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ABSTRACT

This dissertation represents an attempt at increasing the behavioural sophistication of
evacuation simulations, through the study of evacuation modelling, the development of
new behavioural algorithms, their implementation within an existing evacuation model

and the testing of the resulting model. This aim is achieved through a number of steps.

Firstly, the range of human behaviour that are exhibited by occupants during the
evacuation process is studied. Next, the sophistication of the available evacuation
models is investigated and a suitable model is selected and thoroughly assessed (the
buildingEXODUS evacuation model). The selected model is then used as a test bed in

which to implement the advanced behavioural developments.

The detailed behavioural analysis was conducted to provide the necessary framework,
around which an eventual model might be formulated and implemented. This involved
the examination of the factors that might influence the occupant’s behaviour, the

occupant’s decision-making process and the eventual occupant behaviour.

The mechanisms implemented within the evacuation models presently available were
then investigated to determine the current effectiveness of evacuation modelling. This
investigation generated possible ideas as to how the modelling process may be
conducted and the possible limitations that would be inherent in this process. Rather than
creating a completely new behavioural shell, during which time a significant amount of
resources would have been diverted into software engineering, an existing behavioural
shell was sought after. The buildingEXODUS model was selected as a shell within
which the proposed behavioural developments could be analysed for both practical and

technical reasons.

The selected model was then validated against a number of experimental and real-life
validation cases. This highlighted a variety of limitations and enabled the detailed
workings of the selected model to become familiar. In this process, the sophistication
and limitation of this shell (the current buildingEXODUS evacuation model) was
established. This was required to properly examine the extent of the proposed

behavioural development over the existing model.



Once these limitations were established, the proposed developments then had a realistic

basis for comparison. The new behavioural features were made in response to

sociological, psychological and physical limitations that had been identified in the

existing evacuation models. These developments included a more detailed representation

of

— The occupant’s familiarity with the enclosure,

— A representation of the occupant’s motivation based on the occupant’s perception of
the surrounding conditions,

— Occupant communication,

— Collective behaviour

— And the ability of the occupant to adapt according to the information available.
These proposed behavioural actions and influential factors were then implemented into
the buildingEXODUS model. These features were then examined to determine their
satisfactory integration into the overall buildingEXODUS model and their impact upon
the sensitivity of the model through the use of hypothetical and actual data-sets.

Each of the new behavioural features provided new occupant capabilities and affected
the outcome of the buildingEXODUS simulations. The differences may have been
centred on qualitative and/or quantitative aspects of the evacuation, depending on the
proposed behaviour in question. However, all of the behavioural features examined

produced notable results that enhanced the performance of the model in some manner.

Overall the behavioural developments were seen to increase the flexibility and
functionality of the model without compromising the previously established ability of
the model to cope with the fundamentals of human behaviour. These improvements were
therefore seen to further advance the capability of the model to accurately determine the
safety of an enclosure during an evacuation through a better understanding of the

occupant response and a better and more thorough representation of human behaviour.



Chapter 1

"... I do indeed believe that there is a certain contrast between, say, people in scientific professions and people working in the arts.
Often there is even mutual suspicion and irritation, and in some cases one group greatly undervalues the other. Fortunately there
is no one who actually has only feeling or only thinking properties. They intermingle like the colours of the rainbow and cannot be
sharply divided. Perhaps there is even a transitional group, like the green between the yellow and the blue of the rainbow. This
transitional group does not have a particular preference for thinking of feeling, but believes that one cannot do without the one or
the other. At any rate, it is unprejudiced enough 10 wish for a better understanding between the two parties.”

M.C.Escher:

CHAPTER 1 INTRODUCTION

People are killed in fires with an alarming regularity. If we examine the figures for the
UK alone, although a gradual decline is evident (see Figure 1-1), the number of deaths
due to fire have consistently fallen between 600 and 950 per annum in the past decade.
The majority of these are in small-scale dwelling fires. Fire related deaths become more
prominent and newsworthy when large-scale high-profile fires occur. These have
included fires that occurred in the UK (such as those at the Manchester Woolworth’s,
Kings Cross Underground station, the Summerland complex and the Valley Parade
Football Ground) and those that occurred abroad (including incidents at the Stardust
Disco (Dublin), MGM Grand Hotel (Las Vegas), the DuPont Plaza, the Beverly Hills
Supper Club, Dusseldorf Airport and the more recent tragedy at the Gothenburg Disco)
[1,2]. All of these incidents exemplify the destructive potential of fire. This is despite the
introduction of numerous and expensive technological developments (see Chapter 2 and
Chapter 9)[1]. As modern safety mechanisms are produced, increasing the level of fire
safety within an enclosure, architects supersede these developments through designing
more complex structures. The unforeseen hazards produced by these new enclosures

limit the potential benefit produced through the advances in fire safety science.
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FIGURE 1-1: DEATH BY FIRES IN THE UK 1987-1997[3)

The provisions to improve fire safety tend to be made on the assumption that the
operatives involved in an emergency will be capable, informed and willing to utilise the

technology provided in a manner that facilitates safe egress. Unfortunately the history






Chapter 1
Configurational considerations are those generally covered by traditional building codes

and involve building layout, number of exits, exit width, travel distance etc. In the event
of fire, environmental aspects need to be considered. These include the likely debilitating
effects on the building occupants of heat, toxic and irritant gases and the impact of
increasing smoke density on travel speeds and way-finding capabilities. Procedural
aspects cover the actions of staff, level of occupant evacuation training, occupant prior
knowledge of the enclosure, emergency signage etc. Finally, and possibly most
importantly, the likely behavioural responses of the occupants must be considered.
These include aspects such as the occupants’ initial response to the call to evacuate,

likely travel speeds, family/group interactions etc.

As architects continue to implement novel concepts in building design, they are
increasingly faced with the dilemma of demonstrating that their concepts are safe and
that the occupants will be able to efficiently evacuate in the event of an emergency. How
then do we best guarantee occupant safety, given that an evacuation is required from a
particular enclosure? Traditionally, two techniques have been used to meet these needs:

full-scale evacuation demonstration and the adherence to prescriptive building codes.

A full-scale evacuation demonstration involves staging an evacuation exercise using a
representative target population within the structure. Such an approach poses
considerable ethical, practical and financial problems that bring into question its viability

(see Chapter 2)[1].

The ethical problems concern the threat of injury to the participants and the lack of
realism inherent in any demonstration evacuation scenario. As volunteers cannot be
subjected to mental trauma or to the physical ramifications of a real emergency situation
such as smoke, fire and debris, such an exercise provides little useful information

regarding the suitability of the design in the event of a real emergency [1].

On a practical level, when evacuation drills are performed, usually only a single
evacuation trial is undertaken. Thus there can be limited confidence that the test -
whether successful or not - truly represents the evacuation capability of the structure.
From a design point of view, a single test does not provide sufficient information to

arrange the lay out of the structure for optimal evacuation efficiency [7].
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The need to perform repeated experiments should come as no surprise as even under the

most controlled experimental conditions, no evacuation exercise involving crowds of
real people will produce identical results if the exercise is repeated - even if the same
people are used. For any structure/population/environment combination, the evacuation

performance of the combination 1is likely to follow some form of distribution.

Finally, to perform even a single full-scale evacuation demonstration can be expensive, if
many such experiments need to be performed then the task can become prohibitively
expensive. Furthermore, the evacuation demonstration is usually performed after the
structure has been constructed. Any design alterations that may be required will thus

prove extremely expensive to implement [1,8].

It should be remembered that such experiments are an attempt to model the events of an
actual emergency. Critics of the modelling approach to understanding evacuation
behaviour often point to the advantages of conducting a real-life evacuation. This
advantage is based around the use of actual participants. The fact that volunteer
occupants are used does not, however, necessarily produce realistic results or increase
the confidence in the quality of the results. The conditions produced are in effect é
simulation of the expected events, with control exerted by the experimenters over the
potential risks involved, the target population used and often the levels of information
available to the participants (indeed, the experimenters are legally and morally bound to
maintain this control) [9-11]. The fact that the situation is contrived detracts from the
reliability of the results produced. This is often overlooked by those viewing the results

produced, due to the perceived trustworthiness of experimental data.

Thus experimental means of assessing building design in a routine manner is far from
ideal. An alternative to evacuation demonstrations is simply to adhere to the existing
prescriptive building codes. Prescriptive building codes set out to accept/reject a
proposed design on the basis of its adherence to a set of rigid regulations set down in the
code [12]. These tend to relate entirely to the physical aspects of the evacuation process,
to the exélusion of all other influences. Generally, this method fails to address all of the
issues that affect the outcome of an evacuation in an analytical manner, preferring to rely
almost totally on judgement and a set of prescriptive rules. As these prescriptive rules

have an almost total reliance on configurational considerations such as travel-distance
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and exit width they can prove to be too restrictive and insensitive to the changing

conditions that may arise during the lifetime of a building and during an evacuation.
Given the lack of rigorous analysis of the prescriptive codes and the variety of codes
available, it may also be possible to produce which satisfy a specific set of codes but is
not necessarily safe. Furthermore, as these traditional prescriptive methods are
insensitive to human behaviour or likely fire scenarios, it is unclear if they indeed offer

the optimal solution in terms of evacuation efficiency.

As with the conduction of evacuation trials, the application of prescriptive codes is a
simplistic attempt at modelling and predicting the ‘egressibility’ [13] of the enclosure. It
is based on the assumption that the configuration is the dominant influence during an
evacuation, to the extent that all other considerations are negligible in comparison. A
vast amount of research now exists to refute this assumption (see Chapter 2) [1],
therefore undermining the future use of prescriptive codes based simply on

configurational aspect.

A third approach to assessing the level of safety attained in a building is that of
evacuation simulation. Computer based evacuation models [14-48] offer the potential of
overcoming the shortfalls outlined and address the needs not only of the designers but
also the legislators and users in the emerging era of prescriptive based codes (where the
safety of a building is determined through analysing its ability to be evacuated safely
according to local conditions). However, they are often inappropriately seen as a
panacea to the problems of fire safety, providing an ideal solution. This is obviously not
the case and this misinterpretation of the modelling potential, often maintained by
modellers themselves, constantly leads to disappointment and provides an impediment to
the more widespread use of this mechanism. This shortfall in the performance of
evacuation models thus far, identifies the need to produce more realistic goals and
increase the quality of the models themselves. Hence, the purpose of this dissertation is

the study of evacuation modelling.

The evacuation models presently available do rot adequately represent all aspects of
occupant behaviour (see Chapter 3) [1,8]. This limits their usefulness to engineers and,
more importantly, potentially reduces the safety of the constructions to which they are

applied. As described in Chapter 3, the models that are currently available cope with
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various aspects of occupant behaviour. Numerous models represent the importance of

some aspects of the evacuation process, such as the impact of the enclosure configuration
upon the passage of the population [8]. However, none of the models currently available
include a comprehensive representation of the occupant decision-making process that

treats all facets of occupant behaviour in equal detail. This obviously generates

numerous problems.

It is therefore necessary to ascertain a detailed understanding of the current position of
evacuation modelling and its potential for development, so as to understand the areas
most ripe for improvement. Namely

— What behaviours are included in the evacuation models currently available?

— Given that these behavioural actions are included, is the representation adequate to
describe the potential complexity and range of behaviour expected during actual
evacuations?

— Finally, if the behavioural measures simulated are not adequate, can they be

developed and included within evacuation models and will their inclusion result in

an improved representation of reality?

The response to these key questions forms the basis of this dissertation. Implicit in this
response is an understanding of the factors that require modelling; that is those
behaviours that are deemed to be significant during an evacuation. This requires a
detailed analysis of evacuation behaviour, incorporating a multi-disciplinary

understanding of influential factors.

This dissertation is therefore an attempt at advancing the technology used to simulate
the occupant response to an evacuation. This will involve the development of a number
of algorithms reflecting the occupant decision-making process and an enriching of the
Jfactors generally used to simulate evacuations. As a starting point for this development,
an advanced evacuation model will be adopted as the baseline model. This will enable
the evacuation model to more realistically simulate occupant behaviour and therefore
better predict the safety levels and potential dangers of an enclosure. It is not claimed
that the algorithms represent all expected occupant behaviour. However, the concepts
demonstrated should advance the evacuation model chosen towards a more flexible and

sensitive representation of egress behaviour.
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These developments will be demonstrated using the buildingEXODUS evacuation model
[5-7,21-28]. This model has been selected for practical and technical reasons. The
practical reasons concern the readily available and well-documented source code [23],
while the technical reasons relate to the well-structured and engineered nature of the

source code allowing easy adaptation[5-7,21-22,24-28].

Unlike most of the evacuation models currently available, the planned developments are
not centred around purely physical factors or upon global considerations imposed upon
entire populations [8], but instead focus on the individual, his knowledge, experiences
and social interactions and the bearing that these factors have on the evolving
evacuation. In particular, this work is concerned with modelling the answers to the

following questions:

— . What facets of the occupant affect the egress behaviour exhibited? How do the
experiences and personal traits of the occupant influence his behaviour during the
evacuation? Does the occupant’s identity and his membership of specific social
groupings have an impact upon his behaviour?

— How do the occupant’s attributes develop during the evacuation, through their
interaction with unfolding events? How does the occupant’s motivation and
perception of events change during an evacuation and how does this impact upon
their behaviour?

—  What influences will the occupant be subject to that may influence their behaviour?
Will the occupant pass through smoke? How will the occupant react to occupant
congestion?

— What analytical tools will be available to the occupant that may be used in
calculating potential egress routes? Can the occupant analyse the consequences of
potential decisions? Are they able to receive visual information on which to base
these calculations?

— What means are available to the occupant to receive and transmit information
during an evacuation? What is the nature of this information (e.g. the existence of an
emergency, potential new routes, etc). How will the occupants’ identity impact upon
the perception of this information?

— Given all of the previous factors, what decisions are eventually made by the
occupant?

The process of answering these questions, as well as numerous others, will go some way
to providing a more comprehensive behavioural model. However, the nature of the
solution also affects the success and accuracy of the solution. It is vital to the success of
this project that where behavioural activities occur, that their influences, processes and
outcomes are represented at an individual level rather than at a global or cumulative

level, as in the case of the majority of existing models (see Chapter 3). Not only does this
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individual representation allow the occupants a more localised view of the evacuation,

but also more accurately represents the location and distribution of information

throughout the population, with all of the subsequent behavioural differences that this

may cause.

In simple terms, the occupant is assumed to arrive at the evacuation with life experience
and attributes that will influence his ability to evacuate and the decisions he makes in
achieving this goal. During the evacuation the occupant will interact with a number of
external factors (be they environmental, social, physical, etc.) that will impact upon his
attributes. The occupant may anticipate this impact and the results of this analysis may
be transferred to other interested parties. This process leads the occupant to decisions
that will govern his actions during the evacuation. This is the decision-making blueprint

upon which this dissertation is based.

These decisions will not be based around a single aspect of the occupant’s experience
(such as the physical experience or the psychological experience). Instead, these
decisions involve those influences that are appropriate at the time that the occupant is

sensitive to them, be they physical, psychological or sociological.

For this to be achieved a number of problems have to be addressed in the field of
evacuation modelling. It is not asserted that these problems will be addressed for the first
time. However, the current absence of a comprehensive behavioural model that is subject
to scrutiny and which has been verified through testing, suggests that the problem has
until now only been partially addressed. It is also not suggested that all of the problems
will be resolved with this dissertation. Instead through detailed analysis the problems can

be initially addressed, thus highlighting the areas in which future development are vital.

Modelling is often seen as a black art by those not involved in the process. It is viewed
with suspicion by those outside of the field and dismissed by its detractors as liable to
misuse, through the ability of the modellers to engineer results rather than producing an
engineering solution. This is a credible criticism, although one that can equally be
levelled at any area of research. This dissertation through its rigour and candour is an
initial attempt at researching, designing, implementing and verifying an evacuation

model in as transparent a manner as possible, to overcome such detractions.
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Modelling is a complex process, as it requires an understanding of two generally
unrelated subject areas: the area that is to be modelled and the method used to produce
the model. Evacuation modelling is an emerging field of study. As such it is constantly
being redefined, with the boundaries within which it operates expanding and contracting
accordingly. During this dissertation the modelling process itself will be analysed in
some detail prior to the proposed development and testing of new behavioural

representations, to gain a detailed understanding of the problems facing the modeller.

The difficulty of the process is compounded by the complex nature of the problem being
studied. The exclusion of one or more of the influential factors only confirms the worst
fears of a sceptical examiner (see Figure 1-2); that the model has been designed to side-
step difficult issues or to guarantee particular outcomes. The extensive nature of this
dissertation, especially in its analysis of expected occupant behaviour, is an attempt at

initiating the task of comprehensively modelling evacuation behaviour.

This work is concerned with the development of an evacuation model that is capable of
representing a wide scope of occupant behaviour. For this to be the case, it is necessary
to establish an understanding of typical evacuation behaviour and the causal factors
behind such behaviour that would form a basis upon which a behavioural model might
be based. This behaviour should be derived from actual events and should not simply
occur through random processes. To represent egress behaviour realistically, simulated
actions should be based upon similar causal factors as those evident in real-life. This
would enable the model to be predictive, as by representing the behaviour as being based
on perception, cognition and performance, an evacuation could be generated through the
imposition of initial conditions. The simulation would then proceed, with the causal

factors being examined to determine the occupant activities.

Given the incomplete nature of the majority of data-sets available, it would be unrealistic
to assume that individual occupant behaviour could be replicated exactly. However,
given a relatively detailed data set representing an actual incident (such as the Beverly
Hills Supper Club incident [1,49-52] or the Summerland incident [1,53-54)), it should be

possible to develop behavioural models that are capable of producing representative

11
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behavioural responses, allowing the production of an acceptable distribution of expected

behavioural responses and subsequent outcomes.

Models must be used and verified. The development of an evacuation model should be
based upon empirical foundations [1]. These foundations must be verified to determine
their strength through use and through comparison with relevant data. A purely
theoretical model is an idea awaiting implementation. Even though a model may have
been produced in line with empirical methods, without its full implementation, the
empirical process will have been interrupted. Without this implementation, a behavioural
model is not subject to the rigorous testing required for acceptance in other areas of
modelling and would be open to criticism. Indeed the very process of implementation
requires a significant degree of component, functional and compatibility testing that can
only enhance the structure of the model itself and enhance the integrity of the model [7].
The process of implementation requires an additional understanding of the shell
(computational in this case) used to couch the behavioural model, the interaction

between the two entities and an analysis of the results produced.

Several forms of verification are vital to the development of a model: namely component
testing and integration analysis [7]. It is conceivable (as in this case) that the
computational shell may arrive already having some of these procedures completed. The
implementation of the behavioural model must be proved to interact reliably with the
existing model components. It is only at this point that the resultant behaviour can be
examined. This should be tested for qualitative and quantitative accuracy against as

many data sources as possible.

Modelling is therefore dependent upon data for the design and verification process.
Evacuation modelling has, until the latter part of the twentieth century, been starved of
this data. By its nature, data concerning fire events are a sensitive and difficult resource
to collect. The collection and analysis of this data have also tended not to come from a
modelling point of view and will have therefore not been subject to the forensic rigour

required for use in the modelling process.

The acquisition of data against which the model can be compared is a significant task in

itself. It may arrive from a variety of sources (fire investigation, related fields of study,

12
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hypothetical situations, etc.) some of which will be more reliable and detailed than

others. As long as this data is accompanied by a relevant analysis of its reliability and its

scope, then most sources may provide some comparative benefit.

This work attempts to follow as empirical a methodology as possible, deriving data from
as many sources as are available. Where actual data is not available hypothetical
scenarios have been included. This is to investigate the relevance and acceptability of the

concept as much as the quantitative results produced.

This dissertation is an attempt at resolving and instigating a number of processes. It is
structured in as logical and self-contained a manner as possible. This is partly due to the

size of the task and to delineate the areas of analysis more clearly. The tasks attempted

are to:

Present and analyse the range of human behaviour thought to be relevant to
evacuation so that an initial framework can be generated suggesting areas of
development. In Chapter 2, the factors that are expected to impact upon occupant
behaviour and the occupant’s behavioural response to them are examined. The purpose
of this is to develop a concept of the form of occupant behaviour that is anticipated
during an evacuation and also the conditions under which they occur. This is vital in
enabling us to model evacuation behaviour. This process will allow the production of a
behavioural model that includes those factors that influence occupant behaviour as well
as the expected behavioural response. This is not a simple literature review but, through
the detail of its analysis, allows the production of a comprehensive model, which acts as

a framework for the proposed developments.

Examine the current state of evacuation modelling through investigating those models
available, the assumptions on which they are based and the results obtained through
their use. An investigation into the scope of evacuation modelling as it currently stands
is then presented. This is essential to acquire an understanding of the tools used to
represent the evacuation process and to assess areas of potential advancement. This is
limited to that work which has been scrutinised by experts in the field. Therefore in
Chapter 3, models are examined on the basis of the relevant literature currently available.
Although the quality of the scrutiny may vary through only examining this form of

information, a certain leve] of authenticity and transparency is guaranteed. This
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investigation includes the buildingEXODUS model, which is used as a shell to examine

and display the proposed behaviour throughout. The models are categorised according to
the mechanisms used to represent occupant behaviour. This will provide us with a
benchmark against which the proposed developments can be measured as well as

suggesting the potential limitations of the methods examined.

Develop an expertise with the chosen computational shell through its use and through
a process of validation. For the behavioural model to be implemented and used, a
computational shell is required. It would have been possible to create an entirely new
evacuation model. However, seeing as a number of competent physical models already
exist [8], it was seen as counter-productive to ‘reinvent the wheel’. In Chapter 4 the
buildingEXODUS model is further examined, implementing a number of validation
cases. This is to demonstrate the present sophistication of the model, to highlight
potential weaknesses that may arise and to establish a level of expertise with the model.
If the model is to be used as an arena for behavioural development and analysis, then we
must be aware of the important behaviours that are not included within the model, so as

to either compensate for their absence or to account for them in any results generated.

Develop, implement and verify a number of proposed behaviours within the
computational shell, drawn directly from the analysis of the subject matter. In Chapter
5-8 the proposed behavioural features are outlined. In Chapter 5, developments
concerning internal occupant attributes and simplistic occupant capabilities are outlined,
enhancing the social representation of the occupant. In Chapter 6, the interaction of the
occupant with a number of external features is examined, including their spatial
interaction with the geometry, other members of the population and the ability of
occupants to have their passage delayed by procedural requirements, geographical
necessity or social obstructions. In Chapter 7, the occupant’s dynamic response to the
external conditions is examined, crediting the occupant with experiential processes that
are not simply based on stimulus-response actions. These include a more sophisticated
occupant interaction with a deteriorating environment, the dynamic nature of occupant
motivation and the localised representation of potential egress routes. Finally, in Chapter
8, the occupant is seen as a decision-making engine that organises and engineers his

responses to the environmental conditions according to analysis and estimation, as well
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as to the provision of new information. This is based on communication, adaptation (to

both the environment and to the surrounding population) and social cohesion.

The general principles on which these behavioural developments are based are outlined
in Chapter 2. However, the specific details and evidence for these behavioural processes
are addressed in relation to the proposed behaviours in more detail. These behavioural
expectations are compared against the results produced by the present buildingEXODUS
model, to determine the extent and accuracy of the present behavioural representation.
Finally, the proposed model is outlined in detail, including flow charts and any relevant
mathematical formulae. A number of verification cases will be described, each of which
will have been designed specifically to interrogate the proposed behaviour accordingly.
The results produced will be used to flag the advances of the proposed developments.

The models are verified through comparison with experimental data and the use of

hypothetical data-sets.

Examine the interaction between the proposed models. In Chapter 9, the proposed
developments are combined in an attempt to simulate an actual evacuation. The Beverly
Hills Supper Club incident of 1977 was a tragic event in which 165 people were killed
[1]. Due to the scale of the incident and the availability of data concerning the evacuee
behaviour (although still incomplete), it provides a means by which to simultaneously
examine the flexibility and functionality of the proposed developments. This is not
claimed to be a detailed validation of the proposed behavioural developments. Rather, it
is provided to demonstrate that the proposed algorithms are able to work in unison

thereby increasing the flexibility and functionality of the evacuation model.

Initiate the design and creation of an integrated behavioural model. In Chapter 10, the
work is drawn together with some concluding remarks, describing findings of the work
and any possible advantages produced through its implementation. Finally, a unified
approach is developed describing a complete behavioural model. This will be developed
in such a way as to suggest the implementation within the buildingEXODUS model as
future work. Effectively this model is the culmination of the dissertation, drawing
together the behavioural analysis with the complete integration of the proposed

behaviour outlined in Chapters 5-8.
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The goal of this dissertation is to extend the behavioural sophistication of evacuation

modelling through the development of a particular evacuation model, namely
buildingEXODUS, incorporating an increased number of observed occupant
behaviours. This is achieved on the assumption that evacuation modelling is the most
appropriate means by which the safety of enclosures can be ascertained. The benefits of
the concepts examined are not limited to the buildingEXODUS model, but would benefit
any model that is able to address the problems highlighted and at present do not include

reference to specific forms of occupant behaviour.

Without an increased level of safety awareness, the inherent risk that is latent within all
structures cannot be fully determined, preventing the necessary procedural and
configurational alterations required to combat these dangers. This will therefore diminish
the preparedness of the safety staff at hand to resolve any potential difficulties and
consequently place the occupants of the structure at greater risk. As such, this
dissertation is an attempt to provide a useful engineering tool that may be utilised in the

reduction of potential risks, rather