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Abstract—Byzantine-robust federated learning (FL) aims to
obtain an accurate global model even with potentially Byzantine
users. However, most existing schemes rely on measuring the
overall differences between the entire gradient vectors of different
users, which fail to effectively distinguish malicious gradients
from benign ones caused by data heterogeneity under non-IID
settings, thereby compromising model performance. To tackle this
challenge, we propose BPFLH, a novel Byzantine-robust privacy-
preserving FL framework for heterogeneous data. BPFLH is the
first to introduce Bray—Curtis dissimilarity into FL, capturing the
element-wise differences among gradients from different users.
This method reduces the risk of misclassifying benign gradi-
ents as malicious and enhance the model’s robustness against
Byzantine attacks in non-IID data environments. Furthermore,
BPFLH leverages CKKS homomorphic encryption to protect
local gradients, enabling secure aggregation and Byzantine user
detection without compromising privacy. Extensive experiments
on real-world datasets under various attack scenarios and data
distributions demonstrate that BPFLH exhibits strong robustness
against Byzantine attacks while preserving privacy and maintain-
ing superior accuracy compared to existing Byzantine-robust FL
methods, particularly in non-IID environments.

Index Terms—Federated learning,
privacy-preserving, heterogeneous data.

Byzantine-robustness,

I. INTRODUCTION

ITH the rapid development of the Internet, artificial

intelligence (AI) technologies, particularly machine
learning, have flourished in recent years and found extensive
applications across various domains. However, vast amounts
of data are distributed across numerous devices, and these
data often contain sensitive information of the users. Growing
privacy awareness and regulatory frameworks such as the
General Data Protection Regulation (GDPR) prohibit the direct
exchange of personal data, which results in the problem of
data silos [1l]. Federated Learning (FL), a distributed ma-
chine learning paradigm introduced by Google [2]], provides
an effective solution to this issue. In FL, data remain on

This research is supported by National Natural Science Foundation of
China (U24A20244), Shandong Provincial Natural Science Foundation, China
(ZR2025MS1006) and Youth Innovation Technology Project of Higher School
in Shandong Province (2023KJ365).

G. Zhu and W. Shen are with the College of Computer Science
and Technology, Qingdao University, Qingdao 266071, China. E-mail:
zhuguofu05@163.com, shenwentingmath@ 163.com. (Corresponding author:
W. Shen)

Z. Liu is with the College of Cyber Security, Jinan University, Guangzhou
510632, China. E-mail: zqliu@vip.qq.com.

J. Qin is with the School of Mathematics, Shandong University, Jinan,
250100, China. E-mail:qinjing @sdu.edu.cn.

J. Ma is with is the director and academic-reader of Computing and
Mathematical Sciences Department at University of Greenwich, the United
Kingdom. E-mail:;j.ma@ greenwich.ac.uk.

local devices, and only the local gradients are shared with
a central server, which then aggregates these local gradients
to construct a global model. In this manner, FL alleviates the
data silo problem while safeguarding user privacy. Moreover,
FL enables multiple users to collaboratively train a model
with stronger generalization capabilities, thereby attracting
widespread interest.

Despite these advantages, FL is highly susceptible to Byzan-
tine attacks, which threaten the reliability of the global model
[3]. In such attacks, some users may be compromised by
adversaries and become malicious (Byzantine) users [4]. These
users may conduct data poisoning attacks, where manipulated
local datasets lead to corrupted gradients [3]], or model poi-
soning attacks, where gradients are directly tampered with
before being uploaded [6]. When these malicious gradients
are aggregated by the central server, they can significantly
degrade the global model or even cause it to diverge [7],
[8]. To defend against such attacks, a variety of Byzantine-
robust FL. schemes [9], [10], [L1] have been proposed. These
defenses typically detect malicious gradients using global
dissimilarity-based metrics, such as Euclidean distance [12],
[L3], [14] or cosine similarity [15], [16]], [17]], which measure
the overall differences between the entire gradient vectors of
Byzantine and benign users. Once identified, the malicious
gradients are either removed or assigned reduced weights
during aggregation, thereby mitigating or eliminating their
impact on the global model [15], [L6].

However, these defense mechanisms, which rely on global
dissimilarity-based metrics, face two key challenges. First,
adversaries can evade detection by introducing subtle pertur-
bations to their gradients, making malicious updates difficult
to distinguish from benign ones [18]]. Second, due to data
heterogeneity in FL, local datasets across users are typically
non-independent and identically distributed (non-1ID), as their
data distributions differ significantly. For example, in a medical
federated learning scenario, hospitals in different field may
receive patient populations with distinct health conditions and
disease distributions. A hospital specializing in cardiovascular
diseases is likely to have a higher proportion of cardiovascular
disease-related data in its patient data center, whereas a
hospital focusing on orthopedics will have more data related
on orthopedics diseases. In a data environment characterized
by heterogeneity, differences in users’ local data distributions
can lead to significant variations in the element-wise values
of their gradients. These variations do not necessarily indicate
Byzantine attacks but may simply reflect the natural differ-
ences in data distributions. As a result, these defense methods
may fail to effectively distinguish between deviations caused
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by data heterogeneity and those resulting from Byzantine

attacks, potentially misclassify benign gradients as malicious

and degrading the global model performance.

Besides robustness concerns, privacy risks also arise in FL.
Recent studies [19]], [20] have revealed that directly upload-
ing local gradients can still expose sensitive information, as
adversaries may exploit these gradients to conduct gradient
inference attacks and recover users’ private data. To miti-
gate this risk, many privacy-preserving FL schemes employ
cryptographic techniques to encrypt local gradients before
sharing, allowing them to be aggregated without exposing
sensitive information. Among these techniques, Homomorphic
Encryption (HE) has been widely adopted because it enables
computations to be performed directly on encrypted data,
thereby ensuring privacy throughout the entire training process
(211, [22].

However, while privacy-preserving methods effectively pro-
tect sensitive data, most of them do not address Byzantine at-
tacks. Existing privacy-preserving approaches and Byzantine-
robust defense mechanisms in federated learning differ sub-
stantially in their design goals: the former focuses on safe-
guarding user privacy, whereas the latter aims to mitigate
malicious updates by evaluating their dissimilarity with benign
gradients. Therefore, developing algorithms that can simulta-
neously preserve privacy and enhance robustness, while accu-
rately identifying malicious gradients, remains an important
open challenge. This challenge becomes even more difficult
under non-IID settings, where data heterogeneity exacerbates
gradient divergence and makes malicious gradients harder to
distinguish from benign ones.

To overcome these issues, we propose BPFLH, a novel
Byzantine-robust and privacy-preserving FL scheme for het-
erogeneous data, which enhances Byzantine robustness in
non-1ID settings while protecting user privacy. The main
contributions of BPFLH are summarized as follows:

1) We are the first to introduce a defense mechanism
based on Bray—Curtis dissimilarity into FL. Unlike global
dissimilarity-based metrics that measure overall differ-
ences between entire gradient vectors from different users,
Bray—Curtis dissimilarity captures element-wise differ-
ences among these gradients. This fine-grained perspective
makes it more resilient to the misleading effects of non-I1ID
data, thus reducing the risk of misclassifying benign gra-
dients as malicious and enhancing the model’s robustness
against Byzantine attacks in non-IID data environments.

2) By leveraging CKKS homomorphic encryption, BPFLH
ensures that both the secure aggregation of benign users’
local gradients and the identification of malicious gradients
are performed without revealing any sensitive user infor-
mation. In particular, the operations required for computing
the Bray—Curtis dissimilarity can be executed directly over
encrypted gradients, thereby enabling effective Byzantine
user detection without decryption.

3) We evaluate BPFLH on real-world datasets under both
IID and non-IID settings, considering various attack sce-
narios and different proportions of Byzantine users. The
results demonstrate that BPFLH can effectively filter out
malicious gradients, while ensuring privacy protection and

consistently maintaining high model accuracy. Compared
with existing Byzantine-robust federated learning schemes,
BPFLH demonstrates superior performance under non-I1ID
data settings.

Organization: The remainder of this paper is organized
as follows. Section [II] provides a concise review of related
work. Section [lIlj introduces the preliminaries used in BPFLH.
The system model, threat model, and design goals of BPFLH
are described in Section Section |V| presents the detailed
construction of BPFLH. The security proofs and experimental
evaluations are discussed in Sections [VI| and respectively.
Finally, Section [VITI| concludes the paper.

II. RELATED WORK

Federated learning is vulnerable to Byzantine attacks, where
malicious users perform data or model poisoning by corrupting
local datasets or gradients. These malicious gradients can
degrade or even destabilize the global model when aggregated.
To address this issue, a majority of Byzantine-robust federated
learning schemes [23]], [24], [25] have been developed. Blan-
chard et al. [13] introduced Krum, a method that calculates
the Euclidean distances between the local gradients of users
and selects the gradient with the smallest sum of Euclidean
distances to other users’ gradients as the standard gradient.
This standard gradient is then used to update the global model,
defending against Byzantine attacks. They also proposed
Multi-Krum, an extension that enhances Byzantine defense
by selecting multiple candidate gradients and performing an
averaging aggregation. Yin et al. [9] proposed the Median
and Trimmed-mean methods, which compute the median or
trimmed average of the local gradients, excluding outliers
to mitigate Byzantine attacks. FLTrust [15] calculates the
cosine similarity between user gradients and the server model,
dynamically assigning weights to gradients and performing
weighted aggregation to protect against malicious updates.
Dong et al. [18] introduced the CareFL scheme, incorporating
the Shapley value to detect Byzantine users. Building on this,
CareFL+ was developed to improve Byzantine user detec-
tion in large-scale federated learning by grouping users and
applying CareFL both within and across groups. Yan et al.
constructed the RECESS scheme [26]], which actively queries
each participating user for the cosine similarity and /o norm
between the constructed aggregate gradient and the user’s
uploaded gradient. By analyzing these responses, it effectively
detects malicious user, thereby providing proactive defense
against attacks.

However, these Byzantine defense methods do not address
privacy concerns. In traditional FL systems, local gradients
are transmitted to a central server, which may inadvertently
expose sensitive user data. To tackle this issue, privacy-
preserving federated learning schemes [21], [27], have been
developed, which leverages cryptographic techniques such as
homomorphic encryption [28]], [29] and secret sharing [12],
[30] to protect user data. These techniques ensure that com-
putations can be performed on encrypted data, maintaining pri-
vacy throughout the training process. However, these privacy-
preserving schemes exacerbate the challenge of Byzantine
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defense. Encrypted gradients are not directly inspectable,
complicating the detection of malicious gradients.

Recent studies [31], [32]], [33] have focused on addressing
both privacy and Byzantine resilience simultaneously. So et
al. [27] constructed a privacy-preserving Byzantine defense
scheme for federated learning, utilizing secret sharing to
protect user privacy. It defends against Byzantine attacks
by calculating the Euclidean distances between users’ local
gradients and selecting local gradients for aggregation based
on these distances. Ma et al. proposed ShieldFL [16], which
utilizes double-trapdoor homomorphic encryption to protect
user privacy and identifies Byzantine users by computing
the cosine similarity between local gradients. Zhang et al.
designed the LSFL scheme [12]], which splits local gradients
and adds Gaussian noise to preserve user privacy. LSFL intro-
duces an algorithm where two servers collaboratively compute
the distance between users’ local gradients and the average
gradient. It defends against Byzantine attacks by selecting the
k users with the smallest distances for aggregation. Tang et
al. constructed the FLAD scheme [29], in which CKKS and
random permutation techniques are employed to protect pri-
vacy. It trains a feature extraction model using the server data
for feature extraction and distinguishes malicious gradients
by comparing cosine similarity and Euclidean distance with
standard features. ESFL [34] utilizes functional encryption for
privacy protection while setting up two servers: verifier and
server. The verifier calculates the transformed distribution of
all encrypted local models and clusters the distribution, and the
server detects the clustering results using cosine similarity to
filter out malicious users. Zhou et al. designed a community-
oriented secure federated learning framework (CoS-HFL) [17].
This framework employs differential privacy to safeguard user
data, while simultaneously using cosine similarity and infor-
mation entropy within and across communities to effectively
detect Byzantine users.

However, these methods that rely on global dissimilarity-
based metrics of local gradients to detect malicious gradients
still face significant challenges in non-IID environments. The
heterogeneity in local data often causes benign gradients to
deviate significantly, leading to misclassification of these gra-
dients as malicious, thus harming model performance. There-
fore, it is of significant importance to design a Byzantine-
robust privacy-preserving federated learning scheme that can
accurately differentiate between malicious gradients and be-
nign gradients deviating due to data heterogeneity in non-
IID environments, while minimizing the impact on model
performance and safeguarding user privacy.

III. PRELIMINARIES
A. Notations

Table [[] provides a summary of the notations used in this
paper, along with their corresponding descriptions.

B. Federated learning

Assume that there are N users U;(i € {1,2,...,N})
participating in federated learning, each possessing private
dataset D;.

TABLE I: Notations and descriptions

Notations Descriptions
U; The i-th user in the FL
D; Private dataset of user U;
wt Global model at the ¢-th FL training round
gi Local gradient of user U;
lgi| Absolute gradient of user U;
G The aggregated gradient
" Learning rate
BC:, Bray-Curtis dissimilarity between gradients
’ of users U; and U,
d The dimensionality of the gradient
pk Public key used for encryption
sk Secret key used for decryption
evk Evaluation key used in homomorphic operations
s The scaling factor
gilk] The k-th element in local gradient g; of user U;
lgilK]| The absolute value of g;[k]
[9:] The gradient ciphtext of user U;
llgill Absolute gradient ciphtext of user U;
i + I The homomorphic sum of absolute gradient
9ij ciphertexts [|g;]], [lg; 1]
— The absolute gradient ciphertext homomorphic
l9:.3] sum on the elements of [| ngﬂ
(97 The homomorphic sum of difference between
2]

absolute gradient ciphertexts [|g;|], [|g;]]
[re] Encrypted mask

[relg; ;] The blinded difference ciphertext
relg; ;| The blinded difference
sign;, The sign vector of all elements in ¢|g; ;|
llg; ;1] The corrected absolute gradient difference ciphertext
— The homomorphic sum of the elements in absolute gradient
(192,51 difference ciphertext [|g; ;|]
4] The aggregated gradient ciphertext
C; Confidence score of user U;
6 Dynamic threshold
reputation; Reputation score of user U;

In the initialization phase, the server initializes the global
model w® and distributes it to all users. During the ¢-th
training round, user U; updates the global model w!~! using
their private dataset D; and calculates the local gradient
gi = VoL(D;,w'™1), where L denotes the loss function,
VL denotes the partial derivative of the loss function L with
respect to the model w and w!~! represents the global model.
The local gradient g; is then uploaded to the server.

In the aggregation phase, the server calculates the global
gradient via averaging: G = % Zszl gi- The aggregated
global gradient G is subsequently sent back to all users.

In the model update phase, each user U;(i € {1,2,...,N})
updates their global model w! using the global gradient G-
w! =w!™t — &, where p is the learning rate.

This cycle of local training, gradient aggregation, and model
updating is repeated until a predefined stopping condition is
met.

C. Cheon-Kim-Kim-Song (CKKS)

CKKS [33] is a lattice-based fully homomorphic encryption
scheme that supports both addition and multiplication over
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encrypted data. It enables secure approximate computation
on floating-point numbers and multi-dimensional vectors by
first encoding them into plaintext polynomials, performing
homomorphic operations on the encrypted polynomials, and
then decoding and decrypting to recover approximate results.

The plaintext and ciphertext spaces of CKKS are defined
over the polynomial ring R, = Z4[X]/(X™ + 1), where
M = 2K is the ring dimension, ¢ is the modulus, Z,[X]
represents the polynomial ring whose coefficients are integer
modulo ¢, and X 4 1 is the polynomial modulo which
all arithmetic operations in the ring are performed. The key
distribution y and error distribution ¥ are defined over the
ring R4, with samples ¢,v < x,a € R, chosen uniformly
at random,and e, eg,e1,¢’ < W. Approximate operations
are performed on multi-dimensional vectors whose elements
may be real or complex numbers. A vector z € CM/?
is first encoded into a plaintext polynomial using canonical
embedding and the fast Fourier transform, and scaled by a
factor s. Homomorphic operations are then performed on the
encrypted polynomial, and the decoding process applies the
inverse transformation to recover an approximate version of
the original vector, with the error controlled by the scaling
factor s. The key algorithms in CKKS are as follows:

-KenGen(1*) — (pk, sk, evk): Given the security pa-
rameter A, let P = P()\ ¢), and sample o’ uniformly at
random from Rp,. This algorithm generates a public key
pk = (b,a) € RZ, where b = —a % s + e, a secret key
sk = (1,t), and an evaluation key evk = (a/,b’), where
b = —a' xs+¢e + Ps?

-Ecd(z,s) — (m(x)): Given an (M/2)-dimensional
vector z and a scaling factor s, this algorithm encodes z into a
plaintext polynomial m(x) € R, by applying the fast Fourier
transform and scaling the coefficients by s.

-Enc(m(x),pk) — c: Given a plaintext polynomial
m(x) and a public key pk, this algorithm encrypts m(z) to
produce a ciphertext ¢ = (cg,c¢1) = (vxb+m(x)+eg,vxa+
61) S Rg .

-Dec(c, sk) — m(x): Given a ciphertext ¢ = (cg,c1)
and a secret key sk, this algorithm decrypts ¢ to recovers the
plaintext polynomial m(x) = ¢ x sk = co + ¢1 * t.

-Ded(m(x), s) — z: Given a plaintext polynomial m(x)
and scaling factor s, this algorithm decodes m () into a vector
z utilizing the inverse fast Fourier transform.

CKKS supports computations on ciphertexts, including ad-
dition and multiplication. Specifically:

-Add(c, c*) — caaa: Given ciphertexts ¢, c¢* € RZ, this
algorithm returns their sum caqq = ¢ ® c*.

-Mult(c, c*, evk) — cpruir: Given ciphertexts ¢, ¢* €
Rg and an evaluation key evk, this algorithm returns the
product cps,i¢ = ¢ ® ¢ in the encrypted form.

D. Bray-Curtis dissimilarity

The Bray-Curtis dissimilarity [36], proposed by Bray and
Curtis, is a metric used to measure differences in species
abundance between different regions. It has been extended to
various domains, including ecological studies and data anal-

ysis, for quantifying dissimilarities in multi-dimensional data.
The computation of Bray-Curtis dissimilarity is as follow:

pye - Shetlrs i
f:l(xi + y'L) ’

where z; > 0 and y; > 0 are the ¢-th elements of vectors
z and y, respectively, and p is the dimension of the vectors.
Given that both z; and y; are non-negative, it follows that
Dpc € [0,1]. Specifically, when the two vectors are iden-
tical, Dpc = 0 (indicating complete similarity), and when
the vectors are maximally dissimilar, Dpc = 1 (indicating
complete dissimilarity). In general, a value closer to O implies
greater similarity between the vectors, whereas a value closer
to 1 indicates a greater difference.

IV. PROBLEM STATEMENT
A. System model

— — — —» (D Initialization €— — — —

- Jr‘f i ):
— @3 The Bary-Curtis dissimilarity

DS |je————— o ——— — AS
| @ The aggregated gradient ciphertext ?
| @ Initialization |

(@ Model training
@ Dissimilarity computation
| (@) Screening and aggregation |

®The aggregated gradient @ The gradient ciphertexts

* (® Decryption and update |
X3P xoP a3

&Y &b o
Local gradient g; Local gradient g, Local gradient gy

to LONE t®

Users ,Q S| ,'O\ S| ,O\@
U, Dataset D, U, Dataset D, Uy Dataset Dy
@ Update the global model

Fig. 1: system model

As shown in Fig. [T, BPFLH consists of three entities:

‘Users: Users train the model with their private datasets to
compute local gradients, encrypt the local gradients, upload
the gradient ciphertexts to AS, and update their local model
based on the aggregated gradient sent by the DS.

-Aggregation Server (AS): AS cooperates with DS to
calculate the Bray-Curtis dissimilarity between the users’ local
gradients, screens Byzantine users, and aggregates the gradient
ciphertexts of benign users.

‘Decryption Server (DS): DS works with AS to compute
the Bray-Curtis dissimilarity between the users’ local gradi-
ents, and decrypts the aggregated gradient ciphertext.

The system workflow is as follows:

Step @©: AS and DS initialize the system parameters.

Step @: Each user performs local training using their private
datasets to calculate the local gradients. These local gradients
are encrypted and the gradient ciphertexts are uploaded to AS.

Step @: AS, in collaboration with DS, calculates the Bray-
Curtis dissimilarity between the users’ local gradients.

Step @: AS selects users based on the Bray-Curtis dissimi-
larity, applies penalties to Byzantine users, and aggregates the
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gradient ciphertexts of benign users. The aggregated gradient
ciphertext is forwarded to DS.

Step ®: DS decrypts the aggregated gradient ciphertext to
obtain the aggregated gradient, which is then returned to all
users. Users employ the aggregated gradient to update their
global model.

B. Threat model

In BPFLH, we adopt the following threat model:

‘Byzantine Attacks in users: Similar to prior works [12],
[341], [37], we consider a robust threat model in which no more
than N/2 users in the federated learning system are either
compromised or under the control of a malicious adversary,
where N represents the total number of users. These malicious
users may launch Byzantine attacks, such as label flipping
or model poisoning. Specifically, the adversary may alter the
labels of their private data, introducing corrupted data into
the training process, resulting in incorrect local gradients.
Alternatively, the adversary may not modify the data itself
but instead directly manipulate the local gradients after the
users have trained on clean data. The goal of the adversary
is to manipulate the global model’s training by introducing
incorrect gradients or misleading data, ultimately degrading
the model’s performance.

‘Honest-but-Curious and Non-Collusive Servers: Follow-
ing the previous works [12], [L6], [37], we assume that both
AS and DS are non-colluding and honest-but-curious. While
they will perform the federated learning protocol as prescribed,
they may be interested in users’ private data and could attempt
to extract private information from the data they have access
to. However, they will not intentionally manipulate or disrupt
the federated learning process.

Note: In machine learning, the dual-server model with
the assumption of non-collusion is typically considered as
a weaker assumption compared to the single-server model.
However, this architecture offers two significant advantages
for federated learning systems: 1) it greatly reduces the com-
munication overhead between users and servers. 2) it enhances
the robustness and flexibility of the system. As a result, the
non-colluding dual-server setup has been extensively adopted
in previous works, such as LSFL [[12], ShieldFL [16]], PPARFL
[37] and PPFUCCR [38].

C. Design goals

In response to the aforementioned threat model, BPFLH
should meet the following design goals:

-Fidelity: BPFLH ensures that, in the absence of attacks,
the global model’s accuracy remains comparable to FedAvg, a
standard federated learning algorithm. It also guarantees that
the privacy-preserving and Byzantine user detection mecha-
nisms do not degrade model’s accuracy.

‘Robustness: BPFLH effectively distinguishes between ma-
licious gradients and benign gradients caused by data hetero-
geneity, preventing the misclassification of benign gradients
as malicious. This ensures the model’s robustness in non-
IID settings and defends against Byzantine attacks, accurately
identifying and excluding malicious gradients.

Privacy Preservation: BPFLH guarantees that users’ pri-
vacy remains protected and is not disclosed to AS, DS, or
Byzantine users.

V. PROPOSED SCHEME
A. Overview

In federated learning, the heterogeneous data environment
causes local gradients from users with different data distribu-
tions to differ significantly. These variations are natural and
do not indicate malicious behavior, whereas Byzantine users
may manipulate their gradients in different ways to disrupt
the global model. Such manipulations can be subtle, aiming
at targeted outputs, or large and abrupt, aiming to generally
disrupt training.

To accurately distinguish malicious gradients from benign
deviations caused by data heterogeneity, BPFLH employs
Bray-Curtis dissimilarity to compute element-wise dissimi-
larity between local gradients. Unlike existing methods that
rely on global dissimilarity-based metrics, Bray—Curtis dissim-
ilarity detects differences at the element level, allowing it to
capture subtle gradient variations more effectively and reduc-
ing the risk of misclassifying benign deviations as Byzantine
attacks.

Since Bray-Curtis dissimilarity originates from ecological
diversity metrics, where the number of species is non-negative,
we take the absolute value of the gradient element before
calculation to ensure that all values are non-negative. The
Bray-Curtis dissimilarity between the local gradients of users
is defined as:

S llgalk]] — L, R

Y e (galk]l + s k)
where d is the dimensionality of the gradients g;, g;. It is worth
noting that the Bray-Curtis dissimilarity is symmetric, i.e.,
BC; ; = BCj ;. Therefore, it is sufficient to compute BC; ;
only for pairs where ¢ > j, which reduces computational cost
without affecting the results. This element-wise comparison
makes it particularly effective at quantifying dissimilarity,
especially when the element values are small or significantly
different, providing a robust basis for distinguishing malicious
and benign gradients, even under non-IID data settings.

To protect user privacy, CKKS homomorphic encryp-
tion is applied during the computation, ensuring that
sensitive information is not exposed. This design en-
ables the AS to perform Byzantine user detection di-
rectly over encrypted gradients, without compromising
users’ privacy. Specifically, the Bray—Curtis dissimilarity is
computed over the absolute gradient ciphertext elements
[lgilk]]] and [|g;[K]|]. Specifically, we need to compute:
>y (galk]] + g R and 570 [llgalR1N] = [lg; (K]]I
The homomorphic sum S>¢_, ([|g:[k]|] + [lg;[K]]]) can be
directly calculated using homomorphic addition and homo-
morphic summation operations supported by CKKS. For
the detailed calculations, refer to dissimilarity computa-
tion phase (3)-a) of section However, computing
22:1 I[lg:[k]]] — [lg;[k]]]| presents a key challenge, as CKKS
encryption cannot directly perform subtraction and absolute

; ey
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value operations on encrypted data. To address this challenge,
we design a novel privacy-preserving computation method.
Specifically, AS performs homomorphic multiplication on
[lg;[k]|]] and the encrypted —1, obtaining [—|g;[k]|]. Then,
AS performs homomorphic addition on [|g; [k]|] and [—|g;[k]]

to compute [|g;[k]|] — [|g;[k]|]. To determine the sign of
[|l9:[k]l] — [lg;[k]|] while preserving privacy, AS blinds each
difference [|g;[k]|] — [|g;[¥]|] with a unique encrypted positive

mask [r.] and performs homomorphic multiplication. The
resulting blinded values are then securely decrypted by DS
to extract the sign vector sign. Since 7. is a positive, the
blinding will not change the sign. The corrected absolute value
Illg:[%]l] — [lg;[k]l]| is computed by performing homomor-
phic multiplication on the encrypted sign vector [sign] and
g:[R[) — (g k111 S, 11g:{k11] — [lg; &[] can be obtained
through homomorphic summation. Finally, after decrypting
S0 (galk)l + [gs k1) and S, [flgi k)N — [lg;[k1])]. DS
can calculate Bray-Curtis dissimilarity between local gradients
of users. For the detailed calculations, refer to dissimilarity
computation phase-steps (3)-b) to g) of section

Based on the computed Bray-Curtis dissimilarities, AS de-
rives a confidence score C; for each user. A dynamic threshold
is determined using the median C' and standard deviation o of
all users’ confidence scores to distinguish benign users from
Byzantine ones. Unlike threshold-based approaches, which
may discard benign gradients in non-IID data settings, BPFLH
integrates a reputation-based penalty mechanism. Byzantine
users are penalized gradually, while benign users are protected
from misjudgment. AS aggregates the gradient ciphertexts of
all benign users and delivers the aggregated gradient ciphertext
to DS. DS decrypts the aggregated gradient ciphertext and then
transmits the aggregated gradient to all users.

B. Construction of BPFLH

BPFLH contains the following five phases: initialization,
model training, dissimilarity computation, screening and ag-
gregation, and decryption and update.

1) Initialization

Assume that there are /N users participating in federated
learning, denoted by the set U = {Ui}icqi2,... N} -

a) Key generation and distribution: Given a security param-
eter A\, DS produces the public key pk, private key sk, and
evaluation key evk. The public key pk is broadcasted to each
user {U;}ie(1,2,....n}» While the private key sk and evaluation
key evk are stored locally.

b) Federated learning initialization: AS initializes the global
model w®, defines the loss function L, sets the learning
rate 1 and the scaling factor s, and randomly generates C%;
positive real-valued masks r.(c € [1,C%],r. > 0,7, € R).
Subsequently, the global model w, loss function L, learning
rate p, and the scaling factor s are broadcasted to all users
U; € U, while the scaling factor s is also delivered to DS.
Additionally, AS initializes the reputation score reputation;
for each user {U;}ic1,2,...n} and specifies the punishment
factor a.

2) Model Training

a) Gradient calculation: In the t-th round of training,
user U; employs its private dataset D; to train the global

model w!~!, obtaining the corresponding local gradient g; of
dimension d:
9i = Vo L(Dyw' ™), 2

where L represents the loss function.

b) Absolute gradient calculation: User U; calculates the
absolute value of each element g;[k] in their local gradient
gi, producing the element-wise absolute gradient, hereinafter
referred to as the absolute gradient and denoted |g;|, i.e., a
vector whose k-th element is |g;[k]|.

¢) Gradient and absolute gradient encryption: User U;
encrypts both the local gradient g; and its absolute gradient
|g:| using the public key pk, obtaining the gradient ciphertext
[¢;] and absolute gradient ciphertext [|g;|]:

[9:] = Enc(Ecd(g;, ), pk) (3)

lgil] = Enc(Ecd(lgil, s), pk)- )

d) Ciphertext upload: User U; delivers the gradient cipher-
text [g;] and absolute gradient ciphertext [|g;|] to AS.

The detailed procedures for model training are summarized
in Algorithm ]

Algorithm 1 Model Training

1: Input: Private dataset D; of user U;, global model wtt
and public key pk.
2: Output: Gradient ciphertext [g;] and absolute gradient
ciphertext [|g;|]-
3: for each user U; in U do
U, computes local gradient g; = V,,L(D;,w!™!) and
absolute gradient |g;]|.
5: U, encrypts g; and |g;| with pk to obtain ciphertexts
[g:] and [|g;|], then sends them to AS.
6: end for

3) Dissimilarity Computation

a) Computation of homomorphic sum of absolute gradi-
ent ciphertext elements: For each user pair (U;,U;)(i,j €
{1,2,...,N},i > j), AS calculates the homomorphic
sum [|g;rj|] of their uploaded absolute gradient ciphertexts
[lg:l); [lg;1] as follows:

[lg:511 = Add([|g:), [lg;1)); (5)

Then AS performs homomorphic summation on the elements
I g: ;K] of ] g;)r ;1] to obtain the absolute gradient ciphertext
homomorphic sum [g; ;]
d
9031 = Y llgit; K1), (6)
k=1

Here, > denotes homomorphic summation, implemented via
repeated CKKS addition operations, since ordinary arithmetic
cannot be applied to encrypted elements.

b) Calculation of homomorphic sum of absolute gra-
dient difference ciphertext: Similarly, for each user pair
U, Uj)(,j € {1,2,...,N},i > j), AS calculates the
homomorphic sum [|g; ;|| of difference between their absolute
gradient ciphertexts [|g;|], [|g;]]:

[lg; 411 = Add({|g:]], Mult(Enc(Ecd(-1, 5), pk), [Igj\]))m
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Here, Mult(Enc(Ecd(—1,s),pk),[|g;|]) homomorphically
multiplies [|g;|] with the encrypted —1, producing the negative
absolute gradient ciphertext [—|g;].[|g; ;] is hereafter referred
to as the absolute gradient difference ciphertext.

¢) Blinding: To blind each absolute gradient difference
ciphertext [|g;;|], AS computes a unique encrypted mask
[rc] = Enc(Ecd(r., s),pk) for each user pair (U;,U;)(i,j €
{1,2,...,N},i > j), then calculates the blinded difference
ciphertext [rc|g; ;|]:

[relgi ;|| = Mult([rc], [lg; 411, evk), ®)

which is sent to DS.
d) Decryption: DS decrypts and decodes the blinded dif-
ference ciphertext [rc|g; ;|] to obtain the blinded difference

Tc‘gz‘_,j |
relg; ;1 = Ded(Dec([relg; 5], k), ). ©)

DS extracts the sign of each element in r.|g; |, stores them
in a sign vector sign; ;, and delivers this sign vector sign; ;
to AS.

e) Sign-based correction: AS encrypts the sign vector
sign; j, resulting in the encrypted sign vector [sign; ;]

[sign; ;] = Enc(Ecd(sign; ;, s), pk). (10)

Then AS homomorphically multiplies the sign vector [sign; ;]
with the absolute gradient difference ciphertext [|g; ;|| to
produce the corrected absolute gradient difference ciphertext

(g7 ;11:
[lg7 ;1] = Mult([signi ], [lg; ;I], evk). (11)

This operation flips the sign of each element in [|g; ;|] whose
decrypted value is negative, ensuring that all elements in the
corrected absolute gradient difference ciphertext [|g; ;|| are
non-negative.

f) Computation of homomorphic sum of corrected abso-
lute gradient difference ciphertext elements: AS performs
homomorphic summation on the elements [|g; ;|[k]] of [|g; ;|],
obtaining the homomorphic sum [|g; ;|| of absolute gradient
difference ciphertext elements [|g; ;| [K]]:

d

g1 =D _llgt; ]

k=1

12)

AS delivers both gradient ciphertext homomorphic sum [g; ]
and the homomorphic sum [|g; ;|] of the absolute gradient
difference ciphertext elements to DS.

g) Calculation of Bray-Curtis dissimilarity: DS decrypts and
decodes [g; ;] and [|g; ;|], obtaining the numerator and denom-
inator required for calculating the Bray-Curtis dissimilarity:

13)
(14)

|9:.51 = Ded(Dec(([|gi 1], k), 5)
9i.; = Dcd(Dec([gi ], sk), s)

The Bray-Curtis dissimilarity between the local gradients of
users U; and Uj is then calculated as:

BC;,; = |§1~J| :
]

15)

DS delivers {BCi,j}i,jG[l,N],i>j to AS.
The procedures for calculating the Bray-Curtis dissimilarity
are detailed in Algorithm [2}

Algorithm 2 Dissimilarity Computation

1: Input: Public key pk, evaluation key evk, gradient cipher-
text [g;], scaling factor s and absolute gradient ciphertext
gl

2: Output: Bray-Curtis dissimilarity BC} ;.

3: for each user pair (U;,U;), (i > j) do

4 AS computes the homomorphic sum [|g;" A=
Add([|gil], [lg;]]) of absolute gradient -ciphertexts
[lg:l], [lg;]] and computes the absolute gradient cipher-
text homomorphic sum [g; ;] = ZZﬂHQZ_j [&]]]-

5:  AS  computes the homomorphic sum  of
difference between [|g;|] and [|g;|]: [|gfj|]
Add([lg:[], Mult(Enc(Ecd(—1,s),pk), [|g;]]))-

6: AS computes the encrypted mask [r.] =
Enc(Ecd(r., s), pk) with pk and the blinded difference
ciphertext [rclg; ;|] = Mult([rc],[lg; ;]], evk) with
evk, and sends [rc|g; ;|| to DS.

7. DS decrypts and decodes [rc|g; ;|| to obtain 7.|g; ;| =
Ded(Dec([rc|g; ], sk), s), extracts the sign vector
signi,; of rc|g; ;|, and sends it to AS.

8:  AS encrypts sign; ; with pk to get the encrypted sign
vector [sign; ;] = Enc(Ecd(sign; j, s), pk).

9: AS performs homomorphic multiplication
on [sign;;] and [lg;;|]] to obtain the
corrected absolute gradient difference ciphertext

[lg7 51 = Mult([signi ), [lg; ; I, evk).
10:  AS calculates the homomorphic sum of absolute gradi-
ent difference ciphertext elements [|g; ;|[k]]: [|g:;]] =
d N ’
Zk:l“gi,ijH'

11:  AS delivers [g; ;] and [|g; ,|] to DS.

122 DS decrypts [g;;] and [|gi;|] to obtain
gl = Ded(Dec(([giy[l,sk),5)  and
gi.j = Ded(Dec([gi 5], sk), s) -

13: DS computes Bray-Curtis dissimilarity BC; ; = I%I

and delivers it to AS.
14: end for

4) Screening and Aggregation

a) Computation of dynamic threshold and user filtering:
Based on the set { BC; j}i je1,n],i>; received from the DS,
AS can derive the Bray-Curtis dissimilarities between the
local gradients of each user U; and all other users U; (j €
[1,N],j # i) based on the fact that BC; ; = BC} ;. AS cal-
culates the average Bray-Curtis dissimilarity between the local
gradients of user U; and all other users U; (j € [1,N],j # 1),
which is defined as the confidence score of user U;:

N
Zj:l,j;éi BC;

Ci= N—1

(16)
Next, AS further calculates the median C' and standard devi-
ation o of all gsers’ confidence scores, and sets the dynamic
threshold § = C'+m* o, where m € (0,1) is a floating-point
parameter, typically assigned a small value, that provides error
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tolerance and can be dynamically adjusted as needed. Users
whose confidence scores exceeding the dynamic threshold 6
are identified as Byzantine users U/ (the set denoted U”), while
the remaining users are classified as benign users U/ (the set
denoted U").

b) Punishment: For each Byzantine user U/(U; € U’), AS
verifies their reputation score reputation;. If reputation; <
0, the user is removed from federated learning process; other-
wise, the reputation is penalized by subtracting the punishment
factor a:

reputation; = reputation; — « (17

¢) Gradient aggregation: AS aggregates the gradient cipher-
texts [g;] of all benign users U/ (U} € U"), producing the
aggregated gradient ciphertext [G]:

[Gl= >

uleu”

(18)

where |U”| denotes the number of benign users. AS delivers
the aggregated gradient ciphertext [G] to DS, and broadcasts
the number of benign users |U”| to all users U; € U.

Algorithm [3] presents the screening and aggregation proce-
dures.

Algorithm 3 Screening and Aggregation

1: Input: Bray-Curtis dissimilarities { BC; ;}; jeq1,n],i>5-
2: Output: Aggregated gradient ciphertext [G] and the num-
ber of benign users |U"|.

3: for each user U; in U do Y

4:  AS computes the confidence score C; = %13%

5: end for

6: AS computes the median C' and standard deviation o of
all users’ confidence scores.

7: AS calculates dynamic threshold § = C +m - 0.

8: AS identifies Byzantine users U/ with C; > 0 and benign

users U/’ with C; < 6.
9: for each Byzantine user U/ in U’ do
10.  AS verifies the reputation score reputation;.
11:  if reputation; < 0 then

12: Remove U.

13:  else

14: reputation; = reputation; — «
15:  end if

16: end for

17: for each benign user U/ in U” do
18:  AS aggregates the gradient ciphertexts as: [G] =
ZU;'eU// [g:]-
19: end for
20: AS delivers the aggregated gradient ciphertext [G] to DS
and broadcasts the number of benign users |U”| to all
users U; € U.

5) Decryption and Update

a) Decryption and distribution: DS decrypts and decodes
the aggregated gradient ciphertext [G] to obtain the aggregated
gradient G:

G = Dcd(Dec([G], sk), s), (19)

DS transmits the aggregated gradient G to all users U; € U.
b) Model update: Each user U; updates its global model
using the aggregated gradient as follows:

t -G

Yo
Training proceeds to the next round until the model converges
or a stopping condition is met.

The detailed procedures for decryption and update are
summarized in Algorithm [4]

(20)

Algorithm 4 Decryption and Model Update

1: Input: Aggregated gradient ciphertext [G], private key sk,
scaling factor s, global model w’~!, learning rate 4, and
the number of benign users |U”|.

2: Output: Global model w?.

3: DS decrypts and decodes the aggregated gradient cipher-
text [G] as G = Ded(Dec([G], sk), s) and transmits the
aggregated gradient G to all users U; € U.

4: for each user U; in U do

Updates global model w! = w

6: end for

t—1 G
- /'L‘U”‘

VI. THEORETICAL ANALYSIS

Theorem 1: AS, DS, and Byzantine users cannot obtain the
private information of benign users.

Proof: In BPFLH, each user U;(i € [1,N]) encrypts its
local gradient g; and the absolute gradient |g;| using the
CKKS homomorphic encryption scheme, and delivers the
gradient ciphertext [g;] and absolute gradient ciphertext [|g;|]
to AS. AS calculates the blinded difference ciphertext [rc|g, ;]
(i,j € [1,N],i > j), the gradient ciphertext homomorphic
sum [g; ;], the homomorphic sum [|g; ;|| of the absolute gradi-
ent difference ciphertext elements and the aggregated gradient
ciphertext [G], and transmits them to DS. DS computes the
sign vector sign,;; (i,j € [1,N],i > j) and Bray-Curtis
dissimilarity BC; ;, and returns them to AS. Furthermore,
DS also decrypts the aggregated gradient ciphertext [G], and
delivers the aggregated gradient G to all users. From the above
processes, we can observe that AS knows the gradient cipher-
text [g;], the absolute gradient ciphertext [|g;|], the sign vectors
sign; ; and the Bray-Curtis dissimilarity BC; ;. DS knows the
blinded difference ciphertext [rc|g; ;|], the homomorphic sum
[|gs.;|] of the absolute gradient difference ciphertext elements,
and the gradient ciphertext homomorphic sum [g; ;|. Byzantine
users know the aggregated gradient G. Since AS and DS
are assumed to be non-colluding, they cannot combine their
information. Therefore, we analyze their ability to infer users’
private information separately.

For AS, it cannot obtain the users’ private information
from the data it possesses. The ciphertexts [g;] and [|g;|] are
both encrypted under CKKS homomorphic encryption scheme,
which ensures semantic security against chosen-plaintext at-
tacks and provides functional privacy [39]. The private key
sk is exclusively held by DS. Thus, without the private key
sk, AS cannot decrypt these ciphertexts. Moreover, Bray-
Curtis dissimilarity BC; ; contains only scalar values, while
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each local gradient g; is a vector. Hence, AS cannot infer
users’ local gradients from these scalar metrics. The sign
vectors sign; ; merely record element-wise ordering relations
between gradients of user pairs and do not contain actual
gradient values. Consequently, AS cannot infer users’ private
information from the sign vectors sign; ;. For DS, it cannot
obtain users’ private information from the homomorphic sum
[|gi;|] of the absolute gradient difference ciphertext elements
and the gradient ciphertext homomorphic sum [g; ,;]. After
decryption using the private key sk, DS only obtains the
numerator and denominator required for calculating the Bray-
Curtis dissimilarity, both of which are two scalar values that
reveal no individual gradient components. In addition, the
blinded difference ciphertext [r¢|g; ;|| is blinded by a random
mask r., which is known only to AS. Even if DS can decrypt
[relg; ;11 it obtains only r.|g; ;|. Without knowledge of r,
DS cannot recover |g; ;| or infer any gradient information. For
Byzantine users, it cannot extract or infer any benign user’s
local gradient from the aggregated gradient G as G is the
aggregation of all benign users’ gradients and does not expose
any individual gradient.

Therefore, BPFLH ensures that the private information of
benign users is protected from non-colluding AS and DS and
the Byzantine users.

Theorem 2: Under the assumption that AS and DS do not

collude, our dual-server model can strictly preserves users’
private.
Proof: During the execution of the protocol by AS, the
real view of AS is defined as REALss = (pk, (9], [|g:l],
Tes [TCL H%‘Z‘H? Hg;j‘L [TC|giTjHﬂ signi ng*,J ]7 [gl/\,/jL Hgl/,\J ]7
BC, reputation;, [G]).

Let Sss be a probabilistic polynomial-time simulator
that constructs the ideal-world view of AS. The ideal view
simulated by Sas is IDEALas = (pk,[9]],[lg}l],7e,
el g7 10 1gi 1], [relgi 11, signag, (19551 192571, [1gis17],
BC, reputation;, [G*]). where all elements marked with “*”
are random ciphertexts generated by the simulator Sag. To
prove that REAL s and IDEALsg are computationally
indistinguishable, we construct the following hybrid sequence:

Hybg: Real protocol execution, Hyby = REAL 4.

Hyb;: Replace the user-uploaded ciphertexts [g;] and [|g;|]
with random encryptions [gf] < Enc(0,pk) and [|g;|] +
Enc(0,pk). Since CKKS homomorphic encryption scheme
is semantically security, this replacement is computationally
indistinguishable.

Hyb,: Replace (7], [lg; 1] [relgi 1 (197,11, [97]. 173 ]
with random encryptions [|g;""|], [l9; S [], [relg; /1], [lg:51],
[9:571,[1gi.;]*]- By the semantic security of CKKS homomor-
phic encryption scheme, this replacement is computationally
indistinguishable.

Hybs: Replace the final output ciphertext [G] with random
encryption [G*]. Similarly, due to the semantic security of
CKKS homomorphic encryption scheme, this replacement is
computationally indistinguishable.

At this point Hybs = IDFEALug, thus the view of
AS generated by the simulator S4g in the ideal world is
computationally indistinguishable from the view of AS in the
real world.

Similarly, the real view of DS is defined as:REALpg = (
sk, evk, [TC|gi_,j H’ [QTJ]» “9/1\7]”’ [G]’ TC‘gi_,j |’ s1gn;,j, gfiv,jv |g/l\7]|a
BC, Q).

Let Sps be a probabilistic polynomial-time simulator that
constructs the ideal-world view of DS. The ideal view sim-
ulated by Sps is IDEALps = (sk,evk, [relg; ; |],[9i;7],
[1g:.51%]s [G*],rc|gi_’;|,signi,j,g’;j*, |g:.;*, BC, Q). where all
elements marked with “*” are random ciphertexts generated by
the simulator Spg. The indistinguishability is shown through
the following hybrid sequence:

Hybg: Real protocol execution, Hyby = REALpg.

Hyb;: Replace r.|g; ;| with a random value r.|g; ;| whose
sign equals sign; ;. Since the random mask r. preserves
the statistical distribution of the product, this replacement is
statistically indistinguishable.

Hyb,: Replace g;; and |g; ;| with random values g; ;"
and |g;,|*, where |g;;|* = BC;; = gi; . Since the ratio
|9:.1*/gi;° = BC;; remains unchanged, this replacement
is computationally indistinguishable.

Hybs: Replace the ciphertexts [rc|g;j|], [9i.41, 119,11, [G]
with [rclg; *[1, [9i;7], [19:.;]*], [G*]. By the semantic security
of CKKS, this replacement is computationally indistinguish-
able.

At this point, Hybs = IDFEALpg, thus the view of
DS generated by the simulator Spg in the ideal world is
computationally indistinguishable from the view of DS in the
real world.

Therefore, as the real and ideal views of both AS and DS
are computationally indistinguishable, the protocol execution
leaks no private information about users’ gradients to either
non-colluding server.

Theorem 3: BPFLH is resilient to Byzantine attacks when
most users are benign.

Proof: In BPFLH, users with a confidence score less than
a dynamic threshold are selected for aggregation. Specifically,
we utilize the Bray-Curtis dissimilarity to compute the Bray-
Curtis dissimilarity between the local gradients of users. The
Bray-Curtis dissimilarity between the user U;’s local gradient
g; and the user U;’s local gradient g; is defined as:

s, - Tl _ i lolk) = ok
Yi.j > k1 (gi K]l + 1g;[K]])

where |g;[k]| and |g,[k]| are the absolute values of the k-th
element of gradient g; and gradient g;, respectively. Then, AS
calculates the average Bray-Curtis dissimilarity between the
local gradients of user U; and all other users, which is utilized
as the confidence score of user Uj;:

N
Zj:l,j;éi BC;
N-—-1 '

) 21

Ci= (22)

AS calculates the median C' and standard deviation o of
all users’ confidence scores C; and sets a dynamic threshold
§ = C + m * o to identify Byzantine users, where m € (0, 1)
is a floating-point parameter used to adjust the sensitivity of
the threshold. The Bray-Curtis dissimilarity is such that a
value closer to 1 indicates a larger difference between local
gradients, and a value closer to 0 indicates a smaller difference.
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When a user’s confidence score C; > 0, the user is classified
as malicious. We assume that the majority of users are benign,
ie., [U”|/N > 0.5, where |U”| is the number of benign users
and N is the total number of users. When most of the users are
benign, their confidence scores, which are based on the Bray-
Curtis dissimilarity, will be relatively similar and concentrated
around a certain value. This leads to a small standard deviation
o and a low median C. As a result, both the median C and
the standard deviation o are small, which causes the dynamic
threshold 6 to be low. Even with a positive parameter m,
the threshold remains small because it is influenced by the
concentrated scores of the majority of benign users. Thus,
the dynamic threshold €, which is calculated within the range
[0, 1], will be much lower than 1 when the majority of users
are benign.

All malicious users can collectively launch attacks to influ-
ence the global model. For a Byzantine user U, to successfully
carry out an attack, it must satisfy two conditions: (1) its
confidence score C, must be less than the dynamic threshold
0, i.e., Cp <0, and (2) there must be a significant difference
between the gradients of the Byzantine user U, and a benign
user U, ie., |gp| > |gi|, where |g,| and |g;| represent the
absolute gradients of the Byzantine user U, and the begin user
U;, respectively. This ensures that the gradient g, of Byzantine
user U, can be aggregated and have a sufficiently negative
impact on the global model. Since |g,| > |g;|, it implies
that |g,[k]| > |gi[k]|. where |g,[k]|| and |g;[k]| represent
the absolute values of k-th element of Byzantine user U,’s
gradient g, and benign user U;’s gradient g;, respectively.Thus,
the confidence score C), of Byzantine user U, is

N
Ej:l,j;ép BCPJ
N -1 '

Substituting in the Bray-Curtis dissimilarity formula:

S gtk — lg;1R]]]
_12& a8l + gy 11

Given that |gp[k]| > |g;[K]|. |lgp k]| —g:[K]| =~
lgp[¥]| and |g, (k]| + |g: [k]| ~ |g,[¥]|. Further, we have

1 Zk 1||9pk||
Cp~
N =150 [lgplk]l]

since most users are benign. Thus, the Byzantine user U, can
be identified, and its gradient will not be aggregated. Hence,
BPFLH is resilient to Byzantine attacks when most users are
benign.

Cp =

P

=1>90,

VII. EVALUATION
A. Experimental settings

In this section, we present a detailed evaluation of the
proposed BPFLH with respect to both accuracy, robustness
and efficiency.

(1) Dataset:

+ MNIST: The MNIST [40] dataset consists of grayscale
images of handwritten digits ranging from 0 to 9, with each

image represented as 28x28 pixel matrix. It contains 60,000
training samples and 10,000 testing samples.

- Fashion-MNIST: Fashion-MNIST [41] shares the same
data format and size as MNIST but contains grayscale images
of 10 categories of fashion items. It also includes 60,000
training samples and 10,000 samples.

+ CIFAR-10: The CIFAR-10 [42] dataset comprises 60,000
color images of 32x32 pixels, categorized into 10 object or
animal classes. It is split into 50,000 training samples and
10,000 testing samples.

In our experiments, the training sets of the above datasets
are partitioned under both independent and identically dis-
tributed (IID) and non-independent and non-identically dis-
tributed (non-IID) settings.

(2) Model:

+ Convolutional Neural Network (CNN): The CNN model
employed in the experiments consists of two convolutional
layers followed by two fully connected layers.

+ Multi-layer Perceptron (MLP): The MLP model is
composed of an input layer, one hidden layer, and an output
layer.

(3) Attack Type:

- Label Flipping: In this attack, the labels of samples in
a user’s dataset are replaced with incorrect labels, while the
data features of the samples remain unchanged. This leads to
the model to learn valid feature representation but associate
them with incorrect classes.

+ Model Poisoning: In this attack, the parameters of a
user’s locally trained model are maliciously modified, thereby
preventing the model from converging correctly.

(4) Experimental environment:

All experiments are conducted on a workstation equipped
with an Intel(R) Xeon(R) Platinum 8255C 2.50GHz CPU and
a GPU with 16GB of video memory, running Ubuntu 20.04.
The implementation was carried out in Python and with CUDA
acceleration.

(5) Experimental Parameters:

We set the learning rate of FL to 1 = 0.01, the local batch
size to B = 64, the number of local training epochs to LE =
5, the total number of federated learning rounds to FFE =
100, and the number of users to N = 100. For the CKKS
polynomial, the degree is set to 8192 and the scaling factor
is s = 240, Additionally, we employ the Dirichlet distribution
to partition the dataset, simulating a non-IID distribution, with
the concentration parameter of 8 = 0.2.

B. Experimental Results

(1) Accuracy evaluation:

In this experiment, we adopt FedAvg [2] as the baseline
scheme, since it is one of the most representative aggregation
algorithms in federated learning that does not incorporate
any security mechanisms. We evaluate the performance of
BPFLH compared with the classic FedAvg under different data
partitioning methods, model architectures, and proportions of
Byzantine users with distinct attack types. Specifically, ex-
periments are conducted under both IID and non-IID settings,
employing CNN and MLP models to assess the impact of label
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TABLE II: Accuracy of BPFLH and FedAvg under IID data distribution against various attacks on different models and

datasets
Scheme  Model Percentage of CIFAR-10 Fashion-MNIST MNIST
Byzantine users (%)

Label Model Label Model Label Model

Attacks o . o o . .. o . o

Flipping poisoning Flipping poisoning Flipping poisoning

0 58.99 58.99 88.96 88.96 98.78 98.78

CNN 10 55.34 21.69 87.77 57.57 97.99 61.57

20 53.2 104 86.83 26.41 95.8 19.26

1. 32 52 12. 74 17.

FedAvg 30 51.6 9.3 79.5 09 66.7 7.95
0 50.54 50.54 88.19 88.19 97.19 97.19

MLP 10 49.3 19.17 87.83 50.11 96.84 50.15

20 47.81 12.92 86.94 39.67 96.5 31.5

30 44.69 9.76 83.63 11.86 94.32 14.6

0 58.99 58.99 88.96 88.96 98.78 98.78

CNN 10 58.9 58.87 88.54 88.78 98.78 98.72

20 58.81 58.93 88.91 88.37 98.73 98.68

BPFLH 30 58.37 58.66 88.53 88.52 98.71 98.64
0 50.54 50.54 88.19 88.19 97.19 97.19

MLP 10 50.21 50.53 88.15 88.17 97.07 97.02

20 50.18 50.37 88.12 88.14 96.93 96.98

30 50.1 50.24 87.83 87.97 96.89 96.94

TABLE III: Accuracy of BPFLH and FedAvg under Non-IID data distribution against various attacks on different models
and datasets

Percentage of

Scheme  Model . CIFAR-10 Fashion-MNIST MNIST
Byzantine users (%)
Label Model Label Model Label Model
Attacks Flipni S - L R L
ipping poisoning Flipping poisoning Flipping poisoning

0 58.37 58.37 88.49 88.49 98.74 98.74
CNN 10 56.52 19.05 87.36 49.6 98.23 64.3

20 53.52 11.64 85.49 24.54 96.15 22.77

FedAvg 30 49.55 9.44 77.29 18.21 63.63 18.36
0 49.93 49.93 88 88 97.17 97.17

MLP 10 48.31 14.75 87.44 50.02 96.96 48.34

20 47.87 13.22 85.99 26.9 96.34 26.67
30 45.13 10.07 82.59 14.82 94.01 18.8

0 58.37 58.37 88.49 88.49 98.74 98.74

CNN 10 58.21 57.53 88.28 88.35 98.7 98.69
20 58.13 57.33 88.19 88.24 98.66 98.6

BPFLH 30 58.08 57.17 88.12 88.1 98.55 98.52
0 49.93 49.93 88 88 97.17 97.17

MLP 10 49.26 48.52 87.96 87.77 97.15 97.11

20 48.97 48.21 87.2 87.59 96.93 97.15

30 48.7 48.05 86.98 87.34 97.09 97.07

flipping and model poisoning attacks when the proportions of
Byzantine users is 10%, 20%, and 30%.

1) IID Setting:

Tables [IT] and [ITI] present the accuracy comparison between
BPFLH and FedAvg under both IID and non-IID data dis-
tributions, respectively. As shown in Table [lI, under the IID
data distribution, regardless of the models, datasets, or attack
types, the performance of FedAvg degrades significantly as

the proportion of Byzantine users increases. Moreover, model
poisoning causes a more severe decline in accuracy than label
flipping, as it directly manipulates the local model parameters,
leading to drastic deviations in the global model. In contrast,
label flipping mainly affects model training through incorrect
label assignments, and the averaging aggregation mechanism
of FedAvg mitigates its impact to some extent. By comparison,
BPFLH demonstrates strong robustness against both label
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TABLE IV: Accuracy comparison of different FL. methods under various attacks on the MNIST dataset with IID data
distribution (CNN model)

Percentage of Byzantine users Attacks FedAvg Median Trimmed-Median Krum FLTrust PEFL ShieldFL. PFLAD CoS-HFL BPFLH
0% No attack 98.78 98.61 98.65 97.06 96.83 98.78 98.75 98.64 98.67 98.82
10% Label Flipping 97.15 98.51 98.43 96.53 96.58 98.48 98.49 98.13 97.35 98.78
‘ Model Poisoning 61.57 98.54 98.58 96.82 96.16 98.19 98.59 98.61 98.01 98.72
20% Label Flipping 96.60 98.36 98.07 96.78 96.42 98.39 93.49 97.49 98.25 98.63
v Model Poisoning 19.26 98.26 98.21 96.26 96.03 98.04 98.43 94.46 98.34 98.68
30% Label Flipping 66.74 98.30 91.56 96.89 96.71 95.08 91.46 93.31 98.17 98.79
° Model Poisoning 17.95 98.06 97.53 96.99 96.82 98.03 98.47 93.07 98.31 98.64

TABLE V: Accuracy comparison of different FL methods under various attacks on the MNIST dataset with Non-IID data
distribution (CNN model)

Percentage of Byzantine users Attacks FedAvg Median Trimmed-Median Krum FLTrust PEFL ShieldFL. PFLAD CoS-HFL BPFLH
0% No attack 97.74 94.01 97.81 96.53 95.56 96.48 97.32 96.27 95.43 97.85
10% Label Flipping 97.21 93.51 97.43 96.23 94.58 93.08 96.44 95.64 95.31 97.75
‘ Model Poisoning 64.30 93.64 97.58 86.32 94.16 84.19 96.51 95.61 95.07 97.68
20% Label Flipping 96.15 93.39 95.07 95.68 94.42 90.39 95.89 94.68 95.23 97.61
° Model Poisoning 22.77 93.66 97.26 65.86 93.90 79.04 96.36 93.17 95.00 97.42
30% Label Flipping 63.63 93.19 93.03 75.49 94.21 75.08 93.46 92.77 95.15 97.20
° Model Poisoning 18.36 93.91 97.05 55.78 93.45 68.03 95.85 91.52 95.31 97.34

flipping and model poisoning attacks across different datasets
and models. Even when 30% of the users are Byzantine,
BPFLH achieves accuracy comparable to that of the non-
attacked FedAvg. This is because, in BPFLH, AS can accu-
rately identify malicious gradients and aggregate only benign
ones, thereby maintaining model performance on par with
FedAvg. Furthermore, BPFLH achieves the robustness while
simultaneously preserving user privacy and maintaining model
accuracy.

2) Non-IID Setting:

From Table it can be observed that under the non-
IID data distribution, the accuracy of FedAvg decreases more
rapidly as the proportion of Byzantine users increases. This
is primarily due to the combined effects of data heterogeneity
and Byzantine attacks, which cause significant gradient diver-
gence and exacerbate deviations in the global model. In par-
ticular, model poisoning continues to exert a stronger impact
than label flipping, as directly manipulated parameters amplify
inconsistencies among local updates. In contrast, BPFLH
exhibits strong robustness under the non-IID setting. Across
different datasets, models, Byzantine user ratios, and attack
types, the accuracy of BPFLH remains close to that of the non-
attacked FedAvg, even under the non-IID data distribution.
This demonstrates that BPFLH can effectively distinguish
malicious gradients from benign deviations induced by data
heterogeneity, thereby maintaining high model accuracy.

(2) Robustness evaluation

To evaluate robustness, we set the proportion of Byzantine
users to 10%,20% and 30%. The compared schemes include
the representative Byzantine-robust federated learning schemes
Median [9], Trimmed Median [9], Krum [[13]], FLTrust [15],
ShieldFL [16], PEFL [28], PFLAD [29] and CoS-HFL [17].
Specifically, Krum [13] selects the smallest distance gradients
for aggregation. Median [9] replaces the aggregation opera-
tion with the median, while Trimmed Median [9] removes
extreme gradients before aggregation. FLTrust [[15] defends

against Byzantine attacks by introducing a server model and
calculating the similarity between user gradients and server
model gradients. PEFL [28]] identifies Byzantine users by mea-
suring the linear correlation between user gradients. ShieldFL
normalizes and compares cosine similarity between user gradi-
ents. PFLAD [29] extracts gradient features through a server-
trained feature extraction and detects Byzantine users via co-
sine similarity between these features. CoS-HFL [[L7]] defends
against Byzantine attacks through a credit-based active poi-
soning resistance mechanism, combining multi-dimensional
similarity and information entropy-based credibility evaluation
and attacker elimination strategies.

Under the IID and non-IID setting, we trained the CNN
and MLP models on the MNIST dataset and a CNN model
on the CIFAR-10 dataset. Tables and
illustrate the model accuracy of different schemes under
varying the attack types and Byzantine user proportion across
different datasets and models.

Tables and [V] present the model accuracy of CNN
trained on MNIST dataset under IID and non-IID distributions,
respectively. As illustrated in Table under IID conditions,
BPFLH maintains an accuracy above 98.6% across label
flipping and arbitrary model attacks, even with 10%, 20%, and
30% Byzantine user proportions. This performance is almost
identical to its performance in the absence of Byzantine users
and demonstrates superior performance over all compared
schemes. Under non-1ID settings (Table E), BPFLH consis-
tently achieves an accuracy of around 97.2% across all attack
types and Byzantine user proportions. This slight reduction
compared with the IID case primarily results from uneven data
distribution, which increases gradient variance among users.
Nevertheless, BPFLH still outperforms all compared schemes.
In contrast, Krum and PEFL exhibit significant performance
degradation as the proportion of Byzantine users increases,
since both are designed under the IID assumption and struggle
to adapt to heterogeneous data.
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TABLE VI: Accuracy comparison of different FL. methods under various attacks on the MNIST dataset with IID data
distribution (MLP model)

Percentage of Byzantine users Attacks FedAvg Medi Tri d-Medi Krum FLTrust PEFL ShieldFL. PFLAD CoS-HFL BPFLH

0% No attack 97.27 97.10 97.14 96.82 97.21 97.13 97.11 96.32 97.08 97.27

10% Label Flipping 97.09 95.50 95.90 96.33 97.05 96.91 96.35 96.08 96.26 97.27

’ Arbitrary Model Attack 50.15 96.14 95.98 96.61 96.41 96.35 96.45 96.01 96.23 97.22

20% Label Flipping 96.50 96.03 95.34 95.11 97.12 95.98 95.91 95.57 96.08 97.18

Arbitrary Model Attack 31.50 95.36 95.49 93.72 97.19 96.60 96.45 95.18 96.54 97.20

30% Label Flipping 74.32 95.19 95.44 95.17 96.55 96.12 94.08 95.28 97.00 97.18

‘ Arbitrary Model Attack 14.60 95.21 95.76 93.82 97.15 95.99 96.19 94.40 95.36 97.17

TABLE VII: Accuracy comparison of different FL. methods under various attacks on the MNIST dataset with Non-IID data
distribution (MLP model)

Percentage of Byzantine users Attacks FedAvg Medi Tri d-Medi Krum FLTrust PEFL  ShieldFL. PFLAD CoS-HFL BPFLH
0% No attack 97.17 96.48 96.22 96.13 97.15 94.22 96.66 96.07 96.84 97.15
10% Label Flipping 96.93 94.55 95.73 90.20 97.07 91.33 96.06 95.81 96.17 97.11
‘ Arbitrary Model Attack 63.28 93.53 95.64 71.53 97.09 70.51 95.93 95.15 96.35 97.09
20% Label Flipping 93.93 93.70 94.68 82.35 96.95 83.58 95.46 94.27 95.21 97.09
’ Arbitrary Model Attack 36.89 91.37 95.34 68.11 96.54 71.25 95.64 94.31 93.64 97.12
30% Label Flipping 82.70 93.76 93.89 73.13 96.90 75.36 93.67 93.25 93.97 97.09
‘ Arbitrary Model Attack 18.80 91.63 94.30 60.57 97.01 56.55 95.97 93.14 92.77 97.11

TABLE VIII: Accuracy comparison of different FL methods under various attacks on the CIFAR-10 dataset with IID data

distribution (CNN model)

Percentage of Byzantine users Attacks FedAvg Medi Tri d-Medi Krum FLTrust PEFL  ShieldFL. PFLAD CoS-HFL BPFLH
0% No attack 61.99 58.36 59.19 57.66 59.13 59.26 58.17 59.53 60.50 60.94
10% Label Flipping 56.49 57.76 59.16 57.44 58.61 58.48 57.66 59.04 59.45 59.90
v Arbitrary Model Attack 19.96 57.66 59.04 57.40 57.82 59.01 57.51 59.06 59.87 60.87
20% Label Flipping 52.89 56.45 58.28 56.77 57.22 59.09 56.19 59.15 59.42 60.78
v Arbitrary Model Attack 10.40 57.92 58.13 55.14 57.70 58.94 57.35 59.09 58.56 59.30
30% Label Flipping 47.65 57.85 58.84 56.71 57.88 59.15 5532 59.45 58.64 60.02
‘ Arbitrary Model Attack 10.71 57.85 58.54 55.75 59.02 58.99 57.13 59.04 59.31 59.26

TABLE IX: Accuracy comparison of different FL methods under various attacks on the CIFAR-10 dataset with Non-IID data
distribution (CNN model)

Percentage of Byzantine users Attacks FedAvg Median Trimmed-Median Krum FLTrust PEFL ShieldFL. PFLAD CoS-HFL BPFLH

0% No attack 60.60 55.61 56.02 53.63 55.55 50.26 55.68 58.63 60.10 60.67

10% Label Flipping 53.80 54.27 55.64 30.33 54.06 41.26 54.85 57.01 58.03 58.49

Arbitrary Model Attack 19.05 53.76 55.64 26.39 54.04 42.05 53.52 57.53 56.32 58.21

20% Label Flipping 50.55 53.73 55.33 28.11 53.45 45.26 53.90 56.33 57.61 59.89

v Arbitrary Model Attack 11.64 51.77 55.64 25.79 53.52 30.35 55.05 54.36 55.31 59.30

30% Label Flipping 40.72 43.76 51.89 31.11 53.20 28.99 5247 56.37 56.84 59.58

‘ Arbitrary Model Attack 11.31 53.63 54.30 23.82 51.72 41.95 54.03 52.67 55.01 59.02

Tables|VI|and report the model accuracy of MLP trained  distributions.

on the MNIST dataset under IID and non-IID distributions,

respectively. The results further confirm that even with a
lighter model architecture, BPFLH maintains strong robustness
against Byzantine attacks. As shown in Table BPFLH
achieves the highest accuracy across all attack types and
Byzantine user proportions under IID conditions. As observed
in Table under the non-IID data distribution, BPFLH
continues to demonstrate stable performance, maintaining an
accuracy of approximately 97.1% and consistently outper-
forming the compared schemes across both label flipping and
model poisoning attacks, as well as varying proportions of
Byzantine users. The accuracy remains comparable to the
IID setting, as BPFLH can accurately distinguish malicious
gradients from benign deviations caused by data heterogeneity,
thereby maintaining stable performance across different data

Tables and [IX] present the model accuracy of CNN
trained on CIFAR-10 with IID and non-IID distributions,
respectively. As shown in Table under IID conditions,
BPFLH preserves high accuracy against both label flipping and
arbitrary model attacks, even when the proportion of Byzan-
tine users increases to 10%,20%, and 30%. Furthermore,
compared to the other schemes, BPFLH still achieves the
highest accuracy under different Byzantine user proportions
and attack types. Compared to Table which shows the
model accuracy of CNN trained on the MNIST dataset under
IID data distribution, a noticeable drop in accuracy can be
observed in Table [VIIIl This decline is mainly due to the
higher complexity of the CIFAR-10 dataset, resulting in an
accuracy of around 60%. From Table it can be observed
that under the non-1ID distribution, most schemes exhibit
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significant accuracy drops. This is because, in non-IID data
environment, benign users may produce gradients that deviate
notably due to data heterogeneity. These schemes fail to
effectively distinguish such deviating benign gradients from
truly malicious gradients, misclassifying these deviating be-
nign gradients as malicious, and thereby reducing the number
of aggregated benign gradients. Even when adopting weights
or scores for aggregation, these deviating benign gradients are
assigned lower weights or scores, further weakening the model
performance. In contrast, BPFLH detects Byzantine users by
analyzing the discrepancies among user gradient elements,
effectively mitigating the adverse impact of data heterogeneity
on detection and keeping accuracy fluctuation within 2%.

Overall, by synthesizing the results across all datasets
and model architectures, BPFLH consistently demonstrates
superior robustness against Byzantine users, maintaining high
accuracy across both IID and non-IID distributions.

(3) Efficiency Evaluation:

In this experiment, the proportions of Byzantine users is
set at 0%, with the gradient dimension d = 10000. The
computation and communication overheads of BPFLH are
evaluated and compared with those of the several state-of-
the-art Byzantine-robust privacy-preserving federated learning
schemes, namely ShieldFL [16]], PEFL [28]], and PFLAD
[29]. These schemes are selected for comparison because,
similar to BPFLH, they employ homomorphic encryption to
ensure data privacy while defending against Byzantine attacks.
Specifically, PEFL and ShieldFL adopt Paillier homomorphic
encryption, whereas PFLAD and BPFLH utilize CKKS homo-
morphic encryption for privacy protection. The experimental
results are illustrated in Fig.

77 PEFL

0 ShieldFL|
1005 B2 PFLAD
[_IBPFLH

size (MB)

0.14

0.01

Model Decryption and

yption
Update Training Update

phase

(a) Computation overhead (b) Communication overhead

Fig. 2: The comparison of computation and communication
overheads.

1) Computation overhead: In BPFLH, the computation
overhead mainly arises from the model training, dissimilarity
computation, screening and aggregation and decryption and
update phases. As illustrated in Fig. in the model training
phase, PEFL incurs the highest computation overhead because
it employs the Paillier homomorphic encryption, which is
computationally complex and requires encrypting one cipher-
text at a time. Similarly, ShieldFL also exhibits a comparably
high computation overhead. In contrast, BPFLH and PFLAD
achieve the lowest computation overhead in this phase, as both
utilize the CKKS homomorphic encryption and encrypt data
twice the size of the gradients, which is more efficient.

In the dissimilarity computation phase, all schemes compute
gradient dissimilarity to identify potential Byzantine users.
ShieldFL introduces the highest overhead in this phase since
it performs multiple encryption and decryption operations.
PFLAD exhibits the lowest computation overhead because
its dissimilarity computation does not involve homomorphic
operations and only requires performing simple encryption,
decryption and local distance calculations. BPFLH requires ex-
ecuting homomorphic addition and multiplication operations,
which result in slightly higher computation overhead compared
to PFLAD. However, this additional overhead is a reasonable
trade-off for achieving higher accuracy in precisely distin-
guishing malicious gradients from benign deviations caused
by data heterogeneity.

In the screening and aggregation phase, PFLAD, BPFLH,
and PEFL all detect and remove malicious gradients before
aggregation, while ShieldFL aggregates all gradients with
different weights. The computation overhead of PEFL and
ShieldFL is significantly higher than that of PFLAD and
BPFLH, owing to the lower efficiency of the Paillier scheme
compared with CKKS.

In the decryption and update phase, all schemes perform
decryption and model updates. Because CKKS operations are
more efficient than those of Paillier, PFLAD and BPFLH incur
lower overhead than PEFL and ShieldFL. It is worth noting
that ShieldFL, which uses an extended Paillier encryption
scheme, involves more complex decryption, resulting in the
highest computation cost in this phase.

2) Communication overhead: The communication cost of
BPFLH is mainly incurred during the model training and the
decryption and update phases. In the model training phase, all
these schemes involve local training and the encryption and
uploading of gradients. Hence, the primary source of com-
munication overhead comes from transmitting the encrypted
gradients. Fig. shows that in the model training phase,
PEFL incurs the highest communication overhead since it
needs to download the encrypted global model first, decrypts it
for local training and gradient computation, and then encrypts
and uploads the gradients. Consequently, the communication
overhead of PEFL is approximately twice the ciphertext size
of the gradients. The communication overhead of ShieldFL
is slightly lower than that of PEFL, as ShieldFL performs a
preliminary screening of the gradients and uploads only those
with higher contributions. The communication overhead of
PFLAD is the lowest. This advantage stems from its use of
CKKS homomorphic encryption, which supports vectorized
encryption, allowing multiple vectors to be encrypted into
a single ciphertext. BPFLH incurs slightly higher commu-
nication overhead than PFLAD since BPFLH also transmits
the encrypted absolute gradients in addition to the encrypted
gradients. This additional overhead is a justified trade-off
for achieving enhanced robustness, particularly in accurately
identifying Byzantine users under non-IID conditions, while
also providing privacy protection.

In the decryption and update phase, ShieldFL shows the
highest communication overhead, as it transmits not only
the encrypted aggregated gradient but also additional partial
decryption results, leading to extra communication overhead.

Authorized licensed use limited to: University of Greenwich. Downloaded on February 09,2026 at 10:33:04 UTC from IEEE Xplore. Restrictions apply.
© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2026.3661522

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2025 15

By contrast, PFLAD and BPFLH achieve lower communica-
tion overhead than PEFL and ShieldFL, because in PFLAD
and BPFLH, the aggregated gradients are decrypted on the
server side before being returned to users, whereas PEFL and
ShieldFL transimit the encrypted aggregated gradients to users
before performing decryption.

C. Discussion and limitation

Although BPFLH uses CKKS for privacy-preserving cal-
culations, it is not limited to this encryption scheme. In
principle, other homomorphic encryption methods, such as
Paillier, can also be applied, as long as floating-point numbers
are converted into integers and the calculations are performed
element-wise. CKKS is chosen primarily because it natively
supports direct floating-point number computations, which are
essential for Bray-Curtis dissimilarity calculation. Moreover,
CKKS allows efficient vectorized operations, significantly
improving computational performance.

While the proposed BPFLH demonstrates strong robustness
and privacy-preserving performance on standard benchmarks
such as MNIST [40], Fashion-MNIST [41], and CIFAR-10
[42], several limitations remain. First, the current experimental
evaluation is constrained by computational resources, partic-
ularly due to the high cost of homomorphic encryption op-
erations in large-scale federated settings. Consequently, more
complex or domain-specific datasets were not incorporated in
this study. In future work, we plan to extend BPFLH to large-
scale datasets such as FEMNIST, which involve thousands of
heterogeneous clients, as well as to privacy-sensitive domains
like medical imaging (e.g., COVID-Xray), where data hetero-
geneity and security requirements are more pronounced.

VIII. CONCLUSION

In this paper, we propose BPFLH, a novel Byzantine ro-
bustness and privacy-preserving federated learning scheme for
heterogeneous data. We employ Bray—Curtis dissimilarity to
accurately identify Byzantine users and use CKKS homomor-
phic encryption to protect privacy, enhancing the robustness
against Byzantine attacks in non-IID data environments while
preserving user privacy. Comprehensive experiments under
both IID and non-IID settings confirm that BPFLH achieves
consistently high accuracy across diverse datasets, model
architectures, and Byzantine attack types (label flipping and
model poisoning), even with varying proportions of Byzantine
users, while ensuring privacy protection. In the future, we will
explore new encryption methods compatible with the Bray-
Curtis dissimilarity calculation to optimize efficiency.
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