory other than to enable causal statements to be classified. It is

worth mentioning here that in order to be able to describe simple planning operators,

Bell extended Shoham's causal theories and defined interval theories and extended

causal theories [Bel91 ].

3.6 Allen and Ferguson's interval temporal logic

Allen and Ferguson [A1F94] present a representation of events and actions based on

interval temporal logic. The goal of their work is the development of a general

representation of actions and events that supports a wide range of reasoning tasks,

including planning, explanation, prediction, natural language understanding and

commonsense reasoning in general. An approach to the frame problem based on

explanation closure is proposed. Some difficult problems in the area of knowledge

representation such as external events and simultaneous actions have been discussed

in their framework.

In their paper, Allen and Ferguson claim that in order to adequately represent actions

and events, one needs an explicit temporal logic, and that approaches with weaker

temporal models, such as state spaces (e.g., STRIPS-based approaches) and the
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situation calculus, either cannot handle the problems with complicated temporal

ontology or require such dramatic extensions that one in effect has grafted an explicit

temporal logic onto the earlier formalism.

The basic temporal structure used in Allen and Ferguson's logic, namely the interval

representation of time was developed by Allen [A1183, 84] and discussed in detail in

[A1H89]. They introduce a notion named time periods. Intuitively, a time period is the

time associated with some event occurring or some property holding in the world. For

this reason semi-infinite and infinite periods are not allowed in their time structure.

Also there is no beginning or ending of time. The relationships between two periods

are defined in terms of the single primitive relation " Meets There are thirteen

possible relations between time periods. A period is either a moment or an interval. A

period is a moment if it has no subperiods, an interval if it has subperiods. The

temporal structure they assume is a linear model of time.

Allen and Ferguson discuss two important open issues. One is how to deal with

temporal durations. For instance, it is not realistic to say that if an agent tries to turn

the ignition on the car for any length of time, then the engine will start. If the action is

tried for too short a time, the engine probably won't catch. Also, if the action is tried

for too long a time, the starting motor will burn out. The other issue is the introduction

of probabilistic knowledge. By staying within standard first order logic, for example,

one is restricted to saying that an event will definitely occur, or that it might possibly

occur.

To reason about change, Allen and Ferguson make a distinction between the notion of

actions and the notion of events. Events are described as the way by which agents

classify certain useful and relevant patterns of change. As such, there are very few

restrictions on what an event might consist of except that it must involve at least one

object over some stretch of time, or involve at least one change of state. An action

refers to something that a person or robot might do. It is a way of classifying the

different sorts of things than an agent can do to affect the world. By performing an

action, an agent causes an event to occur, which in turn may also cause other desired

events to occur.



57

Based on the interval time structure and the classified notions of actions and events, it

is possible for us to represent some temporal relationships between actions and their

effects. Allen and Ferguson claim that the simultaneous effects and delayed effects

can be expressed in their formalism. However, no examples for representing such

cases are provided. More attention has been paid to the temporal relationships

between actions and events. Additionally, as mentioned by Allen and Ferguson, "it

needs to be acknowledged that formalising knowledge using the more expressive

temporal representation can be difficult. Subtle differences in meaning and

interactions between axioms may be more common than in less powerful

representations, and more experimentation is needed in building knowledge bases

based on our representation" [A1F94]

Since their formalism is within the first-order logic, Allen and Ferguson provide an

approach to handle the frame problem based on the explanation closure approach.

However, it is arguable that this approach has some limitations (see next chapter for

the detailed discussion).

3.7 Discussion

It is difficult to say what the ideal characteristics of a general purpose AI temporal

reasoning system should be. Also, it is not easy to evaluate which system is the best.

AI has been becoming a far reaching discipline covering everything from natural

language processing to automated theorem proving and the temporal requirements of

its many component parts are incomparable. For different purposes, the system may

focus on different interests. For example, a computational linguist might consider

some notion of tense to be of the most importance, whereas this is of little practical

use to the qualitative physics researchers. In fact, it seems unlikely that a general

system capable of satisfying all of AI's temporal requirements will be built (or even

needed) in the foreseeable future. However, within any sub-area of AI, e.g. language

processing, automated reasoning, qualitative reasoning or temporal reasoning about

actions or change etc. it seems possible or necessary to build a general system for the

treatment of general purpose of these sub-areas.
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The AI approaches to time are normally different from the program verification and

specification approaches. In the former, it is usual to use a first-order formalism,

whereas, in the latter, modal approaches are very popular. For example, Barringer,

Kuiper and Pnueli developed a modal logic, called Temporal Logic of Reals (TLR),

which is stuttering robust, yet possesses a general next-time operator. It is a dense time

model and interpreted over sequences of sampling points, alternating between

persistent and transient sample points. This logic provides a more abstract description

of concurrent and reactive systems [BKP86]. Further details about using TLR in

verification and specification of systems can be found in [Pnu92, KMP94]

Interval Temporal Logic (ITL) is a modal approach proposed by Moszkowski for

specifying and reasoning about computer programs, digital circuits and message-

passing systems [MoM84, Mos85], in which an interval is considered to be a (in)finite

sequence of states, where a state is a mapping from variables to their values.

Moszkowski then introduced a programming language called TEMPURA based on

ITL [Mos86]. TEMPURA provides an executable framework for developing and

experimenting with suitable ITL specifications. Some recent work on system

specification and simulation based on ITL and Tempura can be found in [CaZ97,

ZCMOO,etc].

For the same purpose, Barringer, Fisher et al developed a temporal programming

language, called METATEM, which shares the most advantages with TEMPURA

[BFG89]. The temporal logic employed in METATEM can be seen as classical logic

extended with various modalities representing temporal aspects of logical formulae.

As stated by Fisher and Owens, "The difference between TEMPURA and METATEM

is analogous to the difference between PASCAL and PROLOG: the former represents

a lower-level approach amenable to efficient execution, the latter represents a higher-

level approach more suited to describing symbolic computation." [Fi092]. Although

METATEM has a relatively simple and useful model of computation, it suffers from

several problems. Having investigated these problems, Fisher extended it to

Concurrent METATEM [Fis93], which consists of two distinct aspects: an execution

mechanism for temporal formulae in a particular form (basically the METATEM

execution mechanism); and an operational model that treats single executable
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temporal logic programs as asynchronously executing objects (agents) in a concurrent

object-based system. Each agent executes its own set of temporal formulae and, in

doing so, (effectively) generates an infinite sequence of states. As each agent executes

asynchronously, it constructs a separate execution sequence, while a mechanism is

provided for communication between separate agents. Further work on Concurrent

METATEM and relevant executable modal and temporal logics can be found in

[Fis94, 96, Gab91, 96, KeFOO etc.] Although, TEMPURA and METATEM were

designed particularly for the specification and verification of systems, such as

computer programs, digital circuits and message-passing and reactive systems, it is

interesting to investigate its possible applications to the common-sense reasoning

area.

In this thesis, our main interest is in temporal reasoning about actions/events and

change so we will confine our comments to this more limited, but realistic, sub-area.

The majority of the systems that we have looked at are designed for coping with

action and change problems. Here, at least, we can suggest a number of minimum

requirements. For the temporal representation, it seems essential that both time points

and intervals can be handled. The former are a prerequisite for modelling continuous

change while the latter greatly simplify the representation of duration processes and

events. For the causal expressiveness, the basic issues, such as the frame problem

(persistence), ramification problem and qualification problem etc. must be efficiently

handled. The ability to differentiate between states (situations) and actions (events)

that change them must also be of importance. This distinction is of particular concern

in the application of such formalisms, such as planning, diagnosis etc. The ability to

represent complex relationships between actions/events and their effects is necessary

if realistic problems are to be solved, although most of the existing systems

deliberately choose to treat this relationship as the effects becoming true at the end of

the event and remaining true for some time after the event. For example, when I put a

book on the desk, this has the effect that the book is on the desk for at least a short

period of time after the action is completed.
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The systems surveyed in this chapter are quite popular in the community of temporal

reasoning. However, most of these systems only fulfil some of the above

requirements. The situation calculus, for instance, is a point-based temporal logic. It is

difficult to handle actions with duration in it. On the other hand, interval calculus is

interval-based. It eliminates the possibility of instantaneous events. Table 2.1 shows

the comparison of these systems surveyed in this chapter, where the meanings of the

abbreviations are as follows:

CS: Situation Calculus;

MTL: McDermott's Temporal Logic;

IC: Allen's Interval Calculus;

EC: Event Calculus;

TTC: Shoham's Theory of Time and Causation.

ITC: Allen and Ferguson's Interval Temporal Logic

SC MTL IC EC TTC ITC

Intervals • •

Points • • • •

States • • •

Situations •

Actions • • • •

Events • • • • •

Causation • • • •

Concurrency • • • • •

Delayed Effects • • •

Synchronous Effects •

Table 2.1: Comparison of temporal reasoning systems

In chapters 5 and 6, we will provide a temporal reasoning system that attempts to

overcome some of the drawbacks of the existing systems and try to combine some of

the benefit from them.
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CHAPTER 4

NONMO NOTO NIC REASONING

ABOUT ACTIO N AND C HANGE

An important aspect of common sense reasoning is the ability to reason about actions

and change. For example, imagine a robot responsible for various household chores. It

must be able to infer that if it moves the lamp, the shade and cord move, too. But

when it tries to move the bookcase, with the lamp on top, the cord will come tight,

and the lamp will fall off and break. On the other hand, a napkin, or a piece of paper

on top of the bookcase might flutter off, but probably wouldn't cause any harm. Then

too, the robot must know where to find things, like the vacuum, the carpet, the closet,

or the bookcase. This requires the ability to infer that furniture and appliances stay in

the same place unless someone deliberately modifies them. There are effectively an

infinite number of such reasoning situations that a household robot might come up

against. It is therefore essential to its function that the robot be able to reason about

actions and their effects on the world.

There are three classical problems in reasoning about actions and change: frame

problem, ramification problem and qualification problem. Since these problems were

nominated, they have attracted much interest in the artificial intelligence community

and many solutions to them have been proposed [Haa87, Lif87, LiS95, Rei91, Sch90,

Sho88, Sha95, 97, StM94, Thi96, 97, McT95, KaM97 etc.]. Some of them are based

on monotonic logics, such as explanation closure. However, among them, the most

successful and popular methods arc based on nonmonotonic logics. In this chapter,

our discussion is focused on the nonmonotonic techniques for these problems. We

will introduce what are these problems and briefly discuss about each problem first.

Then we will present examinations of the existing solutions to the frame problem in

detail. For convenience, we employ the situation calculus to represent the problems.
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4.1 Frame Problem

The frame problem was first introduced and named by McCarthy and Hays [McH69].

The difficulty is that of indicating and inferring all those things that do not change

when actions are performed and time passes. For example, when the lamp is moved

from the bookcase to the table, we need to determine that the vacuum cleaner and the

carpet remain stationary, and do not change shape and colour. Formalising this notion

of inertia or persistence has turned out to be a notoriously difficult problem to which

numerous solutions have been proposed. In literature, the most recent and generous

contribution to the frame problem is Shanahan's book, "Solving the Frame Problem: A

Mathematical Investigation of the Common Sense Law of Inertia". In his book,

Shanahan discusses the various approaches to the frame problem. Also in the book's

concluding chapters, he offers his own work on Event Calculus, which Shanahan

claims "comes very close to a complete solution to the frame problem".

The original proposal for the situation calculus [McH69] was to use frame axioms,

which explicitly stated which properties are not changed by the actions. To write

down the frame axioms in the above example, we use Move{u, v, w) to denote the

action of moving object u from v to w, On(x, y) denotes that object x is on object y,

Colour{o, c) denotes that object o has the colour c. For fluent On, we need:

Holds(On(x, y), s) a X* u => Holds(On(x, y), Result{Move(u, v, w), 5))

This axiom says that if x was on y before moving u from v to w (so long as x isn't the

object being moved) and Jt is not equal to u, then x is still on y after performing action

moving v to w. For fluent Colour , we need a similar frame axiom:

Holds(Colour(o, c), s) =>Holds(Colour(o, c), Result(Move(u, v, w), 5)).

Explicit frame axioms have come under criticism, primarily because there are too

many of them, both to write down explicitly and to reason with efficiently. There are

several ways to try to overcome this problem. Haas [Haa87] first introduced a

technique called explanation closure. To explain this technique, consider the fluent
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Holding, and suppose that both Holds(Holding(r, o), s) and -iHolds(Holding(r, o),

Result(a, 5)) are true, where Holding(r, o) states that the robot r holds the object o.

How can we explain the fact that Holding ceases to be true? If we assume that the

only way this can happen is if the robot r put down or dropped the object o, we can

express this with the explanation closure axiom:

Holds(Holding(r, o), s) a -1 Holds(Holding(r, o), Result(a, s))

=>a = PutDown(r ,o ) v a = Drop(r ,o ) .

To see how this functions as a frame axiom, rewrite it in the logically equivalent

form:

Holds{Holding{r, o), s) a a* PutDown(r , o) v a * Drop(r, o)

=>Holds (Hold ing(r ,o ) , Resu l t (a ,5 ) )

This says that all actions other than PutDown(r, o) and Drop(r, o) leave fluent

Holding invariant, which is the standard form of a frame axiom.

The explanation closure axioms signifies that if ever a fluent changes its truth value,

then the corresponding alternative actions given provide an exhaustive explanation for

that change. Explanation closure axioms are an effective substitute for frame axioms,

and are much more succinct [Sch90, Rei91]. They form the basis of a whole class of

so-called monotonic solutions to the frame problem.

However, many researchers abandon frame axioms altogether, and have built models

that use persistence or inertia assumptions (e.g., [Lif87, Sho88]). These approaches

assume that all changes caused by an action are specified, and every property not

asserted to change does not change. This technique has a significant advantage, i.e. it

eliminates the need to enumerate frame axioms. Other approaches work instead by

minimizing event or action occurrences. Properties are assumed to change only as a

result of events defined in the representation, and logically unnecessary events do not

occur (e.g., [M0S88, StM94, GoG96 etc.]).
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In Shanahan's book [Sha97], he suggests three criteria that a satisfactory solution to

the frame problem should meet.

• Representational parsimony

• Expressive flexibility

• Elaboration tolerance

*

Shanahan claims that the explanation closure technique meets the criterion of

representation parsimony. However, it does not meet the other two criteria very well.

For the criterion of expressive flexibility, the difficulty is to handle some more

complicated domains that may have features like ramifications, concurrent actions,

continuous change etc. For the criterion of elaboration tolerance, the drawback of this

technique is that the acquisition of new knowledge about the domain necessitates the

complete reconstruction of the domain theory. This made researchers move to

nonmonotonic logics. In section 4.4, some popular nonmonotonic techniques for the

frame problem will be examined. Also in chapter 6, the conventional circumscriptive

technique is going to be revised for dealing with the frame problem within the

proposed formalism.

4.2 Ramification problem

The second problem is the ramification problem (named by Finger [Fin87]), which is

to specify everything that changes. The essence of this problem for reasoning about

actions and change has been described by Ginsberg and Smith as follows: "The

difficulty is that it is unreasonable to explicitly record all of the consequences of

actions. For example, if we move the bookcase, all of the books inside move along

with it. Also the papers and doilies on top move. For any given action there are

essentially an infinite number of possible consequences that might occur, depending

upon the details of the situation in which the action occurs." [GiS87a]

The frame problem is largely a representational problem: the idea is to predict that

properties remain the same. In the case of predicting that things change as actions

occur, however, there is no objection to causal axioms stating that an action causes a

,$
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particular effect to take place. In addition, there is a computational problem: figuring

out everything that has changed when an action is performed can be a very time-

consuming task. This is specially true if the world is very interconnected or if there

are causal chains. For example, if John carries his briefcase into his office, then

everything in the briefcase will also be in his office. So the result of the carrying

action is not only that John and his briefcase are currently in his office, but also that

his pens, his blue pad, the draft paper that he is writing up are in his office. The

problem of how to represent all consequences of an action is known as the

ramification problem [Fin87].

Early systems such as STRIPS completely ignored ramification considerations, but it

quickly became clear that as soon as toy domains, such as STRIP 's block worlds,

were replaced by more realistic ones the ramification problem needed to be tackled.

Ginsberg and Smith [GiS87a] proposed that, rather than attempting to write causal

axioms in such a way as to capture most of the potential effects of an action, only the

immediate, forseeable result should be represented in this way. Any indirect effects

should be expressed in terms of domain constraints.

Along with the study of the frame problem, its dual problem, the ramification problem

is unavoidable. A number of solutions have been proposed [e.g. LiR94, KaL94,

San95, 96, Thi97, McT95, KaM97, Sha97 etc.]. As mentioned by Sandewall [San96],

most solutions require causal laws to specify the most significant effects of the action,

and to rely on domain constraints for specifying additional changes that are due to the

action. However, the use of domain constraints alone is not sufficient. Two methods

have been taken in order to overcome the drawbacks of the approaches that rely on

domain constraints too much. One is minimisation based, the other is causation

oriented. Minimisation based approaches assume that the total set of those changes in

fluents that result from the action, consists of the changes that are explicitly stated in

the causal law, and a minimal set of other changes while satisfying the domain

constraints. Causation oriented approaches require instead that some information is

available about how changes in one fluent may "cause" changes in another fluent, and

accept those models which satisfy causal laws and domain constraints, where only

correctly "caused" changes are present. In chapter 7, the application of the formalism
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proposed in this dissertation to the ramification problem will be demonstrated.

4.3 Qualification Problem

The third problem in reasoning about actions and change is the so-called qualification

problem, also named by McCarthy [McC77], It differs from the frame problem and

the ramification problem as it is about the qualifications of the performance of actions,

rather than change itself. In fact, it has the distinction of being the only one of the

three classical problems that has meaning outside the temporal domain. Put simply, it

states that any action has a number of preconditions that must be satisfied if it is to

succeed. The problem is that the number of such preconditions for each action is

immense. Imagine all of the things that could prevent the robot from moving the

bookcase: it could be too heavy with all of the books in it, it could be too fragile to

survive the move, it could be fastened to the floor, the floor where we might want to

put it might be too weak to hold it, the door might be too small, or the house might

catch on fire. Computationally, we cannot afford to check all of these unlikely

possibilities explicitly.

As described by Ginsberg and Smith [GiS87b], the qualification problem consists of

three distinct difficulties:

1. The language or ontology may not be adequate for expressing all possible

qualifications on the action,

2. It may be infeasible to write down all of the qualifications for an action even if

the ontology is adequate, and

3. It may be computationally intractable to check all the qualifications for every

action that is considered.

These issues prompted many researchers, i.e. McCarthy [McC80] and Reiter [Rei80]

to develop nonmonotonic logics that would allow one to ignore most qualifications

unless they could be shown to actually be relevant to a particular application of an
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action. This technique has been widely adopted and extended to cope with the

qualification problem and seems to solve this problem adequately [e.g. GiS87b,

Sho88, San94, Lif94, Elk95, Tri97b etc.].

The qualification problem is easily muddled up with the frame problem itself since,

like the frame problem, it concerns the effects of actions, and default reasoning

techniques seem to be needed to overcome it [Sha97]. The essence of the qualification

problem is: How can we be sure that all the preconditions that we have built into our

causal axioms are all the preconditions there are in the world one wants to model?

In chapter 6, we will briefly show how to express the preconditions of actions/events,

and therefore, to use the nonmonotonic reasoning technique such as circumscription to

formalise the assumption that the known preconditions of each action are the only

preconditions. Since the qualification problem has little to do with the temporal

domain, we are not going to discuss it further in details in this dissertation.

4.4 Nonmonotonic reasoning

As it is known, the frame problem is a crucial problem in reasoning about actions and

change [Sha97]. Techniques for the solutions to the frame problem can be revised for

dealing with the other two relative problems, ramification and qualification problems.

Additionally, in section 4.1, we have already mentioned that to meet the three criteria

for a satisfactory solution to the frame problem set by Shanahan, nonmonotonic

reasoning appears to be the best candidate. In this section, I look more closely at this

subject. The discussion starts by describing what we mean by nonmonotonic

reasoning in more precise terms. To do that, let us introduce a definition of

monotonicity first. Consider the relationship between sets (not conjunctions) of

sentences F and the sentences <|)that follow from F in a logical system. If (j)follows

from T according to that system, we will write F |= (J).A logical system is monotonic if

for any two sets of formulae T, and T2 where T2 z) r, and any formula (j),Fl |= (j)

implies T2 |= (J).A logic is termed nonmonotonic if it does not obey the principle of

monotonicity.
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Nonmonotonic reasoning first gained serious attention in 1980 when Iwo of Ihe most

influential formalisms were introduced in a special edition of Artificial Intelligence

Journal. McCarthy's circumscription [McC8()| and Reiter's default logic |Rei8Q] both

provide a way of overcoming the qualification problem by extending first order logic.

Circumscription works by minimizing the extent of qualifications - allowing one to

ignore qualifications unless they were actually relevant. Default logic provides a

nonmonotonic inference procedure based on a special kind of meta-rule. Both systems

proved extremely popular until Hanks and McDcrmott demonstrated that they were

unable to solve a relatively simple example of the frame problem: Ihe so called Yale

Shooting Problem [HaM87]. This startling result proved to be the death knell of

default logic as a vehicle for reasoning about actions and change. However, after Ihe

publication of the Yale Shooting Problem, a number of extensions of circumscription

have been proposed that seek to solve the frame problem and the ramification problem

and have been proved to gain a great success. For this reason we will start by

providing a thorough description of circumscription and then go to the extended

variants.

4.4.1 Circumscription

Circumscription is a form of nonmonotonic reasoning, introduced by McCarthy

[McC77] as a way of characterizing defaults using second order logic. It is the first

application of the idea of relative likelihood, or preference between models, to

nonmonotonic reasoning. In [McC77|, McCarthy recognized that a natural way of

representing defaults was to order states of the world, according to what we thought

was the case, and then to choose the sentences true in the minimal models in this order

as our current beliefs. In fact, circumscription refers to a group of broadly similar

systems (domain, predicate, formula, pointwise and prioritized circumscription) all of

which make use of a circumscription policy. Circumscription allows us to infer that

unless something is explicitly known to be the case (or must follow from what is

known) then we may effectively ignore it by assuming it to be false. In what follows,

we introduce the basic concept of circumscription first and then discuss some of its

extensions.
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Intuitively, as its name suggests, the basic idea of circumscription is to limit the set of

objects of which a predicate is true. Such a process is termed minimising the predicate.

Circumscribing a predicate in a sentence means assuming that the extent of the

predicate is as small as possible.

Before giving the formal definition of circumscription, let's explain the following

notion first: for any predicate symbols P, Q of the same arity, let P = Q stand for

Vx(P(x) <=>Q(x)) and P<Q stand for Vx(P(x) => Q(x)). Let Z stand for the tuple Z,,

Z 2,..., Zm of object, function, and/or predicate constants.

Definition 4.1 Let A(P, Z) be a sentence containing Z and a predicate constant P. The

circumscription of P in A with Z varied, denoted by CIRC(A; P; Z), is the sentence

A(P, Z) a —i3p,z(A(p, z) a p < P)

Here p is a predicate variable of the same arity as P, z stands for an m-tuple of

variables which matches the m-tuple Z in arity and type, and p < P stands for (p < P) a

-.(p = P). The object, function and predicate constants that are not included in Z and

are different from P are said to be fixed in CIRC(A; P; Z). This abbreviates a formula

in second order logic that selects those models of A in which the extension of the

predicate P is minimal with Z varied (in the set inclusion sense).

Generally we can extend this definition to one which allows P be a tuple of predicates.

These predicates can be circumscribed "in parallel" or assigned different "priorities".

The exact choice of which predicates are minimised in a circumscription, the order in

which they are minimised, and which predicates are allowed to vary, is called the

circumscription policy.

To see how this technique works, let's look at the following example:

Consider a variation of the Blocks World in which there are more than two blocks.

Each block can be somewhere on the table or on top of exactly one other block. Each

block can have at most one other block immediately on top of it. To express the
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information about the world, we introduce three unary predicate constants: Block,

Ontable and Ab. Block(x ) means that object jc is a block. Ontable(x) means that object

jt is on table. If x is a block, Ab(x) means that block jc is an abnormal block with

respect to the normal block. Normally we have that a block is on table. That says we

call a block a normal block if it is on table. We would like to represent information

about the locations in the blocks world, using the standard default rule:

(Blockl) Block(x) a -i Ab(x) =>Ontable{x)

Then information about the location of a specific block will have to be included in the

database only if that block is an exception to this default. For instance, block B, is one

of such blocks. We have

(Block2) -i Ontable(B,)

If B: is another block, in addition, we may use the fact that B, and B2 are two different

blocks,

(Block3) Block(B,) a Block(B 2) a B,* B2

then we expect that a general logical mechanism of default reasoning will allow us to

conclude:

(Block4) Ontable(B 2)

This conclusion can not be achieved by classical logic, as (Block4) is not a logical

consequence of the axioms (Blockl)-(Block3). However, the formal definition of

circumscription gives the conclusion we expect.

Proposition 4.1 [Lif94] Let Z be the conjunction E, a S, a Z3, where

L, = Block(x) a -i Ab(x) =>Ontable(x),
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S2 = -i Ontable(B,),

Z3 = Block(B,) a Block(B 2) a B, * B2,

then

CIRC(Z; Ab\ Ontable) \=Ab(x) o x = B,.

Circumscription can also be presented using model theory. Many people find the

model theoretic version easier to understand than the second order presentation. It is

certainly sometimes easier to prove properties of a circumscription by appealing to the

model theory. What exactly are we doing when we circumscribe a predicate? It seems

that we are limiting the ways in which we complete a theory by using a set of

preference criteria to select models that close the world with respect to that predicate.

This process is known as minimization and we say that the circumscribed predicate is

minimal in extent. McCarthy gives a formal definition of these preference criteria and

the version below is an adaptation of Shanahan's reworking of these preference

criteria [Sha97].

Definition 4.2 Let M, and M2 be interpretations of a theory. M, is as small as M2 with

respect to a predicate p allowing a tuple a of predicate, function, and constant

symbols to vary , written as M, cp;CT M2, if

• M, and M2 agree on the interpretation of everything except possibly p and/or zero

or some members of CT, and

• The extension of p in M, is a subset of its extension in M2.

Definition 4.3 A model M, of a theory E is minimal with respect to cip; c if there is no

models M2 of S such that M2 c=p;c M, and not M, cp;CT M2.

Two features of this preference relation among models are worth noting:

• The comparison between models is based on set inclusion, and not on set

cardinality. Although they may agree on the interpretation of everything except p
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and/or zero or some members of a, and the extension of p may have fewer

members in M, than in M2, it is not necessarily the case that M, c:p. a M2 (not a

subset).

• As a consequence of this, it is not always the case that two models are comparable.

In other words, it is possible neither to have M, c p; 0 M2 nor to have M, c p; B M,.

Definition 4.4 Let M, and M2 be interpretations of a theory. M, is preferable to M2

with respect to a circumscription policy if M, is as small as M2 but M2 is not as small

as M, with respect to that policy.

Probably the most attractive feature of the circumscriptive approach is that it proceeds

simply by adjoining the sentence: A(P, Z) a -iBp, z(A(p, z) a p < P) in definition 4.1

to the original theory. No fixed-point equations need to be solved, as in the

consistency-based approaches (such as default logic, autoepistemic logic and model

approaches). This tends to make the semantics of this approach cleaner than that of

others.

The other feature we want to mention is, to deal with the default rules we have to face

the question: how are we going to capture formally the notion that one default rule

may be more important than another? For instance, there may be two conflicting

default rules. To address this issue, McCarthy [McC80] introduces a notion of

prioritized circumscription. This idea is generalised by Lifschitz in his work on

pointwise circumscription [Lif87], and further by Baker [Bak91] and Shanahan

[Sha97] on state-based circumscription.

To summarise the discussion of circumscription, as many researchers point out,

circumscription is a simple and natural extension of classical logic. It makes a clear

separation between the classical aspects of a representation - those facts that are

known to be true, and from which we can draw deductively valid inferences - and the

nonmonotonic aspects - default assumptions whose consequences we would be

willing to give up in the face of contradicting evidence [Sha97]. However, there are

still some unsolved problems of this approach. The complexity of circumscription is

one of them. It has resulted in a certain reluctance on the behalf of researchers to use it
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with working AI applications. Various application areas have been suggested but none

has resulted in a real program. Of course, none of these proposed applications will

amount to much in the absence of an effectively implemented nonmonotonic

reasoning system. The difficulty in developing such an implementation is that none of

the formal descriptions provides a constructive definition of a valid nonmonotonic

derivation. The consistency-based approaches require solving a particular fixed-point

equation; there are no known general-purpose techniques for solving such kind of

equation. Circumscription, meanwhile, uses a second-order axiom; once again, there

are no complete proof procedures for second-order theories. Any success on these

areas may lead to significant progress.

4.4.2 The Yale Shooting Problem

The crucial part of the application of circumscription is to select the circumscrition

policy. Consider the standard common-sense law of inertia in situation calculus:

(CLI) -iAb(f, a, s) =>Holds{f, 5) <=>Holds(j.\ Results(a, s)).

This says that the value of a fluent persists from one situation to the next situation

unless something is abnormal. The policy of minimising Ab while allowing Holds to

vary is an obvious one, and it seems as if it should solve the frame problem. In 1986,

however, Hanks and McDermott showed that this policy fails to generate the

conclusions we expect even with extremely straightforward examples. They distilled

the essence of the difficulty into a single, simple example, the now famous Yale

Shooting Problem.

This Yale Shooting Problem was discovered when Hanks and McDermott attempted

to integrate temporal and nonmonotonic logics. It can be described as follows: We are

told that a gun is loaded at the original situation, and that the gun is fired at Fred after

waiting for a while. Firing a loaded gun at an individual causes the person to be dead.

In addition, the fluents Alive and Loaded persist as long as possible; that is, these

fluents stay true unless an action that is abnormal with respect to these fluents occurs.

Thus, a person who is alive tends to remain alive, and a gun that is loaded tends to
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remain loaded. What can we conclude about Fred's status after firing action occurs?

Assume that the original situation is S0. We can ask the following question: Is

Holds(Alive, Result(Shoot, Result{Wait, S0)))

true?

Although common sense argues that Fred is dead after shooting because we have the

knowledge that the gun is loaded at the original situation and there is nothing to tell it

is unloaded somewhere, the facts support two models. In one model (the expected

model), the fluent Loaded persists as long as possible. Therefore, the gun remains

loaded until it is fired at Fred, and Fred dies. In this model, action Shoot is abnormal

with respect to fluent Alive. In the other model (unexpected model), the fluent Alive

persists as long as possible, i.e., Fred is alive after shooting. Hence, the fluent Loaded

did not persist: somehow the gun must be unloaded by Wait action. In this case, action

Wait is abnormal with respect to fluent Loaded. Each model includes one

abnormality. It is as if we have traded one abnormality for another, and both models

are minimal with respect to the extension of predicate Ab.

Here, the existence of multiple minimal extensions is a genuine problem. If, given the

simple set of assumptions above, one cannot even conclude that the gun stays loaded

and Fred is dead after shooting, in what sense can we say that the circumscription with

the policy of minimising Ab while allowing Holds to vary has solved the frame

problem? Hanks and McDermott in fact argued that the existence of the Yale

Shooting Problem underscored the inadequacy for reasoning in temporal domains.

This discovery revolutionized the area of reasoning about actions and change. People

began to design systems specifically for the temporal domain, either by extending

circumscription to take into account temporal considerations or by proposing entirely

new nonmonotonic reasoning formalisms. The resulting work mainly fell into three

categories: systems based on chronological minimisation, systems based on causal

minimisation and systems based on state-based minimisation. (The third category,

state-based minimisation is named by Shanahan [Sha97]). In the remainder of this

chapter we will examine the most important issues of these systems.



Chapter 4 Nonmonotonic Reasoning about Action and Change 75

4.4.3 Chronological minimisation

Hanks and McDermott [HaM86, 87] argue that the problem with general

nonmonotonic logics is their failure to incorporate the notion of time. In particular,

they claim that time creates an explicit ordering, and temporal reasoning is inherently

biased towards that ordering. That is the main reason for the failure. To see this, let's

look at the Yale Shooting Problem, the expected model arises when we reason about

world states in temporal order: Alive and Loaded holds at the beginning S0, so they

will (by default) hold after waiting action. This means that after waiting for a while,

Loaded still holds, when the gun is fired, Alive does not hold any more. That is

-iHolds(Alive, Result(Shoot, Result(Wait, S0))).

In contrast, the unexpected model arises when we apply persistence to Alive:

Holds(Alive, Result(Wait, S0)) a Holds(Alive, Result{Shoot, Result(Wait, S0)))

before we have reached any conclusion about Loaded after waiting action. This

persistence to Alive force us to reason backwards about Loaded. It must be the case

that:

-nHolds(Loaded, Result(Wait, S0)).

The first solutions to this problem work by imposing a forward-in-time order on

reasoning. They are thus known as the chronological minimisation. Each of these

solutions ~ Hanks and McDermott's program [HaM86], Shoham's logic of

chronological ignorance [Sho86, 87a], Kautz's logic of persistence [Kau86], and

temporal applications of Lifschitz's pointwise circumscription [Lif86] « describes a

reasoning system with an inherent forward temporal bias. Each works by considering

world states in their chronological order, extending as much persistence as possible

through earlier world states before addressing later world states. This approach gives a

particular preference over sequences of world states: we prefer that as little happens
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for as long as possible. In the Yale shooting case, in the initial situation, Sn:

Holds(Alive, S0) a Holds(Loaded, S0).

By default, Alive and Loaded persist after waiting action since they are not forced to

change:

Holds(Alive, Result{Wait, Sn)) a Holds(Loaded, Result{Wait, Sn)).

Then by the causal law that "Firing a loaded gun at an individual causes the person to

be dead" and the fact that the gun is loaded, we reach the expected conclusion:

—tHolds^Alive, Result(Shoot, Result{Wait, Sn)j).

The main idea of this approach is to postpone changes until they are forced; or to

allow persistence to continue for as long as possible. This avoids the unexpected

model that arises for the standard nonmonotonic logics.

The three chronological logical approaches [Sho86, Kau86, Lif86] essentially mimic

the behaviour of Hanks and McDermott's program. Kautz and Lifschitz use

circumscription to fix state values in one world's state before considering the next;

Shoham defines a model preference criteria with the same properties. This approach

prefers sequences of world states that minimise changes to the world; persistences

apply whenever possible. As summarized by Bell [Bel89], chronological minimisation

captures two principles of reasoning about change:

(1) All change is rule governed: nothing changes unless it is caused to. To allow

otherwise is to allow miracles, and allowing miracles involves a more complex

form of reasoning.

(2) The causal relation is temporally directed; that is, when reasoning causally we

reason forwards in that time from cause to effect.

Problems with Chronological Minimisation For several reasons, forward reasoning

solutions are not entirely satisfactory. The most obvious one is that causation is not
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merely time-moving-forward. The applicability of this kind of solutions seems to be

limited to what Hanks and MeDermott call temporal projection problems, or in other

words, problems in which given initial conditions, we are asked to predict what will

be the case at a later time. One can also consider temporal explanation problems

[HaM87], i.e., problems requiring reasoning backwards in time.

For example, consider the Stolen Car Scenario, which is best thought as an

explanation problem. Suppose that John parks his car in the morning and goes to

work. According to his knowledge at lunch time, common sense should allow him to

infer by default that the car is still there where he left it. However, when John returns

to the car park in the evening he finds that it has gone. Its disappearance requires an

explanation. That is, we have to reason backwards in time to the possible causes of the

car's disappearance. In this case, the only reasonable explanation for the car's

disappearance is that it was stolen some time between morning and evening. The car

may have been stolen any time after John parked it and before John observed that it

was gone, so he can not say anything about its whereabouts at lunch time.

Kautz first noted this point when he presented his solution to the YSP [Kau86], As he

observed, the trouble with chronological minimisation is that, since it postpones

change until as late as possible, it will yield the conclusion that the car was stolen

immediately before John's return to the car park in the evening. This conclusion is

clearly too strong. It may have been stolen at lunch time or just after John parked it.

In addition, other shortcomings of chronological minimisation in its original form

have been addressed by Sandewall [San93, 94]. Sandewall introduces two significant

innovations: filtered preferential entailment and occlusion. He employs a narrative-

based temporal logic rather than the situation calculus and event calculus. However,

as Shanahan [Sha97] points out, variants of these two ideas are applicable to both

situation calculus and event calculus. In chapter 6, we will show how to apply those

ideas to our formalism for dealing with the explanation problem.

4.4.4 Causal Minimisation
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Unlike chronological minimisation, causal minimisation approaches [Hau87, Lif87]

are not concerned with the time at which things change, but with the reason why the

changes occur. Rather, they employ a predicate, Causes to avoid the temporal

projection problem by circumscribing Causes. Circumscribing Causes means that we

prefer sequences of world states in which actions have fewer effects. In causal

minimisation, every change has to be caused by actions, and all changes that can not

be explained in terms of the effects of known actions are minimised.

As in Yale Shooting Problem, one can observe that in the anomalous model there is a

change that is not caused by any action. The gun becomes unloaded spontaneously,

for no reason. This observation motivated the causal minimisation. Consider the YSP

as an example, in the initial situation, S0, we have the fact:

Holds{Alive, S0) a Holds(Loaded, S0),

and a causal axiom:

Causes(Shoot, Alive, False).

This axiom says that the execution of action Shoot will cause the fluent Alive having

truth value False. There are no explicit causal consequences for action Wait. The

circumscription policy is circumscribing Causes while allowing Holds to vary.

Circumscribing Causes now yields no implicit causal consequences for action Wait,

so we can say that nothing changes during the Wait action. Thus, Loaded persists:

Holds(Loaded, Result( Wait, S0))

and therefore

-iHolds(Alive, Result(Shoot, Result{Wait, S(l))).

N.B. In Lifschitz's Formal Theories of Action [Lif87], there is a predicate, Precond,

which tells when an action can be successful. This predicate can be used to deal with
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the qualification problem.

Involving a new way of writing effect axioms: using predicate Causes instead of Ab,

causal minimisation represents causality explicitly by stating that a fluent changes its

truth value if and only if a successful action causes it to do so. This leads to the

expected conclusion.

But what lies behind the success of the causal minimisation? In the anomalous model

arising with the naive approach, the gun becomes unloaded during the Wait action. In

other words, we have Ab(Wait, Loaded, Result(Loaded, S0)). In terms of causal

predicates, an anomalous model would have to have Causes{Wait, Loaded, False). In

the naive approach, the presence of the Wait abnormality avoids the need for Shoot to

be abnormal with respect to Alive when a shooting takes place after a waiting.

Naturally, circumscription will prefer models in which Ab(Wait, Loaded,

Result(Loaded, S0)) is absent. Hence we may have the anomalous model, i.e., we are

not able to deduce the intuitive conclusion that Fred dies.

However, with causal minimisation, this trading of abnormalities is not possible. The

formula Causes(Shoot, Alive, False) is an axiom. We can't get rid of it from our

models, whatever else we add. This is an important idea of causal minimisation,

called the principle of separation by Shanahan [Sha97]. It is a key to causal

minimisation. Causal minimisation differs from the chronological minimisation in

two major ways: (a) there is an explicit attempt to make sure that causal minimisation

works for both forward and backward reasoning, and (b) there is an explicit attempt to

base the solutions to the Yale Shooting Problem on a strong intuition about temporal

reasoning.

Problems with Causal Minimisation Causal minimisation is a very simple but

effective way of handling the Yale Shooting Problem. However, there are some

weaknesses with this approach. Firstly, it does not allow us to write our domain

axioms in unrestricted situation calculus. Instead, we must use the Causes predicate.

There is simply no way to use this predicate to express general context-dependent

effects, domain constraints, or ramifications [Bak91]. In particular, it is difficult to
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represent actions with context-dependent effects, that is, actions whose effects

dependent on the fluents that hold at the time the action is performed. For example, if

I toggle a light switch, the light comes on if it is off at the time, but goes off if it is on.

This knowledge can be expressed using the following axioms:

-iHolds(On, s) =>Holds(On, Results(Toggle, s))

Holds(On, s) =>—iHolds(On, Results(Toggle, s))

The difficulty for causal minimisation to express such knowledge is that no

corresponding set of Causes sentences is possible.

Secondly, it does not allow concurrent actions and uncertain actions. These

constraints limit the expressive power of the approach. Finally, like chronological

minimisation, it has trouble with the explanation problem. For example, in the stolen

car scenario, since the Causal predicate is independent of time, and every change

should have a causation, the causal minimisation will lead to an unintuitive

consequence. That is a Wait action always makes fluent Stolen hold, whatever the

circumstances. Even if I recover my car, next time when 1 perform a Wait action, the

car will be stolen again.

Motivated Action Theory (MAT) Stein and Morgenstern [StM94] present a more

advanced causal minimisation system, which is partially motivated by the

examination of the deficiencies of Haugh and Lifschitz' formalisms. As Stein and

Morgenstern point out in their paper, "from the chronological approaches, and from

Haugh's causal minimisation, we adapt the idea of minimising actions; from the

causal approaches, we borrow the idea of minimising causes." Unlike most previous

solutions to the Yale Shooting Problem, MAT is not based on the situation calculus.

Instead it is based on a simple, interval-based theory of time. In MAT, concurrent

actions and uncertain actions are allowed.

Motivated Action Theory is based on the principle that an agent typically knows all

that he needs to know in order to make predictions about the world in which he lives.
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In particular, if he is reasoning with an underconstrained set of facts about the world,

he will tend to prefer models that have fewer unexpected, unmotivated actions.

A description of a problem scenario in MAT is termed as a theory instantiation,

consisting of a theory T and a (partial) chronical description CD. Intuitively, T gives

the rules governing the world's behaviour and contains causal rules and persistence

rules. Causal rules describe how actions change the world; persistence rules describe

how fluents remain the same over time. CD describes some of the facts that are true

and the actions that occur during a particular interval of time.

Central to MAT is the concept of motivation. Intuitively, an action is motivated with

respect to a theory instantiation if there is a "reason" for it to happen. The most

important types of motivation are strong and weak motivations. An action is strongly

motivated if it "has to happen" in all the models (i.e., it is a theorem that the action

happens). An action is weakly motivated if it "has to happen" with respect to a

particular model (i.e., if it must occur given the particular way the model is set up).

The notion of weakly motivated can be used to treat uncertain actions.

To deal with the frame problem, Stein and Morgenstern develop a model theoretic

preference relation that is in a similar manner to Shoham's preference relation. The

preference relation is based on the idea of motivated actions. Given a theory

instantiation 77 = T v CD, a statement (J)is said to be strongly motivated in M(77), a

model for a theory 77, if it is present in all models of 77 . A statement § is said to be

weakly motivated in M(77) if there exists a causal or persistence rule of the form a a

(3=> (J),where a is motivated in M(TI) and M{TI) |= (3.A model M{TI) is preferred to a

model M\TI) if any action that occurs in M '(77) is motivated in M(TI). In other

words, MAT prefers models in which as few unmotivated actions as possible occur.

Let's use the Yale Shooting Problem to show how this preference relation works.

Here we simply use integers 1, 2, 3, ..., as the time index. The scenario can be

described as follows:

chronicle description, CD:
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Holds(Alive, 1)

Holds(Loaded, 1)

Occurs(Shoot, 3)

causal rules and persistence rules, T:

Occurs(Shoot, t ) a Holds(Loaded, t) =>-iHolds(Alive, /+1)

Holds(Alive, t) a ((-iOccurs(Shoot, t) v -iHolds(Loaded, t))

Holds(Alive, f+1)

In the expected model, Loaded persists from time 1 to time 3 and Fred dies at time 4:

—\Holds(Alive, 4).

In the unexpected model, Alive persists from time 1 to time 4, that is:

Holds(Alive, 4).

In the first model, every change is motivated. There are no unmotivated actions. In the

second model, fluent Loaded changes its truth value from time 1 to time 3. This

change is unmotivated. That means there must be an unmotivated action occurring

between time 1 and time 3. Then by minimising unmotivated actions, MAT prefers

the first model over the second one.

Unlike many other causal (and all chronological) minimisation based systems, MAT

is capable of handling explanation problems. As we mentioned above, Haugh and

Lifschitz's causal minimisation failed to solve the stolen car problem, since the Causal

predicate in their formalism is independent of time. The causal rules in MAT do

depend on time, so it can solve the stolen car problem correctly. In fact, the stolen car

scenario can be described as:
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chronical description, CD:

—iHolds(Stolen, 1)

Holds(Stolen, 4).

There are no causal rules. At time 4, the car is observed to have disappeared. What has

happened then? We prefer sequences in which the thieves steal the car to sequences in

which the car disappears without explanation. That means some action must happen at

time 2, or 3 which causes the car to be stolen:

Occurs(Steal, 2) v Occurs(Steal , 3).

MAT tell us nothing more than this. In fact, there are two models that satisfy MAT,

one in which the Steal occurs at time 2, and the other in which the Steal occurs at time

3. Intuitively, there does not seem to be a reason to prefer one of these two models to

the other, since we have not had any information when the car is stolen. Steal is not a

motivated action. However, it does not violate the MAT's minimising policy: as few

unmotivated actions as possible occur.

Problems with MAT MAT has many advantages over Haugh and Lifschitz'

formalisms. It allows for forward and backward temporal reasoning, supports a

flexible temporal ontology. However, there are significant problems with this

formalism. The persistence rules are essentially frame axioms. Although Stein and

Morgenstern have suggested that there may be some way of automatically generating

these, they do not provide a practical method of doing this. In fact, Sandewall [San92]

casts doubt on the existence of an automated persistence rule generating procedure.

4.4.5 State-based minimisation

As Hanks and McDermott pointed out in [HaM86], the original circumscription

policy of minimising predicate Ab while allowing predicate Holds to vary fails to deal

with the projection problem. They propose the Yale Shooting Problem, which

motivates the following chronological and causal minimisations. Later on, Baker

reasoned that as all attempts to use chronological or causal minimisation had

produced systems that were flawed to a greater or lesser extent, the obvious course to
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take was to try an entirely different approach. In 1989, Baker described a formalism

that implemented this philosophy. Like many other systems, Baker used the situation

calculus as the representation language but he did not make use of causal predicates.

Unlike chronological minimization, it does not require a new default reasoning

formalism. Unlike causal minimization, it does not involve a new way of writing

effect axioms. Instead, Baker's approach simply requires the adoption of a few extra

axioms, and a slight modification of the original circumscription policy.

Baker's approach has two key components. First, he changed the circumscription

policy. Instead of varying the Holds predicate, the Result function is allowed to vary.

Second, an axiom is added that guarantees the existence of a situation for every

possible combination of fluents. Let's use the Yale shooting scenario to see how

Baker's approach works.

As stated in section 4.4.2, in the anomalous (unexpected) model of the Yale shooting

scenario, one abnormality is traded for another. At the cost of gaining the abnormality

Ab(Loaded, Wait, S0), we have managed to shed the abnormality Ab(Alive, Shoot,

Result{Wait, S0)). This trade is possible because in the anomalous model Result{Wait,

S0) does not denote a situation in which Alive and Loaded hold. However,

Result{Wait, S0) does denote a situation in which Alive and Loaded hold, and indeed

every model that is a minimal model with respect to the new circumscription policy

satisfies Ab(Alive, Shoot, Result{Wait, S0)).

To guarantee the presence of every possible combination of fluents in every model,

Baker introduces an important axiom, the existence-of-situations axiom. In the Yale

shooting case, the existence-of-situations axiom can be expressed as the following:

3s(Holds(Alive, 5) a Holds(Loaded, s)) a

3s(Holds(Alive, s) a -iHolds(Loaded, s)) a

3s(-iHolds(Alive, 5) a Holds(Loaded, s)) a

3s( -nHolds (Al ive ,s ) a -1Holds (Loaded ,s ) )

This axiom is crucial to Baker's approach. However, it seems not easy to write this

dj i-fcvjf L-—
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kind of axiom if a domain comprises a large number of fluents. Fortunately, Baker

provides a means of automatically producing these axioms.

In addition, to get rid of all anomalous models, another axiom called domain closure

axiom is needed. In this case, it is

/= Alive v/= Loaded.

That means the only fluents in the Yale shooting scenario are Alive and Loaded , and

there can't be any mysterious nameless fluents to bother us. So the existence-of

situations covers all possible cases.

Therefore, the new circumscription policy, together with the two extra axioms,

provides a proper solution to the Yale Shooting Problem. Baker also shows that this

simple modified approach is enough to solve the temporal projection problem and a

number of other troublesome examples. By introducing some simple constraints, it

can be applied to wide range of different problems, including those involving

ramifications and certain explanation problems.

Baker's approach has proved to be the most effective to date as it solves a much wider

variety of action and change problems than other formalisms. As mentioned above,

one of the key components of this approach is to modify the original circumscription

policy and reserve the most features of circumscription. This gives us opportunities to

extend further. Recently, Shanahan and Miller [MiS94, Sha95, Sha97] extend this

approach to more general cases, and make it more expressive. In what follows, we

will adopt Shanahan's notion, call this approach the state-based minimisation.

The state-based minimisation is so successful that the only valid criticism that can be

applied to it is that, like many other formalisms, it is based on circumscription and

seems unlikely to be used as the basis for an implementation.
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CHAPTER 5

TIME STRUCTURE

The notion of time is ubiquitous in most activities that require intelligence. Firstly, these

activities mostly concern the real world, which is a dynamic world. The facts and

phenomena that happen in it occur over time. Secondly, the human perception and

understanding of the real world deeply incorporate the concept of time. Everything

appears related by its temporal reference. Usually, event occurrences are temporally

related ('during 1998', 'in May of 1989', 'on the day of 22 April, 1997 ', ...). Things

remain in a certain state for a while until a certain event happens. Time seems to be a

fundamental entity with which the rest of the objects in the world are related, and

therefore appears to play the role of a common universal reference.

In particular, time is fundamental for reasoning about change and action. The existence

of time allows one to describe change and the characteristics of its occurrence (shape,

interaction with other occurrences, etc.). The temporal reference is an idea deeply

integrated in human commonsense. It is notable how naturally and efficiently humans

are able to manage this during everyday life when interacting with the environment.

A representation structure of time must choose the primitive temporal entities that it

will use. Structures based on points are more widespread because they unconsciously

introduce an association with numerical structures: integers, rationals or reals.

However, a representation based on point entities takes into account the concept o(

duration with difficulty. Structures based on intervals avoid this difficulty. But they

have some other limitations. As Galton shows in his critical examination of Allen's

interval logic [Gal90], the theory of time based on intervals is not adequate, as it

stands, for reasoning correctly about continuous change. Hence for the purpose of

reasoning about actions and change, sometimes we may need a special designed time

structure.
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In this thesis, a discrete time structure will be proposed, which can be seen as a special

model of the time theory previously proposed by Ma and Knight in [MaK94], The

theory treats both points and intervals as primitive on an equal footing, and is shown to

be powerful enough to cope with dividing instant problem and intermingling problem,

and deal with knowledge with duration. The fundamental temporal structure we

assume is a simple linear model of time. Although branching time models have been

proposed as a useful means of handling possible worlds, uncertainty about the past or

the future and the effects of alternative actions when planning, it is argued that it is

not necessary to have a theory that assumes that time itself branches. In fact, notions

of possibility can be handled by introducing a separate model operator to represent

possibility explicitly [A1F94, KnM94].

5.1 Prime Times

The fundamental time structure starts with an ordered set P of objects named prime

times. From P to Ro +, the set of non-negative real numbers, there is a function, Dur,

which assigns each prime time a non-negative real number denoting its temporal

duration. If Dur(p) > 0, p is called a (time) moment, otherwise, p is called a (time)

point.

Additionally, we assume that P is similar to Z, the set of integers. In other words,

there exists a one-to-one mapping between the elements of P and Z that preserves the

order relation. Such a mapping is called a similar function [Lip64]. In what follows,

we shall use Meets(p„ p2) to denote that prime time p, is the immediate predecessor of

prime time p2. Also, we impose the following axiom that ensures that two points can't

meet each other:

(5.1.1) Meets(p,, p2) =>Dur{p,) > 0 v Dur(p2)>0

From the property of the similar function , we have:
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• The fundamental time structure is linear , not branching from any time into either

the past or the future;

• The fundamental time structure is unbounded both in the past and future;

It is important to note that prime times have no internal structure. In another words, the

elements of P are all non-decomposable, even though some of them may have positive

duration, i.e. moments [A1H89],

5.2 General Times

The fundamental time structure described above is not adequate enough for general

knowledge representation. For instance, since the prime times have no internal

structure, knowledge like "on 1st of May, 1998, John was working in his office. In the

morning of that day, he was writing a research paper, and in the afternoon, he was

preparing for next day's lecture" cannot be expressed. Therefore, we need to extend

the concept of prime times.

Based on the set of prime times, P, we define the set of (general) times, denoted by

possibly indexed t, T, as the minimal set satisfying the following axioms:

(5.2.1) VpeP(peT)

That is P a sub set o f T , P c T ;

(5.2.2) Meets{p„p 2) => Meets-j{p hp2)

Where Meets r is the binary relation over T and Meets^t,, t2) denotes that time t, is the

immediate predecessor of time t2. Therefore, axiom (5.2.2) states that MeetsT is the

extension of Meets from P to T.
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(5.2.3) MeetSjit,, t2) =>3t\/t\t"GT(Meets 7(t\ t,) a Meets,(t 2, t")

=>MeetSj(t\ t) a Meets7(t, t"))

That is, if two times are separated by a sequence of times, then there is a time which

connects them.

(5.2.4) t, = t2 <=>3t7\t2 (Meets j^t},t,) a Meets^t/, t2) a Meets jit,, t 2 ) a Meets 7(t2, t2))

That is, two times are identical if and only if they have the same immediate predecessor

and the same immediate successor. Hence, by axioms (5.2.3) and (5.2.4), for any two

times, t, and t2, such that MeetsT(t„t2), we shall denote their adjacent union as a new

time (interval), t = /,©/,. N.B. t,®t 2 always implies that Meets7{t„t2).

(5.2.5) 3p„ ...,p n(t=p,®p 2 ...®p n)

That is every general time is an adjacent union of limited number of prime times. This

axiom is crucial for dealing with the intermingling problem [Ham71].

In addition, as the extension of the duration assignment function, Dur, from P to R0
+, we

define Dur r as the function from T to R/, which assigns each element in T a non-

negative real number, such that:

(5.2.6) Durjip) = Dur(p)

(5.2.7) MeetSj{t ht2) => Dur7(t,®t2) = Dur7(t,) + Dur7(t2)

That is, the duration of the combined times t, © t2 is identical to the sum of duration of t,

and duration of t2, where "+" is the conventional arithmetic addition operator.

In summary, T is in fact the closure of P, under operator ©. Elements in T are not

necessary non-decomposable. A time t is called a (time) interval if only if there exist
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time tx and time t2, such that t —t,®t 2. By (5.1.1), (5.2.2) and (5.2.7), for any interval t,

we have Dur(t) > 0.

In what follows, without confusion, we shall simply write DurT as Dur, and MeetsT as

Meets.

A time t is called right (left) closed if there is a prime time p and a time t' such that t =

t' ®p (t = p ®0 and Dur{p) = 0; otherwise t is called right (left) open. In this thesis,

we introduce a function, REnd, from T to set {open, closed }, which specifies the right

end status of a time. For a given time t, if it is right open, then REnd(t) = open-, if it is

right closed, then REnd(t) - closed. These definitions are useful when the notion of

duration type is introduced (see next chapter).

As shown in [MaK94], in terms of the single relation Meets, there are in total 30

temporal relations among time intervals/points may be defined. These temporal

relations can be classified into the following four groups:

• Temporal relations relating intervals to intervals:

{Equals, Before, After, Meets, Metjby, Overlaps, Overlapped_by, Starts,

Startedjby, During, Contains, Finishes, FinishedJjy}

• Temporal relations relating points to points:

{Equals, Before, After}

• Temporal relations relating points to intervals:

{Before, After, Meets, Metjby, Starts, During, Finishes}

• Temporal relations relating intervals to points:

{Before, After, Meets, Metjby, Started by, Contains, Finished by}

Definitions of these derived relations are:

Equal(t,, t2) <=>t,= t2
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Before{t„ t2) 3 t(Meets(t„ t) a Meets{t, t2))

Overlaps{t„ t2) <=>Bt, t\t" (t, = f®t a t 2= f©/" )

Starts(t„ t2) <=>3 t(t2 = t,@t)

During(t„ t2) <=>3t\f\t 2 = £'©?,©?")

Finishes(t,, t2) <^>3/(72 = /©/,)

Met-by(t„ t2) <=>Meets(t 2, t,)

After(t„ t2) <=>Before(t 2, t,)

Overlapped(t„ t2) <^>Overlaps(t 2, t,)

Started-by(t„ t2) <^>Starts(t 2, t,)

Contains{t„ t2) <^>During(t 2, t,)

Finished-by(t,, t2) <^>Finishes(t 2, t,)

In addition, for the convenience of expression, we may also define that

In(t„ t2) <^>Starts(t,, t2) v During(t,, t2) v Finishes(t,, t2)

Sub{t„ t2) <=>Equal(t„ t2) v Starts(t h t2) v During(t,, t2) v Finishes(t„ t2)

where In(t„t 2) denotes that time t, is a proper part of time t2, and Sub(t„t2) states that

time t t is either a proper part of time t2 or is t2 itself. Also we will take use of the

following property:

(Pro5.1) Meets(t, t,)AMeets(t, t2) =>Starts(t lf t2) v Starts(t 2, t,) v Equal(t„ t2)

That is, for any time /, if it meets two times, t, and t2, then either t, starts t2 or t2 starts t,

or t, equals to t2. This property can be deduced directly from the linear property of the

time structure.

For the purpose of reasoning about actions and change, in this chapter, a prime time

structure is introduced first, then a general time structure is proposed by means of

extending the prime time structure. Such a time model is based on both time points

and time intervals, and supports the concept of non-decomposable time moments with

positive temporal duration. This temporal structure will be used in the formalism to be
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presented in next chapter in order to enrich the temporal ontology and help to deal

with the Intermingling Problem and Dividing Instant Problem [Van83], which beset

most interval-based temporal systems.
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CHAPTER 6

TEMPORAL STATE TRANSITION CALCULUS

Representing and reasoning about the dynamic aspects of the world ~ primarily about actions

and change ~ is a problem of interest to many different disciplines. In the research field of

artificial intelligence, we are interested in such a problem for a number of reasons, in

particular to model the reasoning of intelligent agents as they plan to act, and to reason about

causal effects in the real word. Temporal information plays an important role in the

description of the dynamic aspects of the world. As discussed previously, there are mainly

two classes of approaches for this purpose, namely constructive models (state-transition-

based) and non-constructive models (temporal-logic-based) [A1F94]. Each class has its own

advantages. In this chapter, a discrete model for representing and reasoning about actions and

change, which is called Temporal State Transition Calculus (TSTC), is proposed in

attempting to combine most of the benefits from both of these two classes.

The formalism will be described in terms of a many-sorted reified logic with equality,

including sorts P, F, S and A for prime times, propositional fluents, states and actions

respectively. Variables are denoted by lower case letters (with or without subscripts), and

constants are denoted by upper case letters (with or without subscripts). Unless otherwise

stated, letters {p,p/,p 2 , ... (P, Pi, P2, •••)}>\fJ1J2, - (P, Pi, P2, •••)}, {s, si, s2, ... (S, S h S2,

...)}, and {a, a1, a2, ... (A, A/, A2, ...)} are used for variables (constants) of sorts P, F, S and

A, respectively. Also, we adopt the conventional theories of reals and integers. Based on

these primitive sorts, some supersorts (which are formed by combining some sorts) will be

added when some new entities are introduced. These supersorts will be explained when they

appear at first time.

6.1 Fluents Revisited

A fluent is a proposition whose truth value is dependent on times. It may take different values

over different times. In order to associate fluents with times, following the common practice
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in Artifitial Intelligence [DAA95], a meta-predicate, True, over FxP is introduced so that the

formula True(f p) represents that fluent/holds true with respect to prime time p.

Corresponding to the extension from P to its closure T, under operator ©, a new sort, general

times T, (which is a supersort of prime times) is added to the language. Variables (constants)

of sort T are denoted by lower case letters (with or without subscripts) t, t\, t2 and

constants are denoted by upper case letters (with or without subscripts) T, Tj, T2 .... Also, we

extend predicate True to FxT and hence the formula Trueift ), for each pair of fluent/ in F

and time HnT.

Unlike the prime times that are all non-decomposable, an interval can be decomposed into a

sequence of sub-intervals/moments/points. However, when intervals are allowed to be

arguments of the predicate True , we will face the possibility that a fluent/might neither hold

true nor hold false throughout some interval t. That is, it may be the case that fluent /holds

true with respect to some sub-intervals/moments/points of t but holds false with respect to

some other sub-intervals/moments/points of t. As pointed out by Shoham [Sho87b], Bacchus

et al. [BTK91] and Allen and Ferguson [A1F94], there are two ways we might interpret the

negative sentence —iTrueif, t). In the strong interpretation of negation, —iTrueif, t) is true if

and only if/ holds false throughout t, so neither Trueif, t) nor —^Trueif,t) would be true in the

case that fluent /holds true with respect to some sub-intervals/moments/points of t and also

holds false with respect to some other sub-intervals/moments/points of t. Therefore, such a

strong interpretation of negation does not preserve True as a two-valued predicate any more.

In the weak interpretation, —iTrueif, t) is true if and only if it is not the case that/holds true

throughout t, and hence -iTrueif, t) is true if/changes its truth-value over time t.

In our formalism, we take the weak interpretation of negation as the constraint imposed on

the True predicate with respect to decomposable intervals, since it seems to be the

appropriate interpretation for the standard definition of implication and preserves a simple

two-valued logic [A1F94]. The following axiom shows the relation between the truth of a

fluent over an interval and its truth over parts of that interval:

(6.1.1) 3t,, t2(t = t/®t 2 =>(Trueif, t) <=>\/t'(In(t', t) =>Trueif, 0)))
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That is, a fluent/holds true with respect to interval t if and only if it holds true with respect to

any sub-interval/moment/point of t, that is/holds true throughout t.

It is important to note that, (6.1.1) associates sub-interval/moments/points proposition just to

decomposable intervals, rather than non-decomposable moments or points. This is different

from Allen's approach [A1184], which may lead to some dubious inferences. If one does not

limit time t in axiom (6.1.1) to a decomposable interval, one may face the trouble that for any

fluent /, it can be shown to hold over any time moment or point unconditionally from this

axiom, since there is not any proper sub-time within any given time moment or point, (e.g.

any proposition holds true with respect to any moment) [MKP94],

Theorem 6.1.1 If a fluent/holds true with respect to two adjacent times, tj and t2,respectively,

then/holds true with respect to the ordered union time, t\ © t2. That is

Trueif, tf) a True(f, t2) a Meets(ti, t2) =>True(f, tj © t2).

Proof: Suppose it is not. This is we have

Trueif, ti) a Trueif, t2) a Meets(tj, t2)

but

-i Trueif, tj® t2).

By axiom (6.1.1), we have

3t'{In{t\ t\ © ti) =>-iTrueif, 0).

From the structure of time, there exists a prime time p that satisfies

Subip ,t ' ) a ( / Subip ,t j ) v Subip ,t2) )a - i True i f ,p ) .

This contradicts the fact that Trueif, U) a Trueif, t2). •
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This theorem preserves the extended persistence of a proposition if this proposition holds true

over two adjacent times.

Following Galton's suggestion [Gal90], we shall use not(/) to represent the negation of fluent

f to be kept distinct from ordinary sentence-negation, symbolised by Since we take the

weak interpretation of the sentence-negation, we also take the following axioms:

(6.1.2) True(not(f), t) <£=>\/t'(Sub(t', t) =>-iTrueif, t1))

(6.1.3) - i Trueif, t) 3t'(Sub(t', t) a True(not(f), tj).

Axiom (6.1.2) says that not(/) holds true throughout time t if and only if/ does not hold true

throughout any sub-interval/internal-point of t. In fact, axiom (6.1.2) is given by Hamblin

[Ham71] as the definition of negations. Axiom (6.1.3) means that / does not hold true

throughout time t if and only if there exists a sub-element of t throughout which not(/*) holds

true. Axiom (6.1.3) coincides with the weak interpretation of the sentence-negation.

Intuitively, with respect to any time /, any fluent and its negation can not both hold true. In

other words, they are in conflict with each other over any time. However, it is important to

note that, for a given fluent, say / it may be the case that its negation not(/) is not the only

fluent that conflicts with it. That is, there may be some fluents other than not(/) that can not

be true together with fluent /

For the purpose of representing conflicts among fluents, Conj\fi,fi) is introduced to denote

that fluent// is in conflict with fluent/?:

(6.1.4) ConfifiJ 2) «• \/t(—iTrue(fi, t) v -,True(f 2, t)).

Axiom (6.1.4) says that two fluents,// and/? conflict with each other if and only if with

respect to any time either/ does not hold true or/ does not hold true. The "if' part of this

axiom is quite clear. To understand the "only if' part, think about this condition: with respect

to any time either// does not hold true or/ does not hold true. That is, they conflict with each

other. This means that there does not exist any time with respect to which both fluents/ and
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f2 hold true.

Especially, by axiom (6.1.4) together with the axioms (6.1.2) and (6.1.3), it is straightforward

to obtain the following property: for any fluent/

Conf(f, not(/).

This property simply tells that any fluent and its negation are in conflict with each other.

Also, axiom (6.1.4) can be generalised to cope with cases involving more than two fluents:

Confif,J 2, . ..,/„) o \/t(-i(True(f,, t) a True(f 2, t) a . . . a True(f n, /))).

This says that a set of fluents,/},^, •••,//, for any n, is in conflict if and only if with respect

to any time at least one of the set of fluents does not hold true. The notion of conflict will be

used to determine the consistency of states in next section.

It is interesting to note that, in most interval-based temporal theories, there exist two major

problematic questions, i.e., the so-called dividing instant problem [Van83, Vil94] and the

intermingling problem [Ham71, Gal96]. The dividing instant problem involves the question of

whether time intervals should include their ending-points or not, which can lead to some

difficulties in determining the truth values of fluents at the ending-points. The intermingling

problem arises when a fluent may change its truth value infinitely often in an interval with a

finite duration. This will lead to some difficulties in characterising the relationships between

the negation of fluents and the negation of involved sentences.

However, in the time structure described in last chapter, each time is simply defined as an

ordered union of prime points/moments that are non-decomposable, there is no definition of

ending points for intervals. Therefore, the so-called dividing instant problem doesn't exist. In

addition, since the time structure, T, is the closure of the ordered set of prime times, P, by axiom

(5.2.5) in chapter 5, we know that T satisfies the so-called finite decomposition property [Gal96]:

For every fluent f and every time t, there is a decomposition
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t =p,®p 2 ...®p n

where n > 1, such t h a tf o ri = 1 ,2 ,. . n ,

True(f, tj) v True(not{f), t,).

Then by the result in [Gal96], the time structure, T, bypasses the intermingling problem.

6.2 States and Situations

Having defined the notion of fluents, the next task is to examine the relationships among

fluents and the character of a collection of fluents, and therefore, to study the behavior of the

real world. In this section, we are going to introduce the concepts of states and situations.

Also we will discuss some properties regarding to these two terms and the relationship

between them.

Generally speaking, it is usually impossible to collect all the information for completely

describing a world. This means one never knows a world —instead, one only knows some

facts about a world. In fact, we only need to deal with the information in which we are

interested. Following Lin and Shoham's idea [LiS94], let F be a fixed set of fluent constants,

which includes all the fluents in which we are interested, a state can be defined as follows.

Definition 6.2.1 A set S of fluents is a state with respect to F if there is a subset S' of F such

that

S = { f \ f e S ' } v { n o t ( f ) \ f e F - 5"}

Therefore, if S is a state, then for any fluent/e F, either/ e S or not(/)e S. Intuitively, states

defined as above completely characterise the belongingness of all fluents in a given set of

fluents, such as F. The fixed set of fluents, F, plays a role similar to Lifschitz's Frame

predicate [Lif90]. For instance, in a theory of moving and painting blocks, the locations and

colors of blocks are the fleunts which we may be interested in, and hence comprise the
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corresponding fixed set. This definition is motivated by the ideas from the work both in

[LiS95] and in [Sha95]. From Lin and Shoham's work, we adopt the idea that considering the

interested fluents only by means of a fixed set of fluents. Similar to the treatment of that in

[Sha95], we define a state as a set of fluents, keeping it at high level. The main difference

between this definition and that given by Lin and Shoham is as follows. Fluents are

associated with times to comprise states in [LiS95], whereas we define states at high level,

without any association with times. Comparing with that in [Sha95], we use a fixed set of

fluent to make the expression of state complete, whereas states are only sets of fluents by

Shanahan. The benefits of our interpretation will become clear when a temporal term,

situation , is introduced later. We shall denote the set of all possible states, as S. Elements of S

will be denoted by (possibly indexed) s. To express the relationship of a given fluent and a

given state, a predicate, Belongs over FxS is introduced. Formula Belongs(f, s) denotes that

fluent/belongs to the state s.

In what follows, without explicit specification of the fixed set F, we assume that all the

fluents that we will consider must be within a fixed set of fluents, which includes all the

fluents in which we may be interested. This assumption is called the closed-world

assumption. Also, in what follows, for simplicity, we may only use the first part of S in the

definition given above to express a state. By default, the negations of the fluents which

remain in the closed world should belong to this state. For instance, in the Two Blocks World

example in chapter 2, there are four fluents in which we are interested: OnTable(A),

OnTable{B), On(A, B), On(B, A), comprising the corresponding fixed set of fluents. Si =

{OnTable(A), OnTahle(B )} can be considered as a state. By default, it implies that the

negations of On(A, B) and On(B, A) belong to this state.

From the definition of states given above, one can not see clearly the relationships among the

fluents in a state. For instance, "Block A is on the table" and "Block A is on the top of block

B" are two fluents in a block world. By the definition, there may exist a state in which both of

these two fluents hold true. However, intuitively it is impossible. Similar to the discussion

about the truth values of fluents over a given time in the previous section, some constraints

on the states are necessary.

°r\
v-i,
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Definition 6.2.2 A state s is called consistent if and only if for any fluents,//,^, •••,/«,

Belongs(fi, s) a Belongs(f 2, s) a ... a Belongs(f„, s) => -Conj \f,J 2 , ...,/,)

otherwise, 5 is called an inconsistent state.

In what follows, all the states that will be considered are assumed to be consistent. This

assumption is quite intuitive. In fact, it is no use talking about a state that is impossible to

exist in the real world. Specially, for any fluent, its negation and itself could not both belong

to a consistent state. This is also implied from the definition of states. In general, for any

consistent state, we impose the following axioms in addition to the definition of predicate

Belongs.

(6.2.1) s/ = S2<=>Vf{Belongs(f, s/) <=>Belongs(f, s2))

Axiom (6.2.1) indicates that two states are equal if and only if they are comprised by the

same set of fluents.

Also, from the definition (6.2.2), together with the fact that / and its negative notif) are in

conflict with each other, we have

Belongs(f, s) <=>-iBelongs(no\(f), s),

which says that a fluent and its negation can not belong to the same state.

States are terms at high level, independent from time. They are just sets of fluents, with

respect to a fixed set of fluents. To associate states with times, a predicate, S True over SxT

is introduced. Formula S_True(s, t) represents that s is the state (of the closed world) with

respect to time /, imposing:

(6.2.2) S_True(s, t) <=>V/ (Belongs(f s) =>True(f, t ) a Belongs(f s) => 7V«e(not(/), t))

that is, s is the state with respect to time t if and only if every fluent belonging to s holds true

with respect to time t, and for every fluent not belonging to s, its negation holds true with
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respect to time t.

Following the discussion of the interpretation of negation in previous section, the weak

interpretation is also used for the predicate S True. This is -iS_True(s , t) is true if and only if

it is not the case that 5 holds true throughout t, and hence -1S_True(s, t) is true if each of the

flunets that belongs to s changes its truth-value over time t. From the definition of predicate

Belongs and axiom (6.2.2), we have

Theorem 6.2.1 A state 5 holds true with respect to interval t if and only if it holds true with

respect to any sub-interval/moment/point of t, that is each of the fluents that belongs to 5

holds true throughout t. That is, for any state 5 and interval t, we have

S_True(s, t) <=>\/t'(In(t', t) S_True(s, t')).

Proof: By axiom (6.2.2), we have

S_True(s, t) V/ (Belongs(f s) =>True(J.\t) a

-1Belongs(f s) => 7V«e(not(/), t)).

Then by the definition of predicate Belongs , the above sentence is equivalent to

V/ (Belongs(f s) =>\/t\In{t\ t) =>True(f, O) a

-1Belongs(f s) =>\/t'(In(t', t) => 7>«e(not(/), O))-

This is logically equivalent to

\/t\In{t\ t) =>\/f(Belongs(f s) =>True(f, t) a

Belongs(f s) => 7>ue(not(/), t1))).

Again, by axiom (6.2.2), it is equivalent to

\/t'(In(t', t) =>S_True(s, t')).



102

Thus we have proved that

S_True(s, t) <=>\/t'(In(t', t) =>S_True(s, t*)). | |

Similarly to the theorem 6.1.1 in the previous section, we have the following theorem,

preserving the extended persistence of a state if this state holds true over two adjacent times.

Theorem 6.2.2 If a state s holds true with respect to two adjacent times, // and t2, respectively,

then s holds true with respect to the ordered union time, ti © t2. That is

S_True{s, t/) a S_True(s, ti) a Meets(t/, ti) =>S_True(s, // © t2).

Proof: Suppose it is not. This is we have

S_True(s, t/) a True(s, ti) a Meets(t/, ti)

but

-nS Trueis, ti © ti).

By theorem 6.2.1, we have

3t'(In(t', ti © ti) =>-iS_True(s, /')).

From the structure of time, there exists a prime time p that satisfies

Sub(p ,t ' ) a ( Sub{p ,t i ) v Sub(p ,t i ) )a - i S_True(s ,p ) .

n
This contradicts the fact that S_True(s, ti) a S_True(s, ti).

Although states and times are two different entities, to represent the dynamic world, states

should be associated with times. For example, two fluents, "John is in his office", and 'John
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is working" may comprise one state. "John is at home" and "John is sleeping" may comprise

another state. The former state describes the fact that John is in his office and working, while

the latter tells that John is at home and sleeping. Without additional temporal knowledge, one

can not tell anything more than that. However, if these two states are associated with times,

for instance, the former state is associated with time T/, and the latter with time T2, then one

can conclude that John is in his office and working over time T\ and at home and sleeping

over time T2. Of course, he could not be at home over time T/, nor at his office over time T2,

because fluents "John is in his office" and "John is at home" are in conflict with each other.

Intuitively, with respect to a given time, there must be only one state that holds true. The

following theorem states this assertion.

Theorem 6.2.3 For any two states, if their truth values hold with respect to the same time,

they must be equal to each other. That is

S_True(s/, t) a S_True(s2, 0 =>s/ = s2.

Proof: Let Si and S2 be two states. For a given time T, they satisfy:

(* ) S_True(S / ,T ) a S_True (S2, T)

but

S, * S2.

We are going to prove that Si ± S2 will lead to a contradiction. By axiom (6.2.2), we have

3J{(Belongs(f, S,) a -iBelongs(f, S2)) v (-1Belongs(f, S,) a Belongs{f.\ S2))).

Without loss of generality, suppose there exists a fluent F, such that

Belongs(F, Si) a -1 Belongs(F, S2).

Since formula (*) is supposed to be true, by axiom (6.2.2), we have
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True(F, T)

and at the same time

7>we(not(F), T).

This is a contradiction. Therefore we proved that state Si must be equal to S2. I I

Theorem 6.2.3 claims that, with respect to a given time, the state of the world is unique.

However, there is nothing to stop a temporally contiguous time having the same state. In fact,

a state may hold true with respect to different times.

In order to capture the relationships between states and times, we introduce the concept of

situations as follows.

Definition 6.2.3 A situation is a pair of a state and a time, representing the state of the world

associated with a particular time over which the world holds in that state, denoted as <s, t>.

All the situations form a collection of pairs of states and times, denoted as Sit.

The new set of situations is an additional sort (which is a supersort of sorts, states and times)

to the language. Variables for situations are denoted by sit, sit], sit2, ..., and constants by Sit,

Siti, Sit2 .... The following axioms specify the basic characters of situations.

(6.2.3) \/sit3s3t(sit = <s, t> a S_True(s, t))

(6.2.4) sit = <S/, t]> a sit = <S2,t2> => S/ = S2a t] = t2

Axiom (6.2.3) says that each situation is formed by a pair of a state and a time, and the state

must hold true with respect to the time. Axiom (6.2.4) guarantees that the representation of

any situation is unique.

Since a situation is formed by a pair of a state and a time, to represent its arguments

individually, the following notions are introduced:
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Definition 6.2.4 For any situation sit —<s, t>, s is called the reference state of situation sit

and t the reference time of situation sit, denoted as State(sit) and Time(sit), respectively.

In fact, State and Time may be seen as two functions from the set of situations to the set of

states, and the set of times, respectively. The following theorem tells the relationship between

these two functions.

Theorem 6.2.4 For any two situations, sit/ and sit2, if their reference times are the same, their

reference states must be the same as well. That is

Time(sit/) = Time(sit2) =>State(siti) = State{sit2).

Proof: By Theorem 6.2.3, we only need to show that

S_True(State(sit/), Time(sit/)) a S_True(State(sit2), Time(sit2)).

This comes directly from axiom (6.2.3). | |

However, the inverse of the implication in this theory does not hold. Thus is if there are two

situations with the same reference state, one can not reach the conclusion that these two

situations must have the same reference time. In fact, the same state may hold true with

respect to various times and therefore form different situations. For instance, suppose that

state "raining in London" together with a time "the first of May in 1998" form a situation,

denoted by Sit/ and the same state "raining in London" together with another time "the first of

June in 1998" constitute another situation, denoted by Sit2. It is easy to see that

State(Sit/)= {Raining In London) = State(Sit2)

but

Time(Siti) = 1/5/98 * 1/6/98 = Time(Sit 2).

As reflected on the discussion above, one can see the advantage of the strategy we have taken
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here: defining a state as a set of fluents at high level and making its expression complete, then

associating it with a time to form a temporal entity, a situation at low level. This strategy

makes the representation of states and situations more expressive and more flexible. A state

may holds true with respect to more than one different time, while a situation describes a

status of a real (closed) world by way of specifying the particular pair of a state and a time.

Based on the fact that within a situation the corresponding state must remain unchanged,

directly from the above theorem we have the following corollary:

Corollary 6.2.1 For any two situations, if there exists a time that is a sub-time of both these

two situations' reference times, their reference states must be the same. That is:

3t(Sub(t, Time(siti)) a Sub(t, Time{sit2)) =>State{sitf) = State(sit2)).

This corollary states that if there is a common time in any two situations' reference times,

then these two situations must have the same state. To express the relationship between a

fluent and a situation, a predicate Holds over FxSit is introduced. Formula Holdsif, sit)

denotes that fluent/holds true in situation sit, providing that:

(6.2.5) Holdsif, sit) o Trueif, Timeisit)))

That is a fluent holds true in a situation if and only if it holds true with respect to its reference

time.

As stated by the definition of predicate Belongs, a fluent and its negation can not belong to

the same state. Therefore, they can not both hold in a given situation. The following theorem

characterise this intuition.

Theorem 6.2.5 For any fluent/and any situation sit, the truth value of the negation of/holds

in situation sit if and only if fluent/does not hold in situation sit. That is:

Holds(not(f), sit) <=>-iHoldsif, sit).

Proof: Suppose Holds(not(f), sit). By axiom (6.2.5), we have
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7>?/e(not(/), Time(sit)).

Then, it is easy to see from axiom (6.1.2):

-i Trne(f, Time(sit)).

Again by axiom (6.2.5), we reach the result

-iHoldsif, sit).

To prove the other side, suppose -\Holds(f sit). By axiom (6.2.5), we have

—>True(f,Time(sit)).

By axiom (6.1.3)

3t'(Sub(t\ Time(sit)) a True(noi(f), t')).

Then by the definition of situations and the corollary (6.2.1), we reach

Holds(noi(J), sit).

Therefore the theorem is proved. |—|

N.B. For the convenience of expression, in what follows, we shall call situation sit a prime

situation if its reference time is a prime one.

6.3 Actions and Events

Situations are used to describe the states of the world in a given time. It has little to do with

the change of the world. Intuitively, a state of the world will be supposed to keep unchanged

until something happens to cause it to change. The things that may cause a situation to
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change are usually called actions or events. As discussed in the introduction, in this

dissertation, actions and events will be treated as different entities. Actions are simply some

names denoting certain useful and relevant activities. Generally, these actions are relative to

some temporal duration. For instance, "Heating a tank of water for 10 minutes". Here

"Heating" is an activity. However, if we only talk about the "Heating", it is not clear what

will exactly happen as the consequence of this activity. Therefore the consideration of a

relative temporal duration for such kind of activities is necessary. That is when we talk about

the activity "Heating" , the temporal duration such as how long the activity will last for is

needed to consider. For instance, "Heating a tank of water for 10 minutes" may cause the

water in the tank boiling.

This discussion leads us to consider that actions are not expressive enough for the formalism.

An action together with a temporal duration, named an action type is defined as follows.

Definition 6.3.1 An action type is a pair of an action and a non-negative real number,

denoting a temporal duration, representing the scheme of performing action a with respect to

a temporal duration d (d may be zero), denoted as < a, d>.

An action type is a time independent entity at high level. Its arguments a and d have little to

do with any specified time. For instance, at high level, the expression <Heating, 10,> denotes

performing action Heating for 10 minutes. At low level, it is not specified that where this

temporal duration, 10 minutes, should be located. In order to map an action type to the real

world, a binary predicate, Performs over AxT is introduced. Formula Performs(a, t) states

that action a performs over time /. Here, time t plays a similar role to the temporal duration in

an action type. An action type may perform once, more than once over different times, or

may not even perform at all. Each individual performance of an action type over the

corresponding time constitutes a temporal entity at low level. This temporal entity is a mirror

of an action type at low level. We call such an entity an event. It can be defined formally as

follows.

Definition 6.3.2 An event is a pair of an action and a time entity, <a, t>, meaning that action

a performs over time /. The space of events will be denoted by E.



Chapter 6 Temporal State Transition Calculus 109

The new sort of events (which is a supersort of sorts, actions and times) is also needed for the

language. Variables for events are denoted by e, e,, e2, ..., and constants by E, E,, E2 ....

Events are low level entities. They present the occurrences of action types over actual times.

For example, the performance of action type, "Striking for 24 hours" over the whole day of

the 16th of September 1994 constitutes an event, denoted as E = <Striking, 16/09/94>.

Performing an action type over different times composes different events. For example, the

performance of action type, "Striking for 24 hours" over times: the whole day of the 16th of

September 1994 and the whole day of the 15th of November 1994 constitute two different

events, ej = <Striking, 16/09/94> and e2 = <Striking, 15/11/94>. This example also shows

that an action type may perform more than once. However, some action types may not

perform at all. Consider the sentence "A man raising up a very heavy stone (e.g. 1000 kg)

over his head using 10 minutes". The action type can be expressed as

<Raising_the_stone, 10>. Of course, by the common sense knowledge, this action type can

never perform successfully.

As most researchers have described [McD82, A1184,K0S86 etc.], the events defined above

satisfies the nature of anti- homogeneity: If an event occurs over an interval i, then it does not

occur over any subinterval of i, as it would not yet be completed. The following axiom

preserves that if an action performs over two adjacent times respectively, then it performs

over the ordered union of the two times:

(6.3.1) Performs{a, t\) a Performs(a, t2) a Meets(ti, t2) =>Performs(a, t/®t 2)

and on the other hand, if an action performs over a decomposable interval, then it performs

over any proper subtimes of it:

(6.3.2) 3tj,t 2(t = t,®t 2 =>(Performs(a, t) =>Vt'(In(t', t) =>Performs{a, f)))).

These two axioms are important for the discussion about concurrent events (We are not going

to discuss this issue in detail in this work). It is worth noting that these axioms do not conflict

with the above nature of anti-homogeneity, because for any action, with respect to different

time entities, the different events are defined. For instance, suppose action Heating was

performed over time Ti that represents the time from 12:00 to 12:04 on 16/8/96 and T2
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represents the time from 12:04 to 12:10 on 16/8/96 respectively. Then we can write:

Performs(Heating, T\) a Performs{Heating, T2).

Also

Performs(Heating, T\® T2),

Since we have

Meets(T\, T2).

In fact, there were three different events happened. First, heating the tank of water for 4

minu tes ,E t = < Heat ing ,T \>,the secondis hea t ingthetank of wate r fo r6 minu tes ,E 2 - <

Heating, T2>, and the last is heating the tank of water for 10 minutes, E3 = < Heating, Ti®

T2>. As the consequence of event £*, the water in the tank should be boiling, while as the

consequence of the event £7, the temperature of the water in the tank may reach 40 degree.

The uniqueness of the representation of an event is guaranteed by:

(6.3.3) Ve3 a3t(e = <a, t> a Performs(a, /))

(6.3.4) e = <a/ ,t />a e = <a 2, ti> =>a/ = a2 A t/ = t2

These axioms also show that an event is a derived structure from an action and a time,

denoting the actual performance of a given action over a certain time at low level. In

literature, the two terms, "action" and "event" are used in many different senses by various

researchers; sometimes they are used interchangeably.

Analogous to the definitions of the reference state and the reference time of a given situation,

the following definition is given.

Definition 6.3.3 For event £?= <a, t>, we shall call a and t the reference action and the

reference time of e, denoted as a = Action(e) and t = Time(e), respectively.
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Axiom (6.3.3) also states that for any event, its reference action must perform over its

reference time. That is if we know that event e exists, then we can conclude that formula

Performs(Action(e), Time(e)) is true. For instance, in the striking example above, i.e., event e,

—<Striking, 16/09/94>, the corresponding reference action is Striking and the reference time

is the 16th of September 1994.

6.4 Pre-conditions

In some cases, the execution of a given action may be constrained by some pre-conditions

that must hold. For example, in the Blocks World, to move block A onto block B, both blocks

A and B must be clear. Sometimes for the same action, if the action types are different, their

pre-conditions may be different as well. For instance, "Driving for two hours" and "Driving

for six hours" are two different action types, which have the same action name "Driving".

However, the pre-conditions of these two action types may be different. For example, to drive

for two hours (about 70 miles/hour), the car should have at least 10 liters of petrol, while

driving for six hours, the car must have at least 30 liters of petrol.

For general treatment, the pre-condition of an action, a, denoted by PreC(a), is a set (possibly

empty) of fluents. A binary predicate, PreCon, over AxS is introduced to represent whether

the precondition of an action holds in a state. Formula PreCon(a, s) states that the set of

fluents, PreC(a) must satisfy in state 5, i.e. all fluents in set PreC(a) belong to state 5, for

action a to be effective, imposing

(6.4.1) PreCon(a, s) <=>Mf[f &PreC(a) =>Belongs(J\ s))

Set PreC(a) is the pre-condition of performing action a. If PreC(a) is little to do with the

duration of the performance, then the expression described above is useful. However, in our

formalism, since the temporal duration of performing an action plays an important role, it is

necessary to modify the corresponding expression as follows. Similarly, for action type <a,

d>, the pre-condition is denoted by PreCT(a, d). It is also a set (possibly empty) of fluents. A

predicate, PreConT, over AxRxS is introduced to represent whether the pre-condition of an

action type holds in a state. Formula PreConT(a, d, 5) states that the set of fluents,
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PreCT(a,d) must satisfy in state s, i.e. all fluents in set PreCT(a, d) belong to state s, for

action type <a, d> to be effective, imposing:

(6.4.2) PreConT(a, d, s) <=> ePreCT(a, d) =>Belongs(f, s)).

Pre-conditions are the premise of executions of actions. However, if an action is known to

execute in a situation, the corresponding pre-conditions must hold in that situation. That is

(6.4.3) VaVt(Performs(a, t) =>3t3s3d(S_True(s, t') a Dur(t) = d

a PreConT(a , d, s) a Meets(t\ t)))

this says that for any action a and any time t if action a occurs over time t, then there must

exist a time t' and a state 5 such that state s holds over time t\ pre-condition PreCT(a, d) holds

true in state 5 and time t' meets time t.

The expression of pre-conditions of actions/action types is not essential for the results of

performing actions/action types. However, for the qualification problem, which specifies

every possible relevant condition, it is important. The representation of pre-conditions

proposed in this section will enable us to deal with qualification problem by way of

minimising the PreConT predicate, which will guarantee that the known preconditions of

each action are the only preconditions. However, as mentioned in chapter 4, since the

qualification problem has little to do with the temporal domain, we are not going to look the

qualification problem in any more detail here. In what follows, without confusion, if there is

no explicit specification for the pre-conditions of the execution of actions/action types, by

default it is assumed that the pre-conditions of the execution of actions/action types are

satisfied.

6.5 Causality

Causation plays an important role in reasoning about actions and change. As mentioned in the

introduction, when we reason about change over time, causation provides an miphcji

preference: in view of common-sense we prefer sequences of world states in which one v.or)d

state leads causally in terms of the occurrence of some certain event to the next, rather t/ian
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sequences in which one world state follows another at random and without causal

connections. For example, in the car-stolen problem, we prefer sequences in which the thieve

steal the car to sequences in which the car disappears without explanation, although not

necessarily to sequences in which the car remains untouched. In this section, we are going to

show how to use the formalism proposed here to represent common-sense causality at both

high level and low level.

As argued by Gooday and Galton [Gal96], many action and change problems encountered in

AI may be formulated without any low level temporal reference. In particular, most common-

sense causal relationships are actually expressed at high level, making no reference to any

specific times. Although these are relationships involving temporal information, they are time

independent and therefore hold for all times. For example, we might know that if a kettle is

filled with cold water and switched on, it will start to boil after five minutes. This causal

knowledge applies whenever the kettle is switched on, and specifies that the performance of

the action type, i.e. <Switch_On, 0>, causes the world to change from state {Water Is Cold}

to state {Water Is Boiling) 5 minutes later, where Switch On represents the action name and

the temporal duration of performing this action is supposed to be zero. Of course, a common-

sense statement such as this does not really mean that the water will always be boiling after

being switched on, regardless of other possible actions. Rather it means that it will be boiling

in the absence of other events occurring during the 5 minutes, such as countermanding

switching or electrical power failures, etc.

To capture this common sense meaning, a predicate Causes is introduced as follows:

(6.5.1) Causes(sj, <a, d<p>,d, S2)<=>

\/ti,t a,t( S_True(si, tj ) A Dur{t a) = da A Pe?forms(a, ta) A Duiit) = d

A Meets(tj, ta) A Meets(tj, t)

A \/t Vfl '(Sub(t \t) Aa'*a=> Perfonnsia \t')))

=>3t2(Meets(t, t2) A S_True(s 2, t2)))

Predicate Causes relates an initial state sj, an action type <a, da>,a temporal duration d and

the result state s2. It states that starting from state sj, after a time duration d, the performance

of the action type <a, da> will change the world into state s2 as long as no other disturbing
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action has occurred. Argument d in the Causes predicate plays an important role. For the

same initial state and the same action type, if the argument d takes a different value, the

resulting state may be different as well. For instance, in the kettle example, the corresponding

causal axiom can be written as:

(Kel) Causes({WaterJs_Cold), <Switch_On, 0>, 5, {Water Is Boiling}).

However, if the argument d takes a less value, for instance 2 minutes, then the resulting state

may not be {Water Is Boiling). Hence, the causal predicate depends not only on the initial

state and the action type, but also on the temporal duration, d. Here, a question may arise with

respect to this argument, d, i.e., if the duration d is greater than zero, it may correspond to

four possible time entities at low level: t, /?©/, t®p and p/®t®p 2, where Dur(t) = d. Therefore,

although t and pt®t®p 2 denote an open interval and a closcd one respectively, and p@t and

t®p represent two intervals that arc left and right closcd respectively and hcncc represent four

different times, they all have the same temporal duration.

For the purpose of reasoning, sincc what we arc interested in is the consequence of

performing an action rather than the starting time of performing the action, wc shall only

consider two of the four possible eases, i.e., t and t®p, where Dur(t) = d. However, if it is

necessary, the extension of the following discussion to the all four eases is straightforward. In

general, the alternative of t or t®p with respect to duration d will depend on the information

provided. For the expressive purpose, a notion of duration type is introduced.

Definition 6.5.1 A duration type is a pair of a temporal duration and an element co that

belongs to the set {close, open), denoted as <d, co>. Notation <d, close> represents that the

duration type can only be mapped to a time entity that is right closcd, while <d, open>

represents that the duration type can only be mapped to a time entity that is right open.

To see the motivation of this treatment, let's consider the following two examples. First,

consider the kettle example. As it is known, axiom (Kcl) can be seen as a causal law, that is

starting from a state in which the water in the kettle is cold, switch on the kettle, then 5

minutes later it will result in a state in which the water is boiling. In this case, the duration

type is not important. Whether the duration type <5, close> or <5, open> being used is not

vJf
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crucial, since in fact, it will not make any difference for the result. However, in some cases,

the duration type is crucial. To see this, consider the earlier example of throwing a ball into

the air: The motion may be described qualitatively by the use of two intervals, interval i

(suppose its duration is 8 seconds) where the ball is going up, and interval / where the ball is

going down. According to classical physics, there is a point p at which the ball is stationary.

Suppose the interval i is right open. Here the temporal duration d = Dur(i) = Dur(i®p) relates

two time entities: interval i and interval /'©/?.However, these two time entities have different

properties: over time interval i the proposition Ball Going Up holds true, but over interval

i®p Ball Going Up does not holds true. Now, how to express the (delayed) effects of the

action (type) of throwing the ball?

In [GLR91], Gelfond et al proposed an approach of using an action called Wait to deal with

the delay between an action and its effect, where the duration of Wait equals the time delay.

For instance, in their approach, one may use Result(So, Throw+Wait ) to represent the

situation 8 seconds after throwing the ball. However, in this result situation, is the velocity

zero or not? The answer is not unique. In fact, there are two situations, one is the situation

where the ball is at the stationary point, and another is the situation immediately after the

stationary point. Both of them satisfy that the Wait action lasts for 8 seconds. Therefore,

Gelfond et al's approach seems unable to distinguish these two different delayed effects. Ma

et al also examined the complicated temporal relations between actions and their effects

[KMP97, MKP97 etc]. For example, in [MKP97], they developed another approach of using

a predicate Changes(sit/, e, t, sit2) to denote the proposition that, immediately after time t,

event e changes situation sit/ into situation sit2• In their approach, they do not provide any

scheme to deal with the point-sensitive cases, like the throwing ball example. In this case, we

have to use duration type <d, open> to represent the temporal information of the knowledge that

"the ball is going up", which specifies the information at the right end of the period of time. In

order to represent this kind of causal knowledge, instead of using axiom (6.5.1), the causal

axiom should be rewritten as:

(6.5.1)' Causes(si, <a, da,>, <d, co>, S2)<=>

\/ti,t„,t( S_True(s 1, t,) a Dur(t a) = da a Performs(a, ta)

a Dur(t) = d a REnd(t) —co a Meets(t/, t„)a Meets(t/, t)

a \/t 'Vfl\Sub{t \t) aflvfl=> -1Performs(a \t')))
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=>3t2(Meets(t, t2) a S_True(s2, t2)))-

Then one may easily express the causal knowledge in throwing a ball example as:

Causes(s/, <Throw, 0>, <8, open>, s2)

Causes(s/, <Throw, 0>, <8, close>, s2')

where in s2 the ball's velocity is zero, and in s2' it is not.

Axioms (6.5.1) and (6.5.1)' are similar. The only difference between these two axioms is that

the corresponding duration type is employed in axiom (6.5.1)', whereas it not in axiom

(6.5.1). Taking into account of the fact that, in most cases, it is not necessary to specify the

value of co in a duration type, since the difference of the value of co in a duration type

normally does not make any difference in the knowledge representation. In what follows, if

there is no explicit specification for the value of co in the expression of a duration type, by

default it is assumed that the value of co is closed. In axiom (6.5.1), the duration type <d, co>

(simple written d) follows this default assumption. In most cases, this assumption is explicit

enough, although for some cases, such as the throwing a ball example, in which the type of

change is point-sensitive, i.e., the change happens at a time point, this assumption may cause

problems. This kind of change may be called point-sensitive change (the corresponding

effects are called point-sensitive effects). In what follows, axiom (6.5.1) is adopted for

interpreting the predicate Causes. If it is necessary, axiom (6.5.1)' can be used in stead of

axiom (6.5.1).

Predicate Causes is independent of time. It expresses high level knowledge in the similar

sense of Gooday and Galton [GoG96]. In [GoG96], a transition schema is defined as an

ordered pair «S/, S 2 », where S/and S2 are states. The schema is intended to represent the

transition from S/ to S2, i.e., an event such that Sj holds true immediately before it and S2

holds true immediately after it, with no state holding in between. Using the predicate Causes,

as an example, we may express the knowledge about the kettle boiling as:

(Kel) Causes({Water_Is Cold), <Switch_On, 0>, 5, {Water Is Boiling))
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This high level knowledge makes no reference to any specific times. However, it denotes a

high level causality that allows us to deduce relationships at low-level, where actual time

instances are specified. For instance, given temporal information about times related as in

figure 6.1, where a time point is represented by a double-lined arrow:

Ta

Ti

a i

Dur(T a)=0

T
W

a i

Dur(T a)=0

T
W

w

Dur(T)=5

Figure 6.1

That is:

(Ke2) Meets(T,, Ta) a Meets{T,, T) a Dur(T a) = 0 a Dur(T) = 5

In this case, if we know that the initial state {Water_Is_Cold) holds over time Tj:

(Ke3) S_True({Water_Is_Cold}, T/)

and action Switch On performs over time T„:

(Ke4) Performs(Switch On, Ta),

and we know that no other action happens during time T\

(Ke5) Sub(t 7) AflV Switch On =>->Performs(a', t')
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then by (6.5.1), we can deduce the "effect" that there exists a time T2 such that:

(Ke6) Meets(T, T2) a S_True{{Water Is Boiling), 7Y)

Intuitively, according to the predicate Causes, the causal result should be unique with respect

to the initial state, action type and the temporal duration. For instance, again, consider the

kettle example, in common sense, 5 minutes after performing the action type <Switch_On,

0>, the resulting state should be {Water Is Boiling). There are no other possibilities. We

impose the following axiom to characterize this statement:

(6.5.2) Causes(s,, <a, da>, d, s2) a Causes(s/, <a, d„>,d, ')=>s 2 = s2'

N.B. The specification of duration types, for instance, here by default, d = <d, closed>,

guarantees the unique result. Without the specification of the duration types, with respect to

the same causal expression, as shown above, one can not use predicate Causes to represent

the relative causal knowledge.

Formula Causes(s/, <a, d„>,d, s2) characterised above denotes a high level causal law that

demonstrates the temporal duration and order in which, the performance of an action causes

the world to change from one state to another. It makes no reference to any actual times at

low level. For convenience of expression at low level, a predicate E Causes is introduced,

which expresses an instance of the causal law. The formula E_Causes(sit/, e, t, sit2) has the

meaning that the world changes from situation sit/ into situation sit2 after time t, and the

change is caused by the occurrence of event e, where no other disturbing events occur.

(6.5.3) E_Causes(sitj, e, t, sit 2 )

<=> Meets(Time(siti), Time(e)) a Meets(Time(sit I), t) a Meets(t, Time(sit 2))

a V /' \ / a ' ( S u b ( t' , / ) a a ' * A c t i o n ( e )= >- , P e r f o r m s { at ' ) )

The function REnd can be used to specify the right end status of time t and relate it to the

corresponding duration type. By default, in axiom (6.5.3) the value for REnd(t) is closed. To

represent the causal change in the throw-ball example at low level, the expression ol (unction

REnd is necessary. Suppose Sito is the original situation in which the ball is at hand. EThrow
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denotes the event that performs action Throw at time 7Y W , where Dur(T Thro») = 1. T

represents the time after the beginning of the event and Dur(T) = 8. Sit/ is the result situation.

Then we have

E_Causes(Sit 0, EThrow,T, Siti)

where REnd(T) = open a Holds{Ball Stationary, Sitf)

If REnd(T) = close, then fluent Ball Stationary will not hold in the result situation. In next

chapter, the full representation for this example will be provided.

Similarly, in what follows, if there is no explicit specification for the value of function

REnd{t), that will mean the value of REnd(t) is not important and by default it is closed.

Axioms (6.5.1) and (6.5.3) together characterise an important causal relation at distinct

levels. Since the causal result of an event will only come true in the absence of other

unknown disturbing events, as in other approaches an assumption must be made: unexpected

events do not occur. This assumption is specified axiomatically rather than being built into

the semantic model. It guarantees the mapping from the high level causal knowledge to the

low level causality. In fact, in the case where the corresponding knowledge is available, one

can use the following procedure to deduce low level changes from high level causal laws:

Theorem 6.5.1 Given causal axiom:

(CA) Causes(si, <a, da>, d, S2)

and the knowledge that there exist situation siti, event e and time t such that:

(TC) Meets(Time(sit/), Time(e )) a Meets(Time(sitj), t)

together with observation:

(OB 1) State{siti) = s1

(OB2) Action(e) = a

(OB3) Dur(Time(e)) = d„
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(OB4) Dur( t )= d

(OB5) Performs(a, Time(e))

and constraint on disturbing actions:

(ND) Sub{t Performs(a t').

Then we can deduce that there exists a situation sit 2, such that:

E_Causes(siti, e, t, sit 2 ) a State(sit 2) = s2.

This procedure can be obtained directly from axioms (6.5.1) and (6.5.3).

Since situations do not have to be primes, the result situations caused by the performance of

an event may not be unique. However, the relative conclusion about the result reference states

can be proved:

Theorem 6.5.2 For any situation sit /, if there exist an event, e and a time t such that

Meets(Time(sit/), Time(e )) a Meets(Time(siti), t),

then the occurrence of event e in situation sit/ after time t will lead to a unique state. That is

E_Causes(sit/, e, t, sit2) a E Causes(siti, e, t, sit 2') =>State{sit 2) = State(sit 2').

Proof: Suppose that the condition

E_Causes(siti, e, t, sit 2) a E_Causes(sit/, e, t, sit 2')

is satisfied. By axiom (6.5.3), we have

Meets(Time(sit/), Time(e)) a Meets(Time(sit 1), t ) a Meets(t, Time(sit 2))

and
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Meets(t, Time(sit 2 '))•

Then, by property (Pro5.1) in chapter 5:

(Pro5.1) Meets(t, t,)AMeets(t, t2) =>Starts(t,, t2) v States(t 2, ti) v Equal(t,, t2)

we have

Starts(Time(sit 2), Time{sit 2'))vStarts(Time(sit 2'), Time(sit 2))vEqual(Time(sit 2), Time{sit 2')).

Therefore, by Corollary 6.2.1, we reach the conclusion that State(sit 2) = State(sit 2'). •

In most existing versions of the situation calculus or event calculus, e.g., [McH69], [Sch90],

[LiS92,94], [PiR93,95], [MiS94], [Sha95] and [KoS97], the effect of an event is represented

by the effect immediately after the occurrence of the event (i.e., Case (B) in figure 6.2). Some

other cases such as delayed effect (Case (E) in figure 6.2) and synchronous effects (Case (A,

C, D) in figure 6.2) are neglected. Axiom (6.5.3) presented above allows other cases besides

that of an effect immediately following the cause and provides an explicit causal relation

between the effect and its causal event. In fact, the temporal constraint imposed in (6.5.3) is

consistent with the so-called (most) general temporal constraint (GTC) (see [McD82],

[A1184],[Sho88], [TeT95] and [KPM98]), which guarantees the common-sense assertion that

"the beginning of the effect cannot precede the beginning of the cause'". There are in total 5

possible qualitative temporal relationships between Time(siti), Time(e), t and Time(siti) that

satisfy (6.5.3). These are illustrated in Figure 6.2, including:

Case (A) where the end of event e coincides with the end of the effect sit 2. In the extreme

circumstance, when time Ms a point with duration of zero, the duration of event e equals to

the duration of effect sit2; that is, the effect becomes true immediately after the beginning of

its causal event, and only holds true while the event is in progress;

Case (B) where the effect becomes true immediately after the end of the event and remains

true for some time (i.e., Time(sit 2)) after the event;
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Case (C) where the effect becomes true during the progress of the event and remains true for

some time after the event;

Case (D) where the effect only hold over some time during the progress of the event (Similar

to case (A), cases (C) and (D) include the extreme circumstance where the effect becomes

true immediately after the beginning of the event, i.e., time Ms a point with zero duration);

Case (E) where there is a time delay, i.e., td, between the event and its effect.

For the notational convenience, in what follows we will use Immediate Sequential Effects to

represent the temporal relationship described in case (B), Delayed Sequential Effects to

denote that in case (E) and Coincident Effects to express that in the other cases.

Theorem 6.5.1 provides a procedure to deduce a conclusion from given knowledge and

observations. Since E_Causes(sitj, e, t, sit2) only tells the change from situation sitj to sit2. It

does not guarantee the persistence of fluents over time t. The deduction about the information

over time t has to be done by means of reasoning by default. Therefore, in this case, one has

to handle the frame problem. Since the causal axioms (6.5.1), (6.5.1)' and (6.5.3) are crucial

in this formalism, it is natural to think about using causal minimization technique to tackle

the frame problem. Also, it can be proved that, by extending the standard circumscription
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policy to include time, the corresponding frame problem with respect to the formalism

proposed here can be dealt with by means of the state-based minimization technique. This

issue will be discussed in details in next section.

6.6 Treatment of the frame problem

Any approach to common sense temporal reasoning must address the frame problem: how

best to specify everything that does not change as a result of an action. This problem has the

extra dimension of time in the formalism presented here. Not only do we have to specify the

values of fluents that are completely unaffected by an action, but also we have to specify the

values of fluents with respect to time elements where they are unaffected. That is we have to

specify times over which fluents change their truth values as the result of performing an

action, as well as time periods over which they persist

Based on the situation calculus, there are mainly two ways for solving this problem:

monotonic and nonmonotonic. Schubert [Sch90] and Reiter [Rei91] propose monotonic

approaches to this problem based on the idea of "explanation closure". For instance, Reiter

provides a solution to the frame problem, using successor state axioms. Each such axiom

prov idesa comple techarac te r i za t ionofa f luen t ' st ru th va lue inthe nex t s ta te Resu l t (a ,s ) .

Also, a number of solutions based on the use of nonmonotonic formalisms have been

proposed. Those techniques include Chronological Minimization [Kau86, Sho86, Lif86],

Causal Minimization [Hau87, Lif871 and State-Based Minimization [McC86, Bak91, Sha97],

For instance, Baker provides a nonmonotonic solution to the frame problem, using situation

calculus and circumscription (State-Based Minimization). As mentioned in chapter 4, these

techniques have been fully discussed and extended by Shanahan [Sha97|. In what follows,

based on the techniques of the causal minimization and the state-based minimization, two

extended circumscription theories will be developed for the treatment of the corresponding

frame problem in TSTC. For simplicity, the two theories are still named as state-based

minimization and causal minimization rcspcctivcly.

6.6.1 Causal Minimization

In TSTC, sincc predicates Causes and E_Causes are employed to represent the causal

change, the causal minimization technique seems to be the best choice to deal with the frame
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problem. Causal minimization [Hau87, Lif87] is a nonmonotonic approach to the frame

problem by means of circumscribing Causes. Circumscribing Causes means that we prefer

sequences of world states in which actions have fewer effects. In causal minimization, every

change has to be caused by actions, and all changes that can not be explained in terms of the

effects of known actions are minimised. As discussed in chapter 4, to deal with the frame

problem more efficiently, several versions of causal minimization have been developed.

[StM94, Sha97, ect.]. However, none of them can be adopted here straightforwardly, because

a richer temporal ontology has been imbedded in the new formalism. In this section, we will

borrow and extend the main idea and technique of the causal minimization to deal with the

frame problem.

Since the predicate Causes is at high level, on one hand, one formula of Causes may map to

more than one corresponding low level formula of E_Causes\ on the other hand, one formula

E Causes can only trace back to one high level causal law. Also the low level expression of

the causation is an instance of the high level causal law. Considering the fact that the high

level causal laws are provided by predicate Causes in the domain description, based on the

principle of separation for the causal minimization technique, the minimization should focus

on the causal predicate Causes. To deal with the frame problem, how to express and use

frame axioms is an important issue. Normally, the frame axioms should specify the fluents

that persist their truth value. In the conventional causal minimization formalism [Lif87], the

frame axiom can be expressed as:

(FA) Sv(Causes(f, a, v) => (Holds(J\ sit) <=>Holds(f, Results(a, sit))).

This states that if there does not exist truth value v (true or false) such that performing action

a causes fluent f to take on truth value v, then the truth value for fluent / will persist from

situation sit to Results(a, sit).

However, in the proposed temporal state transition calculus, TSTC, since there isn't any

fluent as its argument in predicate Causes, it is not possible to represent a corresponding

frame axiom like (FA) directly. Following Shanahan's expression [Sha97], the corresponding

frame axiom can be written as:
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(6.6.1) Affects{f, si, <(/, </„>,</,s?) => Belongstfs t) <=>Belongs{f,\s :).

This axiom stales that il llucnl f is not affected, after time duration d, by the occurrence of

action type <a , </„"%then fluent f will persist its truth value from state si to state si. It insists

that all change is caused by actions/events. Affects is not a predicate symbol of the language,

but is abbreviation defined as follows.

4(fe cts (f* si* <a* ^a>i S2)sdcr Causes(s h <a, </„>, </, ,vj) a Precon l\a , r/„, s/)

a (Belongsif, si)/\—ilh'longs(f, ,v;)

v-i Belongs(f si) a Belongsff, S2)).

The circumscription policy to overcome the frame problem is to minimize predicate Causes,

allowing predicate Holds to vary. In this way, one can obtain the expected minimised model,

and get rid of all unexpected models.

Let D be the conjunction of all domain constraint axioms, O the conjunction of all

observation facts, CA the conjunction of all the causal axioms, and FA the frame axiom

(axiom (6.6.1)). For the purpose of convenience, let X be the conjunction of D, (), CA and

FA. Then the general circumscription theory is

CIRC(I; Causes', Holds).

This theory will provide a solution to the corresponding frame problem. Applications of this

circumscription theory will be shown in next chapter. Also, the treatment of relative

ramification problem will be discussed by way of applying this theory to some classical

examples.

6.6.2 State-based Minimization

In the Temporal State Transition Calculus, Causes(s/, <a, d„>, d, .v2) is introduced to

represent high level causation (changing), where time duration d„ and d play important roles.

In other words, from a given state, the result state does not only depend on what an action

applies, but also depend on how long the action performs and how long since Ihc action has
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performed. Comparing with the conventional Situation Calculus, in which the result situation

is only dependent on the action and the initial situation, the formula introduced here is more

expressive, and, of course, more complicated.

Differing from the case in previous section, since the low level causal predicate E Causes is

an instance ol high level causal law, in this case, the minimization should focus on the low

level causal predicate E_Causes. Since predicate E Causes has got some extra arguments

compared to the Result function as used in conventional Situation Calculus, the predicate Ah

is needed to be re-defined for the sake of applying the circumscription method. Conventional

predicate Ab(f, a, sit) simply states that, as the result of performing action a starting from

situation sit, fluent/will change its truth value. In TSTC, Ab{J\ sit,, t\ /, sit2) shall be used

instead of Ab(f, a, sit). Formula Ab(J\ sit/, e, t, sit2) states that fluent/is abnormal with respect

to a tuple (sit/, e, t, SU2). Sincc there is an extra argument t in predicate Ah, the standard

common-sense law of inertia:

-\Ab(f, a, sit) =>Holds(f, sit) <=>Holds(f, Results(a, sit))

is not applicable to the formalism proposed here. It needs to be revised in order to deal with

the corresponding frame problem correctly.

In the situation calculus, if wc say that fluent/is abnormal, it means fluent/changes its truth

value from the original situation to the corresponding result situation when an action is

performed in the original situation. Also, since in the situation calculus, there arc no

situations defined during the time over which an action is executing, one can not assert

anything about the world during this time. Hence, there is a unique interpretation for the

persistent expression:

Holdsif, sit) <=>I/olds(J, Results(a, sit)).

That is the truth value of fluent/persists from situation sit to the next situation Results(a, sit).

However, in TSTC, there is a time t between the original situation sit/ and the corresponding

result situation sit2 with rcspcct to event e. Therefore, even il fluent / holds the same truth

value in both sit/ and sit2-,wc still can not claim that fluent/ persists its truth value from
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situation sit/ to situation sit2. In fact, there are two cases: fluent / does not change its truth

value over time t, and fluent / does change its truth value over time t. This suggests two

options to revise the standard common-sense law of inertia".

(Option 1) -*Ab(f, sit,, e, t, sit2) =>Holdsif, sit/) Holds(f, sit2);

(Option2) -Abif, sit,, e, t, sit 2) =>Holdsif, sit,) a True(f t) <=>Holdsif, sit 2).

According to the first option, fluent f is not abnormal with respect to the tuple (sit,, e, t, sit2)

implies that fluent /holds true in situation sit, if and only if it holds true in situation sit 2. It

says nothing about the truth value of fluent/over time The second option tells that fluent/

is not abnormal with respect to the tuple (sit,, e, t, sit 2) implies that fluent /holds true in

situation sit, and over time t if and only if it holds true in situation sit 2. This implicitly states

that the truth value of fluent / persists from situation sit, to situation sit 2. This explanation

seems closer to the standard common-sense law of inertia. In situation calculus, it is

expressed as axiom (CLISC), which says that the value of a fluent persists from one situation

to the next situation unless something is abnormal. However, as mentioned above, one of the

main differences between the situation calculus and the TSTC is that TSTC allows some

situations existing between a starting situation and the resulting situation, whereas the

situation calculus does not. So although in situation calculus, there is no problem to define

the common sense law of inertia as axiom (CLISC), in TSTC it does have some trouble. In

fact, if the second option is adopted, some fluents that change their truth values between the

starting situation sit, and the resulting situation sit2 and then change back to their original

truth value in sit2 may be treated as abnormal. This seems not intuitive. In common sense, we

say a fluent is not abnormal with respect to two situations, sit, and sit 2. It means that the truth

value of that fluent in sit, is as same as in sit 2. It is not necessary to put any constraint

between sit, and sit 2. Therefore the first option is the better choice for the revision of the

standard common sense law of inertia in TSTC.

In what follows, the first option is adopted as the revised common sense law of inertia :

(6.6.2) -1Abif, sit,, e, t, sit2) =>Holdsif, sit,) Holdsif, sit2).
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Since sit/ and sit2 in formula Ab(f, sit/, e, t, siti) are not necessarily prime ones, with respect

to f sit,, e and t, one may get different result situations. Following Baker's notation [Bak91],

<f, sit/, e, t, sit2> is used to denote the abnormality, which means that / is abnormal with

respect to sitj, e, t and sit2. To distinguish the abnormalities, the following axiom is imposed:

(6.6.3) <//, sit!, e,, t,, sit2> = <f 2 , sit 3, e2, t2, sit4>

fi =/> a State(sit,) = State(sitj) a <?/ = e2 a // = t2 a State{sit 2) = State(sit 4).

The intuitive meaning of axiom (6.6.2) is that fluent / has the same truth value in both

situation sit/ and situation sit2 unless something is abnormal. It is important to note that,

fluent/is not abnormal with respect to sit/, e, t and sit2 just ensures that/has the same truth

value over Time(siti) and Time(sit2), but does not preserve that the truth value of fluent /

persists throughout time t. Hence, the following two questions still remain:

• Over time t, does the truth value of fluent/persist?

• Over time t, when does fluent/start to change its truth value?

Since formula E_Causes(siti, e, t, SH2) tells us not just what a state will hold in the result

situation, but also the difference among the result situations as the variation of argument t, the

circumscription policy should be circumscribing Ab with both sit2 and t vary. The main idea

of this policy is, if time argument t and situation sit2 are allowed vary, the result situations

will range over all possible situations as the variation of argument t and sit2.

Similarly to the treatment of the previous section, let D be the conjunction of all domain

constraint axioms, which includes axiom (6.6.3), O the conjunction of all observation facts,

CA the conjunction of all the causal axioms, and C the common-sense law of inertia (axiom

(6.6.2)). For the purpose of convenient, let £ be the conjunction of D, O, CA and C. Then the

general circumscription theory is

CIRC(X; Ab\ t, sit2).

This circumscription theory will provide a solution to the corresponding frame problem. Here
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sit2 denotes the result situation. Since this circumscription theory follows the idea of Baker's

approach, one of the important things, which is needed to be mentioned, is the existence-of-

situations axiom should be included in the collection D.

N.B. In the trivial case (case (B) in Figure 6.2), since the argument t in predicate ECauses is

constrained to be equal to the reference time of event e, the circumscription theory is

equivalent to

CIRC(E; Ab\ sit2).

The application of this theory will be shown in next chapter by applying it to some classical

examples.
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CHAPTER 7

APPLICATIONS

The temporal relationship between an event and its effect is complex. The TSTC combines

the advantages ot temporal logic by the way ot allowing explicit time representation and that

of state-based approaches such as the situation calculus which can easily represent the worlds

that remain static except when the agent acts, and where nothing important happens while

actions are being executed.

By means ot illustrating the application of the logic and the techniques for dealing with the

corresponding frame problem proposed here, we now present formalizations of some of the

standard problems from literature in reasoning about action and change gathered in [San94]

and some examples relative to the possible qualitative temporal relationships between

Time(sitj), Time(e). t and Time{siti) that have been discussed in previous chapter. The

classification for this sort of relationships will follow the discussion in section 6.5.

7.1 Immediate Sequential Effects

In this section, we are going to formalise a class of problems which are mostly variants of the

Yale Shooting Problem [Ha\187]. a basic AI test case for reasoning about action and change.

Each scenario involves a very simple domain where a single problem is presented and thus it

is not the best vehicle for demonstrating the generality of our approach. However, it does

establish a certain baseline and allows us to support our claims as the expressiveness and

naturalness of the temporal state transition calculus. This section will begin with the basic

Yale Shooting Problem.

7.1.1 Yale Shooting Problem (YSP)

Consider the following story:
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Originally Fied is alive and the gun is loaded. If the loaded gun is fired at Fred, it

will make him dead. Question: from the original situation, after waiting for some time

the gun is fired to Fred, is Fred still alive?

Intuitively, the issue is that while the load of the gun ought to persist through the waiting

(and then the shooting succeeds in killing Fred), Fred's "alivencss" ought not to persist after

the shooting (indeed, cannot, without risk of inconsistency) although it should persist through

the waiting. However, there might be "non-standard" models where the gun somehow

becomes unloaded, in which case the shooting would fail to kill Fred. Our aim is to formalise

this problem in the logical system presented here which will derive the expected conclusion

that Fred is dead.

In this scenario, there are two fluents, Loaded and Alive, and two actions, Wait and Shoot. To

express this example at high level, the following two action types are used:

<Wait, 60>: waiting for 60 seconds;

<Shoot, 1>: firing the gun which, without loss of generality, can be assumed to take

1 second.

If we have the knowledge that during the action Wait , there are no disturbing actions and

there is no change, then we can assume the following axiom (YCA1), which tells us that from

a initial state performing action Wait for 60 seconds will not cause any change. Axiom

(YCA2) is a causal axiom: Fred dies after a Shoot action so long as the Shoot action is

successful, i.e., the gun is loaded at the shooting time. In this case, the frame problem docs

not arise, since we have complete knowledge about the scenario. Suppose fluents Loaded and

Alive belong to the initial state SQ. We have

(YCA1 ) Causes(so, <Wait, 60>, 60, s())

(YCA2) Causes(so, <Shoot, 1>, 1, s/) =>—iBelongs(Alive, s/)

At this level, the fact that performing action Wait for 60 seconds will not change anything is

expressed. Also if fluents Loaded and Alive belong to state so, then from this state,

performing action Shoot for 1 second will cause the world to change to state s/, in which
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fluent Alive dose not hold if no other disturbing events occur. There are no references to any

specified times. In what follows, we will show how to use Theorem (6.5.1) to deduce the

intuitive conclusion that Fred is dead after shooting.

To express the scenario at low level, two events are defined as:

Ewait: waiting over time TWaih where Dur{T Wait) = 60;

Eshoot-firing to Fred at time TSh„oh where Dur(TSh00t) = 1•

In what follows, Sito is used to denote the original situation, where two facts are observed:

Fred is alive and the gun is loaded, Sit/ the result situation of performing the first action type,

e.g. <Wait, 60>, and Sit2 the result situation of performing the second action type, e.g.

<Shoot, 1>.

(YOB 1) Holds(Loaded, Sito)

(YOB2) Holds(Alive , Sito).

Also, one event is observed starting from Sito:

(YOB3) Performs{Wait, TWan)

together with the knowledge about the temporal constraint

(YTC1) Meets(Time (Sito), Time(Ew ait)) a Time(Ewmt) ~ Twan

and the constraint on disturbing actions:

(YND1) Sub(t, Twdt) a a * Wait => Performs(a, t)

Then, by Theorem 6.5.1 from axioms (YCA1), (YOB1) - (YOB3), (YTC1) and (YND1), we

can deduce that there exists a situation, Sitj, such that:

(YEC1) E_Causes{Sito, Ewait,Tmrn,Siti)
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a State(Siti) = State( Sit0)

a Meets(Tivait, Time(Sit/))

This is a pseudo change. In fact, Ewau causes nothing to change. It is a special event. In

general, if an event occurs, it should cause some change. (YEC1) guarantees the assumption

that we have the complete knowledge about the scenario. Without this assumption, some

ambiguity will arise, which will be discussed later. From situation Sitj, since we have

(YEC1), together with the knowledge:

(YOB4) Performs(Shoot, TShoot)

(YTC2) Meets{Time{Siti), Time(EShoot)) a Time(E Shoot ) = TShoot

(YND2) Sub(t, Tshoot)a a* Shoot ==>—iPerforms(a, t)

again by Theorem 6.5.1, from axioms (YCA2), (YEC1), (YOB1) - (YOB4), (YTC2) and

(YND2), we can deduce the low level causal change, that is there exists a situation, Sit2, such

that:

(YEC2) E_Causes{Siti, Eshoot,TShoot,Sit2)

a —\Holds(Alive, Sit2)

a Meets( Tshoo,,Time(Sit 2))

Therefore, the expected result has been deduced. That is Fred is dead after shooting. At this

low level, the scenario is expressed by assigning each state and each action type a specified

time. Also the temporal relationships amongst situations Sito, Sit/ and Sit2, events Ewaitand

Eshoothave been explicitly expressed as shown in figure 7.1.
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Figure 7.1

In normal cases, as one expects, the answer should be that Fred is dead in Sit 2. However, to

obtain the conclusion by the former method, one needs the knowledge that there are no

effects of performing action Wait. This is an important assumption for the deduction. The

reason will be clear later. Also it will be clear what will happen if this sort of information is

not available. However, this kind of knowledge may not be in the knowledge base. This

means that some ambiguity about the action Wait may arise during the period of performing

action Wait, which would lead to an abnormal case: in the resulting situation of performing

action Shooting for one second, Sit 2, Fred is still alive. This is an unexpected result. The

reason may be the lack of knowledge about the action Waiting. There is no guarantee that no

change should be caused by action Waiting. For instance, the gun might be unloaded while

waiting. In this case, the frame problem may arise. In what follows, we will deal with the

corresponding frame problem by way of applying the two techniques: the state-based

minimization and causal minimization respectively.

State-based Minimization Since this example is the trivial ease in our category for

representing temporal relationships between events and their effects, that is the cllcct of an

event becomes true immediately after the end of the event and remains true for some time

(i.e., Time(sit 2)) after the event, in the circumscription policy, the result situation is allowed to

vary when the predicate Ah is circumscribed.

U-%

V
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In addition, a key component of the stale-based minimisation technique is to lake the

existence-of-suuations axiom as a domain constraint axiom [Sha97). The situation existence

axiom tor the addressed question is

(YS1) isir{Hohis(Alivc. sit) a Hoh1s{L<xulc<Lsit)) a

3sit(ffoMs(Alfoe> sit) a -iHolds(L<xided. sit)) a

3sil{-Hohl<\A]nv. sit) \ Hoh1s{L<xidc<isit)) a

3sit{-.Hohl%4]i\v. sit) a -Holds{Lmde<L sit))

Also, the following axioms tor uniqueness of action t\jve names.. and the domain c'.o>srjrefor

fluents are needed:

(YS2) J> = <Wait, 60>\ <a.d> = <Shoot. 1>)

(YS3) Alrne v/= Loaded)

Proposition 7.1.1 Lei I be the conjunction of (YS1) - (YS5). (YOB't) - <YOB^ . YTC". .

(YTC2>. (YXDI V(YND2). axiom (YCA2) and axioms (6.6.2) - (6.63) then

ClRQZi Ah: su :) \= (YEC2)

Proof: Lee V be ar.> model of CIRC(1: Ab: sit:). Such a model; omsisss o: various decors

the domair of times Y . the domain of situations M j;r . the domain o: accoc. ftpes M>~

the domair. of e\ ents V and the domain of fluents M. as v\e'.'.a* for the cmsrants

MtfTW] £ EMUM [[̂ H e |MU

M n^n e

M[f< Won. 60>D e :M<k,dE»M[I <ShooU 1>D -

\[J<WaiL Time(Es^ef>] ] £ M ^ \[[[<Shooi. Tum^EshtmcP^ e

M[[.4feU € M < M[[Loaded\] e M

interpretations for the relations:

M[[//oWs]] c M X Mfate
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M[[/M]] c |M(/-x \U\si, x |M|C x |M|, x |M|,„,

M[[E_Causes]] c |M|,„ x |M|t. x |M|, x |M|.v/,.

To show that M must satisfy (YEC2), axioms about uniqueness of names for fluents, events

(i.e., (YS2), (YS3)) arc needed. Without loss of generality, we can take

|M[/-= {Alive, Loaded)

|M|<„if/>, = {<Wait, 60>, <Shoot, 1>}

with Alive, Loaded and Wait, Shoot interpreted as themselves.

In this case the argument t in predicate ECauses has been constrained to be equal to Time(e).

Therefore the result situation has been limited. There are eight cases to consider,

corresponding to the four possible combinations of the two fluents, Alive and Loaded, with

the two events Ewait and Eshoot-For each of these eases, we ask which fluent persists and

which does not. We shall consider just one of these eases, sincc the rest arc analogous.

Let Sit' g |M|.V„ be any situation in which fluents Alive and Loaded hold:

{Alive, Sit') e M[[Holds]\,

{Loaded, Sit') e M[[Holds]],

and let Sit" be the result of performing action Shoot for one second starting from Sit'. This

event can be denoted as Eshoot• The temporal relationships among Sit', Eshootand Sit' arc

described as:

Meets(Time(Sit'), Time{Eshoot)) a Meets{Time(Eshoot), Time{Sit'')).

Then from axioms (YCA2) and (YND2), by Theorem 6.5.1 we have

-iHolds(Alive, Sit' ')•

However, we do not know whether Loaded holds in Sit . Suppose it does not. Ihat is wc

have the abnormality:
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{Loaded. Sit'. Est^t, Time{EShoocX Sit"} e M[[/46]].

Now let M" be a model that is identical to M except that M' satisfies:

M [ [--!£]]= M[[-46]] - {Loaded. Sit\ TimeiEshooc),Sit'J.

It is clear that model M" exists because

• Z does not constrain what happens to fluent Loaded when action Shoot performs from

situation Sit'. and

• The exist ence-ot-situation axiom O S1) tells us that in every model there exists a situation

in which fluent Loaded holds true and Alive does not hold true.

This would eliminate abnormality {Loaded. SitE^ cr . TimeiE ^r). Sit "J without

introducing any new abnormalities (since there are only two fluemsji. Thetrefore. M" is

smaller than M with respect to the circumscription policy. This contradicts The assumption

that M is the model of the circumscription.

As already mentioned, the other seven cases are analogous Therefore The p\mpos:.T:on is

proved- "

As pointed oin by Baker '3ak91 . there are two axioms that play crucial rcles in ssiaas-fcssec

minimizaTion. One is the domain closure axiom, like (YS3p in this example iThtojt Thiskmc

of domain constraint. some mysterious nameless fluents ma;, foodaer _s The c>Trerore is Tre

existeoce-of -sicuations axiom, like (VS1 ). This axiom "vjolaT.es the spin: of The

nonmowyiooic enterprise* "Bak ^I . If it forced is to write out cy hand an axiom ;k.e : SI

for each domain we were interested in. state-based-mm:miza.Tion v.ociic nsrciy ckhqsbsmk >

very satisfactory solution to Theframe problem. To overcome Tmspro:uem. a ^eciera. merhrx:

for generating such ar. axiom has been developed by Baker, anicThenexreocera ry >nsE&nan

See [Sfaa97] for Lie defied discission.
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Causal Minimization Io see the causal minimization technique works in TSTC as well, this

approach is also applied to treat the Yale shooting problem.

For the purpose ol causal minimisation, the Yale shooting scenario is represented as follows,

where the constants arc interpreted as before.

(YCM1) Causes(so, <Shoot, 1>, 1 ,s/) =>—iBelongs(Alive, S / )

(YCM2) Holds(Loaded, Sit0)

(YCM3) Holds(Alive, Sit,,)

(YCM4) Performs^ Wait, TW(Ut)

(YCM5) Performs(Shoot, Tshoot)

(YCM6) Meets(Time (Sito), Time(E Wail )) a Meets{Time{Ew<,ii),Time (Siti))

a Meets (Time(Siti), Time{Eshoot)) a Meets{Timc(Eshoot), Time{Sit2))

a Timc{E Wdit) I Wait a Time(Eshoot) I Slwot

(YCM7) Sub(t, Twait)a a* Wait =>-iPerforms(a, t)

(YCM8) Sub(t, Tshoot)A a * Shoot =>-iPerforms(a, t)

(YCM9) Va,d(<a, = <Wait, 60> v <a, d> = <Shoot, 1>)

(YCM10) Vf [ f= A l i v ev/= Loaded)

Axiom (YCM1) is the only causal axiom. Axioms (YCM2) and (YCM5) arc observation

facts. Axiom (YCM6) is the temporal constraint among the original situation, Sito, the event

Ewait,its result situation Sit/, the event Eshootand the resulting situation ol Eshoot> ^',2- Axioms

(YCM7) and (YCM8) are constraints on disturbing actions. Axioms (YCM9) and (YCM 10)

arc axioms for uniqueness of event names, and the domain closure for fluents. I he following
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proposition states that the causal minimisation can deal correctly with the Yale shooting

problem.

Proposition 7.1.2 Let £ be the conjunction of (YCM1) - (YCM10) and axiom (6.6.1) then

CIRC(E; Cause; Holds) |= (YEC2)

Proof: First, we show that all models of the circumscription theory satisfy the following

sentence.

(7.1.1) Causes(s/, <a, da>, d, S2)<=>Belongs(Alive, si) a Belongs(Loaded, s,)

a a = Shoot a da = 1 /\d—\ a -i Belongs(Alive, S2).

From (YCM1) - (YCM10), by theorem (6.5.1) we see that all models have to satisfy the if

half of the sentence. It remains to prove the only-if half. Suppose M is a model of the

circumscription that does not satisfy the only-if half of the sentence. Now consider any model

M' of E that meets the following criteria:

• M' agrees with M on the interpretation of everything except Causes and Holds

• M' |= (7.1.1)

• M' \= Holds(Alive, Sito)

• M' (= Holds(Loaded, Sito)

• M' 1=Holdsif, sit 2) if and only if,

• M' f=Holds(f.; sit1) and M' f= ->Affects(f.\State(sit,), <a, da>, d, State(sit 2), or

. M' (=-1Holds(f.; sit,) and M" |= Affects(f, State(sit,), <a, da>, d, State(sit 2))
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It is clear that such an M exists, and that the extension of Causes in M' is a strict subset of

that in M. So M1 is as small as M with respect to the circumscription policy, but M is not as

small as M'. Then M is not a model of the circumscription. This leads to a contradiction.

Therefore, the only-if half of (7.1.1) must be satisfied by all models of the circumscription.

This agrees that every change has an cause and this kind of causes is minimized.

Given sentence (7.1.1), by (6.6.1) we can obtain,

Holds{Alive, Sit/),

Holds{Loaded, Sit/),

and therefore,

-iHolds(Alive, Sit2).

This proves the proposition.

In the remainder of this section, we use the notations and axioms above for several of the core

problems of the Sandewall test suite [San94]. Each of these problems deals with prediction

from a given situation, sometimes predicting previous facts (retrodicting). For each problem,

we provide an axiomatization of the problem description. The role of Fred is taken by a

turkey in Sandewall collection, hence we make the corresponding change in terminology.

7.1.2 Stanford Murder Mystery (SMM)

In this variant, the turkey is initially alive, and after the actions Shoot and then Wait are

performed in succession (the opposite of the Yale shooting order), the turkey is dead.

Suppose Sito is used to denote the original situation, where one fact is observed: Fred is alive,

Sit1 the result situation of performing the first action type, e.g. <Shoot, 1>, and .Sit2 the result

situation of performing the second action type, e.g. <Wait , 60>. We are going to determine

when the turkey died, and whether or not the gun was originally loaded. This is a temporal
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explanation problem, i.e. one of the methods to deal with such a problem is to predict aspects

of the situation backwards in time.

The following axioms are employed to describe the SMM scenario:

(SMM1) Holds(Alive, Sit 0)

(SMM2) -iHolds(Alive, Sit2)

(SMM3) Performs(Shoot, Tshoot)

(SMM4) Performs(Wait, TWau)

(SMM5) Meets(Time(Sito), Time(EShoot)) a Meets(Time(E Siloot), Time(Sit/))

a Meets(Time(Sit/), Time{Ewait))a Meets(Time(Eiv ail), Time{Sit2j)

a Time(Ewau) T̂ waita Time(Eshoot) T'shoo:

(SMM6) Causes(so, <Shoot, 1>, 1, s/) =>—iBelongs(Alive, s/)

(YCM7) Sub(t, Tshoot)a a * iS7?oo/=> -iPerforms{a, /)

(YCM8) Sub(t, Twait)a <z* ffa/7 =>-iPerforms(a, t)

(YCM9) Va,d(<a, d> = <Shoot, 1> v <a, */>= <Wait, 60>)

(SMM 10) v/(/'= /4//v£? v/= Loaded)

The desired explanation is simply that the gun was loaded in the original situation Sito, and

the turkey died as a result of the shooting. Causal minimization works in this case because the

explanation doesn't demand the introduction of any new effects of actions.
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Proposition 7.1.3 Let 2 he the conjunction of ( S M M I ) to (SMM10) with axioms ( 6 , 6 . 1 )

then

circ(z; Causes; Holds) 1= Holds(Loaded, Slto) a -\Holds(Allve t Sit/)

Proof: It is similar to the proof of Proposition 7.1.2. [H]

The state-based minimization also can give the right answer. As pointed out by Baker

[Bak91] in addition to the result situation, the situation constants Sit,) and Sit2 also must be

allowed to vary during the circumscription of Ah. Then the corresponding circumscription

policy for this problem should be circumscribing Ah with all three situations Silo, Sit, and Sit2

vary.

7.1.3 Russian Turkey Shoot (RTS)

This variant is slightly different from the basic Yale shooting scenario. Initially the gun is

loaded and the turkey is alive. Instead of a waiting action, the gun's chamber is spun first,

then shooting action is performed, following the spin action, the value of the Loaded fluent is

unknown. Then it is not expected to be able to conclude whether or not the turkey is alive

after the action sequence Spin and then Shoot. I he issue of this variant is the ability of the

representation to deal with uncertainty in the effects of actions. Since there are no predicates

or functions to cope with uncertainty in TSTC, following Kartha and Lifsebitx [KaL94J, a

new predicate Releases is introduced, f ormula ReleasesiJ, s, <a, da>, d, s') states that it is not

known whether or not the fluent / holds in the result state s' after a time duration d, the action

type <a, da> is performed from the state s as long as no other disturbing action has occurred.

Similarly, for convenience of expression at low level, a predicate /•, Releases is needed. The

formula E ReleasessiJ, sit/, e, I, sit 2) has the meaning that the world changes from situation

silt into situation sit2 after time t, where no other disturbing events occur, however, Jt is

unknown whether or not fluent /holds in situation S1I2.

Following the expression of the basic Yale shooting scenario, in stead of action type ' Wait,

60> and event Ewml, we have
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<Spin, 2>: spinning the gun for 2 seconds,

and

Espin- spinning the gun over time TSpin , where Dur(T Spin ) = 2.

Then the Russian turkey shooting scenario can be represented as follows.

The temporal constraints among the relative situations and events can be described as

(RTS1) Meets(Time(Sito), Time(EsPi„)) a Meets(Time(Es Pi„), Time(Siti))

a Meets(Time(Siti), Time(Esiwot)) a Meets(Time(EShoot), Time(Sit 2))

a Time(Es pm) ~ Tspina Time{Eshoot)= Tshoot

Originally, the gun is loaded and the turkey is alive in situation Sito'.

(RTS2) Holds(Alive, Sit 0)

(RTS3) Holds(Loaded, Sito)

From this situation, event EsPi„occurs, that is action Spin is performed for 2 seconds,

(RTS4) Performs(Spin, TSpin)

It is known that following the spin action, the value of the Loaded fluent is unknown.

(RTS5) E_Releases(Loaded, Sito, EsPin, TsPin, Sitj)

Together with the knowledge that there are no disturbing events:

(RTS6) Sub(t, TSpin) a a* Spin -iPerforms(a, t)

(RTS7) Sub(t, Tshoot)a a± Shoot =>-,Performs(a, t)
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(RTS8) \/a,d(<a, d> = <Spin, 2> v <a, d>= <Shoot, 1>)

One can conclude that it is not known whether or not the gun is loaded in situation Sitj. This

is the main issue of this scenario, which says that the action Spin is a possible cause of the

gun becoming unloaded. Therefore, from situation Sitj we can not conclude that after

shooting the turkey is not alive. The only explanation is:

If the gun is loaded in situation Sit], by the causal law:

(RTS9) Causes(so, <Shoot, 1>, 1, si) =>—iBelongs(Alive, s/)

we can conclude that the turkey is not alive in situation Sit2:

E_Causes(Sit], EsiwohTshootsSit2)

where —iHolds(Alive, Sit 2).

Otherwise, if the gun is unloaded in situation Sit], by the axiom (6.6.1), we obtain that the

truth value of fluent Alive will persist, that is

Holds(Alive, Sit2).

We see that the TSTC can handle the uncertainty in the effects of events, together with the

introduction of a new predicate Releases.

7.2 Coincident Effects

In the previous section, some benchmark examples in reasoning about action and change are

represented using the formalism provided in chapter 6. All the examples have one common

character that is the effect of an event becomes true immediately after the end of the event

and remains true for some time (i.e., Time(sit2 )) after the event. However, the temporal

relationship between an event and it effects is not as simple as this. It is in fact quite complex

and interesting. To see the expressive power of TSTC, in the rest of this chapter we will
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demonstrate some other cases, which have been categorized in last chapter. First, let us

examine an example in which the end of event e coincides with the end of the effect sit2.

Consider the following simple example:

There is a flashlight with a button for flashing it. The light is on only when the

button is being pressed down and is still being pressed down. Suppose that from a

situation where the flashlight is off the button is pressed and lasts for 5 seconds,

then is released.

In this example, there are only one fluent Flashlight On and two actions Press Button and

Release Button involved. The expected result should be that the flashlight is on for the 5

seconds while the button is pressed and then off after releasing the button.

In addition to the names of fluent and action, the following notations are employed for

representing this scenario:

<Press Button, d>: action type, press the button for duration d,

<Press Button, 5>: action type, press the button for 5 seconds,

<Release Button, 0>: action type, release the button at a time point,

EPress Button- event, press the button over time TPress Button,

where T)ur(Tp ress Button) ~~ 5,

ERelease Button- event, release the button over time Tn e i ease Button,

where Dur(Ti{eieaSe_Button) 0.

This is the extreme circumstance of case (A) in the category for representing temporal

relationship between an event and it effects given in chapter 6. The time t is a point with

duration of zero, the duration of event e equals to the duration of effect sit2\ that is, the effect

becomes true immediately after the beginning of its causal event, and only holds true while
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the event is in progress. Another issue of this example is to specify the end point of a time

entity with duration. It will be clear through the expressing of this example why it is

necessary to involve this issue. The high level causation for this example can be expressed as:

(FBI) Causes(s 0, <Press Button, d>, 0, sj) a Dur(d) > 0

=>Belongs(Light_On, sj)

(FB2) Causes(so, <Release Button, 0>, 0, sj)

=>-iBelongs{Light On, sj)

Here the duration between the beginning of performing action PressButton and the

beginning of the result situation is zero. It is a trivial case to our general definition of duration

type in chapter 6. Since its relative time entity is a time point, it must be right closed.

Therefore, the reference time of the corresponding result situation must be left open in order

to satisfy the temporal constraints.

To express this knowledge at low level, suppose that in the original situation, Sito, fluent

Light On does not hold, and from Sito action Press Button is performed over time T Press _ B utton,

leading to the result situation Sitj after time point T. Then action Release Button is performed

over time TReiease_Button, leading to the result situation Sit2 after time Tj. The temporal

relationships among Sito, T, 1pressButtons Sit], PReiease Button, Ti and Sit2 are interpreted in figure

7.2. Then we have

(FB3) —\Holds(Light_On, Sito)

(FB4) Performs{Press Button, 1Press Button)

(FB5) Meets(Time (Sito), T) a Meets(T, Time {Sit\ )) a Meets(Time (Sito), Tpress Button)

(FB6) Dur(T) = 0 a Dur{Tp ress Button) = 5

(FB7) Performs(Release_Button, T-Release Button)
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(FB8) Meets(Time(Siti), T t) a Meets(Tj, Time{Sit 2)) a Meets(Time(Siti), TReiease Bu„on)

a Meets{T p ress _Bu tton , Tj) a Meets(T Reiease^_Button, Time{Sit 2))

(FB9) Dur(Ti) = 0 a Dur{T Reiease Button ) = 0

(FB10) Tpress Button)a a ^ Press Button =>-iPerforms{a, /)

(FBI 1 )5^, TRelease_Button ) a a ^ Release Button =>-iPerforms(a, t)

(FB12) \/a,d(<a, d> - <Press Button, d> A ( d <5 \ / d =5 ) v <a, d>= <Release Button, 0>)

(FB13) V/(/"= Light On)

S i t ,

1 Re l ease Bu t ton

The desired explanation is simply that the light is on in situation Sit] as
Figure 7. 2

the consequence of performing action Press Button over time Tpress_Button,

and then the light becomes off in situation Sit2 as the consequence of performing action

Release Button over time T^eiease Button• That is

(RFB1) E_Causes(Sito, Ep re ss_Button, T, Sit\) a

Holds(Light_On, Sit/) a Dur(Time(Sit/)) = 5

(RFB2) E_CaUSes (Sit/, E Release Button, T I, Sit2) a

-1Holds (Light_On, Sit2)

Proposition 7.2 Let Z be the conjunction of (FBI) to (FBI3) with axioms (6.6.1) then
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CIRC(E; Causes; Holds ) t= (RFB1) a (RFB2).

Proof: A proof in the same style as that of Proposition 7.1.2 is easily constructed. •

By now, we correctly represent the fact that the effect becomes true immediately after the

beginning of the event, and explicitly express the temporal constraints of the relative

temporal entities.

7.3 Delayed Sequential Effects

One of the important abilities for formalisms to reasoning about actions and change is to

represent the phenomenum that there is a time delay between an event and its effects. In this

section, we will show how to deal with this issue using TSTC.

7.3.1 The Expression of the Scenario

Consider the following example, which is modified from an example presented by Gelfond,

Lifschitz and Rabinov in [GLR91]:

25 seconds after a pedestrian starts pressing the button at the crosswalk, the

pedestrian crossing light turns to yellow from red, and after another 5 seconds it

turns to green.

Three fluents to describe the state of the pedestrian crossing light are used:

RedOn : the light at the crosswalk is red;

YellowOn : the light at the crosswalk is yellow;

GreenOn : the light at the crosswalk is green.

Also, one action type is employed:

<PressButton, 0>: pressing the button punctually that takes no duration;
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and one event:

E Press Button : pressing the button at time point Tpress .

Again, the issue of specifying the end point of a time entity with duration is involved. We

assume that in any situation there is exactly one of the three fluents that holds true:

(PCL1) Holds{RedOn, sit ) a -\Holds{YellowOn, sit) a —,Holds(GreenOn, sit)

v -\Holds{RedOn, sit ) a Holds(YellowOn, sit) a -iHolds(GreenOn, sit)

v —iHolds(RedOn, sit )a ->Holds(YellowOn, sit) a Holds(GreenOn, sit)

The high level causal axioms in this case are as below:

(PCL2) Belongs{RedOn, so)a Causes(so, <Pressbutton, 0>, 25, si)

=>Belongs(YellowOn, sj)

(PCL3) Belongs{RedOn, so) a Causes(so, <Pressbutton, 0>, 30, si)

=>Belongs{GreenOn, si)

Let Sit 0 denote a situation in which the red light is on, and the yellow and green lights are off.

By axiom (PCL1), this knowledge can be expressed as:

(PCL4) Holds{RedOn, Sit 0)

Assuming in situation Sito event EpresSButtonoccurs, and let Sit; and Sit2 denote situations, 25

seconds and 30 seconds after the beginning of event EpresSBUtton, respectively, then according

to (PCL1)-(PCL4) together with the knowledge that for time T2 (see figure 7.3)

(PCL5) Sub(t, T2) A a* PressButton => Performs(a, t)

by Theorem 6.5.1, we can deduce:

(7.3.1) E_CaUSes (Sito, E PressButtoni Eh Sit 1)
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where Dur(Tj) 25 a Holds(YelloxvOn, Sit/) a Dur(Time(Sit /)) < 5

and

(7.3.2) E_Causes (Sito, EpressButt0l ,, T2, Sit2)

where Dur{T 2) = 30 a Holds(GreenOn, Sit2)

Here we successfully express the fact that there is a delayed time, say TQI, standing between

the reference time of event EpressButton and the reference time of the situation Sit/, that is:

Meets(Time(Ep ressBu ,ton), ^ d /) a Meets( T01•>Time{Sit/))

Similarly, there is a delayed time, say TD2 , standing between Time(E PressButton ) and Time(Sit 2),

that is:

Meets(Time(Ep ressButton ), TD2) ^ Meets( T d2, Tifyie(Sit2})

The above knowledge can be graphically presented as figure 7.3:
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Figure 7.3

Similar to the case in the Yale Shooting scenario, with respect to this expression the frame

problem arises. That is, during the delayed time TDI\ do all the fluents persist their truth

value? In next section we shall propose a nonmonotonic solution to this problem.
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7.3.2 The Pedestrian Crossing Light Problem

In our crossing light example, the issue is how to represent the persistence of all the fluents'

truth values over the delayed time, i.e., if starting from the original situation Sito, action

PressBotton is performed, does fluent RedOn persist over the next 25 seconds?

To deal with this issue by means of using the State-Based Minimisation technique, the

existence-of-situations axiom is needed as a domain constraint axiom.

(PCL6) 3sit(Holds(RedOn, sit)A -iHolds( YellowOn, sit)A—\Holds(Green On, sit)) A

3sit(—iHolds(RedOn, sit)AHolds(YellowOn, sit)A—iHolds(GreenOn, sit)) A

3sit(—iHolds(RedOn, sit)/\-iHolds( YellowOn, sit)/\Holds(GreenOn, sit))

In addition, the following axioms for uniqueness of event names, and the domain closure for

fluents are needed as well:

(PCL7) \/a,d(<a, d> = <PressButton, 0>)

(PCL8) Vf{f= RedOn v /= YellowOn v /= GreenOn)

Let Yo be the conjunction of axioms (PCL1)-(PCL8) and (6.6.2)-(6.6.3), and let Yi be the

circumscription of Ab in Yo with t and sit varied:

Yi = CIRC{Y 0; Ab-1, sit)

We expect that Yt ensures the following conclusions

(7.3.3) E_Causes(Sit 0, EPresSButton,Tj, Sit/)

a Holds(YellowOn, Sit/) a Holds(RedOn, T/)

(7.3.4) E_Causes (Sito, EpreSsButtoniT/, Sit/)/\E _Causes (Sito, EpresSBUtton•>T2, Sit2)

a Holds( YellowOn, T3) a Holds(GreenOn, Sit2)
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Where Sito, Sit/, Sit2, Tj and T2 are interpreted as in figure 7.3, and Tj is the time connecting

Tj and Time{Siti).

Proposition 7.3 Yi |= (7.3.3) and (7.3.4)

Proof: Let M be any model of Y\. Such a model consists of various domains: the domain of

times |M|f, the domain of situations \M\ sih the domain of action types |M|<„, d>,the domain of

events |M| e, and the domain of fluents |M[/, as well as for the constants:

M[[<Sfr0]] e \M\sih

M[[<PressButton, d>]\ e a>,

M[[<PressButton, Time{E PressButton )>]] e |M| e,

W\.[[RedOri\\ E M[[YellowOn]] E M[[GreenOn]\ G |M ,̂

interpretations for the relations:

M[[Holds]] c \M\FX |MU

M[[Ab]] c \M\fX |MU x |M| e x |M|, x |M|S(7,

M[[E_Causes]] c |M|s/v x |M| e x |M|, x \M\ sit .

To show that M must satisfy (7.3.3) and (7.3.4), axioms about uniqueness of names for

fluents, events are needed. Without loss of generality, we can take

|MLf- {RedOn, YellowOn, GreenOn}

|M|<fl, a>= {<PressButton, 0>}

with RedOn, YellowOn, GreenOn and EpresSBUttoninterpreted as themselves.

For a time T, suppose E_Causes(Sito, EpresSButton,T, Sit/ ' ) i s t rue .I f t imeT= Tj, by Theorem

(6.5.2), we have State(Sitj') = State(Siti). Then by axioms (PCL1) and (7.3.1) we have

(7.3.5) Holds(RedOn, Sitj').
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The question left is to prove that it is impossible for time T to be a proper part of T,, starting

together with T,, such that (7.3.5) is satisfied. To prove this, by reduction to absurdity,

suppose this is true, that is

E_Causes(Sit 0 , E PressButton , T, Sit, ') a Starts(T, T,) a Holds(RedOn, Sit,')

Therefore we have,

(7.3.6) <RedOn, Sit 0 , E PressB u,t on , T, Sit, '> e M[[/l/)]]

From (PCL4), (7.3.1) and (6.6.3), we know there is another abnormality in model M:

<RedOn, Sit 0 , E PressButton , T,, Sit,>e M[[/16]]

The existence-of-situations axiom (PCL6) and the domain constraint axiom (PCL1) guarantee

the existence of some situation Sit,", in which RedOn holds, but YellowOn and GreenOn do

not. Then we would be able to further minimise the extension of abnormality by making Sit,"

as the result situation with respect to Sito, Ep ressBu tton and T, i.e., we could define another

model M' of Yi which is exactly like M except that:

E_Causes(Sito, E PressBul0 n, T, Sit,") a Holds{RedOn, Sit,")

M'[[/16]] = M[[^/?]] - <RedOn, Sit 0 , EPreSsButton, T, Sit/ ">.

This would eliminate abnormality (7.3.6) in model M' without introducing any new

abnormalities. There may be some other abnormalities of predicate Ab. For instance, suppose

after time T,, State(Sit,) may persist over a non-prime time, say T, ', where Meets(T,, T,').

Since by axiom (5.2.5) in chapter 5, the time structure employed here is discrete and each

time can be represented in the form of adjacent union of a sequence of prime times, we can

represent T,' as p,® p 2©...© p n where /?, (i=l,2,...,n) are prime times. Then, by axiom (6.6.2)

and (6.6.3), we know <RedOn, Sito, Ep ressBu tton, T,®p,, Sit p>, <RedOn, Sito, E PressButt on,

T,®p,® p 2 , Sit p '>, etc., are different from <RedOn, Sit 0 , E PressBu „on, T,, Sit,> and all belong to

M'[[y4Z)]].But this will not bother our proof since in this case we are not interested in those
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abnormalities, i.e., they belong to M[[^4Z?]]as well. Therefore we obtain that M' is smaller

than M with respect to the circumscription.

Hence M could not have been a minimal model of Yo, contradicting the assumption that it

was a model of Y\. Therefore we have proved (7.3.3). Similarly we can prove (7.3.4). i

It is worth noting the important role played by the time structure proposed in chapter 5 in this

proof. Otherwise, the description of the distinction of abnormalities would not be as easier as

that in this proof. The other issue is in the circumscription policy: while circumscribing

predicate Ab, time t is allowed to vary in parallel with the result situation sit2. This guarantees

the situations over time t can be checked.

Also, the causal minimisation works correctly for this example. The formalisation and the

proof of the relative proposition are similar to that in section 7.1. We will not formalise it in

detail here.

7.4 Point-Sensitive Effects

As mentioned in the previous chapter, how to express duration type is an interesting issue in

temporal reasoning about actions and change. In some cases, it is necessary to explicitly

specify the value of co in the expression of a duration type in order to obtain a unique

expression for the relative time entity. Also, the specification of the value of co helps to deal

with the point-sensitive effects of actions. In this section, we will use the throwing ball

example to show how to handle this issue in TSTC.

Consider the following scenario:

Throwing a ball into the air: after throwing, the ball will go up for 8 seconds

and then immediately go down

In the previous chapter, we have already discussed this example. According to classical

physics, while the ball is going up (for 8 seconds), the velocity is not zero (and again, not

zero when the ball is going down). Only at the apex (the stationary point) where the ball is
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neither going up nor going down, the velocity becomes zero (the ball is stationary). There are

four fluents involved:

Ball In Hand:

Ball Going Up:

Ball Going Down:

Ball Stationary.

the ball is in one's hand;

the ball is going up;

the ball is going down;

the ball is stationary,

and one action type:

<Throw, 1>: throwing the ball, suppose using 1 second,

At low level, one event can be described as:

Erhrow' throwing the ball over time TThrow,where Dur{TThrow)= 1.

This example falls in case (F) in the category for representing temporal relationship between

an event and its effects in the previous chapter. Another issue of discussing this example is to

show the necessity of specifying the status of the end point of a time entity. The high level

causality can be expressed as:

(TBI) Causes(so, <Throw, 1>, 1, sj) => Belongs(Ball_Going_Up, sj)

(TB2) Causes{so, <Throw, 1>, <8, open>, s/) => Belongs{Ball_Stationary, si)

(TB3) Causes(so, <Throw, 1>, <8, closed>, sj) => Belongs(Ball Going Down, sj)

To express this knowledge at low level, suppose Sit 0 is the original situation in which the Ball

is held in one's hand. The expected result of the occurrence of event EThrowis: immediately

after the event the fluent Ball_Going_Up holds true for 8 seconds, then fluent Ball_Stationary

holds true at a time point, and fluent Ball Going Down holds true successively. This

knowledge can be formalised as following:



Chapter 7 Applications 156

In the original situation, fluent Ball In Hand holds true:

(TB4) Holds(Ball_In Hand, Sito)

Also, the action Throw is performed from this original situation over time TThrow

(TB5) Holds(Performs, Tn r0 w)

Suppose there are two times Ti and T2 that are met by the reference time of situation Sito, and

Sit1, SU2 and Sit3 are three situations immediately follow the times Trhrow,Tj and T2

respectively. The status of the right end of T) and T2 is shown as

(TB6) Dur{Ti) = 8 a REnd{Tj) = open a Dur(T2) = 8 a REnd(T 2) - closed

The temporal constraints among the relevant times can be expressed as:

(TB7) Meets (Sito, Trhrow.) a Meets (Sito, T/) a Meets (Sito, T2)

a Meets(Trhrow, Sit/) a Meets(Tj, Sit2) a Meets(T2, Sit3)

The constraint on disturbing actions can be written as:

(TB8) Sub(t, T2) A a* Throw => Performs(a, t)

The axioms for uniqueness of action type names, and the domain closure for fluents:

(TB9) Va,d{<a, d> = <Throw, 1>)

(TB10) Vf{ /= Ball Jn Hand v/= Ball Going Up

v f— Ball Goning Down v /= Ball Stationary)

Let Y0 be the conjunction of axioms (TBI)-(TBIO) and axiom (6.6.1), and let Yj be the

circumscription of Causes in Yo with Holds varied:
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Yi = CIRC{Yo; Causes-, Holds)

Then we expect that Yi ensure the following conclusions

(7.4.1) E_Causes(Sit 0 , Efhrow, T nrow , Sit,)

Holds(Ball Going Up, Sit]) a True(Ball Going Up, 7j)

(7.4.2) E_Causes{Sit 0 , ETh row , h, Sit 2 )

Holds{Ball_Stationay, Sit2)

(7.4.3) E_Causes{Sit 0 , E Throw , T 2 , Sit 3)

Holds(Ball_Going Down, Sit3)

Where Sito, Sit/, Sit 2, Sit3 T s, T2 and T3 are interpreted as in figure 7.4. T3 is the time extension

of the situation Sitj, i.e. state State(Sitj) holds true with respect to time T 3 . In fact, there exists

a situation, whose reference state is State(Sitj) and reference time is Time(Sitj) © T3. TDI is a

delay time standing between the reference time of event EThrowand the reference time of

situation Sit 2. TD2 is another delay time standing between the reference time of event Erhrow

and the reference time of situation Sit3. It is worth noting that the duration of time TDI and the

duration of TD2 are the same. However, the value of REnd (TNI) is open, while that of

REnd (TO 2) is closed. The fluent Ball Stationay holding true in situation Sit 2 is a punctual-

change type of effects, since the reference time of situation Sit2 is a time point. The following

proposition is the expected conclusion for the example.

Proposition 7.4 Yi |= (7.4.1), (7.4.2) and (7.4.3).

This proposition can be proved following the same style of the proof as in Proposition 7.1.2.
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7.5 Ramification

Often, it is impractical to list explicitly all the consequences of an action/event. Rather, some

of these consequences will be ramifications; that is, they will be implied by domain

constraints [GiS87a]. In this section, we are going to demonstrate that some of the examples

for the ramification problem can be handled by the TSTC.

Consider the so-called "walking turkey shoot" scenario [Bak91], a variation of the Yale

shooting problem, in which a new fluent Walking is added and originally the turkey is

walking. Also the shooting action, which directly causes the turkey to be not alive, also

indirectly stops the walking. This indirect effect can be represented as a domain constraint

stating that in order to be walking, the turkey must be alive:

(WTS1) Holds{ Walking, sit) =>Holds(Alive, sit)

In addition, the walking turkey shoot scenario has the following axioms:

(WTS2) Causes(s 0, <Shoot, 1>, 1,sj)=> ->Belongs(Alive, s/)

(WTS3) Holds(Loaded, Sit0)
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(WTS4) Holds(Walking, Sito)

(WTS5) Performs{Wait, TWait )

(WTS6) Performs(Shoot, T sh oot)

(WTS7) Meets(Time(Sito), Time {E Wa it)) a Meets{Time {Ewau), Time(Sit/))

/\Meets(Time(Siti), Time(E Shooi)) a Meets{Time(E shoot), Time(Sit 2))

(WTS8) Sub(t, Twait)a a* Wait =>-iPerforms(a, t)

(WTS9) Sub(t, Tshoot)a a * Shoot =>-iPerforms(a, t)

(WTS10) \/a,d(<a, d> = <Wait, 60> v <a, d> = <Shoot, 1>)

(WTS11) Alive v/= Loaded v/= Walking)

(WTS12) 3sit(Holds(Alive, sit) a Holds(Loaded, sit) a Holds{Walking, sit)) a

3sit(Holds(Alive, sit) a Holds(Loaded, sit) a -iHolds(Walking, sit)) a

3sit(Holds(Alive, sit) a —>Holds(Loaded,sit) a Holds(Walking, sit)) a

3sit(IIolds(Alive, sit) a —>Holds(Loaded,sit) a —>Holds(Walking,sit)) a

3sit(—iHolds(Alive, sit) a Holds(Loaded, sit) a -iHolds(Walking, sit)) a

3sit(-iHolds(Alive, sit) a -iHolds(Loaded, sit) a —>Holds(Walking,sit))

These axioms are similar to those for the basic Yale shooting scenario, except that instead of

stating that the turkey is alive in the original situation, (WTS4) states that the turkey is

walking in situation Sito. Also, since a new fluent Walking is added, the domain closure for

fluents is modified as axiom (WTS11). (WTS12) is the existence-of-situations axiom. This

axiom comes from the fact that not(Alive) and Walking are in conflict with each other.

Therefore not(Alive) and Walking could not both hold in a consistent state. The expected

conclusion is neither fluent Alive nor fluent Walking holds in situation Sit 2.
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Proposition 7.5 Let H is the conjunction of (WTS1) - (WTS12), and axioms (6.6.2) - (6.6.3)

then

CIRC(Z; Ab\ sit2) f= —iHolds(Walking, Sit2).

Proof: By (WTS4) and (WTS1), it is easy to see that

Holds(Alive, Sito).

Then, following straightforwardly the same style of proof as in that of Proposition 7.1.1, we

can obtain

-iHolds (Alive, Sit2).

Finally, by domain constraint (WTS1), we reach the conclusion that fluent Walking does not

hold in situation SU2. I I

Baker [Bak91] asserted that the conventional causal minimization cannot handle the

ramification problem correctly. Since then, several proposals [Lin95, Lin96, Sha97 etc.] have

been put forward for extending conventional causal minimization to deal correctly with

ramification problem. We believe it is not difficult to extend further the causal minimization

that has been extended in TSTC to treat the relative ramification problem. In this dissertation,

we are not going to address this issue in detail.

7.6 Discussion

In this chapter, a number of applications are demonstrated in order to show the expressive

power of TSTC. Through the examples presented above, several issues have been addressed.

The first one is how to explicitly represent the causal relationship between the effect and its

causal event. This issue has been largely neglected by the researchers in the community of

reasoning about action and change. Examples that demonstrate the case where the effect

becomes true during the progress (section 7.2) and the case where there is a delay between

the effect and its causal event (section 7.3) are successfully expressed.
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The second issue is how to distinguish the difference between a temporal duration and its

corresponding time entity, which causes problems for some approaches, such as that in

[GLR91], This issue is correctly addressed by representing the throwing a ball example in

section 7.4. Our approach is based on the introduction of the notion of duration types. In this

example, the ball will reach a stationary status at a time point, and in both sides of this time

point the ball will be in different status {Going Up and Going Down). Without employing

the duration type and specifying the end status of the corresponding time entity, one may face

the difficulty of obtaining a unique causal result.

The third one is how to reason formally about what changes and what doesn't change as the

result of some events, i.e., the frame problem. In the light of nonmonotonic reasoning, there

are two popular techniques for the frame problem: Causal Minimization and State-based

Minimization. Rather than generating new methods, these two approaches have been

extended in TSTC and applied to the examples above.

The fourth issue is to represent the uncertain effects. By way of introducing a predicate,

Releases, the Russian Turkey Shoot example has been represented. Although, we did not

discuss this issue further in detail, the successful expression of RTS scenario in TSTC shows

the ability to cope with this issue in the formalism proposed here.

Finally, by representing the Walking Turkey Shoot scenario, the ramification problem has

been touched upon, although we do not discuss the ramification problem in detail.
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CHAPTER 8

CONCLUSIONS

An important aspect of common sense reasoning is the ability to reason about action

and change. The possible of change makes the passage of time crucial. This thesis has

investigated issues in formal reasoning about action and change, especially focused on

the relative temporal representation. In this chapter, the summary of this work is given

first. Then a number of ways in which the work in this thesis could be extended are

suggested.

8.1 Summary

There are mainly two folds of contributions of this thesis. One of them is the

examination of the conceptual issues that arise in formalising dynamic domains. The

other is the development of a general formalism for reasoning about action and

change over time in which temporal ontology and causal notions are together

represented more explicitly than they typically have been in the past.

In this work, some of the fundamental concepts of temporal knowledge representation

and the relative issues have been examined. Among them, time plays a central role.

The time structure proposed in this thesis allows us to address some of the temporal

issues in temporal knowledge representation such as the so-called intermingling

problem and the dividing instant problem correctly. Also, it allows us to distinguish the

negation of a given fluent and the negation of involved sentences.

To represent and reason about action and change, some key terms, such as states,

situations, actions and events are examined. States are treated as time independent -

the state at a given time does not necessarily have to be different from the state at

another time, while situations are treated as time dependent - a situation is an

association of a given state of the world with a particular time over which the world
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maintains in that state. Hence, each situation must be taken as unique. In other words,

two situations that have different reference times must be treated as different, no

matter whether the states at these two times are the same or not. Additionally, since

each situation is associated with a particular time, there should be, on intuitive

grounds, a constraint that excludes the case that an action may change a situation to an

earlier situation. The causal schema taken in this work agrees to this intuitive

constraint.

The distinction between states and situations is formally made by way of defining a

situation as a pair of a state and a time over which the world holds in the state. In an

analogous way, a formal distinction between actions, action-types and events is

proposed, which allows the expression of common-sense causal laws at high level. It

is shown how these laws can be used to deduce state change over time at low level,

when events occur under certain preconditions.

One major advantage of the Temporal State Transition Calculus proposed in this

thesis is its approach that allows expression of high level common-sense knowledge,

and also supports an explicit representation of time and occurrence of events at a low

level. At a high level, the common-sense knowledge can be expressed without any

temporal reference, making no reference to any specific times. Although these are

relationships involving relative time, they are time independent in that they hold for

all time. At low level, knowledge makes references to some given specific time. The

Temporal State Transition Calculus combines the knowledge at both high level and

low level to represent and reason about action and change by way of employing the

high level causal relations as common-sense causal laws to deduce corresponding

conclusions at low level.

Another important issue that has been addressed is to do with temporal durations. For

interval-based temporal knowledge representation, the issue of how to deal with the

relationship between a time duration and its relative time entity is quite interesting and

important. A realistic characterisation of most of the examples in chapter 7 would require

such a capability. In this thesis, the notion of duration types has been introduced. This

helps us to correctly manage the relationship between a temporal duration and the
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corresponding time entity. Using this method, together with the special treatment of

time allow us to express the temporal relationships between actions and their effects, e.g.,

time-delayed effects, point-sensitive effects and coincident effects of actions, which

involve this issue and suffer some of the existing systems, successfully and more

efficiently.

Rather than providing any novel technique, the conventional nonmonotonic reasoning

techniques, such as causal minimisation and state-based minimisation are correctly

extended, to deal with the frame problem, one of the most important and difficult problems

in reasoning about action and change. As side effects, the other two related problems,

ramification problem and qualification problem, are also briefly addressed.

As the objective of the Temporal State Transition Calculus, the formalism combines

many of the existing techniques into a unified, formal framework by way of enriching

temporal ontology to the state based formalism and separating the high level and low

level change in a natural way. In general, to reason about action and change, there are

mainly four questions that need to be answered: one is whether a proposition is true or

not; the second is when it becomes true, i.e., the temporal relation between actions and

their effects; the third is how long it may persist; and the last is what causes it to be

true. Most of the existing formalisms only deal with some of these questions. For

instance, the situation calculus and its extensions answer the first, the second and the

fourth questions, while the event calculus and its extensions answer the first three

questions, although there are no explicit expression available for the complicated

temporal relations between actions and their effects. The formalisms proposed here

can deal with all the four questions. It allows more flexible temporal causal

relationships than do other formalisms for reasoning about causal change, such as the

situation calculus or the event calculus. It includes effects that start, during,

immediately after, or some time after their causes, and which end before,

simultaneously with, or after their causes. The causal axioms guarantee the common-

sense assertion that "the beginning of the effect cannot precede the beginning of the

cause
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8.2 Future Work

The work described in this thesis can be extended in a number of different ways. We

now discuss four specific directions for future work.

Reasoning about continuous change. In this thesis a discrete time structure has been

employed as the foundation of TSTC. While this time model has proved to be useful

to overcome/bypass some problematic issues, it is clear that for many purposes,

viewing time in this way is not expressive enough. In particular, when reasoning

about the physical world, the natural view of time seems to be that of a continuous

model. For example, to represent continuously changing quantities, such as the height

of a falling object, the position of a rotating wheel or the level of liquid in a filling

tank. Since in TSTC, durations play an important role in the causal change, it seems

reasonable to extend the fundamental time structure to a dense one in order to express

continuous change. However, in this case, the intermingling problem may arise and

hence needs some careful treatments.

Reasoning about complex events and concurrency. The approach proposed in this

thesis suppose that all actions are primitive. However, in the real world, occurrences

of many actions may overlap in time, which complicates temporal prediction and

explanation in AI. For definite goals some actions may be planned to be carried out at

the same time in order to save time, or to decrease production cost, or for other

context-dependent purposes. Dealing with this problem is also essential for setting in

which there are multiple agents, each of which may be performing complex action

types. In this work, this issue has not been addressed. However, we believe that based

on the formalism proposed here, following the methods proposed by Gelfond et al

[GLR91] , Lin and Shoham [LiS95] and Miller and Shanahan [MiS94], and some

techniques using in programming language community [Fis94 etc.], it is not difficult

to extend the formalism in this thesis to represent concurrency of complex events.

Reasoning about Uncertainties. The introduction of the predicate Release enables us

to represent some sorts of uncertainties, such as the Russian Turkey Shoot example
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discussed in chapter 7. However, the majority of issues regarding the representation of

uncertainties have been left untouched in this work. In [PMK96], Peng et al attempted

to develop a formalism to deal with uncertainties within situation calculus. Although

the work is preliminary, the idea can be extended. In general, when agents devise

plans for execution in the real world, they mainly face two forms of uncertainties:

they can never have complete knowledge about the situation of the real world, and

they do not have complete control, as the effects of actions may be uncertain. The

following two questions may be discussed by way of introducing probabilistic

representation in TSTC, such as the probability of the effects of an event, the

probability of the occurrence of an event, the probability of the potential persistence

of a fluent, etc.

• How long will a fluent persist according to the knowledge base?

• As a result of performing an event, what will happen? Further more, at any time

(point t), what is the probability of True(f, /)?
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