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Abstract

This research started with questions about how the overall efficiency, reliability and ease-of-use 

of Computational Fluid Dynamics (CFD) codes could be improved using any available software 

engineering and Human Computer Interaction (HCI) techniques. Much of this research has been 

driven by the difficulties experienced by novice CFD users in the area of Fire Field Modelling 

where the introduction of performance based building regulations have led to a situation where 

non CFD experts are increasingly making use of CFD techniques, with varying degrees of 

effectiveness, for safety critical research. Formerly, such modelling has not been helped by the 

mode of use, high degree of expertise required from the user and the complexity of specifying 

a simulation case. Many of the early stages of this research were channelled by perceived 

limitations of the original legacy CFD software that was chosen as a framework for these 

investigations. These limitations included poor code clarity, bad overall efficiency due to the use 

of batch mode processing, poor assurance that the final results presented from the CFD code 

were correct and the requirement for considerable expertise on the part of users. The innovative 

incremental re-engineering techniques developed to reverse-engineer, re-engineer and improve 

the internal structure and usability of the software were arrived at as a by-product of the 

research into overcoming the problems discovered in the legacy software. The incremental re- 

engineering methodology was considered to be of enough importance to warrant inclusion in 

this thesis. Various HCI techniques were employed to attempt to overcome the efficiency and 

solution correctness problems. These investigations have demonstrated that the quality, 

reliability and overall run-time efficiency of CFD software can be significantly improved by the 

introduction of run-time monitoring and interactive solution control. It should be noted that the 

re-engineered CFD code is observed to run more slowly than the original FORTRAN legacy 

code due, mostly, to the changes in calling architecture of the software and differences in 

compiler optimisation: but, it is argued that the overall effectiveness, reliability and ease-of-use 

of the prototype software are all greatly improved. Investigations into dynamic solution control 

(made possible by the open software architecture and the interactive control interface) have 

demonstrated considerable savings when using solution control optimisation. Such investigations 

have also demonstrated the potential for improved assurance of correct simulation when
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compared with the batch mode of processing found in most legacy CFD software. Investigations 

have also been conducted into the efficiency implications of using unstructured group solvers. 

These group solvers are a derivation of the simple point-by-point Jaccobi Over Relaxation (JOR) 

and Successive Over Relaxation (SOR) solvers [CROFT98] and using group solvers allows the 

computational processing to be more effectively targeted on regions or logical collections of 

cells that require more intensive computation. Considerable savings have been demonstrated for 

the use of both static- and dynamic- group membership when using these group solvers for a 

complex 3-dimensional fire modelling scenario. Furthermore the improvements in the system 

architecture (brought about as a result of software re-engineering) have helped to create an open 

framework that is both easy to comprehend and extend. This is in spite of the underlying 

unstructured nature of the simulation mesh with all of the associated complexity that this brings 

to the data structures. The prototype CFD software framework has recently been used as the 

core processing module in a commercial Fire Field Modelling product (called "SMARTFIRE" 

[EWER99-1]). This CFD framework is also being used by researchers to investigate many 

diverse aspects of CFD technology including Knowledge Based Solution Control, Gaseous and 

Solid Phase Combustion, Adaptive Meshing and CAD file interpretation for ease of case 

specification.
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1 Introduction

1.1 Overview

The widespread and ever-increasing use of Computational Fluid Dynamics (CFD) 

[SPALDING81] for the simulation of physical fluid flows has highlighted some striking 

weaknesses to be found in many existing CFD software systems.

The most important problems obstructing the effective use of CFD simulations are:-

  the requirement for large amounts of numerical processing power,

  the extended duration of simulations, the high degree of complexity of the CFD algorithms,

  the poor reliability of the solution process and

  the nature of the development techniques traditionally used to create CFD systems.

Leaving the development issues aside, for the moment, it is worth considering the stages of 

setting up, running and interpreting the results from a typical CFD simulation because this gives 

some insight into the complexity of the software. Typically a CFD expert will specify the 

geometry and the "known" physical and boundary condition properties in a pre-processing 

specification tool or even in a simple text-based script file. This will be followed by the 

generation of a suitable computational Finite Difference (FD) mesh. It should be noted that the 

nature and quality of the finite difference (FD) mesh is critical to obtaining good results from the 

CFD simulation but the topic of mesh generation is beyond the scope of this research. It is 

assumed that a mesh of suitable quality is available for all simulations discussed in this research. 

The numerical computation phase of the simulation will then be started. This phase causes all 

of the properties, of all of the control volumes within the FD mesh, to be repetitively updated 

by an iterative algorithm that moves the solution towards a progressively better and better 

approximate answer. This computational process is generally very time consuming and, for a 

particular simulation, has no guarantee of ultimately reaching a successful or accurate solution. 

If all proceeds well with the simulation then the processing will eventually terminate and create 

some form of output results files which can then be used for post-processing numerical data
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analysis or data visualisation. The vast arena that encompasses CFD research has led to a large 

range of software systems that contain many different algorithms and a myriad of numerical 

control parameters that modify the run-time behaviour of the various algorithms and solvers. 

The choice of algorithms and control parameters can lead to widely differing solution behaviour, 

even on similar simulations, and catastrophic behaviour when used inappropriately. Furthermore 

a configuration that may not be appropriate at one stage of a simulation may then be suitable 

(or indeed necessary) at some other stage of processing. The need for algorithm and parametric 

fine-tuning, for specific classes of CFD simulation, further compound this problem.

This lack of predictable outcome of the numerical processing can be extremely costly in terms 

of wasted human and computer time resources. Furthermore the solution to any simulation is 

not guaranteed to produce an accurate or physically meaningful result. This can be extremely 

costly if the results are to be used for construction design or for safety considerations. 

Traditionally, when the CFD user has been able to detect an unsuccessful simulation then the 

whole simulation had to be re-posed and re-started from scratch for even the simplest of 

configuration changes. A few CFD codes do mitigate these problems by providing various 

degrees of numerical data or solution status monitoring, during the numerical computations, 

however the only course of action that is generally available to the user is to terminate a 

simulation that appears to be unstable or unsatisfactory.

There is little or no reliable knowledge about how to effect beneficial control changes and this 

means that many aspects of CFD simulation are regarded (and even taught to novices) as a 

"black art". This is highly unsatisfactory for an ever more widely used simulation technique that 

is being applied, often inappropriately and inexpertly, to application areas where paramount 

safety issues exist. E.g. Fire safety aspects of building design, Wing aerodynamics for aircraft 

design, Cooling system design for Nuclear reactors.

1.2 Aims of the project

Given the problems, with the traditional approach to CFD, this project had been instigated to 

answer the questions about the applicability and potential benefits of interactive control
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techniques for the computational phase of CFD.

1.2.1 Main research question

Prior to this investigation it was not known to what extent CFD systems could be 

enhanced by the use of interactive control and solution monitoring user interfaces. 

This was because most existing CFD codes treat the numerical simulation as a 

"black-box" process that is pre-conflgured to continue calculating results, to some 

pre-specified strategy, until processing is deemed to have finished to some 

prescribed criteria. This project was used to investigate if there are any tangible 

solution "improvements" made possible by the use of interactive solution control 

and monitoring. These improvements could be: better performance, greater 

solution reliability, detection and prevention of errors or simply greater ease-of- 

use.

The complex nature of all numerical CFD systems means that few users have a complete 

understanding of how the simulation proceeds from its initial state to a satisfactory set of results. 

This problem is further compounded by the diversity of the CFD algorithms, numerical 

approximations, empirical methods, choice of initial conditions and solution control parameters 

that are used within a particular CFD engine or for a particular simulation. With so many 

degrees of freedom it is unsurprising that CFD techniques are generally considered to be only 

useful for- and usable by- CFD experts.

In CFD codes where solution monitoring is provided it generally takes the form of pre- 

confrgured graphs or simple numerical value display that cannot be used to explore the full 

extent of the simulation data in any systematic or comprehensive way. Furthermore the general 

lack of an interactive control interface means that there is little or no knowledge of what effect 

control changes will have on the simulation both in terms of speed of execution and continued 

solution stability. The only general knowledge about CFD simulations concerns the approach 

often adopted to start a simulation in a reliable and safe way. This knowledge is derived by 

performing a number of short trial runs with different initial conditions or by using very coarse
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computational meshes with few control volumes. Such knowledge does not guarantee that the 

remainder of the simulation will be successful and it is often necessary for the user to run 

complex simulations in a number of stages with different initial control parameters for each 

stage.

Also unknown is the desirability, predicted response and reliability of making interactive changes 

to the control parameters of a simulation and under what circumstances are the changes 

appropriate or even counter-productive.

CFD simulation is a highly numerically intensive process and it was not clear to what degree a 

fully interactive user interface, with all of the problems associated with coupling, would 

adversely affect the performance of the system. This could have repercussions in terms of user 

acceptance of the User Interface (UI) supported software due to a perceived poor speed of 

processing.

It was soon realised that any attempt to perform research on interactive control would be fatally 

flawed if the numerical CFD component was either unreliable or incomplete. This meant that the 

largest initial problem facing this investigation was the need for a stable and well-validated 

software platform on which to investigate user interaction techniques. This could not be 

guaranteed in a completely new software development because it would be unclear if the 

reliability of the numerical engine itself was contributing to any observed behaviour during 

interactive control investigations. Thus it was considered vital to use some form of legacy CFD 

system as the basis for this research.

1.2.2 Subsidiary research questions

During the course of this investigation it was realised that there were a number of subsidiary 

questions that required answers.

The requirement for a well validated, robust and complete CFD software system as the basis for 

the user interaction research lead to the question of how best to re-use such a legacy CFD 

system in a new development. It was unclear how any legacy system, with all the usual problems
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associated with existing "research" developed software, could be re-engineered to allow user 

interaction and still maintain a reasonable level of solution consistency, performance and 

extensibility.

It was not known exactly what nature of interaction and quantity of status information would 

be needed for the system user to determine how to modify the system controls in order to effect 

the best solution strategy.

1.2.3 Questions arising during this research

During the re-implementation of the CFD code it was realised that the Object Oriented approach 

adopted for the data structures and control hierarchy would allow highly beneficial modifications 

to the traditional solution strategy.

One such innovation was the use of "group" solvers which, it was hoped, would provide a 

framework for investigating localised solution control based on either geometric- or solution 

determined- regions. This extension was considered to be of sufficient importance to warrant 

investigation, in its own right, because most traditional CFD codes (particularly those using 

unstructured mesh storage techniques) do not provide a sufficiently flexible architecture to 

enable the benefits of such techniques to be researched particularly with the added perspective 

of interactive solution control.

Also considered was the potential for the automation of any manual control strategy that was 

demonstrated during this research. This was of considerable interest since the manual interactive 

control of simulations has a high human resource overhead because an expert CFD user is 

required to monitor and control the software throughout the duration of the simulation, which, 

for complex and large mesh cases may extend to many days or even weeks on all but the very 

fastest hardware platforms.

1.3 Objectives

The aims and research questions described above lead directly to a set of objectives and goals
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that constitute a research program capable of providing answers to the unknowns of this study.

1.3.1 Main objective

The main objective of this investigation was to research and test for the potential benefits and 

disadvantages of using interactive control and monitoring of a CFD code during the 

computational simulation process.

1.3.2 Subsidiary objectives

The main objective relies on having a suitable interactive CFD code on which to perform the 

research and so the first subsidiary objectives that must be met were: to analyse, design and 

implement a fully functional interactive CFD system and subsequently to use it to investigate 

interactive control techniques. This lead to the following sequentially ordered objectives:

1.3.2.1 Analyse the requirements for the new interactive CFD system

The new interactive CFD system would require sufficient numerical simulation functionality to 

run non-trivial CFD cases with adequate control options to allow experimental research into the 

potential benefits of interactive control. This meant that the requirements analysis of the target 

system would have to be performed prior to designing the architecture and functionality of any 

new system.

1.3.2.2 Design a prototype software system and user interface

The required system design was imposed on the legacy CFD code to extend the capability to 

fully interactive control and monitoring. A suitable programming paradigm and target 

implementation language were selected to enable the user interface and numerical components 

to be coupled. Wherever possible, heavy use was made of "good" software engineering 

principles to ensure that the development system has an extended useful life and can be used in 

the future as a comprehensive CFD application framework for a multitude of research purposes.
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The type of user interface and style of interaction were agreed with potential CFD code users 

so that both the paper- and skeleton-UI prototypes would be constructed so as to allow the 

target system user interface to be specified fully with assurance of user acceptance.

The User Interface components were chosen to provide the clearest possible view of the current 

status of the simulation without unduly affecting performance. Controls and monitoring displays 

were grouped so as to provide simple interface navigation and furthermore the interface was 

restricted in depth to prevent the user being lost in hard to reach sub-menus. The User Interface 

was also designed to support both novice and expert users alike. It was necessary to keep the 

layout and mode of interaction of the interface consistent across all components of the user 

interface. The actual approach and mode of interaction used were agreed by using evaluation 

prototypes for discussions with expert CFD practitioners and researchers. Prototypes of the 

software were also used on taught courses in Fire Safety Modelling, at the University of 

Greenwich, in order to better understand how novice users would respond to the interactive user 

interface.

1.3.2.3 Reverse Engineer the legacy CFD code

A methodology was created to re-use the legacy CFD code and to impose the required system 

design whilst being aware of the potential pitfalls of the traditional approach to CFD 

development and avoiding the usual handicaps of existing CFD codes. The Reverse Engineering 

techniques that were used had to maintain absolute functional consistency with the legacy code 

whilst providing a sufficiently flexible application framework for continued research into CFD 

techniques.

1.3.2.4 Implement the interactive prototype

The prototype interactive CFD system was constructed by the coupling of the agreed prototype 

user interface and the re-engineered CFD engine.
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1.3.2.5 Validate the correctness of the interactive prototype

The prototype interactive CFD system was validated for computational consistency with the 

results from the legacy CFD code, with results from other commercial CFD codes and, where 

available, with experimental data. The new interactive system had to perform a selected range 

of simulations to an acceptable solution tolerance when compared with existing comparison 

codes, experimental data or analytical solutions. A suitably diverse coverage of validation cases 

was devised to exercise all of the coupled numerical modules within the system. Expert CFD 

practitioners were asked to check that the prototype CFD system produced acceptably 

consistent results.

1.3.2.6 Construct suitable test cases to test for the benefits of interactive control

Test cases were chosen to evaluate the benefits and disadvantages of the interactive nature of 

the prototype system.

An investigation of the time benefits or overheads due to the use of user interaction could not 

be performed easily in different CFD systems. This was because of differences already inherent 

from the development languages, internal architectures and solution algorithms. Such differences 

already produce large variations in run times between the various CFD systems. This effect is 

observed without even considering the influence of the User Interface. Test cases were 

constructed and used to investigate the benefits of user interaction when optimising the solution 

strategy as the run proceeds when compared to a "batch mode" run of the same software. These 

timings were then compared with the non-optimised simulations to give a reasonable indication 

of relative performance. Other, less quantifiable, benefits (e.g. error detection and prevention 

or stability enhancement) could really only be investigated by allowing real users to experiment 

with their own simulations to see if either stability or timing enhancements could be made in 

practice, but such investigation was outside of the scope of this study. The qualitative benefits, 

observed during this research, are discussed as appropriate but no extensive investigation was 

conducted into these benefits.

Group solver control techniques were also investigated to determine if dynamic or static
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membership groups offered any benefits to CFD simulation and to ascertain if interactive control 

of groups was in any way beneficial.

Also researched was the potential for automated solution control using the knowledge gained 

during the optimisation research mentioned above.

1.4 Contribution to knowledge

The following summary indicates the significance of this work based on the limitations and 

problems of existing CFD systems in general and the legacy source CFD code in particular.

1.4.1 Development of an incremental re-engineering methodology

The techniques created to reverse-engineer and re-engineer the legacy FORTRAN CFD code, 

using a novel incremental approach that preserves functional consistency, are likely to prove 

beneficial to a wide range of legacy numerical software systems both within and outside of the 

domain of CFD research.

1.4.2 Investigation of new CFD techniques

The prototype system has been used to research numerous enhancements made possible by the 

structure, availability of dynamic memory allocation and the Object Oriented design paradigm 

imposed during the software re-engineering. This has allowed research into the benefits of 

unstructured group solvers [EWER99-3] to be investigated as well as research into the 

automation of interactive control experiences using Knowledge Based System (KBS) control 

techniques.

Other techniques, outside of the scope of this thesis, are also being developed within the 

Smartfire framework [TAYLOR96]. This work is facilitated by the open and extensible software 

architecture. These techniques include run-time mesh adaption, fire modelling using solid 

combustion, modelling of thermal radiation and simulation of flash-over.
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1.4.3 Investigation of the benefits of interactive control

The prototype interactive CFD system (now being used as the interactive CFD component of 

the "Smartfire" system [TAYLOR97-1]) has demonstrated some significant benefits for the use 

of interactive control particularly for the control of solution stability and for solution 

optimisation.

The interactive control of unstructured "group" solvers has indicated some very important 

savings for simulation times for cases that have marked solution differences between geometric 

regions. Furthermore the group solver control allows significantly stratified (layered) flows to 

be effectively controlled so as to maximise stability whilst minimising computational effort.

1.4.4 Knowledge of practical techniques of interactive control and 
monitoring of CFD codes

A further technique that has been researched as a prototype within the interactive CFD system 

is the use of expert CFD user knowledge at controlling the CFD code within an automated 

Knowledge Based System to represent and act on the rules which can be used to improve the 

performance or stability of the CFD simulation during processing. The KBS system uses rules 

that have been elicited from actual simulations that have been interactively controlled by expert 

CFD users. This research was made possible by the existence of the interactive control interface 

in the prototype system and the open "Blackboard" architecture which supports external control 

agents, other than a human operator using the User Interface. Furthermore experience of the 

issues concerning implementation and interactive control have been attained.

1.5 Practical contribution to CFD research

The prototype CFD system developed in this investigation has evolved into a comprehensive 

environment (now called "Smartfire") that is extensively used for continuing CFD research 

within the application domain of fire simulation at the University of Greenwich. This is mostly 

due to the considerable flexibility created by the re-engineering techniques employed during its 

development. The interactive control and monitoring interface is popular [HUME97] for a
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research based code because it drastically reduces the time taken to assess and monitor the 

behaviour of newly developed research algorithms.

1.6 Background to this research

The origins of this current work go back to 1987 when Knight, Cowell and Edwards 

[KNIGHT87] investigated the benefits (to CFD) of using strict Software Engineering design and 

development techniques for the development of reliable and extensible framework of CFD 

research. This theoretical consideration highlighted some of the problems that are discussed in 

this thesis but was not researched in practice due to resource limitations. The investigation was 

extended into practical research by Petridis in 1995, for his PhD research [PETRIDIS95]. This 

later research primarily investigated the potential benefits of an integrated Knowledge Based 

System (KBS) for the dynamic control of a Heat transfer code during the numerical simulation. 

One problem which was noted during the research was the lack of expertise that was required 

to control the CFD code in terms of appropriate decision making. This was largely due to the 

nature of most CFD codes which use batch mode of processing that is pre-configured to solve 

some flow scenario without any form of user intervention. Further problems, facing the research, 

were the limited time constraints for development of a prototype system and the lack of access 

to comprehensive and reliable CFD software which meant that the prototype system only had 

quite limited capabilities when compared with the fully coupled flow, heat, turbulence and 

radiation algorithms that are commonly found in commercial CFD codes or more recent in-house 

research codes. The lack of flow and turbulence handling was particularly restrictive because 

these sub-models constitute the majority of the complexity of any general purpose CFD system.

The previous research demonstrated that there were important improvements to be made to 

CFD software if appropriate control expertise could be determined and encapsulated in a KBS. 

Whilst some expertise had been gained during this prior research, it was by no means complete 

because of the limited scope and capability of the prototype system. Another problem that was 

identified was the question of how sufficient information about a particular solution status could 

be represented for initiating any KBS reasoning [EWER93-1].
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A more ambitious project was initiated in order to answer the joint problems of what sort of 

control to apply and under what conditions to apply it. It was also the intention of this project 

to create a research tool which could be used to investigate the benefits of interactive software 

control within the CFD arena on a non-trivial (and preferably safety critical) application area 

where any benefits would have real and demonstrable importance. Furthermore it was intended 

that the research tool would form the basis of a CFD application framework, called 

"SMARTFIRE", which would not only support both KBS and interactive control techniques but 

also provide a vehicle for continued research within the University of Greenwich.

Collaborative work has also progressed, with other researchers, on other aspects of the 

"SMARTFIRE" system. One of the problems facing CFD users is the set-up and specification 

of a case such that the best solution can be obtained in the most efficient way. To this end, 

researchers have been investigating the scope for using automated set-up tools [TAYLOR97-2] 

which can take a simplified case specification (usually the geometry and the boundary 

conditions) and then automatically generate high quality specifications for the CFD simulation.

1.7 Structure of this Thesis

Chapter 1. This chapter has enumerated the research questions posed and answered during this 

investigation and has also indicated how the objectives of this thesis were decomposed into sub- 

goals. There is also a summary of the importance of this research in terms of the contribution 

to knowledge in general and to CFD in particular.

Chapter 2. This chapter gives a background to this area of research and gives an overview of 

the techniques commonly employed in fluid flow simulation at the beginning of this study. The 

chapter also discusses some of the alternative techniques and implementation languages that 

were considered during the early investigations of this research. The chapter finally indicates 

some of the most recent developments (or lack thereof) in the field of CFD code development.

Chapter 3. This chapter describes the capabilities and limitations of the legacy CFD engine used 

as a basis for these investigations. The chapter also includes a description of the novel
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methodology that was developed for the re-use of the legacy CFD software in order to provide 

a framework for the research required for this project. The reverse engineering and re- 

engineering principles developed during this investigation are of significant interest in their own 

right, particularly when one considers the large amount of useful legacy code that is still in use 

but is often difficult to maintain or to integrate with newer applications.

Chapter 4. This chapter describes the creation of the prototype CFD system from the re- 

engineered legacy software. This is the "vehicle" that was to be used for the investigations into 

the potential benefits of interactive control.

Chapter 5. This chapter discusses the validation of the prototype CFD environment and 

compares the run-time behaviour with the legacy software from which it evolved. This was 

necessary to check that the reverse-engineering process has not corrupted the functional 

behaviour of the software.

Chapter 6. This chapter introduces a set of simulation cases with their results, and consequent 

interpretations. These test cases were used to investigate the potential benefits of interactive 

control and monitoring.

Chapter 7. This chapter discusses some preliminary findings of research that was conducted into 

solution optimisation. The two techniques that were investigated were automated dynamic 

solution control and a new solver technique called a group solver.

Chapter 8. This chapter offers conclusions about the benefits of these investigations.

Chapter 9. This chapter indicates the need for additional research. This additional research could 

not be completed or fully investigated due to time constraints.

The Appendices include technical descriptions of the algorithms, design and development 

techniques employed in the particular class of CFD code used during this research. Published 

papers, from the author, which are directly relevant to this investigation have also been included 

in their entirety, so that referring sections of this thesis could be written more concisely.
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2 Background to interactive CFD research

2.1 Overview

This chapter discusses some of the features and limitations of the most common commercial 

CFD codes and assesses some of the approaches that have been used to "improve" CFD 

modelling prior to this current research. The reasoning behind the decision to use a legacy CFD 

system as the base code for the current research is also explained. Having established the need 

for using legacy software, the various techniques that are available for effecting the re-use of a 

legacy CFD system are discussed. Finally there is a critical assessment of the CFD techniques 

and previous development style, that were found within the legacy CFD system used for this 

study.

In order to gain some perspective of the mode of operation and structure of the prototype CFD 

system it is worth considering the capabilities and mode of interaction typically found in other 

CFD codes. It should be noted that the CFD codes are not being evaluated for their complexity 

or relative accuracy of their modelling techniques, or for the diversity of application areas that 

they cover. Rather the discussion centres on the techniques used for interaction and control, as 

well as the assurance of reliable simulation and accuracy of results.

Clearly most, if not all, commercial CFD codes are undergoing continuous enhancement and 

many facilities have been added or further developed during the period of this current research. 

However, even now, few CFD developers are aiming to provide code interactivity and 

automated solution control. The observed development emphasis is usually directed to the 

enlargement of the range and diversity of cases that can be run with the software, the 

improvement of the numerical models and approximations used in the software and the provision 

of better quality set-up (i.e. case specification), meshing and post processing data analysis tools. 

This development strategy seems to assume that the CFD users will always be CFD experts but 

it has recently been observed that non CFD experts are often turning to CFD techniques in order 

to support their own areas of expertise.
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The various CFD codes, mentioned in these discussions, are by no means exhaustive. The 

intention is to include a representative set of CFD codes that adequately illustrate the currently 

available methods and techniques.

2.2 The traditional approach and work elsewhere

2.2.1 Batch mode CFD codes

There is generally insufficient information to apply reliable control of batch mode CFD codes 

since only residuals and spot value monitoring are provided. Whilst this is less of a problem for 

simulation optimisation by the control of relaxation values it is a severe problem for the 

appropriate handling of unstable or divergent solutions where the cause of the problem 

behaviour is not known.

Geometry 
& Physics

USER => 
Create 
CFD Setup

Perform
CFD
Simulation

USER => 
Respecrfy 
CFD Setup

USER =>
Analyse
Results

CFD 
Results

FIGURE 2.2.1-1 : Typical run time lifecycle of a CFD simulation.
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The figure (See Figure 2.2.1-1) shows a typical run time simulation life cycle that shows user 

interaction, processing and outputs. Generally the set-up / configuration, meshing and post 

processing data analysis tools are all completely separate from the numerical CFD engine. The 

user cannot easily make use of data visualisation to continuously monitor the solution because 

the user would have to force the system to output frequent complete result file dumps. Similarly 

the user is generally unable to "interact" with the solution controls because this generally 

requires saving a complete restart dump, going back to the set-up tool in order to re-configure 

a restart using modified control parameters and finally reloading the case and restarting to 

continue processing.

There are a wide range of CFD codes that fall into this category, including:

Phoenics [CHAM], Flow 3D [FLOW3D91], Easyflow [EASYFLOW90], Fluent, and Astec.

2.2.2 Other approaches to improve batch mode CFD codes

Several attempts have been made at developing Intelligent Front Ends [WILLIAMS88] 

[JAMBUNATHAN91] for CFD systems. Whilst this research has some scope for improving the 

CFD simulation process, because of the importance having a high quality case specification, it 

is likely that the problems facing CFD research (described in Chapter 1) will still apply. 

Unfortunately the research only used Knowledge Based techniques to support the set-up and 

specification of a case and did not modify the, essentially, batch mode numerical CFD engines.

Phoenics with rules was an attempt to control the CFD processing centred on an experimental 

routine build into the Phoenics commercial CFD code. This module contained a fairly simple 

algorithm to modify the relaxation parameters based on the latest values of residuals for some 

of the solved variables. A paper by Spalding [SPALDING92] presented simple implementation 

details of the production rules without validation of the potential benefits.

2-16



PhD Thesis by John Ewer.

2.2.3 Other interesting and / or relevant research

"FUNGI" [UPHAM94] is an interesting development because it employs Lex [KERNIGAN88- 

1] and Yacc [KERNIGAN88-2] to interpret Finite Difference algorithms in a graphical 

environment. Whilst these Finite Difference algorithms are generally not as complete as those 

that would be required for a CFD simulation and there are no supporting variables, it is 

interesting to see a system where the fundamental algorithms are not necessarily hard coded into 

the source code. The algorithms are actually interpreted from set-up information and the GUI 

parameters. This form of external algorithm configuration was investigated briefly to allow 

simple calculation of auxiliary variables within the prototype system.

Similar research has been conducted by Edwards and Hayes into a Visual Programming Interface 

for Iterative Methods [EDWARDS93]. Early discussions with CFD researchers led to this form 

of interface being discarded because, whilst extremely powerful for research of algorithm design, 

it is not especially useful for monitoring the solution status or controlling the simulation.

Scateni has also investigated the potential for creating an Integrated Object Oriented 

Computational Fluid Dynamics Environment [SCATENI92] but this had only resulted in the 

development of an Interactive Domain Editor.

Cortex [BANERJEE94] is a co-processing visualisation system designed to allow for interactive 

control of a CFD system but it requires a specially modified CFD interface for control and data 

passing. It was also designed for very powerful parallel systems. This is an interesting design for 

a configurable GUI for co-processing visualisation for CFD simulations.

NetCFD uses a WWW browser to remote control a CFD code (femFlow) from a remote high 

performance CFD system. The system currently limits data to 2D only at present. The CFD 

engine is based on the Finite Element Method and this has been criticised by some CFD 

researchers to have some problems with certain flow simulations. The system also requires high 

performance networking for communications between the remote processing server and the local
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GUI system.

Tworzydlo and Oden have written on the subject of creating an automated environment for 

computational mechanics [TWORZYDLO93] but this work was not particularly well advanced.

2.2.4 Prior CFD research in the University of Greenwich

Phoenics [CHAM] and Flow-3D [FLOW3D91]: These commercial codes have been used as 

development environments for the research of additional CFD methods covering nearly all 

aspects of simulation capability. As yet no research has been applied to the creation of 

interaction or monitoring tools beyond being able to see residual / spot value graphs and being 

able to break into the processing to re-specify the set-up.

UIFS: This FORTRAN 2-D unstructured mesh stress and control volume CFD code was the 

pre-cursor of much of the in-house research at the University of Greenwich. This code was 

primarily aimed at the simulation of coupled solidification, stress modelling and fluid flow 

scenarios.

FLOWES [PETRIDIS92]: This C and prolog research tool combined a simple thermal transfer 

code with a rule inference engine that could automatically modify the solution control 

parameters based on automated monitoring of the solution status.

CWNN [CROFT98]: This FORTRAN CFD code was a 3-D enhancement of the earlier UIFS 

code. The aims of the code were to combine multiple physics capabilities including stress, 

solidification and fluid flow modelling (amongst others) into a single coupled environment that 

was able to use fully unstructured meshes. This was the legacy code selected for the re- 

engineering.

2.3 Recent developments

Physica [BAILEY95] [CROSS94]: This FORTRAN code was developed as the embodiment
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of the multiple physics concepts on unstructured meshes that are found in CWNN and UIFS, 

both of these earlier codes were merely research tools used in the development of reliable and 

fully coupled multiple physics techniques. The emphasis of Physica is for broad coverage of CFD 

capabilities with high degree of portability and, where possible, the exploitation of high 

performance computing architectures.

FLO++: This C++ CFD code is quite novel in that it breaks the mould of traditional research 

techniques which have, almost exclusively, used FORTRAN. The software provides user 

development routines for extension of the software. The numerical engine is still quite batch 

mode oriented.

CFX: This FORTRAN CFD code is a recent successor to the earlier FLOW-3D code. The 

capabilities have been extended beyond those of FLOW-3D but there has been no attempt to 

incorporate any interactive techniques into the CFD engine, which is still essentially, a batch 

mode process.

Colt / Phoenics VR [CHAM]: This was a new concept for utilising high powered remote servers 

to run CFD problems with a set up tool and post processing environment running locally on the 

user's workstation. The user would create the case locally and "send" it away for simulation. A 

novel feature of the post processor is the VR style interface that allows the user to "walk 

through" the geometry and the results data as if it were a real geometry. The CFD simulation 

would still be run to completion in batch mode by the standard Phoenics CFD code.

2.4 Assessment of the development techniques available to 
develop a framework for interactive CFD research

This section discusses the various techniques that were available to create a CFD application 

framework for this research investigation. The various pitfalls and benefits of these approaches 

are also discussed.
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2.4.1 Develop a new CFD engine from scratch and add interactive 
techniques

It would be possible to create a CFD framework from scratch based on the plethora of available 

literature. Many of the papers about CFD cover many advanced topics of CFD research and the 

fine-tuning needed for specific application areas. The problem is that there are very few "single" 

information sources, which cover all aspects of developing a general-purpose CFD code. There 

are also a number of additional problems with regards to this approach.

2.4.1.1 Development time factor

Many CFD codes (either commercial or in-house research codes) have been developed over a 

period of many years by numerous developers. This is largely due to the diverse methods 

available for CFD research as well as improvements and replacements for both the generic 

numerical methods and application-area specific empirical techniques. In this sense most CFD 

code development is an evolutionary process both in terms of increasing hardware capability 

(which tends to highlight limitations in traditional techniques as the problem size and simulation 

complexity are increased - For example the availability of more memory and faster hardware may 

lead researchers to use finer meshes which may actually give less stable simulations or worse 

results because there are considerably more degrees of freedom for the flow path in a finer mesh) 

and software capability. Given the limited duration, human resources (Approximately 3 person- 

years) and CFD expertise available for this research it was concluded that it would not be 

possible to create a complete and well validated CFD system from basic first-principles.

2.4.1.2 Reliability of CFD software

The huge investment in man-power to develop CFD codes and the customary evolutionary 

development life-cycle of such codes mean that most CFD codes have a large and dedicated 

following of users who trust in the capabilities of particular codes (It is also the case that CFD 

codes have many optimal branches and fine tuned coefficients that are tailored to specific 

application areas). Indeed many CFD users are so tied to a particular CFD system that they are 

incapable or extremely reluctant to use any other CFD software outside of their previous
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experience. Any new development has to satisfy an extensive coverage of validation against both 

experimental data and other CFD systems if it is to obtain widespread user acceptance. Such 

reliability could not be guaranteed in any completely new code development prior to starting 

research into interactive control and indeed it would be unclear if any observed system 

behaviour, to interactive control, is due to problems in the reliability of the software or the actual 

control strategy adopted.

2.4.1.3 Access to CFD expertise

Part of the problem facing new CFD system developers is access to applied mathematicians who 

are familiar with the "fine-tuning" techniques used in CFD codes. This is vital where necessary 

approximations and empirical techniques have to be used to extend the software capability into 

new research areas. Starting a new code development from scratch would be fraught with 

difficulty due to inexperience on the part of the software developer and the steep learning curve 

associated with gaining the necessary development skills. This is particularly true of this 

researcher whose background is in software engineering and physics rather than in the more 

appropriate applied mathematics.

2.4.1.4 System capabilities

The nature of fluid flow simulation is so diverse in scope that few, if any, CFD codes can hope 

to behave well in all application areas. Even a limited application area such as fire field modelling 

is actually very complex when the fundamental physical and chemical processes involved (and 

their interrelationships) are actually considered. This complexity is further compounded by the 

nature of the approximations and simulation techniques used within CFD software. Any new 

development would have to undergo extensive research and testing merely to become an 

"adequate" simulation system in a specific application area.

2.4.1.5 Other problems with developing from scratch

As previously mentioned any implementation of a CFD code from basic principles is likely to
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take considerable time to develop due to the complexity and nature of the algorithms used. 

Furthermore such development is fraught with difficulty particularly for finding the empirical 

methods algorithm fine-tuning that give the best possible approximation to true physical 

behaviour for the target application area when no accurate numerical model exists. It is highly 

likely that a new code development would get the design and data architecture correct for the 

desired system but it is probable that the new development would have errors and omissions in 

the empirical models and core algorithm formulation that could only be removed by extensive 

research and iterative improvement. Research would need to be conducted into the algorithms 

and empirical methods employed because various combinations of numerical techniques behave 

in very different ways even when disregarding the diversity of the target application areas. Most 

CFD codes are the combination and accumulation of many titbits of implementation knowledge 

from diverse information sources where such knowledge ranges in scope from the particular 

values used for a few constants in a particular application area to choices for more reliable 

solution algorithm for the coupling of the solved variables. Validation of a new development is 

particularly difficult because of the long development period before the system is in a state that 

can actually be used to run simulations and at such a stage any errors encountered would require 

extensive modifications to the underlying software. As has been found in many previous new 

developments there is unlikely to be trust in the development from potential users without 

extensive validation against existing software systems and experimental cases. The duplication 

of effort for developing a new CFD code is particularly problematic for a limited duration 

project. Generally a new code development would have no support from other developers since 

the information sources would be reference texts, journal papers and conference proceedings 

with little access to numerical CFD software developers who have their own work loads.

2.4.2 Add interactive functionality to an existing commercial CFD system

At the beginning of this research a feasibility study was performed to ascertain if an existing 

commercial CFD code should be used as the framework for this investigation. There were a 

number of perceived problems with this approach.
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2.4.2.1 Sensitivity of commercial software

Most commercial CFD software is closely guarded by the developers because of the huge 

investment of resources required to develop and maintain it. Access to some of the empirical 

approximations, numerical methods or specific implementation techniques would give 

competitors considerable advantage. It is generally the case that commercial software is only 

infrequently available completely in source code form.

2.4.2.2 Access to commercial software

As previously mentioned the new research requires complete access to all of the software 

internals because of the requirements for interactive dynamic control. Also the methodology 

used to incorporate User Interface code within a software system are generally highly invasive 

for the provision of comprehensive interactive control, run-time data monitoring and run-time 

visualisation.

2.4.2.3 Authority to modify commercial software

Given the sensitivity of most commercial CFD codes it is unlikely that authority would be given 

to re-engineer or modify such a code extensively because such modifications would create 

several different versions of the software which would then have to be maintained. If a decision 

was taken to only proceed with the modified "interactive" version then that would have 

implications on the development techniques that would have to be employed (e.g. QA 

procedures, regression testing, comprehensive validation, software design with management 

walkthroughs) and also on the company requirements for the delivery software. Such 

commercially driven research would be unlikely to be as flexible as pure research because of the 

limitations of product and user requirements which often cannot afford to support extensive 

speculative pure research.

2.4.2.4 Access to developers' expertise

It is unlikely that a commercial software development house would welcome external access to
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the CFD development team because of the likely interruption to work schedules that such 

interaction would cause. Such access is vital if the new code development is to keep up with 

bug-fixes, patches and code improvements and is not to stagnate as a dead-end system. The 

software developer is also likely to need significant help with understanding and correctly 

accessing the internals of the code.

2.4.3 Extending the capabilities of the existing partially complete CFD code : 
"FLOWES"

In the case of the "FLOWES" system it was decided that there was too much missing from the 

basic algorithms to contemplate extending the software because such extension would be very 

similar to the previous section which described the difficulties facing a new code development. 

This was particularly true in light of the fact that it is the complex flow and turbulence modules 

that were not developed within the "FLOWES" software. As mentioned above, the reliability 

of a completely new software development would be largely unknown and untested and 

significant research would be required into the choices and fine-tuning of algorithms and 

empirical methods. Extending an existing system would mean that the implementation language 

and, to a lesser extent, the data structure would be fixed. This is not necessarily desirable when 

considering the potential for extended research. There would be no support available from 

developers since the legacy system was essentially an unsupported prototype that is not going 

to be developed further or maintained.

2.4.4 Simple automated translation of a legacy CFD system

Some cursory investigation of the tools available indicated that such an approach would lead to 

little or no improvement in structure of either the data architecture or the procedural hierarchy. 

It is also possible that there would be small errors in translation process particularly in terms of 

order of execution of compound statements and array handling between languages. Due to the 

low stability and fine numerical tolerances of most CFD algorithms it is probable that very minor 

differences could cause destructive and unpredictable behaviour. However this technique does 

benefit from the fact that the implementation language can be chosen such that suitable tools and
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software libraries are available for the overall development. There are several portability issues 

relating to some of the available translation tools particularly in the handling of the external files 

(which is a vital aspect of CFD systems) which are used to maintain complete sets of set-up and 

solution data outside of any particular run of the software. There would be no documentation, 

other than that which was available with the legacy CFD code. Generally the translation would 

be simple to do and quite quick however the quality of translated software is frequently 

indifferent and often quite poor. This is particularly true of translation software that is intended 

to allow compilation but not necessarily maintenance or enhancement within the target language. 

The approach does have one significant benefit because the new system maintains a reasonable 

one to one mapping with the legacy system but this is only useful if developmental and research 

work is to be conducted entirely within the legacy system.

2.4.5 Creation of nearly unchanged libraries of numerical routines and the 
imposition of high level structure

A part way solution to the use of legacy software, whilst acknowledging the need for improved 

structure, is to impose a high level structure on the software whilst turning much of the legacy 

code into utility routines and library procedures that now make use of an improved high level 

data structure or routine hierarchy. This approach could be reasonably easy to implement but 

depends largely on the existing procedures and data access mechanisms and the clarity and 

flexibility of their implementation. It is possible that the approach could benefit from the use of 

mixed language programming but this would adversely affect the system portability. It is also 

possible that the desired high level structure would not necessarily be consistent with the legacy 

routines. This technique could be reasonably quick to implement provided that no difficult 

inconsistencies were encountered. Many of the legacy routines could be used "as-is" depending 

on the pre-existing structure and nature of the language used. This is likely to result in a 

straightforward path for upgrade, patches and bug-fixes but easy integration of legacy routines 

cannot be guaranteed. Performance is likely to be good provided that functional data access or 

re-assignment are not required as a means of accessing or passing data to low level library 

routines. It is also likely that code clarity would be improved at a high level within the code but 

would be generally poor at lower levels. Some of the problems would be dependant on the
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nature of the data access mechanisms that would be imposed by mixed language development 

or the interface to the library routines.

2.4.6 Reverse engineering of a legacy CFD system back to basic design and 
re-implement from this design

This process would take a considerable time and is by no means easy. The reverse-engineering 

techniques available [BYRNE91] [BRAND96] to "mine" an existing software system for the 

underlying design are by no means infallible [BERGEY]. Furthermore it is possible and indeed 

quite likely that errors will be introduced in the re-design or re-implementation phases of re- 

engineering. This technique does have the benefit of considerable flexibility in the choice of 

implementation language. As with a new development there is a long time before the newly 

developed code can be tested against the legacy code behaviour. However the behaviour is more 

assured than simply developing a new code from first principles because the design has been 

extracted from a working and complete software system. Reverse engineering will generally 

preserve all of the algorithms and empirical methods but may not necessarily preserve an audit 

trail back to the legacy software. This is particularly true if the structure and data architecture 

have been drastically altered in the re-design process. It is likely that any updated methods and 

bug fixes would also have to go through a complete re-engineering and re-implementation 

process in order to be assured of functional consistency.

2.4.7 Reverse engineering of a legacy CFD system and re-implementation 
using an incremental approach and imposed data and control 
architecture

This approach to re-engineering has to make concessions in the design to maintain consistency 

with legacy system whilst incrementally re-engineering. One of the most important benefits is 

that the re-engineered system (and the incremental stages) are never very far from a working 

CFD code that can be validated as being algorithmically correct and consistent with solution 

behaviour from the legacy software. This gives considerable assurance that the algorithms and 

empirical methods are preserved during re-engineering. The effort involved is significantly less 

that would be needed for a complete re-engineering re-implementation from a reverse-
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engineered fundamental design, however the resultant system is less likely to have a "perfectly 

designed" architecture due to dependencies and structure inherited from the legacy software. 

This technique is more reliable than automated translation or re-structuring since the re- 

engineered software will be designed so as to improve the architecture to create an extensible, 

clear and consistent system. The target implementation language can be chosen as required but 

this will necessitate some form of translation at one of the incremental stages. This technique 

provides a form of audit trail back to the legacy software so that updated methods and bug fixes 

can follow through into the new system with less effort than would be found with a totally re­ 

designed system.

2.5 Choice of Implementation language

2.5.1 Overview of language choice

Given that a large number of the overall system requirements had already been specified it was 

possible for the implementation language choices to be enumerated. Whilst, in theory, the choice 

of target language was not vital prior to the re-development phase it was found to be helpful to 

know what programming paradigms and language features would be available for use during the 

re-engineering.

Languages such as Smalltalk were not considered due to their huge performance hit, caused by 

their interpreted nature, even though the conceptual structure of such languages is capable of 

use for implementing scientific software [DUBOIS-PELERIN92].

The legacy CFD software was actually implemented in FORTRAN-77.

2.5.2 Available languages

2.5.2.1 Ada.

Ada had few libraries and suffered from generally quite poor portability due to the limited

2-27



PhD Thesis by John Ewer.

availability of quality compilers. Such compilers as there were had a high cost. At this stage the 

compilers also exhibited limited reliability because Ada is such a complex language. Ada is not 

quite Object Oriented. It was possible to create very robust software if the particular compiler 

implementation was correct because of the very strict type checking. It appears that were only 

a few numerical users. Algorithmic development and use as a research language is likely to be 

hampered by the very strict type checking and lack of familiarity on the part of the developers. 

Ada is moderately close, semantically, to the legacy code language.

2.5.2.2 Pascal.

Pascal is often considered to be rather an academic plaything. The portability of Pascal is quite 

poor. The language is not really Object Oriented although record like structures are available. 

It has been observed that there are inconsistencies in behaviour between different compilers and 

platforms. Some compilers exhibit quite good speed but this is highly compiler dependant. There 

were very few portable libraries available for Pascal. There were few serious numerical 

developers. Certain compilers and language features helped to ensure reasonably robust 

implementations. Pascal is moderately close to the legacy code language.

2.5.2.3 FORTRAN-77.

FORTRAN-77 has no Object Orientation hence it would be necessary to emulate Object 

Orientation using simple data structures and possibly common data and entry points 

[AFZAL94]. FORTRAN does display good speed and excellent portability due to its maturity 

and strict specification. Generally there are rather poor language features and only a few 

portable GUI libraries. FORTRAN has very good numerical libraries but these are not 

necessarily useful for the CFD system. FORTRAN does not generally support any operating 

system interface. The majority of numerical developers use FORTRAN. There is little support 

from the language for robust coding but there are a number of commercial code analysis and 

code tidying support tools available. FORTRAN is the language that was used to develop the 

legacy code.
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2.5.2.4 FORTRAN-90.

FORTRAN-90 had only a few compilers available at the start of this investigation. Compiler 

reliability was currently suspect particularly for compilers that translated from FORTRAN-90 

to C as part of the compilation. There was rather a lack of libraries other than via FORTRAN- 

77. Again FORTRAN-90 is not quite Object Oriented although it had introduced more complex 

data types than were available in FORTRAN-77. There were few users but the language is 

FORTRAN-77 compliant. The language includes enhanced numerical support for vector and 

matrix algebra. Generally there was good numerical speed but often, surprisingly, much slower 

than FORTRAN-77 compilers on the same platform. FORTRAN-90 is consistent with the 

legacy code language.

2.5.2.5 C++.

C++ has a fully Object Oriented paradigm but the usage can be sometimes be somewhat obscure. 

There were generally many diverse application libraries particularly for user interface 

development. The operating system interface built into the language is very good. C++ does 

suffer from less run-time performance than purely procedural languages (poor speed for dynamic 

or "late" binding). There is reasonable support for robust coding with moderate to strong type 

checking but the possible use of C style pointers could give dangerous unrestricted data access. 

C++ had a quite limited number of numerical developers but its popularity is growing. The 

language definition is being extended continuously and developers must be aware of the portable 

sub-set of language if portability is an issue. C++ is a highly flexible and extensible language with 

considerable possibility for optimisation. C++ has moderate to poor consistency with the legacy 

code language.

2.5.3 Language chosen for the re-engineered system

The need for a generally portable prototype system that was capable of supporting the Object 

Oriented data structure paradigm tended to indicate the use C++ as the target implementation 

language. The wide availability of user interface development libraries and easy access to the
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operating system also supported C++ as a suitable language. The deciding factor was the 

availability of Knowledge Based System development tools that are either compatible with C++ 

or accessible from within C-

2.6 The methodology that was adopted for the development of a 
CFD research framework

The fundamental considerations for the development of the prototype system were for reliable 

CFD modelling coupled with rapid implementation. The re-use of legacy software offered the 

greatest potential benefits due to availability, access to knowledge and compatibility with 

existing pre- and post- processing tools. When the various CFD code development techniques 

available were considered, for the current project, the incremental re-engineering approach 

offered the most appropriate solution based on absolute functional consistency, limited 

development time, access to CFD code developer expertise, flexibility for re-design and ease of 

maintenance.

The biggest problem facing this technique is that a change of implementation language would 

require a complete and accurate translation of all of the source code with all of the potential 

problems that this would entail. This was not seen as an insurmountable difficulty because the 

incremental re-engineering technique would tend to support the translation stage due to earlier 

re-structuring stages that are concerned with clarifying the legacy code and ensuring that data 

access and procedure usage are consistent throughout the whole system.

A complete description of the re-engineering methodology adopted, for this investigation, is 

given in the following chapter (See Chapter 3).
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3 Re-engineering the legacy CFD code

3.1 Overview

Having established the need for using a legacy CFD code as the basis for the creating of a CFD 

research framework, this chapter discusses the considerations and difficulties that were 

encountered during the re-engineering as well as giving a description of the reverse engineering 

methodology itself.

This chapter first highlights the problems facing any re-use of legacy software. This is followed 

by a discussion of the techniques and features that were known to be needed or were desirable 

in the re-engineered system and the implications of these features are discussed where they have 

a bearing on the re-engineering process. The chapter then gives a critical assessment of the 

implementation techniques and characteristics of the legacy CFD software that was to be used 

as the basis for the development of a research framework for this investigation.

Finally, this chapter describes the stages used in the reverse engineering methodology. This 

incremental methodology was specially formulated in order to re-engineer the legacy CFD code 

and to develop the required prototype CFD application and research framework. A journal paper 

covering the software re-engineering is included in the appendices [See Appendix 11.2].

The reader might be interested to note that the legacy CFD software system consisted of 107 

source files that contained 22,450 Lines-Of-Code (LOC) excluding comments.

3.2 What problems are associated with the re-use of legacy code?

3.2.1 Poor documentation

It is generally the case that research developed codes are largely unsupported by any 

comprehensive code documentation. The code often serves as its own specification and final
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design. Any documentation that is available may be tailored to journals or conference 

proceedings and is thus unlikely to be concerned with all of the technical development and 

implementation issues that resulted in a particular instance of the legacy code but rather would 

be concerned only with the basic algorithm changes that differentiate a particular system from 

previous approaches.

3.2.2 Evolutionary research code

Generally the priorities for the development of an in-house research code (i.e. not product 

oriented software) are vastly different from those for commercial software. Often software 

development companies have adopted strict methodologies for software design, implementation 

and maintenance. Conversely a purely research based code is likely to have good or excellent 

mathematical models due to application of new and novel solution techniques. Unfortunately the 

high quality algorithms are often obscured by a rather poor development style which can lead 

to monolithic subroutines with too much inline code, poor software module re-use because 

software grows by modification to pre-existing routines rather than being implemented from 

design. Research code tends to lack consistent implementation strategy due to the variety of 

component sources and developers. Further problems occur when there are no strictly imposed 

and consistent strategies for passing variables, naming conventions or strict software 

development methodologies which generally result in a working system which is very unclear 

and exceedingly difficult to extend or maintain. Most research developed codes require 

considerable tidying and re-structuring before they can be used for commercial systems or for 

continued research and development by a software development team. A further traditional 

problem is the nature and experience of most numerical researchers who are generally trained 

and firmly entrenched in a procedural way of problem solving and software implementation. This 

is not necessarily the most appropriate or optimal solution to creating a research tool with a long 

useful life particularly in light of the techniques used for GUI implementation.

3.2.3 Closed and inflexible architecture

The requirements for an interactive and extensible research system are generally very different

3-32



PhD Thesis by John Ewer.

from those which are tolerated in a pure research code. The previously enumerated points about 

data passing mechanisms and procedural structure have much greater importance when the 

system is to be used for continued research by a multitude of researchers or when access to data 

is required by other modules and possibly even other co-operative processes.

3.2.4 Archaic implementation language

The traditional language choice that is most commonly used to implement numerical systems in 

general, and CFD systems in particular, is FORTRAN-77. Whilst FORTRAN is indeed fast and 

portable it does suffer from being very restrictive particularly as far as data structures are 

concerned. Furthermore the only conceptual mode of development that is generally supported 

is for procedural implementations. Attempts at Object Oriented design and implementation using 

FORTRAN have proved to be possible but these have had very limited acceptance and are often 

quite unwieldy. Studies [PARSONS94] have shown that ease of maintenance, code clarity and 

ease of modular implementation and maintenance can be significantly enhanced by the use of 

Object Oriented development techniques.

3.2.5 Lack of any existing User Interface

Most existing software systems that were developed as research tools are not generally 

supported by any form of integrated user interface. Partly this is due to the priorities of the 

researchers which tend to favour algorithm robustness, solution correctness, execution 

performance and fast implementation rather than any form of interaction techniques. Also many 

CFD codes started their development at a time when graphical interactive computer terminals 

were unavailable and hence the CFD software could only be run as black box processes on pre- 

configured simulations.

3.2.6 Few, if any, library tools

Research development of software tends to design from the top down and does not often 

concentrate on the generation of library software routines and modules that can be used in any
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subsequent research. A well conceived library of software tools can significantly benefit future 

code development because researchers do not have to implement commonly used routines again 

and such routines are easy to locate within the software system. The libraries that are available 

do provide low-level routines such as solvers, norm calculation routines and vector algebra but 

tend to be over prescriptive of the data structures and, in any case, do not support the real 

complexity of CFD software which is mostly in the formulation of the coefficient values used 

in the system matrix, the calculation of auxiliary variables and properties and the 

interdependences between coupled variables.

3.2.7 Batch mode of processing

The nature of computers and their development history has led to a situation where many 

competent (and indeed highly skilled) numerical software developers are unaware of the benefits 

and possibilities afforded by non-batch mode codes. Batch mode processing tends to dominate 

the field of CFD research because simulation run times used to be measured in days and weeks 

and it was thus inconceivable that a user would wish to monitor and interact with a simulation 

during the entire computational phase. This situation has been improved drastically by the 

continuously increasing performance gains of current computer systems. Unfortunately the 

traditional batch mode of processing still holds for most CFD systems when performing the 

actual numerical simulation. Admittedly there have been advances made to the set-up tools 

(specification) and post processors (results analysis) but the numerical computational phase 

remains very similar to the batch mode techniques of legacy software.

3.3 Discussion of CFD techniques used in the legacy code

The particular formulations, approximations and algorithms used in the legacy CFD code (that 

were subsequently carried forward into the prototype CFD system) are considered to be outside 

of the scope of this thesis since they concern common numerical formulations of existing 

algorithm development work that have little bearing on the re-engineering or the imposition of 

interactive techniques. The interested reader is directed to the appendices section where the CFD 

technical material and capabilities are described in some detail.
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3.4 What considerations have to be made for the re-i/se of legacy 
code for use in the new system?

3.4.1 Nature of control and granularity

Since the target for this study was a system which would be able to respond to dynamic solution 

control there needed to be due consideration to the nature of the control within the legacy 

system. All of the available aspects of control had to be identified and furthermore each control 

parameter had to be evaluated so that decisions could be made about "if', "when" and by "how 

much" could it be safely modified. There were also data dependencies upon control parameters 

which had to be assessed. For example it would not be correct to modify a relaxation parameter 

part-way through a solver sweep if this would cause some of the cells to use the old value of 

relaxation whilst the remainder used the new value of relaxation. Such a situation would 

introduce potentially unpredictable and unstable solution behaviour and had to be prevented.

3.4.2 Existing looping structure

The existing looping structure within the legacy system was bound to the procedural 

development style used by most CFD developers in the traditional software development cycle 

typically found in numerical software developed in a research setting. This was not necessarily 

appropriate for the target system. The nature of looping required was identified and the 

implications of changing the looping were also assessed prior to re-engineering. The smallest 

"chunk" of processing was determined to be the outer "sweep iteration" which causes all of the 

solved, calculated and auxiliary variables to be updated once.

3.4.3 Existing procedural structure

A comprehensive understanding of the legacy system modularity was ascertained prior to the 

re-design process. The scope and nature of the procedures had to be determined so that the re­ 

design work would not "break" the algorithms from the legacy code.
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3.4.4 Use as part of ongoing research program (involving others)

The fact that the prototype system was to be used as a research framework for CFD techniques 

had important implications for the use of the legacy software. One such consideration was that 

the new algorithm syntax and data access mechanisms could not be too "alien" in usage to the 

intended developers. Another consideration was for the research requirements, within the 

medium to long term, that would have implications on the form of data structures used and the 

modularity of the software.

3.4.5 Data structures

The form of the data structures used in the legacy software had to be evaluated so that the 

functional and data dependencies were known prior to any re-design. It was also necessary to 

assess the nature and extent of data passing mechanisms. This evaluation ended with an 

assessment of the most flexible and extensible data structures that could be used in the target 

system which were still compatible with the algorithms within the legacy software.

3.4.6 Performance issues

CFD code users are highly aware of the overheads of performance because the size and 

complexity of simulations, together with the computationally intensive numerical CFD 

processing, lead to extended run-times. When the legacy software was re-designed some 

consideration had to be given to the performance degradation or improvement that would result 

from any design changes or implementation differences.

3.4.7 Portability issues

Since there is generally no specific computer hardware that is used to run CFD simulations then, 

in order to provide adequate user coverage, the software was developed to be as portable as 

possible. This affected the choice of implementation language and the choice of third party
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libraries which could be used. At the outset, the developer was aware that the prototype was 

intended for use as a framework for future internal research but was also likely to be further 

developed as a saleable product and thus, it was necessary to consider the commercial aspects 

of the development too (e.g. minimising the dependencies on external expensive libraries whilst 

maximising portability).

3.4.8 Integration of GUI components

Graphical User Interfaces are reasonably straightforward in concept but the diverse nature of 

the underlying operating systems and computer hardware means that there are few truly portable 

GUI development libraries. Most of the portable GUI libraries have a particular mode of 

operation that is termed "event driven". There were a number of potential conflicts between an 

event driven GUI and the legacy procedural software since it was intended that the software is 

to be fully interactive.

/ EXPERT \

SETUP USER 
INTERFACE

CFD USER 
INTERFACE CONTROL 

BLACKBOARD CFD DATABASE

USER

FIGURE 3.4.8-1 : Components of the CFD environment 
and the data access architecture.
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3.4.9 Integration of KBS components

Prior research on FLOWES [PETREDIS92] [PETRIDIS96] indicated a suitable architecture for 

the use of Knowledge Based System components that could be used to control the numerical 

processing using production rules. The communications between the numerical software and the 

rule system are made possible by the use of a Blackboard. Part of the extended research that 

used the prototype system was a Knowledge Based System capable of reasoning about 

appropriate control changes using stored expertise from expert CFD users. It was intended that 

such changes could be effected by either a knowledgeable user (via the GUI) or the KBS module 

in order to improve the simulation strategy. For the most part the available KBS tools are unlike 

traditional programming languages and there were implications as to the choice of 

implementation language for the CFD system so that the KBS and CFD components could 

communicate effectively (or indeed at all). There was also a need for evaluation of how and in 

what form could data from the CFD system be made available to the KBS system and how could 

control be sent from the KBS to the CFD system (See Figure 3.4.8-1). Such decisions affected 

the re-design process for the legacy software.

3.4.10 Integration of visualisation components

A significant new development within the CFD system was for the continually updated "run­ 

time" visualisation of data during the computational processing. This implies that the complete 

solution data for visualisation had to be made available to the visualisation routines whenever 

the display needed to be updated (such as when a window is exposed or resized or when new 

data is available). Since the visualisation routines are based on an event driven paradigm it was 

necessary to provide unrestricted global data access to the visualisation routines.

3.5 What new techniques were needed in the new system and what 
implications did these requirements have?

The requirements for an open architecture, maintainable CFD system with integrated graphical
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interface and dynamic visualisation indicate that Object Oriented design and the event driven 

paradigm are necessary implementation strategies. These architectural changes are desirable 

from the point of view of the final delivery system but they have large implications for the 

approach used and difficulties to overcome in order to re-engineer the legacy software into an 

appropriate form.

In order to perform the software reverse engineering of the legacy software it was necessary to 

identify the complete calling architecture, common procedural code and code duplication as well 

as any "inline" methods. The full design and algorithmic methods used within the legacy software 

had to be extracted for use in the new system in the most concise and self-consistent form 

possible to support extended research.

It was also necessary to determine if the legacy software contained any computational objects 

which could be created within the new system to encapsulate concepts, related data and 

methods. The creation of abstract types provided significant flexibility and ease of maintenance 

within the target system. There was also an improvement in general code clarity when objects 

had intuitive and self-consistent meanings. Often the use of alternative data structures could 

support lateral research thinking because new ways of problem solving become apparent due to 

the nature of the objects themselves. The potential problem of using objects was the potentially 

significant overheads that have been noted in some Object Oriented (OO) implementations 

[ANGUS91] [DUBOIS-PELERIN93]. It has already been noted that performance is frequently 

an important consideration when choosing a CFD code and it is vital that the imposition of 

Object Orientation should not drastically affect performance. Angus et al [ANGUS94] had 

noticed quite a large overhead for Object Orientation when applied to lower "processing" levels 

of a "flutter analysis" simulation code. Their approach to overcoming these overheads was to 

keep the lower levels using simple data structures but to group the simple structures and 

methods at quite a high level of the calling architecture so that the performance hit of Object 

Orientation was minimal. Such an approach was considered for the re-engineering of the legacy 

CFD code but there are a number of potential Object Oriented exploitations that would not be 

possible with this half-way house re-structuring. Care was taken to avoid the potential problems 

[WEBSTER] of using an Object Oriented development by investigating the possible problems
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before the re-engineering commenced.

Consistency with numerical CFD developers experience necessarily put limits on the 

implementation language choice and limited the features that were used. The new system was 

designed to be largely self descriptive and consistent with the known algorithms from the legacy 

system. It was also a design requirement that data access was self-consistent for all software 

developers and researchers.

The coding interface between the GUI and numerical CFD code crosses the boundary between 

an event driven architecture and purely procedural code. The danger with integration of different 

programming methodologies was that one or other component can tend to dominate with the 

effect that the GUI could seem unresponsive while the CFD code was always processing or, 

alternately, the CFD code was never processing or behaving sluggishly as the GUI was always 

waiting for input. Part of the design strategy that has been demonstrated in prior research is the 

use of Blackboard objects for inter-component communications and for maintaining GUI 

defaults.

Since the target system was ultimately intended to have KBS support, there were considerations 

that had to made during the system design. The first choice was for the implementation language 

such that data transfer between the CFD code and the KBS component was possible, portable 

between systems and efficient. If, as seemed likely at that stage, the KBS system was constrained 

to be a separate process then the overheads and complexity of data transfer by file would have 

to be assessed. In practice the KBS, GUI and CFD engine are coupled by a global "blackboard" 

data structure but are, for efficiency reasons, implemented within the same executable. This 

implementation strategy was deemed to be both appropriate and necessary because of the huge 

amounts of data required by a CFD simulation. A coupled system gives instant and unrestricted 

access to all of the simulation data with no communications overheads. A mechanism of 

restricting control access was considered in order to prevent meaningless or potentially 

problematic control modifications. There is a distinct possibility that pattern recognition code 

would be required to summarise status information prior to reasoning although creation of 

pattern recognition routines is outside of the scope of this research.
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Visualisation was deemed to be vital for comprehension, by a CFD user, of patterns and trends 

in large numerical data sets. The form of data within CFD systems is such that there are three 

possible forms of visualisation and a variety of visualisation techniques from vector arrow 

displays to contouring or graphs. The 3-D form of visualisation was considered to be too time 

consuming and complex for the run-time display of data and was more appropriate to the usual 

post processing visualisation of results from a completed simulation. A further perceived 

problem with 3-D visualisation was that the displays can sometimes be uninformative if they are 

cluttered with too much data simultaneously. Conversely 2-D visualisation is known to be 

considerably faster and easier to draw but has the disadvantage that only a limited amount of 

data is displayed at any one time so features could be missed if the 2-D display slice is chosen 

inappropriately. Graphs are really 1-D visualisations that are very good for displaying time, 

sweep or distance varying quantities so that data trends and convergence can be ascertained. The 

3-D and 2-D visualisation methods require access to the data throughout the computational 

domain for all variables. The 1-D graphs may also require access to historical data values when 

used for graphing data against time or iteration sweep.

Consideration was also given to new code algorithms and new application specific modules and 

techniques. These requirements implied that the new software system had to be coded for clarity 

and robustness. This would not necessarily be the case for a pure prototype research code. One 

feature that had already been conceived was for the use of group solvers. It became apparent 

that there were two techniques that would be rather difficult to implement and use in the legacy 

system because of the lack of dynamic memory allocation and the use of existing code 

procedures that are global rather than object-specific. These techniques were for mesh adaption 

and mesh refinement. It was unlikely that these techniques could be implemented during the 

current research but consideration was given to the form of data structures and procedure 

modularity that would support their implementation at a later date.

3.6 Critical evaluation of the legacy code

The following sections give a brief description and assessment of the state of the legacy system
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at the time when the legacy software was used for re-engineering. The interested reader is 

directed to the SMARTFIRE Technical Reference which is included in the Appendices section 

[See Appendix 11.4]. The Technical Reference covers the numerical and physics modelling 

capabilities that exist in both the legacy and re-engineered CFD codes.

3.6.1 Coding style

The legacy code was written in standard FORTRAN-77 with no extensions to using compiler 

specific features (e.g. no use is made of "DO..ENDDO", "DO..WHILE" or aggregate data 

types) that are available in FORTRAN-90 and as extensions in some FORTRAN-77 compilers. 

This was good from the point of view of portability but it did mean that "DO..WHILE(..)" loops 

were actually implemented as "n CONTINUE..IF (..) GOTO n" which can be hard to follow 

semantically within large sections of code. These are fairly common constructs in the legacy 

CFD software.

Very little use was made of the computed GOTO or simple GOTO other than for the 

implementation of DO. .WHILE loops as described above. This meant that the legacy system had 

reasonably clear execution paths, although some sections of the code were very long.

The naming conventions used in the legacy software followed the standard 6 characters for 

identifiers and procedure names. Almost all variables were explicitly declared for dimensions and 

type. The legacy code did not use any implicit typing except for a few loop index counters. The 

fact that implicit typing was not used made the legacy code easier to reverse engineer but the 

use of 6 character identifiers made the code quite hard to comprehend initially.

Comments were only consistently applied to subroutine headers where they were used to 

described the argument list variables and their access modes. The remainder of the source code 

had only a few scattered comments (typically 1 descriptive comment per 50 lines of code) to 

explain the algorithms or the purpose of subroutines and functions. Generally the only internal 

comments were for related code block title headings. This lack of comments meant that legacy 

code developer assistance and some background research was needed to understand the
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reasoning behind some of the algorithms and routines.

Reasonable use was made of named integer parameters for declaring the dimensions of data 

arrays. This was a considerable help in the assessment of implied aggregate types since arrays 

that were declared as having the same dimensions were thus likely to be of related storage and 

hence possibly part of an implied aggregate (collection) type. The following example code 

fragment (See Figure 3.6.1-1) shows some of the data arrays that could be identified as being 

related due to the parameters which indicate the array sizes.

INTEGER MAXCEL, MAXFPC
PARAMETER ( MAXCEL = 18500, MAXFPC = 6 )
INTEGER CELMAT(1:MAXCEL), ADJFPO(1:MAXCEL,1:MAXFPC)
REAL CENTRE(IrMAXCEL,1:3), CELVOL(1:MAXCEL)
REAL TEMPER(1:MAXCEL), H(1:MAXCEL)
REAL OLDH(IrMAXCEL), OLDT(1:MAXCEL)
REAL LASTH(IrMAXCEL) , LASTT (1: MAXCEL)
REAL U(1:MAXCEL), OLDU(1:MAXCEL)
REAL V(IrMAXCEL), OLDV(1:MAXCEL)
REAL W(1:MAXCEL), OLDW (1 :MAXCEL)
REAL P(1:MAXCEL), OLDP(1:MAXCEL)

FIGURE 3.6.1-1 : Identification of aggregate data types.

Fairly extensive use was made of named parameters for storing empirical algorithm numerical 

value constants. This was good because it tended to clarify the algorithms concerned and 

indicated that the numerical values had some consistent meaning. These parameters tended to 

be declared locally and were thus defined many times throughout the entire legacy software 

system.

One area that the legacy code did fall down on was the frequent use of explicit integer indices 

to refer to variables within arrays. This was particularly true of the arrays which hold status and 

control information for each of the solved variables. Access was non intuitive when the source 

code merely referred to item "n" in an array since the developer then had to cross check to see 

how the number "n" related to known items.
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3.6.2 Data access mechanisms

There was no use of dynamic memory allocation (compiler dependant additions) in the legacy 

code and no pseudo-allocation techniques were used (for example FORTRAN developers often 

declare and use huge data arrays that are partitioned and passed down to subroutines as separate 

arguments). This meant that the legacy code often needed to be modified and recompiled for 

different problem sizes. This can greatly limit portability of the software and generally means 

that portions of the code had to be made available in source code form for re-compilation. There 

was also the problem that the legacy software might not use memory in the most efficient way 

possible for the particular problem being simulated.

Standard FORTRAN array based storage was used for all data with each array named separately 

as a separate variable. The legacy code did not use so called "f-array" storage techniques as in, 

say, Phoenics [CHAM] - This technique declares a huge data array at the main program level 

and passes down "chunks" of the array to sub-procedures. The use of simple array based storage 

and the naming conventions used in the legacy code mean that, other than the declared sizes, 

there was no clear indication of how differently named variables and arrays were related to one 

other. Another problem that was encountered concerns the difficulty of developing additional 

functionality that requires new variables. Generally speaking, the addition of a new variable, to 

solve or calculate, will also require a large number of additional support or storage variables. 

This additional storage may be needed for temporary storage during calculations, for control of 

the solution, for reporting of status or for the storage of different historical versions of the 

particular variable. This is a particular problem because the data dependencies in the legacy code 

are unclear and it is thus difficult to ascertain how many and of what type the required new 

variables should be.

There is no use made of COMMON for passing data around the system between procedures. 

This means that all data is passed around the system as formal parameters in argument lists. 

Given the high degree of data dependency between most of the numerical routines there are 

considerable numbers of arguments. All variable names had to be limited to 6 characters to avoid 

exceeding the continuation line limits for some of the argument lists. The greatest problem posed
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by this high degree of data coupling, between subroutines, is that code enhancement which adds 

extra variables can potentially involve extensive modifications to the majority of the source code. 

This is clearly undesirable because of the large potential for introducing errors. There is also a 

problem with large argument lists because of the limited type checking provided by FORTRAN 

that would allow some variables in a large argument list to be muddled in order without error 

or warning. The only symptom of such a coding error would be the unpredictable behaviour of 

the affected subroutine. This is a real and distinct danger that is present in the legacy software. 

The following source code fragment (See Figure 3.6.2-1) indicates the scale of some argument 

lists to major routines.

CALL MCSOLV( 3,

@
@
@
@
@
@
@
@
@
@
@
8
@
e
RELAXA =
RMETHD =
MITERS =
LTEMP =

LVFRAC,
NOCELL,
VRMETH,
B PATCH,
CENTRE,
OLDLVF,
FTOCEN,
NPRPFD,
WAPL,
MATINX,
WB,
BDARCY ,
NOPINF,
XYZCRD,

SRELAX(l)
VRMETH ( 1 )
MAXITR(l)
DEBUG ( 1 )

CALL PCSOLV( 3,

@
@
e
@
@
@
@
e
@
e

NOFINC,
BANWID,
RELAXA,
SCHEME,
ADJELE,
TEMPER,
NEQSFD,
W,
SYSMAT,
NOPINF,

IF ( ERRINF .NE. 0 )

SERROR(l) = RESIDU

CELTYP,
NOFINC,
BANWID,
SRELAX,
NOVARS ,
AREA,
TEMPER,
NUMMAT,
CELMAT,
UPG,
u,
UAP,
ISOLID,
MAXFPT,
NUMPTS,

CELTYP,
NOFTYP,
NO FACE,
TOLVAL,
LASTP,
NPATFD,
OLDP,
MAXEQS,
UAP,
MATINX,
MAXFPT,
STOP

NSOLVR,
NOFTYP,
FPATCH,
TOLVAL,
PTBYPT,
CELVOL,
VRELAX,
PRPEQS,
LASTU,
VPG,
V,
VAP,
NORMAL,
TURMOD,
ERRINF

LVFRAC,
NOCTYP,
WKSP,
MITERS,
B,
MAXCFA,
OLDT,
MATPRP,
VAP,
RESIDU,
LTEMP,

VELERR,
NOCTYP,
NO FACE ,
MAXITR,
P,
ADJELE,
OLDT,
NEQSFD,
LAS TV,
WPG,
w,
WAP,
DENS IT,
ADJFPO,

)

NOCELL,
RMETHD,
NUMPAT,
CENTRE,
CELFAC,
NUMMAT,
NPRPFD,
WAP,
NORMAL,
LASTU,

WALLS S,
WKSP,
NUMPAT,
NPATFD,
MAXCFA,
SOLERR,
MAXEQS,
LASTW,
BUOY,
TMPSYS,
OLDU,
ENUL,
DEBUG,

B PATCH,
AREA,
DELTAT,
PRPEQS,
CELMAT,
UPG,
DENSIT,
LAS TV,

SCHEME,
CELFAC,
VFALST,
MATPRP,
UAPL,
SYSMAT,
UB,
OLDV,
FACPTS,
NUMDBG,

CELVOL,
PCORR,
FTOCEN,
u,
VPG,
FACPTS ,
LASTW,

SERROR,
DELTAT,
ENUT,
SKINFR,
VAPL,
VARERR,
VB,
OLDW,
FACTYP,
XPROD,

BUOY,
OLDLVF,
ADJFPO,
V,
WPG,
FACTYP,
ERRINF )

FIGURE 3.6.2-1 : Usage of formal function parameters.
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3.6.3 Structure

Many of the routines are basically copies of other routines with only slight algorithmic 

modifications. There is generally little or no consideration given to the isolation and re-use of 

common code. This is particularly true of the large subroutines that are used to build the 

coefficient "system" matrix for each variable or the fairly common methods such as simple vector 

geometry operations. Whilst this approach tends to make the source code very large, and more 

difficult to maintain, it does have the benefit of fairly optimal speed of execution since there is 

generally less decision branching and the number of layers of procedure calls is kept to a bare

minimum.

Legacy code

RELAXA = SRELAX(5)
RMETHD = VRMETH(5)
MITERS = MAXITR(5)
FALSET = VFALST(5)
CALL HCSOLV(3, RELAXA, ...
CALL SYSRES(...)
SOLERR(5) = RESIDU
RELAXA = VRELAX(5)
CALL LINRLX(...)
VARERR(5) = RESIDU
RELAXA = VRELAX(8)
RMETHD = VRMETH(8)
CALL CSOLVT(...)
IF ( ERRINF .EQ. 0 ) STOP
VARERR(8) = RESIDU

is problematic because

Literal values and simple assignments 
prior to calling a complex numerical 
calculation routine.

Highly abstracted routine call.
Less abstracted utility routine call.

Utility routine call.

More low level simple assignments

Call to highly abstract routine.

FIGURE 3.6.3-1 : Problematic code in the legacy software.

The subroutines in the legacy code have a great deal of clutter around them as if the structure 

and level of code abstraction has not been completely decided. In the main program there are 

calls to subroutines that are surrounded by simple assignment statements. This leads to a code 

that does not have a clear semantic consistency because there are mixed levels of code 

abstraction. This is clearly evident when one considers the major solution routines, within the 

top level procedure, that are embedded within simple assignments and calls to simple utility 

routines. This is mostly due to the evolutionary (research oriented) style of development which 

tends to incrementally add and modify existing code rather than to be based on a clear and
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distinct top-down design. The code fragment shown in the figure (See Figure 3.6.3-1) indicates 

some of the problems that were found due to the mixed levels of code abstraction in the legacy 

CFD code. N.B. The "..."is used to indicate many formal procedure arguments. It should be 

noted that, from the literal values, used to index the control and status arrays in the figure, it is 

possible to infer that "5" represents the solved variable "ENTHALPY" and that "8" represents 

the calculated variable "TEMPERATURE" but the meaning of the "3" (used as an argument to 

the HCSOLV routine) is not apparent at this level.

3.6.4 Optimisation

The legacy system often used very large subroutines with a high degree of inline code and code 

duplication between many routines. As previously mentioned this can lead to near optimal 

execution speed at the expense of code clarity, code re-usability and ease of adaptive and 

perfective maintenance.

3.6.5 Control looping

The subroutines are generally based on looping for all things of a particular type. A typical 

example is the, geometry related, volume calculation routine which calculates the volumes of 

all cells before returning. This is true of most of the geometry routines and the majority of the 

solution calculation routines. The only exceptions are some of the lower level source 

contribution routines for the calculation of the system matrix coefficients which tend to perform 

calculations for a single control volume face only. Again this approach does give near-optimal 

performance but limits the flexibility of the system as a research tool since there are few utility 

routines that can be used in isolation for an individual object. The usual argument for optimal 

behaviour in the legacy system is not particularly valid for the geometry routines since they are 

only currently used during system initialisation. The following code fragment (See Figure 3.6.5- 

1) shows the implementation of looping for the legacy volume calculation routine that is only 

able to calculate volumes for all cells at once.
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SUBROUTINE VOLUME ( NOCELL, NOFACE, NUMPTS, DIMENS, XYZCRD, 

@ CELPTS, CELTYP, NOCTYP, NPTCTY, MAXCPT, 

@ FACPTS, MAXFPT, NOFTYP, FACTYP, NOPINF, 

@ CELFAC, MAXCFA, NOFINC, CELVOL, CENTRE, 

@ AREA, NORMAL, DEBUG, ADJFPO, ADJELE, 

@ ERRINF ) 

C
C Many lines of declarations removed 
C

REAL CELVOL(1:NOCELL), XYZCRD(1:NUMPTS, 1:DIMENS) 

C
C Many lines of initialisation removed for clarity 
C

DO 1 I = 1, NOCELL 
CELVOL(I) =0.0
DO 2 H = 1, NOFINC(CELTYP(I),0) 

C
C Many lines of volume computation removed for clarity 

C
CELVOL(I) = CELVOL(I) + AREA(FACNUM) * DISTAN / 3.0 

2 CONTINUE 
1 CONTINUE 
RETURN 
END

FIGURE 3.6.5-1 : Control loops to be found in the legacy software.

3.6.6 Consistency

Array arguments outside and inside of called routines generally, but not invariably, use the same 

identifiers but there are many instances of subroutines having arguments that contain a 

differently declared number of dimensions than in the calling routine. This is a serious flaw in 

the legacy code since a developer assessing a piece of code in isolation will find it necessary to 

trace the variable back up through the calling structure to determine the exact nature, context 

and access mechanism of the variable in question. Also the calling and called naming convention 

consistency is not guaranteed, within the legacy code, which can lead to semantic development 

errors caused by name changes. This is a considerable problem as the code is intended to be used 

and extended by a number of developers who will only have access to the source code itself. The 

following source code fragment (See Figure 3.6.6-1) demonstrates the change in names and 

dimensions of some variables between calling and called subroutines.
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INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
LOGICAL

SCHEME, NPATFD
WALLSS(1:NOFACE) , SYSMAT(1:BANWID, 1:NOCELL)
LASTU(1:NOCELL) , 
LASTW(1:NOCELL), 
UB(1:NOCELL) , 
WB(1:NOCELL) , 
ENUT(1:NOCELL) , 
NORMAL(1:DIMENS, 
TURMOD

LASTV(1:NOCELL) 
P(1:NOCELL) 
VB(1:NOCELL) 
ENUL(1:NOCELL) 
SKINFR(1:NOFACE) 
:NOCELL, IrMAXCFA)

C 
C 
C

C 
C
C

C 

C 

C

c-
c
c-

Declarations removed for clarity

DO 1 ELENUM = 1, NOCELL

Numerical code removed for clarity

DO 2 FACNUM = 1, NOFINC(CELTYP(ELENUM),0)

Numerical code removed for clarity

IF ( ADJNOD -LT. 0 ) THEN

External Boundary

PATCH = FPATCH(FACE)
CALL CBOUND ( PATCH, NUMPAT, FAREA, BPATCH, DIST ,

@ NORMAL (1, ELENUM, FACNUM) , NPATFD,
@ ENUL(ELENUM),
@ ENUT(ELENUM),
@ LASTU(ELENUM) ,
@ LASTW(ELENUM),
@ WALLSS (FACE) ,
@ P(ELENUM),
@ UB(ELENUM),
@ WB(ELENUM),

ELDENS,
SCHEME,
LASTV(ELENUM),
SKINFR(FACE),
TURMOD,

VB(ELENUM), 
SYSMAT(1,ELENUM)

SUBROUTINE CBOUND ( PATCH, NUMPAT, AREA, BPATCH, DIST,
@ NORMAL, NPATFD, ENUL, DENSIT, ENUT,
@ SCHEME, U, V, W, SKINFR,
@ WALLSS, P, TURMOD, UB, VB,
@ WB, SYSMAT )

INTEGER
REAL
REAL
REAL
REAL

PATCH, NUMPAT, NPATFD, SCHEME
AREA, ENUL, 
VB, WB, 
WALLSS, P 
NORMAL(1:3),

DENSIT, ENUT, 
U, V,

SYSMAT, UB
W, SKINFR

BPATCH(1:NPATFD,1:NUMPAT)

FIGURE 3.6.6-1 : Lack of consistency through parameter lists.

It is worth noting that the "NORMAL" array changes from a 3-D array with sizes of
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(1 .DIMENSIONS, 1 :NOCELL, 1 :MAXFINC) to a 1-D array (1 DIMENSIONS) between the 

calling and called routines. Conversely the "LASTU" array is used as an array called "U" in the 

subroutine but there is already a "U" of different meaning used in other areas of the code. These 

changes are likely to lead to confusion and incorrect data access.

The legacy system also exhibits some behaviour that shows that there were a number of code 

developers working at different times on the system. This is most clearly indicated by a general 

lack of consistency between some of the routines in terms of naming conventions or structure 

and purpose. The evolutionary style of development has not helped since there have been no 

strict development guidelines to adhere to. The only criteria for development has been for the 

meeting firstly functionality and secondly performance requirements with little or no emphasis 

on style or maintenance.

3.6.7 Code clarity

Given the lack of comments and the FORTRAN-77 standard restrictions for naming conventions 

it can be very difficult to follow the source numerical algorithms. This is not helped by the high 

level of complexity of the algorithms and data structure inter-dependencies due to the 

unstructured nature of the solution mesh.

The code is mostly unsupported by any comprehensive documentation or algorithm designs and 

thus serves mostly as its own completed specification.

3.7 Development of a novel nine stage incremental re-engineering 
methodology

The re-engineering strategy, developed during this investigation, used a nine stage incremental 

process to restructure the legacy code in FORTRAN-77, to translate to C++, to enforce modern 

software engineering design principles and to prepare for later perfective and adaptive 

maintenance. Much of this research has been published in a case study in a journal publication 

and the interested reader is directed to read the paper [EWER95], included in the Appendices 

[See Appendix 11.2] for a more complete discussion of the re-engineering process. The flow
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diagram (See Figure 3.7-1) indicates the key stages in the re-engineering of the legacy CFD 

code. The central vertical line indicates the boundary between the FORTRAN-77 and C++ 

implementations.

FORTRAN Automatic
translation

C++

(1)

(2)

(3)

(4)

CWNN

Ensure data 
consistency 

and make global

test 
run

Name and
algorithm

clarification

test 
run

Removal of 
redundant code 
and simplification

test 
run

Ensure consistent 
use of control

Replace logicals

final (5) 
test

(9)
Optimisations

and 
enhancements

(8)
Create class 

member functions 
for procedural 
routines

(7) I
Create class 
data structures 
as in design

(6)
Modify all file 
I / O and rewrite 
for compatibility

Manual 
translation

-{compile

FIGURE 3.7-1 : Stages in the incremental re-engineering process.

Comprehensive regression testing (using a numerical file comparison utility called "NumdifT 

[EWER93-2] to check results consistency) after each incremental stage of the re-engineering 

process ensured functional compatibility between the delivery system and the legacy code. This
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regression testing used a sufficiently diverse selection of test cases to ensure that all major code 

modules were exercised. Clearly it would be inadequate just to test a small sub-section of the 

code and leave major portions untested.

3.7.1 Stage (1): Ensure data consistency and make all data global

Initially, all of the separate source code files were combined into a single source file with the 

main program routine as the first routine. This was necessary because the editor, used 

throughout the re-engineering, had a limit on the allowed number of open files. There was also 

the problem that a large number of files would lead to a much greater likelihood of missing a 

modification or translation step. Subsequently, tools such as Visual Studio, with integrated 

multiple file searching and hypertext browsing, have reduced the problems associated with 

maintaining and developing multiple file large applications. The legacy software used 

approximately one source file per sub-routine and navigation was hampered by the use of DOS 

standard 8.3 file naming and short (6 character) procedure names.

A FORTRAN-77 source code analysis and restructuring tool called SPAG [SPAG93] was 

initially used to tidy the indentation and to restructure the source code using consistent control 

constructs. The SPAG tool set also has a global code check utility that was used to generate 

much needed information about subroutine calling structure and variable usage. SPAG was also 

configured to set the case of identifiers to indicate variable scope and usage. COMMON 

variables and PARAMETER statements were completely capitalised whilst local variables used 

only lower case. Subroutine arguments had an initial capital letter followed by lower case 

characters. This helped somewhat to locate the appropriate declarations and showed the 

dependencies of any variable.
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Legacy FORTRAN code

CALL BUOYAN( RMETHD, ELEMAT, ELEVOL, TEMPER, .. )

SUBROUTINE BUOYAN( RMETHD, ELEMAT, VOLUME, T, .. )
INTEGER ELEMAT(TOTELE)
REAL VOLUME(TOTELE) , T(TOTELE)
B = TEMPER(I) * ...

is modified to become

INCLUDE 'DATABASE.INC' 
CALL BUOYAN( RMETHD, .. )

SUBROUTINE BUOYAN ( RMETHD, .. ) 
INCLUDE 'DAT ABAS E.INC' 
B = T(I) * ...

with DATABASE.INC defined as

INTEGER ELEMAT(TOTELE)
REAL ELEVOL(TOTELE), TEMPER(TOTELE)
COMMON /CELL D/ ELEMAT, ELEVOL, TEMPER

FIGURE 3.7.1-1 : Passing data via include files and COMMON.

In order to restructure the software into an object oriented form, the data was grouped into 

class-like "COMMON" structures. This could not be done if data items changed names in 

argument lists or were passed around as incomplete array segments. It was therefore necessary 

to match calling and called routine arguments and rename local variables to match external data 

items. SPAG was used extensively to document and navigate within the CFD code.

Legacy FORTRAN becomes

CALL HBOUND( H(ICELL), .. ) CALL HBOUND( ICELL, .. )

SUBROUTINE HBOUND( HVAL, .. ) SUBROUTINE HBOUND( ICELL, .. ) 
REAL HVAL INCLUDE ' DATABASE . INC ' 

HVAL = HVAL * ... INTEGER ICELL
H(ICELL) = H(ICELL) * ...

FIGURE 3.7.1-2 : Revised argument passing for COMMON data.

Non-standard FORTRAN include files were used to pass data between routines. These include 

files used COMMON data declarations to ensure that only one declaration exists for each 

variable. Any easily identifiable utility routines kept their parameter list arguments intact. In
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some instances, during re-engineering, COMMON was used inappropriately for passing data to 

utility routines. This problem was quite easy to identify because of the necessary introduction 

of many simple assignment statements (putting data into COMMON) just before the utility 

routine call. The figure (See Figure 3.7.1-1) demonstrates the passing of data in COMMON 

blocks.

Data items were grouped into appropriately named COMMON blocks with related items, as they 

were identified. This identification was facilitated mostly by the declared dimensions of the 

arrays and the subroutine header information. Tentative groupings were made based on the 

declared array sizes and these were revised as actual array variable usage was completely 

identified within the source code. For example arrays with dimensions of (1..NOCELL) indicate 

cell properties of some sort whilst those dimensioned as (1..NOFACE) were face properties. 

Many of the single variables were identified as being suitable for COMMON by simple 

inspection of their usage. Switch control variables tended to be more appropriately passed as 

arguments to routines. It was preferable to err on the side of caution because of the slight 

potential for naming conflicts between new COMMON variables and dummy arguments.

Dummy argument names were replaced with direct accesses to the newly defined included 

COMMON variables. Where subroutines were receiving arguments which were single array 

elements it was necessary to ensure that the appropriate array index was available within the 

subroutine. The code fragment (See Figure 3.7.1-2) indicates how array index values were 

passed instead of the array elements.

3.7.2 Stage (2): Name and algorithm clarification

The FORTRAN-77 standard 6 character identifiers and subroutine names were replaced with 

longer, lower-case, names that conveyed the functional or conceptual meaning and usage. SPAG 

was used to automatically rename identifiers, since it prevents and reports any renaming 

conflicts. Some of the initial name changes are detailed in the figure (See Figure 3.7.2-1).
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Legacy FORTRAN identifier -> New identifier name

MCSOLV -> solve_momentum
CALGEN -> calc_generation_rate
RDINFF -> read_inform_file
H -> enthalpy
TEMPER -> temperature
U -> u_velocity
KINETC -> kinetic_energy
DISSIP -> dissipation_rate

FIGURE 3.7.2-1 : Name changes for code clarification.

Many, formerly inline, code sections were moved into new subroutines to highlight their 

algorithmic meaning at a more appropriate level of abstraction. Passing data by include file and 

COMMON facilitated this process since extensive re-declarations were no longer necessary. 

There were two ways to identify inline code. The first was recognition of those instances of code 

that keep appearing relatively unchanged throughout. An example of repetitive inline code within 

CWNN was for the calculation of the cell upwind density. This code consists of some 32 lines 

of source code duplicated in 10 different calculation routines. The second sort of inline code was 

the use of very large code fragments (100 lines or more) in control constructs such as IF (..) 

THEN...ENDIF blocks or DO...CONTINUE loops.

Legacy FORTRAN indicates that pressure should use the SOR solver

SOLTYP(l) = 5

becomes

INCLUDE 'PARAMS.INC' 
solver_type( PRESSURE ) = SOR

with PARAMS.INC defined as

INTEGER PRESSURE, SOR
PARAMETER( PRESSURE = 1, SOR = 5 )

FIGURE 3.7.2-2 : Introduction of PARAMETER constants.

Literal numbers that were used to index arrays or used in calculations were globally defined as 

more meaningful PARAMETER statements in an include file. This file was then included in all 

routines as indicated in the example code fragment (See Figure 3.7.2-2).
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3.7.3 Stage (3): Removal of redundant code and simplification

Code paths and variables that were not required for the current project were removed from the 

system. It was noted that solidification modelling was not necessary for the target application 

area, so the corresponding code was completely removed. The solidification code was simple 

to remove because it was all switched via logical control variables. The extra variable solver also 

presented no difficulty to removal because it was (like most of the other solvers) simply a copy 

of an existing solver routine with the data variables changed.

Legacy code fragment

MITERS = MAXITR(4) 
RELAXA = VRELAX(4) 
CALL SORSCH(...) 
SERROR(4) = RESIDU 
CALL LINRLX(...) 
VARERR(4) = RESIDU

Equivalent code abstracted

INTEGER VAR_W_VELOCITY 
PARAMETER( VAR_W_VELOCITY = 4 )

CALL SORSCH( VAR_W_VELOCITY, ... ) 
CALL LINRLX( VAR_W_VELOCITY, ... )

N.B. The simple assignment statements have been moved down into the 
called subroutines.

FIGURE 3.7.3-1 : Re-locating simple assignment statements.

There were many instances where code fragments could be simplified by moving simple 

executable statements (generally simple assignments) into nearby called routines. This helped 

to keep the code at the same level of algorithmic complexity and avoided unnecessary clutter 

as shown in the example code (See Figure 3.7.3-1).

CWNN had many research "hooks" for future use. For example, dummy routine calls and logical 

variables were provided to allow for the possible future development of mesh-refinement and 

mesh-adaption. These "hook" locations were noted for location and function and then removed 

to simplify the overall re-engineering process. Some of these hooks have subsequently been 

added back into the software for research using SMARTFIRE.
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3.7.4 Stage (4): Ensure consistent use of control and logicals

Labelled lines were made to use CONTINUE rather than have executable statements. This 

helped with the translation to C++ and made it easier to find other loop constructs.

Instances of single line "IF ( <expression> ) <statement>" were replaced with the equivalent 

form using "IF ( <expression>) THEN <statement> ENDEF" so that subsequent translation to 

C++ would be facilitated. Instances of "IF (<expression> ) GOTO <abel>" were left unchanged 

because these were often part of "do... while" constructs. This identification and replacement was 

performed later when some of the other clutter was removed.

Loop constructs which used the standard "DO <label> <block> <label> CONTINUE" 

were changed to a non-standard form as "DO <block> ENDDO" loops which avoided excessive 

use of continue and labels. The use of "DO...ENDDO" loops also allowed easier recognition of 

the other uses of "<label> CONTINUE" as in FORTRAN simulated "do...while" loops. Any 

clearly identifiable "do...while" loops were implemented with the compiler specific non-standard 

FORTRAN WHILE constructs instead of the usual "IF ( <expression>) GOTO <start_label>" 

as used in the legacy code. SPAG was useful in this respect because it has some automatic re­ 

structuring capabilities supporting non-standard, but widely used, control constructs. The 

correct indentation of these non-standard FORTRAN extensions is vital for conveying looping 

structure at a glance. SPAG correctly indents loops and branches during its parsing.

Since C++ does not support a built-in LOGICAL type it was decided that an equivalent, robust 

replacement should be implemented in the FORTRAN code at this stage. The direct translation 

to a C++ enumerated type was considered but, because there was no conformal mapping for 

assignment using the NOT value of a logical, the idea was discarded. LOGICAL variables and 

comparisons were replaced with integers and integer comparisons respectively. The complexity 

of replacing the LOGICAL values was significantly reduced by working within the FORTRAN 

version of the code. This also prevented errors in logic that could occur when too many 

translation steps had to be performed simultaneously. The replacement of a LOGICAL
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sometimes required the introduction of "IF ( <expression> )" constructs to assign appropriate 

"Boolean" values to integer variables. The integer parameters "False" and "True" (representing 

0 and 1 respectively) were used throughout the code to match the ultimate C++ implementation.

3.7.5 Stage (5): Translate the legacy FORTRAN to procedural C++

When the above stages had been completed, and the FORTRAN code was still producing 

consistent simulation results, it was necessary to translate the FORTRAN to procedural C++. 

This was because there was no appreciable advantage to be gained by further FORTRAN code 

changes. The serious limitations of the available FORTRAN-to-C translators "£2c" [F2C93] and 

"for-C" [COBALT93] led to the decision to translate the CFD code to procedural C++ 

manually. The natural course of action would be to use parsing or compiler writing tools such 

as "lex" [KERNIGAN88-1] and "yacc" [KERNIGAN88-2] but because of the high learning 

overheads and non-interactive nature of these utilities, an alternate approach was investigated 

and ultimately used when it proved to be workable. The tool actually chosen was a powerful 

programmer's editor with regular expression search and replace facilities, macro record and 

playback and multiple-file editing capabilities. It should be pointed out that a simple text editor 

would not be sufficient because of the large syntactic variation that may be encountered in the 

source code during translation. Even using the facilities provided,-great care was needed to plan 

and perform the macros used to translate the code.

Using the editor facilities, the translation to procedural C++ involved writing a set of individual 

macros to replace specific code constructs. Again SPAG was used prior to this task so that a 

globally consistent style and control syntax would persist throughout the source code. This was 

necessary to enable the searches within the macro replacements to work correctly. (See Figure 

3.7.5-1) indicates some of the macro text replacements that were used during the manual 

translation from FORTRAN-77 to procedural C++. The use of regular expression searches and 

macro replacements does require that care was taken to perform the replacements in order of 

most complex to least complex to prevent incorrect matching with parts of other expressions. 

The main problems are with DO, END and IF which can be part of other keywords like END 

IF or END DO. There are also potential problems with accidentally matching search expressions
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with literal strings or parts of variable names. Using case sensitive searches, after SPAG had 

been used to consistently set the case of keywords and identifiers, minimised the potential for 

problems. Clearly these problems would not be present using compiler writing tools (e.g. yacc 

or lex) because all identifiers are recognised as whole tokens. The program editor was useful in 

one respect because the regular expression text replacements are interactively controlled. N.B. 

The ".." and "..." represent code and formal arguments, respectively, not changed by the 

macros.

Legacy FORTRAN -> Macro replacement code

ELSEIF (..) THEN -> } else if (..){
IF (..) THEN -> if (..){
ELSE -> } else {
ENDIF -> }
CALL -> /* CALL REMOVED */
DO I = a, b, c -> for ( I=a; I>=min (a,b) &&K=inax (a, b) ; I+=c ){
DO I = a, b -> for ( I=a;K=b;I++ ){
ENDDO -> }
SUBROUTINE .. (...) -> void .. (...){
END -> }
RETURN -> return;
PRINT*, ... -> cout « ... « endl;
nnn CONTINUE -> Label_nnn:
GOTO nnn -> goto Label_nnn;

FIGURE 3.7.5-1 : Macro replacements.

String variables (i.e. FORTRAN-77 CHARACTER*(n)) were dealt with on an individual basis 

since the numerical code only had a very limited number of routines which manipulated strings. 

Literal strings were easily replaced by the ["] delimited versions of C++.

One of the major problems encountered during the translation was the difference in array 

indexing syntax. FORTRAN style array indexing is very different to C++ style array indexing. 

It was decided to effect these changes manually (using searches and macros) on a variable by 

variable basis. Macros were used to change the () indices to [ ] indices, but these could not be 

used globally because of the complexities of multiple-dimensioned arrays, partial array argument 

passing and arrays that are used to index other arrays. It was decided to increase the declared 

array dimension sizes by one, and waste the Oth element, because of the declaration syntax and
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limitations of C++. This has an adverse effect on memory used but allows quicker run-time 

performance. Fortunately most of the FORTRAN arrays had (1 :n) indices, but (-m:n) or (m:n) 

indices were represented by simply adding or subtracting a suitable constant at the declaration 

and each reference. All of the arrays were initially translated to statically declared (fixed size) 

C++ arrays and no attempt was made to create class structures at this stage. The potential 

problems of passing segments of multiple-dimensioned arrays were largely avoided because of 

the earlier consistency modifications made to the legacy code in stage (1) which meant that data 

arrays were uniquely defined in COMMON storage.

CWNN [CROFT98] has the traditional batch-mode "INPUT -> PROCESS -> OUTPUT" 

execution path that is common to most legacy numerical simulation codes and hence, it was not 

necessary for to completely re-engineer the output routines for the initial compile and run 

testing. Simple use was made of "cout«" or "printfQ" as appropriate whilst leaving the original 

commented-out FORTRAN PRINT and WRITE statements for later reference and more 

thorough and complete translation.

Single item input presented no problem using "fscanf()" or "cin »" as appropriate. List directed 

and formatted FORTRAN input were more problematic. The approach adopted was to replace 

a list directed FORTRAN input with a collection of single item or looped-over fscanfQ calls. It 

was necessary to remove any end-of-line comments from the input files until a permanent "in- 

code" solution could be implemented. Once again IO translation was facilitated by the limited 

amount of actual IO performed by the legacy software.

After several trial compilations and minor fixes a clean compilation was obtained. Very small 

data sets (with between 2 and 100 control volumes) and a C++ debugger were used to check 

that input files were accurately read in and that the data was appropriately stored in the new 

structures.

3.7.6 Stage (6): Modify all file I/O and rewrite for compatibility

The first task within the procedural C++ code was to ensure that all of the file input and output
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was being performed correctly. This was very easy to check by immediately dumping any item 

read out to a log file and comparing this with the original data file. It was often necessary to use 

the "ifstream getlineQ" function to clear to the end of input lines because of the character based 

file handling of C++ as opposed to the line based file handling of FORTRAN.

One of the input problem-specification files made use of a script-like command language that 

presented some difficulties because of potentially multiple command arguments. These problems 

were overcome by implementing a line parsing routine and corresponding token or phrase 

extraction utilities to interpret the lines of input and to extract data values as required. This was 

the only area where new code had to be developed due to the differences between the 

FORTRAN and C++ languages.

Generally most numerical reading of data was as simple in C++ as it was in FORTRAN however 

care had to be taken with one of the more obscure FORTRAN formats where numbers can be 

written with no space separators between them when sign characters are used. If, as with the 

FORTRAN implementation, the format was known then this difficulty can be overcome by 

reading the required field width into a character buffer and then extracting the value from the 

buffer. One other difficulty was with PC C++ compilers which tend to always write float values 

in double precision exponential format. A writing routine had to be developed for IO to those 

files which required a pure single precision or non space delimited format for use in other 

packages.

3.7.7 Stage (7): Implement class objects to replace array structures

The original array structures of the FORTRAN code were very unsatisfactory because there was 

no explicit grouping and no obvious relationship between many of the variables, apart from the 

nature of the indexing. The groupings used to make COMMON variables in the legacy code 

provided a means of collecting data items into structures (C++ classes). This allowed the 

creation of physically meaningful entities with known attributes. The diagram (See Figure 3.7.7- 

1) shows some of the legacy code FORTRAN-77 arrays.

3-61



PhD Thesis by John Ewer.

This corresponds to the diagram (See Figure 3.7.7-2) of the equivalent C++ classes. Some of 

the arrays in the legacy CFD code (See Figure 3.7.7-1) contain actual data values (e.g. P, 

OLDP, AREA and XYZCRD) whilst others contain index values (e.g. CELFAC and FACPTS) 

that are used to reference data items in other arrays. It should be noted, at this point, that the 

links between the identified class objects could have been implemented using pointers and arrays 

of pointers instead of integer indices and arrays of indices. The major problem with using 

pointers extensively is that this would necessarily introduce pointer de-referencing to access 

values. This would almost certainly be unfamiliar to many numerical CFD developers. It was 

decided that the object links be implemented in a form not too dissimilar from the legacy code. 

Whilst this was often less elegant, than some other techniques, it did have the benefits of 

consistency and ease of implementation.

Cell Properties

x
y
z

Point Properties

XYZCRD

Index links .•••••••••••••••••

Face Properties

1
2
3 
n

FACPTS

AREA 

SKINFR

FIGURE 3.7.7-1 : Legacy FORTRAN data storage in simple arrays.

There was a potential problem for the storage of cell properties because of the need to maintain 

up to four different historical versions of some variables. For example a transient flow simulation 

needs old time-step, last sweep, previous inner iteration and newest values of pressure and
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momentum components. Also variable usage is determined by simulation type. Using explicitly 

declared cell class attributes for cell properties (e.g. "cell.pressure", "cell.old_pressure", 

"cell.last_pressure", and "cell.previous_pressure") would always use storage regardless of the 

actual requirements of simulation. It was decided that simple "data" arrays of properties should 

be created and then indexed by parameter type identifiers (See Figure 3.7.7-2). The "slots", in 

the data array, can then be assigned as required by the simulation. This was particularly 

important, for example, in a simple heat-transfer simulation where the overhead of storing the 

other flow variables is highly undesirable. This approach also allowed for functional data access 

with expressive selection arguments, and ease of data monitoring. The argument against using 

such a method revolves around the fact that it is then possible to confuse the indexing to the 

slots. In order to prevent inappropriate access to the slots, the indexing mechanisms were made 

private to the class and embedded within data access functions.

PRESSURE
Array of cell objects data

CELL

NEWEST

LAST

OLD

"O num_of_faces 

"O material 

"O volume

Array of face objects

Array of point objects

index link

index link FACE

j ! L.......QV

SKIN FRICTION

"O area

"O num_of_points

FIGURE 3.7.7-2 : Re-engineered Object Oriented data structures in C++.
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3.7.8 Stage (8): Create Class member functions for procedural routines

Many of the procedural calculation routines contained code similar to the fragment in (See 

Figure 3.7.8-1) which calculates the cell volumes for all cells. The inline code (looping over all 

cells) often forms a natural class member function for the individual loop objects. The loop code 

can be abstracted into class utility methods as indicated. The advantage of this approach was that 

utility routines were created that provided much greater flexibility than was afforded by the 

original software architecture. Previously the software could only calculate for all objects at 

once whereas it would be desirable (as in the case of mesh adaption and mesh refinement) to 

limit the calculation to selected objects.

Legacy style routine for all cells

void calculate_all_volumes ( void ) { 
for ( i = 1; i <= max_cells; i++ ) {

// calculate volume for current cell 
cell [i] .volume = ...;

Introduce a new method for calculating the volume in a cell

void Cell_Class : : calc_volume ( void ){ 
// calculate volume for current cell 

* this. volume = ...;

and then the original routine becomes

void calculate_all_volumes ( void ) { 
for ( i = 1; i <= max_cells; i++ ) { 

cell [i] .calc_volume ( ) ;

FIGURE 3.7.8-1 : Identification of class methods.

The identification of class methods from FORTRAN legacy code was quite straight-forward 

because numerical codes tend to be optimised for speed rather than for memory usage. This 

means that developers introduce variables, that are initialised once at program start-up and then 

persist for the duration of the simulation, to hold values like face areas, volumes and normals
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rather than lowering performance by repetitively re-calculating them. This allows methods to be 

identified in the initialisation stages of the software where these values are first set. The storage 

of such variables was kept for optimal performance and in some instances extended as other 

needlessly repetitive calculations were identified and subsequently replaced.

Another area where methods were identified was in routines that were simply "copied" and 

"modified" versions of other routines. Some code fragments had nearly identical algorithmic 

structure but used different variables. These routines were relatively simple to gather into a 

unified general purpose routine that is "parameterised" via function calls to provide the original 

functionality.

3.7.9 Stage (9): Optimisation and enhancements

The initial class oriented C++ version used statically declared arrays of objects. Dynamically 

declared arrays were relatively easy to implement provided that the sizes could be determined. 

In practice this required the use of temporary dynamic storage which is used to hold some of the 

geometry data whilst allocation sizes are determined. This use of dynamically allocated data 

structures gave much greater code flexibility without the need to re-compile for larger 

simulations. It was also possible to implement arrays of pointers to objects so that even 

individual objects could be created and destroyed independently, at run-time, as required. This 

could be very important for future methods involving mesh-refinement where more control 

volumes are created during the running of the program or for parallel processing where each 

processor could be handling a sub-set of cells.

The debugging of CFD codes has traditionally been a major problem because of limited or non­ 

existent access to the internals of the algorithms and the problems of finding the appropriate 

values in the segmented and dispersed storage. The initial re-engineered system used direct data 

access to cell objects but such access cannot be easily controlled or monitored. The approach 

finally adopted was to use access functions that return data references rather than merely 

returning data values. Such access functions can then be used on either side of assignment 

statements to in order to set or get values. The figure (See Figure 3.7.9-1) shows the
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implementation of the cell data access function in C++. Since data access was implemented as 

a function it is possible to plant debug code to monitor the usage of a chosen cell or variable or 

even to trigger some other analysis code. This is demonstrated by the example debug code to 

watch for negative temperatures. The optimised version of this access function uses a compiled 

inline definition (without any debug code) so that it should have little or no greater performance 

overhead than a direct array access.

Enhanced debug facilities for code development via class methods

float & Cell_Class :: access ( int mode, int var ){ 
#ifdef __ DEBUG_CODE __

if ( ( mode == NEWEST ) && ( var == TEMPERATURE ) ) {
if ( data [mode] [var] < 0.0 ){ 

// 
// Error negative temperature detected in cell data access

#endif
return data [ mode ] [ var ] ;

FIGURE 3.7.9-1 : New data access function.

The solvers available in CWNN were all based on whole matrix solving techniques. It was 

suggested, by a fellow CFD researcher, that a true cell-by-cell solver should be developed for 

comparison purposes. This has been implemented from some of the re-engineered software 

components produced during this project but its usefulness is limited because of comparatively 

poor performance when compared to the "whole-field" solvers.

The implementation of a vector class for normal and displacement vectors has greatly simplified 

many aspects of the source code. The original FORTRAN code had to loop over all three 

dimensions for many geometric calculations whereas now, simple vector algebra can be 

performed. Operator overloading has been used to give the vector algebra a more natural syntax, 

as found in most reference texts. The figure (See Figure 3.7.9-2) shows the equivalent loops for 

calculating the cell centres from both the legacy code and the re-engineered code, which uses 

vector methods. Such instances were relatively easy to find because the loop dimensions go from 

1 to 3 (or 1 to DIMENSIONS). It was possible to abstract one and sometimes even two levels
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of looping because of the new operators and functions provided for vector algebra. These 

functions include dot- and cross- product utilities.

Original code for cell centre position calculation

DO I = 1, NOCELL 
DO J = 1, 3

CENTRE (I, J) = 0.0 
ENDDO 
DO J = 1, 3

DO K = I, NPTCTY( CELTYP(I) )
CENTRE (I, J) = CENTRE (I, J) + XYZCRD ( CELPTS(I, K) , J ) 

ENDDO
CENTRE (I, J) = CENTRE (I, J) / REAL ( NPTCTY ( CELTYP(I) ) ) 

ENDDO 
ENDDO

New C++ code using a vector class methods

for ( i=l; i<=num_of_cells; i++ ) { 
cell [i] .mid. set ( 0.0, 0.0, 0.0 ); 
for ( j=l; j<=cell [i] .num_of_pts; j++ ){

cell [i]. mid = cell [i]. mid + point [ cell [i] .pt_num[ j ] ];
}
cell[i].mid = cell[i].mid / (float) cell [i] .num_of_pts;

N.B. This code does not loop for the three directions because the 
overloaded vector operators "+" and "/" hide these details

FIGURE 3.7.9-2 : Example of using a class for vector algebra.

Any further optimisation and enhancement features, that were identified early in the re- 

engineering stages, were researched and implemented in this stage. One such example of 

optimisation was the relocation of loop invariant calculations outside of low level loop 

constructs.

3.8 Statistics for the software Re-engineering process

The following code statistics provide a crude comparison between the legacy and new systems. 

This information should be regarded as being of academic interest only and not necessarily 

typical of any other or similar re-engineering projects.
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- The legacy system consisted of 107 source files that contained 158 routines. There were 

22,450 Lines-Of-Code (LOG) excluding comments.

- The re-engineered system has 4 source and 13 header files and has 395 routines including class 

member functions. There are 11,250 LOG in source files and 1,400 LOG in header files.

The project statistics (See Table 3.8-1) indicate approximate durations of the individual stages 

used during the re-engineering. The final stage (stage 9) has not been included because 

perfective and adaptive maintenance is ongoing. The project durations are measured in Person- 

Weeks (PW) where a Person-Week is defined as 5 work days for one system developer.

TABLE 3.8-1 : Duration of the stages of Re-engineering.
Stage

-

-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Description

Background research into un-structured mesh CFD.

Project planning and learning to use tools.

Ensure data consistency and make data global.

Name and algorithm clarification.

Removal of code and simplification.

Ensure consistent use of control and replace logicals.

Translate from FORTRAN to C++.

File I/O modifications.

Implement data classes to replace arrays.

Create class member functions.

Duration (PW)

6

3

3

2

3

2

2

3

4

4

It should be noted that stage 9 of the re-engineering is an on-going process and it is therefore 

impossible to detail the statistics associated with this stage of the development. Further 

information about run-time performance characteristics and an appraisal of the software re- 

engineering can be found in the Appendices (See Appendix 11.2).
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3.9 Summary of chapter

This chapter discussed the limitations of the legacy software and assessed the issues concerning 

the re-use of the legacy system in order to create a suitable CFD software framework for 

research into interactive control techniques. This chapter also described the novel nine stage re- 

engineering methodology that was developed in order to re-use the legacy software. At the end 

of the incremental re-engineering process a suitable framework was available for the creation 

of the prototype interactive CFD system. The following chapter (See Chapter 4) describes how 

the re-engineered framework was subsequently modified and enhanced to create the interactive 

CFD engine.
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4 Development of a prototype interactive CFD 
system

4.1 Overview

This chapter discusses the development of the prototype CFD system including the imposition 

of required design characteristics. The interested reader is directed to the Appendices section 

where there is more detailed information about the physical implementation of the Geometry 

Classes [See Appendix 11.5] and the Control Architecture [See Appendix 11.6] that was 

imposed on the Re-engineered CFD system.

4.2 Important aspects of design

4.2.1 Imposed re-design features

During the planning stages of this research it was known that a suitable application framework 

for research was required. This influenced the data storage design within the re-engineered 

system to make use of geometry based objects in a highly intuitive data architecture. This would 

facilitate CFD research by other researchers as well as significantly simplifying perfective and 

adaptive maintenance.

Many existing FORTRAN CFD codes use memory tricks or need re-compilation in order to 

mimic the flexibility of dynamic memory allocation of objects and their internal data. Such was 

not the case with the prototype system where maximal usage of dynamic memory allocation was 

planned and implemented. Occasionally this caused problems due to needing access to the data 

sizes prior to attempting the reading of data but some of the sizes could only be determined by 

analysing some of the data that had been read. This problem is overcome by reading data in two 

stages. The first read only determines the sizes whilst the second does the actual data reading 

after the correct amount of memory has been allocated. Where sizes had to be determined from 

the data then local temporary dynamically allocated storage was used.
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It has always been the intention that the prototype application framework should be available 

for use in research into CFD algorithms, interactive control and optimisation. This led to the 

creation of object related methods which are considerably easier to support and maintain.

The direction of future research using the re-engineered prototype was largely unknown but it 

was likely that the software would be used for mesh refinement at some stage. It was decided 

to provide the ability to create and destroy objects at run time for continued research purposes. 

This implied using dynamic arrays of pointers to objects rather than the simpler dynamic arrays 

of objects because the latter approach would require more time consuming reorganisation of 

objects in order to allow for run-time creation or destruction of the objects.

One major potential advantage of this form of abstract conceptual design and object oriented 

implementation is that it would be possible to better exploit parallel or distributed processing 

platforms than using procedural parallelisation strategies [IEROTHEOU92]. This advantage 

comes from the fact that it may be impossible to hold all of the data for the solution domain on 

a single processing node. When data is partitioned between nodes it is found that many parallel 

implementations of software suffer from a lack of balancing of computational effort between the 

processing nodes and so it may be necessary to perform load balancing between the nodes. The 

task of load balancing is greatly simplified if it merely involves sending a single object to another 

node and updating the member lists rather than having to re-distribute portions of all of the 

disparate data arrays that would be found in a non object oriented implementation.

When the object oriented viewpoint of geometric objects was considered for implications it was 

realised that there was a potential for meaningful geometric or solution dependant "groups of 

cells" as intermediates between the whole domain of cells and each individual cell. It was not 

known what benefits could be realised using these groups but the group structures were created 

for partitioning the computational domain into geometric or solution based group collections 

of cells in order that the potential benefits could be researched. It was anticipated that groups 

would allow greater focussing of processing effort to areas where it was most beneficial.

The ultimate aim of the project was to investigate the benefits of interactive solution control. If
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these benefits proved to be tangible then it was likely that some attempt would be made to 

automate any successful control strategies. It was realised that this future automation would be 

greatly facilitated if a consistent form of maintaining and communicating control and status 

information was created. When the structure of the earlier work on "FLOWES" [KNIGHT91] 

[PETRIDIS92] [PETRIDIS95] was considered it was natural to impose a so-called 

"blackboard" architecture that would use control and status objects which could then be used 

for communications between multiple processes. Essentially a "blackboard" is a structured global 

memory area which can be written-to and read-from by any of the application processes or sub- 

tasks. The "blackboard" also incorporates a scheduler to manage the order and frequency of 

running the processes and tasks. In any event these information and control link objects would 

greatly facilitate the implementation and data-transfer between the CFD engine and the GUI 

components.

It has already been discussed that flexible dynamic memory allocation can introduce considerable 

complexity when it comes to data access mechanisms. Since the prototype system has to be 

easily comprehensible to researchers and furthermore must support a consistent data view 

throughout the application it was decided to create data access functions, where necessary, to 

simplify and standardise the access to an object's internal data. This was particularly problematic 

where the data inside an object was itself dynamically allocated and thus accessed by an index 

list which would lead to verbose code to perform data accesses. Fortunately the C++ language 

allows for functional data access (that hides all of the dynamic data indexing details). This 

functional data access should have no greater performance overhead than direct array access to 

static memory since the function call may be generated with inline code - although this may 

depend on the quality of the C++ compiler and level of optimisation available. The issue can be 

forced, somewhat, by declaring the function as "inline" but this is still only a recommendation 

to the compiler rather than an assured behaviour.

Conventional thinking dictates that data should be kept as local as possible in order to prevent 

unintentional side-effects however in a CFD code this can greatly restrict the flexibility and 

increase the coding effort to provide new functionality. It was decided to use global data storage 

mechanisms to allow data to be visible in any routine and to enforce strict access mechanisms

4-72



PhD Thesis by John Ewer.

to prevent accidental and unintentional data access. The benefit of this global approach to data 

storage and data access mechanisms is that data access is always consistent and well known for 

any and all code modules and allows for future developments with no detrimental effect on 

existing routines. This type of data storage is also close to the concept of the Blackboard 

architecture [PETRIDIS93] since data is not passed around the CFD code as arguments, but 

rather, the Blackboard maintains the data and the rest of the software uses query and update 

functions to access the data. There are a number of important maintenance and ease-of- 

comprehension issues associated with having a high degree of consistency between the 

conceptual design and the physical implementation.

The use of functional data access mechanisms was of some concern due to the potential 

performance overhead. The overhead of an extra layer of function calls has been mitigated by 

using the inline directives in the "fast" version of the code and ordinary functional access for the 

debug version. However, at the present time, the "inline" directive is only a recommendation to 

the compiler and it does not guarantee that the indicated code is actually generated locally rather 

than via a function call. Such functional data access mechanisms were necessary to the 

implementation of a "Blackboard" architecture for the data and the Blackboard access functions.

The consideration of data objects within the CFD software leads naturally to the consideration 

of object-specific methods. During the re-engineering a library of geometrically related methods, 

based on any commonly used code fragments that serve some identifiable purpose, have been 

formed. This is backed by observations [ANGUS94] that have demonstrated considerable ease 

of maintenance of Object Oriented implementations when compared to purely procedural 

software.

It was likely that the majority of software users of the initial prototype would be CFD experts 

and researchers. This had implications for the design of the interface between the GUI and the 

CFD engine. The GUI is necessarily the main program and the controlling process that 

repetitively calls the CFD processing segments to progress the solution further. Furthermore, 

since the scope of the required controls could not be predicted, all of the parametric solution 

controls had to be made available on the GUI.

4-73



PhD Thesis by John Ewer.

4.2.2 HCI design issues

There were two distinct choices for the User Interface (UI) paradigm that could be used with 

the prototype CFD system.

4.2.2.1 Visual programming interface

A visual programming interface would use visual icons and links to represent data passing 

through and being modified by the system. Generally the tools could be "opened" and have their 

behaviour modified using a tool specific menu. Such interfaces have become quite common for 

image processing systems and, to a lesser extent, for visualisation systems. The problem with 

a visual programming paradigm for CFD is that it would be inappropriate to the experience of 

many users. There are often quite high initial learning overheads for visual systems but once the 

nature of the interface has been learnt then new components and tools are usually quite easy to 

use. It is generally quite difficult to implement visual interfaces in a portable way and all 

application tools have to be available and accessible from the interface. There is large scope for 

inappropriate configuration unless great care is taken for the component linking strategy. It is 

likely that a CFD visual programming interface would quickly become cluttered with tools and 

filters due to the complexity of the underlying numerical system and the potential for 

modifications to that architecture. There are currently very few examples of applications that use 

the visual programming metaphor so it was difficult to assess the potential effectiveness of this 

paradigm. Generally visual programming seems to be a very powerful tool when data 

transformations through a system can be conceived as a linked list of filters and transformation 

tools (E.g. AVS, Khouros) but the nature of the CFD system suggested that this type of 

interface be avoided. It is not simple to conceive of one, or more, simple data pipelines because 

of the complex data interdependencies inherent in CFD computations. A well designed visual 

programming interface would be a powerful tool for an expert CFD user or a CFD developer 

but most users would probably never use the majority of the capabilities of the interface and, 

furthermore, are likely to be confused to such an extent that in-appropriate linkages are formed 

that break the software.
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4.2.2.2 Menu and form filling interface

A menu and form-filling user interface paradigm is much more common and familiar to CFD 

software users. The interface can be quite restrictive or obscure particularly when too many 

layers of menus are used thus, effectively, hiding control settings or when settings are 

inappropriately grouped together using obscure logical linking. Such interfaces are reasonably 

portable due to the large number of interface development libraries now available. There is 

generally a low to moderate learning overhead but when extra menus are added then these too 

need to be learnt. This approach does benefit from a consistent interaction style within 

application and similar style to many other applications. Generally the interfaces are largely self 

explanatory and intuitive provided that menus are not overloaded with settings and provided that 

the items are sufficiently verbose.

4.2.3 Human Computer Interaction issues

4.2.3.1 Multiple modes of data presentation

It has already been mentioned that there were a number of appropriate visualisation techniques 

for data from CFD codes. The new code interface should support as many modes of data 

representation as possible so that the user can make the most effective use of the interface. This 

means that data will be presented as numerical values, graphs and data visualisations within the 

CFD application UI.

4.2.3.2 The CFD system has a "user-in-charge" interface

Such an interface is reactive to the user. In the case of the CFD code this was implemented as 

a set of buttons which behave rather like the buttons on a tape recorder that can be used to start 

or stop the processing as well as to open configuration menus.

4-75



PhD Thesis by John Ewer.

4.2.3.3 Visualisation

Visualisation, as previously mentioned, is relatively costly in terms of compute resources 

particularly for 3D displays. This performance overhead of visualisation has been mitigated by 

the choice of 2D slice visualisation and the provision of options to limit the frequency of visual 

updates. Another problem is the question as to whether intermediate (part processed) solution 

status displays have any meaning. This depends on the context of the display and the 

interpretation by the user. Any visualisation of a non-converged solution status has NO real 

physical meaning other than as an indication of the current trends within the data. At the end of 

a time step or when a converged solution is obtained (for steady state problems) the visualisation 

is a true representation of the simulated physical behaviour. It was not clear at this stage as to 

whether other variables could give more meaningful and indicative data and status visualisations, 

e.g. error values. Any visualisation tools built into the CFD code will serve a dual purpose 

because they can be used to monitor the intermediate solution status and they can be used as 

post processing data explorer when the simulation has finished. It is possible that there is a 

novice user role for pattern recognition for dynamic KBS reasoning. It is envisaged that even 

if planned attempts at automated pattern recognition fail then it will still be possible for users to 

visually detect patterns and to thus select appropriate options based on known examples and 

advice from the UI. In general, visualisation techniques can be costly to develop and to tailor 

to the underlying data architecture particularly for the unstructured mesh class of codes where 

there is no regularity or predictability in the layout of the data or the navigation between 

computational cells.

4.2.3.4 Graphs

Graphs can be highly informative particularly for data trends (continued movement in one 

direction by similar amounts) and instabilities (oscillatory behaviour). They are inexpensive in 

terms of compute resources and are generally easy to develop. Graphs may, however, over­ 

emphasise certain solution features inappropriately (e.g. spot value graphs are not very useful 

unless used with experimental data or a known analytic solution).
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4.2.3.5 Control "tinkerface"

The fully interactive nature of the planned CFD code leads to a distinct possibility of corruption 

of simulation data for uninformed or experimental control modifications by novice users. This 

meant that the system needed a comprehensive restart capability so that speculative research 

- that could break a simulation - does not require the user to start again from scratch but instead 

allows the user to jump back to the last valid situation before the bad control change was made.

It is also important that the control modifications are only applied at meaningful stages of the 

processing.

4.2.3.6 Minimise data on each form or menu and make menus specific to a task

Confusing UI design can often intimidate the software users to such an extent that it can result 

in functionality that is hidden or can leave the user with a complex navigational task through 

layers of menus to reach frequently used options. In order to prevent such problems, with the 

target development, considerable thought was put into the most appropriate style of interaction 

grouping for menus and forms. This included having a number of meetings with CFD 

practitioners to discuss UI design prototypes and using these prototypes to give a "walk­ 

through" of the proposed system. In the formative stages of planning this project, meetings with 

CFD users were also convened to ask the prospective users about their requirements for the 

mode of interaction and their needs for data to be available via the User Interface. During the 

design considerations it was a design priority that no more than two layers of menus would be 

presented to the user because of the possibility of the user becoming "lost" in deeply layered 

menus. Conversely, because of the popularity and familiarity that many users have with most 

Microsoft Windows [MICROSOFT] based software, it was decided to design the style of 

interaction to be as consistent as possible with common software packages and the native GUI. 

Most of the guiding principles of "good" User Interface design, that have been employed in this 

research, can be found in the book by Thimbleby on the subject of User Interface Design issues 

[THIMBLEBY90] and a collection of papers on the subject [THIMBLEBY97].
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4.2.3.7 Choice of portable library

At the start of this investigation there were a large number of user interface and graphical 

libraries available including XI1, motif, MFC, Zinc, XVT, tcl, tkl, wxWin, Phigs, OPEN-GL, 

GKS, OpenWindows and INTERACTER, to name but a few. Consideration was primarily given 

to implementation language choice for the target CFD code before the choice of UI development 

library was made. The secondary consideration was the requirement for a high degree of 

portability that would include PC compatible machines as well as UNIX based workstations. 

This latter consideration was thought to be vital for extensive use and acceptance of the CFD 

code because of the prevalence of PCs within the academic community as well as the common 

use of PCs in smaller firms and consultancies. Whilst the targeting of the PC platform is 

necessary for a particular class of user, there is another class of user that needs to run significant 

problems on powerful workstations since the size and complexity of CFD research cases could 

preclude the use of PCs. One of the few libraries to meet all of the portability requirements and 

match the chosen target implementation language was the Zinc interface library [ZINC]. This 

choice also benefited the research because the Zinc library is itself heavily Object Oriented which 

ties in with the intended re-development strategy. Zinc also has an elegant event handling 

architecture that is platform independent and was one of the few libraries to be supplied in fully 

source code form. The only slight cause for concern was the fact that the Zinc library is a 

commercial product so future development of the CFD code would depend on the fortunes of 

the parent company.

4.3 Important aspects of implementation

During this research a number of techniques have been developed and implemented that are 

worthy of note because of their importance to the application area or because of the potential 

for continued research that they provide.

4.3.1 Restart database

One of the perceived problems with legacy CFD software is that once a simulation started to go
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wrong, at some stage of the processing, then it usually necessary to start the simulation again 

from scratch with a different set of configuration options. This is clearly very time consuming 

and prone to error. In the prototype system a restart database is used to store sufficient 

information to continue a simulation from any saved stage. This restart database maintains the 

file formats of the usual configuration and set-up files but uses compression techniques to store 

them compactly. There is also an index table to allow easy selection and database management 

routines are available to selectively remove certain restarts. The restart database can then be 

used to regularly save stages of the simulation or can be added to whenever a potentially 

problematic control action is about to be taken.

4.3.2 Audit trail

Users of CFD codes are starting to be concerned about the reliability and accuracy of simulation 

data. The prototype system has been written to save ample configuration and status data as well 

as an audit trail of user control modifications. These various audit files contain all the 

information about the solution path that gives end users confidence of the final solution results. 

This is particularly important for safety critical simulations as in, for example, the fire simulation 

application area where building design and safety issues are paramount. Furthermore the 

command summary file can also be used to duplicate an earlier simulation exactly be re-imposing 

the same control actions at the same times.

4.3.3 User defined variables and code

The fact that the prototype system was intended for use in future research has meant that 

consideration had to be given to facilitating additional user code development. This has lead to 

the addition of user defined variables in the script file that, once defined, then behave in an 

identical way to the usual system variables. This means that the same syntax that was used for 

the usual system variables is also appropriate for additional user variables with no extra learning 

overhead. User coding links are still under development at this time.
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4.3.4 Additional status variables

Traditional CFD codes make use of many temporary variables that may be of significance to the 

user. The prototype system has been developed to maintain some additional status variables, if 

required, in order to give a better indication of solution status. This is particularly true of the cell 

residual variables which store the cell-by-cell residual error for any variable as an additional data 

field. These status variables can be particularly useful in tracking down problematic parts of the 

geometry that are causing unpredictable solution errors since it is possible to visualise these 

residuals in the same way as any other variable and hence locate problem cells.

4.3.5 Finding common structure for momentum and other solved variables

In the original legacy code momentum was solved using a special treatment that was almost a 

vector handling as opposed to the simple scalar handling of other variables. The prototype 

system has been reformulated to treat the individual momentum components as simple solved 

scalars because this allows all of the solved variables to be unified into a common structure 

where the only differences are in the system matrix coefficient formulation and the source term 

calculations. This leads to a much cleaner software architecture and allows a consistent and 

extensible functional access to system matrix calculations to be provided.

4.3.6 Automated saving

Early in this project it was known that a significant amount of research would be needed to 

validate the implementation and to investigate the benefits of interactive control of the CFD 

code. Since it was known that much of the CFD research would be quite speculative, whereby 

a solution is unknown when the simulation is started, it was deemed necessary to provide a 

suitable support structure that would facilitate this research. The provision of both manual and 

automated saving facilities allows the configuration of data saving so that regular saves of 

visualisations, status graphs, data plots, results and restarts can be made. It was assumed that 

there would be circumstances where the immediate monitoring data and status might suggest 

one course of control action but that another control action might be more appropriate when
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considering a whole history of monitoring data and solution states. This consideration may also 

be of relevance to the purpose behind a particular simulation and the form that the results will 

take. This is particularly important for transient simulations where the interest in not so much 

in any final solution state or data but is rather in the critical phases and changes that occur during 

the full simulation. With reference to using fire modelling for assessing safety of the built 

environment, it is insufficient to merely say that at the end of the simulation conditions in a room 

fire were non-survivable when it would be of more use to determine the first time at which the 

room fire became truly dangerous.

4.3.7 Debugging facilities

Since the code is intended to be used for algorithm development it was considered vital to 

provide comprehensive debugging facilities. It is not sufficient to rely solely on compiler 

provided debugging because the variability of such debuggers is very large and the navigation 

of complex data structures can be problematic and time consuming. In the prototype system two 

separate debugging facilities have been provided. The first allows any stored variable to be 

output in human readable form just after it has been calculated. This output can be limited to a 

particular simulation time and range of cells. The second facility allows specific data monitoring 

code to be planted in the data access functions. This allows the .values of any data item to be 

monitored throughout the simulation whenever data is accessed. Of course these techniques do 

not prevent a developer from using compiler debugging techniques but do provide additional 

tools to track down hard to find errors that are a quite common occurrence when developing 

new algorithms.

4.3.8 Automatic self extending arrays

Sometimes it would be inefficient, in terms of memory usage, to allocate arrays to the maximum 

anticipated size when such arrays may only infrequently use their full extent. Conversely if the 

length of an array is likely to change quite often then re-allocation is likely to be inefficient in 

terms of performance because of the book-keeping involved with creating a larger array and 

moving the existing elements across to it, followed by destruction of the old array space. There
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is a middle ground that has been exploited in the prototype system for such arrays that uses 

arrays that will extend (or contract) automatically by a pre-configured chunk size. This basically 

means that if an extra element of the array is added but there is no room for it in the array then 

the array will grow automatically and then the element will be added. If the array was already 

large enough then the element is simply added without extension and the write pointer is moved 

on to the next available array slot. Such techniques can be quite elegant in usage since no sizes 

have to be determined for dynamic memory allocation.

4.3.9 Unstructured visualisation techniques

It is quite complicated and computationally intensive to produce visualisations of data from 

unstructured meshes. The prototype system uses planar slice 2-D visualisation of an arbitrarily 

positioned x-, y- or z- plane. The simplest way to handle this situation would be to interpolate 

the data required for visualisation onto the plane and display it as scattered data. However an 

alternative treatment was sought because the best quality display possible is required with least 

possible computational overhead. The adopted method first locates all cell-centre to cell-centre 

lines that would be cut by the required plane. The intersection points are assigned interpolation 

weights based on their relative distance from the cut plane and the indices of the neighbouring 

cells are also stored. These scattered points are then re-meshed .into triangles using Delaunay 

triangulation [FIELD91]. This allows any selected variable to be quickly interpolated to the 

plane using the interpolation weights on the neighbouring cells data values. The relatively 

expensive triangulation only needs to be performed once, when the user confirms that a new 

plane should be used but the mesh of triangles allows high quality visualisation of contour lines 

or contour fills.

4.3.10 User configured patch and time step modifiers

It was often observed, by the developer, that seemingly simple tasks in other CFD codes resulted 

in users having to write, compile and link additional user-defined code. This mostly seemed to 

be due to a lack of foresight on the part of the original code developers. It was clear that more 

complex scenarios (in the fire modelling application area) that exhibited some degree of realism
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would possibly include such features as opening doors, breaking windows and ignition of 

secondary fires. It was quite simple to define additional control commands to allow the various 

physical patches to be swapped to alternate definitions at pre-configured times. This greatly 

enhances the usability of the software without requiring the user to write additional code.

4.3.11 Solution configured patch and time step modifiers

Once it was realised that the user could pre-configure patches to change at given times it was 

also clear that it might be desirable for the solution to control such events. This is also quite easy 

to manage since it only requires that data monitoring code be activated and then the boundary 

patches check with the data monitor to see if it is appropriate to swap to an alternate patch 

definition rather than checking some pre-configured time for the swap. This functionality again 

removes the onus from the software user for writing additional source code and rather makes 

the task a simple configuration method.

4.3.12 Configuration of results saving from sub-regions

Generally, at the end of a simulation, the user will be presented with results files for all of the 

simulation data for all of the cells of the domain. This does not help the user to comprehend the 

data when the user may only be interested in smaller sub-regions of the whole simulation 

domain. In order to provide the user with appropriate data analysis the prototype CFD code has 

the ability to output results for specified sub-regions. The regions are specified by low and high 

co-ordinate position and all cells contained within such specified volumes will have their results 

output.

4.3.13 Tabular data files for volume source variation

Increasingly users of CFD codes are aiming to obtain better and better accuracy from their CFD 

simulations by using experimental data, wherever possible rather than crude functional 

approximations. One such area in fire modelling scenarios is for the definition of the heat load 

that is applied by a given fire in some experimental set-up. Often the actual heat load at any time
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can be determined for the experimental set-up and so it is useful if this data can also be used in 

the CFD code to accurately represent the fire. Again the policy with the prototype CFD system 

is to limit the need for the user to write source code to extend the CFD capabilities so a general 

table file handling volume source has been defined which allows the simple use of time varying 

tabular source data to be read in from a file.

4.3.14 Run-time modification of volume source application region

A recent idea has been to allow the user to simulate fire spread by extending the volume over 

which the fire load is applied. At present there is no automated means to spread the fire within 

the prototype system however the first step is to provide a manual method of enlarging the fire 

volume so that a reliable automated methodology can be found.

4.4 Summary of chapter

This chapter has described the considerations and implementation details that were used to 

transform the re-engineered CFD framework into a vehicle for interactive control research. Once 

the new interactive CFD system had been completed it was necessary to verify that the re- 

engineering process and subsequent prototype developments had left the original functional 

behaviour, of the legacy CFD system, unchanged. The following chapter (See Chapter 5) 

describes a sufficiently wide coverage of test cases, and their results, that were used to verify 

that the whole of the new software framework was consistent with the original legacy software.
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5 Prototype system validation

5.1 Incremental testing (functional comparison with legacy 
FORTRAN code)

At each stage of the reverse engineering and subsequent re-engineering it was deemed to be vital 

to validate the system functional consistency with the original legacy FORTRAN CFD code to 

ensure that the current stage of the development maintained the same behaviour as the original. 

This process was largely automated (in batch mode scripts) at the end of a stage of work so that 

a known simulation case, that provides full code coverage (i.e. using most, if not all, of the 

modules and algorithms within the CFD code), was run overnight and the data output files were 

compared by a numerical differencing utility to ensure reasonable consistency. If any stage of 

re-engineering or development produced a different set of results then an inspection of the 

differences was performed to see if they were significant. In the event that the developer was 

unsure of the significance of any observed differences then a CFD expert was consulted to 

determine if the new results were acceptable. In general the phrase "in good agreement" means 

that there were no significant differences in the results.

5.2 Final validations

In order to determine the overall usefulness of the reverse engineering process a sufficiently wide 

coverage of fire modelling and primitive physics validation test cases were constructed to test 

(both individually and collectively) all of the sub-models relevant to fire field modelling 

contained in the re-engineered system. Some of these validation test cases have subsequently 

been used as the standard validation suite for the SMARTFIRE system. The complete validation 

report for the key test cases has been included in its entirety in the appendices section of this 

thesis [See Appendix 11.1] but a summary, of the most important validations, is presented here 

for convenience. These simulation cases were used to compare SMARTFIRE with several other 

commercial CFD codes (or experimental data, if available) in order to check the correctness of 

the results.
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The validation case "Two dimensional flow over a backward facing step" was used to validate 

that the flow and turbulence modules were working correctly. The goal of the case is to develop 

a fully recirculating flow region behind a sudden expansion in the down-flow direction of the 

duct. Experimental studies have shown that a parametric solution is obtained that is dependent 

on the height of the step and the Reynolds number. In the test case, conducted for the validation, 

the experimental re-attachment point is 7.0 step heights down stream from the step. This re- 

attachment point is the downstream limit of the re-circulation where the flow at the outer 

boundary once again follows the dominant flow direction down the duct. In the simulation tests 

the prototype CFD code gives a re-attachment point 6.0 step heights down stream from the step. 

This is the same value as the legacy CFD code (and is comparable with other CFD codes which 

use the K-Epsilon turbulence model). This reduction in re-attachment length is reported in many 

papers (which have analysed various turbulence models) and is typical of the standard K-Epsilon 

model used in the prototype and legacy software.

The validation case "Turbulent long duct flow" represents flow along a "long" square section 

duct such that the flow speed is sufficient to produce a fully turbulent flow. The results from this 

simulation are in good agreement with those from the legacy software.

The test case "Turbulent Buoyancy flow in a cavity" represents "a natural convection scenario 

where the flow is created by the buoyancy effect of a hot and a cold vertical wall on a fluid. The 

results were found to be in good agreement with published data.

The test case "Steckler room fire" is a simulation of a fixed heat output fire within a 

compartment that has a single door. A variety of tests were performed in the actual Steckler 

experiments but a typical scenario was chosen for the comparisons. The results from 

SMARTFIRE give good agreement to the published data and are consistent with the results 

from the other CFD codes.

5.3 Basic implementation validations
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A number of basic validation comparisons were also performed to check that the re-engineered 

CFD system was consistent with the legacy CFD software. The actual simulation results and the 

detailed set-up configurations, for these simulations, are not particularly relevant to the current 

discussion and only a brief outline is given of the test cases and their respective results.

The validation case "Diffusion controlled combustion" uses two parallel inlet jets with a jet of 

fuel and a jet of oxidant into a 2D combustion chamber to test the simple combustion model. 

The Simple Chemical Reaction Scheme (SCRS) uses a much simplified chemical reaction 

equation which turns appropriate proportions of fuel and oxidant present within a cell into some 

product material with the consequent production of heat which is fed into the energy equation. 

Once again the re-engineered CFD system performed as expected and consistently when 

compared to the legacy software.

The validation case "Heat bar using multiple materials" uses simple heat transfer along a 2D bar 

that is constructed of two different materials. This heat transfer is caused by the imposition of 

an elevated temperature boundary condition at one end of the bar whilst the other end is 

maintained at some ambient temperature. The results for the temperature profile down the axis 

of the materials agree with the analytical results. This case reduces, essentially, to a 1 

Dimensional heat conduction problem. The results obtained were as expected for both the re- 

engineered and legacy software.

The validation case "Heat bar using a triangular mesh" also uses a simple heat transfer along a 

bar but in this case the bar is only constructed of a single material and uses an unstructured mesh 

of triangular cells. The ends of the bar are maintained at different temperature and heat flux 

boundary condition combinations and a steady state temperature profile is expected. The 

unstructured correction terms are used to enhance the solution accuracy for these unstructured 

mesh cells. The results from the prototype software give good agreement with the results from 

the legacy software and the analytic solution.

The validation case "Heat bar using a user variable" uses a simple single material bar to check 

the user variable solver. In the normal case described above the heat variable is solved and
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temperatures calculated from the heat content of the cell and the specific heat capacity. In this 

case, however, a user defined variable is used to represent the heat (i.e. the Enthalpy variable). 

The results are essentially the same as for the standard heat bar case but have made use of the 

extra variable solvers.

The validation case "Moving lid cavity" represents an idealised infinite length square cross 

section box that has a lid that is moving across the top of the box at a uniform rate. The viscosity 

of the fluid within the box causes momentum from the moving lid to be transferred into the fluid 

cavity and a fully recirculating flow is developed. The results from this case are in good 

agreement with the legacy software results and were deemed to be acceptable by an expert CFD 

user.

The validation case "Natural convection" combines flow, heat transfer and buoyancy for a fluid 

filled box. In this case one of the vertical walls is maintained at an elevated temperature whilst 

the opposite wall is maintained at a cooler temperature. The uptake of heat near the heated wall 

leads to density changes that result buoyancy forces that drive a fully re-circulating flow. 

Eventually a steady state is reached whereby the uptake of heat from the hot wall is perfectly 

balanced by the loss of heat to the cold wall. The results from this case are in good agreement 

to those from the legacy software and the analytic solution..presented in journal papers 

[JONES79] [DAVIS83].

5.4 Interpretation and comments

It is clear from the various validation cases that the re-engineered software is in good agreement 

with the legacy CFD software. There are, almost inevitably, small differences but these are to 

be expected due to minor implementation language dependencies. Furthermore the order in 

which mathematical expressions are evaluated are likely to be different between the two 

software versions which may explain some of the small discrepancies.

As the validation cases become more complex (the fire field modelling cases have more complex 

geometries, more extreme rates of heating and many more degrees of freedom) so the agreement
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between the re-engineered software and alternate CFD software packages becomes less 

consistent. It is also observed that the legacy CFD code and the other validation CFD codes do 

not agree completely and the re-engineered code tends to have results that are within the bounds 

of the other CFD codes tested. Small differences in boundary condition handling and solution 

schemes are responsible for most of these differences.

5.5 Summary of chapter

This chapter has demonstrated that the re-engineered, and subsequently the interactive, CFD 

framework is functionally consistent with the behaviour of the legacy CFD code. It was now 

possible to use the interactive CFD engine to research the potential benefits of using interactive 

control. The following chapter (See Chapter 6) describes the test scenarios that were used for 

research and gives interpretations of how the results demonstrate the benefits of interactive 

control.
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6 Research results

6.1 Overview

In order to investigate the potential effectiveness of user interaction techniques, for 

Computational Fluid Dynamics (CFD) modelling, it was decided to choose an application area 

that gave ready access to a number of CFD experts and furthermore was an application area 

where the accuracy and correct interpretation of results was of a safety critical nature. One such 

topic of research at the University of Greenwich is Fire Field modelling. This application area 

is interesting because of the complexity of the geometry used in the simulations and the 

requirements for the modelling of high rates of heating and thermal radiation [KUMAR91]. 

Furthermore, many fire simulations have to be performed in transient mode so that the time 

varying nature of the simulation is revealed. This is partly due to the extremity of the physics 

being modelled but also due to the types of question asked of the modelling which includes the 

determination of temperatures and smoke concentrations at certain times in order to research 

safety issues relating to, for example, fires in compartments and buildings [LEWIS97]. The 

added advantage of using this application area is that there is considerable "in-house" expertise 

available for the use of fire field modelling. Of particular importance have been the comparisons 

[KERRISON94] [BJORKMAN95] of various CFD codes against the experimental work of 

Steckler [STECKLER82] which give a useful set of validation and comparison data for the 

modelling of fires within compartments.

The results presented in this section are indicative rather than exhaustive but the intention has 

been to demonstrate that the traditional techniques used for CFD in general and Fire Modelling 

in particular have mostly ignored the issues of interactive solution control, to their detriment. 

Recent questions about the reliability and accuracy of CFD techniques used in ever more critical 

simulations will, almost inevitably, tend to embrace technologies, such as interactive control and 

monitoring, in order to give more assurance of solution correctness.

The results presented here demonstrate that even expert CFD users can have significant
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difficulties choosing a sufficiently restrictive, but also optimal, set of solution control parameters 

for a previously unseen simulation scenario where those control parameters are used for the 

whole of the simulation. Furthermore the results and timings from selected fire simulation 

scenarios demonstrate that run-time adjustment of control parameters can lead to savings of up 

to 50% for overall processing time when compared to some "safe" initial set of relaxation 

parameters used throughout the simulation. Clearly such savings are highly problem specific but 

the principle of choosing a known "safe" set of control parameters and then adjusting the 

controls as required by the most up-to-date solution status is highly recommended and likely to 

be of great benefit to both expert and intermediate users. Ultimately it is anticipated that these 

experiences of run-time solution control will be automated so that reliable CFD simulation and 

monitoring is made available to all classes of user from novices to experts.

6.2 Indicative test cases

One of the important factors, when considering CFD simulations, is the time required to arrive 

at the results. This is an easy quantity to measure and gives a reasonable indication of the 

effectiveness of the interactive control. The problem with attempting to assess the benefits of 

interactive control, of the solution parameters, is that the effectiveness will be highly dependent 

on the quality of the initial solution parameters. The factors which determine a good choice of 

the initial control parameters are prior knowledge of the simulation of similar cases, a reasonable 

understanding of the behaviour of the particular CFD code in question and an adjustment (based 

on engineering judgement) to account for the particular simulation being conducted. There are, 

however, no hard and fast rules to prescribe a suitable set of initial control parameters.

This situation is further complicated by the highly complex nature of CFD simulations which 

means that the simulation controls required to start a simulation are likely to be too extreme for 

the later stages of the simulation. There are also potential transient characteristics of the flow 

solution which typically require even tighter control regimes to prevent the simulation from 

becoming unstable.
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6.2.1 Investigation of initial configuration

In order to determine how good an initial set of control parameters would be selected, by a 

typical CFD expert, a questionnaire (See Figure 6.2.1-1) was formulated, with the help of a CFD 

expert user, in order to get some indication of how various CFD researchers would configure 

a new, previously unseen, simulation specification within the prototype CFD code. The variety 

of the controls available in the interactive prototype meant that, for ease of description and 

brevity, some limitations had to be imposed on the range of controls used in the simulation. It 

was decided to impose a fixed time step size and specified simulated period but to allow the 

CFD experts free access to choose their own number of iteration sweeps per time step and the 

linear- and false time step- relaxation values for all of the solved and calculated variables as 

appropriate. These user specified control parameters were then used in test simulations in order 

to check their effectiveness.

COMPARTMENT #1

PARTITION (removed at t=30.0s)

COMPARTMENTS

<-- 

->
FIRE

0.7m 2.5m

EXTENDED 
REGION

DOORWAY

A simulation is to be conducted involving a multiple compartment fire in 2D geometry with a partition (instantaneously removed at t=30.0s). All walls are 
assumed adiabatic and the extended region has the side and top set as free (outlet) type boundaries. Front and back surfaces are symmetry planes The case is run 
for 110 time steps each of duration 1 .Os (except for 5 time steps when the partition is removed that use a time-step size of 0.2s to ease the transition). The 
constant fire output is 200kW. The mesh has regular spacing of O.lm in both the xandy directions within the two compartments. The air is assumed to be a 
compressible ideal gas and uses a non-boussinesq approximation for buoyancy. The K-e turbulence model is enabled.

REQUEST: Given the case as described above please can you give your best estimate of the number of sweeps (iterations) per time step and the relaxations 
needed to give a safely converged solution with the least possible run time. You can use any combination of relaxation values in the table below. 
N.B. Linear relaxations should be in the range {0.0001,1.0} and false time relaxations in the range {0.0001,10.0} or NONE.

REQUIREMENTS: Each time step should convergeto 0.1% of the final maximum of each variable I.e. the CFD code normalises all variables by the final 
maximum (already determined) to obtain convergence when all residuals fall below 0.001.

VARIABLE(S)

Pressure correction
Momentum
Turbulence
Enthalpy
Temperature
Buoyancy
Density

LINEAR RELAXATION FALSE TIME RELAXATION

N/A

N/A 
N/A 
N/A

Required
NUMBER_OF_SWEEPS 
per time step

FIGURE 6.2.1-1 : Questionnaire used to obtain control selections from CFD experts.

Four sets of control parameters were returned on the questionnaires and these were run as
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specified. Suitable monitoring was applied to give an assessment of the appropriateness of each 

set of initial control parameters. A base set of "safe" control parameters was also used as a 

comparison for the expert specified cases. This "safe" set of relaxation parameters was arrived 

at from the Software Developer's experiences of validation and testing of the prototype 

interactive system when used on similar simulation scenarios.

The CFD users who answered the questionnaire gave the following recommended control 

specifications for the partitioned room fire simulation.

TABLE 6.2.1-2 : Control regimes taken from questionnaires.

Control Item

Number of sweeps

Pressure relaxation

Momentum linear relax

Momentum false time relax

Turbulence linear relax

Turbulence false time relax

Enthalpy linear relax

Enthalpy false time relax

Temperature relaxation

Buoyancy relaxation

Density relaxation

Safe Set
#1.1

100

0.4

1.0

0.1

1.0

0.01

1.0

1.0

1.0

1.0

0.5

Expert
#1.2

200

0.6

1.0

0.1

1.0

0.05

1.0

0.1

1.0

1.0

0.8

Expert
#1.3

100

0.6

0.2

0.5

0.2

0.1

0.2

0.5

0.5

0.6

1.0

Expert
#1.4

200

0.1

0.1

0.01

0.1

0.01

1.0

0.1

1.0

1.0

0.1

Expert
#1.5

30

0.8

1.0

0.05

1.0

0.05

0.5

0.05

1.0

1.0

0.8

The simulations where run as specified by the various experts and the run-times and convergence 

behaviours are shown in the table (See Table 6.2.1-3).

At first glance it appears, from the timings, that the user specified set #1.5 returned the optimal 

performance because of its shorter run-time, however the simulation results were very poor for 

that set of initial control parameters because none of the time steps actually converged to a
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satisfactory degree due to the low number of configured sweeps per time-step. The only set of 

acceptable parameters used was from user specified set #1.2 which only failed to converge on 

two of the time steps and then only by a relatively small factor. User specified set #1.3 was 

reasonably stable but failed to reach convergence in 25% of the time steps whereas user 

specified set #1.4 had too much under-relaxation that caused the time steps to do very little 

useful processing with none of the time steps actually converging.

TABLE 6.2.1-3 : Processing timings for the various control regimes.

Initial control set

#1.1 Safe initial control 
parameters

#1.2 Expert user specified 
control parameters

#1.3 Expert user specified 
control parameters

#1.4 Expert user specified 
control parameters

#1.5 Expert user specified 
control parameters

Cumulative 
number of sweeps

10750

7728

10900

16329

3267

Total processing 
time (seconds)

13641

9806

13831

20720

4145

Non-converged 
time steps

OofllO

2 of 110

28 of 110

98 of 110

HOofllO

The configurations used above were selected by a small, but hopefully quite representative, 

group of researchers with various degrees of familiarity with the particular CFD engine used but 

all with considerable familiarity with CFD techniques in general or specific alternate CFD codes. 

This highlights another problem, which is the unique behaviour of different classes of CFD code 

to the initial configurations. When the users were informed of the quality of the control 

specification, that they provided, most were surprised that the settings they would have used in 

their usual CFD system did not work well in the prototype interactive system. This lack of 

transferability of set-up knowledge means that users are forced to learn the idiosyncrasies of 

each new class of code (e.g. staggered mesh, unstructured) and the behaviour due to the 

particular combinations of approximations, solvers, boundary condition handling and empirical 

techniques used by each CFD system.

6-94



PhD Thesis by John Ewer.

6.2.2 Investigation of adjusting solution control during a simulation

The second investigation used the same test case scenario of a 2D room with a fire and a 

removable partition. A "safe" set of configuration control parameters was selected for the trial 

and then a variety of different control strategies were adopted to modify the parameters to 

attempt to obtain the same ultimate solution in a faster time.

The simulations conducted were as follows:

#2.1 No adjustments to the initial set of relaxation parameters.
#2.2 Manual adjustments applied by an expert user as the simulation progresses.
#2.3 Using the final relaxation values from #2.2 as the initial relaxation values.
#2.4 Automated adjustments applied by a prototype KBS as the simulation progresses.
#2.5 Using the final relaxation values from #2.4 as the initial relaxation values.

The modification strategy used by the expert user was that towards the end of each time step 

(as determined by convergence) or if a problem was observed then the user could decide to 

temporarily halt the processing and modify the relaxation parameters in a positive or negative 

sense based on the convergence graphs and visualisation of the current solution state. The 

relaxation parameters could only be changed in a positive sense (i.e. a lessening of under- 

relaxation) by up to 25% of their existing values and, at most, -only one stage of removal of 

under-relaxation could be performed during each time step. This limitation had to be imposed 

after observations made in preliminary research showed a "run-away" control regime in certain 

circumstances that kept on increasing or decreasing the relaxation at every control test. It has 

also been observed that making too large a change in the relaxation values can "kick" the 

solution so hard that it never regains stability. This is the reason for the 25% change limitation. 

Whilst these limitations may appear very restrictive it has been observed, from both automated 

and manual control interventions, that small and gradual changes are much less likely to 

destabilise the solution whilst still providing the potential for significant optimisation savings. 

There were no imposed limitations to applying more under-relaxation if some convergence 

problem was detected. Furthermore there were imposed upper limits to the relaxation values so 

that some minimal level of under-relaxation was always applied. These restrictions were imposed
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to attempt to limit the learning, by the expert, of an optimal set of parameters and applying them 

(as an alternate initial control set) in the first time step. A description and discussion of the 

prototype dynamic control KBS and its mode of operation are given in the paper [EWER98] 

that is included in the appendices. The runs, which used the final relaxation configurations as the 

initial set-up, were used to determine if the "safe" set of parameters was a particularly non- 

optimal set of relaxation parameters.

The results obtained for the computational effort for the entire simulation were as follows: 

TABLE 6.2.2-1 : Computational effort for various control strategies.

Control strategy

#2. 1 Safe initial control 
parameters

#2.2 Expert user adjusted 
control parameters

#2.3 Final control 
parameters from #2.2

#2.4 KBS adjusted control 
parameters

#2.5 Final control 
parameters from #2.4

Cumulative number 
of sweeps

10750

5200

13940

4741

5364

Total processing 
time (seconds)

13641

6598

17689

6016

6807

Non-converged 
time steps

OofllO

Oof 110

34 of 110

OofllO

7of 110

This time it is clear from the process timings for #2.2 and #2.4 that there are better sets of 

relaxation parameters than those used in control set #2.1. However it is also clear from the 

timings for #2.3 and #2.5 that it is not sufficient to simply apply less under-relaxation from the 

start of the simulation as this was observed to destabilise some of the time steps such that a 

converged solution, to some of the time steps, could not be obtained within a reasonable number 

of sweeps. The prototype KBS used in this investigation provided marginally better control than 

the one described in the paper [EWER98] because it had subsequently been optimised to 

incorporate slightly better rules for limiting and applying relaxation modifications and the CFD 

algorithms had also been improved. The problem with the prototype KBS is that it is somewhat 

inflexible to alternate simulation scenarios, particularly those with more degrees of freedom,
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since it was implemented based on observational experience of the manual control of this 2D 

partitioned room scenario. The KBS has not performed particularly well on 3D room fire 

simulations and more research is needed to ensure that the dynamic control KBS is more reliable 

for general simulations.

In order to check that the controlled path to the solution does not affect the final simulation 

solution the final results were compared. In this simulation the results for a vertical line of 

temperatures in the middle of the room were compared for consistency. The graph (See Figure 

6.2.2-2) depicts the vertical temperature profile and indicate that there are no significant 

differences when comparing the results of the different simulations in spite of the vast differences 

in applied computational effort.

2.7 

2.4 

2.1 

1.8

*. 1.5 

.?

= 1.2

0.9

Key
QQ Safe relaxations 

KBS controlled 
User controlled

336 342 348 354 360 366
Temperature

FIGURE 6.2.2-2 : Vertical temperature profiles at the end of the simulation.
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6.2.3 Investigation of dynamic control of a more complex fire scenario

The limitations of the prototype KBS do not restrict the expert user from conducting manually 

controlled investigations on more complex fire scenarios. Another simulation was devised to 

investigate manual solution control in a 3D fire case.

FIGURE 6.2.3-1 : Geometry layout for multiple room fire scenario.

The case investigated was a two storey barn (See Figure 6.2.3-1) that had an open doorway on 

the ground floor and an open window on the first floor, directly above the door. There was an 

open ladder hatch between the floors towards the back of the room and a centrally located fire 

on the ground floor. In this investigation the tests were conducted "blind" so that the expert
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CFD user only knew that the simulation would run successfully, with the configured "safe" set­ 

up, but had no indication of how many iterations were required for each time step to converge. 

Furthermore, only a first attempt at manual control was used for this investigation in order to 

prevent the user from "learning" the optimal behaviour for the particular scenario in question. 

The limitations and restrictions for the manual control adjustments were as described above for 

the 2D partitioned room with a fire simulation. The fact that this simulation was modified 

"sight-unseen" did mean that a more tentative approach was adopted when applying any 

relaxation changes but this was considered to be a more realistic use of manual interactive 

control. The tests were re-run with a fire that had a heat output of four times that of the former 

case as a test of the modelling of more extreme physics.

The following timings and computational effort measurements were obtained:

TABLE 6.2.3-2 : The processing effort required for various control strategies.

Control strategy

#3.1 Safe configuration for 
50kW fire case

#3.2 Manual adjustment of 
50kW fire case

#3.3 Final parameters from
#3.2

#3.4 Safe configuration for 
200kW fire case

#3.5 Manual adjustment of 
200kW fire case

#3.6 Final parameters from
#3.5

Cumulative number 
of sweeps

3464

1834

1707

4448

3155

2993

Total processing 
time (seconds)

5577

2953

2748

7161

5080

4819

Non-converged 
time steps

Oof 100

Oof 100

Oof 100

Oof 100

Oof 100

Oof 100

In these investigations the savings due to manual control were 47% for the smaller 50kW fire 

scenario and 29% for the larger 200kW fire scenario. The fact that simulation #3.3 and 

simulation #3.6 produced marginally better savings without loss of convergence stability implies 

that the initial "safe" set of relaxation parameters are a little too restrictive but this could not
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have been known or predicted prior to the investigation. Whilst this result might seem to suggest 

that manual control is actually less important than appropriate set-up, it is argued that these 

results demonstrate that there is still significant potential for solution optimisation from even a 

safe initial set-up based on observation and manual control. There is also the consideration that 

the simulation case is quite simple and stable compared to some of the fire modelling research 

that is actually performed. When a case involves critical events (e.g. window breaking, 

secondary ignition or flash-over), which may change the flow characteristics and solution 

behaviour drastically, then it is highly unlikely that a single set of initial safe relaxation 

parameters will be appropriate and optimal for the entire simulation. In practice, it was observed 

that this simulation was atypically stable and quite easily approached a steady state solution due 

to the fact that there was a natural flow path through the building that did not tend to build the 

often-seen opposing layered flows. It is clear from simulation #3.1 and simulation #3.4 that 

merely changing the output fire heating rate can greatly influence the amount of processing 

required to obtain a converged solution. This is intuitively obvious since a higher rate of heating 

will lead to proportionately faster flows and hence pressures and turbulence will also be more 

extreme (and hence harder to converge).

The multiple room simulation, from above, was also conducted without any relaxation at all 

(except for the usual 0.6 linear relaxation on pressure that is generally required by the SIMPLE 

algorithm [PATANKAR80] for stability). In this case the solution entered a quasi-stable state, 

during the first time step, where the solution was oscillating at quite high residual errors with 

no real tendency to either diverge or converge within any time step.

6.3 Assessment of the benefits of interactive control

The problems of selecting an "appropriate" control configuration, faced even by experienced 

CFD users, vindicate the investigation of interactive control and monitoring as a necessary 

research program that is needed to obtain a better understanding of the practicalities of CFD 

simulation and to pave the way for reliable automation of solution control.

It has been observed that there is usually some "acceptable" band of control parameters for each
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simulation scenario. When control parameters are chosen outside of this acceptable band then 

at best the solution will stagnate or oscillate and at worst it will completely corrupt the 

simulation results so that the only available course of action is to simulate again from scratch. 

Unfortunately the acceptable band of control parameters is case specific and unknown for each 

scenario until some stability research has been conducted. The control parameters at the upper 

edge of the acceptable band are likely to give the fastest possible simulation times, however, 

these controls are also the most likely to cause data corruption. Simple observation has led to 

the conclusion that the initial stages of a simulation are the most unstable and hence it is 

generally the case that greater under-relaxation is required to start the simulation. This indicates 

that the safest way to proceed is by removing under-relaxation from a sufficiently "safe" set of 

restrictive initial relaxation values.

This does not, however, address the natural solution or pre-configured events that may occur 

during a simulation. These "events" can happen at unpredictable times and are generally 

associated with a significant change to the stability of the solution. Examples of these events are 

the changing of height of a neutral plane, secondary combustion, flash-over burning, breaking 

or opening of doors and windows or the change in direction of a geometry constrained fire 

plume. A pre-configured control strategy for relaxation parameters would be unlikely to meet 

the relaxation requirements for all of the events that could happen unless a sufficiently restrictive 

set of relaxation values were chosen. The problem is that a "safe" restrictive set of relaxation 

parameters are often far from optimal when considering the complete duration of a simulation 

and hence there would be much associated wastage of computing effort as demonstrated by the 

investigations in this results section. The only approach that users of traditional CFD codes have 

been able to use is to attempt to predict the stages of the development of the fire solution and 

to revise the control configuration between these simulation stages. Such an approach is prone 

to error since both the duration of the stages of solution development and the required control 

configuration are unknown. Only considerable experience, of similar simulations, allows expert 

CFD users to obtain results reliably and optimally.
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7 Preliminary investigations into solution 
optimisation techniques

7.1 Overview

During the course of this PhD research it has been possible to investigate some areas of interest 

(for the optimisation of the solution process) that became apparent during the re-engineering of 

the legacy CFD software. Often these investigations were along the lines of feasibility studies 

to determine if more research would be needed to exploit new features [EWER99-4].

7.2 Preliminary investigations of group solvers

7.2.1 Overview of groups

In traditional Computational Fluid Dynamics (CFD) based fire models [GALEA89], control of 

the numerical solver applies equally over all of the cells throughout the solution domain. In large 

geometry cases this can create a significant, and at times limiting, computational overhead. This 

is particularly true in cases where the fire occupies a relatively small proportion of an otherwise 

large solution domain for part, or all, of the simulation period. An example of this may be the 

early stages of fire growth within an airport terminal or a road/rail tunnel. The group solver 

concept [EWER99-3] attempts to address this problem algorithmically, by providing optimal 

processing in regions of the domain where and when it is required.

In the group solver concept, the solution domain is split into an arbitrary number of groups-of- 

cells. A group is defined as a unique collection of cells that can have solver control parameters 

independent from any other groups in the solution domain. Group solvers can be activated 

independently for each solved variable. Internally, the group solver makes use of standard 

numerical "point-by-point" solution methods such as JOR or SOR [CROFT98].

One way in which this may be achieved is by controlling the number of iterations that the solver
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performs in the various groups. For instance, the maximum number of iterations in an "Inactive 

group" will be considerably smaller than the number for an "Active group". As the solution 

develops, cells can migrate to and from groups, thus receiving more or less computational 

attention. The overall convergence criteria are still configured as for conventional problems so 

there should be no significant difference in the quality of the converged solution.

Group solvers are a novel feature of the CFD component introduced during the software re- 

engineering. In traditional CFD codes, solver type and control apply to all the cells in the 

solution domain. Group solvers allow the solution domain to be split into a collection of groups- 

of-cells. A group is defined as a collection of cells that has its own independent control 

parameters. A group solver is used for a particular variable on a particular sub-region of the 

domain. The group solver makes use of standard low-level numerical solution matrix solver 

methods such as JOR or SOR.

There are several different criteria which may be used to determine the cell groupings. 

"Geometric groups" have membership with cells grouped by geometric location (e.g. a near wall 

group, a fire group or a "dead" region group). Such geometric groups are intended to keep their 

cell membership throughout a simulation. Conversely cells may be dynamically assigned to 

groups whose membership may change during the solution process. These are so called 

"dynamic membership groups". The membership assignment process is triggered by pre- 

configured selection criteria which are dependent on the magnitude of particular variables. For 

each group, there is a lower and upper value of the trigger-variable(s) which define an 

acceptance band for membership of that group. When the chosen value(s) in a cell comply with 

the entry criteria, the cell will be transferred to the matching group.

Typically one could define four base groups for dynamic membership, namely: "Active", 

"Moderate", "Inactive", and "Void". "Active" has the upper value range for flow or heat, 

"Moderate" has the medium value range and "Inactive" has the lowest value range. "Void" is 

used for areas in the geometry that are not part of the flow domain and there is a fixed constant 

value of the variable (e.g. regions that have been meshed for convenience but are not part of the 

flow domain for all, or part, of the simulation) that does not require iterative re-calculation.
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The main purpose of both types of group and the group solvers is to reduce the overall 

computation time. This is achieved by directing computational effort only to where it is needed. 

One way in which this is achieved is by controlling the number of iterations the solver 

implements in the various groups. For instance, the maximum number of iterations performed 

in the Inactive group will be considerably smaller than the number performed in the Active 

group. As the solution develops, cells can migrate to and from groups, receiving more or less 

computational attention. As the overall convergence criteria are set as for conventional 

problems, there should be no difference in the quality of the converged solution obtained using 

this technique.

As the prototype CFD code uses a truly unstructured mesh, there are a limited number of 

reliable and general purpose numerical techniques available to solve the systems of algebraic 

equations for each of the primary field variables. Structured mesh CFD codes can exploit the 

structured nature of the data (e.g. using lines or planes) in various solvers to give more efficient 

solution than for the point-by-point iterative solvers commonly used in unstructured codes. One 

of the goals of this work has been to investigate and, if possible, exploit reliable techniques that 

prove to be of benefit to fire modelling within unstructured mesh CFD codes. One such 

technique, developed by the author, is the concept of group solvers. A conference paper 

discussing group solvers is included in the Appendices [See Appendix 11.3].

7.2.2 Description of group solvers

Group solvers are a conceptual extension of the simple linear, iterative, algebraic equation 

solvers usually referred to as Jaccobi Over Relaxation (JOR) or Successive Over Relaxation 

(SOR) [CROFT98]. At the most basic level these solvers involve the repetitive update of the 

solution of a property variable within each cell based on the contributions from nearest 

neighbouring cells, a portion of the previous solution value and the source quantity for each cell. 

In a CFD context the contributions from neighbouring cells represent the convection and/or 

diffusion of a physical property throughout the solution domain whilst the source indicates the 

creation or destruction of the physical property in the considered cell. The distinction between 

JOR and SOR solvers is that the SOR always uses the most up-to-date versions of the solution
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when calculating the next update. This can make the SOR solver less stable than the JOR solver 

but it does has the significant advantage of spreading the solution much more rapidly than the 

JOR

In the typical whole-domain JOR or SOR solver, the solution in each and every cell of the 

domain is updated repetitively until the difference between successive updates is sufficiently 

small. Clearly, if the solution domain contains many cells that are far removed from any active 

flow region or worse are totally de-coupled from the region of interest for a portion of the 

simulation, then not all of these JOR or SOR calculations are performing any useful 

advancement of the solution. This is especially true of many of the large complex geometries 

used in fire field modelling (e.g. whole building simulations).

The group solver concept allows the domain to be partitioned into "geometric" or "logical" (i.e. 

solution dependant) groups of cells that then use the iterative point-by-point update described 

above. The difference for the group solvers is that each group can have a unique set of control 

parameters to configure the maximum number of iterations to perform, the tolerance to use for 

convergence testing and/or the linear solver relaxation to be used. In this paper, the investigation 

only concerns the potential benefits of limiting the number of iterations that are used within each 

group of cells - while maintaining the desired level of convergence.

Since, in an unstructured code, a group does not need to be limited to some pre-configured 

geometric region it is possible to further extend the group solver techniques by allowing groups 

to determine their own cell-membership as the solution develops. This has been implemented 

within SMARTFIRE to allow an arbitrary number of groups which can contain either geometric 

or solution dependant membership (provided that each cell only exists in one group) and that 

furthermore the dynamic groups can exchange cells as the simulation solution develops. In 

practice, the dynamic membership is configured so that each dynamic group has an acceptance 

range of values which will trigger a non-member cell to be transferred into that group if its 

property value is within the configured range and that the cell is not already contained in a static 

"geometric" group.
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The implementation of the group SOR solver requires particular care, at the algorithmic level, 

to ensure that the groups are not de-coupled into JOR connectivity between groups. This 

scenario is possible if the looping between group-inner-iterations and between groups is 

mismanaged to give simple external looping for all groups and internally for each group to loop 

for all configured inner-iterations. There are several possible methods of handling the inner 

looping which give different updates for cases where groups have different numbers of 

configured inner iterations. It was decided to interleave the processing between groups without 

using a simple 1:1 interleave ratio, which would have been easier to implement but possibly less 

efficient. The more complex interleaving technique causes each group to be visited in turn and 

performs one (or more) of the inner iterations before moving to the next group. The looping 

amongst groups continues until each group reaches its configured maximum number of inner- 

iterations or until convergence is detected.

In order to attain maximal optimisation for cases with truly de-coupled (and hence uninteresting) 

group regions, it was also necessary to limit processing of such groups so that simple calculated 

variables are not updated. Mostly there is little difficulty in performing this optimisation because 

the support variables are generally closely linked in their usage to associated solved variables.

It should be noted that many of the variables in a fire modelling simulation have a definite 

"directionality" that can be exploited by matching the marching order of the cells within SOR 

solvers with this direction. The prototype CFD engine has been implemented to use bi­ 

directional marching order for all SOR type solvers, which gave a saving of up to 20% over the 

usual unidirectional marching order - when used on the simulation case described in this section. 

All of the timings compare bi-directional group and whole-domain SOR solvers.

7.2.3 Investigation of geometric groups

Several examples were used to investigate the use of geometric group solvers for a partitioned 

2-D room fire simulation. The simulation timings, for geometric groups, were all performed
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using a 90 MHz Pentium PC with 64MB RAM. The first example involves a single compartment 

with two doors. Both doors open to the outside and hence involve two extended flow regions. 

The second example involves a similar compartment in which one door opens to the outside 

while the other door opens to a second closed compartment. For simplicity, all confining 

boundaries are assumed to be adiabatic. In both cases a small volumetric fire source of 50 kW 

is situated in the centre of the fire compartment.

In the first example, one of the doors is open throughout the simulation while the second door 

is opened 40 seconds into the fire simulation. The solution domain is thus made up of three 

distinct regions, the first external region outside of the open door, the fire compartment itself 

and the second external region beyond the closed door. The computational mesh in each region 

comprises of 8 x 21 cells, 22 x 21 cells and 8 x 21 cells respectively i.e. a total of 798 cells. 

Using standard CFD solution techniques the solvers operate equally in all of the cells throughout 

the solution domain, even the cells in the initially dormant external region beyond the closed 

door. This is clearly a waste of CPU time as nothing of significance occurs in the external region 

beyond the closed door.

Whole domain solvers Temporary door (closed)

Group solvers Extended (dead) region

FIGURE 7.2.3-1 : Solution prior to opening of second door 
obtained using conventional and groups solvers.
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Using the group solver, the initially "dead" region is marked as Inactive resulting in the solver 

spending a minimum amount of effort in this region. When the second door opens after 40 

seconds, the Inactive region changes to Active status and the solution domain extends to cover 

the second extended region. As demonstrated in the figure (See Figure 7.2.3-1), the solution just 

prior to the second door opening when the group solver is used is identical to the solution when 

the conventional solver is used and it is concluded that there is no loss of accuracy.

Central fire with both doors open

Symmetrical flow pattern Second door was opened

FIGURE 7.2.3-2: Steady-state solution obtained 
after both doors are opened (example 1).

When both doors are opened, both methods converge to the steady state solution depicted in 

the figure (See Figure 7.2.3-2). However, using the conventional solver, the run time up to the 

point where the second door opens was approximately 3.02 hours while using the group solver 

this was reduced to 2.72 hours, a saving of 10%. While only a modest saving, this was achieved 

by saving the computational effort over only a comparatively small proportion of the solution 

domain.

Fire in a partitioned room

Fire Removable partition location
FIGURE 7.2.3-3: Steady-state solution obtained 

after both doors are opened (example 2).
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When Inactive regions occupy a greater proportion of the mesh savings in computational time 

can be improved significantly.

In the second example, the second door is opened after 40 seconds but rather than opening to 

the outside it opens into an otherwise sealed compartment. The solution domain again consists 

of three distinct regions, the external region outside of the open door, the fire compartment and 

the second, initially sealed, compartment. The computational mesh in each region comprises of 

8 x 22 cells, 22 x 22 cells and 30 x 22 cells respectively i.e. a total of 1320 cells. Using standard 

CFD solution techniques the solver operates equally in all the cells throughout the solution 

domain, even the cells in the second sealed and isolated compartment.

Once again, the initially dormant region is marked as Inactive resulting in the numerical solver 

spending the minimum amount of effort in this region. When the second door opens after 40 

seconds, the Inactive region changes to Active and the solution domain extends to cover the 

second compartment. As in the previous case both solution techniques result in identical 

solutions prior to the opening of the second door. When both doors are opened, both methods 

converge to the steady state solution depicted in the figure (See Figure 7.2.3-3). However, using 

the conventional solver, the run time up to the point where the second door opens was 

approximately 4.40 hours while using the group solver this was reduced to 3.06 hours, a saving 

of 31%. Thus, by effectively reducing the computational domain by 50%, a saving in 

computational time of 31% is achieved. This saving is less than might have been expected but 

it is explained by the need for initialisation and property updates that occur in all cells regardless 

of their group membership.

More work is needed in this area to determine if there are benefits for the dynamic control of 

each group's solution controls.

7.2.4 Investigation of dynamic groups

The case used to investigate the use of dynamic group solvers is a preliminary investigation into
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fire spread between the floors of a multi-storey building where window sizes are varied to 

modify the ejected plume behaviour. This case is loosely based on some collaborative research 

with LPC into fire spread between floors [GLOCKING97]. In the case presented here only the 

lower (ground) floor room is modelled together with the outer wall of the second and third 

floors above. In subsequent research it is intended that the upper floor rooms will also be fully 

modelled with windows that can be broken by the incident heat flux from the ejected spill plume.

In order to investigate the benefits of the group solvers a number of test cases were prepared. 

The geometry and mesh used in all of the tests was identical and great care was taken to ensure 

that the mesh was sufficiently refined across the height and width of the window, near the walls 

of the room and outside and just above the window. These considerations are critical to 

obtaining a reliable and accurate simulation of the ejected plume.

The geometry (See Figure 7.2.4-1) was set up with room dimensions of 4.0m (x) X 3.4m (y) X 

6.0m (z). The centrally located fire is represented as a volumetric heat load which is applied over 

a volume of 1 .Om X 1,2m X 2.0m. The fire uses the so-called "alpha t squared" power curve, 

which reaches 2.0 MW (using a fast growth rate) in three minutes of simulated time. This is a 

commonly used growth rate for representing real fires (for example burning furniture) with a 

volumetric heat output. The window aperture has a size of 2.0m-(y) X 2.0m (z) and is centrally 

located on the high X-face of the room. The exterior wall, above the window, extends for a 

height of 10.5m vertically. This extended height is intended to allow for the addition of two open 

rooms above fire room and a further room height to move the free surface boundary sufficiently 

far away from any upper floor windows that may be used. This positioning of the free surface 

is necessary to prevent outlet effects from dominating the flow in any critical region of the flow 

domain where it might change solution.
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FIGURE 7.2.4-1 : The multi-storey geometry used for the group solver tests.

The extended region beyond the window has the same Z-width as the room and extends for a 

distance of 6.0m in the X-direction in order to give ample room for the plume ejection. All of 

the surfaces of the extended region have a free surface boundary condition except for the floor, 

which is assumed to be solid.

The outside region is assumed to be calm prior to the fire. The walls are assumed to be brick 

with a thickness of 0.1m.

The mesh used for the simulation consisted of 40,572 cells with NX=36, NY=49 and NZ=23. 

The number of cells in the geometric regions was as follows: Dead region (non participating 

rooms above fire compartment i.e. de-coupled region) has 14,260 cells, Fire-room has 8,280 

cells and the entire extended region has 18,032 cells (See Figure 7.2.4-2).
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RISGIQH

FIGURE 7.2.4-2 : Vertical slice through the domain 
showing the mesh and the various regions.

The simulation involves buoyancy driven flow with K-Epsilon turbulence model (buoyancy 

modified) and incorporates the six-flux (enhanced) radiation model as described in the User 

Manual [EWER99-2]. The entire simulation was configured to perform 90 time steps of 2 

second duration. The solver configurations used in the various simulations are summarised in 

the following table (See Table 7.2.4-3).
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TABLE 7.2.4-3 : Summary of solver configurations used in simulations.

Variable(s)

Pressure

Momentum

Turbulence

Enthalpy

Radiation

Solver update 
method

SOR

SOR

SOR

SOR

SOR

Whole 
domain 
iterations

50

6

20

30

20

Active 
group 
iterations

50

6

20

30

20

Calm 
group 
iterations

12

2

5

8

5

Void 
group 
iterations

0

0

0

0

0

Furthermore all solvers were able to terminate their inner iterations if a common convergence 

level was reached. Each time step was forced to have all normalised variable residuals 

converged, to l.Oe-03, before the next time step could be started.

For comparison purposes, the following three test cases were simulated:

Case 1: The simulation is configured with all solved variables using the whole domain SOR 

solvers as specified in the table (See Table 7.2.4-3). For comparison purposes this constitutes 

the base case. The group solvers are not utilised in this test and so the code is run in a 

conventional manner.

Case 2: The entire solution domain is configured into two static "geometric" groups, one group 

configured as a "Void" group and another configured as an "Active" group (See Table 7.2.4-3). 

The "Void" group contains all of the cells in the de-coupled region above the fire room (i.e. 

14,260 cells or 35.2% of the entire cell budget). The "Active" group contains all of the cells that 

are not in the "Void" group region (i.e. 26,312 cells or 64.8% of the entire cell budget). While 

the group solvers are activated, group membership remains the same throughout the simulation.

Case 3: The entire solution domain is partitioned into four groups, two are static "geometric"
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groups and two are "dynamic" membership groups. The first group is a static group that is 

configured as a "Void" group which contains all of the cells in the de-coupled region above the 

fire room (i.e. 14,260 cells or 35.2% of the entire cell budget). The second "static" group is 

configured as an "Active" group and contains all of the cells in the fire room, those in the 

window aperture and a small rectangular block of cells that is immediately outside of the 

window (uses room with 8,280 cells and 2,366 cells from the extended region i.e. 10,646 cells 

or 26.2% of the entire cell budget). The third group is "dynamic" and "Active" and is configured 

to determine cell membership from the non-static cells of the extended region. The group 

membership selection criteria is for absolute cell velocity being greater than 10% of the 

maximum domain velocity. The fourth "dynamic" group is configured as a "Calm" group and 

contains extended region cells that have an absolute velocity of less than 10% of the maximum 

domain velocity. The two active groups share the remaining 15,666 extended region cells or 

38.6% of the entire cell budget. Dynamic group membership is updated every 10 sweeps.

For the purposes of this paper, timing comparisons based on the first 50 time steps of each test 

will be presented. On the test computer (a Pentium n 400MHz with 256MB of RAM) this gave 

a convenient processing duration that could be run overnight without interruption.

TABLE 7.2.4-4 : Comparison of group solver performance over the three test cases.

Test scenario CPU time used for 50 
time steps______

Total number of 
sweeps used

Percentage time 
saving over case 1

Case 1 :
Whole domain solvers

15h51m40s 
(57,100 seconds)

3095 0.0%

Case 2 : 
Static groups

Ilh43m36s 
(42,216 seconds)

3089 26.1%

Case 3:
Static and dynamic groups

9h 56m 45s 
(35,805 seconds)

2919 37.3%

Of primary interest, to this study, are the potential gains in numerical efficiency generated by the 

use of group solver technology. It should be noted that all three test cases produced practically
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identical solutions with the same levels of convergence. A comparison of the run times for the 

test cases is presented in the table above (See Table 7.2.4-4). Clearly, the group solver has 

potential for introducing considerable savings in computational time.

The fire dynamics in these test cases proceeded as expected. As the window opening to the fire 

compartment was considered narrow, a strong plume was ejected from the compartment. As 

the plume rotated and ascended vertically, it did not attach to the building facade. These results 

are consistent with earlier modelling work [GALEA96] and with reported experimental 

observations [YOKOI60].

By 100 seconds, of simulated time, the rising plume outside of the compartment was fully 

developed and clearly unattached from the building fa9ade. Continuing the simulation beyond 

this point merely increased the temperature of the fire compartment, the rising plume and the 

building fa9ade.

The results for temperature displayed in the figure (See Figure 7.2.4-5) were taken at a 

simulation time of 120 seconds from the whole field SOR simulation in Case 1. Only the results 

from Case 1 are presented here as the comparable results from Case 2 and Case 3 displayed no 

apparent differences. Within the solution fields produced by Cases 1-3, maximum temperatures 

differed by at most, 1 Kelvin in the range of 318 to 914 Kelvin.

In order to verify that the dynamic group solver membership mechanisms were operating as 

expected, a vertical slice visualisation of group membership was created. This group 

visualisation (See Figure 7.2.4-6) shows that the "active" dynamic group in the extended region 

has captured the plume extent correctly.

The static group solvers used in Case 2 demonstrated that, by effectively removing 35.2% of the 

domain from the computations, a saving of processing time of 4h 8m 4s (or 26.1%) was 

obtained when compared to the standard whole field SOR solvers processing all cells equally.
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FIGURE 7.2.4-5 : Vertical slice showing room 
and plume temperatures (K) at 120 seconds.

In effect this indicates that the group solvers were 74.2% efficient at removing the processing 

overhead of the de-coupled region from the simulation. While a 100% efficiency may be desired, 

this result was anticipated because there are still many calculations performed in the "de­ 

coupled" region for material properties and simple calculated variables. It is anticipated that this 

figure can be improved somewhat by increasing the use of "group" activated calculations within
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the rest of the CFD code.

STATIC GROUP 
(DEAD REGION)

DYNAMIC GROUP 
(ACTIVE REGION)

STATIC GROUP 
(ROOM REGION) DYNAMIC GROUP 

(CALM REGION)

FIGURE 7.2.4-6 : Vertical slice showing static and dynamic 
group membership at 120 seconds for test case 3.

In Case 3 both static and dynamic groups are used with the majority of the extended region 

being continuously evaluated for applied processing strategy. In this case an overall processing 

time saving of 5h 54m 55s (or 37.3%) was achieved when compared to the standard whole field
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SOR solvers processing all cells equally. It should be noted that much of this saving is due to 

the "de-coupled" void group which, as shown in Case 2, saves 26.1% of the processing. The 

remaining 11.2% saving is due to the optimisation of processing within the extended region 

which targets less solver processing in cells with relatively low velocity flow. The fact that this 

saving is comparatively less than for the "de-coupled" region is also anticipated. This can be 

explained by considering the work performed in the "de-coupled" and dynamic groups. In the 

"de-coupled" group, it was not necessary to build the system matrix coefficients for the member 

cells whereas any cell in a solved group that performs one (or more) iterations must build the 

system matrix coefficients in order to perform any calculation. Building the system matrix 

coefficients is relatively costly compared to solving the matrix.

The results indicate that there are large potential savings to be gained in the simulation of fire 

modelling scenarios by the targeting and optimisation of processing effort in fully de-coupled, 

suitably stratified or geometrically related flows. Furthermore, these savings need not result in 

compromised accuracy of the final solution. The techniques developed and presented here 

resulted in considerable run-time savings of up to 37% of processing time. It is anticipated that 

this figure can be improved significantly when a better understanding of the balancing required 

between groups and variables is achieved.

As group solvers are a new concept, there was little or no expertise to guide in the optimal 

selection of number of groups to use, the choice of group membership conditions and the 

relative amounts of processing used in each group. Furthermore there are a number of remaining 

group solver control options which were not varied during the test simulations.

It is anticipated that in large scale simulations, which may involve whole buildings, there are 

likely to be much greater savings possible with intelligent use of group solvers that can target 

the processing only on the active flow and fire regions until the solution characteristics in other 

regions become significant.

Current research efforts are directed at gaining a better understanding of when it is appropriate
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to use groups and how best to balance the processing between groups in order to obtain optimal 

convergence and simulation times. Dynamic groups have been shown to give modest 

performance improvements but more work is needed to determine if there are any further 

benefits possible due to combined solution monitoring and dynamic knowledge based control 

of the processing within both the static and dynamic groups. Whilst the use of group solvers 

increases the complexity of the knowledge based control it is also most likely to provide the 

most significant savings and most reliable solutions.

7.3 Preliminary investigation of automated dynamic solution 
control

A prototype dynamic control module was developed to investigate the potential for automating 

the process of dynamically monitoring and controlling the solution of a particular class of Fire 

simulations [EWER98]. (See Section 6.6.2 in the Results Chapter 6) The module was quite 

primitive because it only monitored the local convergence behaviour and then only modified 

linear and false time step relaxation values.

The production rules that were used to effect these control changes were demonstrated to be 

quite good for 2-dimensional fire scenarios but not sufficiently flexible to handle more complex 

3-dimensional fire scenarios.

It has been established that significant savings in run-times can be achieved when the automated 

solution control module can fine tune the relaxation parameters for optimal convergence but 

there is some danger of de-stabilising the solution when compared to using a safe set of initial 

relaxation parameters. This was demonstrated by the fact that a fairly simple 2-Dimensional 

scenario gave good savings for optimisation of relaxations but a more complex 3-Dimensional 

scenario was destabilised by the solution control module. It is predicted that these problems are 

caused by the lack of monitoring of persistent trends in the solution convergence behaviour. The 

prototype solution control module was only evaluating convergence trends based on a few 

preceding simulation sweeps.
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8 Conclusions

8.1 Benefits of interactive control

This research has demonstrated significant and tangible benefits for the use of interactive control 

and monitoring user interaction techniques for use with CFD simulations in the Fire Field 

Modelling arena. These benefits are not solely limited to performance enhancements because 

solution reliability, error detection and algorithm development have also been demonstrably 

improved during the investigations. Although the re-engineered and interactive prototype CFD 

system runs more slowly than the original legacy code this should be seen in context of the 

tangible improvements in the overall performance due to time saved by using solution 

optimisation and the reductions in time wasted in unsuccessful simulations. There is also the 

added benefit that the prototype CFD system gives more assurance of solution correctness when 

the path to the solution has been monitored.

The need for interactive control has also been demonstrated by the relatively poor attempts at 

static simulation configuration obtained from CFD researchers during this investigation. This 

tends to suggest that some form of interactive control is necessary for CFD experts to be able 

to transfer their knowledge between CFD codes so that they can use new simulation software 

correctly and optimally. It is also beneficial for expert CFD users to have immediate access to 

the intermediate solution status information so that simulation problems can be detected 

promptly and control actions planned and imposed as required.

One particularly surprising observation made during this research concerned the lack of 

transferability of set-up knowledge between different CFD codes by expert CFD users who were 

familiar with another CFD code. This meant that even users who have considerable expertise 

with using a particular CFD code cannot always easily transfer that knowledge for the optimal 

or, in some cases, reliable use of another CFD code. Generally speaking, this means that all users 

are forced to learn the idiosyncrasies of each new class or instance of a CFD code. It is not clear 

if this problem is quite so marked or critical in other application areas outside of CFD research
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or outside of numerical simulation. Clearly the problem is alleviated somewhat by having a good 

user interface with appropriate monitoring and solution statistics that allow the user to check 

that the CFD code is behaving predictably, acceptably and optimally.

The implementation of reliable simulation control automation relies on the availability of high 

quality expertise and knowledge obtained from Expert users controlling real simulations. 

Formerly this knowledge has not been available because traditional approaches to CFD used 

batch mode processing techniques followed by post-processing results analysis. It has been 

demonstrated that this often leads to highly non-optimal simulation strategies and errors in the 

simulation are found (if detected at all) after a simulation has been run completely. Knowledge 

about reliable solution control methods will only be obtained through the use of interactive 

control techniques by CFD experts and further research in this area. As a corollary, it should be 

noted that an interactive control and monitoring interface is a significant benefit for teaching 

purposes. When used as a teaching tool, an interactive CFD code gives trainee Fire Field 

modellers a much better understanding of the internal processes and limitations of CFD software 

and is thus likely to enhance their productivity and accuracy of simulation

The current trend for the use of Fire Field modelling by building designers, fire regulatory 

authorities and others who often have quite limited CFD experience (or in the case of Firemen 

who have recently started to investigate Fire Modelling techniques, almost no CFD experience) 

which means that it is more important than ever for reliable, informative and (whenever possible) 

automated simulation software to be made available to ensure that simulations that are 

conducted for risk assessment, design planning and performance analysis are conducted correctly 

and that the results are only used or presented if they are reliable.

8.2 Benefits of incremental reverse engineering

The reverse engineering methodology developed during this study has wider implications when 

one considers the huge amount of extant software that was written in older computer languages 

and often without the benefit of modern software engineering practices. The success of the 

methodology lies in the fact that the software being re-engineered is never far away from a state
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that can be compiled and re-validated for functional consistency with the original legacy 

software. Clearly it is necessary that the validation cases selected should provide suitably wide 

function coverage but, with this proviso, it is possible to impose many modern principles of 

software design and ease of maintenance without an overwhelming expenditure of human 

resources.

In practice, it would have been more efficient to use more automation (i.e. translators or 

compiler writing tools) during the translation phase of the re-engineering. It is also not easy to 

predict how well the techniques used in this investigation would be transferable to other 

application areas but the principles of maintaining absolute functional consistency do make a 

great deal of sense no matter what the origin and purpose of the legacy code.

8.3 CFD Research benefits of using an open architecture and 
Object Oriented development techniques

Many of the enhancements, capabilities and possibilities for further research have only been 

practically made possible due to the open architecture imposed on the re-engineered CFD 

software and the use of Object Oriented implementation techniques. This does not mean that 

traditional implementation techniques (i.e. procedural, structured coding) make such 

enhancements impossible but there is a point where procedural implementations with their poor 

code clarity, primitive data passing, simple data storage mechanisms and monolithic software 

architecture tend to hamper further development. A well-structured Object Oriented architecture 

can give considerable assurance that the methods for one type of object will not interfere with 

other types of object and their respective implementations. This was a definite benefit with 

regards to the implementation and development of the visualisation, knowledge based control 

and group solver functionality.

The use of Object Oriented development techniques have also been observed to promote ease 

of adaptive and perfective maintenance. The fact that new algorithms can be implemented 

without having a knock on effect through the rest of the software considerably simplifies the 

scope of any new developments and helps to ensure implementation correctness.
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8.4 CFD Research problems caused by the use of Object Oriented 
development techniques

There were, almost inevitably, some problems facing the use of Object Oriented development 

techniques with CFD research.

The first observed problem was that there were multiple clear conceptual or real world objects 

that could be used as the basis of the data architecture. The eventual object abstraction that was 

adopted came down to a simple preference for a favourite object hierarchy. The re-engineering 

development described in this research may have gone very differently if, at the key stage of 

formulating an object hierarchy, it had been decided that data vectors and system matrices were 

the best choice of conceptual objects.

The second observed problem is that Object Orientation tends to make the developer write more 

and simpler functions than would have been present in the original procedural code. The 

problem here is that adding additional layers of function calls at a low level of looping within the 

numerical code is likely to be accompanied by a considerable performance overhead for the 

additional calls. Matters would be even worse if dynamic function resolution (i.e. late-binding 

or run-time) is used because of Object Oriented inheritance and-overloaded functions. This is 

typically seen where one type of object is a sub-type of a parent object type and both object 

types have identical methods which means that the compiler cannot resolve which method to call 

and it must be evaluated at run-time. The re-engineering described in this investigation tried to 

limit this increase in the number of layers of function calls, but it was not completely successful. 

The re-engineered system has, on average, at least one extra layer of function calls at a relatively 

low level of the code and this has quite a large impact on run-time performance. The 

development has managed to keep late-binding to very high levels of the code where it will have 

negligible effect on the overall performance.

The third observed problem is that the Object Oriented language used for this research (i.e. C++) 

and most other object oriented languages are somewhat slower than the FORTRAN language. 

This is partly due to the difficulties of optimisation in C++ and the simplicity of FORTRAN.
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There is also the performance impact, which has not been evaluated, of the organisation of the 

large amounts of simulation data in memory and the memory address "jumping" required by the 

processor to perform the calculations. The original FORTRAN code had long arrays of data 

whereas the Object Oriented C++ version of the code has cell objects (with complete sets of 

internal data) that are consecutive and adjacent in memory. It is not clear what overhead this has 

in terms of the jumping necessary when addressing data and the performance hits that this will 

cause due to the required frequency of cache updates. Unfortunately there was insufficient time 

to perform an analysis of the impact of the techniques used for data storage.

A final problem facing the prototype system is that of user acceptance. The fact that the system 

has been written in object oriented C++ will mean little to the majority of users who will only 

ever make use of the executable form of the software to perform their simulations. Conversely 

users and developers who need to write additional routines may find the conceptual structure 

of the Object Oriented version of a CFD code too alien to their experiences of procedural 

development. Every effort has been made to mitigate these problems by avoiding the more 

obscure syntax, constructs and mechanisms available in C and C++ but some of the 

idiosyncrasies remain. Possibly the worst of these is the slightly strange syntax needed to access 

any cell data value which in the re-engineered system appears as

data = celI[cell_index]->access(NEWEST,TEMPERATURE);

whereas the original legacy code would have used the simpler syntax

data = TEMPER(celMndex)

but, it is argued that, the benefits of the re-engineered system described in this investigation far 

outweigh this fairly minor inconvenience.
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9 Further work

9.1 Overview

During these investigations there were many instances of research areas that needed 

investigation or that could be potentially beneficial but these could not be pursued due to time 

and resource constraints. This section describes areas of research that need further work.

9.2 Dynamic solution control

Further work is needed for better determination of the current solution status (possibly involving 

more historical solution status information) so that the control rules can be fired in a more 

reliable way. Also the actions that can be performed need to be extended to cover more of the 

capabilities of the CFD software. It is possible that the Dynamic control module would benefit 

from initially using a "Zone model" to determine a "quick and dirty" solution prior to performing 

the simulation and to use this data to apply changes to the number of iterations, tolerances, 

solver types and time step size as required.

Furthermore the dynamic control module needs to be "aware" of transitional effects such as the 

re-direction of plumes or flow jets by geometry constraints or the change in height of neutral 

plane because these changes can greatly effect solution stability and often require special 

handling. There is also the potential for user or solution defined transitional effects such as the 

breaking of windows, opening of doors and secondary fire ignition or fire spread that will also 

require specialised control handling.

9.3 Visualisation

Visualisation needs to be extended to 3-D for improved run-time assessment of the solution 

status. This should not be regularly updated, as it is in the current 2-D slice visualiser, because
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of the performance overhead that would be incurred for 3-D display formation. A more global 

approach to investigating the solution data, at any stage of the processing, is needed so that 

solution features are not missed. Quality data visualisation using contour nets and vectors are 

recommended though it may prove necessary to use transparencies and cutaways in order to 

prevent foreground data from obscuring background data. Streamlines can also be used to give 

visual meaning to flows.

The fire field modelling area is likely to benefit from recent visualisation techniques such as 

"fogs" and Virtual Reality in order to help bridge the gap between the fire field modeller and 

designers or non-CFD specialists who need to comprehend and make use of the simulation data.

9.4 Pattern matching for KBS control and status reporting

It is anticipated that some means can be found to detect recirculations and other flow formation 

events in order to fine tune the simulation controls to give reliable but still optimal numerical 

handling. This may need to implemented, at least initially, with simple status monitors and 

questioning of the computer user who will be used as a non-specialist expert for the visual 

classification of a data visualisation. This would be used where numerical or other programmatic 

means of classification of simulation features are non trivial or prove to be unworkable.

Work is already progressing into more reliable and comprehensive techniques for solution status 

reporting based on the analysis of residual graphs. This new type of analysis attempts to classify 

convergence trends and behaviour over time and over successive sweeps so that qualitative 

decisions can be made about how the simulation can be optimised and to monitor for potential 

problems so that they can be handled before ever becoming critical (i.e. solution threatening).

9.5 Enhanced physics and numerical methods

There are a number of diverse techniques that need to be added to the prototype system in order
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to provide a comprehensive tool for fire field modelling scenarios. The most important of these 

features are toxicity modelling, pyrolysis and solid fuel combustion [COX95], flash-over 

modelling [JIA97], discrete transfer model for radiation, fire spread modelling and secondary 

ignition. These features are by no means trivial and some are at the forefront of current research 

[JIA99].

9.6 Exploitation of parallel processing architectures

It is interesting to note that the Object Oriented data structures used in the prototype system 

could be used to provide a fairly simple exploitation of parallel processing architectures. Since 

each cell is a complete and separate entity and the fact that group solvers and dynamic group 

membership have already be demonstrated as workable, it is possible that a parallel 

implementation of the code could be formulated with relatively little additional programming. 

There are several areas that would need to be addressed i.e. the addition of halo cell regions 

about each group and the scheduling of inter-processor data updates. Where this implementation 

may really benefit is from the potential for dynamic assessment and handling of load balancing 

as under-utilised parallel processes could have additional cells passed across to them in order 

to make maximal use of all processors. The data structures of the prototype system minimise the 

amount of book-keeping and simplify the data access so that parallel implementation is likely to 

be greatly simplified.

Whilst such exploitation of parallel or distributed architectures is not new [LUKSCH98], it is 

anticipated that the Object Oriented data structures within the prototype system will greatly 

facilitate the parallelisation of the software.

9.7 Interactive control expertise

Throughout the current research there has been a lack of high quality expertise about how to 

manage the interactive control of CFD codes. This is mostly due to the fact that CFD
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practitioners have never really had the tools to enable them to perform reliable run-time 

optimisation of the simulation controls. In order to address this limitation it is predicted that case 

based data relating to simulation status, reliable control modifications, problematic simulation 

features and solution reliability need to be collected and analysed in order to facilitate future 

research.

9.8 Validation and fine-tuning of algorithms

Although the prototype software is being used more frequently from real world simulations 

[WANG99] there is still considerable scope for validation of all aspects of the algorithms and 

numerical behaviour in diverse simulation cases.

There is also a need to continually analyse and fine-tune the algorithms within any CFD code in 

order to best represent each case or application area.

Another potential problem is that it is not known how sensitive CFD codes are to all of their 

input or pre-configured parameters. It is likely to prove beneficial to perform a comprehensive 

parametric sensitivity study to determine how critical all of the various input parameters and so 

called "algorithm constants" are. This is particularly true of the Fire Field Modelling application 

area where many properties are assumed to be constant over the whole range of temperatures 

and conditions experienced during a simulation but this is quite an unrealistic assumption for 

quantities like the specific heat capacity of air.

9.9 Latest Research

The interested reader is advised to check out the University of Greenwich Web pages 

[GREENWICH] in order to check the current advances in research within the Fire Safety 

Engineering Group and to see the current status of the Smartfire system.
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11 Appendices

This appendix section gives more detailed or background information which was not appropriate 

for direct inclusion in the main thesis as it would tend to clutter the text.
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11.1 SMARTFIRE VERIFICA TION AND VALID A TION REPORT by 
Ewer J., Jia F. and Grandison A.
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1 Introduction

The test cases presented in this document serve to verify and validate the SMARTFIRE 
CFD fire modelling software. The report is split into four sections. Section 2 contains test 
cases concerned with verifying that the basic physics within SMARTFIRE has been 
correctly implemented. Section 3 is used to compare SMARTFIRE predictions against data 
derived from fire experiments and data generated by other fire models. Finally, section 
Error! Reference source not found, provides detailed information concerning the problem 
set-up (e.g. meshes used in the test cases) and additional detailed information to allow other 
users to reproduce the SMARTFIRE results.

Validation is not a "once and forget" task. It is an on-going activity that both code 
developers and users should be involved with. It is expected that this report will grow in 
time as more test cases are developed and the capabilities of SMARTFIRE expand. 
SMARTFIRE users are encouraged to develop other test cases and to report their findings to 
the code developers. When reporting verification/validation results please ensure that 
complete details of the SMARTFIRE set-up are provided along with your SMARTFIRE 
predictions and expected results for comparison purposes. Please report validation cases by 
email to smartfire@fseg.gre.ac.uk

Unless otherwise stated the following material properties are used in the test cases: -

PROPERTY
CONDUCTIVITY CONSTANT

VISCOSITY CONSTANT
NATURAL STATE

THERMAL EXPANSION
DENSITY

Molecular weight
Specific heat constant

AIR 1 COMMON BRICK
0.02622
1.6e-005

Gas
0.003292

Use Ideal gas law
29.35

1045.78

0.69
Ie4010
Solid

0
1600
N/A
840

Unless otherwise stated, the CFD codes used in this document are: -

SMARTFIRE v2.01 build 369, produced by FSEG of the University of Greenwich, 
PHOENICS v2.1.3, produced by CHAM Ltd of the U.K., and 
CFDS-FLOW3D v2.3.2, produced by AEA Technology of the U.K.
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2 General Physics Validation Cases

2.1 Basic physics verification of SMARTFIRE — Convective term.

This test examines whether the convective term in SMARTFIRE is functioning correctly. 
The tests involve a simple 2D fluid flow in a box. The fluid uniformly enters the box from 
an inlet and leaves via an outlet located opposite to the inlet (see Figure 1). The fluid 
temperature is uniform. The test was repeated in the three co-ordinate directions (x, y, z) in 
the positive and negative directions. This leads to six test cases which should all produce 
identical results. All these tests are further repeated with heat transfer and also with heat 
transfer and buoyancy. Due to the use of the symmetry planes, the flow leaving the 
geometry should exit uniformly with the same velocity with which it entered and possess 
the same velocity throughout the domain.

velocity 
1.0m/s

symmetry

velocity 
1.0m/s

X

velocity 
1 Om/s

9

symmetry 

Figure 1 - Geometry for 2D flow case

2.1.1 SMARTFIRE results

a) flow only, no heat transfer and buoyancy

maximum velocity : 1.0 m/s, minimum velocity: 1.0 m/s.  »/

b) flow and heat transfer but no buoyancy

maximum velocity : 1.0 m/s, minimum velocity: 1.0 m/s.  /

c) flow, heat transfer and buoyancy

maximum velocity : 1.0 m/s, minimum velocity: 1.0 m/s.  /
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2.2 Radiation verification in 2D cavity without flow.

These tests were designed and carried out to examine the implementation of the 
SMARTFIRE six-flux radiation model. The cases concern radiation within a cavity with hot 
and cold walls and a uniform temperature distribution within the media. Scattering is 
neglected. The geometry used in the test cases is presented below in Figure 2.

Hot (Th)

Emissivity
Uniform 
Media

Absorption 
Coefficient

Cold (TO

Emissivity

Figure 2 - 2D verification of SMARTFIRE six-flux radiation model.

For this scenario it is possible to determine an exact analytical radiation flux based on the 
six-flux model formulation. Let Th, Tc, Tm, SH, ec and a denote the hot wall temperature, the 
cold wall temperature, the media temperature, the hot wall emissivity, the cold wall 
emissivity and the absorption coefficient of the media respectively. Then the exact 
analytical solution for the radiation fluxes as determined by the" six-flux model is:

The radiation flux along the negative x direction, F~ is :

= Dexp(-a(L-x)) + o(l-exp(-a(L-x))) Tm

Where,

D = (l-ec)C + scoTc

C = B/A

B = aexp(-aL) [eh Th 
+ a(l-exp(-aL))Tm

A= l-(l-sh)(l-sc)exp(-2aL)

-exp(-aL))Tm -sh) ec exp(-aL) Tc4]

The radiation flux along the positive x direction, F+ is :
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= Dexp(-ax) + o(l-exp(-ax)) Tm

Where

D = (l-8h)C

= B/A

B = aexp(-aL) [sc Tc4 + (!-EC) (l-exp(-aL))Tm4 + (l-sc) sh exp(-ocL) Th4] 
+ a(l-exp(-aL))Tm4

A= l-(l-Sh)(l-sc)exp(-2aL)

where a is the Stefan-Boltzmann constant.

The test was repeated for various values of emissivity, absorption coefficient. 

2.2.1 SMARTFIRE results

The model predictions are compared with the exact solutions. In these comparisons, the 

temperatures of the hot wall, the cold wall and the media are 774 K, 304 K and 574 K 

respectively. The length of the cavity L is 1m. The cell size is 0.0222m.

a) Absorption coefficient of the media is zero, emissivity is 1.0. 

If 8aii = 1 .0 and a = 0.0 then 

F = aTc4 

F+ = aTh4

The results are tabulated below (Table 1)

Table 1 - Theoretical and SMARTFIRE results for radiation fluxes when

Flux
F
F+

Theoretical
4.8423E+02
2.0348E+04

SMARTFIRE
4.826421E+02
2.032182E+04

Maximum relative error < 1%.

b) Absorption coefficient of the media is zero, emissivity is 0.7.

If s = 0.7 and a = 0.0 then

= 1.0 and a = 0.0

F~ =
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F + =

The results are tabulated below (Table 2).

Table 2 - Theoretical and SMARTFIRE results for radiation fluxes when = 0.7 and a = 0.0

Flux
F+
F-

Theoretical
1.59518E+04
5.060E+03

SMARTFIRE
1.574355E+04
5.060915E+03

Maximum relative error < 1%.

c) Absorption coefficient of the media is one, emissivity is 1.0.

As there is now absorption from the media, this leads to the fluxes being dependent on 
displacement. The results are illustrated below in Figure 3 and Figure 4.

O.OOE+00

smf 
Theoretical

1.00E+0 1.20E+0 1.40E+0 1.60E+0 1.80E+0 2.00E+0 2.20E+0 
4444444

Negative Radiation flux

Figure 3 - Theoretical and SMARTFIRE results for negative radiation fluxes when e^ = 1.0 and a = 1.0
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1.20E+00

1.00E+00

~ 8.00E-01
0) 

0)
6.00E-01

x 4.00E-01

2.00E-01

O.OOE+00

smi 
Theoretical

O.OOE+00 1.00E+03 2.00E+03 3.00E+03 4.00E+03 5.00E+03
Positive Radiation flux

Figure 4 - Theoretical and SMARTFIRE results for positive radiation fluxes when e^ = 1.0 and a = 1.0

Maximum relative error < 1%.

d) Absorption coefficient of the media is one, emissivity is 0.7.

As there is now absorption from the media, this leads to the fluxes being dependent on 
displacement. The results are illustrated below in Figure 5 and Figure 6.

1.20E+00

1.00E+00

smf 
Theoretical

O.OOE+00
9.00E+ 1.00E+ 1.1 OE+ 1.20E+ 1.30E+ 1.40E+ 1.50E+ 1.60E+ 

03 04 04 04 04 04 04 04
Negative radiation flux

Figure 5 - Theoretical and SMARTFIRE results for negative radiation flux when B^ = 0.7 and a = 1.0

Appendix 11.1 Page 141-8 8



APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

1.20E+00

1.00E+00

~ 8.00E-01
0) 

0)

Q. 
10

TJ

6.00E-01

4.00E-01

2.00E-01

O.OOE+00
3.00E+03 3.50E+03 4.00E+03 4.50E+03 5.00E+03 5.50E+03

Positive radiation flux

smf 
Theoretical

Figure 6 - Theoretical and SMARTFIRE results for the positive radiation flux when e^i = 0.7 and a 
1.0

Maximum relative error < 1%.

The results from this test suggest that the six-flux model has been correctly implemented
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2.3 Symmetry boundary condition test

This case is intended to test if the symmetry function works correctly. The case involves 
flow expansion from a small duct into a larger duct. The configuration is shown in Figure 7 
below. The case was simulated using the whole flow domain and then repeated using a 
symmetry boundary condition along the central axis.

Inflow
x

s'

X

4 m
xsr

X

_ _ _symmetry _ ' _ _ _ -(T.SriT — — — -jn - — - — — ------

Outflow
x/"

x ~7

Figure 7 - Expanding duct with symmetry line indicated

2.3.1 SMARTFIRE results

The flow fields of the symmetry case (Figure 8) and whole field case (Figure 9) systems are 
plotted below. The velocity profile at the outlet is plotted in Figure 10.

Figure 8 -The flow field producted by the simulation using the half system
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Figure 9 - The flow field produced by the simulation using the whole system

U velocity

8.00E-01 —————————————— —— ————————————————————————

7.00E-01 -

6.00E-01 -

5.00E-01 -

4.00E-01 -

3.00E-01 -

2.00E-01 -

1.00E-01 -

© O 
0 O

© O

Q? U 

© O

© 0
© o 

© o
© o„••

s
O U-Velocity (whole field) 
+ U-Velocity (Symmetry case)

O.OOE+00 - ——————————————————————————————————————————— 

O.OOE+00 2.00E-01 4.00E-01 6.00E-01 8.00E-01 1.00E+00 1.20E+00

Y-position

Figure 10 - Comparison of the whole field and symmetry cases at the outlet

The results suggest that the symmetry condition within SMARTFIRE functions as intended 
for isothermal flows.
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2.4 Two-dimensional turbulent flow over a backward facing step.

This test examines the SMARTFIRE K-S turbulence model. The comparison is carried out 
between SMARTFIRE, PHOENICS and FLOW3D. The same mesh (60x50) is used for all 
the CFD codes. The flow properties and boundary conditions are described below with the 
configuration shown in Figure 11:

Figure 11 - Backward facing step configuration

Fluid roerties

Density: 1 kg/m3 , 
Viscosity: 1.101E-5kg/ms.

Boundary conditions 

At the inlet

velocity: 13.0 m/s,
kinetic energy:0.7605 m2/s2 ,
dissipation rate:31.78 m2/s3 .

There is no heat transfer in this problem. It should be noted that SMARTFIRE and 
FLOW3D use the same wall function formulation while PHOENICS uses a different wall 
function formulation.

2.4.1 Results

Reattachment point

The reattachment point is the downstream location in the x direction where there is no 
longer any flow re-circulation due to the backward facing step.
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In Figure 11 the reattachment point is denoted by P and the distance from the step to point P 
is s. The ratio of s to the height of the step (h) predicted by the following CFD codes are 
SMARTFIRE: 5.70; PHOENICS: 6.55; FLOW3D: 5.16. Experimental results indicates that 
the ratio is 7.1 [1,2]

All three codes predict values for the reattachment point that are similar and all codes 
under-predict the correct value. The SMARTFIRE prediction falls between that of 
PHOENICS and FLOW3D. It is expected that these values will improve with further mesh 
refinement.

Velocity profiles
In addition to the reattachment distance, it is also important to compare the prediction of the 
velocity profile at several locations within the duct. In this case, the SMARTFIRE, 
PHOENICS and FLOW3D generated U velocity profile at the outlet and 0.285 m from the 
inlet are compared. U velocity profiles for this case at the two different positions are 
presented below in Figure 12 and Figure 13.

12

10

8

2 -

U(m/s) U velocity at outlet

o phoenics 

AflowSd

distance from the lower wall (m)

0.02 0.04 0.06 0.08 0.1 0.12

Figure 12 - U velocity against height at the outlet

Appendix 11.1 Page 141-13 13



APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

U velocity at 0.285 m from inlet

0.02 0.04

Dphoenics 
AflowSd

distance from the lower wall (m)

0.06 0.08 0.1 0.12

Figure 13 - U velocity against height at 0.285m from the inlet

The SMARTFIRE velocity profiles are very close to the profiles of PHOENICS and 
FLOW3D. The comparison demonstrates that the SMARTFIRE K-S turbulence model 
works as well as either PHOENICS or FLOW3D.

Appendix 11.1 Page 141-14 14



APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

2.5 Turbulent long duct flow.

This test case examines the SMARTFIRE K-S turbulence model in conjunction with 
turbulent heat transfer. This case has been well investigated with PHOENICS in the past 
and is part of the PHOENICS test case library. The geometry of the case is depicted in 
Figure 14.

wall

INLET OUTLET 0.05
m

symmetry 
— 3.0m

Figure 14 - Turbulent long duct flow configuration

Fluid properties

Conductivity: 0.07179 (W/mK) 
Density: 1 (kg/m3) 
Viscosity: 5e-5 (kg/ms) 
Specific heat: 1005 (J/kgK)

Inlet Conditions

Velocity : 50 m/s
Turbulent kinetic energy: 11.25 (m2/s2) 
Dissipation rate: 1378.0 (m2/s3) 
Enthalpy: 10 (J/kg)

Wall Condition

Fixed enthalpy value :(1 J/kg).

No buoyancy is used in this problem.

The 2 dimensional mesh is non-uniformly distributed and the cell budget is 600 (20x30).
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2.5.1 Results

The results from SMARTFIRE are compared with those from PHOENICS. The comparison 
includes the enthalpy and velocity profiles across the duct at the outlet.

11 1

10 - 

9 - 

8

7 -I

5 4

Enthalpy (J/kg)
Enthalpy at the outlet

m

distance from the central line (m)

0.01 0.02 0.03 0.04 0.05

Figure 15 - Enthalpy plotted against distance from duct axis at the outlet.

60 n

40 -

20

Vel (m/s) Velocities at the outlet
» m

D phoenics

distance from the symmetry (m)

0.01 0.02 0.03 0.04 0.05

Figure 16 - Velocities plotted against distance from the duct axis at the outlet

The results indicate that the turbulent heat transfer function of SMARTFIRE and 
PHOENICS produce similar results.
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2.6 Turbulent buoyancy flow in a cavity.

This test case examines the turbulence model, turbulent heat transfer and buoyancy model. 
The test case is a standard test case which has been used by a number of other investigators 
[3] and forms part of the PHOENICS test library. The turbulence model used by 
SMARTFIRE is based on the model of Launder and Spalding [4].

The geometry used for this case is depicted in Figure 17 below. 

Fluid properties

conductivity is 2.852158e-02 (W/mK)
density is 1.071 (kg/m3)
specific heat is 1.008e+03 (J/kgK)
viscosity is 2.0383e-05 (kg/ms)
thermal expansion is 3.029385e-03 (1/K).

Boundary conditions

hot wall (th): constant temperature (353.0 K) 
cold wall(tc): constant 307.2 (K). 
The other walls are adiabatic.

The cell budget is 14400(120x120) with non-uniformly distributed mesh.

The Boussinesq approximation is used to model the buoyancy. As the flow lies in the low 
Mach number region (i.e. subsonic) and there is a small temperature difference between the 
walls, then the Boussinesq approximation is extremely good arid therefore the use of a fully 
turbulent treatment is unnecessary.
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adiabatic wall

hot 
wall

cold 
wall 2.5

m

v 
g

V
adiabatic wall 
——0.5m—

Figure 17 - Configuration for buoyancy flow in a duct

2.6.1 Results

In this test case, SMARTFIRE predictions for the vertical velocity profile (mid way up the 
test cell), temperature along the vertical centre line, turbulent fluctuations and turbulent 
viscosity are compared with published experimental data. The results produced by 
SMARTFIRE ( Figure 19 ) when compared with the results published in the reference [3] 
(Figure 18, Figure 20, Figure 22 and Figure 24 ) demonstrate that the SMARTFIRE results 
are very close to the published results. In Figure 18, Figure 20, Figure 22 and Figure 24; 
'LB' stands for the turbulence model of Lam and Bremhorst [5], 'PRESENT' stands for the 
turbulence model devised by Davidson from which the figures shown here are taken [3], 
and 'EXP' stands for experimental data obtained by Cheesewright et al [6]. It should be 
noted that the LB [5] and Davidson [3] turbulence models are more advanced than the 
current SMARTFIRE turbulence model [4].

Appendix 11.1 Page 141-18 18



APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

0.40

0.20

V

0.00

-LB

-0.20

- m. •
--•••

0.40 0.60 0.80 1.00 

xfL

Figure 18 - Published [3] velocity (y direction) profiles at y/H = 0.5

Figure 19 - Predicted velocity (y direction) profiles at y/H = 0.5
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1.0

y/H

0.5

0,0

- - - - present

0.19 0.2 0,4 0,6 0.8

Figure 20 - Published [3] local temperatures along the vertical central line.

0.2 Q4 0.6 
(toore-tc)/(th-tc)

0.8

Figure 21 - SMARTFIRE predicted local temperatures along the vertical central line.

Note: Tc and Th represent temperatures at the cold and hot wall respectively.
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a. 10

III •_ • •_ J. I hi

0.00 0.20 040 0.60 0,80 {.00

Figure 22 - Published [3] turbulent fluctuations, # > at y/H = 0.5

Figure 23 - SMARTFIRE predicted turbulent fluctuations, -\fk , at y/H = 0.5
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0.00 0.20 0,40 0.60 0.80
xfl.

Figure 24 - Published [3] turbulent viscosity scaled with the laminar
viscosity at y/H = 0.5.
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Figure 25 - SMARTFIRE predicted turbulent viscosity scaled with the laminar
viscosity at y/H = 0.5.
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3 Fire Validation Cases
3. 1 Steckler Room Fire

Steckler et al [7] carried out a series of fire experiments within a compartment to investigate 
fire induced flows. The experimental data obtained from these fire tests have been used as 
part of the validation process for fire models both zone and field. The data represents non- 
spreading fires in small compartments. A series of 45 experiments were conducted by 
Steckler et al. to investigate fire induced flows in a compartment measuring 2.8m x 2.8m in 
plane and 2.18m in height (see Figure 26). The walls and ceiling were O.lm thick and they 
were covered with a ceramic fibre insulation board to establish near steady state conditions 
within 30 minutes. The series of experiments consisted of a gas burner placed 
systematically in 8 different floor locations with a variety of single compartment openings 
ranging from small windows to wide doors. The door openings are 0.24m to 0.99m. The 
0.3m diameter burner was supplied with commercial grade methane at fixed rates producing 
constant fire strengths of 31.6, 62.9, 105.3 and 158 kW.

z,

U

0.24
1.4

G

14-

X

0.3
Mesh of Thermocouples 
and Velocity Probes

Thermocouple Stack 
0.305

c

2 8
Dims in metres

Figure 26 - Configuration of Steckler room

2.8

Appendix 11.1 Page 141-23 23



APPENDIX 1 : SMARTFIRE VERIFICATION AND VALIDATION REPORT

Bi-directional velocity probes and bare-wire thermocouples were placed within the room 
opening on a two-dimensional grid of 28 to 144 depending on the size of the opening to 
measure velocities and temperatures within the centre of the door jamb. The measured 
velocities may be subject to up to 10 percent error. In addition, a stack of aspirated 
thermocouples was placed in the front corner of the room to measure the gas temperature 
profile.

In the test selected here, the door measured 0.74m wide and 1.83m high and the fire, which 
was centrally located on the floor (position A in Figure 26), was represented by a gas burner 
measuring 0.3m in diameter. The burner power was 62.9 kW.

In the CFD case it is assumed that the fire is a volumetric heat source measuring 0.3m x 
0.3m x 0.3m with a heat release rate of 62.9 kW.

3.1.1 Results

The SMARTFIRE results are compared with the experimental data and predictions made 
using FLOW3D (see Figure 27, Figure 28 and Figure 29). Both SMARTFIRE and 
FLOW3D used 200 one second time steps. The mesh budget consisted of 9918 (29x18x19) 
cells. In these calculations it was assumed that the walls were composed of common bricks. 
The six-flux radiation model was used with a temperature dependent absorption coefficient.

2 5 height (m) Corner Temp

2 -

1.5-

1 -

0.5 -

0

m 
miesi J * A

AflowSd m * A
It A

+ smartfire * s A• m A

* A
• • A

<H A

m
' A temp(K)

300 320 340 360 380 400 420

Figure 27 -Vertical Corner Stack temperatures at 0.305 from the front wall and side.

Both FLOW3D and SMARTFIRE give reasonable agreement with the experimental result 
for the vertical thermocouple stack in the corner of the room (Figure 27). Neither 
SMARTFIRE or FLOW3D capture the hot stratification layer very well but this can at least 
in part be attributed to the relative coarseness of the mesh.
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Figure 28 -Vertical Doorway temperature profile in the middle of the door.
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Figure 29 -Horizontal velocity profile for a vertical stack in the middle of the door.

The SMARTFIRE doorway profiles for velocity (Figure 28) and temperature (Figure 13) 
are in good agreement with the experimental results. The SMARTFIRE results appear to be 
marginally superior to the FLOW3D results in this instance.
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3.2 Hong Kong Airport Case

The Hong Kong airport test case involves the Amp Fire "Cabin Concept". This case has 
arisen due to a journal paper Prof. Chow [8] that attempts to simulate this case using a zone 
model. The compartment is completely open apart from a ceiling unit. The fire is located on 
the floor at the centre of the building. The prescribed fire volume is 1m x 1m x 1m. The fire 
power is defined by the standard method, i.e., H = 0.188t2(kW) (i.e. t squared fire). The 
compartment is 5m(wide) x 5m(long) x 3m(high). The case has been simulated using both 
SMARTFIRE and FLOW3D and the six-flux radiation model. Comparisons of model 
predictions at 110 seconds are plotted in Figure 30, Figure 31 and Figure 32. It should be 
noted that this is a hypothetical case for which there is no experimental data.

1400

1200 -

1000 -

800 -
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•flowSd 
m smartfire

distance from left edge (m)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Figure 30 - Temperature profile across the cabin O.lm below the ceiling.
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Figure 31 -Temperature profile across the cabin 0.3m below the ceiling.
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Figure 32 -Vertical temperature profile in the centre of the fire.

From the above figures it can be seen that both SMARTFIRE and FLOW3D produce very 
similar results.
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3.3 Simulations for LPC-RUN-007.

This test case arises from a fire test conducted by the Loss Prevention Council (LPC) [9]. 
The test is a burning wood crib within an enclosure with a single opening. The test 
compartment is illustrated below in Figure 33 and Figure 34 and had a floor area of 6m x 
4m and a 3.3m high ceiling. The compartment contained a door (vent) measuring 1.0m x 
1.8m located on the rear 6m x 3.3m wall. The walls and ceiling of the compartment were 
made of fire resistant board (Asbestos) which were 0.1m thick.

3.3m

6.0m

-2.1m-

2.5m

-1.8m-

VENT

FIRE
3.3m

Vent here

FIRE

1.3m
obstruction

0.2m

-l.lm !1.75m>

0.28m

Figure 33 - Front view of LPC 007 
configuration

4.0m

Figure 34 - Side view of LPC 007 configuration

Within the model, the fire is described by a volumetric heat release rate prescribed in a 
region measuring 1.8m x 1.3m x l.lm. The fire was located 0.28m above the floor. A steel 
obstruction was placed directly below the fire. The heat release rate was prescribed as:

HER = 50.0+0.0082t2 (kW), for t <300 seconds;

HRR =3000 (kW), for t > 300 seconds.

Two computational meshes were used for the analysis, one consisting of approximately 
10,000 cells and another consisting of 21054 cells. The results from these two simulations 
were in good agreement with one another. The results presented here are for the mesh 
consisting of 21054 cells.

Two FLOW3D simulations were carried out, in one simulation (FLOW3D_HEAT), the 
treatment of the fire was the same as SMARTFIRE, while in the other (FLOW3D_CHEM), 
a gaseous combustion model developed by FSEG was used. In the FLOW3D_CHEM 
simulation, the volumetric heat release rate was replaced by a volumetric mass loss rate of 
the wood crib whose time dependent curve was provided by the LPC report. The heat 
released was determined by oxygen consumption. The heat released from consuming 
oxygen per unit mass is approximately 13.1 MJ/kg.

The FSEG developed six-flux radiation model was used in both cases. The absorption 
coefficient took the following form:

ar = 0.01,ifr<323K;

a = 0.01+0.305/377(7-323), if 323 <= T< 700;
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a = 0.315+0.315/700(7-700), if T> 700.

where T is the gas temperature. The wall emissivity was assumed to be 0.8.

3.3.1 Results

The corner stack gas temperatures (at various heights above the floor), predicted by 
SMARTFIRE and FLOW3D along with the experimental results are plotted in Figure 35. 
While the numerical predictions exceed the measured temperatures they appear to be in 
reasonable agreement. After about 600 seconds the SMARTFIRE and FLOW3D_HEAT 
simulations reached steady-state. As the heat release rate within the model is constant after 
300 seconds, it is expected that a steady-state will be attained in the numerical predictions. 
However, the FLOW3D_CHEM simulation produced steadily increasing temperatures since 
the total heat release rate is determined by the combustion rate that depends on the 
concentration of fuel and oxygen and the turbulence mixing rate. The FLOW3D_CHEM 
simulation did not improve the magnitude of the temperature but it predicted a more 
realistic trend in temperature variations.

The plume temperatures predicted by SMARTFIRE and FLOW3D along with the 
experimental results are plotted in Figure 36. The numerical predictions appear somewhat 
higher than the measured values.

The same physics and mesh size was used in the FLOW3D_HEAT simulation as was used 
in the SMARTFIRE simulations. Up to approximately 600 seconds both codes produced 
near identical results. However, the FLOW3D_CHEM simulation produced a much 
improved prediction of not only the trends of the plume temperature variations but the 
magnitude of the temperatures as well. It is also worth noting that the trends in the predicted 
plume temperatures are very similar to those observed. It should be noted that the heat 
release rate was estimated by the mass loss rate of the wood crib, this measurement was 
unreliable. Furthermore, flames were seen to emerge from the test compartment indicating 
that a significant amount of energy was being released outside the fire compartment. The 
volumetric heat release rate models did not represent this. One way of taking this into 
account is to estimate the amount of combustion taking place outside the compartment and 
reduce the internal prescribed heat release rate by an appropriate amount. In addition, the 
material properties of the walls, floor and ceiling are only approximated, as is the value for 
the absorption coefficient.
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Figure 35 - The corner gas temperature predicted by the simulation.
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Figure 36 - The predicted plume temperatures.

It is concluded that the introduction of the gaseous combustion model results in improved 
predictions of corner and plume temperatures, in particular the trend prediction of the fire 
development. The implementation of the gaseous combustion model in SMARTFIRE is 
under way now. With combustion excluded, both SMARTFIRE and FLOW3D produce 
similar results and both of these overpredict the maximum temperatures observed in the 
experiment.
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3.4 Comparison of run-times between PHOENICS and SMARTFIRE.

This test case is performed in order to compare the run-time performance of SMARTFIRE 
with other CFD codes. 10 seconds of a fire simulation using the SMARTFIRE and 
PHOENICS codes are compared. The run-time comparison was performed using a 90 MHz 
Pentium PC with 32 Mb of RAM. The test case scenario consisted of the STECKLER 
room with 0.74m wide door as used in Section 3.1. Both SMARTFIRE and PHOENICS 
used the same mesh consisting of 7920 (20x18x22) cells. For both codes a 10 second 
transient simulation was executed with one second time steps; each time step consisted of 
100 outer iterations and each outer iteration consisted of 10 inner iterations.

SMARTFIRE required 187 minutes to complete the above case while PHOENICS only 
required 76 minutes. Therefore the time ratio of SMARTFIRE to PHOENICS is 2.46 : 1.0. 
Since SMARTFIRE is an unstructured code and PHOENICS is structured, it is expected 
that PHOENICS would be more efficient. However, the SMARTFIRE performance is better 
than the observed 3.0:1.0 of the time ratio found in other unstructured codes.
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3.5 Simulation of Steckler room fire using large cell budget

The set up for this case is similar to that in section 3.1 except the cell budget has been 
increased and a natural symmetry plane has been exploited. The SMARTFIRE results are 
compared with the experimental data and the results produced when a smaller cell budget 
(section 3.1.1) is used. SMARTFIRE simulated 200 time steps with 1 second time steps. 
The mesh budget was 49980 (49x34x30). Since a symmetry plane across the centre of the 
fire and the doorway is employed in this simulation, the actual cell budget is equivalent to 
99960 (if a whole room simulation were conducted). The walls are assumed to be common 
brick with 0.8 emissivity. The SMARTFIRE six-flux radiation model is used with a 
temperature dependent absorption coefficient.

3.5.1 Results
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Figure 37 -Horizontal velocities for a vertical stack in the middle of the door.
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Figure 38 -Temperature profile for a vertical stack in the middle of the door.
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Figure 39 -Temperature profile for a vertical stack 0.305m from the front and side walls.
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Compared with the simulation using a smaller cell budget (section 3.1), the velocity (Figure 
37) and temperature (Figure 38) profiles of the doorway from the large cell budget 
simulation do not offer a significant improvement. The shape of the temperature profile of 
the corner stack (Figure 39) is considerably improved with the hot stratified layer being well 
captured by SMARTFIRE.
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Case Study : An incremental approach to re-engineering a legacy FORTRAN 
Computational Fluid Dynamics code in C++.

J. Ewer, B. Knight, D. Cowell

The University of Greenwich, Wellington Street, Woolwich, London, SE18 6PF, U.K.

Abstract

This article describes a practical approach to the manual re-engineering of numerical 
software systems. The strategy has been applied to re-develop a medium sized FORTRAN- 
77 Computational Fluid Dynamics (CFD) code into C++. The motivation for software 
reverse-engineering is described, as are the special problems which influence the re-use of a 
legacy numerical code. The aim of this case study was to extract the implicit logical 
structure from the legacy code to form the basis of a C++ version using an imposed object- 
oriented design. An important secondary consideration was for the preservation of tried and 
tested numerical algorithms without excessive degradation of run-time performance. To this 
end an incremental re-engineering strategy was adopted that consisted of nine main stages, 
with extensive regression testing between each stage. The stages used in this development 
are described in this paper, with examples to illustrate the techniques employed and the 
problems encountered. This paper concludes with an appraisal of the development strategy 
used and a discussion of the central problems that have been addressed in this case study.

Keywords: Re-engineering, Reverse-engineering, Computational Fluid Dynamics, CFD, 
FORTRAN-77, C++, Numerical software.

1. Introduction

Many numerical analysis codes currently in use were originally developed as 
research tools by self-taught programmers without the use of any software engineering 
methodology. This has led to a situation where "legacy" code is still in use - often in safety 
critical applications - but where the code is largely "black-box" as far as support staff are 
concerned. This would not present a major problem if such systems had no need for change, 
but this is very seldom the case. Industry continually demands code enhancements and 
adaptations to underlying models, thus posing a serious maintenance problem.

Perfective and adaptive maintenance have long been recognised as considerable 
tasks in themselves. BoehmI1] comments that these tasks often exceed the scope and effort 
applied to the original development. This problem is exacerbated by the informal 
development of many legacy systems and the poor or non-existent documentation of 
research codes. When existing software reaches a state where a required adaptation can no 
longer be easily implemented, the developer is faced with a number of available options. 
These range from the extremes of the creation of a new system from scratch, to extensive 
modification and development within the existing system. Both of these extremes are 
fraught with difficulties in terms of time and effort, quality assurance, reliability and 
consistency. These difficulties are particularly acute with numerical codes which have been 
developed over a number of years by many different engineers, often in a variety of critical 
situations. Trust in the legacy code is often the determining factor in deciding whether to 
move to new methods.
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A relatively recent approach to the problem of adapting and maintaining legacy 
systems is to use re-engineering techniques. These attempt to use legacy code as a template 
for an improved system that can then be more effectively maintained. Again, there are a 
number of extreme approaches to re-engineering. One extreme is for total design abstraction 
from the legacy code followed be re-implementation of a new system using a suitably 
modified design. In the other extreme, heavy use is made of automatic re-structuring, 
translation and documentation tools directly on the legacy system. In practice, the latter 
technique is often used as a precursor to the former. Such re-engineering approaches have 
been used with varying degrees of success on industrial and academic numerical software 
systems. The following references indicate some of the techniques that are available for 
reverse- and re-engineering:

- A recent approach has been to develop automated source code re-structuring tools to 
support program transformations. One such tool is Sage++[2] , an object oriented toolkit for 
building re-structuring tools. Sage++ is still being developed but the techniques available 
suggest that it will be possible to automate code re-structuring, and to a lesser extent re- 
engineering.

- Angus and Curtisp] describe their experiences of re-engineering a large FORTRAN-77 
numerical code in C++. Some of the advantages and disadvantages of several re- 
engineering strategies are discussed in their paper. The authors conclude that an incremental 
re-engineering approach should be used because of the potential difficulties with functional 
consistency in new developments.

- Byrne's paper^ presents a re-engineering case study for an Ada re-implementation of a 
FORTRAN simulation code. Three approaches to re-implementation are described together 
with their potential problems. The "formal" stages of general reverse engineering using 
design abstraction and re-implementation are also discussed. The author concludes that 
reverse engineering is a viable solution to the perfective and adaptive maintenance of legacy 
code.

This article presents a re-engineering project as a case study to demonstrate that a 
restrictive legacy numerical application can be successfully "mined" to develop a flexible 
and extensible system that goes well beyond the scope and capabilities of the original. 
Section 2 of this paper presents a background to the class of Computational Fluid Dynamics 
(CFD) software required as the ultimate deliverable from the project and describes some of 
the required functionality. The motivation for re-engineering, and the objectives for the 
exercise are discussed in section 3. The decision to adopt a multi-stage, incremental 
approach is supported by the need to preserve exact functional operation. Section 4 
describes the stages in the re-engineering process, and illustrates these with examples. 
Finally section 5 contains an appraisal of the techniques used in this case study and 
demonstrates their success by means of some simulation and timing comparisons between 
the legacy and re-engineered codes.

2. Background to Computational Fluid Dynamics software.

The intended deliverable from this project was for a well engineered111] 
Computational Fluid Dynamics (CFD) software system. CFD codes generally use numerical
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techniques to simulate and predict the ultimate or instantaneous physical properties of a 
fluid filled region given known initial boundary conditions. The functionality of the class of 
CFD codes of interest is briefly described here to clarify the capabilities of such systems 
and to indicate some of the implications to the software implementation of such codes:
- CFD codes attempt to predict the physical behaviour of a fluid filled system at numerous 
discrete points throughout the region of interest. The physical properties calculated at these 
points represent the continuum behaviour that would be observed in a real-world system.

- The physical behaviour can include the calculation of some or all of the following 
properties at all of the discrete points of the computational region:

Velocity components, the speed of the fluid flow in all three co-ordinate directions,
Pressure, the force per unit area exerted within the fluid,
Enthalpy, the heat energy of the fluid in the system,
Temperature, the measurable property associated with enthalpy,
Buoyancy, the upthrust body force due to density differences,
Kinetic energy, the energy of particulate motion, and
Dissipation rate, a calculation metric used in the solution of turbulent flow using the
K-Epsilon model. See reference [6] for details of this model.

- The particular CFD codes of interest are described as finite volume codes. This means that 
the numerical solution is based on the conservation of physical properties over small sub- 
regions (cells) of the domain being modelled. The signed summation of transported 
properties through all faces of a cell should give a value of zero, in the absence of creation 
or destruction of that property.

- The codes of interest can use either a 2- or 3-Dimensional un-structured mesh which 
allows a finite volume "cell" to have an arbitrary number of nearest neighbours, with the 
single limitation that there is a one-to-one cell mapping across a single cell face. An un­ 
structured mesh capability is desirable because it allows domains with highly irregular 
geometries to be simulated. This means that software must store the cell adjacencies for 
navigation through the mesh because no regular structure is implicit in the mesh-point co­ 
ordinates.

- Generally the solution procedure is based on an iterative scheme whereby an approximate 
solution, for all of the solved variables, is used to obtain a more accurate solution by 
repetitive sweeps of calculation. The iterative nature of the scheme means that last-iteration 
values must also be stored to allow the newest properties to be evaluated.

- It was a requirement that the system can solve for both steady-state (time invariant) and 
transient (changing with time) simulations. In transient simulations time is divided into 
discrete time steps. A converged solution to all physical properties is obtained at a time step 
before moving on to the next time step. This means that storage is also required for old time 
step values because these are the initial conditions for the next time step.

The characteristics of CFD software set out above are sufficient for general 
information. A more detailed account of relevant background material, to the type of CFD 
code re-engineered in this project, may be found in the following references:
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- Leschzinert5] , which gives a comprehensive review of CFD techniques including the 
solution of turbulent re-circulating flows,

- Patanker: "Numerical Heat Transfer and Fluid Flow" [6] , a recommended reference text for 
CFD techniques involving Finite Volume methods, and

- Patanker and Spaldingt?1 , which describes a calculation procedure for 3-Dimensional 
flows.

3. The motivation for re-engineering.

Prior research into producing a knowledge based CFD code (called FLOWESf81) 
indicated that the development of a totally new CFD system from scratch would be a major 
undertaking with no guarantee of success. This was reinforced by considerations of the 
allowed project duration, limited CFD experience by the application developers and 
apprehension about the reliability of a totally new system. The alternative to the production 
of a well engineered CFD code, capable of extension and adaptation, was to re-use a legacy 
system that has been developed "in-house" at the University of Greenwich. This legacy 
CFD code is known as CWNN^9] (Code With No Name). Commercial CFD codes were 
rejected because of the potential for breach of copyright and the sensitive nature of such 
systems.

This project was required to deliver a multi-physics CFD application framework 
which could be used for all aspects of the diverse research that is conducted at the 
University of Greenwich. This research includes such CFD techniques as combustion 
modelling, free surface flows, multi-phase flow, dynamic control, magneto-hydro-dynamics 
and ultimately elastic / visco-plastic material deformation and collision modelling. The 
primary development requirement was to implement a CFD framework for researching 
knowledge based dynamic solution control and monitoring1121 . A control and monitoring 
interface of this type would be very hard to implement,, within the existing code 
architecture, without potentially disastrous extensive modifications and adaptive 
maintenance.

The CWNN system was known to work well for certain classes of simulation, and 
this functionality had to be maintained in any development. The core numerics, whilst 
generally untidy and unclear, had been validated against experiment and other CFD codes. 
The re-engineering would have been worthless if the "new" and "legacy" codes exhibited 
different behaviour.

The system analysis and software specification for this project indicated the 
following development requirements over and above the CFD capabilities detailed earlier:

- Expressive and self explanatory code. The delivery system had to be largely self 
documenting so that any CFD researcher could see the mathematical or physical model 
represented by the source code at a suitable level of abstraction. This implied that 
implementation details had to be kept at a suitably low level within the procedural 
hierarchy.

- Data structures that prevent incorrect usage. The internal data structures and data access
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mechanisms had to minimise potential data misuse by providing a clear and consistent 
interface to the simulation data. Where possible the syntax had to be consistent with 
existing implementation techniques because the new system is targeted at existing CFD 
researchers.

- Flexible and extensible architecture. Since the system was to be used for diverse research 
it needed to be easily extensible. This was best supported by the provision of library 
routines that greatly simplify continued development of the system and help to reduce the 
implementation errors caused when a new routine was created from an existing one.

- Portability. Ideally the system had to be portable to a number of platforms, so standard 
language techniques had to be used. This was a valid argument for not using mixed 
programming language techniques even though these are available on many platforms.

- Optimal speed performance. CFD systems manipulate very large data structures and 
would be unusable if serious speed penalties were incurred. This was traditionally seen as 
the greatest stumbling block to successful re-engineering in this field, although recent 
requirements for ease of maintenance and robustness are of growing importance. In this 
case study speed performance was not seen or treated as the primary requirement.

- Robust design as perceived by system user. The ultimate system user should see the 
system as being robust even when spurious data is input. This meant that code developers 
should have access to suitable error reporting and debugging routines to use in any new 
code developments. These debugging facilities should include some form of trace capability 
so that execution could be followed without using a debugging tool.

It should be noted that some of the requirements detailed above conflict with one 
another. There was, necessarily, some compromise in terms of performance. This will be 
discussed in more detail in the appraisal of the re-engineering later in this paper.

An early decision was taken to use C++ as the target implementation language for 
the re-engineered system. This decision was made as a direct result of the requirements 
described above. In particular, C++ supported the requirements for code clarity and 
abstraction. The need to provide a data architecture that prevents misuse, has integral 
debugging capabilities and gives consistent access was also a point in favour of C++. Ada 
was considered briefly as an implementation language but the high cost of robust compilers 
and the still limited availability on many platforms precluded its choice for this research. 
There was also no real syntactic advantage in using Ada instead of C++ since both differ 
quite significantly from FORTRAN-77. FORTRAN-90 was rejected because of its even 
more limited availability.

CWNN posed a number of obstacles to continued development and perfective 
maintenance. Many of these problems were due to features inherent in the implementation 
language or the development techniques employed in most numerical FORTRAN codes. 
The identified difficulties included:

- Poor internal and external documentation. The internal documentation was limited to a 
few comments and a header for most routines that indicated argument usage, i.e. in, out and 
in-out usage. There was also a very brief description of what these arguments represent. The
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only external documentation was a research thesis[9] that described the underlying 
mathematical principles involved in an earlier 2-Dimensional version of the code.

- Inconsistencies in naming conventions and declarations. Variables often changed name 
arbitrarily between routines. This meant that the data model visible to the developer was not 
always consistent. There were also many instances of passing only parts of multi­ 
dimensional arrays to subroutines but using local identifier names of the same name as the 
complete external array.

- Poor code re-use. The code had been developed as a research tool where many routines 
had been copied and modified from other places. This had led to excessive code duplication.

- Extensive re-declaration of variables. The poor data structuring facilities of FORTRAN- 
77 forced developers to use large COMMON blocks or long parameter lists. CWNN used 
the latter as the lesser of two evils. Possible lack of correspondence between actual 
arguments and parameter declarations was a large potential source of error.

- Large monolithic routines. The developers tended to write inline code because of the 
overheads of re-declaring variables in new routines and because of the small potential 
performance benefits of inline code. This had the drawback of creating large monolithic 
routines which obscured the functionality of the code.

- Unclear data architecture. The lack of abstract data types in FORTRAN-77 meant that 
data relationships often had to be implemented with integer arrays that indirectly index 
other data arrays. This was particularly true of the unstructured mesh representation in 
CWNN which had quite complex relationships between the data arrays that hold the 
definition of the cells, cell-faces and the mesh points. This led to cumbersome and non- 
intuitive data access techniques. Since FORTRAN-77 has no aggregation types, all data 
items had to be passed around explicitly. If a routine was found to need access to a certain 
variable, this had to be passed though all of the intervening routines from the top level of 
the code. FORTRAN numerical programmers generally avoid using functional data access 
because of the performance overheads.

- Lack of algorithmic clarity. The use of standard FORTRAN-77 with 6 character identifiers 
meant that algorithmic functionality was often very obscure. This was further compounded 
by the lack of data- and subroutine-dictionary and the poor documentation.

-Mixed levels of code abstraction. The level of algorithmic abstraction, in CWNN, was not 
always consistent. There were several types of abstraction inconsistency. Often simple 
assignments surround calls to complex routines thus hiding the algorithmic meaning in 
trivial implementation details. Furthermore, utility routines were often called after calls to 
complex routines but such calls were "procedurally bound" to the major routine. The utility 
routines were inappropriately located in the subroutine hierarchy. These particular problems 
were identified by examining the calling structure, the source code immediately adjacent to 
major routine calls and the placement of calls to the identified utility routines. The calling 
structure chart of the software was generated automatically by the FORTRAN re-structuring 
tool SPAG[10] . Multiple calls to a single routine identified a potential utility routine whilst a 
single call to a routine indicated a potentially highly abstract routine. In the case of 
numerical code a highly abstracted routine is one which uses a number of utility routines to
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perform some function or uses many intermediate stages for calculating some property. In 
the example code fragment (Figure 1) the routines HCSOLV and LINRLX demonstrate the 
different levels of abstraction mixed together. HCSOLV actually takes flow properties, 
physical properties and previous conditions to calculate the new values of enthalpy for 
every cell of the domain. The HCSOLV routine was only called once in the whole code. 
Conversely LINRLX merely added a fraction of the difference between an old and new 
value of some property and was called from many places within the code. It was concluded 
that HCSOLV was a highly abstracted routine whereas the less abstracted LINRLX was a 
utility routine that should be moved down into HCSOLV. The simple assignment 
statements were inappropriately located and should be moved into adjacent routines.

Legacy code fragment

IF ( IHEAT ) THEN
RELAXA = SRELAX(5) 
RMETHD = VRMETH(5) 
MITERS = MAXITR(5) 
FALSET = VFALST(5)

CALL HCSOLV(3, RELAXA, . .

CALL SYSRESt ... ) 
SOLERR(5) = RESIDU

RELAXA = VRELAX(5) 
CALL LINRLX(...) 
VARERR(5) = RESIDU

RELAXA = VRELAX(8) 
RMETHD = VRMETH(8) 
CALL CSOLVT(...) 
IF ( ERRINF .EQ. 0 ) STOP 
VARERR(8) = RESIDU 

ENDIF

is problematic because

Literal values used and simple assignments 
prior to calling a complex numerical 
calculation routine.

Highly abstracted routine call.

Less abstracted utility routine call.

Utility routine call.

More low level simple assignments. 

Call to highly abstract routine.

Figure 1 : Mixed levels of abstraction.

- Inflexible memory usage. FORTRAN-77 array sizes must be statically declared at compile 
time. This limits the flexibility of the code for running problems of different sizes. This 
often forces a re-compilation of the system for the specific problem to be run. This was 
particularly true of the un-structured mesh code where a few cells with a high number of 
faces greatly increased the storage requirements of all cells.

FORTRAN code

SOLTYP(l) = 5

K = K + 0.37777 * ( . . .

is problematic because:

The SOLTYP array holds the solver types but the index 
1 and solver type 5 could relate to anything. The 
intended meanings must be found elsewhere in the code.

Explicit values used in numerical algorithms
give no indication of the purpose of the values used.

Figure 2 : Use of literal constants.

- Excessive use of literal constants. Much of the meaning ofCWNNwas hidden by the use 
of literal constants. Future code developers would have little understanding of what these
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seemingly arbitrary valued numbers represent, particularly in light of the meagre code 
documentation. Figure 2 shows the two types of literal values used in CWNN. These are 
array indexing by integer values and physical constants entered explicitly without 
definition.

A re-engineering strategy was sought that would remove the problems inherent in the 
FORTRAN implementation of CWNN whilst providing an extensible framework for 
continued research into CFD techniques. The approach described here was planned and 
refined during the re-engineering of the legacy code. Example test cases were used to check 
code consistency throughout each stage of the development.

As an investigation an attempt was made to translate the FORTRAN code into C or 
C++ using two proprietary tools. The results of the translations were very disappointing. 
The translated code was noted to be less clear than the original with little or no 
improvement in structure. In some instances there was considerable degeneration in code 
clarity with awkward and non-portable handling or certain library routines. The translators 
were clearly designed to allow compilation in C rather than to support continued 
development. This was the major reason for the manual translation strategy adopted in this 
case study.

4. The multi-stage re-engineering process

FORTRAN Automatic 
translation

(1) I

(2) !

(3) i

(4) |

(8)

(7)

(6)

Optimisations
and 

enhancements

Create class 
member functions 
for procedural 
routines
lesT 

run
•—_———•—

Create class 
data structures 
as in design

Modify all file 
I/O and rewrite 
for compatibility

Manual 
translation

Figure 3 : Stages of re-engineering.
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The adopted re-engineering strategy used a nine stage incremental process to 
restructure the legacy code in FORTRAN-77, translate to C++, enforce modern software 
engineering design principles and prepare for perfective and adaptive maintenance. The 
flow diagram (Figure 3) indicates the main stages in the re-engineering of CWNN. The 
central vertical line indicates the boundary between FORTRAN-77 and C++. Even after 
massaging the FORTRAN-77 source, the possibility of automatic translation into C++ was 
discounted as being potentially unreliable. It should be noted that the stage (4) FORTRAN 
code was a complete algorithmic design specification, in source code form, of the final 
delivery system.

Comprehensive regression testing (using a numerical file comparison utility called 
Numdifr1 *) after each incremental stage of the rewriting process ensured compatibility 
between the delivery system and the legacy code.

Stage (J): Ensure data consistency and make all data global.

All of the disparate source files were combined into a single file. This was necessary 
because the editor used throughout this research has a limit on the allowed number of open 
files. This was not a great disadvantage because the editor used has very fast search 
facilities and no effective limitation to maximum file size.

was used to "pretty-print" the source code. The SPAG tool set also has a 
global code check utility that was used to generate much needed information about 
subroutine calling structure and variable usage. SPAG was configured to set the case of 
identifiers to indicate variable scope and usage. COMMON variables and PARAMETERS 
were completely capitalised whilst local variables used only lower case. Subroutine 
arguments had an initial capital letter followed by lower case characters. This helped to 
locate the appropriate declarations and showed the dependencies of any variable.

In order to restructure the software into an object oriented form, the data was 
grouped into classes. This could not be done if data items changed names in argument lists 
or were passed around as incomplete array segments. It was therefore necessary to match 
calling and called routine arguments and rename local variables to match external data 
items. SPAG was used extensively to document and navigate within the CFD code.

Legacy FORTRAN code

CALL BUOYAN( RMETHD, ELEMAT, ELEVOL, 
TEMPER, .- )

SUBROUTINE BUOYAN( RMETHD, ELEMAT,
VOLUME, T, .. ) 

INTEGER ELEMAT(TOTELE) 
REAL VOLUME(TOTELE), T(TOTELE) 
B = T(I) * ...

becomes

INCLUDE 'DATABASE.INC 1 
CALL BUOYAN( RMETHD, .. )

SUBROUTINE BUOYAN( RMETHD, .. ) 
INCLUDE 'DATABASE.INC' 
B = TEMPER(I) * ...

with DATABASE.INC defined as

INTEGER ELEMAT(TOTELE)
REAL ELEVOL(TOTELE), TEMPER(TOTELE)
COMMON /CELL_D/ ELEMAT, ELEVOL, TEMPER

Figure 4 : Passing data by include file and COMMON.
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Non-standard FORTRAN include files were used to pass data between routines. 
These include files contained the COMMON data declarations that ensured that only one 
declaration existed for each variable. Any identified utility routines kept the parameter list 
arguments for the passing of data. In some instances COMMON was used inappropriately 
for passing data to utility routines. This problem was quite easy to identify because of the 
necessary introduction of many simple assignment statements (putting data into the 
COMMON variables) just before the utility routine call. Figure 4 demonstrates the passing 
of data in COMMON blocks.

Data items were grouped into named COMMON blocks with related items, as they 
were identified. This identification was facilitated mostly by the dimensions of the arrays 
and the limited amount of subroutine header information available. Tentative groupings 
were made based on the declared array sizes and these were revised as actual array variable 
usage was identified within the source code. For example arrays with dimensions of 
(1..NOCELL) indicated cell properties of some sort whilst those dimensioned as 
(1..NOFACE) were face properties. Many of the single variables were identified as being 
suitable for COMMON by simple inspection of their usage. Switch control variables tended 
to be more appropriately passed as arguments to routines. It was preferable to err on the side 
of caution because of the slight potential for naming conflicts between new COMMON 
variables and dummy arguments.

Legacy FORTRAN

CALL HBOUNDt H(ICELL), .. )

SUBROUTINE HBOUND( HVAL, ..
REAL HVAL
HVAL = HVAL * ...

becomes

CALL HBOUNDt ICELL, .. )

SUBROUTINE HBOUNDf ICELL, .. ) 
INCLUDE 'DATABASE.INC' 
INTEGER ICELL 
H(ICELL) = H(ICELL) * ...

Figure 5 : Revised argument passing for COMMON data.

Dummy argument names (within subroutines) were replaced with direct access to 
the newly defined COMMON array variables. Where subroutines were receiving arguments 
which were single array elements it was necessary to ensure that the appropriate array index 
was available within the subroutine. The code fragment (Figure 5) indicates how array 
index values were passed instead of the array elements.

Stage (2): Name and algorithm clarification.

FORTRAN-77 standard 6 character identifiers and routine names were replaced 
with longer, lower case, names that convey functional meaning and usage. SPAG was used 
to automatically rename the identifiers as it prevents and reports renaming conflicts. Some 
of the initial name changes are detailed in Figure 6.
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Legacy FORTRAN

MCSOLV
CALGEN
RDINFF
H
TEMPER
U
KINETC
DISSIP

New naming convention

solve_momentum 
calc_generation_rate 
read_inform_file 
enthalpy 
temperature 
u_velocity 
kinetic_energy 
dissipation rate

Figure 6 : Name changes for code clarification.

Inline code sections were moved into new subroutines to highlight their algorithmic 
meaning at an appropriate level of abstraction. Passing data by include file and COMMON 
facilitated this process since extensive re-declarations were no longer necessary. There are 
two ways to identify inline code. The first was recognition of those instances of code that 
keep appearing relatively unchanged throughout. In large systems it may not be possible to 
identify many such fragments but in this case study it was known that some of the code was 
implemented by copying and modifying other code fragments. An example of repetitive 
inline code in CWNNwas for the calculation of the cell upwind density. This code consists 
of 32 lines of source code duplicated in 10 different routines. The second sort of inline code 
was the use of large code fragments in control constructs such as IF (..) THEN...ENDIF 
blocks or DO... CONTINUE loops. FORTRAN developers tend to inline code accidentally 
as blocks grow bigger with research, or deliberately in low level loops to avoid the overhead 
of a repetitive subroutine call.

T. & g a cy FORTRAN code

SOLTYP(l) = 5

b & c o 77? g s

INCLUDE 'PARAMS.INC' 
solver_type( PRESSURE } = SOR

with PARAMS.INC defined as

INTEGER PRESSURE, SOR
PARAMETER( PRESSURE = 1, SOR = 5 )

Figure 7 : Introduction of PARAMETER constants.

Literal numbers used to index arrays or used in calculations were globally defined as 
more meaningful PARAMETER statements in an include file. This file was then included in 
all routines as indicated in the example code fragment (Figure 7).

Stage (3): Removal of redundant code and simplification.

Code paths and variables that were not required for the current project were removed 
from the system. It was noted that solidification modelling was not necessary, so the 
corresponding code was completely removed. The solidification code was simple to remove 
because it was all switched via logical control variables. The extra variable solver also
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presented no difficulty to removal because it was (like most of the other solvers) simply a 
copy of a former routine with the data variables changed.

Legacy code fragment

MITERS = MAXITR(4) 
CALL SORSCH(...) 
SERROR(4) = RESIDU

RELAXA = VRELAX(4) 
CALL LINRLXt ... ) 
VARERR(4) = RESIDU

Equivalent code abstracted

INTEGER VAR_W_VELOCITY 
PARAMETER! VAR_W_VELOCITY = 4 )

CALL SORSCH( VAR_W_VELOCITY, ... ) 

CALL LINRLXt VAR_W_VELOCITY, ... )

N.B. The simple assignment statements have 
been moved down into the called routines.

Figure 8 : Re-locating simple assignment statements.

There were many instances where code fragments could be simplified by moving 
simple executable statements (generally assignments) into nearby called routines. This 
helped to keep the code at the same level of algorithmic complexity and avoided 
unnecessary clutter as shown in the example code (Figure 8).

CWNN had many "hooks" for future use. For example, dummy routine calls and 
logical variables were provided to allow future development of mesh-refinement. These 
were noted for location and function and then removed to simplify the re-engineering 
process.

Stage (4): Ensure consistent use of control and replace all logical variables.

Labelled lines were made to use CONTINUE rather than have executable 
statements. This helped with the translation to C++ and made it easier to find other loop 
constructs.

Instances of single line "IF f <expr> ) <statement>" were replaced with the 
equivalent form using "IF ( <expr> } THEN <statement> ENDIF" so that subsequent 
translation to C++ would be facilitated. Instances of "IF ( <expr> ) GOTO <label>" were 
left unchanged because these were often part of "do...while" constructs.

Loop constructs which used the standard "DO <label> <block> <label> 
CONTINUE" were changed to non-standard "DO <block> ENDDO" loops which avoided 
excessive use of continue labels. The use of "DO...ENDDO" loops also allowed easier 
recognition of the other uses of "<label> CONTINUE" as in FORTRAN simulated 
"do...while" loops. Any clearly identifiable "do...while" loops were implemented with the 
non-standard FORTRAN WHILE constructs instead of the usual "IF ( <expr> ^ GOTO 
<start_label>" as used in the legacy code. SPAG was useful in this respect because it has 
some automatic re-structuring capabilities supporting non-standard, but widely used, control 
constructs.

Since C++ does not support a built-in LOGICAL type it was decided that an 
equivalent, robust replacement should be implemented in the FORTRAN code. The direct
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translation to a C++ enumerated type was considered but, because there was no conformal 
mapping for assignment using the NOT value of a logical, the idea was discarded. 
LOGICAL variables and comparisons were replaced with integers and integer comparisons 
respectively. The complexity of replacing the LOGICAL values was significantly reduced 
by working within the FORTRAN version of the code. This also prevented errors in logic 
that could occur when too many translation steps had to be performed simultaneously. The 
replacement of a LOGICAL sometimes required introducing "IF ( <expr> )" constructs to 
assign appropriate "boolean" values to integer variables. The integer parameters "False" and 
"True" (representing 0 and 1 respectively) were used throughout the code to match the 
ultimate C++ representation.

Stage (5): Translate FORTRAN to procedural C—.

When the above stages had been completed and the FORTRAN code was still 
running consistently it was necessary to translate the FORTRAN to procedural C++. This 
was because no appreciable advantage could be gained by further FORTRAN code changes. 
The serious limitations of the available FORTRAN-to-C translators led to the decision to 
translate the CFD code to procedural C++ manually. The natural course of action would be 
to use parsing or compiler writing tools such as lex^ and yacc^ but because of the high 
learning overheads and non-interactive nature of these utilities, an alternate approach was 
sought. The tool actually chosen was a powerful programmer's editor with regular 
expression search and replace facilities, macro record and playback, and multi-file editing 
capabilities. It should be pointed out that a simple text editor would not be sufficient 
because of the large syntactic variation that may be encountered in the source code.

Using the editor facilities, the translation to procedural C++ took 10 days and 
involved writing a set of individual macros to replace specific code constructs. Again SPAG 
was used prior to this task so that a consistent style and control syntax would persist 
throughout the code. This was necessary to enable the searches within the macros to work 
correctly. Figure 9 indicates some of the macro text replacements that were used during the 
manual translation from FORTRAN-77 to procedural C++. The use of regular expression 
searches and macro replacements does require that care was taken to perform the 
replacements in order of most complex to least complex to prevent incorrect matching with 
parts of other expressions. The main problems are with DO, END and IF which can be part 
of other keywords like END IF or END DO. There are also potential problems with 
accidentally matching search expressions with literal strings or parts of variable names. 
Using case sensitive searches, after SPAG had been used to consistently set the case of 
keywords and identifiers, minimised the potential for problems. Clearly these problems 
would not be present using compiler writing tools (e.g. yacc or lex) because all identifiers 
are recognised as whole tokens. The program editor was useful in one respect because the 
regular expression text replacements are interactively controlled.
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Legacy FORTRAN -> Macro replacement

ELSEIF (..) THEN -> } else if (..){
IF (..) THEN -> if (..){
ELSE -> } else {
ENDIF -> }
CALL -> /* CALL REMOVED */
DO I = a, b, c -> for ( I=a; I>=min(a,b) && K=max(a,b); I+=c ){
DO I = a, b -> for ( I=a; K=b; I + + ){
ENDDO -> }
SUBROUTINE .. (...) -> void .. (...){
END -> }
RETURN -> return;
PRINT*, ... -> cout « ... « endl;
nnn CONTINUE -> Label_nnn:
GOTO nnn -> goto Label nnn;

Figure 9 : Macro replacements.

String variables (i.e. FORTRAN-77 CHARACTER* (n)) were dealt with on an 
individual basis since the numerical code only had a few routines which manipulated 
strings. Literal strings were easily replaced by the ["] delimited versions of C++.

One of the major problems encountered during the translation was the difference in 
array indexing syntax. FORTRAN style array indexing is vastly different to C++ style array 
indexing. It was decided to effect these changes manually (using searches and macros) on a 
variable by variable basis. Macros were used to change the ( ) indices to [ ] indices, but 
these could not be used globally because of the complexities of multi-dimensional arrays, 
partial array argument passing and arrays that index other arrays. It was necessary to 
increase the declared array dimension sizes by one, and waste the 0th element, because of 
the declaration syntax used in C++. Fortunately most of the FORTRAN arrays had (l:n) 
indices, but (-m:n) or (m:n) indices can be represented by simply adding or subtracting a 
suitable constant at the declaration and each reference. All of the arrays were initially 
translated to statically declared C++ arrays. The potential problems of passing segments of 
multi-dimensional arrays were largely avoided because of the earlier consistency 
modifications made to the legacy code in stage (1).

Although this ad hoc approach worked well in this instance, the authors came to the 
conclusion that for re-engineering much larger programs, it would be advisable to make 
heavy use of automated compiler writing tools at this stage or, if available, translation tools.

CWNN has the traditional batch-mode "INPUT -> PROCESS -> OUTPUT" 
execution path so it was not necessary for the C++ output to work in an identical fashion to 
the FORTRAN output for initial compile and run testing. Simple use was made of cout « 
sndprmtfO whilst leaving the original commented-out FORTRAN for later reference.

Single item input presented no problem using fscanffi and cm » as appropriate. 
List directed and formatted FORTRAN input were more problematic. The approach adopted 
was to replace a list directed FORTRAN input with a collection of single item or looped- 
overfscanfO calls. It was necessary to remove end-of-line comments from input files until a 
permanent "in-code" solution could be implemented.
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After several trial compilations and minor fixes a clean compilation was obtained. A 
small data set and a C++ debugger were used to check that input files were accurately read.

Stage (6): Modify all file I/O and re-write for compatibility.

The first task in C++ was to ensure that all of the file input and output was being 
performed correctly. This was very easy to check by immediately dumping any item read 
out to a log file and comparing this with the original data file. It was often necessary to use 
the ifstream getlineO function to clear to the end of input lines because of the different 
handling of I/O by FORTRAN and C++.

One of the input problem-specification files made use of a script like language that 
presented some difficulties because of potentially multiple command arguments. These 
problems were overcome by implementing a line parsing routine and corresponding token 
extraction utilities to interpret the lines of input. This was the only area where new code had 
to be developed due to the differences between the FORTRAN and C++ languages.

Generally most numerical reading was as simple in C++ as it was in FORTRAN 
however care must be taken with formatted input where numbers can be written with no 
separators between them. If, as with the FORTRAN implementation, the format was known 
then this difficulty can be overcome by reading the required field width into a character 
buffer and extracting the values from the buffer. One other difficulty was with PC C++ 
compilers which tend to write float values in double precision exponential format. A writing 
routine was developed for one file which required single precision format for use in another 
package.

Stage (7): Implement class objects to replace array structures.

The original array structures of the FORTRAN code were very unsatisfactory 
because there was no explicit grouping and no obvious relationship between many of the 
variables, apart from the nature of the indexing. The groupings used to make COMMON 
variables in the legacy code provided a means of collecting data items into structures (C++ 
classes). This allowed the creation of physically meaningful entities with known attributes. 
The diagram (Figure 10) shows some of the legacy code FORTRAN-77 arrays.
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Cell Properties

Point Properties

OLDP

LASTP

CELFAC

x
y
z

XYZCRD

Index links

Face Properties

1
2
3 
n

FACPTS

AREA 

SKINFR

Figure 10 : Legacy code arrays.

This corresponds to the diagram (Figure 11) of the equivalent C++ classes. Some of 
the arrays in CWNN (See Figure 10) contain actual data values (e.g. P, OLDP, AREA and 
XYZCRD) whilst others contain index values (e.g. CELFAC and FACPTS) that are used to 
reference data items in other arrays. It should be noted at this point that the links between 
the identified class objects could have been implemented using pointers and arrays of 
pointers instead of integer indices and arrays of indices. The major problem with using 
pointers extensively is that this would necessarily introduce pointer de-referencing to access 
values. This would almost certainly be unfamiliar to many numerical CFD developers. It 
was decided that the object links be implemented in a form not too dissimilar from the 
legacy code. Whilst this was often less elegant than other techniques it did have the benefits 
of consistency and ease of implementation.

There was a potential problem for the storage of cell properties because of the need 
to maintain up to four versions of some variables. For example a transient flow simulation 
needs old time-step, last sweep, previous iteration and newest values of pressure. Also 
variable usage is determined by simulation type. Using explicit cell class attributes for cell 
properties (e.g. cell, pressure, cell.old_pressure, cell, lastjpressure, and 
cell.previous_pressure) would always use storage regardless of the type of simulation. It 
was decided that simple "data" arrays of properties should be created and then indexed by 
parameter type identifiers (See Figure 11). The "slots", in the data array, can then be 
assigned as required by the simulation. This was particularly important, for example, in a 
heat-transfer simulation where the overhead of storing the other flow variables is highly 
undesirable. This approach also allowed for functional data access with expressive selection 
arguments, and ease of data monitoring.
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Array of cell objects
PRESSURE

data

CELL

NEWEST

LAST

OLD

"O num_of_faces 
"O material 
"O volume

Array of point objects

index link

Array efface objects

POINT

data

index link FACE L
"O num_of_points

Ox 
•Oy 

Oz

SKIN FRICTION

Figure 11 : Re-engineered Object Oriented data structures.

Stage (8): Create Class member functions for procedural routines.

Legacy routine for all cells

void calculate_all_volumes( void ){
for ( i = 1; i <= max_cells; i++ ){ 

// calculate volume for current cell

Afeiv cell method

void Cell_Class::calc_volume( void )  
// calculate volume for current cell

cell[i].volume = ...

*this.volume = ...

and the original routine becomes

void calculate_all_volumes( void ){ 
for ( i = 1; i <= max_cells; i 

cell[i].calc volume()

Figure 12 : Identification of class methods.

Many of the procedural calculation routines contained code similar to the fragment 
in Figure 12 which calculates cell volumes. The inline code (looping over all cells) often 
forms a natural class member function for the individual loop objects. The loop code can be 
abstracted into class utility methods as indicated in the figure. The advantage of this 
approach was that utility routines are created that provide much greater flexibility than was
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afforded by the original software architecture. Previously the software could only calculate 
for all objects at once whereas it may be desirable (as in the case of mesh adaption and 
mesh refinement) to limit the calculation to selected objects.

The identification of class methods from FORTRAN legacy code was quite straight­ 
forward because numerical codes tend to be optimised for speed rather than for memory 
usage. This means that developers introduce variables to hold values like face areas, 
volumes and normals rather than repetitively re-calculating them. This allows methods to be 
identified in the initialisation stages of the software where these values are first set. The 
variable storage was also kept for optimal performance. The initial development may not 
require the flexibility afforded by this approach but subsequent research is likely to benefit.

Another area where methods were identified was in routines that were "copy- 
modified" versions of others. Some code fragments had the same algorithmic structure but 
used different variables. These were relatively simple to parameterise and abstract to 
function calls.

Stage (9): Optimisation and enhancements.

The initial class oriented C++ version used statically declared arrays of objects. 
Dynamically declared arrays were considered to be desirable and were easy to implement. 
This gives much greater code flexibility without the need to re-compile for larger 
simulations. It was also possible to implement arrays of pointers to objects so that 
individual objects could be created and destroyed as required. This could be very important 
for cell refinement where more cells are created during the running of the program.

The debugging of CFD codes has traditionally been a problem. The initial re- 
engineered system used direct data access to cell objects but such access cannot be easily 
controlled or monitored. The approach finally adopted was to use access functions that 
return references rather than data values. Such access functions can then be used on either 
side of assignment statements to set or get values. Figure 13 shows the implementation of 
the access function in C++. Since data access was implemented as a function, debug code 
could be planted to monitor the usage of a chosen cell or variable. This is demonstrated by 
the debug code to watch for negative temperatures. An optimised version of this access 
function uses an inline definition so that it has no greater performance overhead than a 
direct array access.
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Enhanced debug facilities for code development via class methods 

float & Cell_Class::access( int mode, int var ){

#ifdef _DEBUG_CODE_
if ( ( mode == NEWEST ) && ( var == TEMPERATURE ) ) {

if ( data[mode][var] < 0.0 ){ 
// Error negative temperature detected in cell data access

} 
}

#endif

return data[ mode ][ var ];

Figure 13 : New data access function.

The solvers available in CWNN were all based on whole matrix solving techniques. 
It was suggested, by a CFD researcher, that a true cell-by-cell solver should be developed. 
This has been implemented from some of the software components produced during this 
project.

The implementation of a vector class for normal and displacement vectors has 
greatly simplified the source code. The original FORTRAN code had to loop over all three 
dimensions for calculations whereas now, simple vector algebra can be performed. Operator 
overloading has been used to give the vector algebra a more natural syntax, as found in most 
reference texts. Figure 14 shows the equivalent loops for calculating the cell centres from 
the legacy code and the re-engineered code, which uses vector methods. Such instances 
were relatively easy to find because the loop dimensions go from 1 to 3 (or 1 to 
DIMENSIONS). It was possible to abstract one and sometimes two levels of looping 
because of the new operators and functions provided for vector algebra in the vector class. 
These functions included dot- and cross- product utilities.

Original legacy code New C++ code using a vector class

DO 1 I = 1, NOCELL int i, j;
DO 2 J = 1, 3 for ( i=l; i<=num_of_cells; i++ ){

CENTREt I, J ) = 0.0 cell[i] .mid.set( 0.0, 0.0, 0.0 );
2 CONTINUE for ( j=l; j<=cell[i].num_of_pts; j++ ){

DO 3 J = 1, 3 cell[i].mid = cell[i].mid +
DO 4 K = 1, NPTCTY( CELTYP( I ) ) point[ cell [i] .pt_num[j] ];

CENTREt I, J ) = CENTRE( I, J ) }
+ + XYZCRDt CELPTSt I, K ), J ) cell[i].mid = cell[i].mid /

4 CONTINUE (float) cell[i].num_of_pts;
CENTREt I, J ) = CENTREt I, J ) } 

+ / REAM NPTCTYt CELTYP(I) ) )
3 CONTINUE N.B. This code does not loop for the three
1 CONTINUE directions £>ecau.se the overloaded vector

	 operators "+" and "/" hide these details.

Figure 14 : Example of using a class for vector algebra.

Any further optimisation and enhancement features, that were identified early in the 
re-engineering stages, were researched and implemented in this stage. An example of 
optimisation was the relocation of loop invariant calculations outside of low level loop 
constructs.
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5. An appraisal of the re-engineering technique used

The following sections detail code and project statistics, give comparative 
simulation results between the legacy and new systems, and provide an appraisal of the re- 
engineering techniques employed in this case-study.

Statistics associated with re-engineering CWNN:

The following code statistics provide a crude comparison between the legacy and 
new systems. This information should be regarded as being of academic interest only and 
not necessarily typical of any other or similar re-engineering projects.

- The legacy system consisted of 107 source files that contained 158 routines. There were 
22,450 Lines-Of-Code (LOG) excluding comments.

- The re-engineered system has 4 source and 13 header files and has 395 routines including 
class member functions. There are 11,250 LOG in source files and 1,400 LOG in header 
files.

The project statistics (Table 1) indicate approximate durations of the individual 
stages used during the re-engineering. The final stage (stage 9) has not been included 
because perfective and adaptive maintenance is ongoing. The project durations are 
measured in Person-Weeks (PW). A Person-Week is defined as 5 work days for one system 
developer.

Stage

-

-

(i)
(2)

(3)

(4)

(5)

(6)

(?)

(8)

Description

Background research into un-structured mesh CFD.

Project planning and learning to use tools.

Ensure data consistency and make data global.

Name and algorithm clarification.

Removal of code and simplification.

Ensure consistent use of control and replace logicals.

Translate from FORTRAN to C++

File I/O modifications.

Implement data classes to replace arrays.

Create class member functions.

Duration (PW)

6

3

3

2

3

2

2

3

4

4

Table 1 : Project statistics.

Comparative timings and run-time behaviour between the legacy and new systems:
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The first simulation considered was for a turbulent straight duct flow of 2000 cells. 
The solved variables, relaxation parameters, solver types and convergence criteria are 
identical in all of the runs conducted.

Hardware, compiler and system

486DX-50 PC, Salford FORTRAN v2.74, Legacy

486DX-50 PC, Zortech C++ v3. 1, New

Sun classic, f77 v3.0, Legacy

Sun classic, CC v4.0, New

Iterations

116

116

116

116

Table 2 : The number of iterations taken for convergence to a tolerance 
of l.OxlO"5 for both the legacy and new systems.

In order to obtain unbiased and representative results, the timings were conducted on 
several hardware platforms with more than ample RAM available. The systems used were 
an MS-DOS based 486DX IBM compatible PC (running at 50MHz) and a Sun classic 
running the Solaris 2.3 unix operating system.

System

Legacy

New

Compiler

Salford FORTRAN v2.74

Zortech C++ v3.1

Time

16m 07s

18m 16s

Table 3 : The 486DX PC comparative timings for 100 iterations.

System

Legacy

New

Compiler

f77v3.0

CC v4.0

Compile options

-O3 -cg89

-O3 -cg89

Time

4m 10s

6m 17s

Table 4 : The Sun classic comparative timings for 100 iterations.

It should be noted that the PC compilations were configured to be as similar as 
possible within the limitations of available compiler options.

Comparison of results for the legacy and new systems:
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Figure 15 : Comparative values of Pressure for the Turbulent Duct.

Figure 15 shows a graph data plot for the solved pressure values from the Turbulent 
duct simulation described above. The legacy and new system results are overlaid on the 
same plot. The results are almost identical with a minor discrepancy at the inlet. This 
difference was due to a recent modification to the inlet boundary condition handling that 
was recommended by one of the legacy code developers. This "fix" was not applied to the 
legacy code version used in the comparisons. The other solved properties are all similarly 
consistent.

A more problematic simulation was also used for data consistency comparisons. 
This was necessary to exercise the Enthalpy, Temperature, Buoyancy and flow interactions 
within the system. These properties and couplings were not required in the turbulent duct 
flow described earlier. The following simulation was for a fluid filled box cavity that has 
one vertical hot wall and one vertical cold wall. Fluid temperature changes cause buoyancy 
(expansion) forces that drive a fully re-circulating flow. This was indicated by the vector 
flow plot (Figure 16) taken from a visualisation of the results. The horizontal slice indicated 
in the diagram was used to compare the results of the velocities calculated in the legacy and 
re-engineered systems in Figure 17.
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Figure 16 : Visualisation of flow vectors for natural convection.

The corresponding graph plot (Figure 17) shows the vertical velocity components 
across the width of the domain. This was the indicated slice of the natural convection 
buoyancy driven flow from Figure 16. These results have some minor differences because 
the simulation has not been run to full convergence. It should be noted that combined heat 
transfer and flow simulations are particularly difficult to converge because of the 
complexities inherent in the coupling between the heat and flow properties. Often such 
complex simulations are partially or significantly transient (with oscillatory flow behaviour) 
although this case has only been run in steady state mode.

It should be noted that the solution comparisons made in this section are not 
intended to validate the re-engineered code against either experiment or theory but rather to 
validate that the re-engineering process has not significantly altered the code behaviour.
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Figure 17 : Comparative values of vertical velocity for natural convection.

Appraisal of the re-engineering strategy:

The observed 50 percent performance overhead of the C++ implementation, on the 
Sun system, was probably the more realistic of the timing comparisons because both the 
Sun FORTRAN and Sun C++ compilers generate compatible binary code and have identical 
compilation options. Similar overheads have been reported in other numerical code 
translations and are mostly due to the introduction of more layers of function calls at a low 
level within the C++ code. This was particularly true of the case-study code implementation 
where two and sometimes three levels of function calls have been introduced. It is generally 
accepted that the introduction of a high degree of object-orientation and code clarity usually 
affect the performance adversely. Higher overheads have been recorded in C++ 
implementations where inheritance and virtual classes have been used.

The consistency between the simulation solutions of the legacy and re-engineered 
systems indicates that the codes exhibit highly compatible behaviour. This was coupled 
with an easily comprehensible implementation that was largely self documenting. The 
enhanced monitoring and debugging facilities of the re-engineered system have been used 
in subsequent research to good effect. These factors indicate that the re-engineering 
objectives have largely been met during this case study.

One of the major benefits of the re-engineering approach adopted in this research 
was that the newest version of the code could be compiled and tested after each incremental 
stage. In fact the testing was generally done after every major global change or after a single
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day of work. The testing was simply batch automated to run overnight and a numerical file 
differencing utility, Numdirf13] was written to compare the output data files to some small 
tolerance. This gives an assurance of continued consistency and meant that a worse case 
scenario was the loss of a single day of work. This contrasts with a new development where 
it may be many months, or even years, before the new system could be compared for 
consistency with legacy code.

There is a tendency in a re-engineering process to try "to run before you can walk" 
because enhancements and modifications can appear obvious to the developer while 
engaged on other tasks. The approach adopted in this research aimed to strictly order the 
modifications and later enhancements so that potential side effects are reduced.

Clearly the translation to procedural C— could have been conducted on the 
unmodified legacy code but such a step would have been huge by comparison with the 
incremental stages described earlier. It would also have left the developer floundering in un­ 
structured C— with little feeling as to the functionality of the code or the scope for re- 
engineering. The re-structuring, re-naming and clarification of the legacy code prior to 
translation were vital to understanding the system and as a preparation for re-engineering.

As with many software systems, there are alternate implementation strategies. This 
was particularly true of the implementation of classes for the case study system. A truly 
object- oriented approach might have suggested having a virtual cell base class with sub­ 
classes to represent all of the possible different types of cell. Although this technique would 
have been possible to utilise it was discarded because of the performance overheads of 
dynamic (run-time) linking. Also the system was targeted at CFD numerical software 
developers who are almost exclusively procedural FORTRAN-77 programmers. Extensive 
use of the object oriented and message passing paradigm would certainly confuse many of 
the intended users of the system.

Conclusions

The perceived problem of maintaining legacy code has increased over recent years. 
This is particularly true in the field of numerical simulation where some companies are 
partially or wholly reliant on large "in-house" legacy codes. Code re-use and re-engineering 
are desirable but can go drastically wrong with a huge waste of development resources. This 
paper demonstrates a re-engineering approach that has been applied to a medium sized 
FORTRAN numerical application with considerable success. The incremental strategy 
adopted has the benefit of ensuring that the delivery system has consistent behaviour with 
the legacy code. Many of the potential sources of error, inherent in the original system, have 
been removed or minimised during re-engineering.

The numerical consistency demonstrated by the results and the acceptable timings 
justify the use of re-engineering in this project. The strategy described is considered to be a 
suitable solution to the problem of maintaining medium sized legacy numerical systems. 
The ease with which certain system enhancements have been implemented supports the re­ 
use of legacy code and vindicates the decision to use C++ as the target implementation 
language.

This case study leads to the conclusion that re-using legacy code need not be
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intimidating or a great problem to continued software development. Indeed it arguable that 
software re-use can save costly development resources that producing (and debugging) a 
completely new system would require. Admittedly the approach adopted for this research 
still needs a significant development commitment and was by no means effortless, as some 
of the new re-engineering tools claim, however the clarity and flexibility of the delivery 
system justify the effort involved.

The only major drawback associated with this project was in user acceptance of the 
delivery system. Most of the existing CFD researchers are committed FORTRAN-77 
programmers who are often intimidated by, and unwilling to learn, other programming 
languages. It is hoped that the demonstrable consistency of the results, code clarity and ease 
of use of the re-engineered system will encourage researchers to use the new system, in 
spite of its implementation in unfamiliar C++.
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ABSTRACT

This paper describes a new solution technique - known as the "group solver" - 
currently under development within the SMARTFIRE Computational Fluid Dynamics 
environment. The group solver is used to obtain numerical solutions to the algebraic 
equations associated with fire field modelling. The purpose of the technique is to reduce the 
computational overheads associated with traditional numerical solvers typically used in fire 
field modelling applications. In the example, discussed in this paper, the group solver is 
shown to provide a 37% saving in computational time over a traditional solver.

INTRODUCTION

In traditional Computational Fluid Dynamics (CFD) based fire models [1], control of 
the numerical solver applies equally over all of the cells throughout the solution domain. In 
large geometry cases this can create a significant, and at times limiting, computational 
overhead. This is particularly true in cases where the fire occupies a relatively small 
proportion of an otherwise large solution domain for part, or all, of the simulation period. 
An example of this may be the early stages of fire growth within an airport terminal or a 
road/rail tunnel. The group solver concept attempts to address this problem algorithmically, 
by providing optimal processing in regions of the domain where and when it is required.

In the group solver concept, the solution domain is split into an arbitrary number of groups- 
of-cells. A group is defined as a unique collection of cells that can have solver control 
parameters independent from any other groups in the solution domain. Group solvers can be 
activated independently for each solved variable. Internally, the group solver makes use of 
standard numerical "point-by-point" solution methods such as JOR or SOR.

One way in which this may be achieved is by controlling the number of iterations that the 
solver performs in the various groups. For instance, the maximum number of iterations in an 
"Inactive group" will be considerably smaller than the number for an "Active group". As the 
solution develops, cells can migrate to and from groups, thus receiving more or less 
computational attention. The overall convergence criteria are still configured as for 
conventional problems so there should be no significant difference in the quality of the 
converged solution.
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Previous research on group solver technology focussed on static group membership in a 
two-dimensional application [2]. In the remainder of this paper, the SMARTFIRE software 
will be briefly described followed by a detailed description of the group solver technique. 
The technique will then be demonstrated for both static and dynamic group membership 
through the use of a simple three-dimensional fire application.

THE SMARTFIRE FIRE FIELD MODEL

SMARTFIRE is an open architecture CFD environment with an integrated knowledge based 
system that attempts to make fire field modelling accessible to non-experts in CFD. There 
are three major components to the software: CFD code, User Interfaces, and Expert System. 
By embedding expert knowledge into the CFD software, it is hoped that fire field modelling 
is made more accessible to the fire engineer with limited CFD expertise. The expertise 
currently embedded within the code is used to support the critical task of mesh specification 
of fire field simulation scenarios. Expertise is also being developed for the optimal 
automated dynamic solution control of fire field simulations during the solution process [3].

The software is fully developed by the University of Greenwich using a combination of in- 
house and proprietary software building blocks. It is designed to run on PC's under the 
WIN95/98 or NT operating systems. The minimum computer platform required is a Pentium 
PC with 32 Mbytes of memory. The primary components of the software have been 
described previously [2-5] and so will not be repeated here. However, as this paper 
concentrates on the CFD engine, this will be briefly outlined here. Figure 1 shows the 
conceptual architecture of the software and its modules.

SETUP USER 
INTERFACE

CONTROL 
BLACKBOARD

RUN TIME
DATA 

VISUALISER

FIGURE 1: The modular architecture of SMARTFIRE.
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The CFD engine of SMARTFIRE, called CWNN++, is written in C++ and has been 
developed in-house from an existing FORTRAN code [6]. CWNN++ uses validated 
numerical methods from the legacy FORTRAN code enhanced by object oriented 
developments in C++ and additional physics features that are required for fire field modelling 
[11]. CWNN++ uses three-dimensional unstructured meshes, enabling complex irregular 
geometries to be meshed without the need for body fitted co-ordinate grids. Unlike 
conventional CFD technology such as PHOENICS [7], FLOW3D [8], JASMINE [9] and 
SOFHIE [10], this allows extremely complex geometries to be meshed efficiently.

The CFD engine is under continual development and evaluation. As part of the testing 
procedure, model predictions are compared with other commercial CFD codes and against 
data generated through physical experimentation. Test cases [11] include standard CFD 
benchmark cases such as the backward facing step and moving lid problems and the Sleekier 
room fire experiments [12]. Results produced by SMARTFIRE for the Steckler experiments 
[5, 11] compare favourably with those produced using commercial CFD codes such as 
CFDS-FLOW3D and PHOENICS [13].

The current release of the software is V2.01 [11]. In this version, the software represents 
fires as a transient volumetric heat and mass source. Standard models for gaseous 
combustion (i.e. diffusion and eddy-dissipation models), while not enabled in the general 
release software, are implemented and undergoing testing. The code uses the SIMPLE [14] 
algorithm and can solve turbulent (two equation K-Epsilon closure with buoyancy 
modification) or laminar flow problems under transient or steady state conditions. Radiation 
is represented through the use of an enhanced six-flux radiation model [11]. Further 
information concerning SMARTFIRE including a demonstration may be found on the World 
Wide Web [15].

BACKGROUND TO GROUP SOLVERS

Since SMARTFIRE is a truly unstructured mesh CFD code there are a limited 
number of reliable and general purpose numerical techniques available to solve the systems 
of algebraic equations for each of the primary field variables. Structured mesh CFD codes 
can exploit the structured nature of the data (e.g. using lines or planes) in various solvers to 
give more efficient solution than for the point-by-point iterative solvers commonly used in 
unstructured codes. One of the goals of this work has been to investigate and, if possible, 
exploit reliable techniques that prove to be of benefit to fire modelling within unstructured 
mesh CFD codes. One such technique, developed by the authors, is the group solvers.

In previous published research [2], it was demonstrated that a multiple region two- 
dimensional fire scenario could use static group solver techniques to save 31% of the 
processing time. The demonstration consisted of two rooms, one containing a fire, the other 
(separated by a wall) was initially free of fire or its influence. Under a given set of 
conditions, the partition was removed allowing the fire to spread into both compartments. 
The saving in computational effort was achieved by effectively removing the need to perform 
the computations for half of the solution domain during part of the simulation, prior to the 
partition removal. In this way approximately half of the solution domain was fully de­ 
coupled from the simulation for part of the simulation. This work used the concept of a 
static "geometric" group to dictate the solution strategy in each region. Here we
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demonstrate the concept of static groups in three-dimensional simulations and extend the 
concept to include "dynamic" groups.

DESCRIPTION OF GROUP SOLVERS

Group solvers are a conceptual extension of the simple linear, iterative, algebraic 
equation solvers usually referred to as Jaccobi Over Relaxation (JOR) or Successive Over 
Relaxation (SOR). At the most basic level these solvers involve the repetitive update of the 
solution of a property variable within each cell based on the contributions from nearest 
neighbouring cells, a portion of the previous solution value and the source quantity for each 
cell. In a CFD context the contributions from neighbouring cells represent the convection 
and/or diffusion of a physical property throughout the solution domain whilst the source 
indicates the creation or destruction of the physical property in the considered cell. The 
distinction between JOR and SOR solvers is that SOR always uses the most up-to-date 
versions of the solution when calculating the next update. This can make the SOR solver 
less stable than the JOR solver but it has the significant advantage of spreading the solution 
much more rapidly than JOR.

In the typical whole-domain JOR or SOR solver, the solution in each and every cell of the 
domain is updated repetitively until the difference between successive updates is sufficiently 
small. Clearly, if the solution domain contains many cells that are far removed from any 
active flow region or worse are totally de-coupled from the region of interest for a portion of 
the simulation, then not all of these JOR or SOR calculations are performing any useful 
advancement of the solution. This is especially true of many of the large complex geometries 
used in fire field modelling (e.g. whole building simulations).

The group solver concept allows the domain to be partitioned into "geometric" or "logical" 
(i.e. solution dependant) groups of cells that then use the iterative point-by-point update 
described above. The difference for the group solvers is that each group can have a unique 
set of control parameters to configure the maximum number of iterations to perform, the 
tolerance to use for convergence testing and/or the linear solver relaxation to be used. In 
this paper, the investigation only concerns the potential benefits of limiting the number of 
iterations that are used within each group of cells - while maintaining the desired level of 
convergence.

Since, in an unstructured code, a group does not need to be limited to some pre-configured 
geometric region it is possible to further extend the group solver techniques by allowing 
groups to determine their own cell-membership as the solution develops. This has been 
implemented within SMARTFIRE to allow an arbitrary number of groups which can contain 
either geometric or solution dependant membership (provided that each cell only exists in 
one group) and that furthermore the dynamic groups can exchange cells as the simulation 
solution develops. In practice, the dynamic membership is configured so that each dynamic 
group has an acceptance range of values which will trigger a non-member cell to be 
transferred into that group if its property value is within the configured range and if the cell 
is not already contained in another static "geometric" group.

The implementation of the group SOR solver requires particular care, at the algorithmic 
level, to ensure that the groups are not de-coupled into JOR connectivity between groups.
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This scenario is possible if the looping between group-inner-iterations and between groups is 
mismanaged. One way this can occur is to give simple external looping for all groups and 
internally to loop for all configured group-inner-iterations. There are several possible 
methods of handling group-inner-looping for cases where groups have different numbers of 
configured inner-iterations. It was decided to interleave the processing between groups 
without using the simplest 1:1 interleave ratio, which while easier to implement could result 
in poor efficiency. The more complex interleaving technique, actually used, causes each 
group to be visited in turn and performs one (or more) of the inner iterations before moving 
to the next group. The looping amongst groups continues until each group reaches its 
configured maximum number of inner-iterations or until convergence is detected.

In order to attain maximal optimisation for cases with truly de-coupled (and hence 
uninteresting) group regions, it was also necessary to limit processing of such groups so that 
simple calculated variables are not updated. Mostly there is little difficulty in performing this 
optimisation because the support variables are generally closely linked, in their usage, to 
associated solved variables.

It should be noted that many of the variables in a fire modelling simulation have a definite 
"directionality" that can be exploited by matching the marching order of the cells within SOR 
solvers with this direction. SMARTFIRE has been implemented to use bi-directional 
marching order for all SOR type solvers, which gave a saving of up to 20% over the usual 
uni-directional marching order - when used on the simulation case described in this paper. 
All of the timings compare bi-directional group and whole-domain SOR solvers.

AN APPLICATION OF GROUPS SOLVERS IN A THREE-DIMENSIONAL FIRE 
SCENARIO

The case used to investigate group solvers is a preliminary investigation into fire 
spread between the floors of a multi storey building where window sizes are varied to modify 
the ejected plume behaviour. In the case presented here only the lower (ground) floor room 
is modelled together with the outer wall of the second and third floors above. In subsequent 
research it is intended that the upper floor rooms will also be fully modelled with windows 
that can be broken by the incident heat flux from the ejected spill plume.

In order to investigate the benefits of the group solvers a number of test cases were 
prepared. The geometry and mesh used in all of the tests was identical and great care was 
taken to ensure that the mesh was sufficiently refined across the height and width of the 
window, near the walls of the room and outside and just above the window. These 
considerations are critical to obtaining a reliable and accurate simulation of the ejected 
plume.

The geometry (see figure 2) was set up with room dimensions of 4.0m (x) X 3.4m (y) X 
6.0m (z). The centrally located fire is represented as a volumetric heat load which is applied 
over a volume of 1.0m X 1.2m X 2.0m. The fire uses an "alpha t squared" power curve, 
which reaches 2.0 MW (using a fast growth rate) in three minutes of simulated time. The 
window aperture has a size of 2.0m (y) X 2.0m (z) and is centrally located on the high X- 
face of the room. The exterior wall, above the window, extends for a height of 10.5m 
vertically (to allow for the addition of two open rooms above fire room and a further room
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height to move the free surface boundary sufficiently far away from any upper floor windows 
that may be used). The extended region beyond the window has the same Z-width as the 
room and extends for a distance of 6.0m in the X-direction in order to give ample room for 
the plume ejection. All of the surfaces of the extended region have a free surface boundary 
condition except for the floor, which is assumed to be solid. The outside region is assumed 
to be calm prior to the fire. The walls are assumed to be brick with a thickness of 0.1m. The 
mesh used for the simulation consisted of 40,572 cells with NX=36, NY=49 and NZ=23. 
The number of cells in the geometric regions was as follows: Dead region (non participating 
rooms above fire compartment i.e. de-coupled region) has 14,260 cells, Fire-room has 8,280 
cells and the entire extended region has 18,032 cells (see figure 3).

FREE SURFACE BOUNDARY

ROOM AND FRE (floor plan) 

I_____WINDOW_____O.lm

10.5m

X 
n

1.0m 4.0m

6.0m

WALL WITH WINDOW

3.5m Y ' 

n

;

2.0m
i

i

i

WINDOW

FIRE • i

j

ji
1 2m

V 1

3.5m

2.0m

FIGURE 2 : The multi-storey geometry used for the group solver tests.

The simulation involves buoyancy driven flow with K-Epsilon turbulence model (buoyancy 
modified) and incorporates the enhanced six-flux radiation model [11]. The entire simulation 
was configured to perform 90 time steps of 2 second duration. The solver configurations 
used in the various simulations are summerised in table 1.
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TABLE 1 : Summary of solver configurations used in simulations.
Variable(s)

Pressure
Momentum
Turbulence
Enthalpy
Radiation

Solver 
update 
method
SOR
SOR
SOR
SOR
SOR

Linear 
relax

0.6
1.0
1.0
1.0
1.0

False 
time 
relax
NA
0.5
0.1
2.0
0.0

Whole 
domain 
iterations
50
6
20
30
20

"Active" 
group 
iterations
50
6
20
30
20

"Calm" 
group 
iterations
12
2
5
8
5

"Void" 
group 
iterations
0
0
0
0
0

Furthermore all solvers were able to terminate their inner iterations if a common 
convergence level was reached. Each time step was forced to have all normalised variable 
residuals converged, to l.Oe-03, before the next time step could be started.

SE.GMM EXTE&I'ED
REGION

Zslab 12/23

Smartfre: [T= 120.000s]

FIGURE 3 : Vertical slice through the domain showing the mesh and the various regions
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For comparison purposes, the following three test cases were simulated.

Case 1:
The simulation is configured with all solved variables using the whole domain SOR solvers 
as specified in Table 1. For comparison purposes this constitutes the base case. The group 
solvers are not utilised in this test and so the code is run in a conventional manner.

Case 2:
The entire solution domain is configured into two static "geometric" groups, one group 
configured as a "Void" group and another configured as an "Active" group (see table 1). 
The "Void" group contains all of the cells in the decoupled region above the fire room (i.e. 
14,260 cells or 35.2% of the entire cell buget). The "Active" group contains all of the cells 
that are not in the "Void" group region (i.e. 26,312 cells or 64.8% of the entire cell budget). 
While the group solvers are activated, group membership remains the same throughout the 
simulation.

Case 3:
The entire solution domain is partitioned into four groups, two are static "geometric" groups 
and two are "dynamic" membership groups. The first group is a static group that is 
configured as a "Void" group which contains all of the cells in the de-coupled region above 
the fire room (i.e. 14,260 cells or 35.2% of the entire cell budget). The second "static" 
group is configured as an "Active" group and contains all of the cells in the fire room, those 
in the window aperture and a small rectangular block of cells that is immediately outside of 
the window (uses room with 8,280 cells and 2,366 cells from the extended region i.e. 10,646 
cells or 26.2% of the entire cell budget). The third group is "dynamic" and "Active" and is 
configured to determine cell membership from the non-static cells of the extended region. 
The group membership selection criteria is that absolute cell velocity is greater than 10% of 
the maximum domain velocity. The fourth "dynamic" group is configured as a "Calm" group 
and contains extended region cells that have an absolute velocity of less than 10% of the 
maximum domain velocity. The two active groups share the remaining 15,666 extended 
region cells or 38.6% of the entire cell budget. Dynamic group membership is updated every 
10 sweeps.

For the purposes of this paper, timing comparisons based on the first 50 time steps of each 
test will be presented. On the test computer (a Pentium n 400MHz with 256MB of RAM) 
this gave a convenient processing duration that could be run overnight without interruption.

RESULTS

Of primary interest, to this study, are the potential gains in numerical efficiency 
generated by the use of group solver technology. It should be noted that all three test cases 
produced practically identical solutions with the same levels of convergence. A comparison 
of the run times for the test cases is presented in table 2. Clearly, the group solver has 
potential for introducing considerable savings in computational time.
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TABLE 2 : Comparison of group solver performance over the three test cases.
Test scenario

Case 1 : 
Whole domain solvers
Case 2 : 
Static groups
Case 3: 
Static and dynamic groups

CPU time used 
for 50 tune steps j

15h51m40s 
(57, 100 seconds)

Ilh43m36s 
(42,216 seconds)

9h 56m 45s 
(35,805 seconds)

Total number of 
sweeps used j

3095

3089

2919

Percentage time 
saving over case 1

0.0%

26.1%

37.3%

The fire dynamics in these test cases proceeded as expected. As the window opening to the 
fire compartment was considered narrow, a strong plume was ejected from the compartment. 
As the plume rotated and ascended vertically, it did not attach to the building fa9ade. These 
results are consistent with earlier modelling work [16] and with reported experimental 
observations [17].

By 100 seconds, of simulated time, the rising plume outside of the compartment was fully 
developed and clearly unattached from the building fa9ade. Continuing the simulation 
beyond this point merely increased the temperature of the fire compartment, the rising plume 
and the building facade.

DEAD REGION

PLUME /

. ,

Contous

Zslab 12/23

Smartfoe: CoriouK • TEMPERATURE P-120.000*1

FIGURE 4 : Vertical slice showing room and plume temperatures (K) at 120 seconds.
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The results for temperature displayed in figure 4 were taken at a simulation time of 120 
seconds from the whole field SOR simulation in Case 1. Only the results from Case 1 are 
presented here as the comparable results from Case 2 and Case 3 displayed no apparent 
differences. Within the solution fields produced by Cases 1-3, maximum temperatures 
differed by at most, 1 Kelvin in the range of 318 to 914 Kelvin.

In order to verify that the dynamic group solver membership mechanisms were operating as 
expected, a vertical slice visualisation of group membership was created. This group 
visualisation (see figure 5) shows that the "active" dynamic group in the extended region has 
captured the plume extent correctly.

STATIC GROUP 
(DEAD REGION)

DYNAMIC GROUP 
(ACTIVE REGION)

STATIC GROUP 
(ROOM REGION) DYNAMIC GROUP 

(CALM REGION)

FIGURE 5 : Vertical slice showing static and dynamic 
group membership at 120 seconds for test case 3.

OBSERVATIONS AND DISCUSSION

The static group solvers used in Case 2 demonstrated that, by effectively removing 
35.2% of the domain from the computations, a saving of processing time of 4h 8m 4s (or 
26.1%) was obtained when compared to the standard whole field SOR solvers processing all 
cells equally. In effect this indicates that the group solvers were 74.2% efficient at removing 
the processing overhead of the de-coupled region from the simulation. While a 100%
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efficiency may be desired, this result was anticipated because there are still many calculations 
performed in the "de-coupled" region for material properties and simple calculated variables. 
It is anticipated that this figure can be improved somewhat by increasing the use of "group" 
activated calculations within the rest of the CFD code.

In Case 3 both static and dynamic groups are used with the majority of the extended region 
being continuously evaluated for applied processing strategy. In this case an overall 
processing time saving of 5h 54m 55s (or 37.3%) was achieved when compared to the 
standard whole field SOR solvers processing all cells equally. It should be noted that much 
of this saving is due to the "de-coupled" void group which, as shown in Case 2, saves 26.1% 
of the processing. The remaining 11.2% saving is due to the optimisation of processing 
within the extended region which targets less solver processing in cells with relatively low 
velocity flow. The fact that this saving is comparatively less than for the "de-coupled" 
region is also anticipated. This can be explained by considering the work performed in the 
"de-coupled" and dynamic groups. In the "de-coupled" group, it was not necessary to build 
the system matrix coefficients for the member cells whereas cells in a group that performs 
one (or more) iterations must build the system matrix coefficients. Building the system 
matrix coefficients is relatively costly compared to solving the matrix.

CONCLUSIONS

The results indicate that there are large potential savings to be gained in the 
simulation of fire modelling scenarios by the targeting and optimisation of processing effort 
in fully de-coupled, suitably stratified or geometrically related flows. Furthermore, these 
savings need not result in compromised accuracy of the final solution. The techniques 
developed and presented here resulted in considerable run-time savings of up to 37% of 
processing time. It is anticipated that this figure can be improved significantly when a better 
understanding of the balancing required between groups and variables is achieved.

As group solvers are a new concept, there was little or no expertise to guide in the optimal 
selection of number of groups to use, the choice of group membership conditions and the 
relative amounts of processing used in each group. Furthermore there are a number of 
remaining group solver control options which were not varied during the test simulations.

It is anticipated that in large scale simulations, which may involve whole buildings, there are 
likely to be much greater savings possible with intelligent use of group solvers that can target 
the processing only on the active flow and fire regions until the solution characteristics in 
other regions become significant.

Current research effort is directed at gaining a better understanding of when it is appropriate 
to use groups and how best to balance the processing between groups in order to obtain 
optimal convergence and simulation times. Dynamic groups have been shown to give 
modest performance improvements but more work is needed to determine if there are any 
further benefits possible due to combined solution monitoring and dynamic knowledge based 
control of the processing within both the static and dynamic groups. Whilst the use of group 
solvers increases the complexity of the knowledge based control, it is also most likely to 
provide the most significant savings and most reliable solutions.
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NOMENCLATURE

Symbol

U 
T
Ui
P
Si
Xi

H
K
Cp
T
K
P
G
Cl£

C3
Rf
C2s

G
C,
R
A
E
S
I,J,K,L,M,N
F
V V°v p , v p
N 
Af
dAF
Ff
Df

e,w,n,s

Meaning

Velocity
Time
Ith velocity component
Pressure
Ith variable/model source term
Ith co-ordinate direction
Enthalpy
Conductivity
Specific heat capacity
Temperature
Kinetic energy
Turbulent production rate
Buoyancy rate
Turbulent constant
Turbulent constant
Richardson Number
Turbulent constant
Gravity
Turbulent constant
Radiation flux
Absorption coefficient
Emmisivity
Scatter co-efficient
Six-flux radiation directional fluxes
Scalar quantity
Volume of cell at current/previous time
Normal component
Face area
Distance between A and P cell nodes
Strength of convection
Strength of diffusion
Pth cell coefficient
Neighboring cell coefficients
East, West, North and South neighbors

Equation of 
first mention 
1
1
2
2
2
2
3a
3a
3a
3b
4a
4a
4a
4b
4b
4b
4b
4b
4b
5a
5a
5a
5a
5c
6a
9a
9b
9b
9f
lOb
lOb
lOc
lOc
lla
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	Density 1 
	Effective viscosity 2 

e Dissipation rate 4a 
(j.lam Laminar viscosity 4a 
ut Turbulent kinematic viscosity 4a 
(jk , cre Turbulent constants 4d 
p Expansion coefficient 4d 
a Stefan-Boltzmann constant 5b 
FI Invariable diffusion coefficient 7 
(() Dependent variable 8 
<j>p P* cell variables lOc 
cj)nb Neighboring cell variables lOc 
())T Transpose of vector lie 
Ayp Cell center to wall distance 13d 
Tw Wall shear 13e 
cp Dependent variable 13g
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Theoretical Background 

1.0 Introduction

This document presents a mathematical description of the SMARTFIRE code including 
governing equations, discretisation, solution algorithm, linear solvers and boundary 
conditions. The objective is to inform the user as to how the governing equations are handled 
in order to:

(i) Provide some insight into the numerical schemes that may help in understanding the 
performance of the code in terms of stability and convergence and,

(ii) Illustrate how the information provided by the user impacts on the performance of 
the code and the final solution.

It is felt that a better understanding of the numerical techniques used in SMARTFIRE will 
considerably improve the ability of the user to achieve the ultimate objective, which is 
obtaining a converged and stable solution for the flow situation under study.

1.1 Basic Equations used in SMARTFIRE

The equations representing the conservation of mass, momentum and energy for transient 
flows in Cartesian co-ordinates assume the following form:

1.1.1 Mass Conservation

For any flow situation, the flow field should satisfy the mass continuity equation given by:

0 (1)
dt 

1.1.2 Momentum Conservation

The conservation of momentum in the three co-ordinate directions is given by the equation:

S (2)
a

where Ui is the velocity in the x, y and z directions and P is the pressure. 

1.1.3 Energy Conservation

For energy conservation, we solve the enthalpy form of the equation given by:
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/ h+ div(puh) = div (k +

(3a)

where the temperature is evaluated from the expression

(3b)

1.1.4 Turbulence Model

The buoyancy modified two-equation (k-s) turbulence model represents turbulent flow. The 
model consists of the turbulent kinetic energy equation

f~ npv
f"^lam

11 <r* J
grar^A:ck— + div(puk) = div

and the dissipation rate equation

de— + div(pus) - div

G-ps (4a)

/T Pvi
Vlam + ————

IL ^ J
\

grade
j

max(G50)) - C2sps] (4b)

where P represents the turbulent production rate

P = 2pv, 

(4c)

du
dy

dw du dv\ pvA\— + —

and G represents the Buoyancy term, given by

t - or G = -gpvt

du
dx.

(4d)

and

pdT 
The apparent turbulent viscosity is evaluated by using the expression

(4e)
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(4f)

The turbulence model contains five constants that are adjustable. The standard k-e 
turbulence model employs the first five values for the constants given in the table below. The 
final value is for the buoyancy correction applied to the standard turbulence model.

c.
0.09

Ok
1.0

CJs

1.3
Cle

1.44
C2e

1.92
C3
1.0

1.1.5 Radiation Models

It is essential that when simulating fires, we represent adequately the characteristics of heat 
transfer and energy balance in the model. Within the fire model there are two primary modes 
of heat transfer, namely convection and radiation. While convective heat transfer is 
accounted for by the transport equations, radiative heat transfer requires a separate sub­ 
model. Within SMARTFIRE, two radiation models are provided. These are (a) the Radiosity 
model and (b) the Six-Flux Radiation model. The Radiosity model is simple in nature and 
involves the solution of a single extra variable that is the radiant potential within each cell. 
While this ensures that the model is efficient in terms of CPU time it is a crude representation 
of radiation. The modified Six-Flux radiation model on the other hand solves for six 
equations, one in each Co-ordinate direction (both positive and negative directions) and 
makes the model more accurate but less efficient in terms of CPU time, when compared with 
the Radiosity model. These models are presented below:

1.1.5.1 Radiosity Model

The equation for the Radiosity, R, takes the form

dx.
dR (5a)

where a is the absorption coefficient, s is the scattering coefficient and E is the black body 
emissive power of the fluid calculated using

(5b)

where Tis the temperature of the fluid and cris the Stefan-Boltzmann constant.

Transfer of heat through radiation leads to a source in the enthalpy equation equal to the 
negative of the source in the Radiosity equation, given below:
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(5c)

1.1.5.2 Six-Flux Radiation Model

In the six-flux radiation model heat fluxes R; , are calculated by solving additional 
conservation equations in each component direction which have the form:

ax 
dJ—
ax

-aE — (I+J+K+L+M+N)
6

= +(a +S)L -aE-- K +L+M+N)
ay
1 I (6a) 
dy 
dM 
dz 
dN ~dz

where a is the absorption coefficient, 5 is the scattering coefficient E is the black body 
emissive power of the fluid and I, J, K, L, M and N the six coordinate direction radiative 
fluxes.

Transfer of heat through radiation leads to a source in the enthalpy equation given by:

SS]X_flux =a((l-E)+ (K-E) + (M-E) + (j-E)+ (L-E)

1.1.5.3

(6b)

Absorption Coefficient

The absorption coefficient is evaluated using the following piecewise linear approximation:

T < 50 °C
T > 50 °C and T < (Tplume/2)
T > (Tplume/2)

@ "-ambient

* = ^ambient + (c(Tphnne/2) - flWbient)/((Tp,ume/2)-50)(T-50)

(6c)

1.1.6 Species Conservation

The conservation of any scalar quantity, f, is represented by the equation given below:

div(puj) = div(rfgrad(f))+Sf
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1.1.7 Auxiliary Equations

The density is calculated using the Ideal gas law, given by 

p = PW/RT

where P is pressure, W is molecular weight, R is Universal gas constant and T is 
temperature.

1.2 General Scalar Equation

From the brief introduction of the equations used to represent complex fluid flow, it is clear 
that all the equations can be cast into a generalised form given by

+ div(puj) = div(r,grad(4>)) + S, (8) 

Transient Convection Diffusion Source

where p is density, « is the vector velocity, F is the diffusion coefficient for the quantity § 
and S is the source term for <j> at any point. The four terms in the equation are the transient 
term, the convection term, the diffusion term and the source term. This equation is 
commonly known as the convection-diffusion form of transport equations.

1.2.1 Approximations of the Terms

All the terms in the convection-diffusion equation need to be approximated in order for the 
equation to be solved. In what follows there are no details as to how this process is achieved, 
however the final forms of the approximations are presented for completeness. The steps are

(1) Discretise the flow domain into a collection of control volumes,
(2) Integrate the individual terms over the surface or volume of each control volume,
(3) Approximate first derivatives using upwind values,
(4) Approximate face values for dependent quantities using sensible averaging approaches,
(5) Finally construct the full system of algebraic equations to solve.
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11t

t
The previously mentioned approximations are based on a typical control volume arrangement 
as depicted above. This is a typical 2D Control Volume set-up. The computational molecule 
shows the influence of neighbouring control volumes (North, South, West and East) on the 
control volume of interest (labelled P). It should be noted that SMARTFIRE actually uses a 
3D unstructured mesh but similar concepts apply.

1.2.1.1 Transient Term

The transient term is approximated using the backward difference technique. This gives

Jr-Ar JJ>

1.2.1.2

dt
dVdt = (9a)

Convection Term

The convection term is the most important term in the equation. Care must be taken in 
approximating this term, as inappropriate approximations can lead to large errors or 
instability problems if not handled with care. This gives
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(9b)

In this equation the value of /^is given the value in the upwind element. Thus

tf (w-w)r >0.0 and pf = pA if (w-w)/ <0.0 (9c)

The convected quantity, $ at the face needs further approximation. One possible approach is 
to use arithmetic averaging, e.g.

(9d) 

Assuming this choice, then the final form of the discretised convection term becomes

(9e)

Other possible choices of the approximation of the convected, <f>, are presented in the section 
entitled discretisation schemes.

1.2.1.3 Diffusion Term

The diffusion term is approximated using the approximation:

where the diffusion coefficient is approximated by

(98)

1.2.1.4 Source Term

In general, since the source term is a function of the dependent variable, <j>, a linearized form 
is used in the final discretised equation to ensure diagonal dominance of the system matrix. 
This form is as given below:

(9h) 

1.3 Overall Discretisation Equation
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Having obtained expressions for the discretised form of each of the terms in the conservation 
equation in the previous section, the discretised form of the full equation is obtained by 
simply adding together all these contributions. Assuming arithmetic averaging for the 
evaluation of the face value of (j> in the convection term, the discretised equation becomes

At f (lOa)
= (Sc -Sp <f>p }Vp

Defining the quantities Ff and Z)/as

Df =Af (Y,)f ldAP (lOb)

where Ff is the strength of the convection of ^ and Df is the diffusion conductance, the 
equation can be further be simplified and written in the following form:

(lOc)
nb

where the summation is over all neighboring elements and the equations for the coefficients, 
3p and a,,b in the above equation are given by

a»=D-(l-a}Ff ff

f

=
b =

A/

(lOd)

The convected quantity of the dependent variable, (/> , can be represented in a number of 
ways. The most commonly used technique is to use the upwind value. This is known as the 
upwind scheme, where the face value is approximated by the following rule:

/ =<t>p if Ff >0.0 and </>f =(f>A if Ff <0.0 (lOe)

In which case the coefficients become
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anb =Df +max(-Ff ,0.0)
f + max(JF/ ,0.0)]+ a°P -SPV

f
.. _~
b =

(lOt)

In general a wide choice is available for the evaluation of the convected face value of $. To 
incorporate a generalized version of the final discretised equation, we introduce a function 
A(|P|) which allows for any differencing scheme to formulated and incorporated, where P is 
the Peclet number given by Ff /Df. This gives

-SP </>P )VP
(10g)

where the expression for A(|P|), for various schemes are given in the Table below.

Scheme
Central Differencing
Upwind
Hybrid
Power Law
Exponential

Formulae for A (
1-0.5 P

P )

1
Max (0,
Max(0,

P

1 -
(1

•0.5
-

/exp (
o.;
p

i
P
P

)
I)5) -

[")-!

In which case the coefficients become

ap =
f

b =

(lOh)

Note: The relative merits of the various differencing schemes are not discussed here.

1.4 Algebraic Equations

The algebraic equations, as described in the previous section, need to be solved using 
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appropriate methods. The choice of solution techniques used will effect both the accuracy of 
the solution and the effort required obtaining the solution. Thus it is important that several 
solution techniques are available for solving a multitude of different problems. The next 
section briefly describes the solution techniques used within SMARTFIRE.

1.4.1 Solution of the Algebraic Equations

The starting point for the solution of any equation is the set of algebraic equations. In this 
case we use the following representation:

Ax = b

where A is a matrix of n x m elements and x and b are vectors of n elements.

The finite-volume discretisation approach results in a set of algebraic equations, which when 
represented in matrix form generates quite a large system matrix. Due to the nature of the 
stencil used, the system matrix although large, is quite sparse. Since the resulting algebraic 
equations are not linear in nature as the coefficients are themselves functions of other 
dependent variables, it is prudent to use iterative solvers to attain solutions efficiently.

A number of solution techniques are available in SMARTFIRE namely, the Jacobi Over 
Relaxation (JOR) method, the Successive Over Relaxation (SOR) method, Conjugate 
Gradient Method (CGM), Bi-Conjugate Gradient method (BiCG) and the Whole Field 
Solver. The two most frequently used solution techniques for point by point linear equations 
are the JOR method and the SOR method. Each of these techniques are briefly described 
below.

1.4.1.1 JOR / SOR SOLVER

For the JOR technique a typical brick-shaped cell is updated as follows:

. eo »,o n,o ,.« * ,o ,„ , 
VpJOR = —————————————————————————— - ——————————————————————————— 0 la)

P

whereas for the SOR techniques a typical brick-shaped cell is updated as follows:

, 
<Pp,SOR

P

The final cell value is then updated, using linear relaxation as follows:

4>p,ne» = rClaX * ($p,old ~ 0p,(JOR or SOR) ) + 0p,(JOR or SOR) ( 1 1 C)
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1.4.1.2 CGM SOLVER

A general iterative scheme could be considered in the form,

where f is a function that would aid the convergence of <j> ' to <f> p, new . For the CGM scheme, 
the function f is prescribed by

c (lie)

the gradient of which reduces to (assuming symmetric A),

(llf)

Furthermore, if A is positive-definite, then the solution of Ax=b would be the global 
minimum of the function f The CGM solver aims to obtain the minimum of fas the solution.

1.4.1.3 BiCG SOLVER

The BiCG solver is a variant of the CGM solver where the square matrix A can be non- 
singular and non-symmetric. There is a pre-stage to cast the non-singular and unsymmetric 
matrix in to a symmetric positive definite matrix, as required by the CGM solver. This is 
achieved by using the transpose of A as given below:

b - (llg)

1.4.1.4 WHOLE FIELD SOLVER

The whole field solver, as the name suggests aims at solving the equations at the end of the 
sweep, when all the nodal points have been visited and the system matrix build up. The 
whole field solver differs from a point wise solver (for example JOR, SOR) by using extra 
inner loops and back-substitution to ensure that the updated solution influences every other 
control volume.

1.4.2 SIMPLE Solution Procedure

The fire model comprises a set of highly non-linear and tightly coupled equations. When 
solving such a set of equations, the order and manner in which the solution progresses is 
vital. Several solution procedures can be used to solve the equations. In SMARTFIRE the 
SIMPLE solution procedure is used to solve the equation set. The procedure is outlined 
below:
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Step 1: Guess the initial pressure field p*

Step 2: Solve momentum equations with guessed pressure field to obtain u*, v*, w*

Step 3: Solve for the pressure correction p'

Step 4: Calculate the new pressure field using p* and p'

Step 5: Calculate the new velocity components u, v and w using u*, v*, w* and p'

Step 6: Solve the other conserved quantities i.e. Enthalpy, Temperature, Turbulence, 
Concentration, Radiation, density, viscosity, etc.

Step 7: Treat the corrected pressure p as p* and return to step 2.

Step 8: Repeat Steps 2 to 7 until the solution has converged

Step 9: Repeat Steps 2 to 8 for the next time step

1.4.2.1 Dependent Variable Storage Considerations

Although the staggered grid storage arrangement, where the velocity components in each 
coordinate direction are stored at the cell-face, has been the most widely used technique for 
pressure based solution schemes, it has been recognized that the storage requirements for 
such schemes is very large. In SMARTFIRE, a collocated grid arrangement, where velocity 
components in each coordinate direction are stored at the cell-center, is used. The 
consequences of such an approach are:

(1) Huge reduction in storage requirements for geometrical related quantities, and
(2) The prediction of undesirable "checker-board" pressure fields.

To alleviate the prediction of the checker-board pressure fields, SMARTFIRE uses the Rhie 
and Chow technique to predict the flux at the cell-faces, where they are needed, by means of 
an algorithm that is free from the checker-board oscillations. Thus the face velocity depends 
on the pressure values prevailing at the cell centers of the neighboring cells (without using 
interpolation), and interpolated values of the other quantities used within the momentum 
equation. This approach is similar to the staggered approach, where the fluxes at the faces 
are identical for both the non-staggered and staggered approach.

1.4.3 Convergence and Relaxation Methods

Since the equations of fluid flow are coupled and non-linear, it is important that when using 
iterative solution techniques, as presented in the previous section, those relaxation techniques 
are used to control the solution. Relaxation techniques aid the solution to converge. Within
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SMARTFIRE, there are three relaxation techniques available. These are the solver 
relaxation, linear relaxation and false time step relaxation techniques. Details of these 
techniques are presented in the next two sub-sections.

1.4.3.1 Linear relaxation

The linear relaxation technique allows the variation of a solved for variable, <f> , in a linear 
fashion. The amount by which the variable is allowed to vary is controlled by the expression

Updated = ^calculated + 0 ~ ^old 0 2a)

where a takes values between 0 and 1.7. The terms over relaxation and under relaxation are 
defined in the range of a as presented in the table below.

a < 1.0
a=1.0
a>1.0

Under relaxation
No relaxation
Over relaxation

This technique can be applied for any variable that needs updating both within the solver and 
externally.

1.4.3.2 False time step relaxation

Using the concept of inertial relaxation, otherwise known as false time step relaxation, an 
equation of the form:

(12C)

is produced, where Ft is termed the false time step, the units of which are the same as those 
of the aP coefficient, i.e. kg/s. Thus the larger Ft is the stronger the relaxation. This technique 
is normally used for both steady and transient simulations.

1.4.4 Residual Calculation Methods

All solvers need termination criteria. In the case of SMARTFIRE, several options are 
available at several stages within the solution stage. Various forms are presented below.

1.4.4.1 Solver residual

This is the maximum error term evaluated from substituting the newest x solution vector into 
the system of algebraic linear equations and evaluating the maximum difference between the 
left and right hand sides of the equation, i.e.
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(12d)

The solver residual is used to determine if convergence has been reached and hence the 
solver inner iterations can cease.

1.4.4.2 Variable residual

The variable residual is a measure of the solution error between solution sweeps and is used 
to check for convergence for individual variables, using an expression of the form:

rp.new Told (12e)

A variety of methods for calculating the variable residual are available as listed in the table 
below:

1
2
3
4
5
6
7
8
9

ABSOLUTE LI NORM
ABSOLUTE L2 NORM
ABSOLUTE LI NORM
RELATIVE LI NORM
RELATIVE L2 NORM
RELATIVE LI NORM
REFERENCE LI NORM
REFERENCE L2 NORM
REFERENCE LI NORM

See SMARTFIRE MANUAL FILE SETUP GUIDE in the RESIDUAL METHODS section.

1.5 Boundary Conditions

To complete the definition of the fire problem it is necessary to specify a set of boundary and 
initial conditions. This sections deals with the boundary conditions that are available within 
SMARTFIRE. It is very important that the user specifies the boundary conditions correctly 
and also understands its impact within the numerical solution procedure. The section details 
the boundary conditions related to each equation solved in terms of the names as used within 
the SMARTFIRE User Interface.

1.5.1 

1.5.1.1

Pressure Equation 

Outlet or Free boundary

= P,external or P = Pfixed (13a)

1.5.2 Momentum Equation

Appendix 11.4 Page 144-19 19



APPENDIX 4 : SMARTFIRE TECHNICAL REFERENCE GUIDE

1.5.2.1 Inlet

Prescribe u, v, w as V (13b)

1.5.2.2 Outlets

Calculated u, v and w in internal cell (13c)

1.5.2.3 Walls

shear * -~ (13d)

Av,

1.5.2.4 Wall Functions

Ay IT 
Using the widely used log-law for the wall, and the y ( = — - I— - ) limits, the shear force is

v v P 
represented using the expression

(13e)

This expression is normally modified depending on the flow regime it is applied in. For 
turbulent flows

F -f shear ~ ft p

1.5.2.5 Symmetry

° (13g)
1.5.3 Energy Equation

1.5.3.1 Fire as Enthalpy volumetric source

SH = Fixed value (or) SH = ( A+Bt+Ct2+DeEt) ( 1 3h) 

Where A, B, C, D and E are user defined constants.

1.5.3.2 Walls
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1.5.3.2.1 Adiabatic

dH

1.5.3.2.2 Fixed Temperature (Dirichlet)

1.5.3.2.3 Fixed Flux (Neumann)

dn 

1.5.3.2.4 Flux / Temperature (Convective)

1.5.3.2.5 Flux / Temperature / Materials (Conductive)

= fixed value (13k)

(131)

As 1 .5.3 .2.3 BUT Hc (prescribed) is used (with wall material properties)
to calculate an estimated wall T that is used instead of Tgas to then rind (13m)
the heat flux

1.5.3.2.6 Turbulent Wall Layer (Calculated Flux)

(1) Estimate a y + distance using turbulent wall layer function.
(2) Use y + value to calculate a H value based on material properties in
V ' (13n)
near wall layer
(3) Use the calculated Hc value in the same way as 1 .5.3.2.5

1.5.4 Turbulence Equations

1.5.4.1 Kinetic Energy

Wall: k is obtained by solving the discretised governing equation (13o)

1.5.4.2 Dissipation Rate
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0.1643 A: 15€= ~K—7 (13p)

1.5.4.3 Log-Law

y+ =-ln(Ey+ ) (13q)
K

1.5.5 Radiation Equation 

1.5.5.1 Solid Surface

/ = sJEw + (!-*„ )J for lower surface } 
J = €WEW + (l-£w )I for higher surface]

Where Ew is calculated from Tw (which uses the following conditions)

Tw = Tgas for adiabatic heat boundaries 
Tw = Tsoiid for solid material adjacency 
Tw = Touted for CONDUCTIVE or TURBULENT heat boundaries

1.5.5.2 Free Space

/ = Ew for lower surface 1 
J = Ew for higher surface J

1.5.5.3 Fixed Temperature

Same as 1.5.5.1 But Ew is calculated from a prescribed Tw as

E. = oT,4 (13t) 

1.5.6 Concentration Equation

1.5.6.1 Fixed Value

= value (13u)

1.5.6.2 Fixed Flux (Neumann)

= value (13v)
dn 
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1.5.6.3 Linear Flux

~. -j — j*> \TAmoiem r r x V /

1.5.6.4 Symmetry Plane

= 0 (I3x) 
dn
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OVERVIEW OF THE GEOMETRY CLASSES

This data dictionary serves to describe the construction and usage of the classes that hold 
the geometric and related data within the "SMARTFIRE" system. It should be noted that the 
basic strategy and philosophy that has been employed is to minimise the complexity of the data 
access and to minimise the memory overheads whilst at the same time providing the greatest 
flexibility for future enhancement. This has led to the extensive use of data access functions that 
hide the internal data structure from the user and allow for optimised storage.

The following Entity Relationship Diagram (See Figure 1) details the logical relationships 
between the geometry items.

"isaX 
member ,
\ of /

Cell

FIGURE 1 : Entity Relationship Diagram for the Smartfire geometry.

It should be noted that there are some redundancies in the logical ERD that have been introduced 
to meet known performance issues. For example it is clear that it is possible to determine which
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group a particular cell belongs to by searching the groups for the cell in question. In practice this 
would be very inefficient and compute intensive. Consequently a reverse relationship link is 
introduced explicitly to provide the required information quickly.

data[1..n] 

. index maof NEWEST Jf PRESSURE 7

group_cell [1 ..n]

CELL

———— |

———— O

face_data [1 ..n] 

V£CTOR_CLASS .-.- normal [1..n]

GROUP

face_num

group_number

adj_num [1..n

O--—-------
sourcej>atch

-

1 1

VOLUME_PATCH

v_coeff[1..n]

v_value [1 ~n

o-
P

,.-—>.

t

t
~(r

1
lum \ 
..n]

patct

i

FACE PATCH

flowjtype 
heatjtype

bd cell L

POINT_CLASS :: mid 
area

] prop [1..n]

data

i num_of_pts POINT

pt_num [1..n]

FIGURE 2 : The inter-relationships between geometry 
class objects in the physical implementation.

The figure (See Figure 2 above) shows some of the actual physical inter-relationships 
between the geometry class objects. It should be noted that the solid lines denote class data 
members. The dotted lines indicate implied or actual links to other objects. These links have 
generally been implemented as simple index values, rather than pointers, because of the variety of 
ways that the links are used and accessed by other objects. The figure is, by no means, complete 
because many of the cell class attributes would not fit on the limited size diagram.

The vector class does not appear on the geometry diagrams because it is little more than a 
utility class to be used for storage within more complex objects. The inclusion of the vector class, 
in this document, merely establishes the fact that vector mathematics have been used - where 
appropriate - to simplify the coding.

The number of elements in the arrays in the diagram, indicated by the [1 ..n] limits, are not 
indicative of the actual length of the array. The actual storage needs are determined by the type of 
the problem (number of variables to store) and the nature of the geometry itself.
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It should be noted that most of the arrays that hold geometry data are declared as 
dynamic arrays of pointers to objects (i.e. G_Class ** g_object_array;). This is not as flexible as a 
linked list storage but does have the advantage of allowing individual elements of the array to be 
replaced with new members if required. It is also possible to extend the storage quite simply by 
copying the pointers into a temporary array, extending the original array and then copying back 
the pointers. This is clearly a much more efficient strategy than copying the objects themselves, 
particularly for cases where the geometry objects contain significant amounts of data as member 
variables.

Some of the class functions (and data members) described in this document are for 
internal class use and should not be used by class users. This is particularly true of the 
Group_Class where garbage collection routines are defined.
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VECTOR CLASS

General Cartesian vector class with an array for the 3 components for the x, y and z co-ordinate 
directions (Access using "X", "Y" and "Z" constants defined in "constants.h"). This class is used 
to simplify numeric routines (using the overloaded operators that hide some of the looping) and 
storage allocation and access (in other classes). Generally this class is used to define data 
members of other classes.

class Vector_Class { 

public:

//=>Data members for vectors
// (3 component array with storage 0=x, l=y and 2=z). Use the X, Y and Z constants for access. 

Float_Type comp[ 3 ];

// Methods

//=>Constructor for a vector object. Sets default vector (0.0, 0.0, 0.0). 
Vector_Class( FIoatJType, FloatJType, FloatJType );

7^9//=>Retum the magnitude of the vector = sqrt( comp[X] +comp[Y] + comp[Z] ). 
FloatJType magnitude( void );

//— > Return the sum of the components of the vector. 
FloatJType sum( void );

//==> Negate all of the components of a vector. 
void negate( void );

//=> Display the vector components. 
void show( void );

//=> Like the constructor this sets the components of a vector object. 
void set( Float_Type, FloatJType, FloatJType );

//=> Overloaded assignment for vectors (copy).
Vector_Class& operator=( Vector_Class );

//==> Overloaded addition-assignment for vectors.
Vector_Class& operator^ Vector_Class );

//=> Overloaded addition-assignment for vectors when adding a float. 
Vector_Class& operatorf=( FtoatJType );
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//=> Overloaded subtraction-assignment for vectors.
Vector_CIass& operator-=( Vector_CIass );

//=> Overloaded subtraction-assignment for vectors when taking a float. 
Vector_Class& operator-=( FIoatJType );

//==> Overloaded multiplication-assignment for vectors.
Vector_Class& operator*=( Vector_Class );

//==> Overloaded multiplication-assignment for vectors when multiplying by a float. 
Vector_Class& operator*=( Float_Type );

//==> Overloaded division-assignment for vectors.
Vector_Class& operator/=( Vector_Qass );

//=> Overloaded division-assignment for vectors when dividing by a float. 
Vector_Class& operator/=( Float_Type );

//=> Overloaded multiplication for vectors.
Vector_Class operator*( Vector_Class );

//=> Overloaded division for vectors divided by floats. 
Vector_Class operator^ Float_Type );

//=> Overloaded division for vectors.
Vector_Class operator/( Vector_Qass );

//=> Overloaded addition for vectors.
Vector_CIass operator+( Vector_Class );

//=> Overloaded subtraction for vectors.
Vector_Class operator-( Vector_Oass );

//=> Returns the vector that has components as magnitude of source vector. 
Vector_Class abs( void );

//=> Overloaded multiplication for vectors with floats.
Vector_Class operator*( Vector_Class, FIoat_Type );
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POINT CLASS

Physical coordinate point class in 3 space dimensions. This class is used to simplify numerical 
routines and to tidy up storage in other objects. All of the mesh nodes (cell vertices) are allocated 
as an array of pointers to points as follows:

Point_Class ** point;
point = new Point_Class* [TOTAL_NUMBER_OF_POINTS+1] ; 
for ( i=l; i <= TOTAL_NUMBER_OP_POINTS; i++ ){ 

point [i] = new Point_Class( 0.0, 0.0, 0.0 );

// Example of class member access

// Setting point number 200 to have coordinates (x=0.5, y=1.3, 2=2.7) 

point [ 200 ]->set( 0.5, 1.3, 2.7 );

// Getting the displacement vector between point 25 and point 26 

Vector_Class displace = (*point[26]> - (*point[25] ) ;

class Point_Class { 

public:

//==> Coordinate values for x, y and z. 
FloatJType x, y, z;

// Methods

//=> Point constructor creates a default co-ordinate at (0.0, 0.0, 0.0). 
Point_Class( Float_Type, FloatJType, FloatJType );

//==> Show the coordinates of a point. 
void show( void );

//=> Set the coordinates of a point.
void set( FIoatJType, FloatJType, FloatJType );

//=> Overloaded operator for point assignment (copy). 
Point_Class& operator=( Point_Class

//=> Overloaded addition of points (adds co-ordinates). 
Point_Class operaton-( Point_Class );
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//=> Overloaded addition-assignment for points (add and copy result). 
Point_Class& operator+=( Point_Class );

//==> Overloaded division for points by a float (reduction). 
Point_CIass operator/( Float_Type );

//=> Overloaded division-assignment for points (subtract scalar and copy result). 
Point_Class& operator/=( FloatJType );

//==> Overloaded multiplication-assignment for points (times by scalar and copy result). 
Point_Class& operator*=( FIoat_Type );

//— > Calculate vector displacement between two points. 
Vector_Class operator-( Point_Class );

//==> Overloaded multiplication for points and floats.
friend Point_Class operator*( Point_Class, FIoat_Type );
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FACE CLASS

Faces are objects in their own right. E.g. a single brick cell has 6 faces whereas two adjoining 
brick cells have only 11 individual faces because the common face exists only once in a separate 
global face array. This global face array is defined as an array of pointers to faces.

Face_Class ** face;
face = new Face_Class* [TOTAL_NUMBER_OF_FACES+1] ;
for ( i=l; i <= TOTAL_NUMBER_OF_FACES; i++ ){

face[i] = new Face__Class( 4, 2 );

// Example of class member access

// Calculating the centre efface number 25 

face ( 25 ] ->calc_centre ( ) ;

// Accessing some face data (Not used in current version of the code)

face[30]->access(WALL_SHEAR_STRESS) = 0.3;

class Face_Class { 

private:

//==> The size of storage used (only used for debug mode bounds checking). 
int array_size;

//=> The data array slots for storage efface properties. 
FIoatJType * data;

public:

//==> TJie number of points around a face. 
int num_of_pts;

//=> xhe patch number associated with a face (or 0 if this face is internal). 
IntJType patch_num;

//==> The boundary cell indicator (0 if internal or non-zero is the cell number). 
IntJType bd_cell;

//=> Array of indices of face vertex points in a walk around the face. 
IntJType * pt_num;
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//=> The mid point of the face. 
Point_Class mid;

//=> The scalar area of the face. 
FloatJType area;

// Methods

//=> Constructor needs to know the number efface points and number efface properties. 
Face_Oass( int, int);

//—> Destructor.
~Face_Class( void);

//==> Calculates the face centroid and puts the result in mid. 
void calc_centre( void );

//=> Data access function gives back a reference to the requested data item. 
Float_Type & access( Var_Index_Type);

Appendix 11.5 Page 145-10 10



APPENDIX 5 : DATA DICTIONARY FOR GEOMETRY CLASSES IN SMARTFTRE

CELL CLASS

Cell objects are face bounded control volumes with their own collection of internal properties. 
Many of the properties used in the computation are cell centred however a few exist as cell-face 
properties where there will be a value (or item) for each of the faces in a cell. When using cell 
class access functions the local face indices are used rather than the global face numbering 
scheme. This means that internally the cell knows about faces 1 to n (where n is the maximum 
number of faces bounding this cell). The actual global indexed face numbers bounding this cell 
could be literally anything. The interrogation functions hide the index re-mapping to simplify 
access from the cell to the bounding faces. All of the separate cell-face arrays have the same 
indexing so that using cell-face index #1 inside a cell will refer to all of the cell-face properties of 
only one of the bounding faces. The cells are stored in an array of pointers to cells.

Cell_Class ** cell;
cell = new Cell_Class* [TOTAL_NUMBER_OF_CELLS+1];
for ( i=l; i <= TOTAL_NUMBER_OF_CELLS; i++ ){

cell[i] = new Cell_Class( i, 8, 6, 23, 5, 2 ); 
}

// Example of class member access

// Setting the newest value of pressure in cell number 7

cell[7]->access(NEWEST,PRESSURE) = 2.5e-5;

// Getting the 2nd internal face area of cell number 15 

float area = cell[15]->face_area( 2 );

// Finding the maximum Y coordinate of cell 53

float. y_max = cell[53]->find_max_coord(Y);

class Cell_Class {

//==> The following private data members cannot be accessed directly. You must use the data 
access functions provided later. Some of these data access functions are declared as 
returning a reference type (&) in which case they can be used on either side of an 
assignment satement. See the above examples for details of using the data access function. 
This is necessary to hide the complexities of least memory array storage.

private:

//=> Array of data values for storing cell properties. 
FIoatJType * data;
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//=> The number efface variables stored in a cell. 
int face_vars;

//=> Array efface value data accessed by function below. 
FIoatJType ** face_data;

//=> Array of differentials stored at the cell centre for all solved vars. 
Vector_Class * diff_data;

public:

//==> The number of vertex points of a cell. 
int num_of_pts;

//=> The number effaces forming the boundary of a cell. 
int num faces;

//==> This cells number in the global index scheme. 
Int_Type this_cell_num;

//=> The material property index for this cell. 
IntJType material;

//=> The group number which this cell belongs to. 
Int_Type group number;

//=> The volume source patch index for coefficient calculation. 
Int_Type source_patch;

//==> Array of point indices for the vertex points which make up this cell. 
Int_Type * pt_num;

//=> Array of face indices which make up this cell. 
IntJType * face_num;

//=> Array of adjacent cell indices (one for each cell face) (0 if boundary). 
Int_Type * adj_num;

//==> The local face index in the adjacent cell that adjoins this cell. 
Int_Type * cell_adj_to;

//=> The array of distances from the cell centroid to the middle of the cell faces. 
FIoat_Type * dist_to_face;

//=> The normal (perpendicular) distance to the cell faces. 
FIoat_Type * norm_dist_to_face;
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//=> The cell centroid point.
Point_Class mid;

//=> Array of outward pointing normal vectors (for each cell face). 
Vector_Class * normal;

//=> Array of convection fluxes through each face. 
Float_Type * convection;

//=> The in-face displacement vector between the centre of the face and the intersection point 
where a line joining the cell centres passes through the face, (for each cell face). 

Vector_Class * displacement;

// Methods

//—> Constructor for a cell. The arguments are used to allocate memory for internal cell 
storage. Arguments are as follows:-

The global cell number index of this cell, 
The number of vertices of this cell, 
The number effaces bounding this cell, 
The total number of all property values to allocate for, 
The number of solved variables to allocate for AND 
The number of cell-face properties to allocate for. 

CelI_Class( Int_Type, hit, int, bit, hit, int);

//=> Destructor.
~Cell_Class( void);

//==> Internal error management routine when allocation fails. 
void allocation failure( char* );

//=> Copy the NEWEST variable value to the LAST storage slot for the same variable. 
void copy_current_to_last( Var_Index_Type);

//=> Copy the NEWEST variable value to the OLD storage slot for the same variable. 
void copy_current_to_pld( Var_Index_Type);

//=> Copy the NEWEST value of a variable to another NEWEST variable slot. 
void copy_data( Var_Index_Type, Var_Index_Type);

//==> Locate the indices of all of the vertices of this cell. List into pt_num. 
Logical find_cell_pts( void);

//=> Check if a test point (argument) is within this cell volume. 
Logical point_within_cell( Point_CIass);
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//==> Find if any of the cell faces meet a domain boundary and set internal properties 
accordingly.

void find_boundaries( void );

//==> Calculate the position of the cell centroid. Result into mid. 
void calc_centre( void );

//=> Calculate the outward cell-face normals. Results into normal array. 
void calc_normals( void);

//=> Calculate the current cell volume (N.B. volume is a property in the data array). 
void calc_volume( void);

//=> Calculate all of the distances to the cell-faces. Results into dist_to_face array. 
void calc_dist_to_face( int);

//=> Calculate the normal distances to the cell-faces. Results into norm_dist_to_face array. 
void calc_norm_dist_to_face( const);

//==> Interpolates across a face for a particular variable and mode (E.g. 
interpolate(l,NEWEST,PRESSURE) would return the interpolated pressure across local 
cell-face 1 for the NEWEST PRESSURE property).

FloatJType interpolate( int, Mode_Type, Var_Index_Type );

//=> Interpolates the differentials for a variable.
Vector_Class interpolate_diffs( int, Var_Index_Type);

//==> Similar to interpolate except a simple 50 - 50 averaging scheme is used. 
FIoat_Type average( int, ModeJType, Var_Index_Type );

//=> Similar to interpolate_diffs except that a simple averaging scheme is used. 
Vector_Class average_diffs( int, Var_Index_Type);

//=> Calculates the displacement vector for each face. Results into displacement array. 
void calc_disp_vectors( void);

//=> Calculates the updated material property value for this cell. The result will be put into the 
correct slot in the data array.

void update_property( Var_Index_Type, Update_Mode);

//=> Return the maximum coordinate for this cell for a particular direction. 
FIoat_Type find_max_coord( int);

//=> Return the minimum coordinate for this cell for a particular direction. 
FloatJType find_min_coord( int);
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//=> Calculate the flow-upwinded density across a particular cell-face. 
FloatJType upwind_density( int);

//=> Calculates a vector velocity at the selected cell-face based on the velocity components in 
the centre this cell and the centre of the adjacent cell.

void calc_face_velocity( Vector_Class&, int);

//==> Calculates a correction vector based on non-orthogonal meshes. 
void calc_conjunction_vector( Vector_Class&, int);

//==> Calculates the temperature for a cell given a knowledge of the material properties and the 
current enthalpy value. Result into the correct slot in the data array. 

void calc_temperature( void);

//=> Calculates the turbulent viscosity value. Result into the data array. 
void calc_turb_viscosity( void);

//=> Calculates the buoyancy term from the properties and temperature. Result is put into the 
correct slot in the data array.

void calc_buoyancy( void );

//=> Calculates the velocity magnitude for combined U_VELOCITY, V_VELOCrTY, 
WJVELOCITY for a flow calculation.

FloatJType calc_velocity_magnitude( Mode_Type);

//==> Calculates the error in the sum of mass fluxes through the faces of this cell. 
FIoat_Type calc_continuity_error( void);

//=> Interrogates the appropriate cell-face to find the area. 
Float_Type & face_area( int);

//=> Interrogates the appropriate cell-face to find the face patch number (0 if internal). 
IntJType & face_patch_id( int);

//==> Numerical vector product routine consistently used in computations.
void add_differential_product( Var_Index_Type, int, Vector_Class);

//=> Calculates the dissipation rate differentials in this cell. Result into diff_data array. 
void calc_dissipation_diffs( Mode_Type);

//=> Calculates the kinetic energy differentials in this cell. Result into diff_data array. 
void calc_kinetic_diffs( Mode_Type);

//==> Calculates the enthalpy differentials in this cell. Result into diff_data array. 
void calc_enthalpy_diffs( ModeJType);
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//=> Calculates the generic var differentials in this cell. Result into diffjiata array. 
void calc_generic_diffs( Mode_Type);

//=> Calculates the velocity differentials in this cell. Result into diff_data array. 
void cak_velocity_diffs( Mode_Type);

//==> Calculates the corrections to the velocities based on pressure changes. Results into the 
correct slots in the data array.

Vector_Class calc_velocity_corrections( void);

//=> Calculates the wall friction terms for a particular cell-face. Results are stored in the 
correct slot in the face_data array.

void calc_friction_terms( int);

//==> Calculates the turbulent generation rate for this cell. Result into the data array. 
void calc_turb_generation( void);

//=> Calculates the pressure gradients in this cell. Results into the data array. 
void calc_pressure_grads( void );

//=> Calculates cell-face convection. Results into the convection array. 
void calc_convection( void);

//==> Adds the volume source contribution to the return float value for a particular variable. 
void add_volume_source( Var_Index_Type, Float_Type& );

//==> The user data access function that refers to the items in the data array. 
FloatJType & access( ModeJType, Var_Index_Type);

//=> The user face data access function that refers to the items in the face_data array. 
FloatJType & access_face( int, Var_Index_Type);

//=> Returns the effective in-cell viscosity for both laminar and turbulent cases. 
FIoat_Type effective_viscosity( ModeJType);

//=> The user differentials access function that refers to the diff_data array. 
Vector_CIass & diffs( Var_Index_Type );
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FACE PATCH CLASS

The boundary face patch class is used to collect and store data about a boundary to the domain. 
These properties are applied only to faces. The various properties indicate to the CFD code how 
the boundary properties should be used in the computation of new values.

class Face_Patch_Class { 

public:

//=> The flow type indicator (WALL, WALL2, INLET, OUTLET or SYMMETRY). 
int flow_type;

//=> The heat type indicator (DIRICHLET, NEUMAN, CONVECTIVE, ADIABATIC). 
int heat_type;

//==> Extra variables boundary type indicator (0=symmetry l=fixed value 2=fixed flux 3=linear 
flux).

int * bound_type;

//=> The property array that stores the quantities associated with the above conditions. 
FloatJType * prop;

// Methods

//==> Constructor needs to know the maximum number of property values to be stored. 
Face_Patch_Class( int);

//=> The destructor.
~Face_Patch_Class( void);
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VOLUME PATCH CLASS

The volumetric source class stores data about sources that are applied within cells. These sources 
are applied to solved variables to indicate an influx (or decrease) of a particular property from the 
domain.

class VoIume_Patch_Class { 

private:

//=> The array of coefficient values (unused at present). 
Float_Type * v_coeff;

//=> The array of volume source values (one for each solved variable). 
Float_Type * v_value;

//=> Parameter used in time varying sources.
FloatJType * v_ramp_parameter;

//=> Indicator that this variable has a ramped source. 
Logical * v_ramped;

//=> Indicator that a particular variable has a volume source available. 
Logical * v_stored;

public:

//=> Constructor needs to know the number of solved variables. 
Volume_Patch_Class( int);

//=> The destructor.
~Volume_Patch_Class( void);

//==> Interrogation function refers to the coefficient values. 
FloatJType & coeff( Var_Index_Type);

//==> Interrogation function refers to the volume source values. 
FIoatJType & value( Var_Index_Type);

//=> Interrogation function refers to the storage indicator. 
Logical & stored( Var_Index_Type);

//==> Interrogation function refers to the ramped source indicator. 
Logical & ramped( Var_Index_Type);
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//=> Interrogation function refers to the ramp parameter.
Float_Type & ramp_parameter( Var_Index_Type);
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GROUP CLASS

The group class objects maintain a list of cell indices that constitute a special grouping that should 
have different solution techniques applied. The range of different conditions that can be applied is 
limited at present however these can still be useful in situations where the prevailing conditions 
within a group are radically different from another group.

class Group_Class { 

public:

//=> The global number of this group.
Int_Type group_number;

//==> The total number of cells in this group. 
Int_Type num_cells_in_group;

//=> An array of indices of all of the cells in this group. 
IntJType * group_cell;

// Methods

//=> Constructor needs to know the number of this group and the number of cells initially in 
the group.

Group_Class( IntJType, Int_Type );

//==> The destructor.
~Group_Class( void);

//=> An internal function used to garbage collect in a modified group. 
void compact_list( void);

//=> An internal function used to add more storage to a group. 
void extend_storage( Int_Type);

//==> An internal garbage collection routine.
void contract_storage( IntJType);

//=> A function to search for a global cell index and report its presence in this group. 
Logical find_index( Int_Type, Int_Type& );

//=> Internal function adds the cell index to this group. 
void add_cell( IntJType);
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//—> Internal function sets the group cell item to be a particular cell index. 
void set_cell( IntJType, Int_Type );

//=> Reports on the current contents of this group. 
void show_cells( void);

//=> Function to move a cell from another group to this one (All memory allocation and 
garbage collection is handled internally).

void move_group_cell( Group_Class&, Int_Type);

// Access routines to data stored in the variables.

//=> Sets the number of group iterations for a particular variable.
void set_solver_group_iterations( Var_Index_Type, Int_Type );

//==> Sets the relaxation parameter for a particular variable.
void set_solver_group_relaxation( Var_Index_Type, FIoat_Type);

//=> Sets the residual value for a particular variable.
void set_solver_group_residual( Var_Index_Type, FloatJType);

//=> Sets the new group solver convergence tolerance for a particular variable.
void set_solver_group_tolerance( Var_Index_Type, Float_Type);

//==> Returns the current number of iterations for a particular variable.
Int_Type get_solver_group_iterations( Var_Index_Type);

//==> Returns the current relaxation parameter for a particular variable.
Float_Type get_solver_group_relaxation( Var_Index_Type);

//=> Returns the current solver residual for a particular variable.
FloatJType get_solver_group_residual( Var_Index_Type);

//=> Returns the current solver tolerance for a particular variable.
FloatJType get_solver_group_tolerance( Var_Index_Type);
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APPENDIX 6 : SMARTFIRE CONTROL ARCHITECTURE AND BLACKBOARD

SMARTFIRE

Interim development report on the
Control Architecture and Blackboard

used in the SMARTFIRE system

PURPOSE OF DOCUMENT:

- Information about the newly implemented CFD blackboard architecture.

- Information about access to data on the CFD blackboard.

- Information about the control layer of SMARTFIRE.

- List of data and control items available via the blackboard.
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Points to note about usage of the blackboard:

Most of the blackboard data and control items are accessed directly. Ideally data access 
should be functional with appropriate get and set functions that would allow all of the 
data to be private. This is a throwback to the nature of the original legacy code where the 
control and status flags were all, essentially, public.

Because of the complexities of group solvers the blackboard DOES NOT maintain copies 
of the group information, which would be very difficult to maintain. The groups also have 
the potential to be very large and this would lead to inefficient memory usage in certain 
cases. Access functions have been provided that "punch" through the blackboard to the 
relevant data structures in SMARTFIRE. This is a temporary measure to allow research 
even as the group capabilities are being developed.

The variable class and solved variable class structures are not easily duplicated in the 
blackboard. It has been decided to use an alternative approach using simple arrays to store 
the control and status information for individual variables. Accessing the data is 
correspondingly more awkward but the implementation is much easier. See the examples 
for details about accessing variable or solver information.

Many of the control flags are linked to other control data. For example the 
"use_transient" logical flag is closely linked to the values of "delta_time" and 
"num_of_time_steps". Consequently changes to some blackboard items cannot be 
effected in isolation or unpredictable behaviour will result. This is one of the reasons why 
functional access is so desirable.

Control must not be used to switch from a less complex state to a more complex one. For 
example the CFD code can not switch from processing as a steady state run to a transient 
run if it started out as a steady state run. This is because of memory allocation and 
initialisation optimisation that are tailored to the type of problem being run. Conversely it 
is generally and theoretically possible to switch from a more complex to a less complex 
processing state.

Similarly to above point, the code cannot create variables at run time while it is 
processing. If extra variables (e.g. turbulent quantities) are needed at a later stage of the 
simulation then they must have been known when the run started (although - once created 
- they can be disabled until required).
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Current blackboard architecture:

class CFD_Blackboard_Class { 

public :

//
// Constructor and Destructor.
//

CFD_Blackboard_Class( void ); 
~CFD_Blackboard_Class( void );

//
// Functions to update the Blackboard or the CFD code control structures
//

update_cfd_to_blackboard( void ) ; 
update_blacJcboard_to_cfd( void ) ;

//
// Temporary "punch-through" code to allow groups to be examined and changed.
//

void set_group_solver_iterations ( const Int_Type group_num,
const Var_Index_Type& var_point, const Int_Type num_iters ) ;

void set_group_solver_relaxation ( const Int_Type group_num,
const Var_Index_Type& var_point, const Float_Type relax_value )

void set_group_solver_tolerance( const Int_Type group__num,
const Var_Index_Type& var_point, const Float_Type tol_value );

Int_Type get_group_solver_iterations ( const Int_Type group_num,
const Var_Index_Type& var_point ); 

Float_Type get_group_solver_relaxation( const Int_Type group_num,
const Var_Index_Type& var_point ); 

Float_Type get_group_solver_tolerance( const Int_Type group_num,
const Var_Index_Type& var_point ) ; 

Float_Type get_group_solver_residual( const Int_Type group_num,
const Var_Index_Type& var_point );

//
// Copies of the domain, control and status objects from the CFD code.
//

Domain_Class bb_domain;
Control_Class bb_control;
Status_Class bb_status;

//
// Solved variable control and status arrays.
//

Int_Type * bb_solver_max_iterations;
Int Type * bb_solver_max_inner_iterations;
Int~~Type * bb_solver_max_group_iterations ;
Solver_Class_Type * bb_solver_class ;
Solver_Type * bb_solver_type ;
Float Type * bb_solver_relaxation ;
FloatJType * bb_solver_false_time_step ;
Float~~Type * bb_solver_residual ;
Float~~Type * bb_solver_solution_error ;
Boolean * bb_solver_use_false_time;
Boolean * bb_solver_use_solver_relax;
Boolean * bb_solver_used;
Boolean * bb solver use value solver;
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I I
I/ Calculated variable control and status arrays

Res__Mode_Type * bb_variable_residual_mode ;
Res_Method_Type * bb_variable_residual_method;
Float_Type * bb_variable_tolerance;
Float_Type * bb_variable_relaxation;
Float_Type * bb_variable_residual;
Float_Type * bb variable_monitor__value;
Boolean * bb~~Variable_source_available,
Boolean * bbjva^iable^se^inea^relax;
Boolean * bb variable used;

// cfdjDlackboard MUST be a pointer to a blackboard object and the 
// blackboard object MUST be "NEWed" after the problem set-up but 
// prior to the first process_step. This is so that the sizes used 
// for dynamic memory allocation (in the blackboard) are correct for 
// the problem being run. The BB object should also be deleted before 
// the program exits or returns.

LOCATION OF STORAGE CFD Blackboard Class * cfd blackboard;
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Examples of access to the "cfd blackboard":

(1) Setting the number of iteration sweeps to 100 for subsequent processing:

cf d_blackboard->bb_control.num_of_sweeps = 100;

(2) Getting the number of groups:

num_groups_used = cfd_blackboard->bb_domain.num_of_groups;

(3) Getting the mass error for a flow simulation:

if ( cfd_blackboard->bb_control.use_flow ){

current_mass_error = cfd_blackboard->bb_status.mass_error; 

}

(4) Putting a new relaxation into the UJVELOCITY solver:

cf d_bladcboard->bb_solver_relaxation [SOL [U_VELOCITY] ] = new_relax_value ;

(5) Putting a new value of convergence tolerance into the PRESSURE:

cf d_blackboard->bb_variable_tolerance [VAR [ PRESSURE] ] = new_tolerance_value ;

(6) Access to the group solver settings.

old_tolerance = cfd_blackboard->get_group_solver_tolerance( in_group, U_VELOCITY ) ; 

cfd blackboard->set_group_solver_tolerance( in_group, U_VELCX;iTy, new_tolerance ) ; 

old_relaxation = cfd_blackboard->get_group_solver_relaxation( in_group, ENTHALPY ) ; 

cfd blackboard->set_group_solver_tolerance( in_group, ENTHALPY, new_relaxation ) ; 

current residual = cfd blackboard->get_group_solver_residual ( in_group, U_VELOCITY );
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CFD code "high-level" code architecture in control layer:

// Other initialisation routines.

cfd_code_link( INITIALISE_CFD, process_status );

cfd_blackboard = new CFD_Blac3cboard_Class;

cf d_blackboard->update_cfd_to_blac3cboard () ;

// KBS call if required.

* —————— 1

// Implicit while loop ( actually this is implemented as repetitive 
// calls from a dedicated event timer handler in the GUI code layer ) .

while ( process_status = PROCESSING_CFD ) { 

* —————— ]

// Task management can be performed in this block. 

do_pre_sweep_]cbs_reasoning() ; // KBS call before sweep, 

cf d_blackboard->update_blackboard_to_cf d () ; 

cfd_code_lin3c ( PROCESS_CFD, process_status ) ; 

cf d_blackboard->update_cf d_to_blackboard () ; 

do_post_sweep_)cbs_reasoning() ; // KBS call after sweep.

// KBS call if required.

cf d_code_link ( TERMINAT£_CFD, process_status ) ;

delete cfd_blackboard;

// Other tidy-up routines.
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APPENDIX 6 : SMARTFIRE CONTROL ARCHITECTURE AND BLACKBOARD

Control and status information in the DOMAIN, STATUS and CONTROL objects:
//
// Domain of problem class

class Domain_Class { 

public :

int
Int_Type
Int_Type
Int_Type
Int_Type
int
int
int
int
int
int
int
int
int
int
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Float_Type
Float_Type
Float_Type
Int_Type
Float_Type
Float_Type
Boolean
Boolean

dimensions; 
num_of__cells ; 
num_of_points; 
num_o£_faces; 
num_of_groups ; 
max_cell_faces; 
max_cell_points; 
max_face_points; 
max_band_width; 
max_face_yalues; 
max_cell_face_vars; 
max_cell_values; 
max_stored_yariables; 
num_of_solved_vars; 
num_of_calc_vars; 
num_of_properties; 
num_of_face_patches; 
num_of_volume_patches 
num_of_materials ; 
nx_cells; 
ny_cells; 
nz_cells;
ref erence_teiDperature ; 
reference_density; 
reference_pressure; 
pressure_ref_cell; 
external_pressure; 
gravity; 
is_cartesian; 
is structured mesh;

// Dimensions used ( always 3 in cwnn++ )
// Number of cells in the domain
// Number of grid points in the domain
// Number of faces in the domain
// Number of cell groups
// Maximum number of faces in a cell
// Maximum number of points in a cell
// Maximum number of points in a face
// Maximum width of sparse solver matrix storage
// Maximum number of face property values
// Maximum number of cell face variables
// Maximum number of "slots" for cell values
// Max number of stored cell variables
// Number of solved variables
// Number of calculated variables
// Number of different property variables
// Number of different boundary patches specified
// Number of different volume patches specified
// Number of different materials specified
// Cartesian domain cell extent in x direction
// Cartesian domain cell extent in y direction
// Cartesian domain cell extent in z direction
// Reference temperature if specified
// Reference density if specified
// Reference pressure if specified
// Cell number for cell pressure reference
// The actual external pressure
// Value of gravity (-)ve is downwards
// Flag to indicate cartesian like domain
// Flag to indicate structured mesh

// Status of problem class

class Status Class {

public :

Int_Type
Int_Type
Int_Type
Float_Type
Float_Type
Float_Type
Boolean
Boolean
int

iteration_count; 
last_saved_iteration; 
time_step ; 
sim_time; 
mass_error; 
elapsed_time; 
doing_restart; 
memory_is_allocated; 
geom_version;

// Current outer iteration sweep number
// Last iteration number saved into restart database
// Current transient time step number (transient only)
// Total simulation time for transient runs
// Maximum mass error for this sweep
// Total elapsed c.p.u. time
// Flag to indicate the current run is a restart
// Status of memory allocation
// Version of geometry specification file
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// Control of problem class

class Control_ciass { 

private :

Boolean 

public :

debug item[ MAX VARIABLES+1 ];

Float_Type delta_time; 
Diff_Scheme_Type difference_scheme;

Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
Int_Type
int
int
Float_Type
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
int
Algorithm_Type
Boolean
Boolean

num_of_time_steps ; 
turbulence_model; 
probe_cell_number; 
num_of_sweeps; 
num_of_f low_sweeps ; 
ke_source_method; 
debug_start_iteration; 
debug_end_iteration; 
debug_start_time_step ; 
debug_end_time_step ; 
debug_start_cell; 
debug_end_cell; 
print_frequency; 
sweep_adapt_every ; 
sweep_refine_every; 
tolerance; 
be_silent; 
use_heat; 
use_f low; 
use_boussinesq; 
use_solidification; 
use_cross_product; 
use_turbulence; 
use_output_var; 
use_output_phi ; 
use_f lowvis_phi ; 
use_restart; 
use_transient; 
use_wall_2;
use_pressure_ref_point; 
use_pressure_ref; 
use_density_ref; 
use_temperature_ref; 
use_external_pressure; 
create_restart; 
use_refinement; 
use_adaption; 
use_volumetric_sources; 
use_debug_dump ; 
use_log_file; 
use_restart_dumps; 
use_table_file; 
started_table_file; 
restart_dunp_interval ; 
flow_algori thm ; 
show_storage_info; 
check »rei" allocation;

// Time step size for transient runs
// Difference scheme to use
// {i.e. UPWIND, HYBRID, POWER_LAW, EXPONENTIAL}
// Number of time steps to use in transient run
// Turbulence model to use (KE_MODEL only)
// Cell to look in for monitor information
// Number of sweeps (outer iterations) to do
// Number of flow algorithm sweeps to do
// Kinetic energy source method
// Debug switched to a range of sweeps only

// Debug switched to a range of time steps only 

// Debug cell range

// Frequency of run time sweep info
// Mesh adaption and refinement parameters

// Global default convergence tolerance value
// Do not use the screen for output
// Activate the heat solver
// Activate the flow solvers
// Switch to select buoyancy calculation method
// Redundant switch to allow for solidification
// Activate cross-product diffusion terms
// Activate turbulence (solves turbulent vars)
// Create a var result file
// Create a PHI result file
// Use Flowvis format for PHI file
// Read restart info and continue processing
// Transient simulation (steady state otherwise)
//A boundary for PHOENICS compatibility
// Switch to use a cell for pressure reference
// Switch to use a pressure reference
// Switch to use a density reference
// Switch to use a temperature reference
// Switch to use an external pressure value
// Create a restart file at the end of this run
// Switch to allow mesh refinement (NA)
// Switch to allow mesh adaption (NA)
// Flag to indicate use of volume sources
// Flag to write debug data to file
// Keep a log file if active
// Flag to allow creation of restarts each sweep
// Residual and monitor output to a graph file

// Frequency of debugs (l=every sweep)
// Switch for flow algorithm (SIMPLE only)
// Switch for storage information debugging
// More exhaustive memory allocation information

inline Boolean & use_debug( const Var_Index_Type& var_point ) { 
return debug_item[ var_point ];
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