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Abstract

The research in this thesis is associated with different aspects of experimental 

analyses of structural dynamic systems and the correction of the correspond­ 

ing mathematical models using the results of experimental investigations as a 

reference. A comprehensive finite-element model updating software technology 

is assembled and various novel features are implemented. The software tech­ 

nology is integrated into an experimental test facility for structural dynamic 

identification and used in a number of real life aerospace applications which 

illustrate the advantages of the new features.

To improve the quality of the experimental reference data a novel non- 

iterative method for the computation of optimised multi-point excitation force 

vectors for Phase Resonance Testing is introduced. The method is unique in 

that it is based entirely on experimental data, allows to determine both the 

locations and force components resulting in the highest phase purity, and en­ 

able to predict the corresponding mode indicator. A minimisation criterion for 

the real-part response of the test structure with respect to the total response 

is utilised and, unlike with the application of other methods, no further infor­ 

mation such as a mass matrix from a finite-element model or assumptions on 

the structure's damping characteristics is required. Performance in compari­ 

son to existing methods is assessed in a numerical study using an analytical 

eleven-degrees-of-freedom model. Successful applications to a simple labora­ 

tory satellite structure and under realistic test conditions during the Ground 

Vibration Test on the European Space Agency's Polar Platform are described. 

Considerable improvements are achieved with respect to the phase purity of 

the identified mode shapes as compared to other methods or manual tuning
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strategies as well as the time and effort involved in the application during 

Ground Vibration Testing.

Various aspects regarding the application of iterative model updating meth­ 

ods to aerospace-related test structures and live experimental data are dis­ 

cussed. A new iterative correction parameter selection technique enabling to 

create a physically correct updated analytical model and a novel approach for 

the correction of structural components with viscous material properties are 

proposed. A finite-element model of the GARTEUR SM-AG19 laboratory test 

structure is updated using experimental modal data from a Ground Vibration 

Test. In order to assess the accuracy and physical consistency of the updated 

model a novel approach is applied where only a fraction of the mode shapes 

and natural frequencies from the experimental data base is used in the model 

correction process and analytical and experimental modal data beyond the 

range utilised for updating are correlated.

To evaluate the influence of experimental errors on the accuracy of finite- 

element model corrections a numerical simulation procedure is developed. The 

effects of measurement uncertainties on the substructure correction factors, 

natural frequency deviations, and mode shape correlation are investigated us­ 

ing simulated experimental modal data. Various numerical models are gener­ 

ated to study the effects of modelling error magnitudes and locations. As a 

result, the correction parameter uncertainty increases with the magnitude of 

the experimental errors and decreases with the number of modes involved in 

the updating process. Frequency errors, however, since they are not averaged 

during updating, must be measured with an adequately high precision.

Next, the updating procedure is applied to an authentic industrial aero­ 

space structure. The finite-element model of the EC 135 helicopter is utilised 

and a novel technique for the parameterisation of substructures with non- 

isotropic material properties is suggested. Experimental modal parameters 

are extracted from frequency responses recorded during a Shake Test on the 

EC 135-S01 prototype. In this test case, the correction process involves the 

handling of a high degree of modal and spatial incompleteness in the experi-
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mental reference data. Accordingly, new effective strategies for the selection 

of updating parameters are developed which are both physically significant 

and likewise have a sufficient sensitivity with respect to the analytical modal 

parameters.

Finally, possible advantages of model updating in association with a model- 

based method for the identification and localisation of structural damage are 

investigated. A new technique for identifying and locating delamination dam­ 

ages in carbon fibre reinforced polymers is introduced. The method is based 

on a correlation of damage-induced modal damping variations from an elasto- 

mechanic structure to the corresponding data from a numerical model in or­ 

der to derive information on the damage location. Using a numerical model 

enables the location of damages in a three-dimensional structure from exper­ 

imental data obtained with only a single response sensor. To acquire suffi­ 

ciently accurate experimental data a novel criterion for the determination of 

most appropriate actuator and sensor positions and a polynomial curve fitting 

technique are suggested. It will be shown that in order to achieve a good 

location precision the numerical model must retain a high degree of accuracy 

and physical consistency.
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Chapter 1

Introduction

1.1 Background

Free harmonic oscillations of an elastic structure are completely determined by 

four modal parameters, the natural frequency, a damping parameter, the gen­ 

eralised mass, and the mode shape [136]. A thorough knowledge of these modal 

parameters is a proven and efficient approach to understand and characterise 

the dynamic behaviour of an elastic structure in a structural dynamic inves­ 

tigation. An accurate mathematical model constitutes a sound foundation for 

all forms of structural dynamic investigations, including

  the computation of forced dynamic responses,

  the assessment of structural modifications,

  the coupling of sub-components,

  the analysis of fluid-structure interactions, or

  the design of control algorithms.

Consequently, the identification of modal parameters is of major importance 

throughout the entire development phase of a structure.

In the past, engineers had to completely rely on the experimental iden­ 

tification of modal parameters [136], whereas today, modal parameters are

1



identified by means of both analytical methods [138] (in the design stage us­ 

ing mathematical models based on construction documents) and experimental 

techniques [138] (after completion of a prototype in a vibration test). The 

development of the finite-element method has allowed this procedure to be es­ 

tablished for complex aerospace structures also. The numerical determination 

of dynamic properties of a structure based on the finite-element method now 

is a customary and readily applicable procedure [136].

The comparison and evaluation of analytical and experimental results en­ 

ables the high degree of consistency and accuracy required with aerospace 

structures. In practice, however, differences are most likely to occur between 

the computed and the measured natural frequencies and mode shapes which 

hamper a direct correlation of results. The discrepancies are a result of the 

numerical model's sensitivity to structural modifications and modelling errors.

An obvious approach to obtain a more accurate representation of the actual 

structure is to combine the observations and results from experimental and 

numerical investigation approaches in order to correct the numerical model.

The grade of improvement that can be achieved through the application of 

model updating techniques is essentially determined by both the quality and 

quantity of the experimental data. As a result, experimental identification 

techniques play an important role in the optimisation process.

Additionally, the quality of the updated model essentially depends on the 

consistency between the selected correction parameters and the actual mod­ 

elling errors, the parameter sensitivity with respect to the analytical modal 

properties, and the processing of experimental and analytical data in order to 

derive the necessary parameter modifications.

Accordingly, creating physically realistic and trustworthy mathematical 

models involves the optimisation of the experimental data quality, knowledge 

on the influence of experimental errors on the model corrections, and the se­ 

lection of appropriate updating and process control parameters.

This thesis concerns the development of methods and application strategies 

which improve the data quality of experimental modal identification procedures



and allow model updating techniques to be applied to large industrial finite- 

element models in order to meet the requirements imposed by the increasing 

dynamic complexity of future aerospace structures.

1.2 Introduction to Structural Dynamics

1.2.1 Introduction

This section develops the basic equations of motion of a linear, time-invariant, 

viscously damped, elastic system. The spatial discretisation of the structural 

domain follows the displacement matrix formulation which is commonly found 

in standard works on structural dynamics using the finite-element method

[170].

1.2.2 Governing Equations

The universal law governing a solid continuum undergoing motion is given by 

Cauchy's equation

b + V.<r0- = pii, (1.1)

where b is the body force vector, &ij is the stress tensor, p is the material 

density, and ii is acceleration. In the theory of elasticity eq. (1.1) is variously 

described as the stress equation of small motions [47], the equation of equi­ 

librium [159], or the equation of motion [63]. The term equation of dynamic 

equilibrium will be employed hereafter to distinguish the dynamic problems 

considered in this research from static structural problems.

Eq. (1.1) does not contain an explicit mechanism for the dissipation of en­ 

ergy. This problem is most commonly solved by adding an ideal linear viscous 

damper [14, 30, 71] which opposes structural motion with a force proportional 

to velocity. Thus, the equation of dynamic equilibrium becomes

b + V   (Tij = pu + du , (1.2) 

where the constant d is the coefficient of viscous damping and u is velocity.



1.2.3 Constitutive Relationship for Stress and Strain

Based on the assumptions that:

  the stress applied to any solid is proportional to the strain it produces 

within the elastic limit for that solid (the ratio of longitudinal stress to 

strain being equal to Young's modulus of elasticity) and

  the total effect of a combination of loads applied to a body is the sum 

of the individual loads applied separately, provided that these effects are 

directly proportional to the loads which produced them and that the 

strains produced are small,

the generalised form of Hooke's law yields constitutive relationships between 

stresses and strains for the two fundamental cases of plane stress and plane 

strain. For the two-dimensional problem of an isotropic homogeneous material 

undergoing loading in the x, y-plane, where thermal effects are neglected and 

the strains are small [170], the following two cases are considered:

1. Plane Stress. Only the three components of stress and strain in the 

x, y-plane have to be taken into account as, by definition, all other com­ 

ponents of stress are zero, i.e. axz = ayz = crz = 0. Hence, the stress 

vector is defined as <r = [<7x ,0>y ,a>zy] T and the stress-strain relationship 

is expressed in matrix form as

r i 

Oj,

XT

E

(1 - ̂ )

1 i/ 0 

i/ 1 0
A n l-i/

1 i

c

(1.3)

where E and v are Young's modulus and Poisson's ratio, respectively.

2. Plane Strain. In this case exz = eyz = tz = 0. However, a normal 

stress component exists in addition to the other three stress components. 

Hence, the stress vector becomes a = [crx ,cry ,crzi<Txy]T and the stress-



strain relationship is expressed in matrix form as

\

O
y E

1   V V V

v \ — v v

V V \

000

0

0

0

~^ )
)

(1.4)

Thus, the constitutive relationship for an isotropic homogeneous material 

subjected to linear elastic strains is

(1.5)a- — E(e   CQ) = 0 in

where the elastic strain at any instant in time may be represented by the 

difference of total strains e and initial strains  Q. The augmented forms of the 

elasticity matrix [170] are defined as

E = E
(1 - *)

f 1

v

0

n

v

1

0

n

0

0

0

n

0

0

0
\-v

(1.6)

for plane stress and

E
(l + i/Xl-21/)

1   v v

v 1   v

V V

n n

z/

v

1

n

0 '

0

0
l-2i/

(1.7)

for plane strain.

1.2.4 Displacement Formulation

This work is based on a linear strain-displacement formulation using the as­ 

sumption that the strains remain small. 1 As a result, the strains may be

1 This assumption is considered to be valid for strains in the order of a few percent [47].



decomposed into a product of the matrix of linear operators L and the dis­ 

placement vector u which enables the strains to be defined in the general 

displacement form as

  =

\

ty
e,

e

£(«.)
^K)

0

A(u ) + J_(u \

( -2- 0 \So;

0  

0 0

JL JL
Q -. Q _ I

-Lu (1.8)
U

with
— 09x U

0 A
0 0

\ ^ j^ /
From eq. (1.8) the strain-displacement relation is given by

(1.9)

e - Lu = 0 n (1.10)

The boundary conditions on the surface F of the structural domain Q are de­ 

scribed in terms of prescribed displacements up on Fj/ and prescribed tractions 

tp on TT as follows:

u - Up = 0 on TU ,

T ^^ J ___ f\ ,-v-^k I 1 
u   Tip == u on i y .

The structural boundary is the union of the prescribed displacement and trac­ 

tion boundaries, i.e. F = F^ U F^, and

(1.11)

T = (1.12)

is the matrix of outward normal operators, where n is the outward unit normal 

vector to the domain boundary with components nx and ny .

Applying the constitutive stress-strain equation (1.5) and the strain-dis­ 

placement relation (1.10) to the traction boundary condition, eq. (1.11), gives 

the displacement formulation of the boundary conditions

T(ELu-Ee0 ) - tp = 0 on FT (1.13)



Using the same substitutions the equation of dynamic equilibrium (1.2) be­

comes

LT (ELu-Ee0)+b-pu-du = 0 in 17 . (1.14)

This form is known as the displacement formulation of the equation of motion. 

As a result, the general governing equation of motion of a solid continuum is 

given by

-Ee0)-b = 0 in ft (1.15)

with the boundary conditions

u   Up = 0 on TU , 

T(ELu-Ee0 ) - tp = 0 on TT .

1.2.5 Discretisation of the Displacement Equations

Applying the method of weighted residuals to eqs. (1.15) and (1.16) leads to

/ WT [LT (ELu - Ee0 ) + b - pu - dii] dfi 
Jet

Wj[T(ELu-Ee0)-tp]dr+ <f> W£ (u - up)dF = 0 ,

(1.17)

where W denotes the weighting functions.

In order to satisfy the kinetic boundary condition Wj/ must be equal to 

zero on TU [170]. Additionally, since the weighting functions are arbitrary, 

WT =  W may be assumed. Therefore,

/> WT LT (ELu-Ee0)dft + fwT (b-pu-du) 
Jet Jet

- <b WT T(ELu-Ee0)dr+ J) WT tp dr = 0. (1.18)

Since the surface of the structure is the union of the prescribed traction and 

displacement surfaces the first of the integrals along the traction surface in 

eq. (1.18) may be replaced with an integral along the surface and an integral 

along the prescribed displacement boundary, thus removing the displacements 

from the integral on the traction boundary. On rearrangement this gives:

/> WT LT (ELu-Ee0)dft+ / WT (b - pii - du)dQ 
Jei Jei



- /WT T(ELu-Ee0)dr+ / WT T(ELu + Ee0)dr 
Jr Jrv

+ <f wT tp dr = o.
JrT 

The application of Green's First Theorem to the first two integrals in eq. (1.19)

results in

f WT (b - pu - du) 
Jet

WT T(ELu-Ee0)dr+ i WT tp dr = 0. (1.20)

et
T

Eq. (1.20) permits discontinuous first derivatives of the displacements, thus 

being the weak form of eq. (1.17). Additionally, by choosing the weight­ 

ing functions to be equal to the vector of virtual displacements, i.e. W = 

[6ux ,6uy ,8uz] T t eq. (1.20) becomes equivalent to the Principle of Virtual Dis­ 

placements formulation [170].

For the finite-element method of spatial discretisation the unknown dis­ 

placements u may be approximated by

u ~ u = NJ • Uj , (1.21)

where Nj is a set of shape functions and Uj are the displacements evaluated 

at the nodes j. Selecting an appropriate set of weighting functions Wj and 

applying the constitutive equation

<T0 = Ee0 (1.22) 

eq. (1.20) may be written as

W,T TELN?-udr = J
,i

Wj tp dr + / (L Wi)T o-o dfi - / W,T To-0 dr 
Jn JTUi

(1.23)

1.2.6 The Equations of Motion

Using eq. (1.21) to approximate the displacements and combining all terms 

in eq. (1.23) yields the well-known compact matrix form of the second-order
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differential equations of motion of an elastic system

M fi(t) + D u(t) + K u(t) = f(t) (1.24) 

with

(1.25)

(1.26) 

= (L W;)T E L Nj dfi - WZT T E L N, dF , (1.27)

)

+ / (L Wf)T cr0 dO - / W,T T cr0 dr . (1.28) 
 /n ./iv.i

In eq. (1.24) u(t) is the global approximation to the vector of displacements2 , 

M, D, and K are the mass, viscous damping, and stiffness matrices, respec­ 

tively, and f(t) is the equivalent global force vector.

1.2.7 Damping

Damping is the ability of a structure to dissipate energy and the basic mech­ 

anisms by which damping is introduced into an elastic structure are:

1. Structural Damping. The friction between two contacting surfaces 

generates structural damping.

2. Material or Hysteretic Damping. Internal energy dissipation of the 

materials is responsible for material damping.

Fluid damping caused by dynamic drag, where energy is dissipated by the 

viscous and pressure drag on the surface of a structure as it moves relative 

to a surrounding fluid, is not significant with structural dynamic applications 

and therefore will not be regarded here. Typical aerospace materials like re­ 

fined metals or carbon fibres also have low internal material damping. Hence,

2 For simplicity reasons the tilda symbol will be omitted further on.
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structural damping remains as the primary mechanism for the dissipation of 

energy in aerospace structures.

In practice the physical damping of a structure ensures that its response to 

an expected excitation does not exceed acceptable limits. Increased damping 

reduces the response amplitudes such that vibrations and dynamic stresses are 

decreased. Hence, fatigue is lowered and the life of the structure is prolonged.

1.2.7.1 Structural Damping

Structural damping is most effective at low frequencies and the corresponding 

lower modes of vibration since it is only at these frequencies that the vibration 

amplitudes are large enough to create significant slip and energy dissipation 

between contacting surfaces. However, the structural damping inherent in a 

system generally is not known as knowledge of the associated physical dissipa- 

tive mechanisms is limited. Thus, structural damping is commonly modelled 

by an ideal viscous damper which opposes the motion of the structure by a 

force proportional to the velocity of the structure.

1.2.7.2 Rayleigh Damping

Rayleigh damping [145] represents viscous damping as a linear combination of 

the stiffness and mass matrices

/cK, (1.29)

where [4 and K are the stiffness and mass proportional damping constants. 

Eq. (1.29) is usually referred to as proportional damping approach. While there 

is no physical justification for this widely used approximation no significantly 

better linear model appears to be available so far [120].

Viscous damping may be introduced by means of specifying the viscous 

damping ratio rj which relates to the damping constants and frequency of 

vibration through

 » = 5 O"" + £)   d-30)
The damping constants are determined by choosing rj at two different frequen­ 

cies u\ and uz and solving the resulting pair of simultaneous equations for p,

10



and «, where u\ and ^2 are taken at the structure's lowest and highest natural 

frequencies of interest, respectively.

Hence, for general Rayleigh damping the amount of damping is controlled 

at these two frequencies but it is not controlled for any other modes. For 

stiffness proportional damping the damping ratio is directly proportional to 

the frequency of vibration. As a result, the highest modes of the system will 

be the most strongly damped. For mass proportional damping the damping 

ratio is inversely proportional to the frequency. Thus, the lowest modes will 

be damped most heavily.

1.2.8 Free Vibrations of the Undamped System

Free vibrations of the elastic system represented by eq. (1.24) occur when no 

external forces are applied within the time range of observation, i.e. f (t) = 0. 

The following sections cover analytical solutions for free vibrations of discrete 

elastic structures. First, the (unrealistic) undamped system is considered. The 

results, however, will be useful for the later modal treatment of real structures. 

Next, a generally damped system is studied.

Disregarding the damping forces D li(tf) in eq. (1.24) yields the equilibrium 

equations for free vibrations of an undamped system

Ku(t) = 0. (1.31) 

A fundamental solution for eq. (1.31) is given by

u(*) = ¥>«***, (1.32)

where (f> is a time-invariant vector of deflection amplitudes and uj is an angular 

frequency. Introducing eq. (1.32) into eq. (1.31) leads to

(-a;2 M + K)<^ = 0. (1.33)

Eq. (1.33) is referred to as the general eigenvalue problem.

The fundamental solution, eq. (1.32), describes harmonic oscillations of the 

structure represented by the system matrices M and K. The vibrations are

11



a distinctive property of the structure as they are solely determined by the 

equilibrium of elastic forces and inertia forces which is maintained at each 

degree of freedom (DoF) and for every point in time.

1.2.8.1 Eigenvectors and Eigenvalues

Non-trivial solutions for eq. (1.33) are obtained when the determinant of co­ 

efficients of the homogeneous equation system vanishes:

-o;2 M + K =0. (1.34)

Eq. (1.34) results in a polynomial in a;2 , the characteristic equation, the roots 

of which are called eigenvalues.3 Introducing a particular eigenvalue a;2 into 

eq. (1.33) allows to compute the corresponding eigenvector (p.
While the system matrices M and K represent the spatial model of the 

discrete elastic system the eigenvalues and eigenvectors constitute the modal 

model which contains the complete free vibration solution and helps to under­ 

stand and control the dynamic phenomena encountered with vibration prob­ 

lems.

1.2.8.2 Characteristic Eigenvector Properties

The eigenvectors (pn with n = 1, ... , N comprise various specific character­ 

istics which will become useful in Chapter 3.

Generalised Quantities. When a;2 and (f>n are a solution of eq. (1.33), 

then

Left hand multiplication with (f% gives

-a;2 <j% M (f>n + (f? K <pn = 0 . (1.36)

The expression

on (1.37)

3 With large structural systems the common practice is to directly derive a numerical 
solution from eq. (1.33).
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represents the kinetic energy accumulated in mode n. Mn is called the gener­ 

alised mass. The second expression in eq. (1.36), i.e.

Kn = <f%K<f>n , (1.38)

is the potential or deformation energy contained in mode shape n which is 

entitled the generalised stiffness. Both the absolute values of Mn and Kn 
depend on the normalisation of <pn .

Eq. (1.36) may be rewritten to yield the Rayleigh quotient

..'-^ K¥>". (1.39)

Orthogonality. Assuming a;2 and (f>r to be a solution of eq. (1.35), left hand 

multiplication with (p^ leads to the scalar expression

 a;2 <£>J M y>r + y>J K (f>r = 0 . (1-40)

Likewise, if LJ'J and (f>s are a solution of eq. (1.35), pre-multiplication with y>J 
returns

O ^T Tfc «• T ^ ^ f^ / -t * *+ \

Computing the transpose of eq. (1.41)

O T^ T* jr T T ^ J-L / *t A ^x \

where MT = M and KT = K, and subtracting eq. (1.40) results in

/ £t £i \ X TV /r _ c\ ^i /i o \

For rfr * u*
(pjMipr = 0. (1.44)

Additionally, introducing eq. (1.44) into eq. (1.42) gives

<pjKy?r = 0. (1.45)

Eqs. (1.44) and (1.45) state that the eigenvectors of the undamped system 

are orthogonal with respect to both the mass and stiffness matrix. The ac­ 

cording physical interpretation is, that no energy is transferred between mode 

shape (f>s and the inertia forces  o;2M y>r or elastic forces K (f>r of mode r, i.e. 

each mode shape is completely uncoupled from all other vibration modes and 

therefore may be individually identified during an experimental analysis.
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1.2.9 Free Vibrations of the Damped System

Free vibrations of a damped system are described by

M u(t) + D u(t) + K u(t) = 0 . (1.46)

Again, the fundamental solution approach, eq. (1.32), is used. Introducing 

into eq. (1.46) yields the non-linear quadratic eigenvalue problem

( o;2 M + zo;D + K) (p — 0 . (1-47)

As outlined in Section 1.2.8.1, non-trivial solutions are obtained when the 

determinant of coefficients of the homogeneous equation system vanishes:

In this case, however, the eigenvalues computed from eq. (1.48) are either 

real or take the form of conjugate complex pairs, where the imaginary part is 

the frequency of oscillation and the real part describes the decay behaviour of 

the respective mode shape. With stable, damped, elastic structures the real 

parts of the complex eigenvalues are always negative [55].

Again, the associated eigenvectors (pn are obtained by individually intro­ 

ducing the eigenvalues u^ into eq. (1-47). In the most general case the eigen­ 

vectors are complex which conveys the physical situation that the structure's 

individual degrees of freedom do not oscillate in phase. An orthogonality re­ 

lation of the eigenvectors (f> with respect to the system matrices M and K 

does not exist here, i.e. a coupling of all modes is constituted by the system's 

internal damping forces.

1.3 Model Updating Methods 

1.3.1 Historical Perspective

The initial impulse to assemble physical parameter matrices from measured 

modal quantities has been given by RODDEN [146] in 1967. One of the first
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systematic approaches, where an incomplete set of measured natural frequen­ 

cies and mode shapes of a structure was used to improve stiffness and mass 

characteristics of a finite-element model, has been published by HERMAN and 

FLANNELLY [12] in 1971. In 1974, iterative procedures have been suggested by 

COLLINS, HART, HASSELMANN, and KENNEDY [26]. Other basic contribu­ 

tions have been made by NATKE, COLLMANN, and ZIMMERMANN [128] (1974), 

NATKE [122] (1977), BARUCH [7, 8] (1978 & 1982), and HERMAN and WEI 

[13] (1981). Further methods for the correction of numerical models based on 

experimental data have been proposed, [59, 114, 24, 23, 25, 129, 166, 169]. 

Comparative investigations and individual results [123, 129, 166, 18, 148, 106] 

have shown that the updated numerical models occasionally yield similar 

modal parameters but do not maintain the physical significance of the cor­ 

responding mass and stiffness matrices.4 On the other hand, the expectations 

and hopes were directed towards unveiling the modelling imprecision and errors 

of the numerical structural dynamic models. This objective has been achieved 

by coupling a physically significant mathematical model and the experimental 

modal parameters with the purpose of generating a model which incorporates 

the observations and results of both the analysis and experiment.

Early applications of computational model updating techniques to large 

structures, e.g. the Skylab space station (DEMCHAK and HARCROW [37]) or 

the Vereinigte Flugzeugwerke VFW 614 passenger aircraft (ZIMMERMANN, 

COLLMANN, and NATKE [171]), date back to the 1970's. During the last 

decade, applications to increasingly complex aerospace and automotive struc­ 

tures have been published. Some examples are listed in Table 1.1.

1.3.2 Iterative Updating Methods

With the iterative updating methods discussed here the correlation between 

measured modal data ze and the corresponding numerical modal predictions

4 The general correlation between the existence of a unique consistent solution and the 
physical meaning of the identified model parameters has been addressed by BERMAN and 
FLANNELLY [12] and BERMAN [11, 10].
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Author(s)

BRUGHMANS, LEURIDAN, 

HRYCKO, WYZYKOWSKI

BRUGHMANS, LEURIDAN, 

BLAUWKAMP

CAESAR, ECKERT, 

WOHLER

SCHEDLINSKI, LINK, 

SCHONROCK

LINK, HANKE

SCHEDLINSKI

Year

1990

1993

1994

1998

1998

2000

Ref.

[17]

[16]

[20]

[151]

[103]

[149]

Structure

Boeing DeHavilland, 

DASH 8-300A Aircraft

General Motors, 

1991 Saturn Automobile Body

European Space Agency (ESA) 

CLUSTER Satellites

BMW Rolls Royce Jet Engine, 

Intermediate Casing

BMW Rolls Royce Jet Engine, 

High Pressure Turbine Casing & 

Rear Bearing Support Structure

BMW Automotive Transmission

Table 1.1: Model Updating Applications to Large-Scale Structures

za is determined by a penalty function of the form

(1.49)

with

and

j = [ Afl ,i , ¥>flfl , Afl)2 , y>fl)2 , . . . , Aa,jv , <pa ,

(1.50)

(1.51)

Depending on the individual optimisation objective the penalty functions may 

also contain Frequency Response Functions (FRF) [29, 52, 124, 117, 50, 152], 

which requires damping to be included in numerical model, or force residuals 

[29, 48, 9]. The majority of these approaches were discussed in the 1980's.

The state vector za relates the penalty function to the numerical model 

properties. As a result, eq. (1.49) is a - generally - non-linear function of the 

mathematical model's mass and stiffness properties. A linearised approxima­ 

tion, which is usually derived from a truncated Taylor series expansion, allows 

to express the penalty function in terms of the unknown model parameters p 

and a sensitivity matrix G

Aer w G   Ap . (1.52)
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The sensitivity matrix G contains the derivatives of the analytical eigenval­ 

ues and eigenvectors with respect to the correction factors p. Various methods 

have been proposed to compute the sensitivities from the modal data of the 

initial finite-element model. For the undamped structural eigenvalue problem 

expressions have been derived for the first derivatives of the eigenvalues by 

LINK [99] and for the eigenvectors by Fox and KAPOOR [49] and NELSON 

[130]. OJALVO [142], MILLS-CURRAN [112, 113], and DAILEY [31] have ex­ 

tended NELSON'S method to deal with the case of repeated or closely spaced 

eigenvalues.

Due to the non-linearity of both the penalty function and sensitivity matrix 

with respect to the analytical mass and stiffness properties the minimisation 

of Ae, eq. (1.52), and computation of the related model parameters from

Ap-(GT G)- 1 GT -A£ (1.53)

involves an iterative solution procedure and a numerical modal analysis at 

every iteration step. The model updating method applied within the scope of 

this research is introduced in Section 3.2.

1.3.2.1 Definition of Substructures

In most practical cases the number of model parameters (the mass and stiffness 

values at each degree of freedom) will vastly exceed the number of measure­ 

ments (the natural frequencies and mode shape deflection components). This 

leads to an under-determined equation system for the computation of the un­ 

known model parameters and does not allow for a direct estimation of physical 

mass and stiffness properties. However, if a number of physical degrees of free­ 

dom are combined to form a group or substructure and the mass and stiffness 

properties of the analytical model are utilised as initial data a correction fac­ 

tor may be determined for each substructure and a rank deficiency of GT G 

is avoided. The parameters p now represent the correction factors for the 

individual substructures. To reduce the influence of noise in the measured 

data the number of correction parameters is usually chosen to be smaller than
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the number of measurements. The resulting equation system becomes over- 

determined and is solved by least squares approximations. This approach has 

been originally proposed by NATKE [128] in (1974).

Iterative methods enable a wide choice of model properties to be corrected. 

The definition of substructures, however, requires a profound knowledge of 

the actual modelling uncertainties. Otherwise, the updated model may well 

reproduce the experimental results but the modifications do not necessarily 

comprise the desired physical significance.

1.3.3 Comparison of Analytical and Experimental Data 

1.3.3.1 Mode Shape Allocation

With the comparison of numerical and measured modal data in eq. (1.49) it is 

essential to correctly identify and individually allocated each analytical eigen­ 

vector and associated eigenfrequency in za to the corresponding experimental 

mode shape and natural frequency in ze . Simply arranging the eigenfrequen- 

cies in ascending order does not necessarily ensure the comparison of identical 

mode shapes since the order of modes obtained from the test and numerical 

estimates may be different due to errors in the mathematical model and be­ 

cause the experimental data base may be incomplete, i.e. not all modes in 

the frequency range under investigation have been identified in the test (cf. 

Section 2.3.2). Further problems arise from the damping not being included 

in the mathematical model and errors in the measured data.

Initially, the problem has been addressed by ALLEMANG and BROWN [1] 

who have suggested a Modal Assurance Criterion

r,* = l, ... , N (1.54)

to estimate the degree of correlation between analytical and experimental mode 

shape vectors. The MAC essentially is the normalised scalar product of the 

vectors <pa>r and y>eyS . Values close to one indicate a good correlation of the 

two vectors while small values imply them to be orthogonal. Since a true
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orthogonality relation only exists with respect to the mass or stiffness matrix, 

eqs. (1.44) and (1.45), the MAC for dissimilar eigenvectors will not necessarily 

be exactly zero.5

1.3.3.2 Model Reduction and Mode Shape Expansion Techniques

The eigenvector and mode shape components must be identical in number and 

location to allow a direct comparison in eqs. (1.49) and (1.54). Adversely, 

the number of components in the experimental mode shape vectors usually is 

some orders of magnitude smaller than the number of degrees of freedom in 

the numerical model. Equal vector sizes may be achieved by either reducing 

the system matrices to the measured degrees of freedom or expanding the 

measured mode shapes to the size of the analytical model.

Model Reduction Methods. A simple and most popular method has been 

introduced by GuYAN [57] who has derived a transformation between the full 

state vector and the master co-ordinates by neglecting the inertia terms of 

the slave degrees of freedom in the equations of motion (1.24). Disregard­ 

ing the inertia terms causes the eigenfrequencies of the reduced model to 

be higher than those of the full model. The static reduction may be mod­ 

ified to include inertia forces at an appropriately chosen frequency UJQ. An 

improvement to GUYAN'S static reduction method, where the inertia terms 

are included as pseudo static forces, has been introduced by O'C ALLAH AN 

[139]. O'CALLAHAN, AviTABiLE, and RIEMER [140] have used the computed 

eigenvectors to assemble a transformation between the master and slave co­ 

ordinates. The reduced model exactly reproduces all eigenvectors and eigen­ 

frequencies used in the transformation.

Mode Shape Expansion Methods. Mode shape expansion methods uti­ 

lise the numerical model to obtain the missing information by either using the 

equations of motion to derive a relation between the unknown and the mea-

5 In addition, the Co-Ordinate Modal Assurance Criterion [94] may be used to determine 
the correlation between two measurement locations for all the paired mode shapes.
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sured deflection components [88] 6 or expressing the measured mode shape as 

linear combination of the analytical eigenvectors [141, 108].

A comparison of reduction methods is provided in [5] and [6]. GYSIN [58] 

and IMREGUN and EWINS [67] have given examples of the practical application 

of mode shape expansion methods. IBRAHIM [66] has discussed model reduc­ 

tion techniques and eigenvector expansion methods in the context of modal 

and FRF sensitivity techniques.

1.4 Thesis Outline

The main objectives of this thesis are:

  The development of a method, which improves data quality and helps to 

reduce testing time with experimental modal identification techniques, 

namely the Phase Resonance Method, in order to meet the requirements 

imposed by the increasing dynamic complexity, i.e. high modal density, 

non-proportional damping, or restricted accessibility, of future aerospace 

structures. This includes the implementation of the approach into the 

Ground Vibration Test Facility operated by the German Aerospace Re­ 

search Establishment (DLR) and a performance evaluation on aerospace 

structures of varying dimensions.

  The development of techniques and application strategies which allow 

model updating to be applied to large-scale industrial finite-element mod­ 

els. Here, the foremost concerns are the handling of experimental modal 

data exposed to random measurement errors, noise, modal and spatial 

incompleteness, or low phase purity of the measured mode shapes and 

the identification of updating parameters which are coherent with the 

actual modelling errors in the analytical system matrices thus leading to 

a physically consistent updated numerical model. Again, performance is 

evaluated on aerospace structures of varying size and complexity. Addi­ 

tionally, the advantages of model updating in other fields of application

6This method is equivalent to an inverse Guyan reduction.
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are demonstrated. The problem of detecting structural damage is chosen 

for this purpose and the advantages of model updating on the damage 

localisation accuracy are investigated.

The subjects of research are arranged as follows:

Chapter 2 provides an introduction to the standard experimental modal 

identification techniques used. Two analysis methods, allowing to transform 

measured time domain response data into frequency domain modal parameters, 

are described. The main test hardware components for data acquisition are 

introduced and the experimental errors originating from both analysis methods 

and measurement techniques are reviewed. Finally, the Ground Vibration Test 

Facility operated by DLR's Institute for Aeroelasticity is introduced.

In Section 3.2 the basic model updating method is set out. The algorithm 

used here has been established in publications by NATKE [126] and LINK [106, 

99]. The model optimisation process is based on the minimisation of a residual 

involving measured and analytical modal data, where the latter are non-linear 

functions of the model's mass and stiffness properties. Linearisation of the 

residual using a truncated Taylor series expansion and introducing a Jacobian 

matrix allows to compute the unknown correction parameters. In order to 

reduce the influence of noise in the experimental data the number of parameters 

should always be smaller than the number of measurements. This results in 

an over-determined equation system which is solved in a least squares sense.

In Section 3.3 a new model-based method for the localisation of structural 

damage is introduced. The method uses measured Frequency Response Func­ 

tions (FRF) and modal data from a finite-element model to derive information 

on the damage location on the structure under investigation. A localisation 

criterion based on a correlation of measured and analytical damage-induced 

damping deviations is proposed. Experimental modal damping factors are 

obtained from fitting the measured FRFs to quadratic polynomials. A stan­ 

dard Rayleigh damping approach and an analytical damage model are used to 

generate numerical damping factors for the healthy and damaged states.
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A novel method for the computation of optimised excitation force vec­ 

tors for Phase Resonance Testing is proposed in Section 3.4. Unlike other 

approaches, no numerical data or preliminary assessments on the structural 

damping are needed. The method processes measured structural responses 

from harmonic single-point excitations at selected exciter locations. A new 

feature is the superposition of the measured responses such that the real-part 

response is minimised with respect to the total response. In the associated 

eigenvalue problem the eigenvector related to the smallest eigenvalue is used 

to compute the unknown force vector components for an optimised multi-point 

excitation. A further novel element is the option to calculate a Mode Indicator 

Function (MIF) from the corresponding structural response which allows for 

an a-priori assessment of the mode isolation quality and selection of the most 

promising exciter configuration.

Section 4.2 gives an overview of principal aspects related to the practical 

application of the model updating method set out in Section 3.2. A labora­ 

tory test structure has been selected for simplicity. Experimental modal data 

were identified from the structural model and the generation of a finite-element 

model suitable for model updating is described. The problem of finding updat­ 

ing parameters which are consistent to the errors in the mathematical model 

and additionally satisfy existing mathematical constraints is discussed and 

a new knowledge-based strategy for selecting a set of physically significant 

correction parameters is introduced. To demonstrate the performance of the 

updating method the model correction process is restricted to a fraction of the 

modal parameters from the experimental data base and an original attempt 

is made to use the resulting validated model to predict the remaining modal 

data and FRFs.

In Section 4.3 a simulation study is developed to investigate the influence 

of errors resulting from inaccuracies in the test hardware and experimental 

identification methods on the accuracy of the model corrections. Different 

representative categories of experimental uncertainties are numerically mod­ 

elled and added to simulated experimental modal data. Error magnitudes are
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varied and the effect on substructure correction factors, frequency deviations, 

and mode shape correlation is investigated. Different numerical models are 

used to evaluate the role of modelling error magnitudes and locations.

An application to a large-scale industrial finite-element model of the EC 135 

helicopter [39] is described in Section 5.2. The initial finite-element model 

has been provided by Eurocopter Deutschland [38] and experimental modal 

data have been extracted from a Shake Test on the EC 135-S01 prototype. 

With the fundamental importance of parameter selection in mind and to en­ 

sure a significant influence on the helicopter's overall dynamic characteristics 

preference regarding the selection of updating substructures is given to those 

components which constitute the aircraft backbone structure. To avoid incon­ 

sistencies of the material parameters and enable an efficient parameterisation 

in the MSC/NASTRAN  finite-element code a novel technique for the pa­ 

rameterisation of non-isotropic material regions is proposed.

In Section 5.3 the beneficial effects of model updating on the localisation ac­ 

curacy of the damage localisation method introduced in Section 3.3 is demon­ 

strated. The finite-element model of a basic aircraft component is updated 

using experimental mode shapes and natural frequencies from the undamaged 

test structure and the damage localisation accuracy obtained with the ini­ 

tial and updated models are compared. Preliminary investigations involve an 

optimisation of positions for the excitation device and response sensor in or­ 

der to maximise the amount of data acquired from the test structure and an 

assessment of the method's spatial resolution.

Finally, in Section 5.4 the method for the computation of optimised ex­ 

citation force vectors introduced in Section 3.4 is evaluated with respect to 

performance as compared to other force tuning approaches and the potential 

to improve the quality of experimental modal data. Of particular interest with 

regard to the modal testing of complex aerospace structures are the capabilities 

of handling a high modal density, non-proportional damping, and restricted ac­ 

cessibility to the test structure. A mathematical model is used for comparison 

with other methods. To assess effects not represented within the analytical
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model, like structural non-linearity, eigenfrequency shifts due to incomplete 

excitation, or systematic and experimental errors, the method is applied to a 

laboratory test structure. The performance under realistic test conditions is 

investigated during the Ground Vibration Test on the Polar Platform (PPF) 

[144] space structure.
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Chapter 2

Experimental Identification 

Techniques

The experimental identification of a structure's characteristic dynamic re­ 

sponse is a vitally important step in finite-element model updating. The 

measurement and analysis techniques comprised in this chapter provide the 

experimental modal reference data which is used to modify the analytical sys­ 

tem matrices in order to adjust the model's numerical dynamic response to 

the measured response of the real world structure.

The following sections cover the two main categories of analysis methods 

for transforming measured time domain structural responses into frequency 

domain data, describe the core components of standard data acquisition and 

pre-processing hardware, discuss the most significant sources of experimental 

errors, and introduce the Ground Vibration Test Facility operated by DLR's 

Institute for Aeroelasticity [68].

A comprehensive introduction to modal testing has been given by EWINS 

[44]. ALLEMANG, BROWN, and HOST [2] and SNOEYS, SAS, HEYLEN, and 

VAN DER AUWERAER [156] have also discussed various aspects of vibration 

testing.
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2.1 Analysis Methods

Although modal parameters can be identified directly from the measured ex­ 

citation f(t) and structural response u(t), eq. (1.24), processing time domain 

data generally is not practical for typical structural systems because of the 

quantity of the experimental data involved and the computational effort and 

due to the difficult interpretation of the results. Therefore, the first step in the 

extraction of modal parameters from an experimental structural response is to 

convert the measured signal into the frequency domain where it is described 

by its constituent frequencies and corresponding magnitudes. This is usually 

achieved by means of a Fourier series expansion

/, \ ^0 . x ^ i ""j <"n . r   " l *j "n \ /o i\ni I T I —— _„_, | X I rt . . f*r\Q .-.--.--______ I n • • G1T1 -________ I I s I ICw I I/TJ I "— l^ 7 I W"i L/UD __^ |^ t/^ OJ.J.JL ._.,-, I • \ £jm \, ]V'fr/ o /vl J n^ j nn I J \ /j=i

where the periodic response u(tn ), which is sampled at N discrete steps over 

a time period T, is represented by a finite number of spectral coefficients

a° = ]v
n=l

N o  27T? U

n=l

N

n=l

Likewise, the transformation can be applied to the excitation force signal to 

compute the Frequency Response Function (FRF)

FRF(o;) = U(w)/F(u) , (2.3)

where U(u) and F(u) are the Fourier transformations of the response and 

excitation force, respectively. Most post-processing methods use the Frequency 

Response Functions as input to compute experimental eigenfrequencies and 

mode shapes. They are commonly classified into Phase Separation Techniques 

and Phase Resonance Techniques [135].
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2.1.1 Phase Separation Techniques

Phase separation methods [105, 92, 162] can work with either broadband (ran­ 

dom or impact) or single frequency (sine-sweep or step-sine) excitation sig­ 

nals. The real-part (in-phase with the excitation signal) and imaginary-part 

(in quadrature to the excitation signal) of the complex structural responses 

are measured and correlated to the excitation forces to compute FRFs. The 

experimental FRFs are fitted to a polynomial, where the frequency is used as 

variable. The polynomial coefficients are obtained from least squares approx­ 

imation techniques. When all measured FRFs are used the methods produce 

global estimates of the natural frequencies and damping ratios.

A major problem with phase separation techniques is to determine the ac­ 

tual number of modes in the frequency range under investigation when the 

natural frequencies are closely spaced or in the presence of noise in the mea­ 

sured structural response signals. Also, local modes which only appear in a 

few FRFs may be difficult to identify.

A phase separation technique is used in Section 5.2 to extract experimental 

modal data from measured structural responses.

2.1.2 Phase Resonance Techniques

Classical phase resonance techniques are the most frequently applied testing 

methods in aerospace. Their historical development can be traced back to the 

1920's [53]. The methods are considered to be established and reliable.

The basic idea of phase resonance techniques is to balance the structure's 

internal damping forces Du(£) in eq. (1.24) by applying a suitable external 

excitation f(t). As a result, the structure oscillates in a pure natural mode 

which allows to directly identify the modal parameters of the corresponding 

undamped system.

Phase Resonance Methods (PRM) work with single frequency excitations 

which enables them to apply high excitation energy levels to the test struc­ 

ture resulting in high signal to noise ratios. The methods can separate closely 

spaced natural frequencies through the use of phase-coherent multi-point exci-
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tation force vectors. The force components are individually tuned for each of 

the neighbouring mode shapes in order to amplify the response of one mode 

while the other mode is simultaneously suppressed. Furthermore, Phase Res­ 

onance Methods are essential for the investigation of non-linear systems.

The methods main disadvantage is the time-consuming force tuning pro­ 

cess. To save precious testing time and exploit the full potential of the Phase 

Resonance Method, especially with respect to the quality of the experimental 

data, a systematic approach for tuning the excitation force vectors is proposed 

in Section 3.4, where an in-depth theoretical treatment of the Phase Reso­ 

nance Method is provided. The force tuning method is tested and compared 

to other force tuning techniques in Section 5.4. The Phase Resonance Method 

is used to identify the experimental modal reference data for model updating 

in Sections 4.2, 5.2, and 5.4.

2.2 Test Hardware

The test hardware enables the acquisition of the input data needed by the 

experimental modal analysis methods which were delineated in the previous 

section. The test hardware basically consists of three main components:

  excitation devices to apply excitation forces f (t) to the test structure,

  sensors to measure the corresponding dynamic structural response u(t), 

and

  equipment to record and process the measured data.

2.2.1 Excitation Devices

Electromagnetic shakers are most commonly used as excitation devices in 

Phase Resonance Testing. 1 Because of their advantages as to operation and 

handling they were chosen for all experimental investigations in Sections 4.2,

1 Other possible excitation devices are impact hammers, hydraulic shakers, or devices 
incorporating rotating eccentric masses.
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5.2, and 5.4. Shakers provide an output force proportional to a specified elec­ 

tric input current. The input current generates a proportional magnetic field 

in a cylindrical moving coil which is located in a static, homogeneous, outer 

magnetic field. The axial force generated in the moving coil by the superposi­ 

tion of magnetic fields is proportional to the input current. A stinger is used 

to feed the excitation force into the structure. Having a low bending stiffness 

the stinger ensures that structural movements at the excitation point are not 

constrained by the shaker. It should be noted, however, that the masses of the 

moving coil and stinger and the stiffness of the coil suspension result in a local 

perturbation of the structure.

2.2.2 Response Sensors

With the exception of extremely low frequencies the structural response is usu­ 

ally measured in terms of accelerations which are more convenient to convert 

into an electric signal than deflections or strains. Acceleration sensors basically 

consist of a seismic mass mounted on an elastic suspension. When the sensor 

is subjected to an acceleration the seismic mass executes forced vibrations at 

the frequency of excitation. The deflection amplitude is proportional to the 

external acceleration when the eigenfrequency of the sensor element is high 

compared to the excitation frequency.

The majority of transducers uses the piezoelectric effect [120], where a 

mechanical strain generates an electric charge. A signal conditioning unit 

converts the charge into a proportional voltage for further processing. Other 

transducer types use inductive or magneto-resistive principles to transform 

accelerations into electric signals.

As in the case of attaching shakers the mounting of sensors adds mass to the 

structure and changes the modal parameters. The sensor masses are considered 

as being part of the structure in any subsequent analysis. If the additional 

sensor masses are not acceptable, e.g. with light-weight structures or high 

accelerations, remote sensing devices such as optical or inductive transducers 

must be used.
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Except for the investigations performed in Section 5.3, where a piezoelectric 

sensor and a laser Doppler scanning vibrometer were utilised, all structural res­ 

ponses throughout this thesis were measured using magneto-resistive sensors. 

They are described in more detail in Section 2.4.1.

2.2.3 Recording and Processing Equipment

The initial stage in a post-processing chain is to amplify the transducer out­ 

put signals to an appropriate voltage range, usually ±5 V or ±10 V, to reduce 

the sensitivity to perturbations which are likely to occur in the further pro­ 

cessing steps. Some types of sensors, like strain gauges or magneto-resistive 

accelerometers, may also require a phantom power supply. The next step is to 

remove any noise and disturbances beyond the frequency range of interest by 

appropriate filtering.

Today, all subsequent processing steps are commonly performed digitally. 

The analog data is sampled at discrete time steps by an analog-to-digital con­ 

verter. The sampling rate required to retrieve the analog signal from the digital 

data must be at least twice the maximum frequency of the analog signal. This 

condition is known as Shannon's sampling theorem. Higher-order low pass 

filters are used to remove all frequencies beyond half the sampling rate from 

the analog signal and prevent aliasing effects. Aliasing would cause frequen­ 

cies above half the sampling rate to appear as spurious low frequencies in a 

subsequent digital-to-analog conversion.

The measured data is now prepared to be analysed by appropriate com­ 

puter hardware using the methods introduced in Section 2.1. A mobile data 

acquisition and signal processing facility [32, 34] which is particularly designed 

for vibration testing of large aerospace structures is described in detail in the 

next section.

2.2.4 Suspension Systems

Additionally, the suspension system which supports the test structure and 

defines the test boundary conditions may be regarded as part of the test set-
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up. To acquire significant results the test should as closely as possible simulate 

the operating conditions of the respective structure.

For aircraft the free flight or so-called 'free-free' boundary conditions are 

approximated by a low-frequency suspension. The frequencies of the rigid body 

modes (RBM) of the suspended structure should be sufficiently smaller than 

the lowest elastic mode. A problem with these suspensions is their low stiffness 

resulting in large static deflections due to the structure's weight. Free-free 

boundary conditions were chosen for the test cases investigated in Sections 4.2 

and 5.2.

The most critical operating conditions for satellites, i.e. the highest struc­ 

tural loads, occur during lift-off when the satellite is mounted to the pay load 

bay of a launch vehicle. Typically, the launcher has a considerably larger mass 

and stiffness and primarily behaves like a seismic foundation. Therefore, satel­ 

lites are usually fixed at their base during vibration testing. This set-up was 

used with the test cases described in Sections 5.3 and 5.4.

2.3 Experimental Errors

Limitations of the test hardware and experimental identification methods dis­ 

cussed in the previous sections lead to inevitable imperfections in the measured 

modal data. With respect to model updating applications the most significant 

errors are the phase purity of the measured mode shapes, modal and spatial 

incompleteness, and measurement noise. A short review of publications deal­ 

ing with the problems of complex modes and incomplete data is provided in 

the following sections. Random measurement errors have been considered by 

various authors [62, 41, 42, 19]. Systematic studies, however, have not been 

performed in the past. An investigation on the influence of experimental errors 

on the finite-element model corrections is provided in Section 4.3.
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2.3.1 Complex Mode Shapes

A fundamental inconsistency between the numerical analysis and modal iden­ 

tification test arises from the damping distribution in the test structure which 

leads to complex experimental mode shapes. With the exception of Phase 

Resonance Testing [27] any realistic structure will exhibit complex modes, 

unless an appropriated multi-point excitation is used in the identification pro­ 

cess. The problem has been reviewed by CAUGHEY and O'KELLY [21] and 

MITCHELL [115]. According to NIEDBAL [136] a comparison of real analytical 

and complex experimental modes must be avoided since it is likely to prevent 

any model improvements based on measured modal parameters. Therefore, the 

measured complex mode shapes should be converted into real modes [133,135]. 

IBRAHIM [65] has presented a method to transform complex modes into real 

modes by directly solving the equilibrium equations for the undamped sys­ 

tem to obtain an estimate for M~ 1 K which may then be used to compute 

the eigenvalue problem of the damped system. The method works well for 

weakly damped structures with phase angles close to zero or 180 degrees. An­ 

other method proposed by NlEDBAL [134] involves writing the complex mode 

shapes in terms of the real mode shapes using a complex transformation. The 

transformation matrix is computed from the real and imaginary components of 

the complex mode shapes. The errors introduced by some of the mode shape 

conversion methods were analysed by SESTIERI and IBRAHIM [153].

2.3.2 Modal and Spatial Incompleteness

The second problem is the incompleteness of the experimental modal data 

with respect to both the number of identified mode shapes and the number 

of measured degrees of freedom. Modal incompleteness is due to the fact 

that the number of measured mode shapes is limited, mainly by the frequency 

range of the test hardware and the critical modal density of the experimental 

modal analysis methods.2 Spatial incompleteness is caused by the number of

2 A useful comparison of measured and analytical modal data may additionally be re­ 
stricted by the accuracy of the mathematical model.
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measured structural response components being smaller than the number of 

degrees of freedom in the numerical model.

The improvement of the stiffness and flexibility matrix based on an incom­ 

plete number of measured natural frequencies using weighted least squares has 

been investigated by NATKE, COLLMANN, and ZIMMERMANN [128]. Problems 

associated with the derivation of analytical model properties from incomplete 

data have also been addressed by BERMAN and FLANNELLY [12], BERMAN 

[11], NATKE [124], and MOTTERSHEAD [116].

2.4 The Ground Vibration Test Facility

The Ground Vibration Test Facility, Figure 2.1, operated by DLR's Institute 

for Aeroelasticity forms a central part of the framework within which this 

research is conducted. The facility comprises the test hardware required to 

carry out experimental vibration analyses on complex aerospace structures. In 

recent years, the test facility was used for modal identification and dynamic 

qualification tests on most major European military and civil fixed wing air­ 

craft, helicopters, satellites, and other space structures. To allow for world 

wide operation the measurement equipment is installed in two mobile, air- 

conditioned, standard freight containers: Approximately 800 sensor channels 

and 24 independent excitation channels are available. Excitation, vibration 

recording, and data processing are controlled by a process computer.

2.4.1 Excitation

Five electromagnetic exciter types of various sizes and force amplitude levels 

are available. 24 excitation channels are controlled simultaneously by the test 

facility. On most structures only a few excitation points are needed to isolate 

a mode shape, yet, the large number of excitation channels helps to avoid the 

time-consuming rearrangement of shakers during a test.

The shakers were modified by DLR in order to minimise their vibrating 

mass, grounded stiffness, and internal friction. This diminishes any interaction
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Figure 2.1: Ground Vibration Test Facility operated by DLR
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Parameter

Type

Quantity

max. Force

max. Stroke

Vibrating Mass

Height

Diameter

Exciter Mass

Value

DLR

12

16 N

±10 mm

83 g

190mm

95 mm

4kg

Table 2.1: Exciter Specifications

between the shaker and test structure and allows to determine the excitation 

force directly by measuring the voice coil current. The technical data of the 

shakers are given in Table 2.1.

Each exciter is mounted on a tripod of variable height. A slide bearing 

support decouples the shaker from the tripod stiffness. The support can be 

rotated around two perpendicular axes allowing for a free excitation force ori­ 

entation in space. Lightweight rods link the shakers to the excitation points on 

the structure. The excitation forces are transferred to the structure by vacuum 

shoes or, for special applications, custom made adapters.

A digital high resolution frequency generator provides the harmonic input 

signal for the amplifiers which drive the shakers. All shakers are operated at 

the same frequency and phase angle. Force levels for each individual excitation 

channel are set on a control board. For multi-point excitations all force levels 

can be adjusted proportionally to conveniently investigate non-linearity effects.

2.4.2 Vibration Measurement

The test structure's dynamic response is measured by magneto-resistive ac­ 

celeration sensors. The sensors were developed by DLR and are specifically 

designed for low-frequency applications and good linearity. They were manu­ 

factured under license by Georg Wazau Mefi- und Priifsysteme GmbH, Berlin, 

Germany. Table 2.2 lists the key specifications.
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Parameter

Type

Quantity

Measuring Range

Sensitivity

Resolution

Frequency Range

Resonance Frequency

Amplitude Linearity

Transverse Sensitivity

Temperature Sensitivity

max. Acceleration

Length

Diameter

Mass

Value

Wazau (DLR)

800

±1000 m/s2

~0.5mV/g

0.01 m/s2

0-300 Hz

> 600 Hz

<2%

<2%

~ 0.1 %/°C

±5000 m/s2

30mm

8 mm

8g

Table 2.2: Sensor Specifications

Two-sided adhesive tape is used to attach the sensors to the test structure. 

The actual sensor element rotates in an outer holder to allow its individual 

measurement direction to be aligned independent of the local surface orienta­ 

tion.

2.4.3 Data Processing

A SUN 20/2 workstation is used to control the excitation frequency and force 

amplitudes and to process the sensor data. Every sensor signal is split into 

its real (in phase with the excitation reference signal) and imaginary (±90 

degrees phase shift to the excitation signal) component by means of vector 

meters. The signals are then fed into a set of multi-channel A/D-converters 

and stored on the workstation's internal hard disk drive.

The control software was developed by DLR to meet the particular require­ 

ments of Modal Survey Testing which include an automated data acquisition, 

online post-processing, display of results, and data storage. The following 

functions are implemented:
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  automated sine-sweep excitation in a given frequency band,

  display of Mode Indicator Function (MIF), eq. (3.54), versus excitation 

frequency,

  recording of Frequency Response Functions (FRF),

  acquisition of mode shape deflection amplitudes, generalised masses, and 

modal damping factors, and

  online display of mode shapes (static/animated).

The Ground Vibration Test Facility was used as data acquisition system 

for the majority of test cases discussed in Chapters 4 and 5. Normal modes 

and Frequency Response Functions were measured on the structural model 

(SM) used by the GARTEUR3 Action Group 19, Section 4.2. A Shake Test 

and modal identification were performed on the prototype of the Eurocopter 

EC 135 helicopter in Section 5.2. Modal parameters of a laboratory test struc­ 

ture, Section 5.4.2, and the Polar Platform satellite developed by the European 

Space Agency (ESA), Section 5.4.3, were identified. Table 2.3 gives an overview 

of the applications within the scope of this thesis.

3 Grroup for Aeronautical Research and Technology in Europe
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Chapter 3

Development of Procedures

3.1 Introduction

In this chapter the procedures utilised for the improvement of numerical models 

using experimental modal data, the localisation of structural damage, and 

the experimental identification of natural frequencies and mode shapes are 

developed.

The theoretical background of the model updating method introduced by 

NATKE [126] and LINK [106, 99] is outlined in Section 3.2. The method per­ 

forms an implicit estimation of analytical model parameters based on a least 

squares approximation to experimental modal data. It is assumed that the 

system is passive and linear and that the analytical system matrices are real, 

symmetric, and positive definite. The existing finite-element analysis [101,102] 

and model optimisation [100] computer codes are used. This enables to focus 

attention on the application-related aspects of the updating problem which 

will be discussed in Chapters 4 and 5.

In Section 3.3 a novel concept for the identification and localisation of de- 

lamination damages in carbon fibre reinforced polymers (CFRP) is introduced. 

The method is based on the observation of damage-induced modal damping 

variations and a correlation of measured data to an analytical model. The ap­ 

proach is unique in that it allows to locate damage in a three-dimensional struc­ 

ture using data from only a single structural response sensor. A technique to
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accurately measure the damage-induced deviations of modal damping factors 

is developed and a correlation coefficient for modal vector analysis is adapted 

to enable the identification and localisation of the damage. In Section 5.3 a 

stringer-stiffened aircraft panel is used as a test structure to generate experi­ 

mental data for an undamaged and damaged case and to assess the proposed 

concept.

A new method for the computation of optimised multi-point excitation 

force vectors, which are needed for an accurate and consistent identification 

of the natural modes of complex structures in Phase Resonance Testing, cf. 

Section 2.1.2, is presented in Section 3.4. The method performs a superposition 

of structural responses from a series of preliminary sweep runs in different 

exciter configurations in order to minimise the real-part response with respect 

to the total response. Unlike other approaches, it does not rely on numerical 

data or assessments on the structural damping. Optimised excitation forces are 

determined in a non-iterative procedure and the associated achievable phase 

purity is assessed. The updating algorithm is shown in Figure 3.1 and various 

test cases are discussed in Section 5.4.
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3.2 Model Updating Method

As with all model updating techniques, the main objective of the iterative 

method used here is to improve the correlation between experimental data 

from a test structure and the corresponding analytical model. This is achieved 

through a variation of model parameters in order to minimise a penalty func­ 

tion, which describes the deviations between measured and computed data. 

The model parameters are associated with properties of structural compo­ 

nents which due to inaccurate modelling require correction. As a result of 

the penalty function's non-linearity with respect to the model parameters, the 

optimisation problem needs to be linearised and solved using an iterative pro­ 

cedure.

A major advantage of iterative updating techniques, as opposed to direct 

methods, is their capability to maintain the initial coincidence between degrees 

of freedom within the system matrices. This allows for model corrections which 

do not only reproduce the experimental data but also are capable to improve 

the analytical model's physical significance and provide valuable information 

on the modelling of complicated details.

3.2.1 Basic Equations

In order to attain a selective correction of those model components which are 

assumed to contain modelling errors the system matrices of the initial finite- 

element model K0 and M0 are superimposed with a set of submatrices K; and 

Mj, representing the uncertain model regions and properties, to define the 

improved mass and stiffness matrices

K =
z=l

(3.1)
J

M -

Any structural modification to the original model is introduced through dis­ 

crete correction factors a, and fy for each submatrix.
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The submatrices Kj and Mj may consist of individual or groups of finite 

elements. Due to the manifold connections between each submatrix and the 

adjacent finite-element mesh the submatrices can not be extracted directly 

from the full system matrices but have to be individually built as separate 

models.

As to start the optimisation from the original analytical model the initial 

values for the correction factors c^ and j3j are set to zero. For physically 

meaningful corrections a; and /?j must assume values larger than minus one. 

Otherwise, the stiffness or mass within the corresponding substructure vanishes 

or becomes negative.

A residual or error vector constitutes the penalty function for the model 

corrections

e(p) =ze - zfl (p) . (3.2)

The state vector ze contains experimental data (e.g. modal, frequency response, 

or force residuals) while za (p) is the vector of corresponding analytical model 

data, therefore being a function of the correction factors

pT = (..., at , ... , fa ,...)  (3 - 3)

The residual vector represents the optimisation criterion for the model cor­ 

rections. The best approximation to measured reference data corresponds to 

a minimum of the residual. A range of possible choices for residuals will be 

discussed in more detail in Section 3.2.2.

The objective of the updating process is to find the correction factors c^ 

and j3j which minimise the error vector, eq. (3.2). The minimisation usually re­ 

quires a least squares approximation of analytical to experimental data because 

the system to be solved is over-determined, i.e. the number of components in 

e exceeds the number of parameters in p. This leads to an objective function

J(P)=eT We £ + PT Wp p, (3.4)

where We and Wp are regular symmetric matrices for the residual and the 

parameter vectors, respectively. An appropriate choice of the weighting matri-

42



ces allows to focus the optimisation process on particularly important experi­ 

mental data or substructures [118, 126, 99]. Minimising the objective function, 

eq. (3.4), simultaneously reduces the deviations between experimental and ana­ 

lytical data and constrains parameter variations throughout the iteration by 

means of which the solution process is stabilised.

To find a minimum for the objective function the partial derivatives of J(p) 

with respect to the correction factors need to be computed. This requires the 

residual, eq. (3.2), to be linearised in p by means of a truncated Taylor series 

expansion:
ftefrA

(3-5)

where subscript K, denotes the iteration step and

e(pK ) = ze — za (pK ) . 

Introducing the Jacobian matrix

Xr, (^\

(3.6)
P=P

dp1

and

Ap = p«+i - p« (3.7)

eq. (3.5) may be rewritten as

* e(p«) - GK • Ap . (3.8)

The Jacobian matrix GK describes the influence of correction factor changes 

on the analytical data. Therefore, it is frequently called sensitivity matrix or 

gradient matrix. The modified objective function now reads

J(Ap) = (eTK - ApT Gj)   We   (eK - GK Ap) + ApT Wp Ap . (3.9)

With the necessary conditions for the minimisation

dJ(Ap)
\ A / ___ f\ I f\ -| f\ \~d^- = ° (3 ' 10) 

eq. (3.9) becomes
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dAp
J Ap + (GJ We GK )T Ap

Solving for Ap yields a linear system of equations for the unknown correction 

factors:

Ap - (Gj We GK + Wp)- 1   Gj W£ eK . (3.11)

_ i

The quality of the solution will essentially depend on the choice of correc­ 

tion parameters, the weighting, and the residuals [107].

3.2.2 Error Vector and Gradient Matrix

Computing the correction factors from eq. (3.11) requires the Jacobian matrix 

and error vector to be determined and the weighting matrices We and Wp to be 

chosen appropriately. The residual is selected according to the given updating 

problem and controls the nature and amount of experimental data by which the 

analytical model is updated. Possible choices are eigenvalue and eigenvector 

residuals as well as force or response residuals. Within the scope of this thesis 

further considerations will concentrate on corrections based on modal data. 

Therefore, only the expressions for eigenvalue and eigenvector residuals will be 

developed in detail. A comprehensive collection and discussion of residuals is 

given in [126].

In the following sections an undamped system with real eigenvectors and 

eigenvalues will be assumed. In addition, a precise allocation between mea­ 

sured quantities and the corresponding numerical model quantities as outlined 

in Section 1.3.3 must be established. 1

lfThe allocation of experimental and analytical data may change as the correction pro­ 
ceeds. It has to be checked within each iteration step.
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3.2.2.1 Eigenvalue Residuals

Updating the analytical model in order to reproduce measured natural fre­ 

quencies requires a residual of the form:

\ \Ae,i - Aa>

Ae ,2 - Aa>2 (p)

,AT — Aa># (p)

(3.12)

where Ae>n are the squares of experimental eigenfrequencies and Aa>n are analy­ 

tical eigenvalues. To ensure a correct allocation of corresponding measured and 

analytical values the respective mode shapes and eigenvectors have to be con­ 

sidered. Pairing of natural frequencies and eigenvalues in ascending order alone 

does not necessarily lead to a comparison of equal modes (cf. Section 1.3.3). 

The associated gradient matrix

dpi
9Aa ,2 
dpi dpK (3.13)

dpi dp2 QPK

is derived from the eigenvalue problem for the updated analytical model

(3.14)

Partial differentiation with respect to the correction factors yields

-A« ^ = 0 .dpk ™ "u dpk ' dpk j   ' v  -" ' "' dph

Eqs. (3.15) contain the required derivatives dXa/dpk and additionally the 

eigenvector derivatives d(pa/dpk which will be used in Section 3.2.2.2. Left 

hand multiplication with (f% and writing eqs. (3.15) for the rih eigenvalue 

results in

d\a,r
ra,r

= 0. (3.16)
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With the generalised mass, eq. (1.37), of mode r

(3.17)

and taking into account the symmetry of the system matrices

the eigenvalue derivatives are:

.- (3.18)

Using eqs. (3.1) the final expressions for stiffness matrix corrections

(3.19)

and for mass matrix corrections

Aa,r <pl (3.20)

are obtained.

Eqs. (3.19) and (3.20) require an eigenvalue solution in order to determine 

the derivatives with respect to the correction factors. For each mode r the gra­ 

dients for stiffness corrections d\a/dai are proportional to the substructure's 

potential energy (f>^r Kj (pa ^r and the gradients for mass corrections d \a/d j3j 
are proportional to the substructure's kinetic energy y>J>r. M^ </9a>r , respectively.

3.2.2.2 Eigenvector Residuals

Updating the system matrices with experimental eigenfrequencies also provides 

corrected eigenvectors. Their accuracy, however, is usually lower as if they were 

directly involved in the optimisation process. To generate an analytical model 

that properly reproduces measured mode shapes a modified residual is used:

(3.21)
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Correctly computing the differences in eq. (3.21) requires all vectors (pe>n and 

Va,n to De normalised in the same way.

Due to the limited number of sensors on the test structure the experimen­ 

tal mode shapes usually contain a smaller number of deflection components 

than the eigenvectors from the analytical model. As a result, the error vector 

does only include the degrees of freedom corresponding to the measurement 

locations whereas at all other degrees of freedom no conditions have to be 

fulfilled.

The eigenvector derivatives in the gradient matrix

dpi
Va

dp\

dp-2,

dpi

(3.22)

are approximated by a series expansion of all eigenvectors

(3.23)
s=l

To compute the coefficients cs eq. (3.15) again is written for mode r and 

multiplied by v?J)f , where r ^ t

dXar T ,, T / ,--&£ *•* M *•* + ^* r dM dK

^ = 0 . (3.24)

Applying eq. (3.23) while keeping in mind the eigenvector's orthogonality with 

respect to the mass matrix yields

T,x x K)   ^ cs <pa ,s = -¥>fl|t ( -Aa>
s=l

9K-W. 0.25)
'*/ '

Because of

fors/t

eq. (3.25) reduces to

fa,r • (3.26)
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Using the generalised quantities, eqs. (1.37) and (1.38),

Ma ,t = <plt M <patt and Kajt = <p%t K <pajt (3.27)

and A0)t = Kaj/Matt the coefficients for Aa^ ^ A 0)T. are

3M 9K ' (3.28)

In order to avoid a division by zero no repeated eigenvalues are permitted in 

eq. (3.28).

The remaining coefficient cr is derived from the expression for the gener­ 

alised mass, eq. (3.17), by partial differentiation with respect to the correction 

factors:

Replacing the partial derivatives by the series expansion, eq. (3.23), gives

Na

2

and because of

2 v?^ M cs <pa ^ s = 0

the last coefficient is

With eqs. (3.28) and (3.29) all coefficients for eq. (3.23) are determined 

and the partial derivatives can be computed. For pk = &i eq. (3.23) becomes

^,»- (3-30)
l 8=1

Using eq. (3.1) to simplify eqs. (3.28) and (3.29) gives

K for r

0 for r = s 

Similarly, for pk - j3j eq. (3.23) becomes

W, (3.31)
S=l
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where

Co = <

\a'\* f <pT.M,-<p,., for r ^ s

for r = s

again using eq. (3.23) for simplification.

Analogous to Section 3.2.2.1 a solution of the eigenvalue problem from the 

analytical model is required. Starting from this eigenvalue solution all partial 

eigenvector derivatives needed to assemble the gradient matrix are given by 

eqs. (3.30) and (3.31).

3.2.2.3 Combined Eigenvalue and Eigenvector Residuals

Since an updated numerical model is usually expected to match both the ex­ 

perimental eigenfrequencies and the mode shapes the error vectors, eqs. (3.12) 

and (3.21), and gradient matrices, eqs. (3.13) and (3.22), are used to form joint 

expressions

* = ( ^ ) (3.32) 
\ e"/

and

GA . (3.33)
G,,

Introducing eqs. (3.32) and (3.33) into eq. (3.11) unfortunately reveals that the 

products GT We G and GT We £ contain elements of dissimilar dimensions. 

To retain eqs. (3.32) and (3.33) in the given form the frequency differences 

in eq. (3.12) and the modal vector differences in eq. (3.21) are replaced with 

normalised expressions

norm and (<£e ,n "~ V^nJ/Vnorm ,

respectively, where l/Anorm and l/ywm are suitable normalisation factors, e.g. 

the largest observed deviations between analytical and experimental data. Par­ 

tial differentiation with respect to the correction factors according to eq. (3.6) 

reproduces identical normalisation factors l/Anorm and l/<^norm in the respec­ 

tive gradient matrix terms. As a result, the correction factors can be computed 

from eq. (3.11).
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3.2.3 Summary

This section has developed the procedures which will be applied in the pro­ 

cess of improving finite-element models using experimental modal data as a 

reference.

The initial numerical model is parameterised by means of a superposition of 

the original system matrices and a set of correction submatrices which charac­ 

terise the supposedly erroneous model regions, eq. (3.1), and enable a selective 

correction of existing modelling errors. The numerical model optimisation is 

controlled through a residual vector, eq. (3.2), containing the experimental and 

corresponding analytical vibration data toward which the model shall be im­ 

proved. Since, in most cases the system to be solved is over-determined, i.e. the 

number of measurements exceeds the number of correction parameters, a least 

squares approximation, eq. (3.4), is utilised to find a minimum of the residual. 

As a result, a linear system of equations for the unknown correction factors, 

eq. (3.11), is obtained. Solving eq. (3.11) involves the definition of appropriate 

weighting matrices and the computation of a Jacobian matrix from analytical 

modal data, eqs. (3.13) and (3.22). Due to the residual's non-linearity with 

respect to the correction factors the model optimisation problem needs to be 

solved by means of an iterative procedure. The algorithm, made available as a 

computer code [100] from the Lightweight Structures and Structural Mechanics 

Laboratory, University of Kassel [96], is sketched in Figure 3.1.
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Figure 3.1: Updating Algorithm
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3.3 Localisation of Structural Damage

The occurrence of structural damage in elasto-mechanic structures is directly 

related to changes in their dynamic characteristics. Solving the inverse prob­ 

lem, i.e. deriving reliable information on the damage location and size from 

experimental vibration data, has been a subject of research for decades. The 

initial impetus has come from the offshore industry [163, 110, 168, 28, 70] 

where the harsh mechanical and chemical environment requires a permanent 

observation of the structural integrity. Some contributions have also been 

made recently by the civil engineering community, e.g. [54, 45, 147]. Here, the 

surveillance of bridges and buildings and the assessment of earthquake damage 

are the most important subjects.

Major applications for damage detection methods are emerging in aero­ 

space owing to the high operational safety standards and low level of redun­ 

dancy in light-weight structures. Modal approaches appear particularly attrac­ 

tive since, as a result of a local event (the damage), the structure's dynamic 

characteristics are affected globally. This allows to identify a damage from 

measurements in remote undamaged areas. Therefore, modal approaches are 

most suitable when the structural accessibility is limited and when no a-priori 

knowledge on the possible damage location is available.

Hence, the key task of modal damage diagnoses is to observe global phe­ 

nomena and to identify the associated local events. The identification process 

usually involves a mathematical model of the examined structure. Using this 

model the relation between a damage and variations of the dynamic proper­ 

ties is inverted mathematically. For most practical applications, however, only 

a finite-element model is available. In this case, information on the damage 

location is obtained from a comparison between analytical and experimental 

quantities.
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3.3.1 Introduction

Among the most attractive new materials for aerospace applications are fi­ 

bre reinforced polymers. Unfortunately, these fibre materials respond highly 

sensitive to surface impacts caused for example by projectiles or during main­ 

tenance. If the energy of the impacting object exceeds a specific threshold the 

internal bonding between adjacent fibre layers is destroyed over a certain area 

around the impact location. In the delamination region the unbonded fibre 

layers are free to glide along the fibre plane directions which leads to a local 

reduction in shear stiffness and additional friction.

Generally, the damaged component's surface is left intact and the delam­ 

ination remains invisible. Appropriate conventional inspection techniques are 

usually based on ultrasonic wave scan methods. Being time consuming and 

cost intensive the aircraft industry now is strongly interested in alternative 

methods.

Regarding the structures dynamic behaviour the decreased shear stiffness 

causes the natural frequencies to decline and the additional friction is perceived 

as an increased modal damping. Minor alterations also occur in the mode 

shapes. Yet, the influence of the damage is mainly restricted to its immediate 

vicinity and decreases rapidly with distance from the damage location [127]. 

Due to this, the monitoring of mode shape deflections would require a high 

sensor density which apparently is not very suitable for aerospace applications.

Despite some promising results [164, 111] the sensitivity of natural frequen­ 

cies with respect to general structural damage typically is rather low. With 

delamination damages in particular, however, the increased damping is clearly 

observable [69]. Nonetheless, the amount of additional friction generated by 

the delamination depends on the distribution of shear deformations over the 

damaged area. Since the distribution of shear deformations varies within the 

global deflection field the increase of damping is a function of the damage 

location and depends on the mode shape.

Simple as it appears, no working method currently exists for structures 

exceeding the complexity of simple beams, especially when the experimental
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data is incomplete and contains measurement errors [22, 51, 165]. As in most 

inverse problems ill-conditioning is a major concern. To avoid this it is essen­ 

tial to limit the localisation problem to its basic aspects, that is to reduce the 

number of unknown quantities such that only a minimum number of parame­ 

ters need to be determined. Therefore, the investigations will be focussed on a 

single concentrated damage and linear behaviour is assumed before and after 

damage has occurred.

The localisation method proposed here [86, 87, 82] is based on observing 

the differences of modal damping between a healthy, i.e. undamaged, and a 

damaged configuration for a range of mode shapes and a subsequent compari­ 

son of experimental and analytical data. Regarding the monitored test article 

this involves measuring the structural response and extracting damping factors 

(Section 3.3.2) for both the healthy and the damaged state. For the respective 

numerical model a damping distribution must be modelled (Section 3.3.3) and 

a realistic finite-element model of the delamination damage has to be gener­ 

ated in order to derive analytical data for the healthy and the damaged state. 

The damage location, being unknown at this point, is the variable of the lo­ 

calisation problem. Comparing experimental and analytical damage-induced 

damping deviations for a sufficient number of mode shapes (Section 3.3.4) re­ 

veals that the correlation varies with the damage position in the finite-element 

model. The highest degree of similarity is associated with a coincidence of the 

damage position in the finite-element model and the real damage location on 

the test structure. The correlation coefficient is therefore used as the criterion 

to determine the damage location.

In Section 5.3 an application to to a stringer-stiffened fuselage panel made 

of carbon fibre reinforced polymers (CFRP) is described and the advantages 

of using an updated finite-element model are emphasised.

3.3.2 Extraction of Experimental Damping Parameters

The extraction of experimental damping values from measured frequency re­ 

sponse data is based on a polynomial curve fit. Assuming the damping to be
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sufficiently low and the resonance frequencies to be adequately spaced the mea­ 

sured structural response in the vicinity of a resonance n is approximated by 

a proportionally damped one-degree-of-freedom system with mass m, damp­ 

ing factor 97e>n , and eigenfrequency un . The system's response to a stationary 

harmonic excitation force f(<j) is given by

- (3-34)

If f(o;) = const, the inverse response is a quadratic polynomial in

1 m o . m m /  «-x(3.35)

an bn Cn

with the coefficients

mm m 2 /« o^\an = --- , 6n = 2ir)en—un , and cn =   o;n . (3.36)
I i i

Solving for r]^n yields the unknown damping factor:

  6n (J^rt ' bn , \'71 ""ft "ft /f> OTX   or rjen = ———— • (3.37);e,« r> • _ V /

The coefficients an , 6n , and cn are easily obtained from a polynomial curve fit 

around the resonance frequency un .

3.3.3 Analytical Damping Model

Eqs. (3.37) allow to compute modal damping factors from experimental fre­ 

quency response data. To derive the corresponding quantities from the analy­ 

tical model a damping matrix is assembled from a linear superposition of the 

mass and stiffness matrices as outlined in Section 1.2.7.2. Rewriting eq. (1.29) 

using the generalised properties from eqs. (1.37) and (1.38) results in

Dn = n • Mn + K • Kn . (3.38) 

The damping factor of a given mode n is defined as

n = Dn (3 39) 
^ 2VKX ( J
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or, using eq. (3.38),
KUJn (3.40)

The proportionality constants fj, and K are chosen such that the 77a>n from the 

finite-element model provide the most accurate approximation to the measured 

modal damping values r)e ,n of the undamaged structure in a least squares sense.

3.3.4 Correlation of Experimental and Analytical Data

The correlation of experimental and analytical data is based on the damage- 

induced differences of the damping factors obtained from eqs. (3.37) and (3.40). 

The deviation of measured damping factors is

(3.41)
'le,n

where rj^n denotes the measured damping value of mode n for the healthy 

structure, whereas rj^n (xe ) is the corresponding value after damage has oc­ 

curred. The (unknown) damage location is described by the vector xe . For 

analytical damping deviations

(3.42)

with xa being the location vector for the modelled damage. Computing the 

deviations according to eqs. (3.41) and (3.42) requires response measurements 

on the healthy and the damaged structure and computing analytical damping 

factors for the healthy and damaged states, respectively.

Writing the modal damping deviations from a set of N measured modes as 

a vector results in

Arje (xe ) =

^ A770)7v(xe ) 
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and, for the appropriate computed modes,

/ . / x \

(3.44)

^ A77a)Ar (xa)

The experimental and analytical damping deviations are compared through a 

correlation coefficient for modal vector analysis [1]:

A,,e (xe)) '

As the damage position in the finite-element model is varied the correlation 

between numerical and experimental data will also vary. Assuming that a 

sufficient number of modes is considered the correlation coefficient C will have 

a unique maximum exactly when, and only when, xa approaches xe :

C(xa ,xe )  > max. <(=> xa -> xe . (3.46)

If C(xa ,xe) has more than one local maximum the number of mode shapes 

needs to be increased to refine the spatial resolution.

Eq. (3.46) is the criterion to locate the damage on the test structure. It 

allows to identify a local event (the damage) from observing global charac­ 

teristics, in this case the deviations of modal damping, at arbitrary sensor 

locations.

3.3.5 Summary

A new concept for identifying and localising delamination damages in CFRP is 

introduced. Processing damage-induced modal damping variations and corre­ 

lating the experimental data to a mathematical model enables locating damage 

in a three-dimensional structure using a single structural response sensor. The 

method involves a novel technique for the extraction of modal damping factors 

from a measured structural response, a standard approach for the modelling of 

damping in the numerical model, and a newly developed localisation criterion 

based on the correlation of experimental and analytical data.
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In order to obtain sufficiently accurate modal damping measurements the 

structural response around each resonance frequency is approximated by a 

proportionally damped one-degree-of-freedom system. Now, the inverse of the 

response, eq. (3.35), is expressed as a quadratic polynomial in u and the damp­ 

ing factors can be computed from the coefficients of a polynomial curve fit.

The associated analytical modal damping factors are derived from a pro­ 

portional damping approach, eq. (1.29), where a damping matrix is assembled 

from a linear superposition of mass and stiffness matrices given from the ex­ 

isting numerical model.

Damage localisation is based on a comparison of measured and computed 

damage-induced modal damping variations utilising a correlation coefficient 

for modal vector analysis, eq. (3.45). The location of the structural damage 

is associated with the maximum in the correlation coefficient. An overview of 

the individual working phases is provided by the flow chart in Figure 3.2.
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Figure 3.2: Flow Chart of Damage Localisation Procedure
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3.4 Optimised Excitation Forces

Ground Vibration or Modal Survey Testing is a commonly applied procedure to 

investigate the dynamic characteristics of aerospace structures [44]. Typical 

applications for the experimental data gained from these tests are aeroelas- 

tic stability calculations, response analyses, and numerical model corrections 

[136]. Today, the Phase Resonance Method (PRM) provides a reliable tool for 

the experimental identification of the dynamic behaviour of elasto-mechanic 

structures [53]. Especially the method's ability to directly identify normal 

modes makes Phase Resonance Testing particularly suitable for acquiring the 

experimental reference data for model updating [136].

The PRM involves a direct measurement of modal parameters and there­ 

fore allows for high-quality test results [120]. This, however, is associated 

with a major disadvantage: Phase resonance testing requires the use of an 

appropriated excitation force vector to balance the test structure's internal 

damping forces. The force tuning process results in an extended test duration 

as compared to other methods [132]. Further problems arise from the restricted 

accessibility of modern space structures due to their increasing complexity and 

dimensions [133].

Several systematic approaches for tuning the excitation forces have been 

suggested in the past, all having individual advantages and specific drawbacks. 

LEWIS and WRISLEY [93] have assumed the shaker force at a given location 

to be proportional to the product of local mass and deflection. TRAILL-NASH 

[161] has performed a superposition of structural responses to fulfil the phase 

resonance criterion. ASHER [4] has derived an admittance matrix from mea­ 

sured structural responses to compute the unknown excitation force compo­ 

nents. ANDERSON [3] has used the inverse of the modal force matrix. HUNT, 

VOLD, PETERSON, and WILLIAMS [64] and NIEDBAL and KLUSOWSKI [137] 

have applied different criteria to minimise the real-part response with respect 

to the total response.

The method proposed here [73, 84] is based entirely on experimental data. 

It does not require any additional information such as a mass matrix from a
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finite-element model or assumptions on the structural damping. The locations 

and force components, which most appropriately match the phase resonance 

criterion, are determined in a single step and the corresponding Mode Indicator 

Function (MIF), eq. (3.54), is predicted. By applying the pre-computed force 

vector the time-consuming mode tuning process becomes dispensable and the 

test duration is reduced considerably while an optimum modal data quality is 

assured.

The following sections provide a brief introduction to the PRM and give a 

theoretical outline of the force tuning procedure. Applications to a laboratory 

test structure and to the European Space Agency's (ESA) Polar Platform 

satellite are described in Sections 5.4.2 and 5.4.3, respectively.

3.4.1 The Phase Resonance Method

Starting from the dynamic equilibrium equations (1.24) introduced in Sec­ 

tion 1.2.6

M u(t) + D u(t) + K u(t) = f(t) (3.47)

the structural response to a forced sinusoidal excitation with all force compo­ 

nents in phase such that:

f(t)=feiut (3.48)

is given by

u(t) = u eiut = (&(u) + i 9(u)) eiu]t (3.49)

with f as a vector of excitation force components, u as the vector of complex 

response amplitudes, and 9ft(u) and S(ii) as the corresponding real and imag­ 

inary components. Introducing eqs. (3.48) and (3.49) into the equations of 

motion the real and imaginary parts of eq. (3.47) become

(-LJ2M + K) 8(u) - u;D 9(u) = f , (3.50) 

u D to(u) + (-u;2M + K) 9(u) = 0 . (3.51)

Claiming the real part of the response vector 3ft(u) to be zero, which constitutes 

the necessary condition for the excitation of a normal mode, yields

~wD9f(u)=f, (3.52) 
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(-o;2M + K) 9f(u) = 0 . (3.53)

Hence, the real-part response vanishes precisely when the external excitation 

force is in balance with the internal damping forces of the test article, eq. (3.52), 

and when the imaginary response and excitation frequency fulfil the eigenprob- 

lem of the undamped system, eq. (3.53). In the close vicinity of a resonance 

the structure behaves like a one-degree-of-freedom system.2

From the physical view point the damping forces in eq. (3.47) cause a coup­ 

ling of all existing eigenvectors. As a result, the structural response for each 

frequency is given by a superposition of all mode shapes. Compensating the 

damping forces by means of an excitation force vector according to eq. (3.52) 

removes the coupling and allows the system to oscillate in a single mode.

Accordingly, the test procedure is to adjust the individual excitation force 

components to the (unknown) damping forces and to simultaneously tune the 

excitation frequency until all real parts of the dynamic response are zero. Now, 

the eigenfrequency and natural mode shape may be recorded.

In order to check the phase resonance criterion 9ft(u) = 0 efficiently the 

Mode Indicator Function (MIF) proposed in [15] is used, where:

M
E \rr\S />. \ I I xv I 

|^(um)||um |
MIF = 1 - ̂        . (3.54)

M v '
£ Iflml* 

m=l

When all real-part responses vanish and the test structure vibrates in a normal 

mode the mode indicator approaches a value of one.3 The Mode Indicator 

Function has a highly sensitive response to phase purity and has proven to be 

a powerful tool in conveniently identifying and isolating the normal modes of 

a complex structure.

Despite of the time-consuming force tuning process the Phase Resonance 

Method features several substantial advantages compared to other experimen­ 

tal modal analysis methods:

2In particular, this requires a proportional damping of the form D = p, • M + K • K, 
eq. (1.29).

3 Following a common practice the MIF-values will hereafter be multiplied by a factor of 
103 ,i.e. 0< MIF < 1,000.
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  Mode shapes are measured directly without the need for any off-line 

post-processing.

  The results are available immediately and are verified while the test is 

still in progress.

  The method provides a high level of accuracy and the risk of missing a 

particular mode is small.

Since the selection of exciter configurations and tuning of force vector com­ 

ponents constitute a major fraction of the total test duration various system­ 

atic techniques, which allow the process to be automated, have been developed 

in the past. Today, the results of Modal Survey Tests are regularly used for 

updating of numerical models and the capability to improve the quality of the 

experimental modal data has become a new substantial aspect of all force tun­ 

ing procedures. Typical contemporary aerospace structures usually possess a 

complex dynamic behaviour and a high modal density. As a result, suitable 

excitation force tuning methods are subject to the following requirements:

  The method must allow for a separation of mode shapes with closely 

spaced eigenfrequencies (e.g. symmetric/anti-symmetric wing bending 

modes of an aircraft). This involves a deliberate excitation of the chosen 

mode shape and simultaneously a suppression of the adjacent mode or 

modes.

  The excitation force vectors are incomplete, i.e. the number of force 

components is much smaller than the number of structural degrees of 

freedom.

  Due to potential restrictions regarding the application of excitation forces 

and the limited accessibility of structural components the force compo­ 

nents are prescribed by the user.

  An acquisition of all modal parameters in a given frequency range must 

be possible.
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  Minor deviations from the theoretical assumptions inherent in the Phase 

Resonance Method (e.g. non-linearities or an inhomogeneous damping 

distribution) must be tolerated.

3.4.2 Computation of Optimised Excitation Forces

The excitation force vector for each individual mode shape needs to be ad­ 

justed according to eq. (3.52). As a result of the damping being continuously 

distributed over the structure only an approximate solution for a discrete force 

vector matching the phase resonance criterion may be found. However, experi­ 

ence gained during numerous modal identification tests of different structures 

of varying nature and complexity has shown4 that in practical use a few ap­ 

propriately placed exciters are sufficient. Still, the individual force amplitude 

components have to be tuned to the point where a good mode isolation is 

attained.

The first step in a Ground Vibration Test employing the Phase Resonance 

Method usually is to obtain response data from several sine-sweep runs at 

different exciter locations. The mode isolation process is then started based on 

the measured Mode Indicator Function values. The proposed method performs 

a superposition of structural responses from the different sweep runs so that 

a minimisation of the real-part response with respect to the total response 

is achieved. For each resonance r, i.e. each maximum of the MIF, the real 

and imaginary response vector components 5R(uc) r and $s(uc) r for the exciter
^ _ _

configuration c and the associated force vector fj? are recorded. The different 

response vectors are written as matrices

»(U)r = [ K(u) r , . . . , K(u)cr , . . . , 5R(u)r ] (3.55) 

and

9f(U)r = [ 3(u)J , . . . , 3(u)< , . . . , 9(u)rc ] . (3.56) 

For each mode a force vector must be found so that the real-part response is

4 According to DLR's Ground Vibration Test Facility operation personnel.

64



minimised with respect to the total response:

min - ———— ± ———————— - ———— . —— = Ar . (3.57)

and Ar are the eigenvector and eigenvalue of the corresponding eigenvalue 

problem [64] which for non-trivial solutions is given by

(- = 0 . (3.58)

The eigenvector related to the smallest eigenvalue yields the optimised excita­ 
tion force vector

fr,opt = [f}, .-.frc , ...frc ]-<£r . (3.59)

From the associated structural responses5

(3.60) 

and

(3.61)

a theoretical prediction to the MIF, eq. (3.54), to be achieved in the subsequent 

identification process using the optimised multi-point excitation is computed. 

The method may be accordingly applied to a subset of the C exciter con­ 

figurations to compute the optimised force vectors and corresponding MIFs 

for any possible combination of exciter configurations from the given set of 

locations. Thus, the best combination and minimum number of exciters is 

determined and the definition of fixed exciter locations prior to the tuning 

process is no longer necessary.

3.4.3 Summary

In this section a novel approach for the computation of optimised multi-point 

excitation force vectors in Phase Resonance Testing is proposed. Structural 

response run data, which are readily available from preliminary sine-sweep runs
5 Strictly speaking, the superposition of structural responses in eqs. (3.60) and (3.61) 

requires the structure to behave linearly and all responses 5?(u)£ and ^(u)^ to have exactly 
the same frequencies.
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on the test structure, are processed and a superposition of structural responses 

is performed in order to minimise the real-part response with respect to the 

total response, eq. (3.57). In the equivalent eigenvalue problem, eq. (3.58), 

the eigenvector corresponding to the smallest eigenvalue yields the optimised 

force vector components, eq. (3.59). A Mode Indicator Function, eq. (3.54), 

is predicted from the associated structural responses, providing a measure to 

pre-evaluate the specific exciter configuration. The method allows to find the 

most suitable combination and minimum number of excitation points from 

a given set of possible configurations. The general force tuning procedure is 

shown in Figure 3.3.
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Experimental Data Optimisation Procedure

Exciter Configuration No. 1

Exciter Configuration No. 2

Exciter Configuration No. 3

Structural Response Matrices

Minimisation Criterion

mm

Optimised Excitation Forces

Mode Indicator Function

MIF = 1-

M

E
m=l

E

Selection

Figure 3.3: Force Optimisation Algorithm
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3.5 Closure

In the foregoing sections the basic theoretical environment for the test cases 

to be discussed in the successive chapters has been introduced.

The iterative updating procedure for numerical structural models is based 

on a least squares approximation to measured modal data. Parameterised 

submatrices, representing the erroneous model regions, allow for a selective 

correction of existing modelling errors in the original system matrices. The 

method has been introduced by NATKE [126] and LINK [106, 99] and existing 

computer codes [101, 102, 100] are utilised.

Next, a new approach for the localisation of delamination damages in CFRP 

has been proposed. The experimental identification of damage-induced modal 

damping variations and a correlation of the measured data to an analytical 

model are the novel features which enable the localisation of a single concen­ 

trated structural damage in a three-dimensional structure using data from a 

single response sensor. Techniques for the accurate determination of modal 

damping factors from the measured structural response and the localisation of 

the structural damage based on a correlation of experimental and analytical 

damping variations have been developed.

Finally, a novel method to determine optimised multi-point excitation force 

vectors for Phase Resonance Testing has been introduced. As opposed to ear­ 

lier approaches, no supplementary analytical data, estimations on the struc­ 

tural damping, or iterative algorithms are involved. Structural responses from 

preliminary sine-sweep runs on the test structure are processed and the real- 

part response components are minimised with respect to the total responses 

in a linear superposition. The associated eigenvalue problem now yields the 

optimised excitation force components. The corresponding structural response 

is used to assess the achievable phase purity and to select the most suitable 

combination and minimum number of excitation points.
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Chapter 4

Accuracy of Model Updating 

Methods

4.1 Introduction

The test cases to be discussed in this chapter permit the validation of the 

model correction method developed in Section 3.2 and allow the introduction 

of novel techniques associated with their application to structural dynamic 

systems.

In Section 4.2 the GARTEUR SM-AG19 structural model is chosen to re­ 

late the model updating method to a practical application. A novel iterative 

procedure for the selection of correction parameters is presented and the ef­ 

fects of different parameter sets on both the results of model validation and 

the newly introduced numerical prediction of modal data, i.e. the comparison 

of analytical and experimental eigenfrequencies and mode shapes which were 

not used in the preceding updating process, are investigated. Additionally, a 

technique for updating substructures with viscous material properties is sug­ 

gested. The results illustrate the importance of parameter selection when a 

physically consistent updated model is sought.

Next, the problem of experimental errors is addressed in a numerical study. 

An analytical model of a laboratory test structure is utilised and a simulation 

procedure is developed to evaluate the accuracy of the model corrections un-
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der the influence of experimental errors in Section 4.3. The study shows that 

the resulting correction parameter uncertainties grow progressively with the 

magnitude of the experimental errors. However, the uncertainties may be par­ 

tially reduced by increasing the number of mode shapes used in the updating 

process.
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4.2 Prediction of Modal Data

The first complex real world case study is intended to give an overview of 
application-related aspects of the model updating method described in Sec­ 
tion 3.2 and to highlight the importance of parameter selection to create a 
physically consistent updated model. For clarity and a sound physical under­ 
standing a simple laboratory test structure is selected. For further orientation 
some selected problems associated with the application of iterative model cor­ 
rection methods are discussed in [77].

The GARTEUR SM-AG19 structural model is chosen as a test structure for 
the following investigations. A finite-element model is generated and experi­ 
mental modal and frequency response data are made available from a structural 
dynamic identification test performed on the structural model. The problem 
of finding suitable updating parameters for the model corrections is discussed 
in detail and two sets of updating parameters for the GARTEUR SM-AG19 
finite-element model are investigated. To assess the updating method's capa­ 
bility to create a consistent analytical model, i.e. a model that is able to predict 
modal and frequency response data which were not used in the preceding val­ 
idation process, the updating process is restricted to a fraction of the mode 
shapes and corresponding natural frequencies in the experimental data base. 
Following the initial model validation phase the updated model is utilised to 
predict the remaining eigenvectors and eigenfrequencies which were not consid­ 
ered in the model corrections. Finally, Frequency Response Functions (FRF) 
for a given loading condition are computed from the updated analytical model 
and the results are compared to the measured response data.

The work described here was DLR's contribution [78] to an updating bench­ 
mark study which had been defined by the COST1 F3 Working Group on 
Finite-Element Model Updating Methods.

1 European Cooperative on Science and Technology
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4.2.1 Test Structure

The test structure, Figure 4.1, is assembled from six aluminium beams with 

different rectangular cross sections. The structure is intended to represent a 

simplified aircraft with its main components fuselage (1), wings (2), and tail 

(3). Specifications are listed in Table 4.1. The total mass is 44 kg and the 

overall dimensions are 1.5 m (length) by 2.0 m (wing span). The distance 

between the fuselage front and the wing leading edge is 0.55 m. Realistic 

damping levels are obtained through the use of a visco-elastic self-adhesive 

tape (8) of 50 jtrni thickness and 76 mm width which is bonded to the upper 

wing surface over a length of 1.7 m and aligned along the trailing edge. To 

achieve sufficient levels of shear deformation within the visco-elastic layer the 

tape's upper surface is covered by an aluminium plate of 1.1 mm thickness 

and 76.2 mm width. The structure is equipped with 24 acceleration sensors 

and a low frequency bungee cord suspension ensures correct so-called 'free-free' 

boundary conditions during Ground Vibration Testing.

4.2.2 Finite-Element Model

The computer code MATFEM [102] is used for the finite-element analysis. A 

numerical model with 104 beam elements, Figure 4.2, is generated. The beam 

elements have two nodes with 6 degrees of freedom (DoF) each and are based 

on Timoshenko beam theory [157, 158]. The main structural components, i.e. 

fuselage, wing, and tail, are linked by rigid body elements. Special care was 

taken to accurately model the stiffening effects caused by the joints between 

fuselage and wing as well as tail and tailplane, respectively (cf. Section 4.2.4.2). 

For the damping layer stiffness and mass distribution initial estimations based 

on the manufacturer's specifications are used. Due to the high modal deflec­ 

tion amplitudes and low mass in some structural regions, e.g. at the wing tips, 

a detailed mass matrix, taking into account all connecting bolts and the ac­ 

celeration sensor masses, is assembled. In order to correctly reflect the test 

boundary conditions the measured rigid body modes (RBM), Table 4.2, are 

used to tune the model's elastic suspension. The actual sensor positions, e.g.
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t Acceleration Sensors and Measurement Directions

Main Components 2... m Exciter Locations

Figure 4.1: The GARTEUR SM-AG19 Structure

General Specifications:

Density

Young's Modulus

2.70 x 103 kg/m3

7.20 x 1010 N/m2

Lumped Masses:

Fuselage Suspension

Fuselage- Wing- Joint (6)

Tail-Tailplane-Joint (7)

Shaker © Right Wing

Shaker © Left Wing

0.250 kg

1.573 kg

0.400 kg

0.200 kg

0.200 kg

Beam Dimensions:

Cross Section: Fuselage (1)

all others

Length: Fuselage (1)

Wings (2)

Tail (3)

Drums (4) & Tailplane (5)

0.05 x 0.15 m2

0.10 x 0.01 m2

1.50m

2.00m

0.30m

0.40 m

Table 4.1: Specifications of the GARTEUR SM-AG19 Test Structure
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analytical DoF -|- experimental DoF

Figure 4.2: GARTEUR SM-AG19 Finite-Element Model

Mode No.

RBM 1

RBM2

RBM 3

Mode Shape

Roll

Pitch

Heave

Frequency

0.52 Hz

0.62 Hz

1.84 Hz

MIF

966
934

965

Table 4.2: GARTEUR SM-AG19 Rigid Body Modes

at the wing leading and trailing edges, are realised through supplementary 

offset nodes.

4.2.3 Experimental and Analytical Modal Data

The experimental data base available for model validation and comparison con­ 

tains 14 normal modes with eigenfrequencies between 6.38 Hz and 151.32 Hz. 

Additionally, 24 Frequency Response Functions (FRFs) for two different exci­ 

tation points at the right and left wing tip (represented by symbols [f] and 

|Y| in Figure 4.1), respectively, were recorded in a frequency range from 4 Hz 

to 65 Hz. All experiments were carried out by DEGENER [36] using DLR's 

Ground Vibration Test Facility (cf. Section 2.4).

In this study only modes numbered 1 to 9 are used to validate the initial 

finite-element model. They will hereafter be called the active modes. The re­ 

maining passive modes numbered 10 to 14 and the FRFs constitute a reference
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for comparison to the corresponding predictions to be made with the validated 

numerical model.

To provide an overview of the structure's dynamic characteristics the ana­ 

lytical eigenvectors for modes numbered 1 to 14 are plotted in Figure 4.3. 

In Table 4.3 the analytical eigenfrequencies fa>n for the initial finite-element 

model, the measured natural frequencies fe)H , the frequency deviations

i / A t\for n = 1, ... , ./V , (4.1)
Je,n

and the degree of correlation between computed eigenvectors (pa and mea­ 

sured mode shapes y?e s based on the Modal Assurance Criterion (MAC) sug­ 

gested by ALLEMANG and BROWN [1]

MACrs = T *-r _ —— forr, S = l,...,7V (4.2)
\r a,r ' T*a '

are summarised. The highest frequency deviations are found in the first sym­ 

metric wing torsion (A/4 = —2.60 %) and the second anti-symmetric wing 

bending (A/9 = +2.91 %). With the exception of the two wing torsion modes 

the mode correlation yields MAC- values2 higher than 90 %.

4.2 .4 Parameter Selection

The selection of correction parameters is a fundamental step for successfully 

updating a finite-element model. To obtain an improved numerical model of 

the structure under investigation the submatrices K; and Mj in eqs. (3.1) 

should coincide as closely as possible with the existing modelling errors. This 

allows to build a physically consistent updated numerical model that enables

• to introduce structural changes and obtain reliable results without the 

need for repeating both the modal identification test and updating pro­ 

cedure, or

• to predict modal data beyond the frequency range covered during struc­ 

tural identification which is not considered in the updating process.

2MAC-values are usually specified in percent.
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f, = 6.253 Hz f2 = 16.34 Hz

f9 = 64.87 Hz

fu = 100.7 Hz f12 = 127.9 Hz

Figure 4.3: Analytical Modal Data of the GARTEUR SM-AG19 Structure
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Otherwise, the numerical model would solely be improved with respect to 

it's ability to reproduce the experimental data, but the computed correction 

factors would not necessarily contain any physical meaning.

On the other hand, the analytical eigenvectors and eigenfrequencies should 

be sufficiently sensitive to the correction parameters. If the numerical data 

is insensitive to a chosen parameter the updating algorithm does preferably 

use the more sensitive parameters which allow to minimise the residual with 

smaller changes of the correction factors, cf. eq. (3.4). As a result, the updated 

value of the insensitive parameter may become highly uncertain.

Finally, since the experimental modal data in most cases contains a limited 

amount of information the number of parameters should be kept as small as 

possible in order to retain an over-determined system, eq. (3.11), and to avoid 

problems of ill-conditioning.3

Numerous systematic modelling error localisation methods have been pub­ 

lished over the years. FISSETTE and IBRAHIM [48] have used a force balance 

method to identify inaccurately modelled regions within the analytical model's 

system matrices, SHEPARD and MILANI [154] have suggested a frequency-based 

procedure based on a Rayleigh quotient. To, LIN, and EWINS [160] have rec­ 

ommended an eigendynamic constraint method which is using the structural 

eigenvalue problem, eq. (3.14), and the orthogonality of the eigenvectors with 

respect to the mass matrix to locate modelling errors. LIEVEN and EWINS [95] 

have created pseudo-flexibility and pseudo-intertance matrices with correlat­ 

ing analytical and measured modes and have used the Singular Value Decom­ 

position (SVD) approach to produce incomplete pseudo-inverse stiffness and 

mass matrices. The mass and stiffness errors are located from the difference 

between the experimental and analytical pseudo-inverses. LALLEMENT and 

PIRANDA [89] have proposed a best subspace method that searches for the lin­ 

ear combinations of columns in the gradient matrix G which establish the best 

representation of the measured data ze . This allows for a selection of those sub-

3Ill-conditioning or a rank deficiency also occur when one or more updating parame­ 
ters can be expressed as a linear combination of the other parameters. Problems of ill- 
conditioning related to model updating from vibration measurements were addressed in 
detail in [118].
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structures which are most likely to represent the dominant modelling errors. 

LINK and SANTIAGO [104] have suggested the use of energy functions based 

on the substructures K; and Mj in eqs. (3.1). Further methods for reducing 

the number of updating parameters are described in [90], [97], and [127]. An 

extensive review of various error localisation and regularisation techniques for 

model updating has been given by NATKE [125].

4.2.4.1 General Procedure

The systematic localisation methods for finite-element modelling errors yield 

useful results for simple structures and in the absence of systematic and dis­ 

cretisation errors and measurement noise. The limited spatial and frequency 

resolution of the experimental data, however, establishes principal restrictions 

to the perceptible size and localisation accuracy of any modelling error.

Methods which use the experimental mode shapes usually require the num­ 

ber and locations of the measured degrees of freedom to be identical to the 

degrees of freedom in the analytical model. Since this is rarely the case in 

practical applications4 the experimental mode shapes need to be expanded to 

the size of the full analytical eigenvectors which is likely to cause additional 

uncertainties introduced by the expansion methods used.

Numerical studies [120] have shown that even with faults of considerable 

size and magnitude the results produced by systematic modelling error local­ 

isation methods are of limited reliability and should be considered with great 

care. Therefore, owing to the importance of parameter selection in the model 

updating method, a novel iterative procedure [74] based on both physical know­ 

ledge and mathematical constraints is suggested here and will be applied to all 

updating case studies in Chapters 4 and 5. The new method combines mathe­ 

matical and physical requirements to find a set of correction parameters which 

establish a well-conditioned optimisation problem ensuring good convergence 

and trustworthy updating results and leading to an updated analytical model 

of improved physical significance.

4 Especially the rotational degrees of freedom, being difficult to measure, are commonly 
not considered in a vibration test.
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As a first step, information on uncertain or erroneous substructures is de­ 

rived from the simplifying assumptions made during the finite-element mod­ 

elling phase. Generally, all material parameters and geometric properties 

should be reviewed and doubtful quantities be identified. Apparent candi­ 

dates for updating parameters are adhesive, bolted, welded, or clamped joints. 

Being the structural link between individual components these elements have 

a significant influence on the overall dynamic behaviour of the entire structure. 

Due to limitations as to the total number of degrees of freedom in the finite- 

element model these components usually are not modelled in full detail. As a 

substitute, experience-based assessments are made on a reduced effective stiff­ 

ness in the joint region. For applications with moderate accuracy requirements 

this methodology is more than adequate, but when a high-precision model is 

needed the estimated stiffness should be parameterised to allow for correction. 

The same applies to the boundary conditions where in most cases the actual 

finite stiffness of a rigid or free suspension is not known exactly.

After defining all prospective updating parameters from a physical point of 

view, their influence on the model's modal properties is evaluated by means of 

the L2-norm of the individual columns in the gradient matrix G, eqs. (3.13) 

and (3.22),

S\,k =

9pk

and

dpk

(4.3)

For simplicity and because the absolute values are of no practical importance 

both the eigenvalue sensitivities S\,k and eigenvector sensitivities SVtk are com­ 

monly scaled such that their largest values are equal to one. In the second 

step, parameters with high eigenvalue and/or eigenvector sensitivities should 

be preferred for further consideration. If a parameter's sensitivity is insuffi­ 

cient5 it should either be omitted or redefined. The latter was demonstrated 

by MOTTERSHEAD, FRISWELL, and BRANDON [121], who have shown that

5Experience has shown that parameters with sensitivities below 0.1 should not be used.
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by appropriately modifying an updating parameter it's sensitivity can often 
be increased without losing the parameter's physical significance.

Finally, in the third step the set of potential updating parameters is checked 
for convergence and the ability to produce accurate results. Test runs are per­ 
formed using an erroneous numerical model with simulated structural errors 
and 'experimental' mode shapes and natural frequencies which are generated 
from the analytical modal data, Figure 4.4. For the 'experimental' mode shapes 
only those eigenvector components are taken into account which correspond 
to sensor locations on the test structure. The modes used for the simulation 
are identical to the modes available in the experimental data base. Then, arti­ 
ficial modelling errors are introduced into the system matrices to generate an 
inaccurate numerical model. The modelling errors exactly equal the updat­ 
ing parameters, that is the substructures and properties to be modified which 
have been defined so far. Assuming these conditions are given and that the 
updating problem is well-posed, the correction algorithm should completely 
eliminate the artificial modelling inaccuracies during the test run. As a re­ 
sult, the correction factors must converge to the inverse of the mass/stiffness 
reduction previously introduced through the modelling errors. If a parameter 
does not approach the exact correction factor value or convergence problems 
arise the selection of parameters should be modified. Alternate methods for 
examining the information content of the selected substructures were proposed 
by ZURMUHL [172] and LAWSON and HANSON [91].

4.2.4.2 Parameter Selection for the GARTEUR Test Structure

The fundamental uncertainties in the finite-element model are assumed to be 
located in (cf. Figure 4.1) the fuselage-wing joint (6), the tail-tailplane joint (7), 
and in the viscous damping layer (8). Additionally, non-symmetric deflections 
were observed with some mode shapes during Ground Vibration Testing which 
indicate a geometric asymmetry in the test structure. Additional information 
on possible modelling errors can be derived from the mode shapes with high 
deviations between analytical and experimental eigenfrequencies, Table 4.3
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Finite-Element Model

Ko, Mo

1

Artificial Modelling Errors

KC,M*

Inaccurate Numerical Model 

Ko,£, M0 ,4

•

Eigenvalues, Eigenvectors

A0 ,n> ¥>0)n

'Experimental' Modal Data

^e,n> ¥> e ,n

Updating Process 

pfe , A/n , MACrs

Figure 4.4: Test Procedure for Updating Parameters

and Figure 4.3. Stiffness modelling errors are usually located in areas of high 

strain whereas mass modelling errors are found in regions of large deflections.

Fuselage-Wing Joint & Tail-Tailplane Joint. Preliminary parameter 

studies revealed that changes in the joint stiffnesses (components number 6 

and number 7 in Figure 4.1) do not have a significant influence on the model's 

modal parameters in the frequency range under consideration. The local joint 

stiffnesses are found to be several orders of magnitude higher than the adjacent 

distributed stiffness of the fuselage, wing, and tail structure, respectively.6 

The global vibration modes and frequencies, however, are dominated by the 

considerably lower distributed bending and torsion stiffness. Therefore, the 

model's dynamic characteristics do not respond to a variation of the joint 

stiffness. As a result, a representation through rigid body elements in the 

numerical model appears to be sufficiently accurate and a parameterisation is 

not necessary.

6 An initially suspected compliance in the joints on the test structure which would have 
affected the numerical modelling was not confirmed.
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Damping Layer Stiffness & Mass. The damping layer viscosity results 

in a frequency-dependent shear modulus which increases from approximately 

240 N/m2 at 6 Hz to 1200 N/m2 at 150 Hz. Accordingly, the wing bending 

stiffness is a function of frequency as well. Since the finite-element code used 

for this study can not handle frequency-dependent material properties the 

frequency-dependence is substituted by variation with location.

This is based on the fact that the additional damping layer stiffness solely 

becomes effective when the wings are subjected to a bending deflection. This 

occurs for only a small number of discrete frequencies, those corresponding to 

the six wing bending modes. 7 All other frequencies are not regarded in the 

updating process. An individual stiffness correction for each bending mode is 

achieved by splitting the wing bending stiffness parameter Imin into multiple 

separate sections, which correspond to the regions of highest strains in the 

wing bending modes (numbered 1, 2, 5, 6, 9, 13 and 14; cf. Figures 4.3 and 

4.5). The resulting correction parameters, Figure 4.6, as they are sufficiently 

uncoupled, enable an individual stiffness correction for each bending mode and 

allow to approximately model and update the frequency-dependent stiffening 

effect induced by the visco-elastic damping layer.

Non-Symmetric Deflections. The asymmetric deflection amplitudes ob­ 

served during Ground Vibration Testing (most obvious for the two wing torsion 

modes at fe^ = 33.13 Hz and /e,4 = 33.53 Hz) are considered through inde­ 

pendent correction parameters for the right and left wing sides.

Final Parameter Selection. Two different sets of correction parameters, 

Table 4.4, are defined in order to investigate their effects on both the validation 

and prediction results. Parameter set number 1 is intended to provide the 

most accurate validated model with respect to the active frequency range, 

i.e. the model that gives the best correlation to the measured modal data. 

This set is assembled using the procedure described in Section 4.2.4.1. Set 

number 2 incorporates only those correction parameters which are supposed

7The influence on the two in-plane bending modes was found to be negligible.
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Figure 4.5: Normalised Span-Wise Strains for Wing Bending Modes
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Figure 4.6: Piecewise Correction of Wing Bending Stiffness
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to be consistent with the actual modelling uncertainties. This parameter set is 

primarily designed to provide a physically significant analytical model which 

is essential for a reliable prediction of the passive modal data and frequency 

response. For both sets the parameter sensitivities according to eqs. (4.3) are 

plotted in Figures 4.7 and 4.8.

4.2.5 Results

4.2.5.1 Model Validation

The updating results for both parameter sets are listed in Table 4.4. Using set 

number 1 the correction factors converge8 after 2 (Shaker Masses) to 22 (Right 

Wing, Sections 3, Figure 4.6) iteration steps, Figure 4.9. With set number 2 a 

stable solution is achieved within only 1 to 4 iterations, Figure 4.10. However, 

some transient oscillation occurs (Wings (/mm), Right Wing (m), Left Wing 

(m)), which needs approximately 12 to 14 iterations to decay.

In Figures 4.11 to 4.14 the deviations between measured and computed 

eigenfrequencies, eq. (4.1), and mode correlation, eq. (4.2), are plotted as a 

function of iteration step. Faster convergence as compared to the correction 

factors occurs which is due to the fact that the parameter sensitivities vary as 

the correction proceeds. The residual frequency deviations lie below ±0.25 % 

for parameter set number 1 and below ±1.5 % for parameter set number 2. 

Regarding the final MAC-values both parameter sets give almost similar re­ 

sults.

Using the updating parameters from set number 1 some inconsistencies 

with respect to the correction factors are found:

• Due to the frequency-dependent stiffening effect of the damping layer the 

wing bending stiffness parameters number 4 and number 5 (Right Wing, 

Sections 3 and Left Wing, Sections 3) which correspond to the high- 

strain areas for the higher bending modes are expected to yield larger 

correction factors than parameter number 3 (Wings, Sections 2) for the

lower bending modes. 

Convergence is assumed to be reached when aK — aK-i < 10~3 .
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Figure 4.7: Parameter Sensitivities for Parameter Set Number 1
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Figure 4.8: Parameter Sensitivities for Parameter Set Number 2
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Figure 4.11: Convergence of Frequency Deviations for Parameter Set Number 1
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Figure 4.12: Convergence of Frequency Deviations for Parameter Set Number 2
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• The mass correction factors for parameters number 10 and number 11 

(Right Wing and Left Wing) are equivalent to additional masses of 

0.37 kg and 0.48 kg, respectively. They considerably exceed the analyti­ 

cal model's estimated accuracy limits and therefore must be regarded as 

extremely questionable.

Apparently, the substructures in set number 1 are not sufficiently consistent 

with the regions where actual discrepancies exist between the finite-element 

model and the test structure. The updating procedure, however, uses all given 

parameters, regardless of their physical justification, to minimise the residual 

given in eq. (3.2). As a result, a high-quality solution regarding the frequency 

deviations and mode correlations may be obtained but the validated model is 

not necessarily coherent to the physical structure.

4.2.5.2 Modal Data Prediction

Following the model validation process eigenfrequencies and mode shapes be­ 

yond the frequency range used for the model corrections are computed from 

the updated finite-element model. Again, the model's predictive capabilities 

are assessed in terms of frequency deviations, Figures 4.15 and 4.16, and mode 

correlation, Figures 4.17 and 4.18, for both the active and passive modes and 

with respect to the experimental reference data.

For parameter set number 1 a very good correction in the active frequency 

range (A/n < ±0.25 %) is achieved, but for the passive modes numbered 

10 to 14 the frequency deviations generally increase as compared to the ini­ 

tial finite-element model. This supports the assumption previously stated in 

Section 4.2.5.1 that the corrections introduced by the selected updating para­ 

meters are not fully consistent with the modelling errors. The results are fairly 

similar to those found with direct updating methods which exactly reproduce 

the test data but fail to predict higher eigenfrequencies and mode shapes.

Because of the smaller number of correction parameters parameter set num­ 

ber 2 yields less accurate corrections for the active modes (A/n < ±1.5 %). 

The results for the passive mode shapes, however, appear more reasonable.
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Figure 4.17: MAC-Values for Active and Passive Modes (Parameter Set Num­ 
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The frequency for the first tail torsion mode is unchanged since none of the 

selected updating parameters affects this mode shape. The lateral fuselage and 

second tail bending are almost completely decoupled from all other modes, i.e. 

the deflection profiles do not appear as components in any other mode shape. 

Yet, the chosen correction parameters affect the corresponding eigenfrequen- 

cies but these modifications do not alter the residual vector which controls the 

optimisation. The frequency deviations, not being constrained by the residual, 

are therefore free to increase unconstrained. For the third symmetric and anti­ 

symmetric wing bending modes the stiffness is corrected simultaneously to the 

first and second order wing bending modes. Here, a considerable improvement 

of the corresponding eigenfrequency deviations is attained.

The modal correlation results are similar but less distinct. The correlation 

of inactive modes generally is better for the model which is updated with 

parameter set number 2, i.e. in this case the predicted eigenvectors are closer 

to the test modes.

4.2.5.3 Frequency Response

Figure 4.20 gives some selected examples for analytical FRFs computed from 

the initial and validated models as compared to the measured response data. 

The excitation point is at the right drum tip and a sinusoidal excitation force 

of 1.5 N in vertical direction is used. The response is recorded at four selected 

sensor locations, Figure 4.19, on the left wing (108-z), left drum tip (112-x), 

rear fuselage (205-y), and left tailplane (303-z). Modal damping values are 

taken from the Ground Vibration Test [36],

Both updated models yield considerable improvements over the initial finite- 

element model, Figure 4.20. The differences between the two validated mod­ 

els, however, are not as apparent as with the modal data. The major dis­ 

crepancies among the measured and analytical responses are found near the 

anti-resonance frequencies since the anti-resonances are not considered in the 

modal updating approach.
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Exciter Location t Response Sensors 303-z

112-x

Figure 4.19: Excitation and Sensor Locations for Frequency Response Analysis

4.2.6 Concluding Remarks

In the preceding section an application of the model updating method de­ 

scribed in Section 3.2 to an aerospace-related test case and live experimental 

data has been executed.

A novel iterative selection technique for correction parameters resulting 

in a physically correct updated analytical model, has been proposed. Unlike 

other systematic localisation methods suggested for finite-element modelling 

errors, the technique is applicable to complex structures and is insensitive to 

systematic experimental errors and measurement noise. The parameter selec­ 

tion approach allows to establish a well-conditioned optimisation problem and 

ensures good convergence of the updating algorithm. Also, a new technique 

for the correction of structural components with viscous material properties 

has been suggested.

Performance has been demonstrated in a numerical prediction study for 

modal data reaching beyond the usual model validation phase. The results 

show that careful parameter selection leads to an updated model that provides 

a realistic representation of the actual dynamic behaviour of the test structure.

The methods main drawback is that it requires physical insight and a de­ 

tailed knowledge on the numerical modelling of the structure under investi­ 

gation. Acquiring this knowledge may be time consuming with large models.
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Figure 4.20: Measured and Computed Frequency Response
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However, it can be used to reduce the number of mode shapes and natural 

frequencies needed for the model correction process and accordingly help to 

cut costly testing time.
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4.3 The Influence of Experimental Errors

To assess the influence of errors in the experimental reference data on the 

accuracy of finite-element model corrections a simulation study [76] using nu­ 

merically generated 'experimental' modal data and a finite-element model with 

artificial modelling errors is performed. Measurement uncertainties are added 

to the 'experimental' mode shapes and natural frequencies and their impact 

on the model updating results, i.e. substructure correction factors, frequency 

deviations, and mode shape correlation, is investigated. Different numerical 

models are used to evaluate the role of modelling error magnitudes and loca­ 

tions.

4.3.1 Introduction

The improvement of inaccurate numerical models by means of experimental 

vibration test data essentially depends on the measurement precision. Since 

errors in experimental data can be merely minimised but never be completely 

eliminated the respective model corrections will, to a certain extent, be inac­ 

curate as well. This simulation study explores the influence of these errors on 

the accuracy of the correction factors Oii and j3j, deviations of analytical and 

experimental eigenfrequencies, and the correlation of computed and measured 

mode shapes. For useful results the measurement uncertainties in the natural 

frequencies and mode shape deflections should be well below the deviations 

observed between the experimental data and the initial finite-element model's 

analytical data.

From the theoretical treatment in Section 3.2 various mechanisms regarding 

the influence of measurement uncertainties on the updating process become 

apparent:

• The experimental errors directly affect the vector of residuals, eq. (3.2), 

which controls the optimisation. Computing the differences between ex­ 

perimental and analytical data makes the residual highly sensitive to 

measurement errors.
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• The correlation of measured and analytical modes is diminished and the 

number of analytical eigenvectors which are allocated to experimental 

mode shapes is likely to decline.

• After the first iteration step the experimental uncertainties are implicitly 

included in the finite-element model's analytical modal data. This leads 

to modifications in the gradient matrix elements and constitutes a non­ 

linear relation with respect to the correction factors, eq. (3.11).

Since the correlation of analytical and experimental mode shapes is directly 

linked to the individual structure's dynamic characteristics and the gradient 

matrix terms are a function of the choice of substructures Kj and M.J it appears 

to be not possible to derive general statements from theoretical considerations. 

Accordingly, the purpose of this simulation study is to gain a broad overview 

how experimental inaccuracies alter the model corrections and to provide a 

starting point for more detailed investigations.

The experimental uncertainties which arise from data acquisition and signal 

processing9 are classified into three categories:

1. Relative errors (being proportional to the magnitudes of measured 

mode shape deflections). These errors occur due to the limited preci­ 

sion of transducer alignment, amplifier calibration, or analog-to-digital 

conversion errors.

2. Absolute errors (independent of the measured deflection values) which 

are caused by A/D-converter noise and bias, temperature effects, or ex­ 

ternal sources of interference.

3. Natural frequency errors mainly originating from imprecisely tuning 

the excitation frequency to the structure's actual resonance frequency. 

The accuracy of frequency measurement devices usually is far beyond 

the manual tuning precision and therefore will not be considered here.

Uncertainties emerging from the mode isolation quality or post-processing er­ 

rors from off-line identification approaches, since they strongly depend on the 
9 cf. the discussion of experimental identification techniques in Chapter 2.
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individual identification technique and test structure, are not covered here. 

It is further assumed that systematic errors, like a model suspension system 

which does not correctly reflect the boundary conditions or frequency shifts, 

e.g. due to the sensor masses and cabling, are carefully avoided.

4.3.2 Test Structure

The investigations are carried out on a three-dimensional tree-type laboratory 

test structure, see Figure 4.21, which consists of two pairs of horizontal blades 

(1 - 4), a central steel pylon of circular cross section (5), a supporting base 

plate (6), and two joint elements (7). The lower blade pair is rotated by an 

angle of 45 degrees relative to the upper blades. One blade in each plane 

(components (1) and (3)) has homogeneous material properties, whereas the 

others, components (2) and (4), have a thin silicone layer in their neutral planes 

to induce non-proportional damping. The test structure's specifications and 

geometric dimensions are listed in Table 4.5. For previous experimental inves­ 

tigations [155] the structure has been equipped with 45 acceleration sensors at 

30 measurement locations. In global co-ordinates these provide 49 experimen­ 

tal degrees of freedom.

Again, the MATFEM [101] finite-element code is used for the numerical 

analysis. The numerical model, Figure 4.22, has 128 Timoshenko beam ele­ 

ments and 726 degrees of freedom. A rigid suspension at the base plate is 

assumed. The first 20 mode shapes and eigenfrequencies are used in the sim­ 

ulation study.

4.3.3 Simulation Procedure

For the simulation study an inaccurate numerical model and an erroneous 

'experimental' modal matrix are needed to provide the necessary input data for 

the updating process. The modelling errors and 'experimental' uncertainties 

are described in Sections 4.3.3.1 and 4.3.3.2, respectively. An outline of the 

simulation procedure is given in Figure 4.23.
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Acceleration Sensors and 
Measurement Directions

Main Components

Blades No. 2 & 4:

1 I ^ \ I 
Steel Silicone

Figure 4.21: Test Structure

4.3.3.1 Model Preparation

Starting from the reference finite-element model synthetic stiffness modelling 

errors K^ are successively introduced into the stiffness matrix to generate the 

inaccurate numerical models10

Ko,f = KQ + Kf .

Three different modified models, Table 4.6, are created to investigate the influ­ 

ence of error location and magnitude. Modelling error numbered 1 is used to 

exemplify the effects of the different error categories listed on page 99. Then,

10The mass matrix is generally modelled with considerably higher accuracy. Therefore, it 
remains unchanged throughout this study.
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General Specifications:

Density

Young's Modulus

7.85 x 103

2.06 x 1011

kg/m3
N/m2

Joint Masses:

upper Joint

lower Joint

2.54 kg

1.77 kg

Blades:

Cross Section

Length: Blade No. 1

Blade No. 2

Blades No. 3 & 4

0.100 x 0.004 m2

1.40m

1.20m

1.10m

Pylon:

Height

outer Diameter

inner Diameter

1.50m

0.050 m

0.044 m

Table 4.5: Test Structure Specifications

a comparison between models numbered 1, 2, and 3 emphasizes the influence 

of modelling error magnitude and location. The system matrices KQ,£ and M0 

and the corresponding eigenvectors y>a>n and eigenfrequencies Aa>n constitute 

the initial numerical model for the updating process.

4.3.3.2 Simulation of Measurement Uncertainties

The 'measured' modal data needed for the model corrections are derived from 

the reference finite-element model's eigenvectors and eigenvalues. To achieve 

a realistic level of incompleteness the analytical mode shapes are reduced to

Modelling 
Error

K!

K2

K3

Error 
Location

Compound Blades No. 2 & 4

Compound Blades No. 2 & 4

Pylon (between upper & lower Blade Plane)

Stiffness 
Modification

-17%

-7%

+10%

Table 4.6: Artificial Modelling Errors
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o analytical DoF 
-(- experimental DoF

Figure 4.22: Finite-Element Model of the Test Structure

the 49 experimental degrees of freedom shown in Figure 4.22. The reduction 
is made by removing the surplus analytical degrees of freedom from the full 
eigenvectors rather than using a matrix transformation between the analytical 
and experimental degrees of freedom. As a result, the reduced eigenvectors only 
contain those deflection components which would have been actually measured 

in a real test.

In the second step, simulated experimental uncertainties and noise are 

added to the reduced mode shapes and eigenfrequencies. The different er­ 

ror categories are modelled by measurement error vectors of statistically dis­ 
tributed random numbers [60, 131], Table 4.7.

For the class of relative errors 6rei a Gaussian distribution with zero mean
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Finite-Element Model

i

System Matrices

Ko, Mo

i

Modelling Errors 

KC

i

Inaccurate Numerical Models

K0,£, Mo

•

Analytical Modal Data

A0 ,n, <P a ,n

'

Eigenvalues, Eigenvectors

A0 ,ru <Pa ,n

Reduction to Exp. DoF

¥>e,n

1 '

Measurement Uncertainties

"re/j Uabsi "freq

i '

'Experimental' Modal Data

Ae,ra> <Pe ,n

Updating Process

Figure 4.23: Simulation Procedure

and multiple variances between 1 % and 20 % is chosen. The errors are pro­ 

portional to the individual deflection amplitudes at each 'measured' degree of 

freedom (DoF). The experimental mode shape vectors (pe ^n are obtained from

,n = <Pe,n X Srel) ,

where ipe ^n are the analytical eigenvector components at the experimental de­ 

grees of freedom (cf. Figure 4.23) and 'x' denotes an element-by-element multi­ 

plication of the two vectors. This error category represents all transducer align­ 

ment and amplifier calibration uncertainties as well as relative errors within 

the electronic signal conditioning set-up.

Absolute errors 6abs are simulated by uniform distributions between 0.1 % 

and 2.0 % with respect to the maximum value (normalisation point) of each
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Error Category

$rel

Sabs

tifreq

Distribution

Gaussian

Uniform

Gaussian

Magnitude

±[ 1, 2, 5, 10, 20 ] %

±[ 0.1, 0.2, 0.5, 1.0, 2.0 ] %

±[ 1, 2, 5 ] %

Table 4.7: Simulated Measurement Uncertainties

mode. The effects of noise and offsets from amplifiers and filters, temperature 

shifts, electromagnetic radiation, or A/D-converter noise are comprised. For 

this category the experimental modes are given by

Natural frequency uncertainties <5/re(7,n are also modelled by a Gaussian 

distribution with zero mean and a variance of 1, 2, and 5 %, respectively. The 

errors are proportional to the individual frequency values, i.e.

Ae,n — Aa,n ' (1 + Vfreq,n)

with \a ^n as the analytical eigenvalues computed from the finite-element model 

and Xe>n as the simulated experimental eigenfrequencies.

4.3.3.3 Application Details

The number of mode shapes used for updating is varied between 2 and 20. No 

condensation or expansion of mode shapes is applied and the 'experimental' 

data is not averaged. Convergence is reached after 6 to 10 iteration steps. 

All subsequent results, i.e. correction factors, frequency deviations, and mode 

correlation, refer to the values after 16 iterations.

Again, measured and analytical modes are automatically allocated in each 

iteration step according to the Modal Assurance Criterion (MAC), eq. (4.2), 

and natural frequency deviation A/, eq. (4.1). The necessary condition for an 

allocation of a measured and a computed mode shape is a minimum MAC- 

value of 65 % and a maximum difference between the associated frequencies 

of 30 %.
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To increase the impact of frequency deviations as compared to mode shape 

deflection differences in the correction factor computation, eq. (3.11), the au­ 

tomatic eigenfrequency weighting described in Section 5.2.4 is applied here as 

well.

In preliminary test runs the finite-element modelling errors are tuned such 

that a one-to-one allocation of analytical and 'measured' mode shapes is en­ 

sured within each iteration step and for all magnitudes of simulated experi­ 

mental errors. Hence, the observed correction parameter changes are directly 

caused by the simulated measurement errors and no secondary effects are in­ 

volved.

4.3.4 Results

In this section the influence of the simulated experimental errors on the model 

corrections are discussed in detail. The correction factor error Aa for an 

experimental error 6 is defined as

Likewise, the eigenfrequency deviation A/n and MAC-value error AMACn 

for each mode n are

/a,n ~ Je,n(O — 0)
= 0)

and

AMACn (6) = MACn ((5) - MACn (6 = 0) , (4.6)

respectively. In eq. (4.5) /e ,n denotes the simulated experimental natural fre­ 

quencies used in the updating process and fa>n are corresponding analytical 

eigenfrequencies.

4.3.4.1 Correction Factors

Figures 4.24, 4.25, and 4.26 show the influence of the three categories of mea­ 

surement inaccuracies on the substructure correction factors of finite-element 

model 1 (stiffness modelling error of —17 % in the steel-silicon compound
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blades). The symbols (x) mark computed data and lines represent the corre­ 

sponding cubic spline interpolations.

Generally, the correction factor error Aa(<5) increases progressively with 

the magnitude of the experimental errors. Still, for small values the gradients 

are nearly constant and a comparison to a first-order curve fitting (cf. the 

respective subplots in each figure) gives a good approximation. The linear 

ranges lie between zero and 5 % for relative errors and between zero and 1 % 

for absolute and frequency errors.

Relative Errors. The uncertainty Aa(<5re/), Figure 4.24, decreases with 

increasing number of modes used in the correction process. This is due to the 

fact that the correction factor is computed from an over-determined system 

of equations and, as a growing amount of data is processed, the statistically 

distributed measurement errors are averaged to a greater extent. As a result, 

identifying more natural modes can, within reasonable limits, compensate for 

low-quality measurements.

Absolute Errors. Against the tendency found with relative errors the cor­ 

rection results for absolute errors, Figure 4.25, are not successively improved 

with a higher number of mode shapes. The correction factor accuracy deteri­ 

orates as the number of modes is increased from 2 to 5 modes and also from 

10 to 20 modes. Since the absolute experimental errors are independent of 

the individual measured deflection values they significantly alter all degrees of 

freedom with small deflection amplitudes. If a mode shape contains many de­ 

grees of freedom with small deflections it is likely to respond more sensitive to 

those errors. A detailed examination of all modes reveals that the sets of 5 and 

20 modes contain a noticeably large number of degrees of freedom where the 

original deflection (before the experimental errors are added) is smaller than 

the error magnitude. This implies that the updating process is considerably 

affected by the amount of useful data within each individual mode. Conse­ 

quently, every mode shape has to be carefully analysed before it is used for 

updating.
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Frequency Errors. The experimental frequency errors for 2 modes, Fig­ 

ure 4.26, produce excessively high levels of uncertainty (Aa « 660 % for 

fifreq = 5 %) whereas for the other sets of mode shapes the results appear 
more reasonable. This is possibly due to the fact that the random measure­ 

ment errors for the first two natural frequencies are both > 0, i.e. with respect 

to the first 2 modes the error seed has a non-zero mean value. Furthermore, 
the uncertainty for 10 modes displays an irregular behaviour. Here, the sim­ 

ulated experimental frequency uncertainties and the frequency deviations due 
to the modelling errors partially compensate each other. It appears, that in 
some cases the individual constellation of experimental and modelling errors 
can result in irregular correction errors. Consequently, the correction factor 
uncertainty can not be related to the experimental error magnitude alone.

4.3.4.2 Eigenfrequencies and Mode Correlation

In a more detailed assessment the influences of measurement errors on the nat­ 
ural frequency and MAC-deviations are considered. For clarity, and because 
changing the number of modes used for updating does not result in significant 
effects, the subsequent discussion and presentation is confined to the results 
for corrections with a set of 10 mode shapes.

Overall, the analytical eigenfrequencies, Figures 4.27 to 4.29, and mode 
shapes, Figures 4.30 to 4.32, from the updated finite-element model respond 
less sensitively to experimental errors than the submatrix correction factor. 
The natural frequencies of modes numbered 5 to 8 are clearly influenced by 
relative and absolute errors, Figures 4.27 and 4.28, while no significant un­ 
certainties arise in the other frequencies (A/a ((5) < 0.08 %). In the initial 
numerical model these modes have much higher deviations between analytical 
and experimental eigenfrequencies (4 to 5 %) than the others (±1 %). They 
yield the largest contributions to the residual vector and, as a result, experience 
considerable frequency modifications during the updating process. Therefore, 
unlike the modes with small eigenfrequency errors, they are substantially in­ 
fluenced by measurement noise in the experimental data.
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The eigenfrequency deviations caused by experimental frequency errors ba­ 
sically reflect the original measurement error distribution and are not affected 
by the number of modes incorporated in the correction. Since reducing the 
analytical eigenfrequency deviations is a primary purpose in model updating a 
high precision in measuring the natural frequencies is required to achieve this 
goal.

MAC-deviations caused by experimental errors, Figures 4.30 to 4.32, are 
of no practical importance for updating. Even the largest correction factor 
inaccuracy (Aamax = 20,56 %) produces relatively small and locally confined 
changes in the analytical mode shapes and the errors in the experimental 
mode shapes are mostly averaged due to their random distribution. Therefore, 
the Modal Assurance Criterion, as it represents an integral measure for the 
correlation of experimental and analytical modes, appears to be not sensitive 
enough to resolve these changes.

4.3.4.3 Further Results

To emphasise the role of modelling error magnitude and location the investi­ 
gations are now extended to the numerical models 2 (modelling error location 
identical to model 1 but smaller stiffness matrix error of K = — 7 %) and 3 
(stiffness modelling error in the upper pylon section).

Influence of Modelling Error Magnitude. The correction parameter 
uncertainty Aa((5) is proportional to the ratio of modelling error magnitudes 
K2/Ki since it is related to the reference value a(6 = 0) without experimental 
error, eq. (4.4). The absolute differences a(6) — a(6 = 0), however, remain 

unchanged.

Eigenfrequency and deviations in MAC almost exactly reproduce the re­ 
sults for model 1. The differences are of the order 10~6 or less and are regarded 
as to originate from the limited computational accuracy.

As a result, the uncertainties caused by the erroneous experimental data 
are independent of the initial modelling error magnitude.
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Influence of Modelling Error Location. The influence of the modelling 

error location is based on a comparison between the updating results for finite- 

element models 3 and 1. The location of a modelling error affects the analyti­ 

cal eigenfrequencies and eigenvectors and their derivatives with respect to the 

corresponding substructure correction factor, eqs. (3.13) and (3.22). Accord­ 

ingly, the relation between the correction parameter and the residual vector, 

eq. (3.11), and likewise the influence of experimental errors on the correction 

parameter uncertainties, does also depend on the error location.

With the substructure correction factor accuracy consistent results are ob­ 

served for both models. The general findings for model 1, as described in 

Sections 4.3.4.1 and 4.3.4.2, are reproduced.

The eigenfrequency deviations induced by absolute and relative errors lie 

below 0.03 % and are noticeably smaller than for model 1. Since in this case 

all modes used in the updating process (numbered 1 to 10) are flap-bending 

modes of the upper and lower blades the modelling error in the upper py­ 

lon section does not lead to strong frequency deviations between the initial 
analytical model and the experimental data. Therefore, the substructure cor­ 

rections are also small and the sensitivity for measurement errors is low. For 

experimental frequency errors the eigenfrequency deviations again mirror the 

original measurement error seed and do not depend on the number of modes 

used.

MAC-values for the different error categories behave similarly to model 1. 

Again, the experimental uncertainties do not significantly modify the corre­ 
lation of analytical and experimental mode shapes within the realm of this 

simulation study.

4.3.5 Concluding Remarks

The influence of experimental errors on the accuracy of finite-element model 

corrections has been investigated and the uncertainties introduced into the 

correction factors, updated eigenfrequencies, and mode shapes have been dis­ 
cussed.

116



Essentially, the correction parameter uncertainty is progressively increased 

with the magnitude of the experimental error. For small errors a linear range 

exists and contributions from different error categories may be superimposed. 

The overall uncertainty levels are reduced by the number of modes involved in 

the updating process.

In case of absolute errors (independent of the measured deflection value) 

the magnitudes with respect to the actual deflections at the particular degrees 

of freedom significantly affect the correction accuracy. Another observation, 

which is characteristic for the individual numerical model and test structure, 

is a partial compensation of inaccuracies of measured natural frequencies and 

frequency deviations due to analytical modelling errors.

Frequency deviations due to experimental errors in the mode shapes are 

relatively small. The deviations due to inaccurately measured frequencies, 

however, are of the same order as the measurement error. Consequently, model 

updating requires a high precision in identifying the natural frequencies of a 

structure.
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4.4 Closure

The model updating technique introduced in Section 3.2 has been applied to 

different test cases and novel techniques for the selection of correction para­ 

meters and the correction of substructures with viscous material properties 

have been proposed. The results of both the model validation and the newly 

introduced numerical prediction of modal data illustrate the importance of 

parameter selection when a physically consistent updated model is sought.

Next, a numerical study has been performed to investigate the problem of 

errors in the experimental reference data. A simulation procedure has been 

developed and the accuracy of the model corrections has been evaluated. The 

uncertainty in the resulting correction parameter has been found to increase 

with the magnitude of the experimental errors but to be reduced as the amount 

of experimental data used in the updating process is expanded.
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Chapter 5

Complex Applications

5.1 Introduction

Based on the experience gained to this point the Eurocopter EC 135 helicopter 

is selected as an example to demonstrate the capability of the developed proce­ 

dures and algorithms in validating a large-scale industrial finite-element model 

in Section 5.2. A novel approach for a consistent correction of non-isotropic 

material, enabling an efficient definition of updating parameters, is proposed. 

While the numerical model is successfully updated using systematic computa­ 

tional model updating techniques the importance of experimental data quality 

with respect to both precision and completeness becomes clearly evident.

To emphasise the advantages of model updating in other fields of applica­ 

tion the accuracy of the damage localisation method introduced in Section 3.3 

is investigated using a rectangular fuselage panel with two stiffening stringers. 

The investigations in Section 5.3 prove that the updated model leads to a bet­ 

ter indication of the damage location than the conventional analytical model. 

The more pronounced peak in the localisation indicator allows the actual dam­ 

age to be clearly distinguished from secondary effects caused by measurement 

errors and modelling imperfections.

Finally, attention is focused on the quality of the experimental modal data 

again. An analytical eleven-degrees-of-freedom system is used in a numerical 

study in Section 5.4 to examine the performance of the force tuning approach
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suggested in Section 3.4 in comparison to existing methods. Next, the method 

is applied to a simple satellite model and operation along with actual experi­ 

mental data and a realistic aerospace structure is evaluated. The potential for 

improving the quality of the experimental modal parameters, the capability 

to handle non-proportional damping and restricted accessibility, and the ac­ 

curacy of the theoretical predictions of Mode Indicator Function (MIF) values 

are investigated. In order to assess the method with respect to its performance 

on a complex aerospace structure and under realistic test conditions the Polar 

Platform satellite developed by ESA is chosen. Considerable improvements 

with respect to mode isolation quality are found for all test cases. The results 

emphasise the need for systematic tuning techniques in those situations where 

the complexity of the structure under investigation involves a multi-point ex­ 

citation to identify the normal modes.

The topology of the existing and newly developed software components 

utilised within the framework of this thesis is shown in Figure 5.1.
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5.2 Updating of the EC 135 Helicopter

Following the initial application to a small laboratory test structure in the 

previous section the model updating technique as previously described was 

used to validate large-scale industrial finite-element models of the EC 135 

helicopter [75, 85] and the Rosetta1 Lander Module [81]. The application 

to the EC 135 helicopter is described in the following sections. Again, the 

objective has been to deliberately modify the finite-element model in order 

to achieve an improved accuracy in the analytical modal data. The validated 

model has been returned to Eurocopter Deutschland (ECD) for a model-based 

performance optimisation of a vibration suppression device which is located 

between the main gear box unit and the fuselage.

Experimental modal data have been extracted from frequency responses 

recorded during a Shake Test on the EC 135-S001 [40] prototype. The test 

was performed by DLR's Institute for Aeroelasticity in May 1994. The Ground 

Vibration Test Facility described in Section 2.4 was used to perform the test 

and collect the experimental reference data. Details on the test are given in 

[33].

The initial finite-element model, originally generated for dynamic analyses 

accompanying the development phase, was provided by (ECD). Based on the 

experience gained during the preceding validation of the analytical model for 

the Messerschmitt Bolkow Blohm (MBB) BO 105 helicopter the finite-element 

model was partially prepared for the necessary parameterisation of substruc­ 

ture element properties and material parameters.

5.2.1 Introduction

The EC 135, Figure 5.2, is a light, civil, twin-engine, multi-mission helicopter 

developed by the German/French Eurocopter S.A. group. It is designed for 

general passenger and cargo transport, police and air rescue services and off­ 

shore operations. The aircraft is powered by two turbine engines optionally 

supplied by Pratt & Whitney (PW 206B2) or Turbomeca (ARRIUS 2B2) 
1 named after the Rosetta Stone found at Rashid, Nile Delta, 196 BC.
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Figure 5.2: The Eurocopter EC 135 Helicopter

and has a maximum take-off weight of 2,835 kg. The cruising speed is 141 kn 

(261 km/h) and the maximum range is approximately 700 km. The helicopter's 

overall dimensions are 12.16 m (length) by 3.51 m (height) and the main rotor 
diameter is 10.20 m. The EC 135 made its maiden flight on February 15th , 

1994 and delivery started in 1996.

5.2.2 Finite-Element Model

A MSC/NASTRAN™ Version 70.5 Bulk Data File representing the EC 135- 

S001 prototype was made available by BCD. The numerical model has ap­ 
proximately 33,000 degrees of freedom and contains 12,100 shell elements and 

2,000 bar elements. No model reduction is applied to allow for a high degree 
of detail in the definition of correction parameters and straightforward physi­ 

cal interpretation of the results. To correctly model the Shake Test boundary 
conditions an elastic suspension, containing the effective stiffness components 

of the test rig, is added to the rotor head. In analogy to the Shake Test set-up, 
Section 5.2.3.1, the rotor blades are replaced by mass dummies.

For comparison of analytical eigenvectors and experimental mode shapes
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the finite-element nodes closest in distance to the experimental acceleration 

sensor positions are used. Because of the fine mesh resolution in the numerical 

model the deviations to the actual sensor locations are in the range of millime­ 

tres which, regarding the helicopters overall dimensions, is assumed to be of 

no practical importance.

5.2.2.1 Definition of Correction Parameters in

MSC/NASTRAN™

The mass and stiffness modifications for the substructures which are defined 

for correction are implemented into the MSC/NASTRAN™ Bulk Data File 

through property cards and material cards. The card entries are geomet­ 

ric properties, like thickness, cross section, or second moment of inertia and 

material parameters, e.g. Young's modulus, shear modulus, or density. This 

enables the desired physically meaningful model corrections. However, it must 

be ensured that no property or material card is attributed to any object out­ 

side the group of finite elements which form a single substructure, Figure 5.3. 

This would cause the correction to be effective to elements which do not be­ 

long to the chosen substructure. In this case the cards must be redefined in 

order to match the substructure boundaries. More details on the definition of 

substructures in MSC/NASTRAN™ were given in [150].

The correction of material parameters which are related through analytical 

expressions, e.g. Young's modulus, shear modulus, and Poisson's ratio, usually 

causes inconsistencies when just a single value in the group is modified. To 

avoid an over-determined system only those parameters needed to compute 

the full set of values should be specified in the material card. In this case 

the finite-element algorithm automatically calculates the missing parameters 

to equal the updated value.

5.2.2.2 Selection of Correction Parameters

The fundamental importance of selecting suitable updating parameters was 

emphasised in Section 4.2.4. In order to ensure that all correction parameters
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original:
Substructure Boundaries -

Elements

Property Card 3

Material Card 2

modified:
Substructure Boundaries-

Property Card 1

Material Card 1

Property Card 1*| Property Card 2 | Property Card 3

Material Card 2

Figure 5.3: Coordination of Substructures, Property and Material Cards

have a significant influence on the helicopter's overall dynamic characteristics 

the selection of substructures is focused on those components which consti­ 
tute the aircraft backbone structure. Specifically, the structural components 

intended to link the operational loads created by external aerodynamic forces 
(from the main rotor and Fenestron™ [46] anti-torque system) and the prin­ 
cipal inertia forces (induced by the fundamental concentrated masses, e.g. the 
main gear box, engines, or payload) are regarded. From these considerations 
the following prospective updating parameters, Figure 5.4, are chosen:

• Frames #4, #4a, #5, #6, #7, & Rotor Deck. The fuselage 

frames and rotor deck consist of grid frameworks which are reinforced 

with in-plane shear panels. Updating parameters are the beam longitu­ 

dinal stiffness and the shell elements shear moduli.

• Tail Boom Cone. The tail boom cone transfers the forces and bending 

moments from the tail boom into the fuselage. It conceivably has a
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Cabin Side (right)

Cabin Side (left)

Tailboom-Cone 

Tailboom

Tailboom-Joint (front)
Payload

Cabin Floor

Winglets

Figure 5.4: Prospective Substructures for the EC 135 Model Corrections

substantial influence on the dynamic characteristics of the tail boom and 

consequently the entire helicopter. Because of the principal construction 

being similar to the frames and rotor deck the beam stiffness and shell 

shear modulus are used as correction parameters.

Tail Boom Joints (front & rear). The bolted ring joints between the 

tail boom cone and tail boom as well as the tail boom and Fenestron™, 

respectively, are highly uncertain with regard to the modelling of their ef­ 

fective stiffness and deformation behaviour. Young's modulus is updated 

on both joints to determine a representative substitute stiffness.

Cabin Sides (right & left). With regard to the cabin side panel's 

function as to add shear stiffness to the fuselage the shell elements shear 

modulus is used for updating.

Tail Boom. The tail boom considerably contributes to most mode
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shapes and therefore is an important structural component with regard 
to the overall vibration characteristics of the helicopter. Here, Young's 
modulus and mass are parameterised.

• Fenestron™. The Fenestron™ experiences comparatively small elastic 
deformations in all modes within the frequency range of interest. Fur­ 
thermore, the number and location of available sensors is not sufficient 
for an acceptable identification of local deformations. Therefore, only a 
global mass correction is implemented here.

• Cabin Floor &; Payload. The cabin floor rigidity is primarily provided 
through the applied box beam design. Considerable masses including fuel 
and payload are concentrated on the cabin floor and the forces from the 
frames are introduced in the rear segment. Therefore, the cabin floor is 
subjected to substantial stresses and strains. The correction parameters 
are Young's modulus, shear modulus, and mass.

• Winglets. The winglet mass is used to tune the tailplane mode.

• Anti-Resonance Isolation System2 . As the ARIS significantly affects 
the dynamics of the helicopter in general and because the transfer of 
vibrations from the main rotor to the fuselage is of particular interest 
the devices internal spring stiffness is updated.

• Rotor Head & Gear Box3 . The main rotor head and gear box unit 
represent substantial concentrated masses which are connected to the 
base structure via the flexible ARIS system. Together with the ARIS 
they form a functional unit and are considered to be extremely important 
for tuning the vibration suppression operation.

• Engine Suspensions3 . Due to the high concentrated masses in the 
turbine engines the engine suspension stiffness is used for tuning their 
rigid body modes (RBM).

2 The Anti-Resonance Isolation System (ARIS) is a vibration damping device comprised 
of four isolation elements located between the main rotor gear box and fuselage.

3 The Rotor Head, Gear Box, and Engine Suspensions are not depicted in Figure 5.4.

127



Following the selection strategy suggested in Section 4.2.4.1 the potential 

correction parameters are now evaluated as to their sensitivities with respect 

to the analytical modal data according to eqs. (4.3). Based on the computed 

eigenvalue and eigenvector sensitivities, Figure 5.5, and keeping in mind that 

only parameters with sufficiently high sensitivities should be preferred for fur­ 

ther consideration, various modifications are applied to the initial group of 

parameters:

1. Due to their extremely low sensitivities the front and rear tail boom 

joints and the cabin floor shear modulus are eliminated completely.

2. In order to increase their sensitivities the frames #4 to #7 are redefined 

to form a single substructure. Now, all corrections of the beam longitudi­ 

nal stiffness and the shell shear modulus become effective for all frames 

simultaneously. This move appears to be justified since any potential 

modelling error should be of equal nature and magnitude for all frames.

3. At this stage the helicopter used in the Shake Test exceeds the total mass 

of the initial finite-element model by approximately 225 kg. Although the 

masses of crew, passengers, and fuel were already included in the model 

the existence of a global mass distribution error is considered unlikely. 

Conversely, it is assumed that an additional loading of lead bags on the 
cabin floor was not taken into account in the numerical model. Because 

the amount of additional mass is only a coarse estimate based on an 

internal test notice, the payload mass parameter is used hereafter to 

update the additional weight that was introduced on the cabin floor.

The sensitivities for the modified set of updating parameters are plotted 

in Figure 5.6. Next, the new parameters are tested for their convergence be­ 
haviour and the capability to return accurate results. The test procedure out­ 

lined in Section 4.2.4.1, step three, is used and the final correction parameters 
are printed in bold in Figure 5.6.
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5.2.2.3 Parameterisation of Non-Isotropic Material Regions

Most contemporary aerospace structures do not only comprise a high degree 
of geometric complexity, they also consist of composite materials which of­ 

ten are difficult to describe in a numerical model. With the objective of a 

weight-saving, fail-save, and damage tolerant design many of the EC 135's 
main components are manufactured from non-isotropic fibre composites. These 

components generally consist of a multitude of individual layers, all of which 
containing different types of carbon fibres and having distinctive mesh pat­ 
terns or fibre orientations. The complexity of the associated material laws 
does not encourage a direct correction of discrete parameters. In order to 
avoid material parameter inconsistencies, acquire an extended flexibility in 
the definition of updating parameters, and enable an efficient parameterisa- 
tion in MSC/NASTRAN™ a supplementary layer of correction elements, be­ 
ing superimposed to the original structure, Figure 5.7, is introduced [78, 79]. 
The correction elements are linked directly to the existing finite-element grid 
points and homogeneous isotropic material properties are assigned. Now, all 
necessary corrections are introduced through modifying the individual mass or 
stiffness parameters of the correction element layer while the original structure 
remains unchanged.

In the basic updating approach, eq. (3.1), the model corrections are imple­ 
mented though proportional variations of the submatrices Kj and Mj. This 
requires finite initial stiffnesses and/or masses to be specified for the correction 
elements. The mass and stiffness of the base substructure is modified indirectly 
by using the mass/stiffness of the correction element layer as updating param­ 

eter, Figure 5.8.

Adding the correction elements has an unwanted side effect in that it 
changes the substructure's original stiffness and mass distribution. This is 
likely to cause significant eigenfrequency shifts and mode shape alterations. To 
eliminate the undesirable correction layer influence on the structure's modal 
parameters a second layer of offset elements is introduced, Figure 5.9. The 
offset elements have negative stiffness or mass parameters equal in magnitude
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Figure 5.8: Indirect Stiffness Modification using Correction Elements

to the initial values defined for the corresponding correction elements, Fig­ 

ure 5.10. This balances the additional stiffness and/or mass previously added 

to the substructure and results in the overall system submatrices to be identical 

to those given in the original model.

The initial mass and stiffness parameters for the correction elements need 

not necessarily to be representative for the global mass and stiffness of the 

original substructure. For the EC 135 helicopter spatially uniform stiffness 

and mass distributions are used and the initial values are chosen such that 

suitable parameter sensitivities which enable to use the substructures in the
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Figure 5.10: Stiffness Modification using Correction and Offset Elements

model corrections are obtained. In this situation however, only the absolute 
changes of mass and stiffness comprise useful information for the finite-element 
modelling. The main purpose of this application was to generate these data. 
The approach is applied to the cabin floor, tail boom, and Fenestron™ sub­ 
structures and the initial properties for the correction elements are given in 

Table 5.1.
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No.

1

2

3

Substructure

Cabin Floor

Tail Boom

Fenestron™

d/[mm]

1.00

1.00

1.00

£/[N/m2 ]

7.20 x 1010

7.20 x 1010
-

G/[N/m2 ]

7.20 x 1010
-

-

"/H

0.3

0.3
-

p/[kg/m3]

-

-

3.20 x 103

Table 5.1: Initial Properties for the Correction Elements

5.2.3 Processing the Experimental Data

5.2.3.1 Shake Test on the S001 Prototype

The Shake Test on the EC 135-S001 prototype [33] was performed to study 
various mechanisms of vibration reduction inside the fuselage and at the pilot 
seat. The helicopter was suspended in a test rig by means of a pneumatic 
suspension and a harmonic excitation was applied at the main rotor head. 
Excitation forces in longitudinal, transversal, and vertical direction as well as 
excitation moments around the pitch and roll axis were applied. Structural 
vibrations were recorded from 64 acceleration sensors, most of which were con­ 
centrated around the main gear box and ARIS system and on the cabin floor. 
Due to their high vibration amplitudes the main rotor blades were replaced 
by rigid mass dummies. Frequency Response Functions (FRF) were computed 
from the excitation forces and measured structural responses. Additionally, 
7 normal modes were identified directly using the Phase Resonance Method 

(PRM).

It should be noted that the primary purpose of the Shake Test was to 
measure frequency response data for different rotor head excitations and to 
assess the performance of the ARIS system. This led to an acceleration sen­ 
sor distribution which is not well suited for an experimental modal analysis. 
No appropriated multi-point excitation forces (cf. Section 3.4.2) were used to 
identify the normal modes and the mode shapes extracted from the frequency 
response measurements also suffer from the incomplete excitation. As a result, 
the experimental data base available for updating must be considered to be of 
mediocre quality.
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5.2.3.2 Derivation of Modal Parameters

Modal parameters have been derived from both the results obtained with the 
Phase Resonance Method and the recorded frequency response data using a 
phase separation method. Experimental data for the test configuration equiva­ 
lent to the finite-element model has been processed. To eliminate the influence 
of structural non-linearities only the frequency responses for the lowest exci­ 
tation force levels have been considered. The direct phase separation method 
FDPI4 [92] has been used to extract the modal parameters. The method is an 
integral part of the data acquisition and analysis software package CADA-X 
[109] and is based on the phase separation method ISSPA5 which has been 
introduced by LINK [105]. The derivation of modal parameters from the mea­ 
sured frequency response data has been performed by FULLEKRUG [75].

Five FRFs acquired from three translational main rotor hub excitations in 
longitudinal, transversal, and vertical direction as well as two pith and roll ex­ 
citations, respectively, have been selected for the analysis. Furthermore, seven 
mode shapes directly identified with the Phase Resonance Method have been 
available. The accumulated Frequency Response Function from all acceleration 
sensors and the Mode Indicator Function (MIF), eq. (3.54), have been used in 
the analysis. The poles, i.e. eigenfrequencies and damping values, have been 
determined from a stabilisation diagram and the corresponding eigenvectors 
have been computed. Then, the modes derived from the frequency response 
data and Phase Resonance Method have been correlated and the lower qual­ 
ity mode shapes eliminated. As a result, fifteen experimental mode shapes 
covering the frequency range from 5 Hz to 35 Hz have been obtained for the 
numerical model validation.

In Table 5.2 the Modal Assurance Criterion (MAC) for all combinations 
of experimental eigenvectors

MACrs = . ' forr, 5 = l,...,;V, (5.1)
\re,r re

4 Frequency Domain Direct Parameter Identification 
Identification of Structural System Parameters
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i.e. the cross-correlation, is shown. Assuming linearly independent eigenvec­ 
tors, the auto-correlation is equal to one for r = s and vanishes for r / s. 
However, due to unavoidable imperfections, like experimental errors and spa­ 
tial incompleteness, this is rarely the case with measured data. Here, the 
off-diagonal values should be as small as possible. The auto-correlation in Ta­ 
ble 5.2 reveals several strong couplings of modes (in particular between modes 
numbered 4 to 6, 7 to 10, and 11 to 13) which is mainly due to the insufficient 
number and poor spatial distribution of acceleration sensors.

Moreover, it should be kept in mind that the set of normal modes is likely 
to be incomplete in that not all modes in the frequency range under investi­ 
gation were identified due to the inappropriate excitation. Since only a single 
excitation point at the rotor head was used to record the measured FRFs only 
those mode shapes which are significantly excited by the rotor head excitation 
are contained in the experimental data.

Because of the reasons mentioned the strong coupling of experimental 
modes and the modal incompleteness establish highly unfavourable conditions 
for the numerical model corrections.

5.2.4 Results

Both measured eigenfrequencies and mode shapes are used to validate the 
finite-element model. In each iteration step experimental and analytical eigen­ 
vectors are compared according to the Modal Assurance Criterion (MAC), 
eq. (4.2), and natural frequency deviation A/, eq. (4.1). If the MAC be­ 
tween a measured and a computed mode is larger than 60 % and the difference 
between the associated eigenfrequencies is lower than 30 % the modes are con­ 
sidered to be identical and are allocated automatically for comparison in the 
error vector, eqs. (3.12) and (3.21).

In order to balance the dominating number of mode shape deflection com­ 
ponents (M x TV values) as compared to the number of frequency deviations 
(N values) an automatic eigenfrequency weighting is applied. Using the ele­ 
ments of the weighting matrix We each eigenfrequency gradient in the Jacobian
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Table 5.2: Correlation of Experimental Mode Shapes
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matrix is weighted according to the norm of the corresponding eigenvector dis­ 

placement gradients. The weighting procedure was described in [150]. The au­ 

tomatic eigenfrequency weighting assures that eigenfrequency deviations have 

the same impact on the model corrections as eigenvector errors. This also 

takes into account that reducing the frequency deviations is often considered 

the primary goal in model updating.

The model corrections are based on the parameters printed in bold in Fig­ 

ure 5.6 and the results are plotted in Figures 5.11 to 5.14. Convergence is 

reached after six iteration steps and between eight and nine analytical eigen­ 

vectors are allocated to experimental mode shapes, Figure 5.14. Both con­ 

vergence and mode correlation suffer from the low experimental data quality 

discussed in Section 5.2.3.

In Figure 5.11 the correction factors are plotted as a function of iteration 

step. It must be noted that for the cabin floor, tail boom, and Fenestron™ 

substructures the correction factors relate to the initial mass and stiffness pa­ 

rameters specified for the correction elements, Table 5.1. Since the correction 

elements are not modelled to match the substructure's global masses and stiff­ 

nesses the correction factors likewise do not represent actual modelling errors 

of these magnitudes. Here, only the absolute changes of mass and stiffness, 

Table 5.3, bear a physical significance.

For the conventionally updated substructures the correction factors are 

found to be quite modest and remaining within the magnitudes anticipated for 

the modelling errors by ECD's numerical modelling staff. High mass correction 

factors for the rotor head are observed. Apparently, the moving mass of the 

pneumatic suspension system is much lower than previously assumed. An

No.

1

2

3

Substructure

Cabin Floor

Tail Boom

Fenestron™

AE/[N/m2 ]

4.95 x 1010

3.21 x 1010
-

AG/[N/m2 ]

4.95 x 1010
-

-

Am/[kg]

-

-

17.00

Table 5.3: Mass and Stiffness Corrections for Non-Isotropic Substructures
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exceptionally high correction also is observed for the winglets mass. This 
result gives an indication that either different winglets were installed on the 
helicopter in the Shake Test configuration or the actual modelling error is 
located in the stiffness of the joint between tail boom and tailplane. However, 
the insufficient number of acceleration sensors in this area does not allow a 
detailed investigation of this subject.

Regarding the frequency deviations, Figure 5.12, the residuals are reduced 
from ±10 % to +7.1/ — 4.3 %. Here, the consequences of spatial and modal 
incompleteness and the heavy coupling between individual modes in the ex­ 
perimental reference data becomes most apparent.

With the exception of modes numbered 13 (MAC = 80 %) and 9 (MAC = 
88 %) the correlation between analytical and experimental mode shapes, Fig­ 
ure 5.13, is greater than 93 %.

Subsequent numerical investigations ([80], unpublished) on the effects of 
spatial incompleteness have revealed that neither the model updating method 
nor the set of correction parameters are inadequate to produce better results. 
Assuming a homogeneous distribution of experimental degrees of freedom the 
minimum number of acceleration sensors required for a good correlation of 
experimental and analytical data and superior model improvement has been 
found to be in the order of 200 to 250.

5.2.5 Concluding Remarks

An application of finite-element model updating to an authentic industrial 
aerospace structure has been presented. To identify the mechanically relevant 
correction parameters and achieve sufficient sensitivities with respect to eigen- 
frequencies and mode shapes the selection method proposed in Section 4.2.4 
has been used. Additionally, a novel technique for the parameterisation of 
substructures with non-isotropic material properties has been suggested.

Experimental modal parameters have been derived from measured fre­ 
quency response data using a phase separation method. Owing to the sparse 
acceleration sensor distribution a high degree of spatial incompleteness and
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poor correlation of analytical and experimental modes has been observed. Ad­ 

ditional problems have occurred due to apparent configuration differences be­ 

tween the helicopter used in the Shake Test and the one represented by the 

numerical model.

Yet, the results obtained under these difficult conditions are considered 

to be quite adequate and it may be concluded that, using the application 

strategies introduced in this thesis, the model updating method is well capable 

to work with complex aerospace structures.
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5.3 Localisation of Structural Damage

In the following section the damage localisation method suggested in Sec­ 
tion 3.3 is applied to a small representative aircraft fuselage component [83]. 
With the main purpose of demonstrating the advantages of model updating 
on the localisation accuracy the results for two cases, before and after the 
finite-element model is updated with experimental mode shapes and natural 
frequencies from the undamaged test structure, are compared.

5.3.1 Test Structure

On most existing aerospace systems the critical structural components which 
require monitoring are well-known, i.e. the locations where structural faults are 
most likely to occur are limited. Accordingly, the damage localisation method 
suggested in Section 3.3 is applied to a basic yet characteristic aircraft com­ 
ponent rather than to a more complex substructure. A rectangular fuselage 
panel made of carbon fibre reinforced polymers (CFRP) with two stiffening 
stringers on the upper side, Figure 5.15, is chosen for this purpose. The base 
plate measures 500 by 400 mm2 and the stringers are 40 mm high. The panel 
is made from 18 plies of CCC 460 bi-directional carbon fibre mesh manufac­ 
tured by C. Cramer & Co., Heek-Nienborg, Germany and the total mass is 
approximately 1.4 kg.

A piezoelectric actuator module bonded to the top surface between the 
stringers is used for dynamic excitation. A second similar device mounted in 
the same position on the bottom surface serves as a response sensor. The 
piezoelectric modules consist of a 30 x 50 x 0.2 mm3 layer of PIC 151 modified 
lead zirconate titanate (PZT) ceramic manufactured by PI Ceramic GmbH, 
Lederhose, Germany, which is covered by copper-nickel mesh electrodes and 
thin protective glass fibre layers on the upper and lower sides. The position of 
actuator and sensor is chosen such that as many mode shapes as possible can 
be excited in the frequency range under investigation, Section 5.3.2.1.
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Figure 5.15: Stringer-Stiffened CFRP-Panel

5.3.2 Finite-Element Model

The finite-element analysis is executed in MSC/NASTRAN™ Version 70.5. 
The numerical model, Figure 5.16, consists of a total of 2,400 CQUAD4 shell 
elements with orthotropic material properties, Table 5.4. Such a fine mesh 
resolution would not be necessary for a standard dynamic analysis of a com­ 
paratively undemanding structure but is needed for a good spatial resolution 
in the modelling of the structural damage. A rigid suspension is assumed along 
the clamped boundary (represented by a dashed line in Figure 5.15).
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Figure 5.16: Finite-Element Mesh of the Stringer-Stiffened CFRP-Panel

Material Parameters:

P
Exx

Eyy

1.46 x 103 kg/m3

5.40 x 1010 N/m2

5.40 x 1010 N/m2

(*Jxy

Gxz
GyZ

5.00 x 109 N/m2

2.00 x 109 N/m2

2.00 x 109 N/m2

Table 5.4: Material Parameters for the Stringer-Stiffened CFRP-Panel

5.3.2.1 Preliminary Investigations

The main goals of the preliminary investigations are to find an optimised actu­ 
ator/sensor position that allows collection of the necessary input data for the 
damping-based damage localisation method and to assess the method's spatial 
resolution using a prototype delamination model.
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Modelling of Piezoelectric Modules. Within the scope of these investi­ 

gations it will not be necessary to describe the behaviour of the piezoelectric 

material in full detail. Only the features that are relevant for a dynamic anal­ 

ysis are considered. Therefore, a simplified model of the piezoelectric actuator 

module is built which does not take into account all interactions between the 

elastic deformation and the electrical and thermal fields. The simplified model 

makes use of an analogy between the piezoelectric effect and the effect of ther­ 

mal expansion permitting the use of existing standard finite-elements. In this 

analogy the electrical voltage applied to the electrodes of the piezoelectric 

module is represented by the temperature of the finite shell elements and the 

piezoelectric coefficients (characterising the relationship of the external elec­ 

trical field and the strains) are approximated by the coefficients of thermal 

expansion (which quantify the relationship between the element's temperature 

and the strains). The mechanical excitation is realised through a homoge­ 

neous harmonically oscillating temperature load of variable frequency on the 

actuator shell elements resulting in a homogeneous6 in-plane strain across the 

actuator's surface.

For the shell elements representing the sensor module the electrical output 

voltage U is assumed to be a linear function of the in-plane strain components 

and according to

(5-2)

where Cx and Cy are proportionality constants between the strains and the 

output voltage. Again, only qualitative information on the suitability of the 

sensor position to collect the required vibration data is needed here.

Hereafter, the finite-element model with integrated piezoelectric actuator 

and sensor modules is used for the frequency response calculations and the 

primary tests of the initial delamination model and localisation method.

6 It is assumed that no thermal conductivity between the actuator shell elements and the 
base structure occurs.
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Actuator & Sensor Position. To ensure that the largest possible amount 
of information is acquired from the test structure, the location which permits 
the piezoelectric actuator to excite the largest possible number of modes in the 
given frequency range must be found. From the physical point of view the in- 
plane surface strain components dux/dx and duy/dy at the chosen location 
must be sufficiently high to allow for the introduction of an adequate amount 
of energy into the structure. Simultaneously, this ensures that the co-locally 
mounted sensor module generates a sufficiently high output signal.

The analysis is based on the analytical eigenvectors. From the computed 
surface strain fields of each mode shape the location must be identified, where 
the strains in the actuator/sensor area are non-zero for as many modes as possi­ 
ble. Due to the finite dimensions of the piezoelectric modules it can not always 
be avoided that a nodal line comes close to or crosses the actuator/sensor area.

Two examples of surface strain fields for different mode shapes are plotted 
in Figures 5.17 and 5.18. The optimised actuator/sensor location is indicated 
by a white box. Due to the stringer stiffness the strains in y-direction are 
generally higher than the x-direction components. Therefore, the piezoelectric 
module's longer sides are oriented in y-direction in order to achieve a higher 
actuation efficiency and sensor output voltage.

With mode numbered 6 the actuator module lies on or very close to a 
nodal line for both the x- and y-component strains. Only a small amount of 
energy is fed into this mode shape and the resulting structural response will 
most likely be insufficient to process this mode for damage localisation. For 
mode numbered 20 an area of high strains (y- components) is located under 
the actuator which should allow for a good excitation of this mode in the 
experimental frequency response measurements.

A numerical frequency response for the chosen actuator and sensor location 
at 0.5 % critical damping is plotted in Figure 5.19. For some modes, e.g. 
at 646.4 Hz or 1,076.3 Hz, the structural response does not show individual 
peaks although the surface strains are high enough to yield a sufficient sensor 
output signal. It should be kept in mind, however, that the damping used
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Figure 5.17: Surface Strain Fields for Mode Numbered 6
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Figure 5.18: Surface Strain Fields for Mode Numbered 20
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Figure 5.19: Numerical Frequency Response for Excitation at Selected Actu­ 

ator/Sensor Location

in these calculations is only a coarse estimate which assumes comparatively 

unfavourable conditions for the later experiments. 7 With a lower damping 

more peaks are resolved in the frequency response spectrum.

The selected actuator and sensor module location allows the identification 

of 14 out of the 20 mode shapes in the frequency range between 40 Hz and 

1.28 kHz.

Spatial Resolution Assessment. In this section the extent of the damage- 

induced damping deviations in the lower mode shapes is estimated for a char­ 

acteristic delamination size and the changes of these deviations with damage 

location are evaluated to assess the method's spatial resolution.

A square delamination area is introduced into the finite-element model and 

the damping factors according to eq. (3.40) are computed for four different 

damage locations, Figure 5.20. The delamination is modelled by means of 

a 90 % reduction of the in-plane shear stiffnesses Gxz and Gyz of the shell

7The actual damping values of the test structure were unknown at this time. In the 
course of the experimental investigations the average damping in the observed frequency 
range was found to be as low as 0.16 %.
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Damage Locations

Figure 5.20: Numerical Model for Spatial Resolution Assessment

elements representing the damaged area. The deviations of the modal damping 

factors with respect to the values for the 'undamaged' model are plotted in 

Figure 5.21 for modes numbered 1 to 20.

Comparing the results for damage locations 2, 3, and 4, Figure 5.21 (top), 

the damping deviations display unique and easily distinguishable patterns for 

the different damages. This indicates that a clear separation of the various 

damage locations in the finite-element model from given damping deviations is 

possible. Some modes show a considerable response to a given damage whereas 

others are not significantly influenced. As a general trend, the sensitivity 

increases for higher mode numbers.

For the more critical case of the two overlapping damages numbered 1 and 2, 

Figure 5.21 (bottom), the spectrum of damping value deviations still contains 

some noticeable differences (e.g. for modes numbered 8, 11, 12, 17, and 20), 

which appear to be sufficient to distinguish the two locations.

The simulation indicates that the concept of processing modal damping for
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damage localisation is capable of yielding a good spatial resolution and that a 

good localisation capability can be expected in practical application.

5.3.2.2 Delamination Modelling

To compute analytical damping factors for the damaged structure a realistic 

finite-element delamination model is needed. As outlined in Section 3.3.1 the 

localisation problem is restricted to a single concentrated damage of fixed 

size with damage location as the only remaining parameter to be identified. 

This requires to define a characteristic delamination size and shape which is 

obtained from ultra-sonic wave scan images of the damaged region on the test 

structure, Figure 5.26 in Section 5.3.4.2.

As described in the previous section the delamination is modelled by reduc­ 

ing the in-plane shear stiffnesses Gxz and Gyz of the involved shell elements. 

The modelled damage position is parameterised and is determined by two 

distance co-ordinates, Ax and Ay, relative to the actual damage on the test 

structure, Figure 5.27 in Section 5.3.5.

5.3.3 Model Corrections

The intermediate optional updating step is intended to provide an improved 

model for application with the damage localisation method. A brief overview 

of the finite-element model corrections is given here. Application-related as­ 

pects have been treated in more depth in Section 4.2. The updating process 

is preceded by a re-modelling phase where minor geometric adjustments are 

made to take into account manufacturing tolerances of the tested sample and, 

following an initial sensitivity analysis, the rigid suspension is modified to more 

accurately resemble the existing test set-up.

5.3.3.1 Modal Data for Model Updating

Mode shapes and natural frequencies were identified using a Polytec PSV 200 

single-channel laser Doppler scanning vibrometer which measures the out-of- 

plane deflections of the base plate. All measurements were taken with the panel
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clamped along one of the short sides. A harmonic excitation ranging from 
40 Hz to 1.28 kHz was applied through the integrated piezoelectric actuator. 

This assures that no additional masses from shakers or sensors can affect the 
results. The number of measured degrees of freedom was 556 and 22 mode 
shapes and natural frequencies were identified.

5.3.3.2 Correction Results

To obtain physically reasonable and precise correction results the procedure 
described in Section 4.2.4 is applied. The substructures, Figure 5.22, are cho­ 
sen such that they represent actual modelling uncertainties and errors and 
also have sufficiently high sensitivities, eq. (4.3). Table 5.5 lists the selected 
updating parameters and correction factors p^. In Figures 5.23 and 5.24 the 
frequency deviations and MAC-values are plotted for the initial and updated 
model.

5.3.4 Experiments

5.3.4.1 Frequency Response Data for Damage Localisation

Frequency response data has been recorded from the test structure in both 
the undamaged and the damaged states. Natural frequencies have been deter­ 
mined and experimental modal damping factors are computed from the mea­ 
sured sensor output signal as outlined in Section 3.3.2. Again, the integrated 
piezoelectric actuator was used to apply a swept-sine harmonic excitation in 
the frequency range from 40 Hz to 1.28 kHz. Since multiple measurements 
around the resonance frequency are involved in the computation of damping 
factors from the curve fit coefficients experimental errors are partially bal­ 
anced and more accurate results than for other methods can be expected. An 
example for a curve fit to a measured response is shown in Figure 5.25.
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Figure 5.22: Substructures of the Stringer-Stiffened CFRP-Panel

No.

1

2

3

4

5

6

7

8

Location

global

global

Base Plate, Section I

Base Plate, Section II

Base Plate, Section III

Joint Region @ Stringer I

Joint Region @ Stringer II

Stringer I

Parameter

E
GXy

P

E
E

GXy

GXy

P

p*/[%]* }
+12.2

+22.0

-0.98

+6.67

+0.93

-74.2

-33.0

+4.45

*) after 8 iterations

Table 5.5: Updating Parameters for the Stringer-Stiffened CFRP-Panel
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5.3.4.2 Generation of Delaminations

After measuring the modal data and frequency response on the undamaged8 

structure, a delamination has been produced through a steel ball impact. A 

damage location on the base plate between the stringers, piezoelectric modules 

and suspension at x = 140 mm and y — 260 mm has been chosen. The im­ 

pact energy was 40 Joule and the resulting delamination size is approximately 

25 mm by 44 mm. Next, the frequency response has been measured again 

using the same set-up and frequency resolution as for the healthy structure.

The destroyed internal bonding between adjacent layers within a delam­ 

ination affects both the reflection and transmission of sound waves and the 

extend of damage can therefore be visualised by ultra-sonic wave scans. The 

method was used to identify the exact size, shape, and position of the delam­ 

ination damages in order to generate a numerical model, Section 5.3.2.2, and 

for comparison with the modal-based localisation results. Figure 5.26 shows 

the reflected and transmitted Sound Pressure Levels (SPL). The notable de- 

lamination shape is believed to be due to the position of the supporting bars 

in the impact machine and the orthotropic material.

5.3.5 Application and Results

In order to assess the localisation capability of the new method and to investi­ 

gate the effect of the numerical model quality the damage localisation method 

is now applied to both the initial and the updated finite-element model.

To locate the delamination on the test structure the parameterised dam­ 

age location within the finite-element models is varied between Ax = ±5 cm 

and A?/ = ±7 cm in increments of one finite element around the actual dam­ 

age location, Figure 5.27, which was identified from the ultra-sonic wave scan 

images. The best correlation between analytical and experimental damping 

deviations is assumed to occur when Ax = Ay = 0, i.e. the modelled damage 

position is identical to the real delamination on the test panel.

8 Following a popular convention within the health monitoring community the undamaged 
condition hereafter will be referred to as the 'healthy' state.
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Figure 5.26: Ultra-Sonic Wave Scan Images of the Delamination Region

For each damage location the numerical damping factors rj®n (Arc, Ay) are 

computed from eq. (3.40) and related to the corresponding values rffn from 

the healthy state. The damping deviation vectors A?7a (Aa;, A?/), eq. (3.44), 

are then compared to the corresponding experimental data obtained from the 

frequency response of the undamaged and damaged test panels. The correla­ 

tion of damage-induced damping deviations between analytical and test data 

C(Ax, A!/), eq. (3.45), is plotted as a function of distance between analytically 

modelled and real damage locations, Figure 5.28.

The number of available eigenfrequencies for comparison between test and 

analysis is limited by the correlation and quality of analytical and experimental 

mode shapes and by the suitability of individual measured resonance peaks 

for curve fitting (frequency spacing and peak height). Generally, the results 

improve when more data, i.e. a larger number of modes, is processed. For 

the results presented here 5 eigenfrequencies are used in the damage detection 

process.

With both finite-element models the delamination is clearly identified from 

the correlation of damage-induced damping deviations, Figure 5.28. The cor­ 

relation maximum, however, is significantly higher for the updated model and
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Figure 5.27: Damage Location Co-ordinates

the damage location is indicated with higher accuracy. The distinct peaks al­ 

low the actual damage to be more easily distinguished from secondary effects 

caused by measurement errors or modelling imperfections. These disturbances 

result in the correlation between analytical and experimental damping devia­ 

tions to approach a non-zero base level rather than to completely vanish.

5.3.6 Concluding Remarks

The model-based damage localisation method introduced in Section 3.3 has 

been validated on a characteristic aircraft component and the advantages of 

model updating on the localisation accuracy have been investigated.

A novel criterion for the determination of optimised actuator and sensor lo­ 

cations and the numerical modelling of piezoelectric modules and delamination 

damages have been described. The correlation of damage-induced damping 

variations has been studied for a conventional and an updated finite-element 

model, the latter leading to an improved indication of the damage location as 

compared to the conventional analytical model.

In conclusion, the proposed method has proved to be capable of locating a 

concentrated structural damage from experimental data acquired from a single 

response sensor.
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5.4 Optimisation of Modal Data Quality

5.4.1 Comparison to other Methods

To evaluate the force optimisation method introduced in Section 3.4 with re­ 

spect to its performance in the field of modal testing of aerospace structures 

and to assess the potential for improving the quality of experimental modal 

data, a simulation study [72] using an analytical eleven-degrees-of-freedom sys­ 

tem [135], Figure 5.29, is executed. The capabilities of handling close eigen- 

frequency spacing, non-proportional damping, and restricted accessibility are 

investigated and the approaches of LEWIS and WRISLEY [93], ASHER [4], and 

HUNT ET AL. [64] are selected for comparison. The forced dynamic response 

of the analytical system is numerically simulated allowing for an assessment 

of the force tuning methods with respect to their potential in isolating the 

natural modes of an elastic structure and the time and effort involved in the 

application during a test.

5.4.1.1 Numerical Simulation

Using the parameters in Table 5.6 and the structural damping approach

the system matrices M and K are assembled and the admittance matrix

H(tw) = (-u;2M + iD + K)-1 (5.3)

is computed. The structural response to a stationary harmonic excitation force
/\

vector f is given by

u = H(iu) • f . (5.4)

The general eigenvalue problem, eq. (3.14), yields the exact eigenfrequencies 

and eigenvectors, Figure 5.30.

Based on the requirements listed in Section 3.4.1 four multi-point exciter 

configurations with two and four shakers, respectively, are defined and tested. 

For the two-point excitations the exciter positions are selected such that each

160



Figure 5.29: Analytical Eleven-Degrees-of-Freedom System

Physical 
Parameter

mm/[kg]

W[kg/s2]

1,11
1.0

2421.4

2, 10

6.0

2989.4

Degree oJ 

3, 9

1.0

3690.6

' Freedom

4,8

0.6

4556.3

5,7

1.0

5625.0

6

1.0

18000.0

Table 5.6: Physical Parameters for the Eleven-Degrees-of-Freedom Model

mode is excited by at least one exciter configuration. The entire set of eleven 

mode shapes, however, can not be excited using only a single two-point ex­ 

citer configuration. This takes into consideration the usual test situation that 
some exciter locations are not available or better positions are unknown. Pre­ 

defining the excitation points additionally establishes identical starting condi­ 
tions for all methods. To ensure a consistent comparison between the various 
methods the Mode Indicator Function (MIF), eq. (3.54), is used to assess and 
compare the mode isolation quality. As outlined in Section 3.4.1 the MIF 
increases with improved mode isolation quality. The usual requirement for a 

mode shape to be adequately identified is a mode indicator value of 800 or 

higher. A mode indicator of 1,000 would indicate that all real-part response 
components have vanished and the structure vibrates in a pure natural mode. 

This would be the best possible result for any force tuning method.

Preceding the actual Phase Resonance Test simulation structural responses 

from single point excitations at different degrees of freedom are computed from 

eq. (5.4) and the associated MIF-values are plotted as a function of excitation
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Figure 5.30: Modal Data of the Eleven-Degrees-of-Freedom System
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Figure 5.31: Structural Responses from Simulated Sine-Sweep Runs

frequency in Figure 5.31. The sine-sweep runs provide the approximate natural 
frequencies and first estimates on the mode shapes and are used as initial 

information by all methods.

5.4.1.2 Results

The modal identification results for the analytical eleven-degrees-of-freedom 
system using the excitation force tuning approaches of LEWIS and WRISLEY 
[93], ASHER [4], HUNT ET AL. [64], and the method proposed in Section 3.4 
are summarised in Tables 5.7 to 5.10.
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Excitation 
Points

2,4

2, 10

4,6

2, 4, 8, 10

1

919

980

933

980

2

899

961

886

961

3

782

143

809

916

4

580

577

467

952

Mod 

5

612

926

486

859

e Nui 

6

701

884

695

964

liber

7

468

813

871

821

8

577

724

549

675

9

820

140

829

921

10

730

129

725

884

11

46

1

918

66

Table 5.7: MIF-Values for Optimised Force Vectors Computed from LEWIS 

and WRISLEY'S Method [93]

Excitation 
Points

2,4

2, 10

4,6

2, 4, 8, 10

1

6
-

929

967

2

26
-

908
-

3

-

-

852

752

4

-

-

-

-

Mod 

5

-

717

536

493

e Nui 

6

709

884
-

907

nber

7

-

-

-

165

8

-

-

-

-

9

-

-

826
-

10

-

-

-

-

11

-

-

924
-

Table 5.8: MIF-Values for Optimised Force Vectors Computed from ASHER'S 

Method [4]

Excitation 
Points

2,4

2, 10

4,6

2, 4, 8, 10

1

914

941

920

965

2

913

911

904

951

3

676

143

919

961

4

580

577

531

907

Mod 

5

599

926

521

852

e Nui 

6

690

884

856

929

nber 

7

110

813

510

124

8

553

724

403

634

9

820

140

823

921

10

730

129

721

884

11

46

1

924

66

Table 5.9: MIF-Values for Optimised Force Vectors Computed from HUNT'S 

Method [64]
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Excitation 
Points

2,4

2, 10

4,6

2, 4, 8, 10

1

976

985

984

987

2

955

960

959

964

3

788

143

920

987

4

733

577

769

964

Mod 

5

705

926

664

927

e Nui 

6

711

884

858

969

nber

7

631

813

904

827

8

641

724

558

841

9

821

140

844

930

10

731

131

731

889

11

46

1

925

66

Table 5.10: MIF-Values for Optimised Force Vectors Computed from the 

Method proposed in Section 3.4

With all four methods a considerable improvement is observed between 

the two-point exciter configuration at degrees of freedom 2 and 4 and the 
four-point configuration at DoFs 2, 4, 8, and 10. This appears reasonable 

because the degrees of freedom 8 and 10 embody the mirror images of 2 and 4 

and the additional exciters take into account the system's symmetry allowing 
for a better isolation of symmetric and anti-symmetric mode shapes. From 

a physical viewpoint a sufficient excitation of mode numbered 11 only seems 

possible with exciters at 4 and 6. In fact, with each method all other exciter 

arrangements yield unsatisfactory identification results, i.e. mode indicator 

values close to zero.

The force tuning procedure introduced by LEWIS and WRISLEY [93] re­ 
quires only the measured eigenfrequencies as initial information. The method 
involves an assumption on the structural damping and a mass model reduced to 

the excitation points. The force components are adjusted proportional to the 
deflection amplitudes and condensed masses at the selected exciter locations. 
With the exception of modes 4, 8, and 10 the two-point exciter configurations 

already lead to a sufficient mode isolation, Table 5.7. Overall, good results are 

obtained using this method.

ASHER'S approach [4] additionally processes structural responses measured 

during the preliminary sine-sweep runs. An admittance matrix is computed 

from the real-part deflection components at the excitation degrees of freedom 

and associated excitation forces. Practical experience revealed that the sug­ 
gested mode indicator |H| = 0 is not a particularly reliable criterion since the
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admittance matrix determinant does not necessarily become zero at the res­ 

onance frequencies. This however is the basic condition for the computation 

of non-trivial force vectors. Therefore, only six mode shapes were identified, 

Table 5.8.

HUNT'S method [64] uses the real- and imaginary-part response amplitudes 

at the exciter locations from the initial sweep runs. A reduced mass matrix 

from a finite-element model is needed to generate the experimental admit­ 

tance matrix. Substantial improvements compared to ASHER'S method [4] and 

mostly similar results to LEWIS and WRISLEY'S approach [93] are observed, 

Table 5.9.

With the force tuning method according to eqs. (3.55) to (3.61) the real- 

and imaginary-part responses of all measured degrees of freedom are used. A 

significantly higher amount of input information is available for the computa­ 

tion of optimised excitation force vectors than it is the case with any of the 

other approaches. An analytical mass matrix or estimations on the damping 

behaviour are not needed. The results are comprised in Table 5.10. Consid­ 

erable improvements are found, especially for the higher modes which are the 

most difficult to identify. The average MIF-values are 47 points higher than 

with LEWIS and WRISLEY'S method [93] and 69 points higher than with the 

method of HUNT [64],

5.4.2 Application to a Laboratory Test Structure

Next, a simple satellite model, Figure 5.32, is selected to test the method's 

performance on a realistic structure. The goal of these investigations is to 

assess the influence of those effects not represented within the analytical model 

that has been used in the previous section. Examples are frequency shifts 

due to incomplete excitation and non-linear behaviour in general9 , systematic 

errors, measurement noise, the limited resolution at low response amplitudes, 

A/D-converter noise, or temperature effects.

9These would affect the superposition of responses in eqs. (3.55) and (3.56).
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Main Components [TJ... \T] Exciter Locations

Figure 5.32: Laboratory Test Structure

5.4.2.1 Experiments

The structure is made of a steel base plate (1) attached to a cylindrical foot 

(2), five aluminium-honeycomb compound plates (3), and two horizontal steel 

frames (4) enclosing the base plate and between the lower edges of the vertical 

compound plates, respectively. For Ground Vibration Testing the structure 

is mounted on a seismic foundation and equipped with 101 acceleration sen­ 

sors. Seven exciter locations (|T| to |T|) are available for the identification 

process and because of the structure's simplicity the computation of optimised 

multi-point excitation forces will be restricted to a maximum number of three 

shakers. A frequency range from 10 Hz to 200 Hz containing 18 eigenfrequen- 

cies is investigated. DLR's Ground Vibration Test Facility [32, 34] is used to 

collect the experimental data.
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First, the experimental database required to compute optimised multi-point 

excitation force vectors is obtained from sine-sweep runs with single-point ex­ 

citations at the exciter locations shown in Figure 5.32. Real and imaginary res­ 

ponses are recorded for each excitation point and resonance frequency. Next, 

the optimised force components and associated structural responses are de­ 

termined from eqs. (3.59) to (3.61). The Mode Indicator Function (MIF), 

eq. (3.54), is computed for all possible combinations of three out of seven 

exciters and the exciter configurations with the highest theoretical mode indi­ 

cators are then used to experimentally identify the structure's mode shapes. 

In Table 5.11 the measured MIF-values and the ones predicted from eq. (3.54) 

are listed for comparison.

5.4.2.2 Results

Considerable improvements with respect to mode isolation quality are achieved 

with the computed multi-point excitation force vectors, Table 5.11. Increases 

in MIF-values as high as 130 points (mode numbered 9) as compared to the 

single-point excitations are observed. It appears remarkable that in some cases 

(modes numbered 1, 14, and 17) the exciter point which has the best mode 

indication does not necessarily contribute to the optimised force vector. With 

the exception of mode numbered 17 the differences between predicted and 

measured values10 of the MIF are smaller than 20 points or 2 %.

5.4.3 Ground Vibration Test on the Polar Platform

Following the successful tests under controlled laboratory conditions the force 

tuning method is applied to the Polar Platform (PPF) space structure, Fig­ 

ure 5.33, which has been developed by the European Space Agency (ESA) 

starting in 1988 [43]. Other applications to ESA's International Gamma Ray 

Astrophysics Laboratory (INTEGRAL) satellite and the Rosetta Lander Mod­ 

ule have been reported in [35] and [56], respectively.

10 Due to space limitations some configurations listed in Table 5.11 could not be set up. 
In favour of the comparability of results no alternative configurations are selected.
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The Polar Platform is a satellite backbone structure of modular design 

which is designed to accommodate Earth-observation instruments and to sup­ 

ply them with the necessary energy, attitude control, and data links to Earth. 

In April/May 1996 DLR carried out a Ground Vibration Test on the Po­ 

lar Platform's Structural Model (STM) which was equipped with static mass 

dummies representing the Earth-observation instruments of the Envisat-1 pay- 

load. In its launch configuration the satellite measures 10.50 m (height) by 

4.57 m (envelope diameter) and the total mass of the base structure and pay- 

load is 8,211 kg. The Polar Platform was launched from the Kourou spaceport 

in French Guyana by an Ariane-5 on March 1st , 2002.

5.4.3.1 Experiments

DLR's Ground Vibration Test Facility (cf. Section 2.4) was used to identify 

the satellite's normal modes and eigenfrequencies. The structure was equipped 

with 575 acceleration sensors and 99 excitation points were available. Two 

configurations (with and without mass dummies for the solar array) were in­ 

vestigated and 109 modes were measured in a frequency band ranging from 

zero to 180 Hz.

The force tuning method is applied to a mode shape which previously had 

not been isolated satisfactorily using manual exciter force tuning strategies. 

Based on the corresponding eigenfrequency single-point sine-sweep runs from 

eight exciter locations containing the wanted mode are found. The MAC- 

matrix, Table 5.12, shows a good correlation between the selected modes. 

With the structural responses from the eight single-point excitations the force 

components for a three- and four-point excitation are computed, Table 5.13. It 

should be noted that in both configurations the exciter point with the lowest 

mode indication (number 8) has the second-largest component in the optimised 

force vectors.
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Figure 5.33: The Polar Platform Satellite Structure
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Excitation 
Point

1

2

3

4

5

6

7

8

1

1000

838

840

799

774

770

600

793

2

838

1000

919

970

943

938

712

916

3

840

919

1000

861

825

819

616

870

4

799

970

861

1000

973

971

824

855

5

774

943

825

973

1000

1000

844

850

6

770

938

819

971

1000

1000

851

840

7

600

712

616

824

844

851

1000

549

8

793

916

870

855

850

840

549

1000

Table 5.12: Correlation of Selected Structural Responses

MIF (Sweep)

fr,opt /(K}

fr,OPt/m

1

634

17.34

16.98

2

592
-

-

E 

3

465

13.62
-

xcitatii 

4

613
-

-

an Poh 

5

615
-

-

it 

6

617

41.78

43.50

7

547
-

-

8

462

22.35

22.92

Table 5.13: Optimised Excitation Forces for the Polar Platform

5.4.3.2 Results

In Table 5.14 the pre-computed mode indicators, measured MIF-values em­ 

ploying the optimised excitation forces from Table 5.13, and improvements 

with respect to the best single-point excitation are listed for both the three- 

point and four-point configuration.

A satisfactory mode identification (MIF > 800) is predicted only with the 

four-point configuration but was achieved experimentally with both optimised

Exciter 
Configuration

Four-Point

Three-Point

MIF 
(comp.)

805
792

MIF
(meas.)

806

801

Deviation 
(comp. - meas.)

+1

+9

Improvement 
w.r.t. Sweep

+172

+167

Table 5.14: Modal Identification Results for the Polar Platform
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excitation force vectors. The deviations between computed and measured 

MIFs remain within acceptable margins. The slightly higher deviation for the 

three-point excitation is assumed to be caused by structural non-linearities. 

Due to time limitations, however, no further investigations were made.

Similar to the observations made with the laboratory test structure in Sec­ 

tion 5.4.2 neither the exciter locations used in the optimised force vector nor 

the computed force component magnitudes are associated with the mode isola­ 

tion quality obtained in the single-point excitations. This emphasises the need 

for systematic tuning techniques when the complexity of the structure under 

investigation involves a multi-point excitation to identify the normal modes.

5.4.4 Concluding Remarks

In the previous section the method for the computation of optimised multi­ 

point excitation force vectors, Section 3.4, has been applied to various test 

cases. Encouraging results have been obtained in comparison to existing meth­ 

ods in a numerical study and in processing life experimental data on a simple 

satellite model. In addition, a successful application to a complex aerospace 

structure under realistic test conditions has been described.

With all test cases a considerable potential for improving the phase purity 

of the experimental mode shapes has been found.
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5.5 Closure

A finite-element model of the Eurocopter EC 135 helicopter has been updated 

to demonstrate the capabilities of the procedures and algorithms developed 

in Sections 4.2 and 4.3 with respect to the validation of a representative in­ 

dustrial aerospace structure. Experimental data from a Shake Test on the 

EC 135-S001 prototype has been used and a novel technique for a consis­ 

tent correction of non-isotropic material which enables an efficient definition 

of updating parameters has been proposed. The numerical model has been 

successfully updated. The results, however, have revealed the importance of 

precision and completeness of the experimental reference data.

The advantages of model updating in the fields of structural damage local­ 

isation have been emphasised in Section 5.3. A stringer-stiffened rectangular 

fuselage panel has been chosen as a test structure and it has been shown that an 

updated model yields a better indication of the damage location as compared 

to a conventional analytical model.

A numerical study has been carried out to evaluate the force tuning tech­ 

nique suggested in Section 3.4 and the performance with respect to the isolation 

of the structure's normal modes has been assessed in comparison to existing 

methods. Then, the method has been applied to a satellite model and realistic 

experimental data. Additionally, an application to a complex aerospace struc­ 

ture in a real life Ground Vibration Test has been described. In all test cases 

the method has yielded significant improvements with respect to the phase 

purity of the identified mode shapes.
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Chapter 6

Conclusions and Further Work

This thesis discusses different aspects of experimental identification techniques 

for structural dynamic systems and the correction of the corresponding numer­ 

ical models using results of the experimental investigations.

The finite-element model of a laboratory test structure is updated using 

experimental eigenfrequencies and mode shapes from a Ground Vibration Test. 

The problem of selecting suitable updating parameters for the model correc­ 

tions is discussed in detail. Two sets of correction parameters are investigated 

and the capabilities of the updated model to predict modal data beyond the 

frequency range used in the validation process is investigated. In addition, ana­ 

lytical Frequency Response Functions are computed from the validated models 

and compared to the measured response data.

The investigations show that a good consistency between the selected up­ 

dating parameters and the errors in the finite-element model is most important 

for the success of the correction process. This ensures that the introduced mod­ 

ifications bear a physical meaning and that reliable predictions of modal and 

frequency response data which were not used for updating can be achieved.

The influence of experimental errors on the accuracy of finite-element model 

corrections is investigated in a simulation study. The uncertainties introduced 

into the correction parameter values, updated eigenfrequencies, and mode 

shapes are discussed.

Primarily, the correction parameter uncertainty is progressively increased
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with the magnitude of the experimental error. For small errors a linear domain 

exists and contributions from different error categories may be superimposed. 

The overall uncertainty levels are reduced by the number of modes involved in 

the updating process.

In case of absolute errors which are independent of the measured value the 

magnitudes with respect to the actual deflections at the particular degrees of 

freedom significantly affect the correction accuracy. Another observation char­ 

acteristic for the individual numerical model and test structure is the partial 

compensation of inaccuracies of measured natural frequencies and frequency 

deviations due to analytical modelling errors.

Analytical frequency deviations from experimental errors within the mode 

shapes are relatively small. The deviations due to inaccurately measured fre­ 

quencies, however, are of the same order as the measurement error. As a result, 

model updating requires high precision in identifying the natural frequencies 

of a structure.

The model updating method is applied to a large-scale finite-element model 

of the EC 135 helicopter. Experimental reference data is obtained from a Shake 

Test on the EC 135-S01 prototype. Modal parameters are derived from the 

Frequency Response Functions using a phase separation technique. To ensure 

sufficiently high parameter sensitivities the selection of correction parameters is 

focussed on those components which constitute the aircraft backbone structure. 

The model corrections are partially carried out by means of supplementary 

correction elements.

Encouraging improvements as to the correlation of experimental and ana­ 

lytical natural frequencies and mode shapes are achieved. The quality of the 

model corrections, however, notably suffers from the modal and spatial incom­ 

pleteness of the measured data.

A new method of localising delamination damages in CFRP is introduced 

and the influence of the analytical model quality on the method's accuracy is 

investigated. A single delamination damage is located in a stringer-stiffened 

CFRP panel using two different analytical models. For the first model only
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standard finite-element modelling techniques are used. An improved second 

model is obtained from updating the first model with experimental data from 

the test structure.

Compared to the initial model damage detection using the updated model 

provides more accurate and apparent results on the damage location and is 

less sensitive to distressing effects.

A new approach for the computation of optimised excitation force vectors 

for Phase Resonance Testing is proposed. The performance of the method is 

compared to other methods by using an analytical eleven-degrees-of-freedom 

system. The results of applications to a laboratory testing model and a large 

space structure are presented. The new method provides significant improve­ 

ments with respect to the identification accuracy and helps reduce test dura­ 

tion and costs. The method exhibits considerable advantages in the course of 

modal testing using the Phase Resonance Method.

Regarding model updating techniques in general, further work should be 

directed towards including anti-resonance frequencies and the direct processing 

of Frequency Response Functions in the residual vector.

With large-scale finite-element models the correction of global modal para­ 

meters does not necessary result in an improvement of individual local struc­ 

tural responses. A more detailed dynamic representation of the real structure 

can be achieved through starting modal testing and model validation on the 

sub-component level.

Further work with respect to the detection of delamination damages should 

strive for an improved finite-element modelling of delaminations, including the 

use of model updating techniques, the investigation of alternate analytical 

damping approaches, and the development of a sensitivity analysis of the in­ 

dividual modes with respect to the damage location.

In the optimisation of multi-point excitation forces the selection of single- 

point exciter locations is still based on engineering judgement. A more sys­ 

tematic procedure, e.g. the use of a-priori knowledge from an analytical model, 

could yield further improvement to the modal data quality.
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