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Abstract

The purpose of this novel research was to understand the flow behaviour and improve

the efficiency of the Volumatic™ spacer, using a combination of engineering tools

such as CFD, Laser Doppler Anemometry (LDA) and Row visualization techniques.

The lack of information on the Volumatic /A/ spacer meant that, initial understand-

ing had to be gained into the flow behaviour within the spacer. This was initially

preformed by injecting air carrying a tracer concentration to represent t li< d̂rug por-

tion of the medicine. The efficiency(volume of drug collected at the mouth piece)

was found to be about 6.5% which was in the same order as the figure quoted in the

literature Chuffart A series of parametric studies were carried out to discover the

effects of various parameters on I he overall efficiency of the spacer. In the initial part

a series of jet profiles were studied at the inlet, these were in the shape of staright,

cone shape and spray jet profiles. It was concluded that the jet with a cone angle of

5° increased the efficiency of the spacer from G.5% to 9.4%.

The next stage of parametric study involved reducing the length of the spacer from

0.24 m to 0.12 m and varying the inlet velocity from 40 m/s down to 10 m/s. I he

findings concluded that t in1 efficiency of the spacer could be increased to 23%, using

a velocity of 40 m/s at inlet. The length was reduced from 0.12 m to 0.06 m and a

similar study as described above was carried out. This time it was concluded that

reducing the velocity to 30 m/s increased the efficiency to 30%. The other interesting

feature to come out of this study was that the whole of tIk1 spacer volume was used,

hence the drug was mixing better than in the original Volumatic /A/ spacer, where
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about one third of the spacer volume remained completely empty of the drug.

The studies carried out so far had shown that the additional increase in drug delivery

efficiency in the case of the Volumatic 7 A/ spacer, was not substantial enough to justify

the considerable manufacturing costs which have to be met, if the Volumatic 7 A/

spacer was to be remanufactured in its improved design. The way forward seemed to

be in the developement of a new design. The new design had to be small enough, so

that it could be carried around easily by patients, who do not use1 the current spacer

due to its size. The new design had to be economical in terms of manufacture,

simple to use and easy to clean. The reasons mentioned above and the current

trend towards the tube type spacer designs, implied the logical approach would

be to base the design on a similar geometry. A tube type spacer was modelled

with two holes drilled directly opposite each other, a distance of 10 mm away from

the pMDI's nozzle. The holes introduced a pressure difference, hence directing the

drug towards the patient's airway system. The new spacer had a length of 0.1 m.

The computational results showed that the efficiency had increased to 71% for this

particular design.

The CFD results obtained from the initial study on the Volumatic 7 M spacer were

validated using LDA measurements. The velocities along four different locations were

measured. At each location the velocities were measured at increments of 5 mm for a

distance of 50 mm inside t he spacer. The LDA results showed very good agreements

with those obtained from CFD. The volume of data sampled experimentally at each

point was 25,000 data points. This large volume of data eliminated any random

sources of error, and as the CF D simulations were carried out some six months prior

to LDA results, it was safe to assume that the drug had been modelled accurately.

The same experimental set up was used to measure velocity values for the tube spacer,

but in this instance, velocity measurements were made only along two planes, due

to limited time and availability of the drug source.

Finally laser light sheeting was used to illuminate the Volumatic T spacer and a

high speed KODAK camera capable of capturing 4500 frames per second was used.
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The visualization study proved that there was a portion of the Volumatie /A/ spacer

which at times was free of any drug.

The originality of the work has been described in the following paragraph: Prior

to this research there was 110comprehensive study available combining engineering

tools such as Computational Fluid Dynamics (CFD), Laser Doppler Anemoinetry

(LDA) and High Speed Photography to study the (low pattern within the curren

Volumatic /A/ spacer design and hence analysing its efliciency. The studies carried

out were of the impaction type. The results of this study have confirmed that then 1

are several parameters contribut ing to Iho efficiency of Ilie Volumatic' A/ spacer. This

knowledge was not avilable in the open literature previously.

The init ial part of this sf udy has provided a scient ific approacli to analysing Ihe flow

patterns, lience obtaining an accurate value for the efficiency of the current device.

This part of the study alone is a valuable tool for industry, because it has given

industry data which lias not been previously available. The results from this study

have indicated that, the Aero Chamber Spacer type design lias an efficiency of 71%

compared to the current 10% efficiency of the Volumatic 7 A/ spacer. The efficiencies

discussed are measured in terms of the of percentage of the drug delivered to the

mouth piece. The benefit to industry would be saving at a conservative estimate in

terms of millions of Pounds annually. This can be calculated from industry's own

figures that, 1 out of every 5 new born balmy suffers from asthma in various degrees.

The drug is the most expensive component of the device, hence a more efficient

device would use a lesser quantity of the drug.

Finally the combination of techniques used, and the number of data samples taken

for example in the case of LDA measurements some 25000 data samples were taken

and averaged at each point, has ensured a high degree of accuracy and confidence in

the results presented.
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CHAPTER

O NE

Introduction

This chapter begins by (jiving a background into the need for oral drug administration

and the devices currently available. The need for this research and the methodology

employed in carrying out this research have been highlighted. Finally the thesis outline

has been defined.

§1.1 Introduction

The increase in reported eases of asthma has caused scientists to study the causes of

asthma and devise efficient methods for delivering drugs such as Ventolin-/^/ to the

affected region, Figure(l.l.l) . It has been widely accepted that the most efficient

means of delivering drugs to combat asthma is through the respiratory tract, however

such devices suffer from lack of efficiency in terms of delivering the correct dosage. It

has been widely reported iu literature that approximately less than 10% of the inhaled

dosage readies the aleveoli Newman S.P (50^. It is this inefficiency and associated

human factors, which have led to the development of large volume spacers. The

larger volume spacer attached to the end of a pMDI would allow the drug to be

inhaled in a controlled manner, hence increasing the possibility of the drug reaching

the affected region. The use of spacer with pMDI not only improves efficiency but

may also reduce adverse effects, such as oral dysphonia, Toogood et al. (M|) which

may occur with high doses of inhaled steroids. The large volume spacers are relatively
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1.1. Introduction

(a) p\II)[ Pressurised Me-

t.erd Dose Inhaler

(b) Nebnliser

*AJwvi

(c) Latest Nebuliser

Figure 1.1.1: Different Drug Delivery Devices
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1.2. How The Inhalers Work

easy to use and largely overcome the problems of poor technique associated with the

use of metered dose inhalers.

§1.2 How The Inhalers Work

A typical pMDI inhaler canister, contains a solution with active ingredients which

is mixed with a liquefied gas propellant under pressure. The mixture is packaged in

an aluminium canister or a plastic-coated glass container. To dispense a dose of the

drug , the canister needs to be pressed down. In doing so, the drug and propallent

are ejected through the nozzle and into the device known as the spacer.

§1.3 Common Usage Errors

Correct self-dosing with an pMDI is fairly difficult. In a study carried out 100

patients were trained to use pMDI's correctly. The most common errors patients

make include:

• Failling to shake the canister before use

• Failing to pause and exhale slowly

• Not waiting between actuations

• Poor co-ordination between inhalation and actuations.

The last source of error poor co-ordination is by far the most common and frequent

source of error and can cause in nearly the entire drug dose being deposited in the

mouth or throat. In order to remedy this problem, a device known as spacer is used
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1.4. General Features of the Volumatic Spacer

§1.4 General Features of the Volumatic Spacer

The Volumatie Spacer is made of transparent Perspex material as shown in Pig-

nre ( 1. 1. 1) . I t h a s a l e n g t h o f 2 4c m , a n d a d i a m e t e ro f 1. 5 c m a t e a c h e n d . I n t h e

middle t he diameter of (.liespacer is i) cm. The spacer is designed in such a way t hat

it can be pulled apart and cleaned after use.

Figure I.I.I: Volumatic' A/ Spacer
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1.5. Research Objectives

§1.5 Research Objectives

The questions and answers in this section have been designed to provide a detailed

explanation, as to why this research was carried out and how the out come would

benefit t he pat ients.

Question 1

[Why do we need to study the flow behaviour within the Volumatic' A/ ?]

It is a well known fact that, the drug delivery devices in general suffer from lack of

efficiency. This naturally affects the amount of drug delivered to the affected region.

There have been numerous experimental and recently a few computational studies,

modelling the pMDf, with particular attention to t lie nozzle geometry and design.

There have been also experimental studies into different drug formulation. The one

area pharmaceutical companies have not concentrated on has been the design of the

holding chambers or spacers. This is a vital component, forming an interface between

the pi\II)I and the patient's air ways where the drug needs to be deposited. This

is a novel research, looking at the current design of the Volumatic 7A/ . The reason

behind this is that, there are no previous computational or experimental studies, nor

lias there been any imperical data on how this particular design has been chosen. It

is therefore important to understand how the current design works and what level of

efficiency does it operate at. F inally any such device placed between the pMDI and

the patient's air ways, needs to be operating at maximum efficiency in terms of drug

dosage delivered, otherwise improvements to the nozzle efficiency would be lost.

Ques t ion 2

[What is the importance of this research?]

This research would provide validated data for the Voluniatic' A/ and a research

methodology for any such device. In terms of the benefit to the patient, it would

ensure that, more of the drug dosage is delivered to the affect region in the airways,

hence enhancing tlie research carried out on IIk1 nozzle design and development.

Question 3

[Is the research worthwhile?]

The project is worthwhile, because a more efficient spacer would reduce the number
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1.6. The Thesis Outline

of drug dosage a patient needs. This in return would reduce the number of refill drug

capsules needed. In economic terms there would be a major reduction in budget al-

located for treatment of asthma.

Question 4

[Would the current engineering tools such as Computational Fluid Dy-

namics (CFD) and experimental techniques such as Laser Doppler Aiiemom-

etry (LDA) and high speed photography he adequate to carry out this

research? ]

The answer to this question is provided in the Discussion and Conclusion Chapter.

§1.6 The Thesis Outline

The fundamental aim of this research is to understand the drug distribution patterns

within the Volumatic TA/ spacer and establish a numerical value for the efficiency of

this device. Initially an extensive literature survey was carried out, but there was no

published material or any research in the open literature investigating tin1 role of a

spacer device.

• In the abstract a summary of the overall findings has been described.

• Ageneral background and the reasons for carrying out this research are given,

together. It is also clear from this chapter that the research has been a combi-

nation of CFD, LDA and high speed photography technique.

• A comprehensive literature survey has been presented in chapter 2 .

• In chapters 3 and 1 numerical techniques and the code used are discussed.

• The experimental design and setup together with techniques such as LDA and

High Speed photography used for this study are discussed in chapter 5. In this

c h a p t e r t h e s u i t a b i l i t yo f L D As y s t e m a n d s i m i l a r i t yo f a i r c o m p a r e dt o t h e

actual drug in terms of flow patterns within the spacer are also pointed out.
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1.6. The Thesis Outline

The flow visualisation set up and the capability of the high speed camera arc

also discussed.

• The CFD and experimental results are discussed in detail in Chapter 6. The

results presented initially are those of air within the spacer. These have been

v a l i d a t e du s i n gL DA , h e n c ee s t a b l i s h i n gt h e s u i t a b i l i t yo f t h et e c h n i q u ef o r t h i s

research. The actual drug is then modelled and validated extensively using

LDA technique. Aseries of parametric studies have also been carried out and

the findings are documented. Finally the new Aero chamber design is studied

and validated using LDA technique.

• Finally the findings from this study, together with a plan for the future work

and answers to the questions raised in the Introduction chapter are discussed

in chapter 7.
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CHAPTER

T WO

Literature Survey

The objective of this chapter is to present and discuss the information that is related

to, the work contained in this thesis. The chapter begins by looking at methods of drug

deposition, then, moves on to describe various devices used for drug delivery purpose.

The literature then looks at the experimental techniques employed in determining the

efficiency of the devices. Finally various flow models have been discussed together

with the recent computational approach.

§2.1 Introduction

The morbidity and mortality from asthma seems to he rising, as reported by Burr').

A survey into the cause of death associated with asthma, Burney 6̂), has pointed out,

despite better understanding of tlie pathogenesis of the disease, Holgate *28), more

awareness of under diagnosis and under treatment, and a wide choice of effective

treatments and delivery systems to deliver the drug to the affected region, Cromp-

ton (11

The purpose of this chapter is to bring together all the published work on the pres-

surised metered dose inhaler(pMDI), so that a basis is formed for carrying out this

research. The literature survey in this chapter is divided into two sections, the first
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2.2. Drug Deposition Studies

section deals with the spacer device and the drug deposition studies, whereas the

second section reports 011 the atoniisation and spray formation process.

§2.2 Drug Deposition Studies

The work of Moren (l<) ', has shown that the amount of drug deposited in the mouth

c o u l d b e s i g n i f i c a n t l yr e d u c e db y u s i n g a s p a c e r d e v i c e .H e r e p o r t e d t h a t t h ee f f i -

ciency of the device was dependent on the length and width of the spacer, but there

has been no mention in his work about the optimum length and size for the spacer.

In his study a range of tube spacers and a large volume pear-shaped spacer was used.

The results produced showed that longer spacers were more effective than shorter

spacers in reducing drug deposition in the mouth. The wider tube resulted in less

drug being lost in the pressurised metered dose inhaler(pMDI), the spacer and the

mouth, suggesting that more drugs readied t he airways when the large volume pear-

shaped spacer was used. The novel computational study carried out in this research

has given an indication of typical lengths for the spacers.

In a follow up study carried out by Newman (r>0', comparing the drug deposition

from an pMDI alone with that from an pMDI plus large-volume pear-shaped spacer,

revealed that use of the spacer decreased oropharyngeal deposition from 80.9% to

1G.5%. With the pMDI alone 8.7% of the dose reached the lungs compared with

20.9% with the addition of the spacer. In an in vitro study the deposition of Sallni-

tamol from both an pMDI with large volume spacer attachment and without showed

markedly different patterns of deposition for the two devices. With the pMDI alone,

only 73.2% of the emerging dose was captured at the or pharynx and only 10.6%

reached the lower airways, while the corresponding values with the spacer attached

were f.5% and 21.2%. This indicated that more deeply respirable particles which

reach the lower airways were obtained with the spacer device.
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2.3. Direct Methods of Drug Deposition

§2.3 Direct Methods of Drug Deposition

In the studies carried out by Newman ( >1) and Dolovich (l6 ', comparisons were1 made

for drug deposition from a pMDI alone with a pMDI with a spacer attachment in

patients with obstructive airways disease. The results indicated that 11% of the dose

reached the lungs with the pMDI compared with significantly higher amounts for slow

16% and fast 13.3% inhalations. The distribution pattern of drug deposition within

the lungs was significantly more peripheral after slow inhalation. Oropharyngeal

deposition was halved by the use of spacers. In a more recent study Melchor (l i)

examined the lung deposition of directly radio labelled salbutamol from a pMDI

inhaler alone, a pMDI with a large volume cone spacer device a dry powder inhaler

(DPI) . The drug deposition was assessed by a dual headed gamma camera after

inhalation of the drug. The mean percentage deposition of the drug in the lungs in

the subjects was 21.6% with the pMDI alone, 20.9% with the i\II)l with the spacer,

and 12.4% with the DPI. For the patients, total lung deposition was 18.2% with the

p M D I a l o n e , 19 . 0 %w i t h t h e p M D I s p a c e r ,a n d 11. 4 % w i t ht h e D P I .

§2.4 Devices

The pressurised metered dose inhaler (pMDI) has traditionally been the device of

choice in the delivery of drugs to t lie lungs. There are however a range ol delivery

devices available? for treatment of asthma. The devices are chosen according to

the patient criteria. A summary ot the devices and their application is shown in

Table(2.4.1).
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2.4. Devices

Type Device Advantages Disadvantages

Aerosols MDI with or Inexpensive Difficultto

without spacer co-ordinate

Breath actuated actuation

and inspiration

Small Volume Spacers Simple to use

Dry Powder Turbohaler Simple to use cost

Cliekhaler Robust, Portable

Indicator for

Diskhaler doses remaining Difficult to use

Spinhaler Drug Protection

Rotahaler against temperature

Aerochamber humidity

Nebuliser Simple to use expensive

compressor can deliver needs mask

high doses

Table(2.4.1) Summary of inhaler Deviccs

Pressurised metered dose inhaler(pMDIs) are the main deviees used for treatment of

asthma and are likely to remain so for the foreseeable future. However the pMDI on

its own is not a very efficientdevice, hence in most cases a spacer device is prescribed

to be used in conjunction with the pMDI.

§2.4.1 Spacers

In an effort to overcome some problems associated with t h< m̂etered dose inhalers:

such as poor coordination, improved drug delivery to the lungs and reduction of
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2.4. Devices

side effects produced by deposition of the drug in the oropharyngeal, spacers were

designed. There are currently two types of spacers available

• Open-ended tubes

• Large volume spacers with closed ends

The function of tube spacers is to increase the distance between the mouth and the

actuator of the pMDI aerosol. This allows evaporation of the propellant and slowing

down of particles to enhance lung deposition.

Using a range of tube spacers and a pear-shaped large volume spacer Moren ( lt ' ,

showed that tin* amount of drug deposited in the actuator, tube and mouth was

increased when the inhalation was voluntarily delayed for 5 seconds compared with

co-ordinated inhalation. It has been suggested in this research that the lack of in-

spiratory flow when the dose is fired increases the probability of contact between

droplets in the aerosol cloud and the walls of the tube resulting in higher impaction.

The conclusion reached was that the length of the tube spacer was the most critical

design feature in allowing evaporation of the propellant to take place and hence de-

liver more of the dug to the affected region.
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§2.4.1.1 Valve Spacer

The valve spacer is yet another type of device used, in this type of spacers the dose

is ejected into the device and there is generally a delay before the patient inhales

the drug. The study carried out by Newman (51 \ has shown that the delay time

between discharge of the drug dose into the spacer and inhalation was a major factor

in increasing the dosage inhaled, hence the author recommends inhalation should

take place immediately after the drug lias been discharged. The main advantage

of large volume spacer is that, compared with the us<>of MDI alone, they increase

the proportion of the dose delivered to the airways while reducing the proportion

absorbed into the body. The research in this area has shown that a large volume

spacer deposited about 21% of the dose in the lungs and 16% in the oropharynx,

with 56% remaining in the spacer. A similar study was carried out using only the

MDI, the results revealed that only 10-15% of the dose were deposited in the lungs

and 70-80% in the oropharynx Newman (51 ' .

§2.4.2 Metered Dose Inhaler

The main objective of the pMDI is to dispense a measured dose of drug and propellant

at each discharge. The device is capable of discharging 200 doses accurately and

therefore the velocity of discharge drops considerably as our experimental work has

shown. The main use of pMDI at present is for the treatment of ast hma. The pMDI

consists of the following components:

• Chemical component

• Metering valve

• Actuator

• Canister

Page 13



2.4. Devices

§2.4.2.1 Chemical Component

The chemical component is made up of the chug, propellant and surfactants. The

drug is atomised and dispensed in a mixture format. The drug particle sizes are in

the range 0.5- 5/nn. There have been changes enforced iu EU after the Montreal

Protocol ( ,t) where the use of CFCs in the propellants has been banned since 1995.

§2.4.3 The Metering Valve

This is the most important component in the pMDI, because this is the device

responsible for measuring and delivering a measured volume in the region of 25-

100//L depending on the setting of the valve for up to 200 discharges. The metering

valve has to provide an air tight seal as shown in Figure(2.4.1).

The actuation mechanism of the metering valve is to assume tin' valve as a sampling

chamber connecting the canister to an exit nozzle (actuator) by an inlet and outlet

one way valve. The mechanism operation can be described by assuming the inlet

valve to be open, the sampling chamber full and the outlet valve closed, therefore1

isolating the sampling chamber. Once enough pressure has been exerted on the valve

stem, the outlet valve opens and tin1 drug is discharged. The valve stem then returns

to its normal position, due to the valve stem mechanism, which operates on a two

stage set up. In the first stage the outlet valve is closed and then the inlet valve is

opened in the second stage, allowing the sampling chamber to be filled. The metering

valve then returns to its original position and is ready to discharge again.

§2.4.4 The Actuator

The actuator is a single1 piece Figure(2.4.2), consistingof the mouth piece, body and

the nozzle, the only way to manufacture this component of pMDI is to use injection
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Metering
Chamber

Inlet

Body

Spring

Ring

Ferrule

Gaskets

Valve
Onfice

Valve
Stem

Metering
Chamber

Figure 2.4.1: Metering Valve Configuration Glaxo Smith Kline '<>1)

Page 15



2.4. Devices

moulding process.

The mouthpiece would sit either inside a device known as the spacer or directly

inside the patients mouth, hence forming an interface between the actuator and the

patient. The actuator body provides a means for depressing the valve stem and

ensuring adequate air ducting for inhalation to the mouthpiece at an acceptable low

flow rate. The actuator nozzle is an essential component in atomisation process

and resultant formation. This is one of the few components of the pMDI which lias

not been modified since its first design by Hiker Laboratories in 1995. This lack

of attention to this component of the device has resulted in very little literature

available regarding the spray development.

§2.4.5 The Canister

The canister has to be very light, yet at the same time be able to withstand internal

pressures of at least 10 atmospheres. The typical capacity for such canisters is in the

range of 15-30ml.

§2.4.6 Dry Powder Inhalers

In a dry powder inhaler, the drug is present as a finely milled powder which is some-

times mixed with an inert carrier such as lactose. These devices use the patient 's

own inspiration to create turbulent air flow necessary to disperse the drug powder

and form aerosol of drug particles. In general, dry powder inhalers art1 easier to use

than pMDIs; there are no co-ordination problems as the medication leaves the device

only when the patient inhales.
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2.5. Drug Deposition In The Lung

§2.4.7 Nebulisers

Nebulisers deliver drug solution as a continuous mist of tiny droplets, created using

an air or oxygen compressor or high frequency vibration, lu general they are easy

to use, requiring simple tidal breathing and little co-ordination, co-ordination, hi

general nebulisers are fairly inefficientdevices, hence larger doses need to be used.

§2.5 Drug Deposition In The Lung

The site of deposition of an inhaled drug in the respiratory tract can influence its

t herapeutic effect and potential for systemic absorption Gorman (25 ' , Hiller(27 ' Moren

' Drug that is deposited in the oropharynx has no immediate clinical effect;

it is trapped by inertial impaction and subsequently swallowed and may then be

systemicallyabsorbed, hi contrast. drug deposited in t he bronchiand bronchiolescan

have the required effect but is less well absorbed. Drug deposited in the alveoli may

have no clinical effect but will be absorbed efficientlyinto the systemic circulation,

any active drug that reaches the systemic circulation may lead to side effects.

§2.5.1 Factors Affecting Lung Deposition

There are a wide range of factors affecting deposition of the inhaled drug iu the

respiratory tract, these are as follows:

• Diameter of the air ways

In healthy, open airways, an inhaled drug will penetrate further down the

bronchial tree, resulting in increased systemic absorption t han iu pat ients with

asthma where the airways are narrowed.

• The size of the inhaled particles

Page 18



2.6. Aerosol Cloud Characterisation

It lias been shown that the size of particles plays an important role in the

penetration of the drug into the airways. It is therefore important that particles

generated by the inhaler fall within the following range l-5//ni, however it has

been found that particles greater than 5//ni tend to impact the oropharynx or

the bifurcations between the large upper airways. If particles are large or the

air is moving rapidly , tin1 aerosol may not be able to follow the air stream

when it changes direction and may impact on the airway walls.

Particles in the range 0.5-5/an are small enough to penetrate the lower air-

ways, where they may settle onto the airway surfaces during steady breathing

or breath holding, but particles between 25//m will settle in the bronchi and

bronchioles where they have the required clinical Effects but are loss well ab-

sorbed. Particles less than 0.5//m behave more like a gas , they are too small

to be deposited by sedimentation so are simply breathed out in the next exha-

lation, Newman

• Method of inhalation

The type of delivery system can affect deposition of drug and its performance.

There are three types of delivery system used to administer inhaled drugs:

§2.6 Aerosol Cloud Characterisation

There are several techniques available for characterising of the pMDI sprays. I hose

are presented below:

§2.6.1 Experimental Techniques

There are several experimental techniques available for characterising sprays ejected

from the pMDI. The methods are as follows:
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2.6. Aerosol Cloud Characterisation

• The Impaction Technique

• Light Scattering Technique

§2.6.2 The Impaction Technique

This technique works on the principle that droplets of different,inertia are separated

by having different impaction stages, so that the droplets with lowest inertia would

follow the air flow streamlines and reach the latter impaction stages. The advantage

of impaction technique when applied to pMDIs is that it can account for the effects

of shape, size and velocity of droplets in relation to lung deposition. This technique

is therefore thought to be the only reliable means of measuring the drug deposited

in the lungs.

There are two main types of impactors,

• The Twin Impinger

• The Cascade Impinger

§2.6.2.1 The Twin Impinger

The way twin impinger operates is to draw air in. This activates the PMDI and the

spray is drawn through the system, with impaction taking place at two stages. 1he

amount of respirable air is measured by means of mass chromatography. The down

side of this technique is that drug deagglomeration which can also occur as a result

of impaction.

§2.6.2.2 The Cascade Impinger
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2.6. Aerosol Cloud Characterisation

The cascade impaction method works on the principal that a series of decreasing jet

orificesdirect the spray towards the impaction plate. The disadvantages are similar

to those of the twin impinger.

§2.6.3 Light Scattering Techniques

The light scattering methods can be divided into the followingcategories:

• Single part irle sizes

• Laser diffraction size analysis

There are commercial companies engaged in manufacturing light scattering instru-

ments, these devices are the preferred technique for the pMDI spray analysis, since

they are non-invasivein nature and information can be obtained with ease, care and

at speed.

The most widely used laser diffraction size analyser is the Malvern Particle sizer. In

this technique the spray is classified by measuring the drop size distribution. This

is achieved by the moving drop diffracting a parallel beam of monochromatic light.

The drop sizes are classified by the size of circular diffraction rings they produce,

the larger the diffraction ring the smaller the drop size and visa versa. 1he optical

arrangements of the Malvern Particle sizer is shown in Figure(2.6.1).

The main disadvantage of t his equipment is that near t he nozzleor distances less than

10cm due to the presence of high vapour mass, phenomena are recorded, which are

not actually droplets, but in industry are referred to as phantom droplets and should

be omitted from the readings. The way to overcome this problem was explained by

Clark '1() ' , where he found the region to accurately measure the pMDI spray was in the

range 8-24cm. The principal on which particle sizers operate is based on measuring
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2.6. Aerosol Cloud Characterisation

an individual particle passing through the control volume. There are two types of

commercial particle sizers available, the first type is known as Aerodynamic Particle

Sizer (APS) and laser-Dopplermethods. In the case of APS the drop size is measured

by actuating the spray in a relatively large reservoir where the propellant evaporates

leaving only the drug particles to be analysed. There are two commercially available

Aerodynamic Particle Sizers, these being the single particle Aerodynamic Relaxation

Time Analyser and the Aerodynamic Particle Sizer (APS33). The two instruments

use different techniques which are described in t he followingsections:

The Figure(2.6.2) is a schematic diagram of a (SPART). The device works 011the

phase lag produced when a particle is subjected to a given acoustic vibration within

the sensing zone of a dual laser beam intersection. The drop numbers have to be

reduced, so that accurate sampling can take place. The acoustic vibration caused by

the droplet crossing the laser beam gives an indication of the droplet velocity. The

(APS33) as shown in Figure(2.6.3) works on the principal t hat t he time of (lightof a

single droplet is measured as it crosses two parallel beams. The time taken to cross

the beam is dictated by the droplet inertia and hence its aerodynamic diameter.

The main disadvantage of this technique is that only information on the residual

BeamExpander
Detector

Lens
A

Laser

Aerosol
Spray

Figure 2.6.1: Optical Operation of Malvern Particle Sizer
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2.6. Aerosol Cloud Characterisation

Figure 2.6.2: The SPART Particle Analyser
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aerodynamic diameter can be obtained, neglecting spatial and temporal dynamic

and evaporation effects which are important in the characterisation of the spray.

In both laser and phase-Doppler anemometry the measurement technique is based

on the light scattered from a droplet particle as it moves through the control volume

and cuts across the beams, hence providinglocal and spatial resolutionof the droplet

in real time. In the laser Doppler anemometry (LDA) approach the frequency of

the Doppler burst signal is measured. This frequency is dependent on the distance

between the parallel interference fringe lines in the measurement volume and the

speed with which the drop traverses the measurement volume, therefore giving the

drop velocity.

The application of phase Doppler anemometry (PDA) has provided a method for

comprehensive spray characterisation and also providing the velocity and droplet

Size. The droplet diameter is obtained by measuring the frequency shift which is

produced when the Doppler burst is received bv two or more detectors, separated

by a given distance, and is related to drop size by a linear relationship derived from

geometrical optics theory. The method of obtaining the drop velocity is similar to

LDA. The disadvantage of both techniques are that only spherical particles can be

measured.

§2.7 Theoretical Model

The motivation behind the development of spray modelling, has been the need to

improve the spray performance, and at the same time gain an insight into the spray

formation mechanism. The advantages of spray modelling have already been recog-

nised in areas such as internal combustion engines, fire modelling and gas turbines.

The number of spray models available can be categorised into two groups. The

groups are locally homogeneous models and separated flow models. I he models are

described in the next section.
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2.8. Various Flow Models

§2.8 Various Flow Models

The flow models generally fall into two categories:

• Homogeneous Flow Models

• Separated Flow Models

§2.8.1 Homogeneous Flow Models

In locally homogeneous flow models the assumption is made that the dispersed liq-

uid and continuous gas flow filed can he treated as a single phase fluid flow. This

assumption can only be acceptable when the dispersed phase is made up of infinitely

Small droplets. In this situation the locally homogeneous flow models provide a first

approximation of the spray characteristics, Faeth (2I) . The basis of this approach

involves the solution of Eulerian transport equations for a continuous single phase

and the local state of t he mixture being determined stochastically by specifying a

probability density function of the mixture fraction.

The main advantage of locally homogeneous flow is t hat parameters which are hard

to measure such as initial drop size, drop velocity do not need to be defined as

part of inlet boundary conditions. The disadvantage of this model is that it is not

suitable for modelling flow fields where the fluid changes phase rapidly. There is also

documented evidence [Faeth (21 ' , Faeth (~°'], that this model over predicts the spray

development.
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§2.8.2 The Separated Flow Model

The separated flow models work on the basis of modelling the liquid and the gas

phase separately and the interaction between the two is linked via the extra source

term introduced into the gas phase transport equations. There1 are three categories of

separated flow models, the continuous droplet model (CDM), continuous fluid model

(CFM) and the discrete droplet model (DDM) Faeth '2I ' .

In tin1 CDM model properties such as velocity, drop deposition, size and temperature

are defined by means of a statistical distribution function. This method is generally

suitable for non-evaporating sprays, since the computing power and cost would be

too expensive for multi-dimensional liquid transport equation.

In CFM fluid model it is assumed that both the liquid and gas phase are Inter

penetrating continua, resulting in continuous conservation transport equations for

both phases. The advantage of this model is to eliminate the need for development

of turbulence distribution of the dispersed phase. The disadvantage of this model

is the requirement to define multiple liquid phases to account for a range of droplet

sizes in real sprays.

The DDM model simulates the liquid phase stochastically by means of a series of

droplets each having identical size, velocity, position, time and temperature Jain *29' ,

Morsi ' 47 ' . The number of drops contained within each parcel being calculated from

the conservation of liquid mass. This compares well with what is known as the

Monte Carlo procedure in which large number of drops in sprays are represented bv

a finite series of droplets. The Lagrangian formulation and its submodels are used

[Dokowicz ( 15 \ Gosman ' 26 \ O'Rourke , Dokowicz ' l1 ' , Naber (18 \ Liu (12 '], to

describe the transient equations for the discrete liquid phase and Eulerian formulation

[Wan (70 ' , Ranz (17 \ Ranz *18' ] to define gas phase transport equations. It is necessary

for the Eulerian procedure to contain additional source terms to account for the

introduction of the two phases in terms of momentum, mass and heat transfer. In this

Page 27



2.9. Recent CFD Developments

model the turbulent dispersion of t he droplet is simulated by using a Random-Walk

approach which considers the interaction droplet particles with gas phase1 turbulent

eddies.

The advantages of DDM model are that c , 1 \\ models spray phenomena, such as

Collisions and break up of sprays can be modelled on modern computers.

§2.9 Recent CFD Developments

In a recent study by Versteeg ((,!,) , the geometry used for CFI) simulations is an pMDl

inhaler combined with a 3-D reconstruction of MR I scans of the oral cavity and the

oat during inhalation.

The biologicalgeometry has been imaged using a Siemens 1.5 Tesla MR I scanner

Eh tezazi et al. (l l) . The scan lias been taken over four separate inhalations through

the pMDI device, each of eight seconds durat ion. The point data obtained was then

formatted as a CAD file. This file has used to generate the CFD mesh as shown in

Figure(2.12.1)

The CFD model produced included tin; transient development of the aerosol plume

and its interaction with the inhaled air. This interaction is brought about as a result

of the plume being confined due to the pMDI mouthpiece and the throat geometry.

The continuous phase, representing the inhaled airflow, the gaseous propellant, and

the dispersed phase, representing the liquid propellant and drug particles, have been

modelled separately and are summarised below:
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§2.9.1 The Continuous Phase

The fluid How was computed by dividing the pMDI and the throat geometry into sub

grids. The equations tor the transport of mass, momentum, energy and concentration

have been discretised on the sub grids and solved. The turbulence model used is a

semi-empirical model, lu this analysis the source terms have also been incorporated

to take account of:

• Increase of gas phase mass due to evaporation of propellant droplets

• Change of gas phase momentum due to aerodynamic forces on the droplet

• Decrease of internal energy of the gas phase to supply latent heat of evaporation

§2.9.2 The Dispersed Phase

hi this section of the study the heat/mass transfer and the1 trajectories of the droplets

are calculated. The stochastic random walk algorithm has been used to simulate the

Figure 2.9.1: The Mesh Used For CFD Analysis, Versteeg H.K, et. al, ^69'
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effect of turbulence on particle trajectories. The liquid propellant eventually boils

away to leave the drug particles. If a dispersed phase droplet impacts a wall boundary

the drug particle is deposited. Estimates of the plume properties at the spray orifice

location, such as initial velocity magnitude, gas density and vapour mass fraction

were found from the Fletcher ( 24 \ Clark (l() ' , thermo-fluids model. In this research

the Lagrangian technique to examine pMDI spray inside throat geometries, similar

to the work carried out bv , Stapleton et al (l '5' has been used. I n other studies fully

Eulerian approach has been adopted, where spray droplet properties are treated

as continuous functions which are discretised over the same grid as gaseous phase

Finlay . The overall conclusion from this work was that the CFD results had

shown good agreement, with the experimental work of Shrubb '

§2.10 Relevant Research

In a study carried out by Polli 'r ' 3' , the following factors were thought to have the

most effect on the pMDI aerosol particle si/e.

• Reduced spray orificediameter

• Increased propellant vapour pressure

• Reduced drug particle size

Further studies have been carried out by Hiller ( 27 \ on pMDIs, in order to obtain

information on aerodynamic diameter of the particles. The results concluded that

the diameter of the particles varied between 2.8-4.3 //in, with a geometrical standard

deviation ranging from 1.5- 2.01.

There have also been in-vivoand in-vitro studies by Moren (46 \ to investigate factors

influencingthe deposition of pressurised aerosolsWith experiments which highlighted

the followingpoints:
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• The increased vapour pressure, resulted in a reduced droplet size, hence in-

creased evaporation rate. This translates into much reduced deposition of the

drug into the lungs

• Increasing the volume of the drug released, increased the deposition in the

airways and the lungs

• The droplet size would be reduced if the time taken for the propellant to

evaporate is increased, this in turn results in the amount of drug deposited.

In a separate study by Moren (14 ' , particle sizes were measured at three different

locations from a commercial pressurised aerosol. The method employed was laser

holographic technique. The out come of their study showed that at a distance of

3cm from orifice particle sizes were1 as large as 36/nn, this diameter decreased to

L0.5//m at a distance of 28 cm from the orifice. This reduction in diameter was

contributed to the evaporation of the propellant and separation of the drug particle.

In a study carried out by Dhand (l l) high speed photography technique was used,

to study the effects of jet conc angle, spray distribution and mean jet velocity, the

study reports that the characteristics remained constant for the different formula-

tions studied. The results are tabulated in Table('2.2).

Total Spray Duration 65-95 ms

Cone Angle 66°-75°

Ejected Mean Velocity 13-15m/s

Table 2.2 The Effects of Jet Cone Angle

The availability of laser Doppler (LDA) lias allowed parameters, such as, axial ve-

locity to be measured with respect to time. One of the groups working in this area
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Lee '10 ' , have measured axial drop velocitiesfor a range of different pressurised canis-

ters. I lie group has also used laser sheet photography to study the spray structures.

In the part of the study dealing with velocity variations the velocitywas resolved over

a 30ms duration and then calculating ensemble-means over numerous actuations, as

an example F igure(2.10.1) shows Ihe temporal variations of t lie axial droplet velocity

for propellant 11/12 formulation (30%/70% vvt/wt) with surfactant to drug weight

ratio ot 1/10. Hie spray velocity, at 5mm from the mouthpiece was found to re-

main constant for the first half of the spray, hut it decays rapidly with fluctuations

indicating high levels of turbulence.

It was also concluded from the laser sheet photography study that, in the region

immediately downstream of the mouthpiece, the shape and vortices of the spray

were well defined.

The peak exit velocity measured by Clark (l0 ' , using a pressure transducer, were

measured at a distance of 3cm from the orifice using a propellant-13 la with dif-

ferent orifice diameter ratios. The range of velocity values measured were between

35-70m/s, the scatter of the data being due to the variability of the exit velocity

measurement.
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Figure 2.10.1: Turbulent Velocity Fluctuations
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§2.11 Spray Analysis From a pMDI

1he work produced by York (,3 \ which studied the spray formation by flash evapora-

tion with reference to cosmetic aerosols, the followingfour stages in spray formation

were highlighted.

• I he primary atomisation process starts by flash evaporation and continues by

shearing due to high velocity gradients to produce ligaments

• The secondary atomisation due to aerodynamic forces produces drops

• Evaporation

• Entrainment

The observations did not show spray being projected in all Direction which is a

characteristic of the flash dominant spray process.

The term flash evaporation has been described by Wiener (71 \ as the instantaneous

transformation of liquid phase into vapour due to sudden decrease in pressure. This

sudden change does not allow heat transfer to take place between the gas and liquid

phase, however mass transfer takes place from the liquid to gas phase. I here have

been heat balance calculations preformed to predict the percentage mass of propcllant

that could flash, and is given the followingequation:

(ma S . Vlash )% = C ^ T '- T ^ A'100 (2.1 LI)
H/G

There have been other explanations for the process of flash evaporation for example

Brown defined this process in relation to nucleation. The materials they used

were water and Freon If, however the correlations they obtained only showed good

agreement for water. Their theory was based on the assumption that, due to surface

irregularities in the orifice, low pressure eddies are formed which are regularly shed.
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I Ik* eddies are moved downstream by the jet and act as low pressure stagnation

regions. Fhese stagnation regions then form hubbies which burst and disintegrate

the jet.

In the theoretical field, Slier ' ()l ' , developed a mathematical model to describe tin1

size of drops produced by flash evaporation. The theoretical model was validated

experimentally using a mixture of Toluene and Freon 22. The experimental results

did not agree well with those produced by t he theory, simply because tin1 theory

had over simplified the process, for example, in the theory , thermal equilibrium was

assumed. However there were some useful findings obtained from the experimental

results, for example the experimental results showed that the nozzle geometry did

not have a noticeable effect on the size of the drop. The other finding was that, the

increase in liquid pressure reduced the average drop size until a critical value was

reached for pressure where the size of the drop was no longer affected.

There has been a review on two phase flashing jets published by Appleton (2 \ which

can be divided into the followingcategories:

• Slip flow model slip considered

• Disequilibrium models - both relative and non-linear thermodynamics consid-

ered

• Homogeneous equilibrium model- which assumes complete equilibrium

The conclusion from this extensive review was that all models werefar too simplified,

hence no single model would bo describingthe processfully. 1he atomisation process

was then thought to be a combination of flashing and aerodynamic forces, which

depends on the degree of superheat, back pressure and nozzle geometry. There is a

factor known as the flashing criteria e which is described by the followingequation

C — ^ SH ~ ^SAT (2.11.2)
Tsh
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0.07 < e < .sO.l

• T sh is the shattering temperature

• T sa( the saturation temperature

The results obtained are within order of magnitude accuracy of the experimental data

presented by Brown ( The most detailed study of flash evaporation in relation to

pMDIs has been carried out by Clark (10 ' . This study has looked at various factors

affecting the atomisation process. The conclusions from this study indicated that

formulation and nozzle design were the most significant parameters affecting the

atomisation process.

The findings from this research have highlighted three different How regimes which

were present during metered discharge through pMDI, these are as follow:

• ValveOrifice Flow: the flow is initiallya single phase discharge from the nozzle,

which then undergoes from a single phase to a two phase flow as bubbles are

formed which fill the metering chamber.

• Expansion Chamber: The fluid flow in the expansion chamber is a two phase

flow. The resident air in the chamber isexpelled by tlieever increasingpressure.

• Spray Flow: The assumption with flows in this region was that, they are two

phase in nature. The equilibrium models developed to describe the mass dis-

charge through the orifice were found to compare well with the experimental

results confirming the assumption that flows through the orifice were in equi-

librium.
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CHAPTER

T HRE E

Computational Fluid Dynamics ( C FD)

This chapter sets out by defining the term CFD, and components which make the

present, day commercial CFD code. The governing equations and various turbulence

models used in this study are described. The discrete phase model which forms an

important part of this research is described in detail.

§3.1 Introduction

The use of numerical methods to solve the partial differential equations governing

the flow of fluid lias become a popular research tool. Illis technique is commonly

referred to as Computational Fluid Dynamics (CFD), [Versteeg

The current study was undertaken using the commercial code Fluent version 5.3.18

. The code is made up of three separate components which are as follows:

• Pre-processor

• Solver

• Post processor
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3.1. Introduction

rhe Pro-processor is the component which allows the user to define the input of

a flow problem to a CFD program by means of an interface and subsequently this

information is transformed into a form suitable for use by the solver. The types of

information required at this stage are:

• The computational domain

• Grid generation

• Physical or chemical process to be modelled

• Specificationof boundary conditions

The solvers use different techniques to solve the partial differentialequations, this is

generally dependent on t h< ĉommercial code used. There are four main techniques

used in commercial codes. Those are finite difference, finite element, finite volume

and spectral methods. In general, the numerical methods which form the basis of

the solver Perform the followingsteps:

• Approximation of the unknown flow variables by means of solving the full

part ial differentialequations

• Discritisation of the governing equations

• Solution of the algebraic equations

At this stage it is worthwhile mentioning the difference between various numerical

techniques mentioned above. In general the differenceis in the way the flowvariables

are approximated and the way in which discritisation process is carried out.

In the finite difference technique the unknown variable cj>is defined at the node

points of a grid linos. The truncated form of Taylor series is often used to formulate

finite difference approximation of derivatives of (j)in terms of point samples of 0 at
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3.1 . Introduction

each grid point and its immediate neighbours. Those derivatives appearing in the

governing equations are replaced by finite differencesyielding an algebraicequation

for the value of 0 at each grid point, [Ferziger ^22']

In the finite element method the local variations of flow variables is described by

applying a simple piecewisefunction. This approach determines the solution for the

variable 0, hence satisfying the governing equations. At this stage if the piecewise

approximating functions for 0 are substituted into the equation it will not hold ex-

actly and a residual is defined as a measure of error, the errors. The next step is

to minimize the residuals by multiplying them by a set of weighting functions and

integrating. This procedure1 results in a set, of algebraic equations for the unknown

coefficientsof the approximating functions. The finite element technique was devel-

oped initially for the structural analysis, however Zienkiewiczand Taylor, (,1) have

applied this technique to fluid applications.

In the Spectral Analysis method the unknown variablesarc approximated by means

of a truncated Fourier series. 'These approximations are valid throughout the com-

putational domain. The variables are placed back in t he governing equations using

a truncated series. The constraint that leads to the algebraic equations for tin1 co-

efficientsof the Fourier series is provided by a weighted residuals concept similar to

the finite element,method or by making the approximate function coincide with the

near exact solution at a number of grid points.

The finite volume method was developed as a special form of finite difference For-

mulation. This technique is well established and is commonly used in CFD codes.

The numerical scheme consists of the followingprocedure:

• The governingequations of fluid flow are integrated over all t he control volumes.

• Discritisation involves the substitution of a variety of finite-volumeapproxima-

tions for the1 terms in the equations representing processes such as convection,

diffusion and sources. This converts the integral equations into a system of
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3.2. Governing Equations

algebraic equations.

• Solution of l he algebraic equations by an iterative method.

The (listinguishingfeature of finite v 1 method is the way in which the governing

equations are integrated over the control volume.

§3.1.1 Post Processor

The leading CFD codes are all capable of displaying the data in a variety of formats:

• Domain geometry and grid display

• '21)and 3D surface plots

• Particle tracking

• Colour postscript output

§3.2 Governing Equations

The governing equations for continuum physical phenomena such as fluid How,heat

transfer, and solid mechanics can be expressed in t he followinggeneralized form:

contour plots

°ApM) + V. Q = V.(I'VQ) + S
at,

(3.2.1)
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3.3. Turbulent Flow

<t> A r S Q

Mass 1 1 0 0 f)U

Momentum V 1 r -V P f)UV

Temperature h 1 k/c s pis ll

Concentration z 1 D 0 pv /

Table 3.2.1 The Governing Equations

§3.3 Turbulent Flow

§3.3.1 Introduction

Turbulent flowsare characterized by fluctuating velocity fields. This in turn causes

fluctuationsof transport quant itiessuch as momentum, energy and speciesconcentra-

tion. The fluctnations are small in scale and high in frequency,hencecomputat ionally

too expensive to simulate directly in practical situations.

The instantaneous governing equations can be time-averaged, ensemble- average1 or

otherwise manipulated to remove the small scales, resulting in a modified set ofequa-

tions that are less computationally expensive to solve. The new equations contain

additional unknown variables which can be determined in terms of known quantities.

§3.4 Turbulence Models

§3.4.1 Introduction

A turbulence model is a means of defining a wide range of flow problems computa-

tionally. For most engineering purposes it is necessary to resolve the details of the
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3.4. Turbulence Models

turbulent fluctuations. It therefore becomes important for a turbulence model to be

applicable in a wide range of flowconditions. It needs to be accurate, and economical

to run. The most common turbulence models are classifiedin Table(3.3.1).

Classical Models Based on Time averaged Reynolds Liquations

l-Mixing Length Model [Rodi

2- Two Lquation K -rpsilon Model [Launder (

3- Reynolds Stress Model [Launder (

1- Algebraic Stress Model [Denuiren (1

Large Lddy Simulat ions Based on Space-filtered liquations

Table 3.3.1 Summary of Turbulence Models Available

In t he course of t he current research, comparisons were made between t luce different

turbulence models. These are described below:

§3.4.2 k -f Model

The simplest and the at the same time most complete models of turbulence are

two-equation models in which the solution of two separate transport equations are

determined. The standard k-f model, Launder is based on model transport

equations for t he turbulent kinetic energy (k) and its dissipation rate (r). The model

transport equation for k is derived from t IK1 exact,equation, while model transport

equation for f was obtained using physical reasoning and bears lit t le resemblanceto

its mathematically exact counterpart.

The assumption made in deriving the k-f model was that tlx' flow is fully turbulent,
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3.4. Turbulence Models

and the effects of molecular viscosityare negligible,hence making the standard k-

6 model suitable for fully turbulent flows. In this turbulence model the effect of

turbulence can be represented as an increased viscosity. This leads to the eddy

viscosity model:

—put{illj = p,{~ + -y-- - \p5ijk) (3.4.1)
oxj axi 3

pu,ij(f)i = V t ~ (3.4.2)
OXi

In equation (3.3.1), k is the turbulent kinetic energy, which is equal to

k = -ut iUtt = —(ut x ut x + utyiiiy + ut z ut z ) (3.4.3)

Tlie phenomenon of turbulence is a difficult quantity to describe, hence the best

approach for computing turbulence would be with the aid of partial differential

equations. It is accepted that turbulence can be described with a minimum of two

parameters namely velocity scale and a length scale, therefore any model which de-

rives the needed quantities is the logical choice. In the two equation k-e model the

followingequations for k and e are used.

0(pk) d(pulk) 0 . Ok 0 .p .
V ^ ' ' - (/iTT-) - {^UtjUtiUti+ptutj)
Ot Ox j Ox j Ox j Ox j 2

Out, Out, Out,
put puj— p— ^

Oxj 0x k Ox k

(3.4.4)

The terms on the left side1 of cquation(3.4.4) and the first term on the right need no

modelling. The last term represents the product of the densityp and the dissipation

where, e can be represented by equation(3.3.5).

-(£utjutiuti - Ptutj) « — (3.4.5)
2 a k Oxj
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3.5. The RNG k-e Model

Lhe second term on the right represents turbulent diffusionof kinetic energy, which

in simple terms is the transport of velocity fluctuations by the fluctuations them-

selves. This is always modelled by use of a gradient diffusionassumption, where p t

is eddy viscositydefined above and is a turbulent Prandtl number, whose value is

approximately unity. The third term of the right side of equation(3.3.4) represents

the rate of production of turbulent kinetic energy by the mean flow,a transfer of ki-

netic energy from the mean flowto the turbulence. The application of eddy viscosity

hypothesis to estimate the Reynolds stress, results in equation(3.3.3):

, , rOut, dui dul du~i
Pk = — « / / / ( —+ — • ; " ) ( 3 . 4 . 6 )

uxj oxj axi Oxj

In this situation all the terms can be calculated from quant it ies t hat will becomputed

, hence the development of the turbulent kinetic energy equation is complete. The

governing equation for the dissipation rate is as follow:

d( p e ) d( p U j f ) f e2 d iit Of
= C €X P k j - pC e2 - + — T T -) (3.4.7)

ut dXj A- k (JXj cr,UXj

The eddy viscosity can be expressed as :

lit = PC, VkT, = pC\L y (3.4.8)

The two equations for k and e define the turl)ulence model widely known as t he k-e

model. The model contains fiveconstants, and the most commonly used values are

listed: C fl = 0.09, C el = 1.44, Ce2 = 1-92, o k = 1.0, rr( = 1.3

§3.5 The RNG k-e Model

The origins of the RNG based k-e model is from t he instantaneous Navier-Stokes

e(}uations, using a mathematical teclinicniecalled renormalization group (RNG)

methods. This analytical approach results in a model with constants different from

those in the standard k-f model, and additional terms and functions in the transport
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3.6. The RNG and The k-f Model

equations for k and e.

§3.5.1 Governing Equations for the RNG k-f Model

It can be seen at first glance (Chondhury '*') that tlit4 UNCIk-f model is similar in

form to the k-f model.

(3.5.1)

(3.5.2)

The symbols are defined below:

• GA- represents the generation of turbulent kinetic energy due to the mean ve-

locity gradients

• Gb is the generation of turbulent kinetic energy due to buoyancy

• YA/ contribution of the fluctuating dilation in compressible turbulence to the

overall dissipation rale

• ofc ,and a ( are the inverse effectivePrandthl numbers for k and e respectively

Uh- U (Jh ^ „

1>, U = v, —) + (<k + Gb - />< } m

()t uXi UXi

A similar equation for tin4 dissipation rate e can be written as follow:

Of 0 Of , f , ^ f 2

f>Tr — — ( a , f t e f f —— ) + C\,j{( 'k + C:i( C,b) —Citp-j-R
(Jl <).r, ux t k k

§3.6 The RNG and The k-f Model

The main difference between the RNG and standard k-f models is the presence of

additional term R (Choudhury (8) ) in the f equation given by equation (3.5.2):

f l=C>?3( (3 G1)

1 + Pl f k
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3.7. The k-f Realizable Model

77= Sk/e, //o= 4.38, /3 = 0.012

rhe effect of this term becomes more apparent if the equation is rewritten In the

following format:

p gt - + C ^ G « + (3.6.2)

Where C*e

(3.6.3)

The significanceof the above equation becomes apparent in certain situations. In the

first instance when the value of // < //() , the term R makes a positive contribution,

and C'2f becomes larger than other flow conditions such as in the logarithmic

layer, the values obtained with the RNG model gives results which are close in value

to those obtained from the standard k-e model. In flow conditions where there are

regions of large strain rates // > r/0, the term R makes a negative contribution, hence

the value of C*2f is less than C^. In this situation if the model is compared with the

standard k-f model, the smaller destruction of e, augments e reduces k and eventually

the effective viscosity. The conclusion from the various flow conditions described is

that, the RNG model is best suited for rapidly changing flows compared to the k-

e model. The values of the constants used in the RNG model are derived from the

RNG theory.

§3.7 The k-f Realizable Model

The term realizable indicates that the model is capable of satisfying constraints 011

the normal stresses, which are consistent with the physics of turbulent flow, (T.H.

Shih '(y2 ') The main reasons for introducing the k-f Realizable model was to address

the short falls of the standard k-e model. In order to understand the need for the

k-6 RNG model we need to start by combining the Boussinesq relationship and the

definition of the eddy viscosity, so that a new relationship for the normal Reynolds
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3.7. The k-f Realizable Model

stress in an incompressiblestrained mean flow can be obtained.

2 dU
U2 *_2 „ (3.7.1)

3 ox

In the condition where ut = iLt/p the value of the normal stress u2 becomes non-

Realizable or negative when the strain rate satisfies the followingequation:

k d U 1 , „ ^
> «3.7 (3.7.2)

e ox 3( jL

There is also another situation in which the inequality referred to as Schwarz in-

equality for shear stresses ua iip2 < can be violated. The procedure to ensure

the posit ivity of normal stresses and the Schwarz in equality for shear stresses is to

allow the variable C/t sensitive to mean flow and the turbulence k- r. This proce-

dure is suggested by many researchers Reynolds ( The values obtained for C/( are

validated experimentally and as an example its value is reported to be around ().()!)

for equilibrium boundary layer and 0.05 for strong homogeneous shear flows. In the

standard ke model the ability to predict,round jets is quite good, however the prob-

lem starts when there is a need to predict Ihe expansion rate in an axisymmetric jet.

This inability to predict the expansion rate is thought to be related to the equation

used for the prediction off. In order to develop a more accurate model RNG model

was formulated by Shih

• Introduction of a new eddy-viscosityequation involvinga variableC fl suggested

by Reynolds (56)

• Formulation of a new equation for dissipation rate e based on the dynamic

equation of the mean square vorticity fluctuations.
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3.8. The Realizable k-e Model Equations

§3.8 The Realizable k-f Model Equations

The governing equations for the k-e RNG model are

For k

9k 0 . tii Ok ^ _
P 7 = o { P 4 ) HO k + G b ~ f ) f ^ — A/ (3.8.1)

(Jt cfXj cfk axj

and for e

Of d r , iii 0( , _ _ _ e2 e
P . ,7 — Tj (/ ' H — + pCi5 e - pC'2 — - — + C y - C . h G i , (3.8.2)

at Oxj cr( Oxj k + k

where

Ci = max[0.43, and

7]= Sk/e

In the above equations the symbols have the same meaning as already explained for

die k-e model in section(3.4.2). The points to notice are that the equation for k is

the same as that in the standard k-f and the RNG model. However the equation for

the variable ( is quite different from the standard and (h«'RNG k-e models. The two

major differences are that the production term in the e equation does not involve

the production of k as in the other k-e models. The other striking feature of the

RNG model compare with other k-e models is that the last term of the equation

for e does not vanish, even if the value of k becomes zero, as there is no k term in

the denominator. This model has been validated by researchers Shih '(y2' , Kim (i,,)

for a variety of test cases and has shown to predict the Howsaccurately. It should

be noted however, that turbulence models are very sensitive to boundary conditions

and these parameters play a major role in determining the accuracy of the model.

§3.8.1 The Turbulent Viscosity

The eddy viscosity is modelled in the same way as for the k- e model, so it will not

be repeated here again. It has already been mentioned that the term C fl is not a
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3.8. The Realizable k-< Model Equations

constant term in the Realizable model, therefore an , i:
m )i1(, followingform

has been 1 1::: ! to obtain a relationship for (\,

U*k

I +A
*In <

(\, = , + •! ,- • (3.8.3)

where

U* = y/SijSij + and

&lij

i t i j " ' i j k ^ k

{},j is the mean rate of rotation tensor viewed in a rotating reference frame with

angular velocity uJk- 'lie model constants An and As is gi\<mibv A() 1.04,.4,s

sj()cos ( f) .

The relat ion for <j)is in the form</)= ' arccos( \A>11) <vnc1 YVcan be defined by the

relationship VV= s, j s j^ sk '

S = y / S i j S i j .

The term S n — f ff 1 )- ' 'u> ^bove eqnations indicate that (is relat.edto Ihe

mean strain and rotation rates, and the turbulence fieldsk and <.

§3.8.2 Model Constants

The model constants have been established, to ensure optimum performance for the

Realizable model. These constants are:

C1( = 1.44, C, = 1.9, rrA. = 1.0, a, = 1.2

§3.8.3 The Production of Turbulence in k-( Models

The production of turbulent kinetic energy defined by t he symbol (!/,.is modelled in

exactly the same way for the standard k-e, HN(! and the Realizable k-c models. A
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3.8. The Realizable k-f Model Equations

definition for the term G k is shown as follow:

G k = ^ (3.8.4)
'' OXt

I he value of (i^. can be obtained by the following equation:

G k = n t S 2 ( 3 . 8 . 5 )

Th e v a lue o f S the modu lus o f th e mean ra t e o f s t r a in i s g iv en b y

5 EE J ' I S u S i , (3.8.6)

The value of S t J can be obtained from:

\ din duj_
13 2 dxj dx t

(3.8.7)

§3.8.4 Buoyancy Effects on k - f Models

In situations where the gravity is computed and there is a temperature gradient

present, the turbulence models need to take into account the production ot k due to

buoyancy hence contributing to the production of e.

C6 = A ,,~^ (3.8.8)
PRT AXI

In the case of the Realizable model the Prandtl number for energy needs to be

defined, in terms of = 1<///•<";,.The coefficientof thermal expansion, /3, is given by

the followingequation:

dp_

p v dT
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3.9. Wall Bounded Turbulent Flows

1 lie effects of buoyancy need to be considered when there is a non zero temperature

gradient or a nonzero gravity field. In stable stratification conditions the effect of

turbulence is suppressed. In general the buoyancy effects in the equation for k are

well defined, howeverfor the e equation, this needs to be calculated from tin1 following

equation:

C'.v= tanh | —I (3.8.10)
u

In the above equation v is taken to be the component of the How velocity parallel to

the gravitational vector and u is the component of the Howvelocity perpendicular to

the gravitational vector. This would mean that the value for C,^ will be set to I in

buoyant shear layers where the main flow direction is aligned with the direction of

gravity. The value of will be zero for buoyant shear layers which are perpendicular

to the gravitational vector.

§3.9 Wall Bounded Turbulent Flows

§3.9.1 Introduction

The presence of a wall in a turbulent How significantly affects the flow feature, as

an example one can think of the mean velocity field which is affected through the

no-slip condition which has to be satisfied. In situations close to the wall accurate

representation of the How is required for accurate predictions, since in such regions

How variables change rapidly. The wall region is divided into three zones:

• The viscous sub layer, where the flow is laminar

• The outer region where the How is fully turbulent

• The transition region where the effects of molecular viscosity and turbulence

are equally important. It is therefore important to make adjustments to the
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3.9. Wall Bounded Turbulent Flows

turbulence models already described, so that they can be readily applied to

wall bounded Hows.

§3.9.2 Wall Function

The purpose of applying the wall function is to bridge the viscosityaffected region

between the wall and the fully-turbulent region. In high Reynolds number flows,

the application of wall function reduces the computational time, hence it is widely

used in industrial simulations. The commonly used wall function was proposed by

Launder (is) It has been found that the wall function is not adequate where low

Reynolds Viscous effects are dominant. In mathematical form of the standard wall

function is described as follow:

U' = Un(Ey•) (3.9.1)

where:

ir
U c 1/4 k 1/2( i>( /* %

T w / P
(3.9.2)

y
/ '

(3 .9 .3)

k Von Karmans cn (cons tan t )

E empir ica l cons tan t (9 .81)

Up - mean veloc i ty of f lu id a t poin t P

K p - turbulen t k ine t ic energy a t poin t P

Yp dis tance f rom poin t P to the wal l

/ / - dynamic viscos i ty of the f lu id

In the commerc ia l code Fluent , used for th i s research , the laws of the wal l for mean
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3.10. Discrete Phase Models

velocity and temperature arc based on the wall unit y*, rather than y + = pu T y//i.

§3.10 Discrete Phase Models

§3.10.1 Introduction

I'liediscrete phase is in a Lagrangian frame of reference,and is made up of spherical

particles, which are either represented as droplets or hubbies injected in the continu-

ous phase. In this 1110(1(4the heat and mass transfer to and from the particles as well

as their trajectories are calculated. The applications for this type of modellingcover

a wide range of industrial problems such as combustion, spray drying and aerosol

dispersion. In the commercialcode f luent, used for t his study, t he followingdiscrete

phase model options are available.

• The use of Lagrangian formulation to c;.1 1 ' • t he discrete t rajectory

• Heating/cooling of discrete phase

• Vaporization and boiling of liquid droplets

• Turbulent effects of particles

§3.11 Equation Of Motion For Particles

The trajectory of a discrete phase particles can be predicted by integrating the force

balance on the particle, which is written in a lagrangian reference frame. The force

balance equation balances the particle inertia with the forces acting on the particle

and can be written for the x- direction as:

rr = Fo{uu p ) + g x (p p - p)/ p,, + F r (3.11.1)



3.12. Stochastic Particle Tracking

where FD(UUP) is the drag force per unit particle mass A relationship for FD can be

written as follows:

_ 18f i C„ Re
F D " ^ D |^T (3 "' 2)

wliere

u is the fluid velocity

lip is the particle velocity

//.is the molecular viscosity

f) fluid density

pp is the density of the particle

Dp diameter of the particle

Re is the relative Reynolds number

Re = " DAUl ' ~ (3.11.3)
(I

The value for Co can be obtained from the followingequation:

The values for constants are givcmby Morsi (1,) for a range of Reynolds numbers for

smooth spheres.

§3.12 Stochastic Particle Tracking

In turbulent flow conditions the particle trajectories are calculated usin^ the mean

fluid velocityu the equation(3.11.1). In order to predict the particle dispersioncaused

bv turbulence, an equation containing the instantaneous value of the fluctuating flow
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velocity needs to be included.

u = u + ui (3.12.1)

§3.12.1 Integration Of The Trajectory Equations

The trajectory and auxiliary equations are solved by stepwise integration over dis-

crete time steps. The integration of tlie force balance equation gives:

dx
( 3 1 2 2 )

In the integration process the fluid velocity,u, is taken as the velocityat the particle

position which is obtained from the stored cell centre velocity.The assumption that

the term containing the body force remains constant over each small time interval,

the trajectory equation can be written as:

= ( u - u p ) a (3.12.3)
at

where 1/a is the particle relaxation time. The Equations(3.12.2) and (3.12.3) are

solved simultaneously to determine the position and the velocity of the particle at

any given time.

§3.13 Droplet Size Distribution

As far as the sprays are concerned the size distribution of the droplets is given By the

Rosin-Rammler expression, where D is the size constant, I) is the particle diameter

and n is the size distribution parameter.

M d = exp ( - [ (D /D) n ] ( 3 . 1 3 .1 )

Page 54



3.14. Discrete Random Walk Tracking

§3.14 Discrete Random Walk Tracking

In the stochastic tracking approach the turbulent dispersion of particlcs is obtained

bv integrating the trajectory equations for individual particles, using the instanta-

neous fluid velocity, 77+// '(/), along the particles path. This procedure is repeated for

a number of particles, in order to obtain an overall picture of the particle dispersion.

This model is not suitable for diffusion dominated flows.

§3.14.1 Prediction Of Particle Dispersion

The particle dispersion is predicted using the idea of integral time scale, T, which

represents the time spent by the particle in turbulent motion.

The integral is a proportional to the rate of particle dispersion, hence the greater

the value of the integral, the more turbulent the flow. A relationship needs to be

established for smaller particles which move wit 11the fluid. In this situation the

integral time becomes the fluid Lagrangian integral time T/,. I 11isrelationship is

approximated by the following relationship:

In the above equation the value of C/, needs to be determined, therefore the above

equation can be simplified by matching the diffusivity of tracer particles, to

the scalar diffusion rate estimated by the turbulence model Ut/o. For the standard

k-e model the value of T/, is obtained from the followingequation;

(3.14.1)

n = cL (3.14.2)

k
(3.14.3)T L « 0.15-
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§3.14.2 Discrete Random Walk Model

In the Discrete Random Walk model the interaction of a particle with the succession

of discrete phase turbulent eddies is simulated. The eddies are characterized bv:

• a time scale re

• a Gaussian distributed random velocity fluctuations, u', v' and w' whose values

are sampled assuming they obey the Gaussian probability distribution

where

u' = C,\[v? (3.14.4)

A similar relationship for other directions can be obtained. The right hand side of

the equation is the rms value of the velocity fluctuations and the term £ is a random

number. I he characteristic eddy lifetime is defined either as a constant:

r e = 2T L (3.14.5)

A relationship for the value of T/y is determined by the Equation(3.14.3).

§3.15 Particle Types

There are a variety of particles which can be modelled in discrete phase simulations.

I lie type of particle used woulddetermine what laws are applicable. A list of particle

types available is given in Table(3.14).

Particle Type Description Laws Required

Inert Inert heating or cooling 1,6

Droplet heating/evaporating/boiling 1,2,3,6

Table(3.14) Particle Types Used In this Research
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§3.15.1 Inert Heating or Cooling

rhe inert, heating and cooling laws an 1 applicable in situations when 4 tin1 volatile

fraction fwo has been consumed and the temperature of the particle is less t han t he

defined vaporization temperature r„ ap Mathematically the relationships described

can be written as Law I:

T p < T vap (3.15.1)

Law 6:

">,>< (' - fvo)'"po (3.15.2)

T p is the particle temperature

mpo is the initial mass of the particle

nip is the current mass of the particle

f(;0 volatile Fraction

The droplet continues to obey the Law 1 until its temperature reaches that of va-

porization, at which point the droplet obeys one of the mass transfer laws 2, 3, 1

and 5 until the volatile fraction of the droplet is no longer active. The droplet then

returns to a state where law 6 is applicable. When either law I or law (i is applied

to a droplet a relationship taking into account the particle temperature T p (t) and

convective heat transfer at the particle surface is derived as follow:

mpcp~^~ = hApiToo - T p ) + epApa(6'j { - T' p ) (3.15.3)

where nip mass of particle (kg)

Cpheat capacity of the particle (.l/kg-K)

A p surface area of the particle (nr)

Too local temperature of the continuous phase (K)
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3.15. Particle Types

h convective heat transfer coefficient(W/nr-K)

fp- particle einissivity

a- Boltzman constant

Ok - radiation temperature

1he equation(3.15.3)assumes that there is negligibleinternal resistanceto heat trans-

fer. By integrating Ihe above equation using approximate, linearized form that as-

sumes Particle temperature changes slowly from one time step to the next.

mpCp ~dt = + e P a T p }T P + ^ lT °° + (3.15.4)

The equation is integrated once mont to obtain the temperature at the next time

step to give:

T p (t + A/) = a p + (T p ( t ) - a p ) e x p ( — f t A t ) (3.15.5)

A is the integration time step

//T qq +

h + e p aTp(t)
<*P = 'r°° L ,!l ( 3 - 15 - 6 )

and an expression for ft can be written as:

D p= M '+ ( 3 . 1 5 . 7 )
nipCp

A relationship for t he heat transfer coefficienth, is derived from Ran/ (17) .

N u = ^RP = 2.0+ 0.6 /?e1/2/V/2 (3.15.8)
k oo

DP particle diameter

k0o thermal conductivity of the phase

Re Reynolds number based on particle diameter and relative velocity

Pr Prandtl number of the continuous phase { c p / i / k ^ ) Ihe heat transfer by the parti-

Page 58



3.15. Particle Types

cle appears as a source or sink term in the calculationsof tho continuous phase. When

Laws 1 and 6 are applied the particles do not exchange mass with the continuous

phase or cause any chemical reactions.

§3.15.2 Droplet Vaporization

This is referred to as Law 2 and is developed to predict the droplet vaporization

from a discrete phase. This Law is applicable in situations where the temperature of

the droplet reaches the vaporization temperature, l vap and continues and eventually

reaches the boiling point l\ p .

§3.15.3 Mass Transfer During Vaporization

The rate at which the particle is vaporized is governed by the gradient diffusion,with

the flux of droplet vapour into the gas phase

T P < tbp (3.15.9)

Trip > (1 - fvo) m po (3.15.10)

yV,/= kc(C1„,s - oo) (3.15.11)

where: Nt / molar flux of vapour (mol/m 2 -s)

k c mass transfer coefficient(m/s)

CllyS vapour concentration at the droplet surface (mol/m 5

Cu,oovapour concentration in the bulk gas (mol/m 3)
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I IK1 va lue o f th e N„ i s p o s i t i ve , hu t shou ld th i s va lue he ro ine s Nega t i v e th e d ro p l e t

i s t r e a t ed a s a n in e r t p a r t i c l e . I he vapou r concen t r a t i on a t t he d rop l e t s u r f ace can

he eva lu a t e d h y a s su m in g t ha t Ihe pa r t i a l p r e s su re o f vapou r a t t he in t e r f ace i s eq u a l

t o the sa tu r a t e d v a p o u r p re s su re , P-Sf l£ ,a t t he pa r t i c l e d rop l e t t empe ra tu r e , T;):

C„ , = (3.15.12)
H I ) , 1

R is t IK4 u n iv e r s a l g a s c o n s t an t

The vapo u r c o n c e n t r a t i o n fo r the hu lk gas can he de t e rmined f rom t h e fo l l o win g

Re la t i on sh ip :

C IW = \„ ' ^ (3 .1 5 .1 3 )
oo

Xjf mole fraction of if

P(>/) is the operating pressure

T qo ' s the local hulk temperature

The relationship proposed hy Ran/ (17 ' , Ran/1 (ls) calculates the mass transfer coef-

ficient for the droplet, using the Nnsselt number correlation as shown helow:

Nil ah = = 2.0 f 0.GRe )i ' 2Sc [/:i (3.15.14)
Di,,m

Dlf m - diffusioncoefficientof vapour in the hulk

Sc - the Schmidt number, ^Dll m

DP - particle (droplet) diameter (in)

The mass of the droplet is reduced according to:

m p (t + A t) = m p (t)Ni,A p Mi, A t (3.15.15)

M„ - molecular weight of species it (kg/mol)

nip - mass of droplet (kg)

A p - surface area of droplet (m 2)
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3.15. Particle Types

§3.15.4 Droplet Heat Transfer Equation

I he temperature ot the droplet is continuously updated according to the heat ex-

changes between the droplet and Ihe continuous phase Ihis process t akes place in the

form of convective and latent heat transfer.

T qo
_ t em p e ra tu r e o f c o n t i n uous phase (K)

- r a t e o f e v a p o ra t i o n (k g / s )

h fg - l a t en t , h e a t ( J / k g )

cp - pa r t i c l c e m m is iv i t y

<7 - Bol t z m a n n te m p e ra tu r e

On - r ad i a t i o n t e m p e ra tu r e1

In ou r s tu d y th e r a d i a t i o n t e rm was se t -t o ze ro , so the hea t t r an s f e r t o o r f ro m I l i e

ga s phas e b e c o m e s a so u rc e o r s ink o t ene rgy du r ing subsequen t ca l cu l a t i o n s o t t h e

con t i nuou s p h a se e n e rg y e q ua t i on .

I 'MToo - T„ ) + - j f l , , , + V/ " K - (3 .1 5 .1 6 )

c p - d rop l e t h e a t c a p a c i t y ( . l / kg K)

T — p - , 1 M te n i [ ) e r a tu r e (K)

h conve c t i v e h e a t t r a n s f e r coe f f i c i en t (VV/n r K)
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§3.16 Droplet Boiling

lliis is referred to as Law 3 and is defined to predict the boiling behaviour of the

droplet when it has reached the boiling temperature.

T p > T bp (3.16.1)

in, > (1 - fvo)m po (3.16.2)

Once the droplet has reached the boiling temperature the boiling rate equation Used

generally for combustion is applied by Kuo

dD, = 4fc (l + „ 23 r^ ) |n|1 + c^T - T p ) ] ( ; J l g 3 )

( i t f ) p (p , o o * - ' p In

c p o o - hea t c a p a c i t y o f th e g as ( J / kg -K)

p p - d rop l e t d e n s i t y (k g /m!

- t he r m a l c o n d u c t i v i t y o f the gas (VV/m-K)

The equa t i o n (3 .1 6 .3 ) a s su mes s t eady f low a t cons t an t p r e s su re and req u i r e s>

Tf tpfo r t h e b o i l i n g to o c c u r and the d rop l e t t o r ema in a t t he same Temp era tu r e .



CHAPTER

F O UR

The Finite Volume Technique

In this chapter the finite volume technique and tlx• approach to linearization, of the

diffusive, connective and source terms has been described. Tire solution methods J or

the (joverniiifi equations have also been discussed in detail. Furthermore, features

specific to the unstructured qrids and the locations where variables arc stored are also

discussed.

§4.1 Introduction

In the finite volumeapproach, t he solution domain is subdivided into a finite number

of small control volumes (('Vs). The usual procedure is to define ('Vs by a suitable

grid and assign the computational node to t he CV centre. In I lie case of structured

grids the nodal locations are defined and ilie CVs are constructed around t hem, so

that CV faces lie midway between nodes. The advantage of this approach is that

the nodal value represents the mean over the CV volume to higher accuracy. The

conservation equations are (Kerziger

I /x/xlil + I /)(j)V.ndS = I I <jr(nl(f).iulS f I q,hdu) (I.I.I)
dt hi Is Js ' hi

I'age (j.'i



4.1 . Introduction

Figure 4.1.1: 2-D Control Volume

§4.1.1 Convective Fluxes

In the analysis only the east side of the control volumeshown in Figure(4.1.1) is used,

for other directions the indices need to he changed. The ; t t ' cation of midpoint

approximation to the mass flux results in the followingrelationship:

m c — J pv.ndS ~ (pv:n) e S e (4.1.2)

The unit normal vector at the face "c" is defined by:

n e S e — Sgli — ( fine Use)' )j (4.1.3)

and the surface area Se is given by:

Se = s[(S' e f + (S»)2 (4.1.4)

A new mass flux definition can be derived from above:

m c = p e {S X U x + S y U y ) e (4.1.5)

In a Cartesian grid the, surface vector has components in more than one direction

and all the velocitycomponents contribute to the mass flux. Each Cartesian velocity
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4.1 . Introduction

component is multiplied by the correspondingsurface vector component as shown by

equation(4.1.5). I he convective(luxof any t ransported quantity is usuallycalculated

by assuming that t he mass Ilux is known which, with t lie midpoint ruleapproximat ion

gives equation(4.1.6):

F'' = J /)(f>v.lids ~ nir(j>e (4.1.6)

where 0 e is the value of 0 at the centre of the cell face. The second order approxima-

tion is obtained bv linear interpolation between the two nodes on either side of the

face. The interpolation is usually performed by treating the piecewiselinear lines

as if they were straight; if the line changed direction at the cell face, an additional

error is introduced. On structured non-orthogonal grids one can use1 higher order

integration and interpolation techniques to approximate eonvective fluxes.

§4.1 .2 Diffusion Fluxes

Application of the midpoint rule to the integrated fluxes gives:

/ '^ = I V(jrad(f).ndS ~ (Vfjrad(f).n) eSe (4.1.7)
j s,

at this point an expression for the gradient ol t lie variable0 at the cell facecentre can

be written in terms of the derivatives with respect to global Cartesian coordinates

or local coordinates (n,t). For a 2-1) example we obtain:

d(b 06 ()(b 0(b /, ,
(irad(j)= —i + —j = — n + — t (4.1.8)

ax ay an at.

wliere n and t represent the coordinate directions normal and tangential to the surface

respectively.The expression for t he implicit part of the method can be written il the

local (n,t,s) orthogonal coordinate system is attached to the <'(41face centre. I his
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4.1. Introduction

means that only the derivative in the n-direction contributes to the diffusiveflux:

F ? = Te(^)eS e (4.1.9)

In a Cartesian grid, n=x at the face "e" and applying tin1 central differenceapprox-

imation:

dd>, (bp — (t>p
LL—LL (4.1.10)

an /./ -

Lp,E is the distance between E and P on a uniform Cartesian grid. The interpolated

cell centre gradient gives:

d<t) 1 (j)E - 4>w 1 (f>EK- <t>p n i i n
[ d n ) e ~ 2 2A:r 2 2A:/; 1 ' ' '

Tliere is an oscillation of the variable (j) present in the x- direction, as shown in

Figure(4.1.2). The oscillation will not contribute to this gradient, since both r/>/.;-

(j)\v and 4>ee— are zero and so are the gradients at each cellcentre. The oscillation

can be eliminated by using an implicit flux approximation given by equation(4.1.12)

Ft = r e Se( ~ )e = (4-1-12)

The line connecting nodes P and E to the cell face determine tin1 accuracy of the

approximation. For example if the line is orthogonal to the cell face the accuracy is

second order and the deferred correction term is zero. However if the grid is non-

orthogonal. the deferred correction term must contain the difference between the

gradients in £ and n directions.

^ = r.s. ( | ). + res.[(g ).-(| ).r (4.1.13)

The first term on the right hand side is treated implicitly while the second term

is the deferred correction. The deferred correction term can be calculated using

interpolated cell centre gradients in n and £ directions. (^) e = {grcid(f)) e.n
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Figure 4.1.2: Approximation of gradients at cell faces Source:Fer/iger 1999

i £ is the unit vector in the ^-direction. This allows the final approximation to the

diffusive flux through the coll face "e" can bo written

Ft = + I\ S e (^m:' d .(n - o (4.1.14)
Lp,E

§4.1.3 Source term approximation

The midpoint rule approximates a volume integral by the product ot the CV ccntie

value of the integrand and the CV volume.

Q$ = J w in a (4.1.15)

The approximation is independent of the CV shape and is approximately second

order accurate.

Q P
r = - f (4.1.10)

1 Jn ox ox

The derivative ^ is calculated using the Gauss theorem. II the pressure gradient

with respect to x is transferred into gradients with respect to £ and // for local
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4.2. Segregated Solution Method

coordinate system at the CV center then

Qr ~ ~(Pe - p„)(y„ - y . ) + (P„ - P.) ( y e - ;/„) (4.1.17)

§4.2 Segregated Solution Method

As the name suggests using the segregated solution technique, the equations are

solved segregated from each other. The nature of the governing equations dictates

that, several iterations of the solution loop must be performed before a converged

solution is reached. The iteration procedure consists of the followingprocedure:

• 1) Initialise all variables

• 2) Fluid properties are updated using the current solution. The updated value

at the beginning of the process is based on the initialised solution.

• 3) The u, v and w momentum equations are each solved in turn using current

values for pressure and face mass fluxes, in order to update the velocity field.

• 4) The velocitiesobtained at the first stage , generally do not satisfy the conti-

nuity equation locally,hence a Poisson Type equation for pressure correction is

derived from the continuity equation and the linearized momentum equations.

This pressure correction equation, allows the adjustments to pressure and the

velocity fields be made so that local continuity is satisfied.

• The variable equations for quantities such as turbulence and species are solved

using the previously updated values.

• 5) In situations where inter phase coupling is to bo included, the source terms

in the appropriate continuous phase equations may be updated with a discrete

phase trajectory calculation.

• 6) A check for convergence is preformed.
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• 7) I he process is repeated until a defined convergencecriteria is reached.

§4.3 Approximation of Surface Integrals

rhe Cartesian control volume (CV) is shown in Figure(4.1.1). The CV surface is

subdivided into four plane faces the 2D, each face is given a lower case letter to

denote its direction (e, vv,n, s) with respect to the central node (P). The net flux

through the CV boundary is the sum of integrals over the four faces:

Where f is the component of the convective v.n) or diffusive(Ygrad(f) .n) vector

in the direction normal to CV face, it is important that CVs do not overlap, so that

conservation can be maintained, each CV face is unique to the two CVs which lie

on either side of it. Once again to exemplify the process, the e face is considered in

what follows. The surface integral in Equation(4.3.1) can only be evaluated if the

value of tin1 integral { everywhere on the surface se is known. However this value is

only known at the nodal point at the centre of the CV, so an approximation is used

as follows:

The values of fare not available at tin1 cell faces, therefore an interpolation scheme

is used to obtain this value. The interpolation scheme needs to be second order

accurate.

§4.4 The Implicit Method

The term implicit is a reference to the way in which the governing equations are

linearized. The way this system works is that for any given variable, the unknown

(4.3.1)

(4.3.2)
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value is calculated in each cell, involvinga technique which uses the existing value

and the unknown value from neighbouring cells. The result of such a technique is

that each of the unknowns would appear in more than one equation, hence allowing

the equations to be solved simultaneously, to give the value of the unknowns. The

fully implicit method is recommended for general purpose CFD simulations, due to

its stability. 11we consider the generic transport equation in 1-1)form and applying

the implicit Euler method, we get:

* (4.4.1)
at ax /) ox z

,/)»+l _ fkn+] r _i_(hn+\ _ 2r/)'l+1

€ +[ = <K+ ' L- + - ' ' ]±> (4.4.2)
2_A.r />

Hence all t he fluxesand source terms of the unknown variable values at the new time

level are evaluated.

The result is a system of algebraic equations very similar to the one obtained tor

steady problems. The difference is in an additional contribution to the coefficient

Ap and to the source term Q/>, which stems from the unsteady term. The Equa-

tion^!.4.2) may be written as:

M " + ' = + *wP>:Y (4-4.3)

where:

A,,; -

Aw

2 A x (Ax)

£U _

,\2

2Ax ~ (Ai ) 2

Ap = —{A/,; + A W ) + -jrjQl' JL
AI€

In this case the use1 of the implicit method allows arbitrary large time steps to be
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taken, however on the negative side, first order truncation errors are introduced, but

the overall picture tends to favour the scheme. In the iteration at the new time step,

the best initial guess is the converged solution at the proceeding time step. II the

final steady state is the only result of interest and details of the development from

the initial guess to the final stage are not of importance, it might be sufficient to

carry out one iteration per time step. The disadvantage of one iteration per time

step is that the scheme may not be very stable, however, it would be faster.

§4.5 Pressure Calculation

The momentum equations determine the respective velocity components so their

values are defined. The continuity equation can be used to simplify tin1 resulting

equation, leaving a Poisson equation for tlx1 pressure. This equation can be written

in cartesian coordinate form as:

d ,dP. d r d ITTT , d(pbj) 02/> .

= -aJw W "' ~ nj)] + l* r + W ( 4 ' 5 ' 1 )

I n s i t u a t i o n s w h e r e t h e d e n s i t y a n d v i s c o s i t ya r e c o n s t a n t , t h e a b o v e e q u a t i o n r e d u c e s

t o E q u a t i o n ( 4 . 5 . 2 ) s h o w n b e l o w :

a w d M J w ( 4 5 2 )

O X i O X i O X i O X J

hi the pressure equation the term on the right hand side is the sum of the derivatives

of terms in the momentum equations.
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§4.5.1 Implicit Time Advance Method

§4.5.2 Introduction

section a method for the unsteady equal ions that illnstrates how the numerical

Poisson equation for the pressure1 is constructed and the role il plays in enforcing

continuity. The semi-discretizedmomentum ('([nationscan be written as:

O(pUi) _ O(pUiUj) _ dP Or v or

dt Ox j dx-i Ox j ' Oxi

The term represents a discrelized spatial derivative'sand II, is the shorthand

notation for the adveetive and viscous terms. For simplicity the Equation(4.5.3)

can be solved with Explicit Euler method for time advancement. In this case the

Equation( 1.5.3) reduces to:

(w)" +1 - (K) = A*("f - T-) "• 5 " l)

OXi

The velocity at time step n is used to compute //" and il the pressure liled value

is availal)le, —' may also he computed. This gives an estimate ol />u,at the new

time step n +1. However in general this velocity field does not satisfy t he continuity

equation:

^"'•>" +l = o (1.5.5,
0x t

0 ( o U U n + ] ) < ) r n + l d T n + 1

(^) n+1 - M ) n = At( { P ' J J - - — + -.f-) (4.5.6)
( J X j O X i < ) • !j

The divergence of the velocity field at the new time step must he zero. The second

term would he zero if continuity has been reached at time step n; in the equation.
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I tiis term must be retained, when an iterative process is used to solve the Poisson

equation for the pressure and the iterative process is not converged, lu a similar

manner the divergence ol the viscouscomponent of II ( should l>czero for constant f>.

OXi 0x t u.ii ax,

In lliis situation the term on the right hand side of Equation(4.5.7) can not l>e

computed until the computation of the velocity field at th<*time n+1 is completed

and vice versa. This means that the momentum and the Poisson equations need to

he solved simultaneously.

Equation(4.5.7) needs to he solved using the converged result from the preceeding

time step as t he initial guess for the new velocity field and then converged to the

solution at the new time step. The alternative way to deal with the non-linearity is

by linearizing the equations at the preceeding time step as follows:

U\ l H - U\ l + AUi (4.5.8)

nonlinear term in the Equation(4.5.6) can be written as:

Ul l+ UjJ M = U?U]1 + U? AUj + U? AU t + AUiAuj (4.5.9)

In cases when At is small, A U; « A t 9 U* /A t.

The last term in Equation(4.5.9) is second order in A t and is generally neglected

due to its small magnitude. The result would he to re write the Equation(4.5.6) in

the followingformat:

s ,a(pu,U j )" , d(U? AUj) , dU>AU,U?)
pAui = o{

Ox j Ox j Ox j

OAT Or" 0Ar t1--—- H —=
Oxi Oxi Ox j Ox.j

" A/ ' . ^ . dhT "-) (4.5.1(1)

The system c .".ations is stil l large to solve, lience an alternative method is to split
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the equations into a series of 1-1)equations, so that the solution at each time stop

can bo sought for with just one iteration. This method is generally known as the

alternating direction implicit (AD1) method. The AIM approach is used to update

the equations by using the old pressure gradient. The velocity field needs to bo

corrected using the followingscheme:

• tho velocity field is computed by updating the momentum equation using the

old pressure gradient 11*

• solve the Poisson equation for tho pressure1 correction

f <?f' ') = (4-5.11)
UXi ux, ax,

• the velocity value is updated

t l = W - ( 1.5. 1 2 )
()x l

The above equation satisfies continuity. I ho procedures described so far produce an

accurate solution for unsteady problems. However the accuracy of the solution is

dependent on the si/e of the time step. The implicit method allows larger I ime steps

to be used without introducing any instability.

§4.5.3 Implicit Pressure-Correction methods

The reason that Implicit methods are chosen for steady state and transient flow

situations is that they offer a greater facility in terms of selecting the time step size.

When the implicit method is used to advance the momentum equations in time, the

discretized equations for the velocities at the new time step are non linear. II the
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pressure gradient term is omitted from the source term, the equation may be written

as:

pii)n+1
-4rW + Etf' Ul?' = Qf ~ (4.5.13)

/ uXi

• P- is tht" index of the velocity node

• I- denotes the neighbour points which appear in the discretized momentum

equat ion

• Q- all the terms which may be calculated explicitly in terms of U" as well

as any body force or other linearized terms that may depend on the U"+l or

other variables at the new time level, e.g, body forces or other variables at

the new time step. The pressure term is written in symbolic differenceform

to emphasize the independence of the solution method from the discretization

approximation for the spatial derivatives.

The Equation(4.5.13) can not be solved directly as the coefficientsA and possibly the

source term depend on the unknown solution U"H . In an unsteady Howsituation

the iteration within each time step needs to be carried out until entire system of

non-linear equation is satisfied to within a narrow tolerance.

The iteration processwhich updates t IK1coefficientsand source term matrices is called

t he outer iteration. The followingequation is solved during each outer iteration:

npm-1

+ E A "' u 7 = our' - (-̂ -)«- M-5.M)

The time step index n + 1 has been dropped and an outer iteration counter m; U-",

thus represents the current estimate of the solution U" + . At the beginning of each

outer iteration, the terms on the right hand side of Equation(4.5.13) are solved using

the variables at the preceeding outer iteration.

The momentum equations are solved as a set of algebraic equations for each coin-
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ponent of the momentum, hut as the pressure used in these iterations is from the

previous time step, the velocitiescomputed, do not satisfy the discretizedcontinuity

equation. In order to satisfy the continuity equation, which implies tin1 pressure field

needs to be modified. The velocity at node P, obtained by solving the linearized

momentum equations can be expressed as:

Q m X I d P m ~ ] 1

-4';,' AU
P>( dx-i

ITin* *u i t—'i I 1,1 / \ / i rc i r \
U i ,P = 7H7 7777( c\Z ) (4.5.15)

The variable (J"/* is the predicted value, for th<j iteration in. The first term on

the right hand side can be substituted by U[n
f*. This procedure in effect removes

the contribution of pressure gradient. The corrected velocity and pressure field are

linked together by the followingequation:

I 0P m

U? P = U $--r U 7 (-o-)f (4-5.16)
/ip OXi

Continuity can be enforced by inserting the expression for U"' into the continuity

equation, to obtain a discrete Poisson equation for pressure:

d p dP m dpU m *
>'" = 1 -^-1 " (4 ' 5 ' 17)

The solution of Poisson equation (4.5.17) for the pressure, provides a solution for the

velocity at the new iteration U" 1 , which satisfies the continuity equation.

§4.6 Quadratic Upwind Interpolation Scheme: QUICK

The quadratic upstream interpolation for convective kinetics (QUICK) scheme of

Leonard (11 ' uses a three-point upstream-weighted quadratic interpolation for cell

face values. This interpolation scheme was used in the studies carried out, as it gives

accurate results on coarse meshes. 1he face value of cf)is obtained from a quadratic

function passing through two nodes (011 each side of the face) and a node on the

upstream side. This is best illustrated in the Figure (4.1.2). For example, when Lu,
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> 0 and Ue > 0 a quadratic fit through WW, W and P is used to evaluate cf)w, and

a further quadratic fit through W, P and E to calculate <pe. The value of 0 at the

cell face between two bracketing nodes i, and i-1, and upstream node i-2 is given by

the followingEquation(4.6.1).

<!>face= I + l(f)t ~ (4.6.1)
0 C O

In the situation where uu, > 0 the nodes for the west face w are W and P, the

upstream node being WW.

4>w— q0U" + ^ <i>p— q4>\vw (4.6.2)
o o o

In the case where ur > 0, the nodes for the east face e are P and E, the upstream

node is W.

0 e = q<}>p+ Q(h-: ~ Q&W (4.6.3)
C O O

The diffusion term is evaluated using gradient of the appropriate parabola. Using

Equations (4.6.2 and 4.6.3) for the convective terms and central differencing for

the diffusion terms, the discretised form of the one-dimensional convection-diffusion

transport equation may be written as:

[D w — -F w 4- D e -f -F e ]0p = [D w + -F w + -Fe\(j)\v
o o o o

4- [De - '^Fe\(j)h: - iF w (j)WW (4.6.4)
o o

The discretised form can be written as:

dp(f)p = ci\y(f>\v+ dp'A/-;+ aww<t>ww (4.6.5)



4.7. Unstructured Grids

air «/<; f t inr dp

1) x 4-!/ /i 8 w 8 e n, - § F„ - 1 F8 11 aw +(<!•: + uinr + (l '< Fw)

Table (4.6.1) Diseretised form of the QUICK scheme

§4.6.0.1 Remarks on the QUICK scheme

The QUICK scheme uses a (inadratic interpolation profile to calculate tl ic <"<d1lace

values between two nodes and the upstream node. 1lie transport iveness property is

built into the scheme as the quadratic function is based on two upstream and one

downstream nodal values. II Il i t ' Howfield satisfiescontinuity Ilie coefficient,a/( equals

the sum of all neighbour coefficientswhich is desirable for bounded ness.

The disadvantage of the system is that, the main coefficients (K and VV)are not

guaranteed to be positive and the coefficientsan iv and a/. / , are negative.

§4.7 Unstructured Grids

The use of unstructured grids has meant that control volumes of arbitrary shapes

with any number of cell faces can be used. I his is of particular advantage when

trying to match the grid to domain boundaries.

The way data is formulated depends on the type of CY used. Whenever a grid is

generated a list of vertices is generated . Each CV is defined by four or eight vertices,

so the list of CVs contains a list of associated vertices. The order of vertices in the

list represents the relative positions of the cell faces.
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§4.7.1 Underrelaxation Criterion

It is oft( M Idesirable to speed up or slow down the changes from O I K1 i t e r a t i o n to ( l i e

nex t . I n d e r - r e l a x a ti o n i s a ve ry use fu l dev i ce fo r p rov id ing th i s f l ex ib i l i t y . W h en

re l axa t i o n v a lu e s a r e wi th in the r ange1 0 to 1 , t he e f f ec ti s unde r - r e l axa t i o n , Pa t au k a r

( ( ") . I h e r e a r t1 n o g e n e ra l ru l e s fo r choos ing the bes t va lue o f unde r - r e l ax a ti o n . T h e

op t i i nu m v a lu e d e p e n d s u p on a nu iube r o f f ac to r s , such as I l i e na t u r i1 o f Ih e p ro b l em,

the num b e r o f g r id p o in t s , g r i d spac ing and the i t e r a t i ve p rocedu r e u s ed . T lx1 b e s t

va lue s a r e g e n e ra l l y d e t e rmined f rom expe r i ence . In ma thema t i ca l fo rm i t can b e

shown to b e a s fo l l o w i f we s t a r t w i th the a lgeb ra i c equa t i on fo r a gen e r i c v a r i ab l e 0

a t a typ i c a l p o in t P :

V'/. + E = Qr (17 1)

Q represents all the terms that do not depend explicitly on <f)"

the coefficientsA/ and tin1 source Q may involve (j)n 1

The value of 0 n is allowed to change only by a fraction o:^,so that a relationship can

be established.

r =r 1+<*4<rw - r ') (-1-7.2)

The n(1w solution can replace the old iteration by the followingrelationship:

in , V" I Kn d I ^ \ rh"~ 1 (h new ^'' ^ l< ^ 1 CI 7 •{)— (P„+ = V/H Ai>(Pj) 'Pr — ~i ( 'I- '--5)
Ot<t> 1 Oi(j) A>'

hence a modified equation for the node P can be

A"rP +E =Qr+—-MV (I-7-1)
/

a<t>

If we let Ihe term on t IK1 r i g h t hand s ide o f t he equa t i on iden t i f i ed by an u n d e rb race

be A] , a n d th e t e rm o n the l e f t Q* these two te rms wou ld rep re s en t t h e mo d i f i ed

d i agona l m a t r i x e l e m e n t s and sou rce vec to r componen t s . Th i s mod i f i ed eq u a t i o n i s
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solved within inner iterations. When the outer iterations converge, the terms involv-

ing fV</>cancel out and the solution to the original problem is obtained. This type of

underrelaxation has a positive effect, since t he diagonal dominance of matrix A is

increased, hence it is more efficientthan explicit application of the Kquation( 1.7.3)

§4.7.2 Convergence Criterion

In an iterative procedure it is important to realize when the iteration process can be

terminated. The most common procedure adopted is to take the differencebetween

two successiveiterations to be less than a pre-selectedvalue.

• i) Start with an estimated value for variable at the grid points.

• ii) From the guessed value of the variable values of the coefficientsin ! he dis-

cretisation equation are calculated.

• iii) Thi' linear set of algebraic equations are solved to obtain a new value for

the variable.

• iv) with the new value of the variable as a more accurate approximation, steps

ii and iii are repeated until the new values obtained do not differ significantly

from the previous values.

• The convergence criteria for the residuals is set typically to a value of 10

Once the values of the variables being calculated reach t his pre selected value

the iteration is terminated.

§4.8 Staggered Grid

In the finite volume technique, the initial stage starts with the discretisation of the

transport equation. The problem to consider is the location at which the variables,
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4.8. Staggered Grid

such as velocity, pressure, temperature, etc need to bo stored. The automatic as-

sumption is to consider storing all the variables at the same node of the control

volume. However it is advisable as would be explained to store variablesat different

locations. 1he scalar variablesincluding pressure,are stored at the nodes marked(•).

The velocitiesare defined at the cell faces in between the nodes and are indicated

by arrows. The horizontal arrow as shown —> indicates the direction for u-velocity,

while vertical arrow(t) represents the v-velocity,this is shown in Figure(4.8.1). It

is obvious from Figure(4.8.1) that the pressure nodes coincide with the cell faces

of the U-control volume. Therefore the pressure gradient term is given by the

relationship

DP /v - 11'
Sxu

(4.8.1)

where dxy is the control volume width. The above relationship provides the desired

realistic pressure field.
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Figure 4.8.1: U-control volume and its neighbouring velocities

Source: Versteeg and Malalasekera.1995
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§4.9 Momentum Equations Variables

It can be seen from lMgure(4.9.1) [Versteeg Ihat t he U-velocitiesarc stored at t lie

e and vvcoll laces ol a scalar control volume. 1hese arc localcd at the intersection ol

a line divining a cell boundary and a grid line and are represented by a combination

of lower case letter and a capital letter. The type of grid represented in Kigure(1.8.1)

is classed as a backward staggered grid, since the i- direction for the U-veloeit.yI , j

is at a distance of
2O r (

scalar node (I..I). This new coordinate system

allows the diseretised U-inonientinn coin at localion(i,.I)can be written as:

a i , . l U j , J — ' n h ' . ) A I I I ( ~ S A \ , r
^ ox , ,

1.9.

where: A\,, is the v 1 'of t lie U-cell

b, ; = S A \ , r is the momentum source term

i j is the east or west cell face area of the U-control v

J +

J + l

i-2 . j

J

J - I
I 2

i- i . j+ i 1 , 1+ 1

•N

w;
- i , J - X

: P

i. j

"un
-H-s

l . l+

- t

vI.i

i . j -1
"TTT -r IfI

Figure 4.9. 1: V-control volume and its neighbouring velocities

Source: Versteeg and Malalasekera, 1995
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CHAPTER

FI VE

Experimental Technique

In addition to the numerical study an experimental programme was carried out in

collaboration with Brighton and Loughborough universities. The experimental study

consisted of flow visualization and Laser Doppler Anemometry(LDA). The methods

employed are described in detail in this chapter. The objectives of the experimental

programme were, a) to provide a better understanding of the flow, and b) to validate

the numerical model. In this chapter an introduction into Laser Doppler Anernome-

try(LDA) and detailed experimental procedure and equipment used is given.

§5.1 Introduction

The complexity of fluid motion, and associated difficultiesin obtaining accurate the-

oretical solutions, has meant that, fluid dynamicists have had to rely on experimental

techniques to validate their results. It is therefore important to know how the in-

struments used in flow measurements record the various fluid dynamic parameters.

This understanding becomes particularly important where the flow is turbulent in

nature. There are variousexperimental techniques available, but for our studies only

laser Doppler anemometery and flow visualization techniques have been used.

Laser Doppler Anemometery(LDA) is an optical instrument that can be applied to

the measurement of the velocity and velocity fluctuation in fluid flows. For such
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measurements, the flow must be seeded, either by naturally occurring particles (e.g.

air bubbles) or through artificiallyintroducing fine particles that arc1 chosen to follow

the mean flow and frequency of fluctuation adequately. LDA utilises Laser light

beams to measure a velocity component of the flow particles at a single point in the

flow as a sequenceof near instantaneoussamples. The LDA techniqueis non-intrusive

to the flow, has a high spatial and temporal resolution and requires no calibration.

1he output signal is a linear function that is proportional to the velocity. With

suitable frequency shifting techniques, directional ambiguity in the flow pattern can

be removed. As such, it is particularly suited to the measurement of unsteady and

turbulent flows.

§5.2 Laser Systems

The invention and introduction of laser techniques has made it possibleto make point

measurements in experimental fluid dynamics. The first,laser Doppler technique

was introduced by Yeh ' 72 \ Since then there have been many advances both in

signal processing and optical methods. There are several advantages in using laser

techniques compared to other experimental velocity measurement techniques. These

• the measurement technique is non invasive,hence the flowfieldis not disturbed

• no calibration is required

• the instrument measures velocity in a specifieddirection, the output being a

linear function of this velocity component

• the method can be used in turbulent flows, or for velocities rangingfrom a few

millimetres per second to supersonic flows

• velocity measurements can be made in three directions simultaneously
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§5.3

5.3. Laser Doppler Velocimetry Configuration

Laser Doppler Velocimetry Configuration

Fhe first typo of LDV system of Yeh was of the heterodyne type. The way

this system operates is simply directing the laser beam into the path of fluid. I lie

scattered light is then observed by the photodctector at an angle to flu1 original

direction of the propagation of Ilie beam, ll can be assumed from t he Doppler

shift equation, that the frequency of the scattered light is proportional to the flow

velocity,but iu most practical situations the frequency shift is going to be extremely

small compared with the optical frequenciesinvolved.The shift in frequency can be

observed if the scattered light is mixed with light from Ihe laser which is unshifted

in frequency. The photodetector signal then contains a beat frequency equal to the

Doppler shift frequency proportion; 1 ' ' 1 flowvelocity.The schematic arrangement,

is shown in Figure(5.3.1). The laser beam is split into two beams and the beams

are focused into the (low region known as the control volume. The photodetector

is aligned with the reference beam on the other side of the flow. In the standard

laser setups the region where the scattered light is collected from can be adjusted,

by placing two apertures in front of the detector.

frequency of the LDV system is given by the followingequati

2Usin0rif
f o = ( 5 - 3 . 1 )

/ \

• U i s t h e m a g n i t u d e o f v e l o c i t y

A w a v e l e n g t h o f t h e i l l u m i n a t i n g l a s e r

f 0 Doppler frequency of the system

l i t refractive index of the flow medium
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Reference

Beam

Flow

Detector

Beam
Splitter

Laser

Figure 5.3.1: Schematic representation of LDV System
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5.3. Laser Doppler Velocimetry Configuration

I he system described is a basic iinil consisting of three major components.

• The illnminating

• The reference and

• The collection units

In order to obtain good signal to noise ratio the three components have to be kept

aligned. This is achieved by mounting the whole system on an optical table. The

other region which requires careful consideration is the flow region. In t his region we

need to obtain the relevant information. In the How regions tin1 beams do not need

to go through the region, instead a device is used causing Ilit1 beams to split and be

directed around the Howforming a control volume. The original system used bv Yeh

( 12 \ Angus , Ri/zo 'r>7' , was of this type.

This generally overcome by using a lens, which is placed in the path of the beams.

The function of the lens is to focus the incident and t lie reference beams. The set up is

shown diagrammaticallv in Figure(5.3.2) as proposed bv Bedi ( l) . The beam splitter

is placed in the path of the emerging beam from the laser. The beam can then travel

straight through to tin1 detector. The advantage of this set up is that alignment is

made easy for measuring fluid flow in circular ducts and also it allows the flexibility

to rotate the measuring direction without the observation volume being moved. I he

emitted rays are not generally of the same lengt.li , This would result, in a reduction

of the signal. In order to compensate for this shortfall a path length compensator

which is generally a block of glass is placed in the path of the reference1 beam in the

region from the beam splitter to the observation volume. The disadvantage of tliis

optical configuration is that the actual flow velocity is not measured, but instead the

velocity component in a direction perpendicular to bisector of t he angle between t he

reference and I IK1 illuminating beams is measured. The error introduced is generally

very small due to the fact that the angle between the two beams is small.
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Beam
Spliter

I;1.()W

/

LaserLaser

-\

Detector

Figure 5.3.2: Schematic representation of single lens LDV System

§5.4 Real Fringe Systems

It was the research carried out by Rudd who realized that, by focusing two

parallel beams in the How,resulted in creating the Young's interferencefringes. The

arrangement is shown in Figure(5.4.1). The laser beam is diverged and collimated to

produce a parallel beam of a few centimetres, which passes through a mask with two

parallel slits. The resulting beams are refocused to form two interference patterns

in the Howregion and the beams emerging through the Howare brought to focus in

the photo detector. This simple arrangement allows the exact nature of the Doppler

signal to be calculated. The light intensity in the focal plane is given by:

7/ \ ,s iii 2 (k\ x sin 2 (A' 2 y) 2 \
I V) = "77 72 7 T~ yT cos ( /;/v 1x a> (J- '• 1)

\ k \x )2 (h2) )Y

where

a aperture width

c deptli of apert ure

b distance l)etween fringes

Kiiranj/(A L)

K-iixcnj

\ wave length

L focal length of the lens
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Laser
Detector

Kigure 5. I.I: Modified Versionol Ilie Optical system Proposed by bndd

The major draw bark encountered with the Rndd sytem is thai Ilie nnscattered por-

tion of the beam falls directly onto the photo detector, hence the small Uncinations

would appear as noise. The modified version ol t lie Kinld system is (lie most com-

monly used U )V setup and is relerred to as Ihe forward scatter real fringe system,

as shown in lugure(5.4.2).
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Beam
Spl iter

now

Laser

Figure 5.4/2: Schematic representation of the forward scatter

real fringe LDV System

Pinehole

etectoi

§5.5 Backscattering Geometries

This system only requires one opening to make the necessary measurements, how-

ever the down side of this system is that it requires lasers with higher intensities

than the forward scatter configurations. The backscatter arrangement is shown in

Figure(5.5.1). The lens Lj brings the two beams to a focus at the measuring point,

and the light scattered in the backward direction is collected back through the same

lens and defected by the mirror. A second lens h 2 projects the fringe onto the pho-

todetector. A pinhole in a mask M2 can be used in front of the detector to limit the

observation volume. The other advantage of this system is that once it is aligned at

construction the system does not need to be realigned again.

§5.6 The Side Wall Effect

In any kind of Howmeasurements involving optical systems, the beam has to travel

through the air and the side wall of the container. This would cause the beam to

refract due to changes in density. The Doppler frequency is determined by the half-

angle 0 between the beams at their point of intersection. The refractive index nj of
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\
Figure 5.5.1: Typical backscatter optical system
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the fluid and the five space wavelength A which is constant for a given light source.

I he expression for the Doppler frequency I,)can he derived and he shown that the

Doppler frequency is independent of the refractive index effects. If we assume the

angle between each beam and the optical axis is 0 a in air, and that t he refractive

index for air is given by

"nir — 1

sin 0 =
n f

irrespective of the side wall effects. The Doppler frequency can be written as:

( 2U sin 0 a )
. / « = - y ( r , ( i l )

The above result would eliminate t he effect of wall refractive index for uniform wall

thickness situations. It must be point,edout that for noil uniform walls this ('fleet

must be taken into account, but is beyond the scope of t his work.

§5.7 Frequency Shifting

In most, indust rial situations, Ilie velocitiesare continuously changing signs. The

implication being I hat Ihe lower Doppler systems produce signals wit h Ihe same Ire-

quency whether t he part icles are moving forward or backwards. I his problem can be

overcome by incorporating a form ol frequency shifting device. The most commonly

used device of this type is known as the Bragg cell, as shown in Figure(5.7.1). The

Bragg Cell is placed in the path of one beam. The beam is refracted as it emerges

through the Bragg cell and is re aligned by incorporating mirrors. A mask is placed

in the path of the beams with two narrow apertures so that only lirst order beams

are allowed to pass through. The frequency shift is therefore superimposed on the

Doppler frequency shift and is equal to w,(which is the frequency of the acoustic

wave), this implies that, the frequency is independent of tlie angle 0 at which the

focused beams converge. This arrangement is used in many LDV set-ups.
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Figure 5.7.1: Bragged 1 Configuration

§5.8 Experimental Procedure

§5.8.1 Laser Doppler Anemometry

A Ventolin' A/ Inhaler utilisesa canister of compressed propellant and drug in powder

form to disperse a metered 100 micrograms of Salbutamol per actuation. The canister

is inserted within a plastic holder with a central nozzle positioned centrally in Ihr

exit orifice. The inhaler is then inserted into the Volumatic /A ' Spacer Device from

which the patient inhales the drug. The compressed liquid propellant exits the

nozzle orifice carrying the powder particles in a two-phase jet flow. The propellant

evaporates, leaving the particles dispersed in the gas phase. The particle motion is

characterised by unsteady and turbulent interaction with the surrounding quiescent

gas. The jet flow is bounded by the volume of t he Spacer Device and is observed

to collide with the opposite walls of the chamber and circulate back towards the

nozzle orifice. As such, anv velocity measurement must be time- stamped to enable

differentiation between those measurements performed during injection and those

observed between injection events.
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§5.9 Experimental Apparatus and Setup

I IK* experimental apparatus was sot-up as shown in Figure(5.9.1 ) .

I he spacer device was mounted horizontallyusing twosets of glass lens holdersonto

an optical rail with height adjustment. A third lens holder with rigid jaws and a

rotational vernier allowed the device to be held securely and rotated about, its axis

of symmetry. I he device was aligned such that the inhaler orifice was horizontal to

the plane of the optical bench. The mounting assembly is shown in Figure(5.9.1).

The optical rail and assembly were mounted on a two- axis, rectilinear, automated

traverse made by Time and Precision Instruments. A customised softwarecontrolled

the fine movementsof the probe, relativeto the grid, within the Volumatic /A/ spacer.

The traverse1 operates with fine pitch lead screws and stepper motors to achieve a

positional accuracy to within ± 0.2 mm.

The automated traverse, optical rail, spacer device and LDA transmission optics

were mounted on a vibration isolationair breadboard as shown in Figure(5.9.2).The

reference point for the I,DA measurements (and the traverseread as zero) was chosen

at a point co-linear with the centre of the orifice cross-sectionand 5 mm from the

vertical plane of t he exit orificeof the inhaler. The grid for the measurement points

were then defined relative to this point and the traverse was computer programmed

to move the LDA probe, measuring volume over a two-dimensionalgrid within the

vertical symmetry plane of the spacer device.

The probe targeting was achieved by the use of a dummy inhaler holder with an orifice

packed with epoxy filler. The filler was smoothed to be level with the edges of the

orifice. A vernier calliper was used to find the centre of the orifice. A 1 mm diameter

hole was drilled at the centre and a fine pin was inserted until only 5 mm protruded

perpendicular to the level surface. This was verified with a depth micrometer and

the pin glued into place. The LDA beam intersection was then focused onto tlie tip

of the pin using the method of tuning the photomultiplier anode current with the
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Figure 5.9.1: Lens Mounting Assembly of The Volumatic Spacer

processor operating with the internal t rigg<Mmode. I he probe volume was returned

to this point and the method repeated after each sweep of the grid points to ensure

repeatability.

A single component, backscatter LDA system, based on a Spectra- Physics Stability

2017 argon-ion laser (green line at A=514.5 urn) was used in conjunction with a

Bragg cell, operating as both a 50/50 beam splitter and a 40 MHz frequency shifter.

The coherent beam pair was then transmitted via a fibre-optic cable to a ol 1 mm

Dant.ecFibre Flow probe fitted with a times four beam expander and front lens. The

powder particle diameters were not known and thereforesome preliminary tests were

undertaken to assess the effect of the fringe spacing in the LDA probe volume on

the measured velocity and turbulence intensity distributions and the validated data

rate.
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1 and Optics
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5.9. Experimental Apparatus and Setup

Fhree optical configurations were tested as presented in Table(5.9.1). In each ease,

measurements were performed over the entire grid using suitable bandwidths to in-

clude all velocity ranges. 1he output was processed by a Dantec 58X80 MultiPDA

Signal Processor. I lie Doppler Bursts were band pass filtered to remove the low

frequency Gaussian beam profileand any high frequency noise from the signal, Fur-

Ihennore, the bandwidth ; 1 1!_>gain of the LDA processorwere selected depending

on the location and the range of velocitiesto be measured.

Focal length (mm) 50 160 400

Beam Separation (mm) 8 32 32

Fringe Spacing (mm) 3.23 2.58 6.44

Number of Fringes 38 38 38

Probe Volume A x 0.1216 0.0975 0.2428

Probe Volume A y 0.1213 0.0970 0.2426

Probe Volume A z 1.5212 0.9753 6.0704

Table(5.9.1) LDA Optical Transmission Parameters

To enable time series of measured velocity data from the start of injection to be

acquired, it was necessary to instrument the inhaler such that the depression of the

canister inside the holder 1 trigger the start of measurements using the LDA

processor external encoder input. A single holder was modifiedexternally so that

a micro-switchcould be attached to the lower part as shown in Figure(5.9.3). One

contact arm of the switch protruded several millimetres inside the holder, at a level

just beneath the normal (dormant) position of the raised shoulder on the canister.

Once the canister is depressed, electrical contact is made and the LDA processor
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receives a t,riggersignal. The lime is only reset when the canister is depressed

once again. The LDA system specification used for the above study arc shown in

Tal)le(5.9.2).

Page 98



5.1 0. Methodology

Signal Processor

lerface

\A\>aser

ransnussion

Collecti

Dantec/In vent Measurement technology

Adaptive MultiPDA 58X80

'CINational Instruments Data transl;

Interface Board 58(! 1."it)

Spectra-Physics Stabilite 2017 .)\\ Argon Ion

Laser (=51 1.5 mtngreen)

Spectra-Physics 2070 remote Controller and Transformer

I)isa 10 M11/ Bragg ('ell

Dantec 00X2 I fibre-Optic Manipulators

An;iconda Sealite Single*Strand Fibre-()pt ic ('able and

light Slieatli

Dantec 0 I I mm TibreTlow Probe Head

Dantec o 00 mm X I Beam lv \ , 1 M

Dantec Classical PDA Collection Optics

Disa PMT (x.'J)55X08

Table(5.0.2) 'The PDA/PDA System S; :f::*ati

§5.1 0 Methodology

The measurement locations are shown in Tigure(5.10.1). I he choice ol the final

grid locations was based on a set of extensive measurements carried out across the

complete chamber. A compromise was sought between available data (points in the

jet flow with good data rates), the number of depressions of the canister required

to produce a statistically significant data set (differingat each location) and the

number of canisters available. In addition, care was taken to avoid locations where

changes in the t hill wall of the spacer device deviated the beam or iritroduced regions

of high backscatter light intensity from internal reflections. Preliminary tests were

performed to study the followingpoints:
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• Study tin1 effects of consecutive injections and nozzle fouling; the likelihoodof

the fiist injections of a new canister being unrepresentative of the subsequent

injections;

• I IK*effect of the period between consecutive injections

• The performance of the individual injections up to 200 doses (decay)

Based upon these findings, the followingmeasurement procedure was devised. Mea-

surements of instantaneous velocity and turbulence intensity were made in a single

plane of symmetry bi-secting the spacer device volume,and recorded at a total of 31

points along four vertical height positions iu the y-direction, in increments of 5 mm

along the x-direction, to a maximum distance of 55 mm from the orifice exit plane.

The positive velocity direction was taken as tin1 positive x-direction away from the

nozzle exit. For each measurement point, the canister was shaken and the first 25

charges dispelled (inorder to account for any irregularities in the discharge). Data

was then collected for 25,000 validated velocity measurements or until ten consecu-

tive shots from the inhaler were completed. A period of several seconds separated

each injection (went.

The number of collected velocity samples at each point was dependent on the vali-

dated data rate and the number of available canisters to complete all tests. In any

one set of tests, the number of charges from a single inhaler neverexceeded 100. even

though the inhalers were rated for 200 metered doses.

Between each set of measurements, the traverse moved the spacer device to the next

grid location and the nozzle was cleared of frozen deposits. After each set of four test

points, the canister was changed and the spacer device removed and cleaned with

warm water. This maintained the signal to noise ratio at an acceptable level. For

a range of grid locations, measurements were repeated to ensure data consistency

(three times along the v = 0 plane). These were repeated for the range of probe

volume sizes given in Table(5.9.1) A 160 mm focal length transmission lens with 32

mm beam separation was chosen to give the highest data rate.
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5.11. Flow Visualization

§5.11 Flow Visualization

§5.11.1 Introduction

In flow studies it is of interest to visualize the flow field in thin plane layers. The

laser light sheet technique is a usetnl tool for obtaining a better understanding of t he

flow characteristics Johnson et al. (35) , Rouse (r,9) , Nebeker (,9) , Baev, (:}). The light

sheet is a thin plane layer of approximately 1 nun of thickness which is illuminated

normally bv a high-power laser. The particles in the flowreflect the laser light while

passing through the light sheet. Due to the scattered light, these particles are visible

and their flight paths can be optically recorded.

§5.11.2 Laser Light Sheet Unit

In order to visualize flowlight sheet has to be generated in the (lowfield.As a general

rule, continuously operated or pulsed high-power lasers are used to create the light

sheet. The light-sheet behind the focal point is created bv means of collimating

the beam, using a cylindrical lens. The thickness of the light sheet is determined

by the diameter of the collimated laser beam. To increase the light intensity in the

visualization area of interest, t he light is concentrated by fibre-optics and a cylindrical

lens in the horizontal direction

§5.11.3 Experimental Set-Up

In order to conduct flow visualization studies, an experimental set-up was designed

to record the images of the drug injection into the spacer by means of a laser light

sheet technique as shown in Figure(5.11.1). The visualization technique works on

the principle that when particles pass through the light sheet, they scatter laser light
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and become visible. Within the light sheet an image of the flow pattern appears

that can be recorded by a CCD camera. The high speed camera has the following

specifications:

• Kodak Ektapro 1IS motion analyzer 1450

• CCD-sensor 256x256 pixel

• Full-frame 4500 frms/s respectively

• Sensitivity of 0.1 lux.

Due to the low speed data transfer from the digital interface of the motion analyzer

to the digital image processing computer (PC PI11-450),an analogue video signal

is used, i.e. the signal is digitized online by means of a fast frame grabber board

(Imaging Technology IC-PCI AM-FA) and stored on a PC hard disk. In addition

the analogue video signal was also stored on video tape for reference.

§5.12 Conclusion

The Laser Doppler experiments were relatively expensive to design and set up and

required highly accurate equipment. I here had to be considerable planning prior

to running the experiments. A trigger switch had to be designed to activate the

LDA and measurements and the drug injection simultaneously. The accuracy of

the experiments were maximized by dispelling the first 25 charges and then data

was collected for 25,000 validated velocity measurements. The nozzle was cleared of

frozen deposits prior to the next measurements.
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Figure 5.11.1: Flow Visualization Kquiprnont
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SIX

Results

The results presented in lilts chapter are a combination oj three tiilferent technnpt.es.

The technttpi.esare ('I'D, Laser Dopplcr Ancmometry (LI)A) ant! flow visualisation.

A detailed parametric study teas carried,out for the Volumat.ic 1 A/ anil the results have

shown good agreement, with the LI)A and flow visualisation, results. In this chapter

the results for a more ejjieient drug delivery device similar in desiqn to the Aero

eh,amber are also presented. The results have shown ejfieicnci.es in the order of 11%

compared to the current design which is only about lt)% efficient. The findings from

this novel study have lead to the following publications [Jalili .

§0.1 Introduction

In recent years efforts have been made to improve Ilie amount of drug reaching the

affected region,[Newman 'r>| ),Moren (1(>' , Versteeg The research lias mainly con-

centrated around t he actuator; 1 i! 1 nozzle itself. This research has taken the view

that, t he deliverydevice, in t his case the spacer, plays a far more important role Ilian

it lias been given credit for. Kurt,hermoreto our knowledge no (T'l) or experimental

st udy has been underta ken to optimise the design of t lie current commercially avail

able spacer. Il will be shown in the results section, how a commercial (T'l) code

has been used in carrying out a series of parametric studies, in order to optimise

the design of the Volumat\e' A/, thus improving the amount of drug delivered to t he
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alle<ted i c^ion In ordei lo achieve an optimum <lesit»11m Iernis ol (11111\ t leli\ ei \ Ilie

i (>STM!( 11 had I<>I>epr<'Ion i M'(|as a nHI111discipiinar\ task and broken down into l lie

followingsiat;es:

• IiiiIial si 11<I\ nsini!, an

• I 'ai aiiicl l ie si lidv

• Kxpei inieiital si 11<I\

• I ' low \ is11a Ii/a Iion

In the initial pari ol Ilie research, Ilie aim was simply lo j'.ain an iindcisi andinj' ,

i illo llie Ilow paIten is within Iho spacer I lie si iid ywas carried out I>yinject111;an

carrying a concentration into Ilie spacer I his represenled a simple model ol t he

<Inil',.

In Ihe his I part ol Ilie research Ilie coinniercin11y avai lable \ olu maIic was modelled

IISIIIJ' ,Ilie simple model ol Ilie druj' ,<1iscusse<I a I>ove.In Ihis si ndy Mowpal Iems am I

regionsoI recircnlal.ions were hij 'JiIij 'Jit.e<I,Iliesi iidy a Iso hij '.li11j111.e<IIlie 11me si <'p a ml

(lie region where iliaximilin concent ration occn rre<I In Ihis pa11 <il Ihe si inIv '*series

ol parainet lie st ndies were carned on I lliese i lieInde<I<11Mereill |el con lijMiral.ions aI

Ilie inlet lo Ilie spacei I lie second pari ol I.his research invest lj ' .ale<I Ilie ellecls ol

<ha.11j•,inj ' ,para.inel.ers such as Ilie spacei lenj'.l h, and Ilie shape ol Ilie spacei device

in terms of Ilie (lrnj»delivery ellicieney I lie parainelii( si.inly revealed Ihat Ilie

j 'eometry and Ilie lenj' ,1 h ol Ilie device played an iniporlanl role in lei ms ol «1111j»

delivery. I lie results are discussed in detail nndei Ilie ( I I) results secl ion I lie

experimental slinlv was carried onl in Iwo parts. Initially flow ineasiireinenls were

made nsinj', LI)/\ to provide a value foi Ilie exit velocityol Ilie drilj ', into I lie spacei

and validalinj!, Ilie ( I I) model nsinj', an In Ilie second pari ol Ilie cxpciimciil.nl

study a series of dela i led 1,1)A measurements have been Ia ken Irom Ilie nozzlealone,

Ihe centre line up lo Ilie mid way point in Ilie spacei I here have also been yeilical
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6.2. CFD Results

measurements (along t lie \ axis) at tour differentlocations. At each localion 25.000

data samples have been taken and their vain*4 averaged. Kadi measurement location

has been separated by 5 nun from the previous measurement location.

finally laser light sheeting technique has been employed to capture the How field

in t IK4 spacer. 1he high speed camera used recorded 1500 frames per second. I hc

frames were then analysed and equivalent time steps have been compared.

§6.2 CFD Results

This study was carried out as a 21) polar axisymmetric analysis, and two different

codes have been used. The commercial codes used were fluent; 5.3.1 and IMiocnics

2.1.3

In the current study the followingassumptions have been used:

• The particles do not have any stat ic charge

• 'fhe particles do not stick together

• There is no static charge between the spacer and the particles, hence the par-

ticles do not st ick to I IK4 sides ot fhe spacer

• The drug does not change phase1 within tin4 spacer

§6.2.1 Boundary Conditions

Inlet Velocity in the axial direction = 40m/s

V-velocity= ()m/s

No-slip boundary conditions at the walls

The flow is axisymmetric
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6.2. CFD Results

§6.2.2 Grid Dependency test

+ ; ; > > ) ) m " 4
( ( ( ( Ui U

a m -) ) ) , , !

L,

(a) 20x20 Mcsli ( b ) 4 0 X 4 0M e s h

L. •

(c) 80x80 Mesh

igure 6.2.2: Vector Plots Showing TIk1 Ef f ec t o f D i f f e r en t Meshes Us ed

t i Th i s S tu d y

In an y CFD simulation it is important to have a fine enough mesh to capture a

flow characteristics, yet at the same time one needs to strike a balance between the

accuracy required and the computational time needed to arrive at the pre-defined

accuracy value set. In the present study four grid arrangements were used, these

were 20x20, 40x40, 80x80 as shown in Figure(6.2.2).

It was known that the maximum velocity value was 40 m/s just as the drug left
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the nozzle along I lie centre line, therefore this location was chosen when comparing

the velocity values for different meshes. The values for different meshes have1 been

plotted along the centre line as shown in Figure((5.2.3). It can fx' seen from this

figure that the level of accuracy improved very marginally by increasing Ilit ' mesh

density from 80X80 to 200x100. Ihe above findings were verifiedbv analvsing Ihe

velocity contours at t he init ial and final time steps for differentmesh confignrat ions.

Theseare shown in Figure (0.2. la- 0.2. I.f).

first mesh arrangement to be analysed was IIk1 20X20 mesh. \i Ilie initial t

step i.e. 0.05 seconds as shown in Figure ((5.2.la), il can be seen that the jet of

air has entered t he spacer with a captured velocitv ol 38.8 I tn/s compared to t he

It) in/s which has been reported in the literature. The extent to which the jet lias

advanced in the spacer is not clear. It is clear looking at Ihe jet prolile that, the,

middle section of t he jet around the centre line is travelling wit h maximum velocity,

as is expected. At time step 1.0 second il can be seen Ironi figure ((5.2.lb) that the

jet has advanced to the mouth piece end of Ihe spacer, creating a large recirculation

region around t his area. The maximum velocity at, Ihis l ime step has reduced to

12.7 m/s compared to the 10 m/s at time step 0.05 second. Il was expected thai

at this time step the c ; 1 me detachment ol Ihe jet could have been observed, but

this is not clearly Ihe case as can be seen in Figure (0.2. lb). I here are symmetrical

recriculation regions, one on eil her side ol Ihe jet inlet and one near I he top wall and

a similar one near Ihe bottom wall ol Ihe chamber.

The next,case analysed was Ihe 10x10 mesh, this is shown in Figures (0.2. lc-0.2.Id).

In the initial time step i.e. 0.05 seconds the jet of air has entered the spacer, once

again the recorded velocity at . '}!).83m/s, is below IIK- recorded 10 m/s velocity. At

the final time step during Ihe cycle il can be seen clearly thai the jet ol air lias

detached itself from the inlet and there are three recirculationregions present within

the spacer. There are two recirculation regions opposite each other near the exit or

the mouth piece of the spacer and one recirculation region near the inlet In

nozzle.
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The 80x80 mesh is shown in Figures (6.2. ie-t). It can he seen from Figure(6.2.4e)

that the of air has been captured accurately and the extends to which it has

penetrated into the spacer is clearly defined. This is a big improvement compared

to the previous four figures. The velocity contours also have clear region showing

the changes in the jet velocity. The maximum recorded velocity is 40 m/s, which

is a very small region shown iu red. At the 1.0 second time step the maximum jet

velocity has reduced to 0.07 m/s as shown in Figure (0.2. If). It can be seen from the

same figure that the jet has completely detached itself from the inlet region and there

is a large recirculation region near the mouth piece. It can also be observed from

the same figure that, there are a further four smaller recirculation regions. There are

two on either side of the inlet and a further two on either side of the big recirculation

region near the top and the bottom wall of t he spacer. This has confirmed that it,

was not necessary to use a larger mesh than 80x80.

The mesh was refined further just to ensure our solution was mesh independent.

The mesh was increased to 200x100 in x and v directions respectively. This further

refinement did not reveal any further How characteristics. The results are plotted

and shown in Figure (6.2.3).
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L.,

(a) Velocity Contour Time Step 0.05

20x20 Mesh

( I ) ) V e l o c i t yC o n t o u r s T i m e S t e p 1 . 0

Sec. 20X20 Mesh

(c) Contours of Velocity Time Step 0.05

Sec. 10x10 Mesh

(d) Contours of Velocity Time Step 1.0 Sec.

•10X40 Mesh

L,

(e) Contours of Velocity Time Step 0.05 (f) Contours of Velocity Time Step 1.0 Sec

Sec. 80x80 Mesh 80X80 Mesh

Figure 6.2.4: Mesh Dependence Study
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§6.3 Parametric Studies

A detailed study was carried out, investigating the effects each parameter had on

the efficiencyof the device. The parametric study is described in the order it was

carried out. For each simulation a snap shot at four different time steps has been

plotted. The obvious starting point was to use the current Volumatic /M which has

a length of 24 cm and a diameter of 9 cm at its widest point. The mesh used for this

study was the 80x80 mesh, this was adequate as shown by the previous section.

The initial case studied was the standard situation encountered by patients using

the pMDI and the spacer. The discharge from the pMDI nozzle entered the spacer

in the form of a straight jet, Figure (6.3.1a-d) The drug concentration at different

time steps during the cycle has been plotted.

At the initial time step i.e. 0.05 seconds the discharge from the nozzle has entered

the spacer, Figure (6.3.1a). The jet has a narrow profile and has extended inside the

spacer about 2/3 of its length. The drug at this time step was still being injected

into the spacer, so the maximum concentration was at the nozzle. It has been shown

in Figure(6.3.1a) that the jet of air has entered the spacer and lias traveled roughly

about two-thirds of the spacer length into the device. The jet has then come to rest

and started to diffuse.

At time step 0.4 seconds as shown in Figure(6.3.lb), the maximum concentration

had reduced to 0.069 of the original value (1.0), and accumulates near the exit or

the mouth piece of the device. This concentration level was in the reported range of

6.9- 10%,[Dolovich(16) ].

At 0.75 seconds, shown in Figure (6.3.1c), maximum concentration had reduced to

6.6% and the highest concentration levels werearound the mouth piece and extended

backwards half way in the spacer. It was also observed that about l/. 'J of th<>spacer

volume did not contain any drug. The elimination of this empty space would benefit
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the manufacturers by reducing the cost ot materials and the patients, by making the

device smaller and more portable.

Finally the last time step iu the simulation was analysed, i.e. 1.0 second, Figure

(6.3.1(1) the drug concentration had reduced Irom (>.(>%to 6.5%. Ihe common lea-

lure ol all t he time steps analysed was t hat, t he maximum drug concentrat ion always

accumulated around the mouth piece and also about I/. '{ol the spacer volume re

maincd empty ol any drug. I he understanding obtained from the How st udies for

the standard Volumatic' A' design has lead to furt her parametric st udies, iu order to

optimise the current, design.

§6.3.1 Jet configuration

The process of optimising t he current Voluiuatic' A' design was init ialed by looking

at the various jet, profilesat, inlet and the over all effect they had introduced in terms

of the drug delivery elliciencyand mixing of the drug. For this purpose a number

of different jet configurations have been studied. These are shown in F igure (6.3.'2).

The straight, jet,configurationhas not,been discussed here again, as it has been used

in detail in the previous section and the grid dependency study.
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( a ) C o n c e n t r a t i o n D i s t r i b u t i o nT i m e
Step 0.05 Sec.

( b ) C o n c e n t r a t i o nD i s t r i b u t i o nT i m e
Stop 0.4 Sec.

(c) Concentration Distribution Time (d) Concentration Distribution Time Step 1.0
Step 0.75 Sec. Sec.

Figure 6.3.1: Concentration Distribution For Straight .Jet
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> StraightJet

ConeJet

Figure 6.3.2: Different.let Configurations

flie initial jet configuration study was that of a cone shape. The cone angle was

defined to be 5° as shown in Figure(6.3.2). The time steps have been analysed

and presented in Figure (6.3.3a-d). It has been shown in Fignre(6.3.3a), that at

0.05 seconds, the jet has entered the spacer and travelled approximately half way

inside the spacer. The jet was shown to expand out and resemblesa mushroom like

structure. This was attributed to the highly turbulent nature of the jet within the

spacer. At this stage tlie maximum drug concentration was around the inlet region.

This was due to the fact, that the drug was still being injected into the spacer.

The analysis for the time step 0.4 second, shown in Figure(6.3.3b) that there was

a considerable amount of mixing taking place. This mixing had helped the whole

volume of the spacer to be utilised. At this time step the highest drug concentration

level has reduced to 10.2%, however the highest concentration level although large

in volume was no longer near the mouth piece, but was surrounded by regions where

the drug concentration was lower, near the mouth piece.
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At 0.75 second the maximum drug concentration level had reduced to 9.5%. This

was slightly lower than the 10.2% recordedat time step 0.4 second. This was not to-

tally unexpected, as it was commonly observed, the maximum concentration occured

around 0.4 second.

The How patterns at time step 1.0 second were analysed. It is clear that, the maxi-

mum drug concentration had reduced very slightly to a value of 9.4%. The highest

drug concentration level has spread out more and had extended backwards towards

the injection location as shown in Figure (6.3.3d).

In concluding this part of the research, the conclusions drawn were that, the jet

with the cone angle profile had increased the percentage of the drug delivered, but

the highest concentration was not found to be near the mouth piece. The second

important feature of this study was that, a higher percentage of the volume of the

spacer was utilised.
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( a ) C o n c e n t r a t i o n D i s t r i b u t i o n 5 ° . I d

A n g l e I l i n e S t e p 0 . 0 5 S e c

( I ) ) ( ' < M i c c i i l i a t i o n I ) i s t r i

A n g l e l i m e S t e p I ) I S i • <

J e t

( c ) C o n c e n t r a t i o n D i s t r i b u t i o n 5 " . l e t ( < l ) ( ' o n c c n l r a t i o n D i s t r i b u t i o n 5 " . l e t A n g l e

A n g l e T i m e S t o p 0 . 7 5 S e e I l i n e S t e p I 0 S e c

f i g u r e . ' 5 :( ' o n e e n lr a t i o n D i s t r i b u t i o n I •o i I l i e " . I « •I A n g h

§6. 3.2 Jot Willi .'{()"( ' O IK* Angle

There arc numerous cone jet configurations which can l>ostudied, but due to Ilie

I imc conslrainl only two cone jet profileshave been modelled.

In I his st ii<IvIhe jet wit h a conical profilewit lia cone angle of was modelled I lie

purpose has been to study what effects varying Ihe jet cone angle made in terms ol
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I lie pen cut age ot t lie drug deliveredand tlie volume ol t he spacer being oceupie<1 1»v

(lie di ug. In all tin*studies carried out so 1a r the highest drug concentration within

the spacer has been in tin*range reported in the respiratory journals.

1he analysis carried out has been present,ediu Figure ((>.. '{.la-d). It can be seen

from 1' igure ((i.,1.4a) t hat the jet ol drug had entered the spacer. I lie jet had a. very

narrow profileand extended approximately 2of the way inside the spacer. The

jet Ilien, began to diliuse. ( )IH"<*again Ihe maximum drug concentrat ion at t his t.i

step was formed around the nozzle or Ihe inlet to the spacer.

At 0.4 seconds the maximum concentrat ion around the mouth piece was about,7.7%,

however there was a higher drug concentration region just along the centreline as

shown in Figure (()., '!.4I>). I lie noticeable change in this jet configuration was I lie

considerable volume of the spacer, which was completely empty ol any drug con

cent,ration, hence not serving any purpose. At time step 0.7.r>, as shown in Figure

(().. '$.4c), it was observed that, the region containing the maximum drug concentra-

tion was near the mouth piece. This region was very narrow compared to the siinilai

time steps in t he previous studies. I lie highest drug concent ration value has reduced

from 8.1% to 7.1%. At the end of the cycle, t ime step 1.0 second the concentrat ion

of the drug delivered had reduced slightly from 7.1%) to 7.(1%). I his maximum con

cent,ration region was st ill near the ... ' ' piece arid had slightly increased in volume

around the centre line. This st udy and the previous analysis have shown t hat, there

was no significancein terms of drug concentration from 0.75 second to the final

step, which is 1.0 second.
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(a) Concentration Distribution 30° Jot

Anglo Time Stop 0.05 Sec.

(t») Concentration Distribution 30° Jet

Anglo Time Step 0.4 Sec.

(c) Concentration Distribution 30" Jot (d) Concentration Distribution 30" Jot Angle

Anglo Time Step 0.75 Sec. Time Step 1.0 Sec.

Figure 6.3.4: Diagram Showing 30" .JetCone angle Results

§6.3.3 19.5" cleg spray Angle

The next parameter that was changed, was the jet profile at inlet to the spacer. The

profile modelled was in the shape of a spray with an angle of 19.5° In this study

the spray angles ranging from 19.5° to 60° have been studied and the results have

been shown graphically in Figure (6.3.5a-d). The significanceof this angle was that,

it caused the jet to enter the spacer parallel to the top wall of the spacer. The jet
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configuration used is shown in Figure (6.3.2). The result for this particular study

have been analysed in detail. In order to be consistent with previous studies, the

same time steps have been analysed.

At the initial time step the jet entered the spacer and extended approximately 2/3

of the spacers length inside the device as shown in Figure (6.3.5a-d). The jet was

then observed to diffuseand adopted a shape similar to the glass balloon formed at

the end of a glass blower's tube.

At time step 0.4 second majority of the drug had accumulated in the second half

of the spacer and the highest concentration had accumulated in a thin layer near

the mouth piece spreading upwards towards the top wall of the spacer. The highest

concentration value had reduced to 7.3% as shown in Figure (6.3.5b).

At time step 0.75 seconds the highest concentration had reduced from 7.3 to 6.8%.

The region with the highest concentration was seen to fill a small region near the

mouth piece, and extending backwards against the top wall towards the centre line.

This particular jet configuration does not appear to be as efficientin terms of drug

delivery as the previous configurations already discussed. This jet configuration

leaves about 1 /3 of the spacer volume empty of any drug, once again raising the

question, that is the current size the optimum size for the spacer.

At time step 1.0 second, the highest concentration value had reduced to 6.7%. The

region was concentrated more closely to the mouth piece and did not extend back-

wards as far as in the previous time steps for the same jet profile. Once again about

1 /3 of the spacer volume remained empty of the drug.
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— 1 95 d e g r e e s
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Figure 6.3.0: Comparison of Different Jet. Angle Inclinations

the values are plotted along the eenterline

§0.4 Geometry Effects

The jet configuration studies had revealed that under certain conditions about one

third of the spacer volume remained completely empty of any drug. This finding

indicated, the efficiency may t>eimproved by reducing the size of the spacer. The

geometrical changes have been studied in detail and the findings are reported in tlie

followingsections: It has to be noted t lie originalspacer would not be described here

again, as this has been covered in detail in previous sections.

Page 121



6.4. Geometry Effects

§6.4.1 New Spacer Model Length, 12cm

The geometry effect was the final part of the parametric study. The aim in this

section was to re-design the spacer by making a simple dimensional change, hence

producing a more efficientand portable device.

The new refined spacer was modelled and the flow behaviour analysed in terms of

the regions where the drug with the highest,concentration accumulated. In order to

magnify the geometry effects the spacer length was reduced from 24 cm to 12cm.

1 he other dimensions such as the inlet diameter and outlet diameter of the mouth

piece remained unchanged.

In the initial study the spacer length was 12 cm. The drug was injected into the

spacer with the jet, having a straight profileand an inlet velocity of 10 m/s. The

results are shown in Figures (6.4.1a-d).

At the first time step shown in Figure(6.4.la), the jet has entered the spacer and

travelled 2/3 of the way inside the spacer. The jet then has shown to diffuse.

At time step 0.4 seconds the maximum drug concentration was 13.8% and had oc-

cupied the region around the top and bottom wall on either side of the mouth piece

shown in Figure (6.4.1b). At this time step the the jet of drug had reached the end

of the spacer and the trailing jet of drug had pushed the region containing the higher

concentration away from the mouth piece. However the reduction in t he size of the

spacer accompanied by the reduction in velocity does not seem to have made any

difference in terms of utilising the whole volume of the space.

At time step 0.75 seconds the trailing jet of drug had disappeared and the regions

containing the highest drug concentration had settled around the top and bottom

side wall in a symmetrical manner. The maximum drug concentration, although

marginally higher at 12.5% than previous studies was not a hug improvement. This
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value is shown to reduce slightly for the 1.0 second time step as shown in Figun

(G.4.1d).

i

(a) Concentration Distribution Straight (b) Concentration Distribution Straight

.let Velocity lOm/s Time Step 0.05 Sec. .Jet Velocity lOin/s Time Step 0.1 Sec.

(c) Concentration Distribution Straight (d) Concentration Distribution Straight Jet Ve-

Jet Velocity lOm/s Time Step 0.75 Sec. locity lOm/s Time Step 1.0 Sec.

bigure 6.4.1: .let Inlet VelocitiesAt 10 in/s For The Spacer Length 12cm

The velocity was then increased to 30 m/s and the results for the same four time

steps, shown in Figures (6.4.2a-d). The immediate noticeable feature was that the

jet had travelled a long distance inside the spacer and due to highly turbulent nature

of the How , the jet had diffused at a much faster rate.

At 0.4 seconds as shown in Figure (6.4.2b), the highest drug concentration had risen
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to '20%. I his region was quite large in terms of volume compared to the previous

cases studied. It was also noticeable that there was hardly any empty volume Iree

of drug in this modified spacer. This increase in the drug concentration level, was

almost twice higher than any figure reported in the literature. Furthermore the

highest concentration had occurred around the mouth piece.

At 0.75 seconds the concentration level has reduced slightly to 1!)%,but the highest

concentration region was still around the mouth piece as shown in Figure (6.4.2c).

Finally at 1.0 second the only noticeabledifferenceobservedshown in Figure (6.4.2(1)

was that the, highest concentration level reducedslightly and the region became more

uniform in terms of drug concentration distribution.
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(<i)( OIKentiat.ion Distribution Straight (b) ('oncent rat ion Distribution Straight

.let Velocity .'iOin/s lime Stop 0.05 Sec. .let Velocity 30in/s rime Step 0 1See.

(c) Concentration Distribution Straight (<f)Concentration Distribution Straight .let Ve

Jet Velocity 30iu/s Time Step 0.75 Sec. locity ,'JOni/s l ime Step 1.0 See.

Figure (i.1.2: Iitlot Velocities30m/s Spacer Length I2ein

A new study was undertaken, with the jet inlet velocity set at 10 m/s. shown in

Figures ((i.-l.3n.-d).Ii was observed that at time step 0.Of) second the jet had entered

the spacer and t,ravelled a long distance inside the device. The How was highly

t urIndent, hence explaining tIK1rapid dillusion of the jet as shown in Figure (ti. 1.3a).

At 0.4 seconds shown in Figure (6.1.3I>),that the majority of the spacer was filled

with drug containing the highest concentration. This concentration was 2 1'/ of the

original concentrat ion being injected into t he spacer. It can also be seen that Ihe jet
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hacl completely detached itself from the nozzle as expected, and the trailing jot is

diffusing and mixing with the hulk of the drug in the spacer.

At 0.75 second the highest concentration level had reduced to 23% ,shown in Figure

(6.4.3c). It was also clear from the above figure that, the trailing jet had almost

completely diffused within the spacer. The other noticeable feature was the full

utilisation of the spacer volume.

At 1.0 second there were no major changes in the flow pattern, except for a slight

reduction in the level of drug concentration. One major feature of this particular

case was that, the volume of the spacer containing the highest drug concentration

was immediately accessible to the patient, as it had filled entirely 2/3 of the spacer

volume, as shown in Figure (6.4.3d).
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(a) Concentration Distribution Straight

.let Velocity l()ni/s Time Step 0.05 Sec.

(1))Concentration Distribution Straight

•let Velocity lOm/s Time Step 0. I Sec.

L,

(c) Concentration Distribution Straight (d) Concentration Distribution Straight Jet Ve

.let Velocity 10in/s Time Step 0.75 Sec. locitv 40in/s l ime Step 1.0 Sec.

Figure 6.1.3: Inlet Velocities lOm/s Spacer Length 12etn

The analysis of the above studies have1 shown that, the most efficientspacer in terms

of drug delivery, would have a st raight jet profileand an inlet velocity of 10 m/s.

This combination has shown to deliver approximately 23% of the drug to Ihe mout h

piece.
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§6.4.2 New Spacer Model Length, 6cm

In order to investigate the geometry effects further the spacer length was reduce<lto

0 cm and the same range of jet inlet,velocitieswere analysed.

Initially the straight jet with an inlet velocityof It) m/s was modelled, Figure (6.4. la).

1he jet had entered the spacer and was confined to a a very narrow profile, with a

very wide head. 1his appearance was created as a result of a very rapid diffusion It

was also be observed from t he above figure that the jet,of drug reached the mouth

piece very quickly.

At 0.4 seconds the maximum drug concentration was 23% and occupied a region on

either side of the centre line around the mouth piece. The trailing part, of t he jet

had then readied the mouth piece as shown in Figure (6.4.4b). This had created two

separate recirculation regions.

At time step 0.75 the highest,concent,rat,ionlevelhad reducedto 21% shown in Figure

(6.4.4c). At this time step t here were two separate regions where the drug was seen

to be mixing quite vigorously.

At the final time step, the two regionscontaining the drugs of varying concentration,

appeared to have a more in concentration. The surprising feature of this case

was the volume ol spacer which had remained empty of any drug as shown in figure

(6.4.4d). It, was also observed that the concentration level had followed the usual

trend and had reduced by 1% for t he final time step.
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(a) Concentration Distribution Straight

Jet Velocity l()iii/s Time Step 0.05 Sec.

(I))Concentration Distribution Straight

Jet Velocity lOni/s Time Step 0.1 Sec.

(c) Concentration Distribution Straight (d) Concentration Distribution Straight Jet Ve

Jet Velocity lOm/s Time Step 0.75 Sec. locity lOm/s Time Step 1.0 Sec.

The next case studied was (lie that of the 30 m/s jet inlet velocity. Il was observed

from Figure (6.4.5a) that the jet of drug had entered t ho spacer and after reaching

the mouth piece, it had begun recirculating backwards towards the middle of the

spacer. The main body of the jet was shown at this time step to have a very narrow

profile up to the head of the jet.

At 0.4 seconds the maximum drug concentration was shown in Figure (6.1.4c) to

have accumulated near the mouth piece, having a maximum concentration of 33%.
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This was by far the highest value achieved.

At, 0.75 seconds two separate regions containing varying drug concentrations were

formed. I he region at the inlet had the lowest drug concentration and the region at

the mouth piece had been occupied by the drug containing t he highest concentrat ion

level as shown in Figure (6.4.4c).

At time step 1.0 second there wen1 not any changes in the drug concentration levels,

as shown in Figure (6.4.5d). This particular analysis had proved varying the param-

eters, such as geometry and inlet velocity would have a profound effect on t.he drug

concentration levels and regions where the highest concentrations were accumulated.
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(a) Concentration Distribution Straight

•Jet Velocity 30m/s Time Step 0.05 Sec.

(b) Concentration Distribution Straight

.Jet Velocity 30m/s l ime Step 0.1 Sec.

(c) Concentration Distribution Straight (d) Concentration Distribution Straight .Jet Ve-

Jet Velocity 30in/s Time Step 0.75 Sec. locity 30m/s Time Step 1.0 Sec.

Figure 6.4.5: Inlet Velocities30m/s Spacer Length 6cm

The final ease studied was that of the jet inlet velocity of 40 ni/s. This case was the

final analysis for the current spacer model and would prove if the parametric studies

have optimised the performance of the current spacer design.

At 0.05seconds Ihe drug was injected into the spacer. It was shown in Figure (6.1.6a)

that the jet of drug had readied the mouth piece of the spacer, while the highest

drug concentration was still at the inlet of the spacer.
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At 0.4 second the values shown in Figure (6.4.6b) had revealed a disappointing

picture. The highest concentration level recorded was onlyabout 9.5%. Furthermore

the high concentration region was situated away from the mouth piece, this in itself

was a situation which needs to be avoided.

At time step 0.75 the highest drug concentration had reduced to 8.7%. It was clear

from Figure (6.4.6c) that, the region with the highest drug concentration had moved

to the front of the spacer, just near the mouth piece.

At time step 1.0 seconds there was a slight reduction in the drug concentration

levels, as shown in Figure (6.4.6d), but otherwise no other significant changes were

observed.

§6.4.3 Summary of The Modified Volumatic rw Designs

In this section a summary of the findings for the two modified models of t he spacers

(i.e. the 12 cm and 6 cm) has been presented in Figures (6.4.6a-f). Initially the

results are shown for time step 0.4 second, as at this time step the maximum drug

concentration was present. It can be seen from Figure (6.4.6a), that the maximum

drug concentration at time step 0.4 seconds for the 12 cm length spacer was 23%.

It can be seen from the same time step when the spacer length was reduced, the

maximum drug concentration level was 9.^)%us shown in Figure (6.4.6b). It is clear

from the current analysis the spacer which was 12 cm long in length was t he more

efficient device.

The next set of results shown in Figures (6.4.6c) indicated that at .30m/s the more

efficient design was that of the 6 cm long spacer deliveringa maximum of 33% of the

drug, where as for a similar inlet velocity, the 12 cm spacer model had only delivered

20% of the drug to the mouth piece as shown in Figure (6.4.6d).
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(a) Concentration Distribution Straight
.let Velocity l()ni/s Time Step 0.05 Sec.

(b) Concentration Distribution Straight
Jet Velocity 40m/s l ime Step 0.4 Sec.

U:

(c) Concentration Distribution Straight (<1)Concentration Distribution Straight Jet Ve
Jet Velocity 40m/s Time Step 0.75 Sec. locity 40m/s Time Step 1.0 Sec.

Figure 6.4.6: Inlet Velocities40m/s Spacer Length 6cm
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Finally the results for the 10 tn/s inlet velocity were analysed. In the first instance

the Gcm spacer was studied. It,has been 1 : that for this inlet velocity tlie spacer

had delivered drug concentration of 23% to the mouth piece. For t he similar set

up the 12 cm spacer had managed to deliver only 13.8% of the drug, as n in

Figures(6.4.6e-f).
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L.

(a) Concentration Distribution Straight

Jet Velocity 40m/s Length 12t in Time

Step 0. I Sec.

(b) Concentration Distribution Straight

.let Velocity lOni/s Length 6cin Time

Step 0.1 Sec.

(e) Concentration Distribution Straight (f) Concentration Distribution Straight Jet Ye-

Jet Velocity lOm/s Length 12cm Time locity lOm/s Length 6cm Time Step 0,1 Sec.

Step 0.4 Sec.

Figure 0.4.7: Concentration Distribution For Diilient Spacer Lengths
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Jet Velocity 30m/s Length 12cm Time

Step 0.4 Sec.

(d) Concentration Distribution Straight Jet Ve-

locity 30m/s Length 6cm Time Step 0.4 Sec.
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It was important to establish what the final drug concentrations were at the 1.0

second time step for all the models studied. The results have been presented in

F igures (6 .4 .7a- f ) .

The initial study shown in Figures (6.4.7a-b)has shown that for the jet inlet velocity

of 40 m/s the Gcm spacer has only managed to deliver 8.6% of the drug, where as for

the same inlet condition the 12 cm spacer has managed to deliver 24% of the drug.

The next analysis was for the time step at 1.0 second, with the jet, inlet velocity set

at 30 m/s. The results are shown in Figures (6.4.7c-d). It, is clear from the results

that, the 6 cm spacer has delivered 31% of the drug at 1.0 second, where as for the

same jet inlet, velocity the 12 cm spacer can only deliver 19% of the drug to the

mouth piece.

In the final analysis the flow patterns for the inlet velocity set at 10 m/s were

compared. The results are shown in Figures (G.4.7e-f). It can be seen that the 12

cm spacer has delivered 12.5%. The similar jet inlet velocity has resulted in 23% of

the drug being delivered for the 6 cm spacer.
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(a) Concentration Distribution Straight

.let Velocity 40ni/s 12cm Length Time

Step 1.0 Sec.

(b) Concentration Distribution Straight

Jet Velocity 40m/s Length 6cm Time

Step 1.0 Sec.

L: L

(c) Concentration Distribution Straight (d) Concentration Distribution Straight .Jet Ve-

Jet Velocity 30m/s 12cm Length Time locity 30m/s G cm Length Time Step 1.0 Sec.

Step 1.0 Sec.

(e) Concentration Distribution Straight (f) Concentration Distribution Straight .Jet Ve-

Jet Velocity lOm/s 12cm Length Time locity lOm/s Gem Length Time Step 1.0 Sec.

Step 1.0 Sec.

Figure 6.4.8: Concentrat ion Distribution For Diflrent Spacer Lengths
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At. time stop 1.0 second the maximum drug concentration level in all the test cases

has reduced. The smallest reduction in drug concentration wasobserved in the (»cm

Volumatic spacer. This model carried 31% of the drug at the final time step.

§6.4.4 Conclusions

The analysis carried out have shown that, for each geometrical change there is an

optimum inlet velocity value for which the spacer can deliver the highest drug con-

centration. It was clear from the analysis, that the highest drug concentration was

delivered, when the spacer length was 6 cm and the inlet velocity was 30 m/s. This

study had shown the efficiencyof the device was increased by a further '21% under

these conditions.

It can also be concluded from the studies carried out that the inlet velocity of 10

m/s generally did not deliver the highest drug concentration for the standard spacer

length, the 12cm long and the Gcm long spacer.

The next step forward was to study differentgeometriesand carry out a similar study

for each geometry, until an acceptable levelof drug delivery was achieved.

§6.5 The Straight Tube Design

The lack of literature available on the design of the current spacer device, and the

increase in use of tube like spacers or aero chambers, together with the confirmation

from the previous section that there had to be an optimum geometry for the spacer

device which has led to the followinginvestigations.

The current tube design or aero chamber was investigated and after a series of anal-

ysis it was concluded that, the, device could be made more efficientby making some
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minor adjustments. I ho other reason for choosing this device, was tlie tube like

shape, which makes it easily portable. The dimensional measurements were made

from a current aero chamber and a prototype was made.

Iht1 new lube like spacer had a length of 10 cm and was made of Perspex material.

I he two holes were drilled one at the top and the other at t he bottom of the spacer

at a distance of 2 cm from the inlet. The holes drilled cause a change in pressure,

this change in pressure keeps the jet narrow and directs it towards the mouth piece.

A simple spring and weir arrangement ensured that the drug was injected straight

into the spacer rather than hitting the lower wall at inlet. The comparison of the

two spacers is shown in Figure(6.5.1).

Figure 6.5.P Comparison of the I wo Spacers

At time step 0.05 seconds shown in Figure(6.5.2a) it was observed that the drug

had been injected into the spacer. It was noticed at a glance that the flow pattern
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was completely different from any of the previous studies. The two small holes on

either side of the spacer caused a change in pressure as the drug was injected into t he

spacer. The change in pressure caused a recirculation region at the location of each

hole. The jet of drug was then forced to the mouth piece end of the spacer, Figure

(6.5.2a). The highest drug concentration is accumulated at the top and bottom

corner of the spacer.

At the 0.4 second time step the detached jet had driven the drug forward within

the spacer causing the highest drug concentration to remain at the mouth piece end

of the spacer and fill that region completely,Figure (6.5.2b). The maximum drug

concentration at this time step was 73%. This was by far the highest delivered drug

concentration.

The next snap shot analysed was at 0.75 seconds. There was clear evidence of drug

mixing as the region marked yellow in the spacer had reduced in volume and at the

mouth piece end the region with the highest concentration level marked red had

increased in volume. This region had a concentration of 71% as shown in Figure

(6.5.2c).

Finally at time step 1.0 second, shown in Figure (6.5.2d), that there had been no

change in the level of drug concentration. I his device had by far has out preformed

any existing commercially availablespacer in tlie market according to the available

literature. In concluding this part of the study the advantages of the tube design

over the current spacer design can be stated as follow:

• It has increased the efficiencyfrom approximately 10% to 71%

• The new tube design is only about 10cm long compared to 24cm and is less

bulky, so it can fit in a persons pocket as shown in Figure(6.5.1).

• The design is so simple, that the manufacturing costs would be reduced
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(c) Drug Distribution

Straight Jet Velocity 40m/s

Length 10cm Aero Chamber

Time Step 0.75 Sec.

(d) Drug Distribution

Straight .Jet Velocity lOm/s

Length 10cm Aero Chamber

Time Step 1.0 Sec.

Figure (j.5.2:Drug Distribution For The New Aero Chamber Design
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§6.5.1 Conclusions of the Parametric study

In conclusion to the parametric it can bo stated that, the spacer cHieienoyin

terms of drug delivery increases when the length of the spacer was reduced from

0.24m to 0.06m. lliis together with reduction of the inlet velocity from 40m/s to

i , s had meant that the maximum drug concentration delivered had increased

from 6.5% to 31%. 1 his improvement was the maximum achievable for the current

Volumatic design.

Fhe best improvement was made when the design was changed to a straight tube

(Aero Chamber) with two small holesopposite each other. The regioncontaining the

maximum drug concentration had a maximum value of 71%. The full set of results

are tabulated in Table(6.6.1) and results are discussed in terms of percentage of the

drug delivered.

Original Shape j Jet Type Efficiency% Velocity m /s
Length 0.24m Straight 40

Length 0.24m 5Deg. Cone Angle 9.4

Length 0.24m 30 Deg. Cone 7.7 40

Length 0.24m 1 9.5Deg. Spray | 0.3 r «
Length 0.12m Straight ,,, 10
Length 0.12m Straight 19 | 30

Length 0.12m Straight 23 40

Length 0.06m Straight 20 _ 10

Length 0.06m Straight 30 30

Length 0.06m Straight Lm 1 40

Tube 0.10m Straight 71 I

Table(6.6.1) Summary of Parametric Studies
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§6.6 Experimental Results

The experimental study has become a major component of any CFD analysis. In

some cases the experimental results published in the literature are used to validate

the CFD research. However in novel studies there is often little or no published

experimental results for comparison or validation purposes.

The lack of experimental results in this novel research, meant that experiments and

experimental equipment had to be designed or modified, in order to provide valida-

tion for the CFD results. For this reason the experimental validation was divided

into two categories as follow:

• LDA measurements

• High speed photography

§6.6.1 Validation of CFD Results Against LDA

In the initial CFD study air was used to get a better understanding of the flow

behaviour within the Volumatic™ spacer. The standard was to model the current

commercially available device and provide useful information for industry. The CFD

results were then compared to the LDA measurements taken along the centre line,

using a commercially available pMDI. The results provided a good approximation

of the jet inlet velocity. The LDA measurements also helped to test the capability

of the measuring equipment and helped to eliminate any potential problems. I lie

experimental study also increased the confidence in the modelling approach adopted

for this study. The comparison of the LDA measurements against CFD results

is shown in Figure(6.6.1) and it can be seen despite differencesin the properties of

drug and air the flow measurements display a similar trend and the values are closely
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matched.

LDA vs CFD Comparison

5 i

• Experimental•

•

1

Velocity m/s

Figure 6.6.1: CFD Validation Against LDA Results At Distance 12cm from Inlet

From Center Line In Positive Y Direction

The standard spacer which has a length of 24 cm was chosen for the validation study.

The convention used for making the measurements is shown in Table(6.2).

Directory Listing Y

P(y value in mm)-positive to datum

X(x value in mm) all positive from datum

File listing X(x value in mm) app positive from Datum

Table(6.2) Notation Used in Measuring Data

Measurement attempts along the plane YP10 (10mm above the centre line in the

positive Y direction) indicated that very few particles were present to be recorded
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<xo

Figure 6.6.2: Measurement Orid I seel In the Study
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as a useful set of velocitydata without au excessivenumber of canisters. The sets

of measurements tor the positive YP5 plane also indicated a reduction in particle

numbers and thus a very low data rate. For this plane, the number of validated

Doppler events was limited to 5000 to ensure that the entire measurement grid could

be completed. The repeatability of experiments performed at the same grid location

was found to be generally within ± 5% for the average recorded velocities in the

bulk flow regionsduring the injection event. All instantaneous velocity distributions

were within 3 standard deviation of the mean value over the injection event. At

each grid location, the mean velocity and turbulence intensity after 25,000 validated

Doppler events was recorded. It should however be noted that these results arc

recorded as a means by which the experiment can be verifiedduring its course and the

values given are based upon injection and inter-injectionmeasurements. The velocity

distributions were skewed by returning particlesdeflectedfrom the far, opposite wall

and particles suspended between shots. These were indicated with regions of very

high turbulence intensity. The standard spacer which had a length of 24 cm was

chosen for the validation exercise. The locations are shown in Figure(6.6.2). The

CFD verse LDA results for the three locations defined in Figure (6.6.2) have been

plotted in Figures(6.6.3-6.6.6).A similar process wascarried out, for the tube design

but in this instance, due to lack of time and resourcesmeasurements wereonly taken

at, y=5 (5mm above the centerline in positive Y direction) planes, the results are

shown in Figure(6.6.7).

The CFD and experimental results shown in Figure(6.6.3) have been taken along

the centreline at location Y=0. The results indicate the velocity value has reduced

from 40 m/s to 20 m/s in only a distance of 5 mm from the nozzle. The velocity

is then shown to decrease as the distance from the nozzle is increased. 1 his has

been mirrored by the CFD study and is the outcome expected. The velocity values

estimated by CFD are slightly higher than those measure using LDA, this is was

contributed to the fact that, in our CFD simulations the particles were free from any

attachement to each other.
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The results presented in Figure (6.6.4) have measured at location YM10. This lo-

cation is 10 mm below the centre line of the Volumatic™ spacer. It can be seen

that the maximum velocity has oceured at a distance of 30 mm from the no/zle.

The velocity value at this location was approximately 9 m/s. The reason for this

phenomenon can be explained by the followingsuggestion: the particles are colliding

with the side wall of the spacer and are carried along by the faster moving particles

above them.

At the location YM5 shown in Figure (6.6.5), this is a distance of 5 mm below the

centre line, the particle velocities haveshown an increase from approximately 12 m/s

to about 18 m/s. I his fluctuation is noticed over a distance of 30 mm where the

turbulence is quite strong as indicated bv the contours plot earlier in the chapter.

At the 10 mm mark the velocity value has decreased to approximately 10 m/s. This

contributed to the decay of turbulence and t in1 general propellant decay.

It can be seen from Figure (6.6.6) the velocity measurements recorded indicate a

reverse flow region at a distance of 10 mm from the nozzle. The velocity has then

shown to increase, up to the distance of 35 mm from the nozzle. The velocity

magnitude recorded here are only about 1.4 m/s at the highest value. Once again

the CFD and experimental studies show very close correlation.

Finally the Aero Chamber design was investigated, as shown in Figure (6.6.7). Due

to the lack of time and drug only one location was chosen to take measurements

from. At location Y=5, i.e just 5 mm below the centre line. It can be seen from

the data plotted, that there is evidence of reverse How up to about 7 mm from t he

nozzle. This was expected as the two holesdrilled on either side of the chamber, were

creat ing a change in pressure and two large recirculation regions. The comparison for

between Figures (6.6.6) and Figure (6.6.7) indicate that in both models the measured

velocities are of the same order.
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Velocity Distribution At Y =0
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Figure 6.6.. 'J:LDA VS CFD Measurements lor The Voluinatic' M

CFD VS LDA Results At YM10
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Figure 6.6.4: LDA VS CFD Measurements For Hie Volumatir ' A
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CFD VS LDA At YM5

Distance From The Nozzle (mm)

Figure 6.6.5: LDA VS CFD Measurements For The Volumatie'

CFD VS LDA At YP5
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-CFD

15 20 25 30

Distance From The Nozzle (mm)

Figure 6.6.6: LDA VS CFD Measurements For The Volumatie/A
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CFD VS LDA AT Y=5

Straight Tube

-CFD
-EXP

-i 1 1 1 1 i-

10 15 20 25 30 35 40 45

Distance From The Nozzle (mm)

'iimre (i.6.7: LDA VS (-I'M)Measurements For Aero ('liamlx'i I)csiji,n

§(}.().2 Conclusions

Ihe coin lusiotisreportCM! in t his section are only based upon the experiinentalol>sei

v;

• Time series data taken from the start of the injection was used to separate

injection Irom inter-injection ineasuiements.

. The lack ..rpari icles in per l>»rt<>f1 nozz l e ' 'x i l " 'K""1 s u g g es t ed

th a , t h o jo t e x i a l a downwards anRl< - . T l w in j e t r eg io n was es t ab -

l i sh e d Ih ro u g h the y I I and y -5 p l anes . T in ' p l ane y - I I I ex h ib i t ed a h ig h e r

v e lo c i t i e s t h a n the y I 5 p l ane . The , l ownward mot io n o f th e j e t c ro a l ed a

re - c i r c u l a to ry pa t t e rn a s the Howwas do l l oc todhack the lo wer , f a r co rn e r ,

u p wa rd s a n d b ack towards the no / / The nozz l e ex i t was h o r i zo n t a l an d
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parallel to the axis of the spacer device.

1h< tuibulence intensity values were reduced in the hulk flow regions. These

weie less influenced by th<4 returning flow. 1he values were the lowest in the

main jet region at y=-5 nun.

• I he majority of t he data wascyclic, this meant t he Irigger input had functioned

correctly. Inter-injection measurements have shown to significantlyskew the

velocity distributions towards a lower mean value.

§6.7 Flow Visualization Studies

I he method for this technique has been described in chapter"). The high camera

recur:!::! 1500 trames per second, for this reason it will not be feasible to show all

the frames in this thesis. It has been attempted to present the*same time steps as

the CFD study.

At 0.05 second, it can be seen from Figure (6.7.1a) that, the jet of drug has entered

the spacer. The jet enters the device keepinga narrow profile,and then it has began

to diffuse. This is exactly the flow pattern observed using CFI).

At time step 0.4 second, it can be seen from Figure(G.7.1.b), t hat t he jet hasdetached

completely and the drug has accumulated in the mouth piece half of the spacer. At

this stage half the spacer was freeof any drug. This was similar to the CFI) findings.

The next time step analysed was at 0.75 seconds. A t this time step it is evident

from Figure (6.7.1.c) that, there was a recirculation region near the mouth piece,

which had caused he drug to extended back along the top wall towards the inlet. It

is evident that there is also a small volume not containing any drug.

At 1.0 second, it is clear from Figure (6.7.Id), that, the majority of the spacer has
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been filled willi drug. Howeveras reported from the ('I 'D study, there is a small

volume of tin' spacer not occupied with any drug.
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Figure(6.7.1a) Time step 0.05 See.

Figure(6.7.1.b) Time Step 0.4 Sec.

Figure(6.7.1.c) Time Step 0.75 See.

Figure(6.7.1.d) Time Step 1.0 See.

Figure 6.7.1: Flow VisualizationHigh Speed P
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CHAPTER

S E V E N

Discussions and Conclusions

In this chapter the findings of experimental and CFI) studies have been discussed.

The objectives of this research set out in Chapter I have been addressed. Initially

suggestions have been made with regards to progresstn<ithis research farther.

§7.1 Introduction

The initial section of this chapter has provided answers to the questions raised in

Chapter 1 of the thesis. In the remaining sections the CFI) and experimental results

have been discussed in detail.

§7.2 Answers to the Questions Raised in Chapter 1

Question I

[ Why do we need to study the flow behaviour within the Voluinatic 7 A/ ?]

Answer; The reason for carrying out this research was to obtain a detailed flow

study in the Volumatic7 A/ spacer. This kind of research had never been initiated

before and industry did possess any detailed studv of this tvpe. I he findings from

this research have highlighted the efficiencyof the spacer and parameters controlling

or contributing to the efficiencyof the device. This is all novelresearch for industry.
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Question 2

[ What is the importance of this research?]

Answer. I he leseaieli was important because, it provided a detailed documented

study of the (in i(Mit Yolumatic'spacer design and its modilied versions. I lie studv

pio\ ided at (in at.e efficiencyvalues tor each version, the (1 1 ) studv was validatetl

using LDA and High speed photography. I he conclusion reached from this study

was that, the current \oluniatic'spacer design could only he improved up to a

certain limit. 1he limit was reached when all the parameters were optimised. I he

study lias also shown the most efficientdevices are in IIK* form ol Aero Chambers.

Question 3

[Is the research worthwhile?]

Answer: I lie research has certainly been worthwhile,because, il has shown a new

scientificapproach for designing respiratory devices. Furthermore the research lias

justifiedits funding by providing a new spacer design which has an efficiencyof 71%

compared to the current 10%.

Question 1

[Would the current engineering tools such as Computational Fluid Dy-

namics (C FD) and exper imen ta l t echn iques such as Lase r Dopp le r A ocu lom-

etry (LDA) and high speed photography be adequate to carry out this

research? ]

Answer: The current engineering tools have been shown to be an essential part of

this new approach to designing respirat«>rydevices.It has to be poilited out t fiat t he,

use of CFD simulations would remove the need for the manufacture of prototypes

initially. Once the models are working in a sat isfactory manner Ilie prototype can

then be built and LDA measurements taken. I lie use of LDA has provided a vast

number of data samples, hence removing any ambiguity about the results, finally

the High speed photography has provided visual conformation with respect to our

CFD study. It can therefore be concluded that the engineering tools and techniques

were more than adequate in terms of providing relevantdata in this study.
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7.3. CFD Results

riio initial part of this study was designed to use tin*CFD modelling approach to

obtain an understanding of the flow pattern within (IK4 Yolumatic*̂ Spacer. I his

woik had never been carried out before, so the ability of the commercial CI I) codes

for modelling and design applicationsdealing with such complicated flowpattern as

in the case of the \oluniatic'spacer was an unknown entity.

In any initial CI-1) study the most important starting point is to define a mesh line

enough to capture all the flow characteristics, without incurring any unnecessary

computational time. For this study four different mesh configurations were used.

The 200x100 mesh arrangement was the only configuration which captured the 10

m/s velocity at inlet, and the five re-circulationregions.

In t he initialstudies air was used to represent Ihe drug, t he 80x80 mesh was found to

be adequate, as it captured the four re-circulationregionsand the maximum velocity

of 39.8 m/s at inlet. The next logicalstep in this researchprogramme was to conduct

a series of parametric studies. The initial study involvedinjecting air carrying a drug

concentration into the spacer. I he purpose of the concentration was to simulate the

dispersion of the drug within the device, hence developingour understanding of the

flow behaviour within the spacer. It was found that the maximum concentration

near the mouth piece was only about 6.9%. I his was of the same order as the figures

reported in tin1 literature. The obvious conclusion from this simulation indicated

that, if the efficiencyof the Volumatic™ was to be improved drastically a series of

parametric studies needed to be carried out. I he studies would (ovei a wid( iang<

of parameters such as:

• Geometry i.e. shape and length ol tin1 device

• .let profileat inlet

• .Jet Inclination angle

• Inlet velocity
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( 1 I) iiio(l(I was validated experimentally using I,DA data. Although air was

used lor the initial study, the LI)A results showed a similar trend as those obtained

by ( I'D. I his was an encouraging sign and gave c ' ' 1.Miceto investigate further,

otliei teat.ines. A series ol studies were carried out concentrating on the elicits, of

jet (onliguiat ions at inlet in terms ol improving the efficiencyof the spacer. I lie

study took into consideration, three types ot jet conligurations at inlet, these were:

• Si might jet

• ( 'one jet

• Spray jet

I he straight jet configuration is the current set up being used l>\ industry in pn

ducing t he M I)ls.

second case to consider was the cone jet configuration. The jet ol drug and

propellant leaves the nozzle in the shape ol a cone, lor which various cone angles

were st udied. I lie ' 1 gs showed that , Ilie jet with a cone angle ol f>11 delivered

Ilie highest concentration ol !).1% ol the drug at the mouth piece. I his was not a

great improvement on Ilie present system and certainly did not warrant the expense

of manufacturing the pressurised canister and the exit nozzle to deliver the drug

in this particular format. Howeveras there was no data available in relation to the

design of the Volumatic7 A/ it was necessaryto carryout Ihis si udy, to obtain a better

understanding ol the Howfield under dillerent inlet conditions and gain (onlideiKc

in Ihe model in Ihe model set up.

The next jet profile input was in the shape of a spray jet for which once again a

range of angles were studied. It was predicted by the model that the jet with a spray

angle of 19.5 0 would deliver \).\\%of the drug to the mouth piece, hence making it

the most efficientspray type jet tested.

The conclusionsfrom the jet profilestudies indicated that although efficiencyin terms
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of ding d<liv<i\ <ould be inipioved, hv changing the jet profile,the improvements

achieved were not sufficientto persuade the manufacturers to redesign the MDIs.

I he length of the \olnniatic' A/ spacer has for some time been a feature, which has

influenced patients not to use the device. 1his made it an important feature to l>e

studied in detail. In the initialpart of the study the length of the \ ohm tatic' A/ spacer

was ted need from 0.21 in to 0.12 in. I his simple geometrical change improved the

drug delivery efficiencyfrom 6.5% to 23%, three and half times more efficientover

the original design. At this particular length a range of exit velocitieswere studied,

audit was concluded that the exit velocityof 10 III/S gave t he highestconcentration

of the drug at the mouth piece. I lie velocityrange studied were 10, . 'SOand 10 in/s.

I lie other outstanding feature of this design was that, it showed t lie whole of the

device was occupied with the drug and an improved mixing process took place due

to increased Howre-circulationwithin the spacer.

The length of the spacer was reduced further from 0.12 m to 0.00 in and once again

tin4 same range of inlet velocitieswere studied. It was concluded lor this particular

model that, if tin1 inlet velocity into the spacer could be reduced to 30 m/s the

maximum value of the drug delivered to the mout h piece would be 30%.

The studies carried out thus far, have indicated, that improving the efficiencyof

the Volumatic7A/ spacer was dependent mainly on the inlet velocityfrom the nozzle

and the length and 1 ; • of the Volumatic /M spacer itself. ITiisproject was only

concerned with the design study of the spacer, with a view to improve its deliveiv

efficiency,furthermore there wen4 other centres already involvedwitli researcha

the PMDI and its nozzle.

research having provided a valuable insight into the lack of efficiencyof the

spacer, effort was directed towards a standard cylindrical shape, that had come to

light after companies had produced spacers in this format. It was once again found

that there was no experimental data, or any documentation as to why there had

been a shift in opinion towards the manufacture of cylindricalspacers. The company
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( OIK<i IK<1in Ilie manulactlire o| Ilie cylindricalspacer would nol releaseany data

icgaiding this device. I lie only step forward was to obtain one of the cylindrical

spat ei models thiough our sponsors (Astra Zeneca Pharmaceutical) and carry out

a sei ies of paiamctiic studies and IJ)A experiments. I lie conclusions from the

paIa met i i<st lidles slu>we<I that the cylindricalspacer design conId a Is<»he unproved

A ie\ ised model version was made l>\ making,some fuiidamentaldesign changes in

t.ernisof diameter, length ol the device and Meed holes. I he ( I I) model ol the

device showed that i! deliveredapproximately 7I(X <>1I lie drug to the mouth piece,

making it the most eflicientdevice reported in the literature to date. I his novel

work contributed to Ihe paper 111,1

*{7. 1 Experimental Results

The Volutiialic' w spacer has been extensively validated at lour localions each ex

lending 0.05 m into the spacer. I lie experimental results are very close to those

obtained using ( I-1). I his is part iciilarlvgood, since Ilie ( I I) siiiiulations were cai

l ied out some six monllis prior to Ihe I>I)Ameasurements. I he Iube design spacer

has also been validated, by measuring velocityvalues along the two locations out ol

the lour which were used for the Voluinatic' A' spacer.

|{7.. r) Elow Visualizations

The flow visualization studies were carried out using a Kodak camera, capable ol

capturing 4500 frames per second. I he visualization results, have highlighted the

(IK!) predictions that, in Ilie original spacer, there was a volumeof Ilie device which

did nol contain any or very smallquantity of Ihe drug, henceserving no real purpose.
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§7.6 Conclusions

Ilu findings IIOIMthis research have revealed that t lie*\oluinatic'spaccr as it

stands is not a \ei \ ellieietitdevice lor deliveringdrugs to t lie patients sufferingIroui

astluna. 1he new lube spacer design can increase11u•efficiencyt<>71% compared

to the approximately 10% obtained with the Volnmatic7 A/ spacer. The size of the

Inbe design spacer ! ! also make it more appealing to the patients. I tins a wider

use is antic t I he final remark regarding this type ol research is that, in order

to have meaningful results it is important to have a millti disciplinarysel up so that

benefits Irom LI)A and lligh speed photography results can be led back into

numerical st ndies.

§7.7 Further Work

The work carried onl thus far has comprised ol a detailed parametric study carrie<

out on t he \ oluinat ic' A ' spacer and has shown the deficienciesof the design.

work has also concluded Ihat Ihe cylindricalspacer design is moreellicieut,especi

t he modified version.

§7.7.1 Geometrical Studies

The research carried out has n. how important the geometry of a device can be

in terms of llovvfield. This factoralone had a considerableinfluenceon t he percentage

of the drug delivered. It is important that the next step in continuing tIns research

1 consist of a detailed geometrical studies, where various geometries are chosen

and a comprehensive sel ol parametric studies are canied out.

Page 163



7.7. Further Work

§7.7.2 Full Flow Path

In order to complete the researchin detail, studies need to he carried out. to model

the breathing action of human. This would play a vital role in the way the drug is

taken fiom the spacer and into the human airways. A shallow breath would onlv

partially take empty the spacer, whereas a deep breath would take in the whole

( ontent of the spacer. It is also important for the patient to breath in at a certain

time when there is a high concentration of tlie drug present. I his time was found to

be 0.4 seconds for the studies carried out during our research.

§7.7.3 Different Drugs

There are a variety of differentdrugs availableon the market,,each drug having its

own properties. It would be a useful study to model a differentnumber of drugs and

draw some kind of conclusion about the disperssion of the available drugs on the

market.

§7.7.4 Clinical Trials

It is important to test the final versionof the device in a real situation. I his would

involve a major effort on the part of collaborating partners. I he chosen design has

to be manufactured and distributed to clinical trial centres. I he patients have to

be given the current spacer device and tIK* new design. 1he patient needs to keep a

log of the number of times he/she uses each device over a limited period. After this

period the device is changed and the new device is used exactly the same number

of times and over the same period. The cliniciansneed to collect all the data and

analyse it statistically, an idea about the way they are dispersed within the spacer,

is a possibility that different drugs would The addition of particle tracking to this

model would high light the regions were the drug particlesare likely to be deposited.
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rhere are several features which can be looked at in more detail during the course

of the next research. Initially il is important to find out if the tube design spacer is

actually the optimum shape and design in every respect. The number ol holes can

be increased as they seem to have an effecton reducing the exit velocityof the fluid.

It is also necessary to investigate other geometrical shapes, f inally it is important

to study the spacer for a range of respiratory drugs, as characteristics of one drug

may make1 it suitable for a particular shaped spacer.
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