

Acknowledgements.

There are several people who I wish to thank for their help during the time that it has taken to

accomplish this work and for the writing of this thesis.

My supervisors, Professor Mark Cross and Doctor Stephen Johnson, for their support and

guidance, and especially their overwhelming patience.

My colleagues Constantinos Ierotheou, Peter Leggett, Kevin McManus, Chris Walshaw,

Jackie Rodrigues, Chris Bailey and Peter Chow who have assisted me in varying degrees for

the completion of this thesis.

Finally, to my wife Elisabeth and my parents for supporting me on this long journey.

11

Abstract.

The aim of this thesis is to develop software and strategies for the exploitation of parallel
computer hardware, in particular distributed memory systems, and embedding these strategies
within a parallelisation tool to allow the automatic generation of these strategies.

The parallelisation of four structured mesh codes using the Computer Aided
Parallelisation Tools provided a good initial parallelisation of the codes. However, investigation
revealed that simple optimisation of the communications within these codes provided an even
better improvement in performance. The dominant factor within the communications was the
data transfer time with communication start-up latencies also significant. This was significant
throughout the codes but especially in sections of pipelined code where there were large
amounts of communication present.

This thesis describes the development and testing of the methods used to increase the
performance of these communications by overlapping them with unrelated calculation. This
method of overlapping the communications was applied to the exchange of data
communications as well as the pipelined communications.

The successful application by hand provided the motivation for these methods to be
incorporated and automatically generated within the Computer Aided Parallelisation Tools.
These methods were integrated within these tools as an additional stage of the parallelisation.
This required a generic algorithm that made use of many of the symbolic algebra tests and
symbolic variable manipulation routines within the tools.

The automatic generation of overlapped communications was applied to the four codes
previously parallelised as well as a further three codes, one of which was a real world
Computational Fluid Dynamics code.

The methods to apply automatic generation of overlapped communications to
unstructured mesh codes were also discussed. These methods are similar to those applied to the

structured mesh codes and their automation is viewed to be of a similar fashion.

111

Contents

1

INTRODUCTION...... teeseessessesssssstsatsstsatt st st Rt Rt SRS S RS0S40 0580 000000000000R0SNSONEORSSRRSSHSER ISR S SRS RSSO RS 1
1.1 WHY PARALLEL PROCESSING?.....cuteiiitiiiiiititecteete et et estest e te ettt e eaeeeseeeseneeeseeneeeneensenseesenssensensesssnnneens 1
1.2 PROBLEMS OF CREATING PARALLEL CODES.ccueoviouietieteenietieieeeteeeeeeseeeveeaeeneeereeseessesseeseeseerseenesreenneeses 2
1.3 REQUIREMENTS OF PARALLEL PROCESSING.c.oveiitiiiieeietictcctccteeeteit ettt ev ettt ettt ne et eaeene s 5
1.4 THE USE OF MESHES IN COMPUTATIONAL MECHANICS CODES.ccveotiouiereerieneeneeeeeneeeeeeereeeesesesaeeaeenenns 6
1.5 PARALLELISATION STRATEGIES.cecetteutrutetiitetiitistestesseteseeesseseeseeseeseessesessesssessssessensesessensensessassessessons 7
1.6 COMMUNICATION UTILITIES. .. .ceutiiitieietietiteeeteeseeeseeteeteseeaeeaeeseeseeseesseseeneeseeneeseesesseesessessessessanssressesees 11
1.7 DOMAIN DECOMPOSITION OF A 1-DIMENSIONAL JACOBI SOLVER.c.coeouierieeieeeenieieeeeeseseseieeseeseeenns 13
1.8 IMPLEMENTING RECURRENCE RELATIONS USING PIPELINES.cveieiieitieeeeeeeteeee e see e s enes 16
1.9 ITERATION GROUPING.ooutiuiriiimiiiiatietieteetitetieteeteaeesesesseteeseneseseesesesessssssesesseeseeneeeeeeeeeneeeeeseseeaseeneeneanas 19
1.10 RESEARCH OBJECTIVES.ccutittitiaitteeteettetesiess et steestesteeeaeeeseeeaseseressneesaessessaeeeeessseeesesseeeseseseeaneens 20
1.11 OUTLINE OF THESIS. ..ottt ettt et ete et seteste e eeesaeeeeeeaeeeeesse et eseeeaeeeeeeeeeseeaeeenens 21
1.12 CONCLUSIONS. ...ouiiiiiitiietctece ettt ettt teete et eas et et e teeesssesaesaeeate e eneeneeeeeneseeeesaseaeeeeseneenas 22

COMPUTER AIDED PARALLELISATION TOOLS (CAPTOOLS). c.uuueeereieernresesnsssesssssassssassnsans 23
2.1 CAPTOOLS. ...ttt ettt ettt et e e e e e ee et e et et e et e e e e e eseess e s eeseeseeeeeeseeseaes 23
2.2 USING CAPTOOLS TO PARALLELISE A STRUCTURED MESH COMPUTATIONAL MECHANICS CODE. 23
2.3 LOADING THE SERIAL CODE......c.eititiiiiuietetietestese et etee et eeeeeeeeee et eeeee e e e e e e e s e es e e e e oo 24

23,1 CALL GRAPH. ..ottt sttt ettt ettt e e et e e e e e e et e e e e e e e e e e, 24

2.3.2 CONTROL FLOW GRAPH.ootiitiiiiiieietieteetee ettt ee e ee e e e e e e e e e e eens e oo 25
2.4 DEPENDENCE ANALYSIS. ...tttiiitiittiiiiieitreeteeetreetee ettt e eteeseeeeeeeeseeee e e e e s ee e e e e e e e 30

2.4.1 DEPENDENCE TYPES. ...cuotiiiiitiiiitt ettt sttt ettt e e e e e e e e e e e e e 30

2.4.2 DEPTH DEPENDENCE.coiitiitiittniiietieeste sttt ettt e e et e e e st e e e e e e e e e oot e 31

2.4.3 EXAMPLE OF A DEPENDENCE GRAPH.cooutiiiiiiiieeeeeeeeee oo 33

2.4.4 LOOP NORMALISATION.cttimittititatieiteniteesteeeine et e eeeeeaeeeeeeeeseeeeeesee e e e e e et oo 33

24.5 CONTROL DEPENDENCE CALCULATION. ..cc.corttitiitiietieiieiteeeeeeee e e e e e e oo 34

2.4.6 DEPENDENCE ANALYSIS. ..ooiiiiiiouieiteniteiestt e aten ettt e et ee et e e e e e e e e e e e e e eee e oo 34

2.4.6.1 Symbolic Inequality Disproof AIOrithm.........c.ocoiviiiiiiiiiieeeieeeeeeeeeeeeee e 35
2.4.6.2 Inference ENGINE.c.ocoooiimiiiiiiiiii e e 37
2.4.6.3 Interprocedural ANalysis.cooooiiiiiiiiiiiiiiic e 39
2.5 SYMBOLIC VARIABLE MANIPULATION.coiiiiiiiiiiiiiiientcnt ittt ettt 39

2.5.1 SYMBOLIC VARIABLE MANIPULATION UTILITIES.covttiitieiieees e 41

1v

2.6 DATAPARTITIONING.coeeeiiiitieeetrieiteeetteeeteeeteeeeeteeetseeeeseassseesseessseeanseeasnesssseaesaseesanbeeesateeesnseeennnnenane 42
2.7 EXECUTION CONTROL MASKS. .utiiiiiiiiiiiieeeeeitee e ettt e eetteeeeteee e ttaesssaeeesanseeeassaeaeassbaeessasbeeasssabenessnsnens 45
2.8 CALCULATION, MIGRATION AND MERGING OF COMMUNICATIONS.ccoviteiriieeereenrreeeereennresensveessneeans 47

2.8.1 COMMUTATIVE OPERATIONS.oiiitiieureiitteeiiteeeteeeeieeeteeesaeesaseessseennsesssasesssaessseeesseessnsessnneesansens 47

2.8.2 CALCULATION OF COMMUNICATION REQUESTS. ...uvvitietiiiiiiieeeteeeeireeeeeiteeseseiteeesseseeesssnneessaseneenns 47

2.8.3 MIGRATION AND MERGING OF COMMUNICATIONS.coviiitieiteeuieiteesseesseeeeseesseeseseensasaseesssenssnenes 49
2.9 GENERATION OF COMMUNICATIONS.ccoiutieiuiieittieeiteeeeteeeeteeesteeeseeeseesseeesssessseesssesessssenssesessenssssssessesans 53
2.10 FINAL CODE GENERATION.cceitiittttttiiiitteessaottteeeeeiessaeaeaesneeessrssaeeesebassesesasssnressassessssseseesssssseeseaes 53
2.11 TRANSFORMATIONS......cetittttiutiteeiteereitreaeitseeesisseseasssessssseesseseessseesasteeasssssseessasensssreesssseseesseseensseeesns 53
2.12 CONCLUSIONS.etiitiiitetieetee et te et aeesesttaeae e s teesseeesssaesseessseessentseentseesesesnsaensseesessentneennesenssseenns 54

3 PARALLELISATION OF STRUCTURED MESH COMPUTATIONAL MECHANICS CODES. 55

3.1 INTRODUCTION.coutiutiuiiteitiriteitett et eetete st estesseessessesseesseesseseeseeessasessessseseeseensestesnsesnsesseenseensesteeneserseseas 55
3.2 2-D HEAT DIFFUSION CODE (FAB).....ooi ettt e et ee e e e e e e e e e e e e e e e eee e e e e s e e enenneseaaeas 55
3.3 TEAMKEL oottt ettt et eae et e r e a e et e et et e et e e e e teeaeenaeetesreeanas 66
3.4 APPLUL ..ottt ettt e bttt ettt e te et e seeeeae e e e neeeneereeaneeaeas 75
3.5 ARCBD . ettt ettt te et e bttt e re et et et e ete et e er et e ete st eeaesns 84
3.0 CONCLUSION. ...cooiiimtiiiittettete et et et e st e it et e ae e bt eaaeese e s s e seetseseemeeeseseeeteeneeeseeseenesassenseemeeenesnesaeenneeaneerenaees 86

4 APPLICATION OF OVERLAPPING COMMUNICATIONS FOR STRUCTURED MESH

COMPUTATIONAL MECHANICS CODES....... . 87
4.1 INTRODUCTION......ciiuiiiiitiitetentettet e e ste st e ste s eeateteeteeseeeseeseeseeseeae et et s eneeanenneseeenseeeeeenseeeeeeeeesanssssesseenes 87
4.2 COMMUNICATIONS IN DISTRIBUTED MEMORY SYSTEMS.c.vtiuiimieueeeeeeeeeeeeeeeeeeeeeeeeeesssesesseessseseensens 88
4.3 HARDWARE FOR ASYNCHRONOUS COMMUNICATIONS.ccevimiiaiieieteeeeeeeeeeeeeeeeeeeeeeeseessesseseeseeseessenens 92
4.4 ASYNCHRONOUS COMMUNICATION UTILITIES.ooveivieuieiereeeeeieeeeeeceeeeeee e eeeeeeeeeeee e e seee e s eeseees e esennanns 93
4.5 SIMPLE OVERLAPPING OF EXCHANGE COMMUNICATIONS.cvoviuviteiueeeteeeeeeeeeeeeeeeseee e e 94
4.6 PARTIAL LOOP OVERLAPPING USING LOOP UNROLLING.vouvimeeeteeieeeeeeeeeeeseee e e oo 99
4.7 PARTIAL LOOP OVERLAPPING WITH A CONDITIONAL STATEMENT......cveteeeeeeeeeeeeeeeesoeeoee oo, 102
4.8 PIPELINES.coiiiiiiiiitietiet ettt ettt e e e ettt e et e et e e et e e e e e e e e e e e e e e e e e 106
4.9 CONCLUSION. ...ttt ittt sttt e ettt eae e st e eeteeae et e e e e eeeeeeeeese e e s e e e s e e e 111

5 THE AUTOMATIC CODE GENERATION OF OVERLAPPING COMMUNICATIONS FOR

STRUCTURED MESH COMPUTATIONAL MECHANICS CODES. ceeeeesensnsssen 112
5.1 INTRODUCTION.....ciitiitiiittitticttcti ettt ettt ettt e e e e e e e s e e e e e e e et e e 112
5.2 EXCHANGE COMMUNICATIONS.otiiiuiiutritnntntienteaeettentessesteessaeseeee e e ees e e e e s oo 113

5.2.1 SELECTION OF OVERLAPPING TECHNIQUE.coucoutiuiiuieieneeeee e 114

5.2.2 CALCULATION OF THE LEGALITY AND PROFITABILITY OF SIMPLE OVERLAPPING
COMMUNICATIONS......eetentieitiieneeteet ettt s e et e et a s e st es s e s eeneeeeeae e e eeee e s ene e e e e 114
5.2.2.1 Sink Command with No ‘Local’ Surrounding Loops.cccovveumeomemoeeeoeoooooooo 115

5.2.2.2 Sink Command with Surrounding Loops (Not Common to Source Command). 119

A%

5.2.2.3 Source Command and Sink Command in Different Routines.............c.cceerverriieenneerenennnnne 121
5.2.2.4 No Time Consumers outside Surrounding LOOPS.ccccccerverierirneeiicciiiiiiiceienie s 124
5.2.2.5 Testing of the Simple Overlapping Method.c..cccoueiiinininincnicicnen e 124
5.2.3 CALCULATION OF THE LEGALITY AND PROFITABILITY OF PARTIAL LOOP OVERLAPPING. 126
5.2.4 CALCULATION OF PARTIAL LOOP OVERLAPPING WITH LOOP UNROLLING.ceoveruiirnierreniennnen. 134
5.2.5 MERGING OF SYNCHRONISATION POINTS.cccueiiiriiriiriinienieieieeteceeecee s escssc e e e s ense e 135
5.2.6 PASSING OF SYNCHRONISATION VALUES BETWEEN ROUTINES........c..coeevetiereerenieenennieeeneeeeeeneenes 141
5.2.7 GENERATION OF OVERLAPPED COMMUNICATION.ccceeiiriririeneentieeresesteesesseessesseessesssesssesesnss 143
5.2.7.1 Generation of Partial Loop Overlapping with Loop Unrolling.c.ccccecveinieninincnennnen. 144
5.2.77.2 Generation of Partial LoOp OVErlappingcccceirerieurrirreeienieieeiseeeeeeiesese e 146
5.2.7.3 Generation of Simple OVerlapping..........cccoevvevierieeeinirieese et 147
5.2.7.4 Communications with Several Sinks using Different Overlapping Methods.......................... 147
5.2.8° VALIDATION OF THE OVERLAPPING COMMUNICATIONS GENERATION.ccoemrurereereerearerenennes 148
5.3 PIPELINES. ...ttt ettt ettt ettt b e bt et e et et e st enseae e st e aseteeseessesetensensereeteeteens et e eteenseeeensens 149

5.3.1 GENERATION OF THE CONDITIONAL STATEMENTS AND THEIR RELATED OVERLAPPED RECEIVE
COMMUNICATIONS.utiitiriesttesteete e steeeteeteeeteeetteeseseseestesstesssesseesteesaesesesasesesesseseseneeesaeesnnesareeseeeseeens 155
5.3.2 GENERATION OF THE FIRST OVERLAPPED RECEIVE COMMUNICATION OF THE PIPELINE AND THE
RECEIVE SYNCHRONISATION POINT. ...cuuoiiiiiiiiiieiiecee ettt eeee e ee e e e e s e eeeeseaeeeeneeeeeaeseene s 157
5.3.3 THE GENERATION OF THE OVERLAPPING SEND COMMUNICATION AND THE SEND
SYNCHRONISATION POINTS. ...couiiitiiiiieieceteeeee et ettt et e e e et e e et eeeaeeeaeeeeaeseseeeneseeseneeeneseseressenes 158

5.4 CONCLUSIONS ..otttiiitiieet et e e e 159

6 RESULTS FOR AUTOMATIC CODE GENERATION OF OVERLAPPING

COMMUNICATIONS FOR STRUCTURED MESH COMPUTATIONAL MECHANICS CODES.160
6.1 INTRODUCTION.cootiitiriiiitintirte ettt ettt e st etseteete et et eeeeentetteeae s e eeseeeeeeeeeeeeeeese e e e s eess s s enesees e e e, 160
6.2 2-D HEAT DIFFUSION CODE (FAB)......oootiieeie et e e e e 160
6.3 TEAMKEL. ..ottt et e e e e et e et e e e e e e et 164
6.4 APPLUL ..ot 166
0.5 ARGCBD. ..ottt e e e et 171
6.6 APDPSP. e e e e 176
6.7 APPBT. ..o ettt e e e 178
6.8 INDUSTRIAL CFID CODE.......coctiiiiiteiieie ettt et ettt ettt eeee e e e e e e e e e e e et 180
6.9 SUMMARY OF OVERLAPPED COMMUNICATIONS APPLIED.ccuooiuiiuieeeieeeeeeeeeeeeeeeeeeeeeeeeeeoeeooeoe 183
6.10 CONCLUSIONS. ...ttt ettt ettt et e e e e bt et e e te e et eeaeeeee e e e ense e e e e es e e e e e 184

7 APPLICATION AND INVESTIGATION INTO AUTOMATIC CODE GENERATION FOR
OVERLAPPING COMMUNICATIONS FOR UNSTRUCTURED MESH COMPUTATIONAL
MECHANICS CODES.......uvenrersensensassanssassasssense . seeesssssssanssssaeseanessrstssnasssansaseenne 185

7.1 INTRODUCTION.....ottittiittiittiittietii ittt s et s ar e s tt e nt e e s e et s e aeemee e e e e e e e e e e sss oo e 185
7.2 UNSTRUCTURED MESH COMPUTATIONAL MECHANICS CODES.ccovioeieeteeeeeoeeeeeeeeeoeoo 185

7.3 MANUAL PARALLELISATION EXPERIENCE OF UNSTRUCTURED MESH CODES........ccccoiuiiiiiniinnincennnn 186
T31 ASTEC .ttt sttt s bbbt e bt eae b bttt h et b e sheeaneene s 186
7.3.1.1 MeSh DeCOMPOSItION.......cccuiiiiieiiieiiiieetiecte ettt cerie ettt eteeeesate st st s b e saeeenesneesaees 187
7.3.1.2 Gauss-Seidel Method in Parallel.oooiiiiiiiiiiiie e 188
7.3.1.3 COMMUNICALIONScccvvieitiiiirierieeteeeeee e teeeoteeeeeeeeereeessseessseeessseessssesssseasseearsaassesensssessnaassseans 188
7.3.1.4 POTtING ASTEC.coitiiiitieeee ettt ettt et e v e et essae e s e bt e st e s e e ensaessaensaeseanseesnsaenne 189

T.3.2 PUIFES. et et e et e e ettt e et e e eesesetae e etaeeetsseesanesabeeesbeensenessbeeenseeenes 191
7.4 GENERIC METHODS OF PARALLELISING UNSTRUCTURED MESH CODES.ccevtieiieiieieenieesieeieeneens 194
7.4.1 DATA STRUCTURES FOR AN UNSTRUCTURED MESH........c.coitiiuiieiieireieeieeeressesseesssesseesseesseans 196
A N £ 5 (€)1 J OSSP 198
7.4.3 EXECUTION CONTROL MASKS. ...cuieuiiiiieiiiiriieiietetesteeeeesssesteteeneeteeseensesseensessnessensesssessesssenses 200
7.4.4 CALCULATION AND GENERATION OF COMMUNICATIONS.ccuttrieeiieriariieeerestiessesseessessesssesseeseens 200
7.5 COMMUNICATION UTILITIES FOR PARALLEL UNSTRUCTURED MESH CODES.c.ccveeveevieeeeveercereeneenee, 204
7.6 PARALLELISATION OF ESAUNA USING THESE GENERIC METHODS.ccocoviiviieteeteeeeeeeneeeseeeneeseenens 205
7.7 'THEPROCESS OF AUTOMATIC CODE GENERATION OF PARALLEL UNSTRUCTURED MESH CODES. 210
T 7.1 PARTITIONING. ...ccutiitiittettentteeieertesttetes e etteeutesesaeesseeesessaseessseseesaeeasseenesereessseessessssseesressaessnnens 210
7.7.2 EXECUTION CONTROL MASKS. ...ccutiiriitiitieiieieeiesteeteeeteeteeeteeseeteeseeeseeaesneeeeeensessesessneesnseeessanesenas 211
7.7.3 CALCULATION AND GENERATION OF COMMUNICATIONS.ccveeuuiiuierreieeeereeseeeeeeseeesesseeeeeseeens 211
7.8 MANUAL APPLICATION OF OVERLAPPING COMMUNICATIONS FOR UNSTRUCTURED MESH CODES.212
7.8.1 COMMUNICATION UTILITIES FOR OVERLAPPING COMMUNICATIONS........cviiueieeeieeeeeeeeeeeeeeeen. 212
7.8.2 SIMPLE OVERLAPPINGcocttrititiitateiesienieieesteeteeteeseeeeeteeesseseeeeetssteesaeeeeneeseeeeseseeeneeeneseeeeeeeensens 213
7.8.3 UNROLL OVERLAPPINGooititieiietieinieteeteesteeeteeseeseseseentestsssteeneeesesaesse st eeseeesseaeeeseeseseseaeesneans 215
7.8.3.1 Pointer array/indirect addreSSing.coooeereinieiieeicieieeee e 216
7.8.3.2 Mesh RENUMDETINGc.ooiiiiiiiiiiieiee et e e e e ee e, 218
7.8.3.3 Execution control Masking.cceoivirieiriiiiieeieeiieteceece oot e e e 221
T.8.3.4 SUIMIMATY. ...oiuiiiiiiiiiieeete ettt ettt ettt e e et e st et e e e e s et e e e ese e e sesseeeseesseesseaeas 222

7.8.4 PARTIAL OVERLAPPING.eoitiiiiiieteieietetee et ettt eae et ee e e e e e e e e e e e e e e e e e e 224

7.9 MANUAL APPLICATION OF OVERLAPPING COMMUNICATIONS TO UNSTRUCTURED MESH CODES. 225
7.9.1 MANUAL APPLICATION OF OVERLAPPING COMMUNICATIONS TOPUIFS. ...oooooooe e 225

7.10 AUTOMATIC GENERATION OF OVERLAPPING COMMUNICATIONS FOR UNSTRUCTURED MESHES.227

7.11 SUMMARY OF THE APPLIED OVERLAPPING COMMUNICATION METHODS.....ove oo 227
7.12 CONCLUSIONS. ...ttt ettt ettt e e et e s ettt e e et e e e e e e e e e e e e e ee e e e 227
8 CONCLUSIONS....ccctiisssnisesessssssssrsssssssssasssssessacssssssasassasssssssssssssssasssnsensassssssessssnssssmsssssmnnsnnne eereeeee 229
8.1 CONCLUSIONS. ..ottt ettt ettt e ettt e e et eae et e e e et e e ee et e e s e e s e e oo 229
8.2 REQUIREMENTS OF PARALLEL PROCESSING.c.cecutetiiiittiieeiiect oo 230
8.3 FINALE ..ottt ettt e et e e 230
APPENDIX A: PORTING OF ASTEC. .- . .232

BIBLIOGRAPHY...

ooo

viii

List of Figures

FIGURE 1.1 : SIMPLE STRUCTURED AND UNSTRUCTURED MESHES..........cccccccoiiiinininininiiinnnecenn, 6
FIGURE 1.2 : A TYPICAL CODE SECTION FROM A STRUCTURED MESH CODE...........cccccovvivveirnnn. 7
FIGURE 1.3 : A TYPICAL CODE SECTION FROM AN UNSTRUCTURED MESH CODE.c..cc..cc....... 7
FIGURE 1.4 : BLOCK MAPPING OF A MATRIX.ciiiiiiiiiiiieieseiee ettt 9
FIGURE 1.5 : AN UPPER TRIANGULAR MATRIX WITH BLOCK MAPPING (N.B. THE SYMBOL *

REPRESENT ELEMENTS NOT PROCESSED).......ccciiiiiiriinirieieneene ettt s 10
FIGURE 1.6 : WRAP MAPPING OF AN UPPER TRIANGULAR MATRIX (N.B. * REPRESENTS

ELEMENTS NOT PROCESSED).......cooiitiitinitertertiieseetee sttt ettt st sttt steseestesaesanseeneeneeneas 10
FIGURE 1.7 : COMPARISON OF AN UNPARTITIONED AND PARTITIONED 1-D ARRAY.................... 15
FIGURE 1.8 : A SIMPLE SERIAL RECURRENCE.........cccositiiiiiitietieeetteieee et sve v e 16
FIGURE 1.9 : THE USE OF PREVIOUSLY CALCULATED DATA IN APIPELINEcccevvinirrieienene. 16
FIGURE 1.10 : A BLOCK PARTITONED PIPELINE.ccccceotmiinieiitiieiieeeteeeteeteee et eev e v, 17
FIGURE 1.11 : A SIMPLE SERIAL RECURRENCE THAT HAS BEEN PARALLELISED........................... 17
FIGURE 1.12 : A SERIAL PIPELINE.ccooiiiiiiiiiiiirieeiet ettt ettt ere st sttt se s 18
FIGURE 1.13 : A SERTAL RECURRENCE WITH SURROUNDING LOOPS.cccooveiererireecriereeeeeeeene. 19
FIGURE 1.14 : A SUCCESSION OF PIPELINES.coooititrteinineceetesteetet ettt s eae e 19
FIGURE 1.15 : ITERATION GROUPING IN A PIPELINE.ccoeiieitiiiieieeeetecteeeeeeeeeeeeees e 20
FIGURE 2.1 : APARSE TREE FROM CAPTOOLS REPRESENTING AN ASSIGNMENT STATEMENT..24
FIGURE 2.2 : PSEUDO CODE TO TRAVERSE THE CALL GRAPH. ... eooooeooeooeeoeeoeeoeooeoeeeooeeooooo 25
FIGURE 2.3 : PSEUDO CODE TO TRAVERSE EVERY STATEMENT IN THE INPUT CODE................... 26
FIGURE 2.4 : PSEUDO CODE SHOWING A DEPTH FIRST SEARCH OF THE BASIC BLOCKS.............. 26
FIGURE 2.5 : CODE TO DEMONSTRATE CONTROL FLOWcoouiitiitieiieeeeeee et 27
FIGURE 2.6 : CONTROL FLOW GRAPH.c.coiriiiitiiiiiiesteeeeee et e e et e e 27
FIGURE 2.7 : PREDOMINATION GRAPH.c.ooiiiiiieeeeeee e e e 28
FIGURE 2.8 : POSTDOMINATION GRAPH.........cccoitiiitiiieeeeeteeeeeee e e e, 28
FIGURE 2.9 : PSEUDO CODE SHOWING A TRAVERSAL OF THE PRE-DOMINATOR GRAPH IN

CAPTOOLS. ...ttt et ettt st e e et et e e e e e e e e e e s e e e e e 29
FIGURE 2.10 : THE DATA STORAGE OF NESTING WITHIN CAPTOOLS.......ccoveoeoeeeeeeeeeeoeoo 29
FIGURE 2.11 : DEPENDENCE GRAPH OF THE JACOBI CODE.c.ccoooviiiieoteteeeeee oo, 33
FIGURE 2.12 : PSEUDO CODE SHOWING TWO DIFFERENT CALL PATHS FOR A DEFINING

STATEMENT . ..ottt ee e e e e e oot 35
FIGURE 2.13 : THE FIRST INDEX OF ARRAY A STORED WITHIN CAPTOOLS......oooovoomooeoooo 40
FIGURE 2.14 : THE SECOND INDEX OF ARRAY A STORED WITHIN CAPTOOLS.......ooovoooeoeo 40
FIGURE 2.15 : THE THIRD INDEX OF ARRAY A STORED WITHIN CAPTOOLS.covooeooeooee 41

FIGURE 2.16 : PARTITIONING WINDOW FROM CAPTOOLS FOR THE JACOBI CODE

1X

FIGURE 2.17 : COMMUNICATION BROWSER FROM CAPTOOLS.c.coceiiiriinieiciinierneee e 51
FIGURE 2.18 : PSEUDO CODE TO SHOW THE SHOW THE USE OF DEFROUTE DATA STRUCTURES.
... 52
FIGURE 2.19 : DATA STRUCTURES FOR DEFROUTE FOR THE EXAMPLE IN FIGURE 2.18. 52
FIGURE 3.1 : THE LINE SUCCESSIVE OVER RELAXATION ALGORITHM IN SERIAL.cccecveuenne. 57
FIGURE 3.2 : THE ROUTINE SOLVER FROM THE SERIAL FAB CODE............ccccecvvviiririeieeseseie e 58
FIGURE 3.3 : LINE SUCCESSIVE OVER RELAXATION ALGORITHM IMPLEMENTED AS A PIPELINE
IN PARALLEL. ...ttt sttt et s e sttt e st ebe st et e s et e sessessebe s et enaensesesassessansanes 60
FIGURE 3.4 : COMMUNICATIONS IN THE ROUTINE SOLVER FOR THE PARALLEL FAB CODE......61
FIGURE 3.5 : THE ROUTINE SOLVER IN FAB WITH THE PIPELINE COMMUNICATIONS REPLACED
BY EXCHANGE COMMUNICATIONS. ..ottt sie st st ss s e s s ae s nnees 63
FIGURE 3.6 : THE GAUSS-SEIDEL LOCAL LSOR IN PARALLEL.ccecvvtiieieiieeceeeereee et 64
FIGURE 3.7 : GRAPH OF TIME TAKEN AGAINST COMMUNICATION LENGTH FACTOR AND A
BEST-FIT LINE ...ttt ettt ae et teene e e tseteeseeseensenseneesees 66
FIGURE 3.8 : THE BI-DIRECTIONAL LSOR ALGORITHM IN THE ROUTINE LISOLV.........ccccovevvnnn.n. 67
FIGURE 3.9 : ROUTINE LISOLV FROM SERIAL TEAMKE!] CODE..........cccccoiniiieirieeeereeee e 68
FIGURE 3.10 : ROUTINE LISOLV PARTITIONED IN THE SECOND DIMENSIONAL INDEX J.............. 69
FIGURE 3.11 : ROUTINE LISOLV FROM TEAMKE! WITH LOOP SPLITTING AND ARRAY
EXPANSION. ..ottt ettt et et teeseeae e st eteeteene et e eaesteste st e etesaeeneenennes 70
FIGURE 3.12 : PIPELINE WITH AND WITHOUT LOOP SPLITTING FOR LISOLV FROM TEAMKE]...71
FIGURE 3.13 : MAIN PROGRAM FOR THE PARALLEL TEAMKEL CODE.........ccccecooitetoeeeeeeeeeeeeerenenn. 73
FIGURE 3.14 : CAPTOOLS COMMUNICATION BROWSER ILLUSTRATING MERGED
COMMUNICATIONS FOR THE TEAMKEL CODE.ootoiieeieieeeeeeeeeeeeeeeeeeeee e ee e erees e, 74
FIGURE 3.15 : SECTION OF A CALC ROUTINE SHOWING THE QUICK ALGORITHM.cc.coeun...... 75
FIGURE 3.16 : DATA STORAGE OF ARRAYS IN FORTRAN........cocoouiiiiiiiieeeeeeeeeeeeeeeeeee e e 77
FIGURE 3.17 : ALL PIPELINE CODE COMMUNICATING ALL DATA FOR ROUTINE BLTS FROM
APPLUL oottt ettt ettt e e et et e e et e e e s e e et e e e e eee e 78

FIGURE 3.18 : DIAGRAMMATIC REPRESENTATION OF PIPELINE COMMUNICATING ALL DATA. 78
FIGURE 3.19 : LINE PIPELINE CODE COMMUNICATING LINES OF DATA FOR ROUTINE BLTS

FROM APPLU. ..ottt ettt ettt ettt e e e e e e e e e et e 79
FIGURE 3.20 : DIAGRAMMATIC REPRESENTATION OF PIPELINE COMMUNICATING LINE DATA.
... 79
FIGURE 3.21 : PIPELINE CODE COMMUNICATING POINTS OF DATA FOR ROUTINE BLTS FROM
APPLU . oot ee e e 80
FIGURE 3.22 : DIAGRAMMATIC REPRESENTATION OF PIPELINE COMMUNICATING POINT DATA.
... 80
FIGURE 3.23 : SECTION OF CODE FROM STEPF3D ROUTINE OF ARC3D CODE. ..o 84
FIGURE 3.24 : THE PIPELINES IN ROUTINE CAP_VPENTA1 IN ARC3D CODE.oovooooeoooooo 85

FIGURE 4.1 : PSEUDO CODE OF ASYNCHRONOUS COMMUNICATION.oovvoeeeeoooeeoeooo 89

X

FIGURE 4.2 : PSEUDO CODE OF ASYNCHRONOUS COMMUNICATIONS WITH SYNCHRONISATION

PO TN T Sttt sttt et e et b et s e eat e e e st e s b s b e e e e st e sh et e san e sr e e ere s 90
FIGURE 4.3 : NON-MULTITHREADED AND MULTITHREAD DISTRIBUTION OF DATA..................... 91
FIGURE 4.4 : THE TRANSPUTER ARCHITECTURE.coctvctrtiiiriieienenienie sttt 93
FIGURE 4.5 : SYNCHRONOUS AND OVERLAPPING PSEUDO CODE ILLUSTRATING SIMPLE

OVERLAPPING WITH UNRELATED CODE.ccoooiitiiiirirenieenreneeieeieeie ettt sve e 95
FIGURE 4.6 : SECTION OF CODE FROM ROUTINE SSOR IN THE APPLU CODE WITH

SYNCHRONOUS COMMUNICATIONS.coiiieiiietieieeteetesit ittt ettt ss e sr e st see e 96
FIGURE 4.7 : COMMUNICATION BROWSER SHOWING WHERE THE COMMUNICATED DATA IS

REQUIRED.......oiiiiiii ettt et st et a e sa e st sat et s h et st et e st e e e sat e neseennenee 97
FIGURE 4.8 : SECTION OF CODE FROM SSOR WITH AN OVERLAPPING COMMUNICATION........... 98
FIGURE 4.9 : SYNCHRONOUS AND OVERLAPPING PSEUDO CODE ILLUSTRATING PARTIAL LOOP

OVERLAPPING USING LOOP UNROLLING.ccoeotteiiieriieiieiieie ettt eae e s enas 100
FIGURE 4.10 : THE ROUTINE SOLVER IN FAB WITH PARTIAL LOOP OVERLAPPING WITH LOOP

UNROLLING APPLIED.coiiiiiiiiit ettt sttt be et et ss et s te s s teess e teessensessnenbaessennas 101
FIGURE 4.11 : SYNCHRONOUS AND OVERLAPPING PSEUDO CODE ILLUSTRATING PARTIAL

LOOP OVERLAPPING WITH A CONDITIONAL STATEMENT.......cccccoviiiiieieeeceeeeee e 102
FIGURE 4.12 : SUBROUTINE CALCU IN TEAMKE| WITH SYNCHRONOUS COMMUNICATIONS...103
FIGURE 4.13 : SUBROUTINE CALCU IN TEAMKEI| WITH OVERLAPPED COMMUNICATION......... 104
FIGURE 4.14 : ROUTINE SOLVER IN FAB WITH PARTIAL OVERLAPPING USING LOOP

UNROLLING AND A CONDITIONAL STATEMENT.coooiiiitititiceceeteeeeete et 105
FIGURE 4.15 : CALCULATION ORDER OF CODE IN FIGURE 4.14.........ccooovoiiiiiieeeeeeeeeeeeeee e, 105
FIGURE 4.16 : SYNCHRONOUS PIPELINE.ccccciiiitniiaieieeet ettt ettt sae e ene e 107
FIGURE 4.17 : OVERLAPPING PIPELINE.ccooitiiiiiiiiiietteeeceeeee ettt e e ee e en. 108
FIGURE 4.18 : OVERLAPPING PIPELINE COMMUNICATING LINE DATA FOR ROUTINE BLTS IN

APPLUL .ot e et ettt e te e et ettt eaeeseeeeeea e e e e et e et e eaeeeeeeeeeeeeseeseraaes 109
FIGURE 4.19 : GRAPH OF SYNCHRONOUS VERSUS OVERLAPPED COMMUNICATIONS................ 110
FIGURE 5.1 : THE BASIC ALGORITHM FOR THE AUTOMATIC GENERATION OF OVERLAPPING

COMMUNICATIONS. ..ottt ettt ettt et e e ee et et e e eee e e e e ee e s eeesseaes 113
FIGURE 5.2 : PSEUDO CODE OF A SINK COMMAND WITH NO SURROUNDING LOORP................... 115
FIGURE 5.3: CONTROL FLOW GRAPH FOR FIGURE 5.2.cocoooiiuiiiiiiiiieeeeeeeeeeeeeeee e 116
FIGURE 5.4: PREDOMINATOR TREE FOR FIGURE 5.2.cocuiiiiiiiiiiiiteeeeeeeeeeeeeeeeeeeeeeee e 116
FIGURE 5.5 : PSEUDO CODE FOR DETECTING A TIME CONSUMER COMMAND......ccocovvoveeieeen.. 117
FIGURE 5.6 : PSEUDO CODE FOR DETECTING TIME CONSUMERS BETWEEN A BLOCK AN ITS

PREDOMINATING BLOGCK. ...ttt ettt ee s e e s e s e ees e 118
FIGURE 5.7 : PSEUDO CODE FOR DETECTING A TIME CONSUMER BETWEEN A SINK COMMAND

AND ITS SOURCE COMMAND.coiiiiiiieeee ettt e ee et e e e e e 119

FIGURE 5.8 : CODE FRAGMENT OF A SINK COMMAND WITH SURROUNDING LOOPS.oo......... 120

X1

FIGURE 59 : CODE FRAGMENT SHOWING INTERPROCEDURAL MIGRATION OF THE

SYNCHRONISATION POINT.ocutititiiteieieiinterie ettt sttt e s n e 121
FIGURE 5.10 : INTERPROCEDURAL ALGORITHM FOR CALCULATING TIME CONSUMERS.......... 123
FIGURE 5.11 : CODE FRAGMENT OF A SYNCHRONISATION POINT WITHIN A LOORP. 124
FIGURE 5.12 : A SAMPLE OF TEST CASES USED FOR TESTING.........ceccervrtrtrininieenesee e 125
FIGURE 5.13 : PSEUDO CODE OF A SYNCHRONOUS COMMUNICATION REQUIRING PARTIAL

LOOP OVERLAPPING.c.ociiiiittitetet sttt ettt ettt e ne et esbesbeenesseesesneeseanas 127
FIGURE 5.14 : DIAGRAM OF THE LOOP SWEEP FOR THE PSEUDO CODE IN FIGURE 5.13.............. 127
FIGURE 5.15 : FORMAL MODEL FOR A POTENTIAL PARTIAL LOOP OVERLAPPING

COMMUNICATION. ..ottt sttt ettt st e e e teaessebessesaesesses s sessassasessansesensens 128
FIGURE 5.16 : PSEUDO CODE ALGORITHM FOR DETERMINING WHETHER PARTIAL OVERLAP

MAY BE APPLIED.oooiiiiiiii ettt et aa e et ese et entessessessennereanas 129
FIGURE 5.17 : CODE FOR EXAMPLE 1 AND EXAMPLE 2.ccoiioiiiiieeiiieriietteee e 130
FIGURE 5.18 : PSEUDO CODE FOR EXAMPLE 3.cocoociiiiiiiitieretiietcieeerese ettt vesees et eaens 133
FIGURE 5.19 : ALGORITHM TO CALCULATE HOW MANY ITERATIONS TO UNROLL..................... 134
FIGURE 5.20 : SYNCHRONOUS PARALLEL CODE REQUIRING SIMPLE AND PARTIAL

OVERLAPPED COMMUNICATIONS. ..ottt ettt ettt e ettt eteeaess e eaeenene e 136
FIGURE 5.21 : OVERLAPPED PARALLEL CODE WITH NO MERGED SYNCHRONISATION POINTS.

... 137
FIGURE 5.22 : CODE FROM FIGURE 5.21 AFTER MERGING SYNCHRONISATION POINTS.............. 138
FIGURE 523 : SYNCHRONOUS PARALLEL CODE REQUIRING UNROLL OVERLAPPED

COMMUNICATION. ...ttt ettt ettt reeteeaseteeaeene et eeeeaeneeeeeseneeeens 139
FIGURE 5.24 : CODE FROM FIGURE 5.18 WITH UNROLL OVERLAPPED COMMUNICATIONS. 139
FIGURE 5.25 : BASIC ALGORITHM FOR MERGING PARTIAL AND UNROLL SYNCHRONISATION

POINTS ..ottt ettt et ae et e e e te e e et et e et e e e e s eesees e s eeseeseeeeesenes 140
FIGURE 5.26 : TWO SYNCHRONISATION POINTS WITH DIFFERENT SYNCHRONISATION VALUES

... 141
FIGURE 5.27 : EXAMPLE SHOWING THE PASSING OF SYNCHRONISATION VALUES BETWEEN

ROUTINES.ooi ettt ettt e e e e e e et e e e e e oo 142
FIGURE 5.28 : EXAMPLE SHOWING THE NEED TO FIND ALL CALLERS TO A ROUTINE................ 142
FIGURE 5.29 : ALGORITHM TO GENERATE PARTIAL LOOP OVERLAPPING WITH LOOP

UNROLLING. ...ttt et et e et e e e et et 144
FIGURE 5.30 : LOOP WITH INCREASING ITERATIONS.....coooiiiieee e 145
FIGURE 5.31 : LOOP WITH DECREASING ITERATIONS. ..ot 145
FIGURE 5.32 : ALGORITHM TO GENERATE THE CONDITIONAL SYNCHRONISATION CALL FOR

THE PARTIAL LOOP OVERLAPPING.coiiiiieeeeeeee e 146

FIGURE 533 : SYNCHRONOUS AND OVERLAPPING CODE APPLYING PARTIAL LOOP
(017212 07N 2201 (€SOO 146

X11

FIGURE 5.34 : COMMUNICATION WITH SEVERAL SINKS USING DIFFERENT OVERLAPPING

METHODS. ...ttt et e be bbbt bbb bbbt bt et e bt bt e neeneemtenne 147
FIGURE 5.35 : ORIGINAL PARTIAL OVERLAPPED CODE GENERATED.ccccceotnvieninnienincinenennes 148
FIGURE 5.36 : MODIFIED PARTIAL OVERLAPPED CODE NOW GENERATED..........cccoceirirnieinnne. 149
FIGURE 5.37 : A SIMPLE GENERAL MODEL.ccocotiitiiiiieieiicieietie et saesae e ese e esaenes 149
FIGURE 5.38 : FORMAL MODEL FOR A SYNCHRONOUS PIPELINE............ccceoestniieierietieieieereereie e, 151
FIGURE 5.39 : FORMAL MODEL FOR AN OVERLAPPED PIPELINE............ccccoovriiiiineririereieiee e, 152
FIGURE 5.40 : FORTRAN PSEUDO CODE ILLUSTRATING LOOP EXITS.....cccoccccevvniririrririeiieeeeeienens 153
FIGURE 5.41 : ILLEGAL FORTRAN PSEUDO CODE ILLUSTRATING AN ANTI-DEPENDENCE. 153
FIGURE 5.42 : FORTRAN PSEUDO CODE ILLUSTRATING THE POSITIONS OF OVERLAPPING

COMMUNICATIONS WITHIN A PIPELINE.occooiiiiiieietiiieeeeieeteeteee ettt e 154
FIGURE 5.43 : PSEUDO CODE FOR THE AUTOMATIC GENERATION OF THE CONDITIONAL

STATEMENTS OF THE OVERLAPPING PIPELINE.ccocceeiiiiiiiiiisieteiceeeeteeee e, 156
FIGURE 5.44 : PSEUDO CODE FOR THE ADJUSTMENT OF THE LOOP ITERATION COUNTERS FOR

THE FIRST OVERLAPPED RECEIVE IN THE PIPELINE.ccoooeiieieiiieiieeicrcieeeteete e 158
FIGURE 6.1 : CODE FROM FAB SHOWING THE TWO CAP_EXCHANGE COMMUNICATIONS THAT

HAVE NOT BEEN OVERLAPPED.cc.cctiiiiitiineiteietie ettt ettt 162
FIGURE 6.2 : TIME GRAPH OF FAB ON THE TRANSTECH PARAMID..........cccocooooioiieeeeeeeeeeeeeeeeeen, 163
FIGURE 6.3 : SPEED UP GRAPH OF FAB ON THE TRANSTECH PARAMID.cocceovvtveeeeeeeeeeen. 163
FIGURE 6.4 : TIME GRAPH OF TEAMKE! FOR THE TRANSTECH PARAMID.cooeoeeeeeeeeeeeeeeernn.. 165
FIGURE 6.5 : SPEED UP GRAPH OF TEAMKE! FOR THE TRANSTECH PARAMID.ccccoovvuveunnn.... 165
FIGURE 6.6 : TIME GRAPH FOR A 32X32X32 PROBLEM ON THE TRANSTECH PARAMID............... 167
FIGURE 6.7 : SPEED UP GRAPH OF APPLU FOR A 32X32X32 PROBLEM ON THE TRANSTECH

PARAMID. ..ottt ettt et e en et e et e et e e s e s e e e e s ees s eee e s 167
FIGURE 6.8 : TIME GRAPH OF APPLU FOR A 24X24X24 PROBLEM ON THE PARSYS SN9500......... 170

FIGURE 6.9 : SPEED UP GRAPH OF APPLU FOR A 24X24X24 PROBLEM ON THE PARSYS SN9500.170
FIGURE 6.10 : TIME GRAPH OF ARC3D FOR A 40X33X40 PROBLEM ON THE TRANSTECH

PARAMID. ..ottt ettt ettt ee et e e e s e e e e e e et 174
FIGURE 6.11 : SPEED UP GRAPH OF ARC3D FOR A 40X33X40 PROBLEM ON THE TRANSTECH

PARAMID. oottt et e e et e 174
FIGURE 6.12 : TIME GRAPH OF ARC3D FOR A 40X33X40 PROBLEM ON THE PARSYS SN9500. 175
FIGURE 6.13 : SPEED UP GRAPH OF ARC3D FOR A 40X33X40 PROBLEM ON THE PARSYS SN9500.

... 175
FIGURE 6.14 : TIME GRAPH OF APPSP FOR THE TRANSTECH PARAMID........ooooooooo 177
FIGURE 6.15 : SPEED UP GRAPH OF APPSP FOR THE TRANSTECH PARAMID.oovoooo 178
FIGURE 6.16 : TIME GRAPH OF APPBT FOR THE TRANSTECH PARAMID.oovoioo 179
FIGURE 6.17 : SPEED UP GRAPH OF APPBT FOR THE TRANSTECH PARAMID.......ccooovoooo 180
FIGURE 6.18 : UPWINDING SCHEME FROM THE INDUSTRIAL CFD CODE............oooooooo 181

FIGURE 6.19 : TIME GRAPH OF AN INDUSTRIAL CFD CODE FOR THE TRANSTECH PARAMID. .. 182

Xiil

FIGURE 6.20 : SPEED UP GRAPH OF AN INDUSTRIAL CFD CODE FOR THE TRANSTECH PARAMID.

... 183
FIGURE 7.1 : PIPE MESH AND A TYPICAL PROCESSOR TOPOLOGY.coecovviviiieiereeeceeereneeeeee e 187
FIGURE 7.2 : SPEED UP RESULTS FROM ASTECccocivtiiitiieeiieieieeeeeteteeeie et ev e 191
FIGURE 7.3 : FLOW CHART FOR UIFS.......cccoiiiiiiiiieieticteieeete ettt et ettt saen s snene s 193
FIGURE 7.4 : ATYPICAL CODE EXAMPLE AND DATA STRUCTURE FROM THE UIFS CODE......... 194
FIGURE 7.5 : A SIMPLE UNSTRUCTURED MESH CODE EXAMPLE............cccoeoimiiiiieeeeeeeeeeeeveeeeas 195
FIGURE 7.6 : AN UNSTRUCTURED MESH OF 94 ELEMENTS.c.ooviieiiiieeeeeeeeeeeeteeeees e 196
FIGURE 7.7 : INSPECTOR LOOP FOR THE CALCULATION LOOP IN FIGURE 7.6.cccccooevvveennn.... 198
FIGURE 7.8 : A LIST OF PROCESSOR-ELEMENT OWNING RELATIONSHIP.cccccoovimiieeiierenannn. 199
FIGURE 7.9 : UNSTRUCTURED MESH DECOMPOSED ONTO THREE PROCESSORS.ccccocoeo...... 199
FIGURE 7.10 : UNSTRUCTURED MESH DECOMPOSED ONTO THREE PROCESSORS WITH

OVERLAP REGIONS. ...ttt ettt ettt et e e s e n s st st s eeene e eee e eeeas 201
FIGURE 7.11 : CAPTOOLS GENERATED PARALLEL CODE FOR THE SERIAL CODE IN FIGURE 7.5.

... 203
FIGURE 7.12 : CALCULATION LOOP FOR A 5-POINT NODE FROM THE ROUTINE EULER IN

ESAUNA L ettt ettt e te et etees e s et e eteae e e ee e e et e s eeeesenees et ereeaseesnneeeneens 206
FIGURE 7.13 : INSPECTOR LOOP FOR THE CALCULATION LOOP IN FIGURE 7.12.cooveeereenn... 207
FIGURE 7.14 : THE ORIGINAL PARALLEL LOOP FOR FIGURE 7.12.coouiuiieieeeoee e 208
FIGURE 7.15 : THE POINTER LIST INITIALISED AT START OF PARALLEL PROGRAM..................... 209
FIGURE 7.16 : THE IMPROVED PARALLEL LOOP FOR FIGURE 7.12 USING A LIST POINTER......... 209
FIGURE 7.17 : BLOCK EXECUTION MASK APPLIED TO THE SIMPLE UNSTRUCTURED MESH CODE

IN FIGURE 7.5 ..ottt ettt et e e et e s es s s e e s ees e e s ee e, 211
FIGURE 7.18 : INSPECTOR LOOP FOR THE CODE IN FIGURE 7.17. ..oovoueoteeeeeeeeeeeeeeeeeeeoeeee, 212
FIGURE 7.19 : PSEUDO CODE FOR SIMPLE OVERLAPPING IN AN UNSTRUCTURED MESH CODE.

... 213
FIGURE 7.20 : THE APPLICATION OF SIMPLE OVERLAPPING TO THE PARALLEL CODE IN FIGURE

Tl Lttt et et e et et e e e oot 214
FIGURE 7.21 : PSEUDO CODE FOR UNROLL OVERLAPPING IN AN UNSTRUCTURED MESH CODE.

... 215

FIGURE 7.22 : PSEUDO CODE TO CALCULATE THE ‘INNER’ AND ‘OUTER’ CORE ELEMENTS. ...216
FIGURE 7.23 : THE CALCULATION LOOP AND ASSOCIATED COMMUNICATION FROM FIGURE

Tl Lttt ettt et e e e e 217
FIGURE 7.24 : ASYNCHRONOUS CODE FOR POINTER ARRAY / INDIRECT ADDRESSING. 218
FIGURE 7.25 : THE UNSTRUCTURED MESH IN FIGURE 7.10 WITH MESH RENUMBERING. 219
FIGURE 7.26 : THE VALUES OF LAST_INNER_CORE_ELEMENT AND LOCAL_NELEMENT FOR THE

UNSTRUCTURED MESH IN FIGURE 7.25.ooiiiiiiiiee e 219
FIGURE 7.27 : SYNCHRONOUS COMMUNICATION USING MESH RENUMBERING. ..o 220

FIGURE 7.28 : ASYNCHRONOUS COMMUNICATION USING MESH RENUMBERING. ..o 220

X1v

FIGURE 7.29 : ASYNCHRONOUS COMMUNICATION USING EXECUTION CONTROL MASKS. 222
FIGURE 7.30 : PSEUDO CODE FOR PARTIAL OVERLAPPING IN AN UNSTRUCTURED MESH CODE.
FIGURE 7.31 : PARTIAL OVERLAPPING WITH MESH RENUMBERING.c.ccccooveviiirereeeereeeens 224
FIGURE 7.32 : SPEED UP OBTAINED WITH THE ASYNCHRONOUS (SOLID LINES) AND
SYNCHRONOUS (DASHED LINES) OPTIMISED SOLVERS FOR THE FLUID DYNAMIC TEST
CASE WITH A RANGE OF MESH SIZES.cooootiuiiiiieeeteteeeete ettt se s sn s 226
FIGURE 7.33 : SPEED UP OBTAINED WITH THE ASYNCHRONOUS (SOLID LINES) AND
SYNCHRONOUS (DASHED LINES) OPTIMISED SOLVERS FOR THE SOLID MECHANICS TEST
CASE WITH A RANGE OF MESH SIZES.coooiitiiiiietetctetcteteeeeeete ettt 226

Chapter 1

1 Introduction.

1.1 Why Parallel Processing?

The need for parallel processing is born from the fact that computer users always
require their programs to perform computation at a much faster rate. There are many large
scale codes available for Computational Fluid Dynamics, Computational Mechanics, etc that
require a large amount of processing power. These codes often take hours, even days to run
and a greater amount of power is therefore required to allow these codes to run in a fraction
of the time.

To meet this demand for greater processing power supercomputers were developed
with vector or pipeline processors. These processors instead of operating on a single variable
at a time, allowed a vector of data to be processed simultaneously [1]. This required the code
author to optimise the code in order to exploit valid vector operations and ensure that the
correct vector operands were loaded from memory [2]. This led to the development of
vectorising compilers which automatically optimised the code for vector parallelism [3].

This in turn led to the development of supercomputers that consisted of an array of
processors (ranging from 1000 to 16,000) which could process data in parallel. All the
processors operated on the same instruction set issued by a central processing unit on its own
data set. These array structured machines (e.g. the Illiac-IV, ICL DAP, Thinking Machines
CM2) are known as Single Instruction, Multiple Data (SIMD) [4] machines. These machines
increased the performance of codes significantly so long as the problem was structured in nature
and did not consist of any serial operations [5].

The advent of the Transputer processor [6] in the early 1980’s allowed manufacturers to
design relatively inexpensive parallel machines. These processors could execute their own
instructions on their own data set. These machines are referred to as Multiple Instruction,
Multiple Data (MIMD) [4]. There are two distinct variants of the MIMD class : Shared Memory
(SM) which has a common (shared) memory space and Distributed Memory (DM) where each
processor has its own private memory [7]. Both of these sub classes of the MIMD have their

disadvantages.

Chapter 1 2

In the case of the SM-MIMD class, memory contention causes bottlenecks when
executing serial loops and all the processors have to access the shared memory via the same data
bus. There is also the need for synchronisation points within the parallel code. This incurs an
overhead and can also create idle time while processors wait for other processors to complete
their tasks.

In the case of the DM-MIMD class there are several causes of bottlenecks. These consist
of too many communications in the parallel code, which may also communicate large volumes
of data or communicate data to all other processors as opposed to their nearest neighbours only.
There are also the possibilities of idle time and of duplicated calculation that will reduce the
efficiency of the parallel code but will remove the requirement for communication.

Several European manufacturers used the Transputer in the late 1980’s and early 1990’s
in the creation of modest inexpensive parallel machines [8, 9]. Examples of these are the
Transtech Paramid [81] and the Parsys SN9500 [82] which are mentioned in greater detail in
Section 4.3. These manufacturers as well as many others have since adapted other better
performing processors to build even more powerful parallel machines.

There are many variants of parallel machines now available for users [8, 9]. Examples of
SM-MIMD machines that are commonly available today are the DEC AlphaServer Clusters and
SGI Origin 2000. Examples of DM-MIMD machines are the IBM SP2, Cray T3D and Cray
T3E.

1.2 Problems of Creating Parallel Codes.

The hardware for parallel processing is obviously widely available. The main difficulty
is providing parallel codes for this hardware. This may be achieved by writing a parallel code in
a new language or by adapting existing sequential code to run on these machines. To convert a
large serial code to be parallel may take many man months [10] or years to achieve. This method
of parallelisation should eventually provide the most efficient form of parallel code but is
however very tedious and is open to error. There is currently a range of options available to
automate the process of parallelism: optimising and vectoriser compilers; shared memory
parallelising compilers; distributed memory parallelising compilers; High Performance Fortran

(HPF); or parallelisation tools.

Chapter 1 3

Many of today’s compilers may optimise and/or vectorise a serial code to exploit
parallelism within loops using code transformations such as scalar expansion and loop splitting.
These compilers are fast and provide a reasonable improvement to the code

Automatic compilers were designed to automatically parallelise the code. In the case of
the shared memory system this has provided some satisfactory results for some limited cases
[11]. This, however, was only achieved once the user had inserted compiler directives into the
source code. The main problem is that the user (from previous experience) expects compilers to
be quick. This leads to the compilers making many conservative assumptions often presuming
there is a dependence if it cannot prove otherwise. This often leads to a particular code section
being serial. These compilers concentrate on only a small section of code, such as a loop, to try
and obtain parallelism and are always intra-procedural, i.e. they do not take a global view of the
code, concentrating parallelism within a procedure. They will also typically only parallelise one
loop within a given nest of loops.

In the past two decades a number of research programmes have pursued the concept of
parallelising compilers for distributed memory, with the more recent projects focusing on HPF.
These include Paraphrase at the University of Illinois [12], the KAP paralleliser [13], Parallel
Fortran Converter (PFC) [14] and FORTRAN-D [15] at Rice University, SUIF [16] at Stanford,
VIENNA-FORTRAN [17, 18] at the University of Vienna and PARADIGM [19] developed by
the University of Illinois.

There are at present a number of groups who are attempting to develop parallelising
compilers and parallelisation tools. Parallelisation tools are a compromise solution to the desire
for parallel compilers that generally produce poor parallel efficiencies by comparison with
manual parallelisations that produce the most efficient parallel code. Most of these tools make
use of compiler technology to convert serial code to parallel code, for a particular parallel
machine. All tools must make conservative assumptions when generating parallel code and
therefore much potential parallelism might be omitted to ensure correct code.

A method, currently much promoted, is the use of High Performance Fortran (HPF)
language [20]. This requires the programmer to posses a significant amount of expertise, and
even then the amount of effort required can be substantial. It is also restrictive in that most dusty
deck Fortran codes will require considerable amounts of re-engineering and rewriting before the
code is actually suitable for HPF. Once the source code has been converted to HPF the

performance of the code in parallel are, for certain test cases, not very good. [21].

Chapter 1 4

There are also at present a small number of parallelisation tools available or being
developed. These are Forge 90 [22] developed by Applied Parallel Research, Vienna Fortran
Compilation System [23] developed by the University of Vienna, D System [24] developed by
Rice University, PARADIGM [25] developed by the University of Illinois and Computer Aided
Parallelisation Tools (CAPTools) [26, 27, 28, 29] developed at the University of Greenwich.

Forge 90 [22] developed by Applied Parallel Research is an integrated collection of
interactive tools to enable the parallelisation of Fortran. The tools generate fully scalable Fortran
77 Single Program Multiple Data (SPMD) program with support for many different message
passing libraries such as IBM’s MPL, PVM, Express and Linda. It will also allow standard
Fortran 90 and HPF directives to be used to control the parallelisation of the program.

The D System was developed by Kennedy et al at Rice University and grew out of
ParaScope [30]. It consists of a suite of tools developed to aid in the development of programs in
Fortran D [30]. Fortran D is an extension to existing Fortran 77 or Fortran 90 compilers. It was
primarily designed to create a machine independent set of extensions to aid in the distribution of
data onto parallel machines. Fortran D compilers have been developed for several parallel
machines including the Intel Paragon and Thinking Machines CM-5. High Performance Fortran
(HPF) is an extension to Fortran 90 and was inspired by the original work on Fortran D. It
provides support for data parallel programs and for the control of data distribution.

Vienna Fortran [23] was developed by Zima et al at the University of Vienna. It was
developed from the original SUPRENUM [31] project. It is a machine independent language
extension to Fortran 77, allowing the user to write programs for DMS using global addresses.
Vienna Fortran is now part of the Vienna Fortran Compilation System (VFCS) which provides
source to source conversion of Vienna Fortran or Fortran 77 code to explicit parallel Message
Passing Fortran for use on Intel iPSC/860, Intel Paragon, and machines that support Parmacs.

PARADIGM (PARAllelizing compiler for Dlstributed memory General-purpose
Multicomputers) [25] developed at the University of Illinois provides an automated means of
parallelising and optimising serial programs for efficient use on a distributed memory system.
PARADIGM allows automatic data distribution, communication optimisation and the
exploitation of both functional and data parallelism. It has been used on several DMS machines
such as the Intel Paragon, the Thinking Machines CM-5 and the IBM SP-1.

Computer Aided Parallelisation Tools (CAPTools) [26, 27, 28, 29] is a toolkit developed

at the University of Greenwich to automate most of the process of parallelising scalar Fortran 77

Chapter 1 S

codes. The aim of CAPTools is to obtain code that is as efficient as manually parallelised code
by using a combination of parallel compiler technology and as much user interaction as is
necessary. The time and effort required by a user to create such a parallel code should be
minimal, but the resulting code should be as efficient as possible.

The final parallel code generated by the first version of CAPTools adheres to the Single
Program Multiple Data (SPMD) model. In the SPMD model each processor executes the same
code but on a subset of the program data. The parallel code produced will be as similar as
possible to the original serial code allowing the parallel code to be easily optimised and
maintained by the user and easily portable to any Distributed Memory System. The parallel code
will differ from the serial code in that it will now contain communication calls and also
execution control masks to ensure that each processor will only operate on its own data subset.
The communications generated are high level generic communication calls which map onto low
level communications of either machine specific communications or communication libraries
(Section 1.6).

Chapter 2 discusses the Computer Aided Parallelisation Tools in more detail.

1.3 Requirements of Parallel Processing.

There are a number of objectives that must be achieved by a satisfactory parallelisation
strategy:
1. Minimise the changes to the original algorithms :
The parallel code should produce exactly the same results as serial. Identical results
provide the user with confidence that the parallel code is correct.
2. Recognisable code :
The parallel code should also be recognisable and therefore easily maintainable and/or
optimised by the original serial code author.
3. Maximise the invisibility of the parallel execution :
The user should not notice any difference between running the parallel and serial code
except for an increase in speed and possibly the size of the problem that can be solved.
4. Maximise parallel efficiency :
Ensure that the parallel code produces significant increase in speed up in relation to the

serial code. This ensures that the parallel machine is being used efficiently.

Chapter 1 6

5. Efficient use of all available memory:

Ensure that the problem size is proportional to the total local memory size available from

eVery processor.

Different members of the Parallel Processing community will place varying amounts of
importance to these objectives. The user of a parallel code will be concerned with objectives 3, 4
and 5: the code looks the same during execution; will reduce the computation time; and allow
bigger problem sizes to be executed. The application code author will primarily only be
interested in objectives 2 - the minimum amount of change to the code - but due to the needs of
the end user must also pay attention to the other objectives. An in-house code developer
wishing to parallelise their codes will place an emphasis on all the above five objectives.
Developers of parallelisation tools on the other hand must bear in mind the needs of the users,

authors and in-house developers and must concentrate on all of these objectives.

1.4 The Use of Meshes in Computational Mechanics Codes.

This work focuses upon certain important classes of application code and their related
SPMD parallelisation strategies. Computational Mechanics is a diverse area that includes the
modelling of fluid dynamics, structural mechanics and electromagnetics. The application of a
system of equations to a problem leads to the concepts of a grid or mesh. There are two distinct
types of meshes predominantly used to discretise a problem in Computational Mechanics :

Structured and Unstructured Mesh. Examples of these meshes may be seen in Figure 1.1.

Structured Mesh Unstructured Mesh

Figure 1.1 : Simple structured and unstructured meshes.

Chapter 1 7

In a structured mesh code the mesh is regularly structured and is well suited for control
volume (cells) and finite difference problems. The advantage of using such a mesh is that the
topology of the mesh is stored implicitly allowing simple addition or subtraction to calculate its
neighbouring cells. Figure 1.2 shows that to calculate the value of A(I,J,K) require the values
from both its immediate neighbours in both the J and K dimension. The main disadvantage of

using a structured mesh is that only regular shaped geometries may be solved.

DOI=1,NI
DOJ=1,NJ
DOK = I.NK
A(LJ.K) = B(LJ-1,K) + B(LJ+1,K)+B(I,J.K-1) +B(1,J-1,K+1)
ENDDO
ENDDO
ENDDO

Figure 1.2 : A typical code section from a structured mesh code.

Unstructured or irregular meshes are used for the solving of finite element or control
volume problems or any other inter-related entities. In an unstructured mesh the topology is
explicit with the relationships between elements and nodes of the mesh explicitly stored, e.g.
ELETOP(ELEMENT, NODE) will contain the relationship between the nodes and elements.
Figure 1.3 shows that to calculate the value of A for a particular element requires the topological

information for B from the element and nodal information of A.

DO ELEMENT = 1, NELEMENT
DO NODE = |, NNODE(ELEMENT)
A(ELEMENT)=B(ELETOP(ELEMENT,NODE))
ENDDO
ENDDO

Figure 1.3 : A typical code section from an unstructured mesh code.

The use of unstructured mesh allows more complex geometries to be solved but
unfortunately they will not be as efficient as structured meshes since they require indirect

address accesses of arrays in their calculations, i.e. in the use of ELETOP.

1.5 Parallelisation Strategies.
There are three predominant methods available to parallelise a code. These are Task
Farming, Algorithmic Decomposition and Domain Decomposition. These may also be used

together to form a hybrid.

Chapter 1 8

Task Farming [32] (or task-scheduling) attempts to ensure that all processors are always
kept busy with computation. This method requires one process acting as the master processor
distributing tasks for each of the other slave processors. The master will also collate the results
from these slave processors. The master also attempts to ensure that every slave processor is
kept busy at all times thus avoiding idle time. Good parallel efficiencies can therefore be
obtained as long as the time required for each task is significantly more than the communication
time of the task between the master and slave. There should also be a significant number of tasks
in comparison with the number of processors. This method of parallelisation is only suitable for
problems where there is no other communication required with any other slave, i.e. each slave
task must be independent of any other calculation on another slave task. It has proven well
suited for radiation field calculations [33, 34] and Monte Carlo techniques [35].

Algorithmic methods or Functional Decomposition [32] involves dividing the algorithm
on to several processors. For example consider a three dimensional Computational Mechanics
(CM) code which requires velocities for each dimension to be calculated. Algorithmically this
could be achieved by allowing each dimensional velocity to be calculated on one of three
different processors. The main disadvantages of such a method is that each processor may have
a different amount of work to be done and could cause some of the processors to be idle. They
are also not scalable, i.e. if there are three different algorithms that may be run in parallel then
only three processors are required. The addition of any further processors will not provide any
further increase in the efficiency of the code. Also if the calculation on each processor are not
independent of each other then the communication overhead may be high.

Domain Decomposition [32], also known as Geometric Decomposition, involves
splitting the data as evenly as possible on to each individual processor. Each processor will then
operate on its own allocated subset of data. Since each processor has an even amount of data to
operate upon, the idle time will often be very small. There are three distinct methods of mapping
a domain of interest here : Block, Cyclic and Graph Based Partitions.

A block mapping [32] represents each processor containing an equal continuous section
of the problem domain. Each processor would then be allocated one of these blocks of data. For
instance a block mapping of a matrix with 7 rows onto 3 processors would be distributed as in

Figure 1.4.

Chapter 1

10

L

* K *k
* k%

* *

* K *

Figure 1.5 : An Upper Triangular Matrix with Block Mapping (N.B. The Symbol * represent

elements not processed).

po—m

* k%
* K %

*
* %

* % X

p—

Row 1
Row 4

Figure 1.6 : Wrap Mapping of an Upper Triangular Matrix (N.B. * represents elements not

processed)

Figure 1.6 shows that for the first column the workload is approximately equal. Looking

at the sixth column now each processor has the same amount of work to accomplish. This

method therefore provides a better load balance for upper or lower triangular matrices.

Another method that may be used is Block Cyclic which is a hybrid of the block and

cyclic methods. For this method, the load imbalance is higher than it would be for the cyclic

Chapter 1 11

method but lower than for the block method. This method does however have the potential for
lower communication than the cyclic method but more than for the block method.

Graph Based Partitions involve taking a graph that represents the mesh of the problem
and dividing the graph such that each processor has an equal amount of graph/mesh nodes whilst
also minimising the number-of graph edges cut. The greater the number of edges cut then the
greater the volume of communication. There are several methods to accomplish this, some of
which are : Greedy [38], Recursive Graph Bisection [39], Recursive Spectral Bisection [40] and
Multilevel Recursive Spectral Bisection [41].

There are at present several software tools available to provide a graph decomposition.
These include Scotch [42], Metis [43], Chaco [44] and JOSTLE [45, 46, 47].

JOSTLE [45, 46, 47] developed at the University of Greenwich decomposes
unstructured meshes by first of all using the Greedy method to provide an initial partition. It will
then reduce the problem size by using a Recursive greedy algorithm before applying further

optimisation heuristics.

1.6 Communication Ultilities.

In this work the Computer Aided Parallel Tools communication library is used. These
are high level generic communication calls developed at the University of Greenwich [48, 49].
These map onto the low level communication calls of either machine specific communications
such as Cray SHMEM ([50], Inmos CToolset or onto communications libraries such as PVM
[51] or MPI [52]. The communications have been designed to function on various processor
topologies such as 1-D, 2-D or 3-D grids of processors, rings of processors or a full processor
interconnection. They have been employed successfully and efficiently in the parallelisation of
numerous Computational Mechanics (CM) codes [26]. The communications have been designed
to be simple with the minimum number of parameters required. This allows the communications
to be comprehendible in understanding the nature of the parallel code. They are easily portable
to other parallel machines using the above mentioned communication libraries and can easily be
adapted for use with any other communication library or low level communications.

Examples of these high level communication calls are CAP_SEND, CAP_RECEIVE
and CAP_EXCHANGE which will respectively send, receive or perform a pairwise parallel

Chapter 1 12

exchange of the required data between the required processors as stated in the communication
calls parameter lists.

The parameter lists for these high level generic communications for the synchronous
communications are as follows :

CAP_SEND(Send Address, Length, Type, Direction)

CAP_RECEIVE(Receive Address, Length, Type, Direction)

CAP_EXCHANGE(Receive Address, Send Address, Length, Type, Direction)
where the Send Address is the start address of the data to send; the Receive Address is the start
address to receive the data; the Length is the amount of data to be communicated; the Type is an
integer value representing the type of data to be communicated e.g. integer, real, etc; and the
Direction is the processor or neighbour to communicate with. The Direction definition for a 1-D
grid of processors (pipeline/chain), for example, may be CAP_LEFT or CAP_RIGHT which
simply states that the data is to be communicated from processor p to processor p-1 or processor
p+1, respectively. For a 2-D grid of processors the Direction would be either CAP_LEFT,
CAP_RIGHT, CAP_UP and CAP_DOWN. This is extended to a 3-D array of processors by
introducing CAP_TOP and CAP_BOTTOM.

The CAP_SEND and CAP_RECEIVE communications will always work in tandem.
Consider the following code:

CALL CAP_SEND(A(1), 10, 1, CAP_LEFT)

CALL CAP_RECEIVE(A(1), 10, 1, CAP_RIGHT)
The first communication will send 10 values of data beginning at the array address A(1) of the
data type 1 (which represents an INTEGER) to the processor to its left. The second
communication will then receive the 10 values of data from its right into the array with the array
address beginning at A(1).

An example of an exchange communication as used in a code is as follows:

CAP_EXCHANGE(A(100), A(200), 100 ,2, CAP_RIGHT)
The processor will receive 100 data items from its right in to the array address A(100) of the
data type 2 (which represents a REAL). The communication will also send back 100 data items
in the opposite direction (i.e. to the left) from the array address beginning at A(200). The
advantage of the CAP_EXCHANGE communication is that each processor will perform the
communication at the same time in the same direction in parallel. The time required to exchange

data is thus independent of the number of processors.

Chapter 1 13

Another high level generic communication call commonly used 1is the
CAP_COMMUATIVE that allows each processor to calculate its own local commutative
operation (e.g. minimum, maximum or sum calculation, etc) before communicating with all
other processors and returning the global value to each processor. The parameter list for this
communication is as follows :

CAP_COMMUTATIVE(Value, Type, Function)

Where Value is the local contribution to the value to which the commutative operation is to be
applied, and Function is the binary commutative function to be used, e.g. MAX, ADD, etc.

An example of a commutative communication is as follows :

CAP_COMMUTATIVE(MAXNUM, 2, CAP_RMAX)

Each processor will provide its own local value of MAXNUM and will, based on the function
CAP_RMAX which finds the maximum value of MAXNUM, will return it as the global value.

In the CAPTools library every processor knows its position in the processor grid and

knows which processors are its neighbours. This includes knowing that a neighbour processor

does not exist in a certain direction if it is a processor on the edge of a grid.

1.7 Domain Decomposition of a 1-Dimensional Jacobi Solver.

To demonstrate the parallelisation of a code using domain decomposition and the
Computer Aided Parallelisation Tools communication library consider the following problem.
The simple diffusion Jacobi problem being solved is :

TNEW(D) = (TI-1)+T(+1))/2 where 1=2,999
and the boundary conditions are

T(1)=1 T(1000) = 100
The serial algorithm for solving this problem would be as follows :

DO1=2,999

TNEW(D) = (T(I-1)+Td+1))/2
ENDDO

The mesh for the problem is 1-dimensional consisting of 1000 elements. To decompose
this mesh onto, say N processors using Block Mapping (Section 1.5) would involve distributing

1000/N elements to each processor. For example if there were 4 processors then the number of

Chapter 1

14

elements distributed to each processor would be 250. Table 1.1 shows the range of data each

processor would operate on.

Processor Low Range High Range
1 1 250
2 251 500
3 501 750
4 751 1000

Table 1.1 : Data ranges for four processors.

Each processor has its own unique low and high range limit to operate upon. These low

and high ranges values will differ depending on the number of processors. For example on 2

processors the ranges is shown in Table 1.2.

Processor Low Range High Range
1 1 500
2 501 1000

Table 1.2 Data ranges for two processors.

These low and high range values are dependent on the number of processors. Since the
problem may be ran with varying number of processors then these low and high range values
must be dynamically generated at the beginning of the parallel code. These low and high ranges
are calculated for each processor at runtime based on the problem size (often read in) and the
user specified number of processors. These low and high ranges are allocated the variable names
CAP_LOW and CAP_HIGH and are unique to each processor. These variables may then be
used to partition the solver loop as follows :

DO I = MAX(2,CAP_LOW), MIN(999, CAP_HIGH)

TNEW(I) = (T(I-1)+T(I+1))/2
ENDDO

The MAX and MIN functions ensure that the original limits of the problem are not exceeded.
To calculate the value of TNEW for each processors range requires values from its
neighbouring processors. Consider the 4 processor case again. On processor 2 the range of I will

be from 251 to 500. To calculate the value of TNEW(251) requires the value of T(250) and

Chapter 1 16

1.8 Implementing Recurrence Relations using Pipelines.

Consider the simple serial recurrence calculation in Figure 1.8.

A(1)=A_INITIAL
DO L=2,NZ
A(L)=A(L)+A(L-1)
ENDDO
Figure 1.8 : A Simple Serial Recurrence.

To calculate the value of the array for a given index L requires the value of the present
index and the value of the array at the previous index, i.e. it require A(L) and A(L-1). A
recurrence occurs since the previous value A(L-1) is required to calculate the value of A(L).
This recurrence is very much like a production line or pipeline where an entity is required from
the previous stage of the pipeline. It is for this reason that a recurrence is often referred to as a
pipeline.

Figure 1.9 shows how this pipeline is reliant on the previous index of the array. For
example, to calculate the value of A(3) requires the value of the previous index A(2). This
indicates that the computation must be done in this strict order to ensure correct results. This

form of calculation is found regularly in most CFD codes.

A(l) A2)=AQ2)+ A1) A(3)=A3) + A(2)

Figure 1.9 : The Use of Previously Calculated Data in a Pipeline

When this pipeline array is partitioned in parallel using a block partition, the array will
be equally divided between the processors. If there are N number of processors and each of these
processors is distributed with three indices of the array then the partition array will be as in

Figure 1.10.

Chapter 1 17

1 1 2 [3] 45716] [Nz5|NZ4[Nz3 [NZ-2 [NZ-1| NZ

Proc 1 Proc 2 Proc N-1 Proc N

Figure 1.10 : A block partitoned pipeline.

Figure 1.11 shows the code for a simple serial recurrence (Figure 1.8) after
parallelisation. The loop L has been partitioned using CAP_LLOW and CAP_HIGH as described
in Section 1.7. The aim of partitioning this loop is to allow each processor to calculate its own
portion of the array concurrently and thus reduce the computation time. However, the
calculation within this loop is dependent on having the value of the previous array index. This
therefore condemns the processors to operate in a serial fashion. Figure 1.12 displays
diagrammatically how this pipeline operates. The first processor will calculate for the range of
indices it owns (i.e. 1 to 3) before communicating the required data (index 3) to the next
processor. The next processor then receives this data before allowing calculation to be executed.
Once this calculation has been executed the processor will then communicate to the next

processor the data it requires.

A(1)=A_INITIAL

CALL CAP_RECEIVE(A(CAP_LOW-1),1,2,CAP_LEFT)

DO L=MAX(2,CAP_LOW),MIN(NZ,CAP_HIGH)
A(L)=A(L)+A(L-1)

ENDDO

CALL CAP_SEND(A(CAP_HIGH),1,CAP_RIGHT)

Figure 1.11 : A Simple Serial Recurrence that has been parallelised.

The recurrence calculation causes the processors to operate serially. The pipeline will
also take longer than the original serial code since there is now the additional overhead of
communication between the processors. For a parallel machine with a high communication
latency, the communication time will extend the total time of the pipeline significantly. If there
is little computation within the loop then the communication time may completely dominate the
time taken. Obviously if a parallel machine with a low communication latency is used then the

time taken by the pipeline will be reduced, but will still take longer than the serial code. The

Chapter 1 21

(CAPTools). In the first instance this was achieved by improving the automatically generated
parallel code from CAPTools by applying by hand the overlapping of communications with
calculation using asynchronous communications. This was tested on a test case of four codes.
From this premise it was then possible to formulate a general formal model that was pursued
in the incorporation of automatically generated overlapped communications as an additional
stage within CAPTools. This additional stage within CAPTools was tested on several other
codes. Initially these methods were applied for structured mesh based codes. A further
objective was to investigate whether these methods were also applicable to unstructured mesh

based codes.

1.11 Outline of Thesis.
Chapter 2 will discuss Computer Aided Parallelisation Tools (CAPTools) [26, 27, 28,

29] developed at the University of Greenwich to automatically generate parallel code. These
Tools are referred to throughout this work.

Chapter 3 investigates the parallelisation of four structured mesh codes using CAPTools.
The chapter discusses how these codes were parallelised using CAPTools along with any other
optimisations that were applied to obtain improved efficiencies. Results will also be presented
for these parallelisations using synchronous communications.

Chapter 4 moves on to investigate ways of increasing the performance of these codes
even further by applying overlapped communications. Four different methods of applying
overlapped communications were investigated and are discussed. These methods are applied to
these codes by hand.

Following the successful application and testing of the four methods in the previous
chapter, Chapter 5 discusses their implementation as an additional stage within CAPTools. This
will allow these methods of overlapping to be automatically generated by CAPTools to replace
the synchronous communications.

Chapter 6 provides the results obtained from CAPTools using synchronous
communications and for overlapped communications.

Chapter 7 investigates the parallelisation of unstructured mesh codes. The chapter also
discusses methods to automatically generate overlapping communications for these types of

codes.

Chapter 1 22

Chapter 8 provides a conclusion to the work investigated.

1.12 Conclusions.

This chapter has provided a basic understanding of the concepts of parallelising codes. It
has also defined some of the problems associated with parallel processing. The subsequent
chapters will attempt to resolve some of these problems, and be implemented for automatic

generation within Computer Aided Parallelisation Tools.

Chapter 2

2 Computer Aided Parallelisation Tools
(CAPTools).

This chapter explains in further detail the aims of the parallelisation tool, Computer
Aided Parallelisation Tools (CAPTools) and the stages of the process of obtaining parallel
code. Other parallelisation tools, as well as CAPTools, were discussed briefly in Section 1.2.

The whole process of automatically generating parallel code will be explained briefly
along with a more in depth explanation of how each stage is accomplished. The embedding of
the automatic generation of overlapping communications within CAPTools will require the

use of various data structures from each of these stages.

2.1 CAPTools.

CAPTools [26, 27, 28, 29] is targeted at facilitating the generation of efficient parallel
FORTRAN 77 code with explicit communication calls. Although the tools are designed for
the parallelisation of any application, the initial focus of attention of CAPTools is for
structured mesh based FORTRAN numerical codes such as Computational Fluid Dynamics,
heat transfer and structural analysis.

The main aim of CAPTools is to produce a parallel code adhering to all the five
requirements of parallel processing outlined in Section 1.3. Using CAPTools, it is possible to

reduce the time taken to parallelise code from weeks or months, to just days or even hours.

2.2 Using CAPTools to parallelise a Structured Mesh Computational Mechanics
Code.
The stages involved to produce a parallel code using CAPTools are as follows:
1. Serial Fortran code is loaded into CAPTools (Section 2.3).

2. A detailed dependence analysis of the serial code is calculated (Section 2.4).

Chapter 2 24

3. A data partition for one array is prescribed by the user and inherited
throughout the code (Section 2.6).

4 Execution control masks are generated (Section 2.7).

5. Calculation, Migration and Merging of communications (Section 2.8).

6 Generation of communications (Section 2.9).

7. Final code generation (Section 2.10).

Each one of these steps will be discussed in further detail in this Chapter.

2.3 Loading the Serial Code.

The very first stage in using CAPTools is to read in the serial Fortran 77 code. This
will involve a basic parsing of the code and for a parse tree, symbol table, routine call graph
and a control flow graph to be constructed.

The parse tree consists of nodes used to represent the source code being parallelised.
The parse tree is constructed as binary trees with each node representing a symbol table entry
(SYMBOL) with a left and right branch pointing to the next nodes. Each routine has its own
symbol table. Figure 2.1 shows an example of a simple parse tree from CAPTools for an

assignment statement A = A + 2.

SN

()

Figure 2.1 : A parse tree from CAPTools representing an assignment statement.

2.3.1 Call Graph.

The call graph consists of nodes each representing a routine. A node is connected to
another node if a routine calls another routine. The call graph is assembled by identifying all

calls to routines in the parse trees and matching them with the relevant routine header. The

Chapter 2 25

strict order of the call graph is composed by performing a depth first search from the main
program identifying every routine call. A routine is added to the ordered list only when every
routine called by that routine has been processed. This provides a strict order of routine calls
for the program that allows the Fortran code to be outputted in the same order as inputted.
This strict order call graph may then be used for interprocedural analysis of the dependence
graph. It will also be relevant when determining the path by which communications and any
communication synchronisation points may proceed when being migrated (Section 2.8.3).
The strict ordering of the routines is employed when traversing through the routine
boundaries during an interprocedural traversal.

Each routine node (ROUTINE) holds information on other routines that a particular
routine calls (CALLS) and a list of routines that have called this routine (CALLEDBY).
Each ROUTINE also stores the next routine in the order as they were read from the input file
(NEXT) and a strict order where each routine is listed only after all routines it references
have already been listed (STRICT). The pseudo code in Figure 2.2 shows how CAPTools
uses this data structure to traverse the call graph, which in this case are the routines being

called.

CALLS := ROUTINEA.CALLS
WHILE (CALLS <> NIL) DO
BEGIN

CALLS := CALLSANNEXT
END

Figure 2.2 : Pseudo code to traverse the call graph.

2.3.2 Control Flow Graph.

The control flow graph consists of nodes which represent a group/block of statements
(known as a basic block) with directed control flow paths from one node to another [53].
These blocks of statements are stored within CAPTools as a BLOCK data structure. Each one
of these BLOCK data structures will point to a list of these statements (COMMAND) that
belongs to this BLOCK. These statements are grouped into blocks as follows: each DO or IF
statement will be placed in a BLOCK of its own; while one or more consecutive assignment
statements will be placed into one block. The pseudo code example in Figure 2.3 shows how
it is possible to traverse through every statement of every block of every routine in the code

as it was in the original input code read into CAPTools.

Chapter 2 26

CURRENT_ROUTINE := ROUTINE
WHILE (CURRENT_ROUTINE <> NIL) DO
BEGIN
CURRENT_BLOCK := CURRENT_ROUTINE ~.BLOCKTOP
WHILE (CURRENT_BLOCK <> NIL) DO
BEGIN
CURRENT_COMMAND := CURRENT_BLOCKA.COMMAND
WHILE (CURRENT_COMMAND <> NIL) DO
BEGIN

CURRENT_COMMAND := CURRENT_COMMANDANEXT
END
CURRENT_BLOCK := CURRENT_BLOCKA.NEXT
END
CURRENT_ROUTINE := CURRENT_ROUTINE A.NEXT
END

Figure 2.3 : Pseudo code to traverse every statement in the input code.

The first block of each routine is stored in the CAPTools data structure ROUTINE as
the BLOCKTOP.

Each BLOCK possesses a HASFATHER and a HASCHILD data structure that
represents a list of blocks from which flow can have reached a particular block and to which
control can flow from the block respectively. Figure 2.4 shows the pseudo code that performs
a depth first search (DFS) from a starting block (STARTBLOCK) passing through all blocks
marking all reachable blocks down the control flow graph using the HASCHILD of each
block. The blocks are marked using the MARKED field of BLOCK which is reserved
specifically for this purpose. It is also possible to perform a depth first search up the control

flow graph using the HASFATHER of the block

PROCEDURE BLOCKDFS(STARTBLOCK)

BEGIN

BLOCKA.MARKED := TRUE

BLOCKLIST := STARTBLOCK ~HASCHILD

WHILE (BLOCKLIST <> NIL) DO
BEGIN
IF (NOT BLOCKLISTABLOCKAMARKED) THEN

BLOCKDFS(BLOCKLISTA.BLOCK)

BLOCKLIST:=BLOCKLISTA.NEXT
END

END

Figure 2.4 : Pseudo code showing a depth first search of the basic blocks.

Figure 2.5 shows how the statements are divided into blocks. The control flow graph

(Figure 2.6) shows how the control flows from one block to another. For example, Blockl

Chapter 2

27

may either flow to Block2, i.e. another iteration of the I loop, or flow to block 5, 1.e. there are

no further iterations of loop 1.

Sl
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15
S16
S17
S18 10
S19
S20

DOI=
DOJ =
A(LY)=
B(L))=
ENDDO
C(DH=
ENDDO
IF(CONDITIONAL) THEN
C(D)=
ELSE
C(D=
ENDIF
IF (CONDITIONAL) THEN
GOTO 10
ENDIF
Al)=
A(1,N)=
CONTINUE
B(1,1)=
B(I,N)=

Figure 2.5 : Code to Demonstrate Control Flow

|

Block 1

Block 2

Block 3

Block 4

Block 5
/ \

Block 6 Block 7

S —

Block 8

Block 10

Block 9

V

Figure 2.6 : Control Flow Graph.

Block 1
Block 2
Block 3
Block 3

Block 4

Block 5
Block 6

Block 7

Block 8
Block 9

Block 10
Block 10
Block 11
Block 11
Block 11

Chapter 2 28

Incorporated into the basic blocks are the post- and pre- dominator trees of the control
flow graph. Post-domination indicates that a statement S post-dominates a statement S; if no
control flow path to the routine end exists from S, that does not pass through S;.
Predomination indicates that a statement S; pre-dominates statement S, if the control flow
must pass through S to reach S,, i.e. no other route exists to S, that does not pass through S;
[54]. The predomination graph and post-domination graph for the control flow graph in
Figure 2.5 is shown in Figure 2.7 and Figure 2.8 respectively. Each block has its own unique
immediate pre- and post- dominator. The pre-dominators and post-dominators of a block may
be found, within CAPTools, by traversing up the appropriate pre or post dominator tree

which is stored in the BLOCK data structure of CAPTools.

START STOP

oo
oRolololo Sl
START
ofo

STOP

Figure 2.7 : Predomination Graph. Figure 2.8 : Postdomination Graph

Using these graphs and data structures that are provided from CAPTools it is possible
to traverse up the control flow graph to find the optimum position for placement of
communications, synchronisation points, etc. For instance, if a communication were required
before a certain statement then it would be migrated up the pre-dominator tree since this
would guarantee execution before that statement. The pseudo code in Figure 2.9 shows how

this would be accomplished within CAPTools.

Chapter 2 29

PREDOMINATING_BLOCK := BLOCK
WHILE (PREDOMINATING_BLOCK <> NIL) DO
BEGIN

PREDOMINATING_BLOCK := PREDOMINATING_BLOCK*PREDOM
END

Figure 2.9 : Pseudo code showing a traversal of the pre-dominator graph in CAPTools.

If the BLOCK on the first line in Figure 2.9 is BLOCKI11 from Figure 2.5 then the
code will traverse the pre-domination graph (Figure 2.7) passing through BLOCKS8 and
BLOCKS5 before reaching BLOCK1 where the command is a DO statement. A similar
method may be used to traverse the post-domination graph.

During traversal, any barriers to movement (such as the assignments of the data to be
communicated) must be detected between the current control flow graph block and its
immediate pre-dominator in any control path before traversal is legal.

Each one of these blocks also holds a list relating to the loop nestings (NESTING)
surrounding that basic block. For example, in Figure 2.5 Block 3 will have two loop nesting
surrounding that block, i.e. Block 1 and Block 2. Figure 2.10 shows how this NESTING

information is stored within CAPTools.

BLOCK NESTING NESTING LOOPINFO
NEXT COMMANDS NESTING LOOPINFO NEXT LOOPINFO NEXT HEAD VARIB

;| NIL| ' I

\l—f——ﬁw,|1|

| =1 | [Nu]

T
N

__[NIL]

Figure 2.10 : The data storage of NESTING within CAPTools.

Chapter 2 31

reassigns that data. The source is in effect overwritten by the sink. Consider the following
example :
Sy ..=A()
S, A =..
An anti dependence exists since the data used in statement S, is reassigned in statement S,.
Output Dependence - This is when data is being reassigned after being previously
assigned. Consider the following example :
Si Al = ..
S A =..
The data in statement S; is simply reassigned in statement S,. This is a common method used
in many codes to reuse memory location to reduce the memory overheads.
Control Dependence - This is when a control statement, such as an IF, controls the
execution of other statements. Consider the following example :
Si IF (conditional) THEN
S A= ...
The statement S; is controlled by the statement Sy. The statement S; may not execute until

statement S; has been proved either true or false.

24.2 Depth dependence.

Another attribute of dependencies to consider is whether they are carried by loops.
These are dependencies for data assigned in one iteration being used in a consequent iteration
of the same loop.

Each dependence type also possesses a depth. A dependence may be Loop

Independent if it exists within a single iteration of all surrounding loops. For example :

DO I=1,100
DO J=2,99
AL = ...
.= ALD)
ENDDO
ENDDO

i.e. the value of A(I,J) was assigned and used in the same iteration.

Chapter 2 32

If a dependence exists between iterations of the outermost loop of the surrounding

statement/s then it is deemed to be Level One. For example :

DO K=1,100
DO J=2,99
DO I=1,5
A(LTK) = A(LJK-2)
ENDDO
ENDDO
ENDDO

i.e. the values used in each iteration was assigned two iterations earlier of the outermost K
loop.
If a dependence exists between iterations of the next outermost loop of the

surrounding statement/s then it is deemed to be Level Two. For example :

DO K=1,100
DO J=2,99
DO I=1,5
A(LTK) = A(LJ-1,K)
ENDDO
ENDDO
ENDDO

i.e. the value used in each iteration was assigned in a previous iteration of the J loop. This
process may continue for every other loop.

These loop carried dependencies can cause a loop to be serial, often resulting in a
pipeline (Section 1.8). These pipelines are caused (as mentioned earlier in Section 1.8) by the
use of data calculated in a previous iteration. These serial loops are detected by CAPTools by
the occurrence of a loop carried true dependence.

Within CAPTools data structures every executable statement (COMMAND) stores all
dependencies for that statement. Each dependence data structure stores the information for its
Level of dependence (DEPTH), its TYPE, i.e. True, Anti, etc, and the VARIABLE that

causes that dependence.

Chapter 2 34

increments in every iteration of a particular loop, are identified and transformed to be
functions of the loop variable concermed [56, 57, 58]. These transformations are not essential
but they do simplify the analysis process, code generation and asynchronous code generation
stages. These transformations are easily reversible during the code generation stage to ensure

original code recognition [28].

2.4.5 Control Dependence Calculation.

Prior to the calculation of the dependence analysis the control dependencies (Section
2.4.1) are calculated using the post-domination graph of the control flow graph (Section
2.3.2). If a statement does not post-dominate its father statements then it is control dependent
on those fathers [54]. The control dependence calculation algorithm searches up the post-
domination graph until a common post-dominator is reached. All the blocks that were

traversed then contain statements that are control dependent on the father block.

2.4.6 Dependence Analysis.

The dependence analysis first performs a basic dependence calculation. This analysis
consists of a scalar and array analysis. A scalar variable can be a DO loop counter variable,
whose value will always be defined within the loop, otherwise it is deemed as a nonloop
variable. The values of the nonloop variables will always be defined by previous statements.
These values may be determined by the true dependencies of the scalar dependence graph.

For an array analysis, the examination and determination of possible equality of array
index expressions determines if a dependence exists. Due to the conservative nature of the
algorithm to obtain a correct dependence graph, a dependence is set unless its non-existence
may be proved. A dependence may be determined by the array references of the assi gnment
and usage statements. From this, a set of equations and constraints may be determined, to
which dependence tests are applied to attempt to prove that a dependence does not exist.

These tests include the Greatest Common Divisor test (GCD) [58], the Banerjee
Inequality Test [58, 59, 60] and the Symbolic Inequality Disproof Algorithm (SIDA) [61,
27). The GCD test obtains a solution to the equations based on the fact that they have only
integer variables and integer coefficients. The Banerjee inequality test makes use of all

variable range information to prove that a dependence does not exist.

Chapter 2 35

The first two tests mentioned make use of information about the loop iteration
variables. However, the inclusion of other variables, such as nonloop variables (also referred
to as symbolic variables) in index expressions, loop limits and conditional statements,
prevents an accurate analysis (Section 2.5). Consider the pseudo code in Figure 2.12 where
the variable M used in statements S4 and S¢ have the same defining statements but each has a
different call path. The use of variable M in statement S, is defined in statement S; but has
the call path S;. Meanwhile, the use of the variable M in statement S¢ also has the defining
statement S3 but the call path of Ss. The two references to the variable M in subroutine SUB1
therefore have different values since their call paths to the defining statement of the variable

are different.

Sy CALL INITIALISE (N)
S, CALL SUBI(A, N)

SUBROUTINE INITIALISE (K)

S; K=..
END
SUBROUTINE SUB (A, M)
S, AM, 1) = ...
DOJ=1,NJ
Ss CALL INITIALISE(M)
Se AM,) = ...
ENDDO
END

Figure 2.12 : Pseudo code showing two different call paths for a definin g statement.

2.4.6.1 Symbolic Inequality Disproof Algorithm

The Symbolic Inequality Disproof Algorithm (SIDA) test attempts to prove nonloop
variables inequalities to be false. The algorithm makes use of information already known in a
linear combination that matches the set of nonloop variables being tested. For example:

Test NONLOOPS + K >= 0 where K is a constant
A linear equation of known inequalities produces :
NONLOOPS + C <=0 where C is a constant
The SIDA test can then be performed to eliminate all nonloop variables :
NONLOOPS + K >= 0 >= NONLOOPS + C
K>=C

If the inequality involving only known constants is true then the original test :

Chapter 2 36

NONLOOPS >=0 is false
For example, to prove that N + 2NM >= 10 requires the test to disprove that :
N+2NM-10<0
The knowledge base consists of two relevant known inequalities N -2 >=0and N - M <= 0.
Since the original equation consists of a nonlinear term NM further inequalities are required

to find a solution. These additional inequalities, for this example, may be obtained by
multiplying the first inequality from the knowledge base with itself and multiplying the two

inequalities together. This provides the following four inequalities :
N-2>=0
N-M<=0
N°—4N +4>=0
N’ —NM - 2N + 2M <= 0
Taking these inequalities a matrix system A k = b is constructed. The vector b is
constructed using the coefficients of the nonloop variables in the test inequalities. In the
matrix A each column represents the coefficients of the nonloop variables in a known
inequality, where each row represents a nonloop variable, matching those in the b vector.
Any nonloop variables not in b are appended to b with a zero coefficient.
Also constructed are vectors ¢ and s which store thes constants and signs respectively
of each known inequality (i.e. columns of A) where (<=, =, >=) are represented by (-1,0,1) in
.

For the four inequalities above the following matrix system and vectors are

constructed :
A k = b
1 1 -4 -2\ (k) (1} N
0 0 0 -k 2] NM ¢c=(-2 0 4 0) s=(1 -1 1 -1)
0 -1 0 2 ||k| |O] M
o 0 1 1]k (0] N?

The solution of this system produces the coefficients for the linear combination of the known

inequalities required to eliminate the variables in the inequality being tested :

Chapter 2 37

9 9
-4 4
k= s*¥k =
- 2 -T2
-2 2

Since we are attempting to prove false a lesS than zero inequality, a positive combination is
required. The s*k vector above shows that all the contributions to the combination have the
required sign , allowing the final test of the SIDA algorithm:

N+ 2NM -10 < 0 <= 9(N - 2) — 4(N = M) + 2(N* - 4N + 4) — 2(N* —= NM — 2N + 2M)

<=9N - 18 —4N +4M + 2N? - 8N + 8 — 2N° + 2NM + 4N - 4M

N+2NM-10<0<=N+2NM-10

Which provides :
-10< -10

and thus the final test involves constants only and if false, proving that the original test is

false and that the original inequality is true.

2.4.6.2 Inference Engine.

These dependence tests work well to exploit definitely true inequality information.
However, much of this information, especially the execution control set of statements will
often involve logical operations and logical variables. Vital information such as loop steps
and division denominators can definitely never be zero and therefore cannot be used since the
information is either greater than or less than zero.

Using an inference engine [62] in conjunction with the SIDA allows this information
to be exploited. Every logical variable and inequality in the known information is used to
form a literal when the logical expression 1s converted into clausal form. The inference
engine then attempts to prove the clause list false by combining clauses that contain
contradictory literals, performing a union on the remaining literals to form a new clause. The
false conclusion is reached if an empty clause is formed when two clauses contain single
literals that contradict each other. To calculate the contradictory literals between two
inequalities to be false requires assuming one of these inequalities is true. Adding this
inequality to the knowledge base then enables the other inequality to be proved false. This
indicates that one of these literals, either the assumption or the second literal, to be false and

satisfying the contradictory literal requirement.

Chapter 2 38

Consider the following code example :

DOI=2,N,S
A0 =Ad) + ...
ENDDO

Normalising this loop (Section 2.4.4) provides :

DOI=1,(N-2)/S +1
A(I-D)*S +2) = A(I-1)*S +2) + ...
ENDDO

Applying the Banerjee Inequality Test [58, 59, 60] provides the following inequality :

S~ (S8 +8)" (N-2)/S+ 1) <=0 <==S + (S* = S)" (N=2)/S + 1)
where

S*=Sif S >0 or otherwise S*=0

S"=S if S >0 or otherwise S'=0
Therefore depending on the sign of the variable S :

S>0:-S-S((N-2)/S+1)<=0<=-S

S<0:-S<=0<=-S-S((N-2)/S +1)

S=0:0<=0<=0
The first two cases have contradictions that can be identified using the SIDA test (Section
2.4.6.1). The third case, however, cannot be disproved with the given current set of
information. If S is zero then the location of array A used is the same for each iteration as the
previous causing a loop carried loop dependence. Since S is the loop step and may not be
equal to zero and also S is the denominator in a division the following clauses are added to
the knowledge base :

S>0 orS<0
The inference engine is used during the Banerjee inequality to determine the possibility of the
variable S having a value of zero. The first test provides the contradictory literals (S = 0) and
(S < 0). A further second test provides the contradictory literals (S = 0) and (S > 0). The
inference engine therefore proves that the variable S cannot be zero and thus the third case of
S =0 is removed from the set of Banerjee tests, enabling the non-existence of the loop carried

true dependence to be proved.

Chapter 2 39

2.4.6.3 Interprocedural Analysis.

The dependence analysis tests carried out are interprocedural. This is not done using
the technique of inlining as this will change the structure of the code, which is in direct
contradiction of rule 2 of the parallelisation objectives in Section 1.3. Instead, a mapping is
executed between routines using a start and stop node of the routines involved. These start
and stop nodes are added to the dependence graph after it has been constructed. All
statements within a routine that uses variables that are not defined in that routine but passed
in via either the parameter list or common block are joined in the dependence graph to the
start node. Similarly, any statements that define variables that are passed out of this routine
are connected to the stop node.

A further dependence test being incorporated into CAPTools is the OMEGA test [63].
This test uses the Fourier-Motzkin variable elimination [63, 64, 65] to attempt to determine
precisely if a dependence exists. This method is slower, but more accurate, and for the

majority of cases is not required.

2.5 Symbolic Variable Manipulation.

One of the most important features of CAPTools is its ability to manipulate symbolic
variables. The dependence calculation algorithm makes use of loop iteration variables, but the
inclusion of other non-loop variables could prevent accurate analysis.

To enable a more accurate comparison of these non-loop variables, they are defined not
only in terms of the symbol of the variable but also as the defining statement of the variable
along with the call path from the variable usage to the routine that assigns the variable.

Consider an array index expression, for an array

A((S*M*L)+(2*K)+J+6, J*M)+5, IP(K+1)+J-1)
where J and K are loop variables and M and N are non-loop variables. This is stored within

CAPTools as shown in Figure 2.13, Figure 2.14 and Figure 2.15.

Chapter 2 41

INDEX 3
COEF NONLOOP CONSTANT NEXT
Vr [[-1 [NILj
TERM COEF NEXT
;[1 NI
TREE COMMAND INDICIES NEXT
Lo T [N
| |
IP IP(.)=..
COEF NONLOOP CONSTANT NEXT
,] NIL] 1 TNIL
LINK COEF CONSTANT NONLOOP NEXT LINK COEF CONSTANT NONLOOP NEXT
L 10 o [N [——{ J1 [o [NL [N
} }
J K
LINK COEF CONSTANT NONLOOP NEXT LINK COEF CONSTANT NONLOOP NEXT
p 1] o [N [——{ ;Jo] o [NL_ [N
| |
J K

Figure 2.15 : The third index of array A stored within CAPTools.

Figure 2.13 shows the data structure for storing the first index (INDEX) for the array
A. This INDEX data structure consists of a data structure for the loop variable coefficients
(COEF), nonloop variables (NONLOOP) and any constants values (CONSTANT). For this
index, the COEF data structure stores the value of K*2 and J*1; the NONLOOP data
structure stores the value 5*M*L; and the CONSTANT stores the value 6. When these
components are added together they provide the symbolic variable of the first index of array
A ie. (5*M*L)+(2*¥K)+J+6. The data is stored similarly for indices 2 and 3 in Figure 2.14
and Figure 2.15.

These symbolic variable data structure may be manipulated within CAPTools by
iterating over each INDEX of an array, followed by each COEF and each NONLOOP. While
iterating over each of these data structures the symbolic variables may be manipulated using

some of the utilities in Section 2.5.1.

2.5.1 Symbolic Variable Manipulation Utilities.

There are several utilities within CAPTools that can be used to manipulate these

symbolic variables and their data structures. Some of these routines are :

Chapter 2 42

FORSUBSTITUTE - This utility processes an input symbolic expression or an input
parse tree and performs a depth first search of the dependence graph substituting the
orig<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>