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Abstract 
Financial markets typically exhibit dynamically complex properties as they continu-
ously interact with economic and environmental factors. For example, the efficient 
market hypothesis suggests a considerable difference in the structural complexity 
of security prices between “normal” (stable markets) and “abnormal” (financial crises) 
situations. Considering the analogy between market undulation of price time series 
and physiological stress of bio-signals, we investigate whether physical stress indices 
in bio-systems can be adopted and modified to measure “standard stress” in financial 
markets. We employ structural complexity analysis based on univariate and multivari-
ate sample entropy variants to estimate the overall stress level of financial markets 
and the performance of individual financial indices. Furthermore, we propose a novel 
graphical framework to determine the sensitivity of individual assets and stock markets 
to financial crises. Catastrophe theory and entropy-based stress evaluations are used 
to ascertain the unique performance of each index or individual stock in response 
to different types of crisis. Four major indices and four individual equities with gold 
prices are considered over 31 years, from 1991 to 2021. Results show the feasibility 
of measuring financial stress and reveal the relationship between structural complexity 
among economic indices and within each price time series.

Keywords: Multivariate multiscale entropy, Dynamics in financial systems, 
Determinism, Recurrence plot analysis, Catastrophe theory, Arousal–performance plot

Introduction
!e characteristics of stock markets’ structural complexity have long been investigated 
as efficient indicators of financial health and economic stability. Techniques such as 
noise reduction and permutation entropy have been instrumental in revealing determin-
istic patterns within financial systems, distinguishing chaotic behaviors from random 
fluctuations. !ese methods enhance the understanding of market dynamics by identify-
ing underlying structural patterns, offering valuable insights for theoretical and practi-
cal applications (Soofi and Cao 2002; Zanin 2008). !e cornerstone of modern financial 
theory, the EMH (EMH), states that the underlying value of an asset incorporates all the 
available information to ensure that the stock always trades at a fair value (Fama 1970). 
Hence, in “normal” situations, certain events barely influence markets, which respond 
evenly to continuous stimuli of economic change. In the context of complexity science, 
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security prices in normal situations exhibit high randomness and uncertainty, with their 
historical values exhibiting low predictability. Conversely, when an economic crisis 
occurs, irrational fluctuations (e.g., panic buying or selling) can influence markets, show-
ing a low degree of randomness and high determinism (García et  al. 2016; Hemakom 
et al. 2016).

Analogous to the well-known automatic fight-or-flight response in physiological stress 
studies in human cognitive science (McCarty 2016), financial stress can also be consid-
ered a deviation from the normal functioning of financial markets (Hakkio and Keeton 
2009). Considering the similarity between the complexity-loss theory (CLT) in human 
body functions (Lipsitz and Goldberger 1992) and the implications of EMH in finan-
cial markets, the concept of sympatho-vagal balance in bio-systems can also be used to 
describe the acceleration–stabilization type of behavior in financial systems (Malik et al. 
1996; von Rosenberg et al. 2017). In human-centered sciences, the sympatho-vagal bal-
ance refers to the joint influence of the sympathetic nervous system (SNS) and parasym-
pathetic nervous system (PNS) (Malik et al. 1996), which accelerate and decelerate body 
functions, respectively. Regarding the analysis of financial systems, supply and demand 
drive and sustain the acceleration–stabilization behavior, resulting in market expansions 
and recessions (García et al. 2016).

In terms of practical implications, leveraging biosystem concepts to measure finan-
cial stress offers a novel perspective in risk assessment and management. Using entropy-
based measures, the analogy between physiological and financial stress provides a 
systematic and non-parametric approach to gauge market stability. !is framework 
allows for the identification of “standard stress” in financial systems, which can influence 
risk assessment and mitigation strategies via early detection of systemic risks. Moreover, 
regulators and policymakers can adopt additional dynamic risk management strategies 
using entropy-based insights for continuous market monitoring. Such metrics allow for 
a more nuanced understanding of complex market behaviors, particularly under inter-
connected economic and environmental factors. Furthermore, incorporating entropy-
based metrics such as stress testing and early warning systems into policy decisions can 
enhance the resilience of financial markets by detecting stress levels before a crisis esca-
lates. !is study contributes to policy-making by offering new tools for real-time moni-
toring and intervention, potentially enabling regulators to adjust capital requirements or 
implement trading halts to mitigate market volatility.

As stated in EMH, the asset price contains all available information. In addition, most 
financial studies have been implemented based on the return time series, the difference 
between the two consecutive prices, x(t + 1) and x(t), to obtain the dynamics of price 
change. In this work, we first apply a moving average (MA) filter to the detrended data to 
maintain the maximal information of the price time series in the signal. Given the poten-
tial of nonlinear methods to reveal financial stress, we employ complexity science, that 
is, structural complexity analysis based on historical data, to predict the occurrence of 
an “abnormal” situation, that is, a financial crash. Such a sudden change in the behavior 
of the financial system results from the smooth changes that jointly arise from economic 
and non-economic factors. !is phenomenon was conceptualized by Ren’e !om, who 
termed it catastrophe theory (!om 1972). Although broadly applicable to dynamical 
systems, catastrophe theory has seen limited use in economics despite its potential to 
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model discontinuities such as stock market crashes. However, applications of stochas-
tic cusp models and financial brittleness functions have demonstrated their ability to 
explain sudden market transitions, such as the 1987 crash, where internal factors like 
sentiment play a pivotal role. !ese models underscore the importance of understand-
ing bifurcations within financial systems to better anticipate systemic risks and design 
effective macroprudential policies (Wesselbaum 2017; Birău 2013; Yang et  al. 2009; 
Baruník and Vosvrda 2009). !erefore, we demonstrate that financial stress measure-
ment serves as an insightful and practical method for quantitative analysis. To this end, 
we considered 31 years of historical data from January 1991 to December 2021, with 
one data point per weekday. !e main investigation was conducted over four stock indi-
ces (Dow Jones Industrial Average, NASDAQ Composite, Russell 2000, and Standard 
& Poor’s 500) and four individual equities from different industries (Apple Inc., Micro-
soft, McDonald’s, and American International Group). !e catastrophe plots exhibit the 
unique performance of each index or individual stock in response to different crises in 
the last several decades.

!e main contribution of this study is the application of the catastrophe theory com-
bined with entropy measures derived from the Mod-MSE/MMSE to produce catas-
trophe plots for visualizing systemic financial stress. !is method offers a unique 
descriptive framework for understanding the evolution of financial crises, distinguishing 
it from traditional financial stress indices, which mainly reflect the unfolding of coinci-
dent stress. In addition, this study extends the analysis timeline to include the COVID-
19 crisis, providing a comprehensive comparison of this unprecedented event with 
earlier crises, such as the 2008 financial crisis. !e visualization of these different types 
of crises within the same analytical framework allows for a more in-depth understanding 
of how various systemic disruptions manifest in financial markets. !is extension offers 
a better grasp of the pandemic’s impact and the broader historical context of financial 
stress. !e catastrophe plots offer an innovative way to represent the complex build-up 
of stress in the financial system, making this framework a valuable tool for researchers 
and policymakers who aim to study and compare crises over time.

!e remainder of this paper is organized as follows. Section Literature review provides 
a literature review of entropy-based methods and financial stress indices. Section Algo-
rithm and methods presents the details of the nonlinear algorithms and methodologies. 
Section  Data overview and methods presents a summary of the data and methods to 
provide an overview of the asset price time series and analytical flow. Section  Results 
and analysis illustrates the results of the measures and analyzes the nonlinear properties 
of financial markets. Section Catastrophe plots based on entropy proposes the frame-
work of the catastrophe theory in financial investigations and provides initial analyses 
based on the catastrophe theory. Finally, the last section presents the conclusions.

Literature review
Recent advances in entropy-based financial analysis have strengthened the applica-
tion of complexity methodologies to market dynamics. For example, entropy-based 
analysis has been employed to examine the efficiency of financial markets during 
the COVID-19 pandemic (Wang and Wang 2021), revealing significant structural 
changes in market complexity during this unprecedented crisis. Similarly, research on 
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information diffusion and entropy-based network dynamics in equity markets (Beki-
ros et al. 2017) has elucidated how entropy measures can capture the complex inter-
relationships between market participants during periods of stress.

Entropy-based measures have been effectively employed to reveal complex features 
in the nonlinear domain based on these recent developments. Approximate entropy 
and multiscale entropy extend traditional approaches by capturing the irregulari-
ties and synchrony within financial datasets. !is case offers a robust framework to 
understand system stability and diversification. !ese advancements demonstrate 
the versatility of entropy-based methods in quantifying financial stress and discover-
ing dynamics across variables (Pincus 2008; Ahmed et al. 2017; Pincus and Kalman 
2004; Wu et al. 1996). !e nonlinear methods used in the following analyses include 
entropy-based univariate or multivariate algorithms. Examples include the recur-
rence quantification analysis (RQA) (Marwan et al. 2007) and assessment of the latent 
index of stress using instantaneous amplitude (iA-ALIS) methods (von Rosenberg 
et  al. 2017). Traditional entropy methods aimed at signal irregularity quantification 
have been applied in financial investigations owing to their model-independent and 
prejudice-free analysis, including approximate entropy (Pincus 2008; Pincus and 
Kalman 2004), sample entropy (Wu et  al. 2018), and permutation entropy (Yin and 
Shang 2016; Zhang and Shang 2019). Advancements in multiscale entropy methodol-
ogies have provided deeper insights into the complexity of financial time series, a cru-
cial factor in nonlinear system dynamics. For instance, composite multiscale entropy 
and refined permutation entropy methods overcome the limitations of traditional 
approaches, enabling the analysis of short-term data with high precision. !ese tech-
niques reveal how financial systems vary structurally across multiple temporal scales, 
making them vital tools for understanding market behavior during periods of stress 
(Yin and Shang 2015; Zhang and Shang 2018; Niu and Wang 2015). In addition to uni-
variate entropy analysis, enhanced multivariate methodologies have been employed, 
such as multivariate multiscale sample entropy (Er and Mandic 2013). RQA is another 
popular nonlinear measurement method for quantifying determinism via predictabil-
ity, which has been widely considered in physiological studies (Yang 2010; Cao et al. 
2004). Stock market volatility reflects the degree of uncertainty in asset price fluctua-
tions, a well-established concept linked to financial stress. Intrinsic multiscale analy-
sis methods, such as multiscale sample entropy and stress metrics, have been applied 
to reveal nonlinear relationships between market dynamics and structural indica-
tors, particularly during crises such as the subprime mortgage crisis. !ese methods 
highlight the complexity-loss hypothesis in financial stress contexts, suggesting that 
periods of heightened volatility correspond to significant structural changes (Pincus 
2008; Hemakom et  al. 2016; Pincus and Kalman 2004). Closely relevant to the vol-
atility measure, the high degree of determinism (DET) given by RQA indicates low 
volatility and high predictability (Strozzi et al. 2008; Ruiz et al. 2012). assessment of 
the latent index of stress (ALIS) was introduced to detect financial crises primarily in 
stock markets by examining the power in low- and high-frequency bands of dynami-
cal prices (García et  al. 2016; Hemakom et  al. 2016). Expanding on the ALIS, an 
assessment based on the instantaneous amplitude, iA-ALIS, was proposed as a highly 
reliable indicator of financial stress (von Rosenberg et al. 2017).
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Although entropy-based methodologies provide powerful analytical tools, their rela-
tive advantages and limitations must be considered within the broader context of finan-
cial stress measurement approaches. Quantitative methods, such as the aforementioned 
algorithms, offer the advantage of precise stress testing. !e reason is that they can sys-
tematically analyze financial data using numerical indicators, allowing for further sta-
tistical analysis and visualization. !ese methods can effectively measure the impact of 
known factors, providing a clear, data-driven picture of financial stress. However, quan-
titative analysis has limitations, particularly in accounting for new or unprecedented 
stress events not present in historical data. For example, supply chain disruptions post-
COVID-19 may be readily captured in qualitative assessments because of their evident 
impact on the economy. However, they could be missed or underestimated in purely 
quantitative models if these events are not included in the dataset (McKibbin and Fer-
nando 2021). Qualitative analysis in finance has the advantage of capturing the influ-
ence of policy regimes and contextual factors that may not be reflected in historical data 
(Gagnon et al. 2011). !is approach allows for a deeper understanding of financial stress 
by considering external influences, such as government policies or global events, and 
by visualizing historical events’ patterns. However, the timing of qualitative analysis can 
be challenging because predicting and quantifying exogenous factors, such as sudden 
policy changes or unexpected global events, is difficult, making it harder to incorporate 
them into a precise model (Baker et al. 2016).

A comparative analysis with established financial stress indices, such as the St. Louis 
Fed Financial Stress Index (STLFSI), the Kansas City Financial Stress Index (KCFSI), and 
the Office of Financial Research Financial Stress Index (OFR FSI), reveals several dis-
tinct advantages of our entropy-based framework to contextualize our methodological 
approach. !e STLFSI and KCFSI are constructed using financial indicators normalized 
based on their standard deviations from historical means, an approach that inherently 
assumes a Gaussian distribution of the underlying data (Manamperi 2015; Hakkio and 
Keeton 2009). !is reliance on a Gaussian framework is limiting, particularly during 
periods of significant financial market stress when the assumption of normal distribu-
tion is often violated. By contrast, the OFR FSI incorporates a broad array of 33 financial 
market variables categorized across five segments (i.e., credit, equity valuation, funding, 
safe assets, and volatility) to offer a more comprehensive understanding of stress across 
global financial markets (Monin 2019). However, despite its breadth, the OFR FSI relies 
on the historical weighting of these variables, potentially overlooking the real-time shifts 
in market dynamics during crises.

Moreover, our method falls between index-specific and composite categories. !e 
method is composite, as is the case with STLFSI, KCFSI, and OFR FSI, in the sense 
that it simultaneously analyzes several individual market indices while being specific 
enough to examine the balance or imbalance aspect of markets. Our approach offers a 
more holistic understanding of the macroeconomic environment and interconnected 
financial risks. In addition, our approach simultaneously identifies early signals of mar-
ket stress and asset mispricing, leading to better-informed decisions in financial anal-
ysis and risk management. Our method avoids these limitations by not depending on 
the standard deviation of the data, eliminating the need to assume a Gaussian distri-
bution. !is approach allows us to more effectively capture nonlinearities and tail risks 
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that frequently characterize periods of heightened financial stress. Our method offers a 
more robust and flexible measure of financial stress by focusing on the direct impact of 
large-scale asset purchases and considering systemic risks that arise from the intercon-
nectedness of financial institutions. Particularly, it has the ability to capture and forecast 
systemic risks in a more timely and adaptable manner than the STLFSI, KCFSI, and OFR 
FSI, providing policymakers with a more relevant tool for crisis detection and financial 
stability monitoring.

Algorithm and methods
!e algorithms used in this study are introduced and described in this section.

Modi!ed univariate multiscale sample entropy & modi!ed multivariate multiscale sample 
entropy
Moving average !lter
To obtain the scaled and detrended signal, y(τ )(j) , a moving average (MA) filter, is first 
used to remove the local trend, s(τ )(j) , from the original time series, {x(i)}Ni=1 , as follows:

where τ is a predefined scale factor. Unlike the traditional coarse-graining process (Costa 
et al. 2002), the scaling given by the MA filter can maintain the original signal length and 
better fit the intrinsic properties of the applied data.

Multivariate sample entropy
Sample entropy is a standard approach for evaluating the degree of time series irregu-
larity and randomness based on their temporal dynamics. It has been widely applied in 
real-world complex systems (Richman and Moorman 2000; Humeau-Heurtier 2015). 
Sample entropy is built based on the probability of similarity between the embedding 
(delay) vectors, where high similarity demonstrates high predictability at multiple scales. 
To this end, we applied the MA filter to implement the scaling process for each time 
series, which was termed the modified univariate multiscale sample entropy (Mod-MSE) 
(Wu et al. 2013). Owing to the intrinsic properties of the financial data, the predefined 
scale factor is set as 1 week, τ = 5 . !e Mod-MSE was applied to every index and stock 
individually to evaluate the stress of each index and equity, reflecting their response to 
the external environment. However, no individual stock or single index can sufficiently 
represent the performance of the entire financial market. !erefore, the enhanced mul-
tivariate entropy is employed to estimate the overall stress of the financial market. !e 
multivariate entropy method accounts for the cross-channel dependencies in the mul-
tivariate data by constructing composite delay vectors (CDV), XM(i) , derived from the 
original p-channel signal, {xk ,i}Ni=1, 1 ≤ k ≤ p , in the form

(1)s(τ )(j) =
1

τ

j+τ/2−1∑

i=j−τ/2−1

x(i), 1 ≤ j ≤ N − τ + 1.

(2)y(τ )(j) =x(i) − s(τ )(j)
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where mk and lk denote the embedding dimension and time delay set to kth channel, 
respectively.

Based on a combination of the MA filter (as a scaling process) with multivariate sam-
ple entropy, the Modified MMSE (Mod-MMSE) was employed across multiple chan-
nels as a scaling process) with multivariate sample entropy. !e details of Mod-MSE and 
Mod-MMSE are given in Algorithm 1. 

Algorithm 1. Modi!ed Univariate Multiscale Sample Entropy (Mod-MSE) & Modi!ed Multivariate 
Multiscale Sample Entropy (Mod-MMSE)

Given a multivariate data set with P channels {xk,i}Ni=1, 1  k  p , of length N, or a univariate data set with P = 1

.

1)    Standardize the original datasets by subtracting the mean and dividing by the standard deviation for each 
channel.

2)    Scale the normalized datasets, {y( )k,i }
N  +1
j=1  , for each channel following on (1) and (2).

3)    Form the composite delay matrix, YM(i) , according to the embedding dimension, M, and the time delay, L, 
as shown in Eq. (3).

4)    Compute the distance between all pairwise composite delay vectors, YM(i) and YM(j) , based on the Che-
byshev distance, as dM(i, j) = max{YM(i + k) YM(j + k)|| i "= j} . The number of matching patterns, BM(i) , is 
defined as similar pairs of delay vectors that satisfy the criterion dM(i, j)  r.

5)    Compute the estimated local probability of BM(i) by CM(i) = BM(i)
N n 1 , where n = max(M)  max(L) , and the 

estimated global probability is  M =
∑N n

i=1 CM(i)
N n .

6)    Repeat steps 1–5 with an increased embedding dimension, M = M+ 1 , and obtain the updated global 

probability, denoted as  M =
∑N−n

i=1 CM (i)
N−n , n = max(M )  max(L).

7)    The modified univariate or multivariate multiscale sample entropy is defined as follows: 
Mod-MMSE(m, l, r ,N) =  ln [

 M∗

 M
].

Our selection of entropy-based measures for financial stress quantification is driven by 
several methodological considerations that are directly aligned with our research objec-
tives (García et al. 2016; Yin and Shang 2015; Richman and Moorman 2000; Wu et al. 
2018). Unlike traditional volatility measures that assume specific distributions, entropy-
based approaches can detect structural complexity changes in nonstationary financial 
time series without distributional assumptions, which is a crucial advantage when ana-
lyzing market behavior across diverse economic regimes.

Empirical testing across multiple financial datasets showed that m = 2 provides an 
optimal discrimination between normal and crisis periods while minimizing computa-
tional complexity (García et al. 2016; Richman and Moorman 2000). Hence, the embed-
ding dimension ( m = 2 ) was selected. Higher dimensions increased the computational 
demands without significantly improving the discrimination power. !e delay factor 
( l = 1 ) was chosen to reflect immediate dependencies in daily price movements, which 
our preliminary analysis showed was most effective for detecting rapid complexity 
changes during crisis onset.

!e scale factor ( τ = 5 ) corresponds to a 1-week trading period, which empirical test-
ing revealed to be optimal for capturing market transitions while filtering daily noise. 

(3)

XM(i) = [x1,i, x1,i+l1 , . . . , x1,i+(m1−1)l1),

x2,i, x2,i+l2 , . . . , x2,i+(m2−1)l2),

...

xp,i, xp,i+lp , . . . , xp,i+(mp−1)lp), ]
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Smaller scales showed excessive sensitivity to random fluctuations, whereas larger ones 
dampened important short-term changes in complexity during crises. !is parameter 
combination maximizes the method’s sensitivity to genuine complexity loss during 
stress periods while maintaining signal fidelity, directly supporting our research objec-
tive of distinguishing between normal market fluctuations and crisis-induced structural 
changes.

Recurrence quanti!cation analysis
!e recurrence plot (RP) is a traditional methodology for identifying hidden correlations 
in multidimensional spaces, without the limitation of data stationarity and size restric-
tion (Webber and Zbilut 1994; Eckmann et al. 1995). !e univariate time series, {x(i)}Ni=1 , 
is reconstructed into a phase space according to the optimal embedding dimension, m, 
and time delay, l, using Takens’ embedding theorem (Takens 1981), as follows:

!e optimal combination of the embedding dimension and the time delay can be 
selected via different methods, such as false nearest neighbors for embedding dimen-
sion (Cao 1997) and minimum mutual information for delay factor (Fraser and Swinney 
1986). In this study, we choose the joint selection of the optimal embedding dimension 
and time delay using the differential entropy-based method introduced in Gautama et al. 
(2003).

Algorithm 2. Recurrence Quanti!cation Analysis (RQA)

Given a univariate data set {x(i)}Ni=1 of length N.

1)    Construct the delay vectors (DVs), xm , according to Takens’ embedding theorem, as in Eq. (4).

2)    Generate the RP matrix, composed of the pairwise Euclidean distances between delay vectors (DVs), as 
RP(i, j) =  (ε  ||xm(i) xm(j)||, i, j = 1, . . . ,N  n 1, i "= j, where || · || designates the Euclidean distance; 
 (·) refers to the Heaviside function;   denotes the threshold when defining the similarity between DVs, set as 
60% of the mean Euclidean distance of the DVs; and n = (m 1) ∗ l.

3)    The DET can be calculated as the percentage of recurrence points that form diagonal lines in the RP matrix, 

that is, 
DET =

∑N n 1
j=jmin

j·P(j)
∑N n 1

j=1 j·P(j) where P(j) is the number of diagonal lines of length j and jmin is the minimum num-
ber of points to be considered as a diagonal line, set as jmin = 2.

!e outcome of RP is a matrix summarizing the distance between the delay vectors 
(DVs). Given a threshold,   , the RP matrix can be plotted as a gray image. Every ele-
ment in the matrix is converted into a pixel color based on the relation between   and 
the distances between DVs. Several probabilistic measures can be implemented accord-
ing to the RP matrix, such as DET and laminarity (LAM). Both measures can indicate 
the inverse of the volatility, where DET is the percentage of recurrent points forming 
diagonal line structures and LAM is the percentage forming vertical lines (Strozzi et al. 
2008). Volatility is an important property in financial markets that reflects implicit risk 
and is generally referred to as the degree of uncertainty about the future price (Pincus 
and Kalman 2004); hence, it also reflects the degree of predictability. Here, we employed 
the DET index in RQA, where the length of a diagonal line in RP reflects the number 
of consecutive recurrent states. Considering the inverse relation of DET and volatil-
ity, we expect that high determinism refers to the high predictability of future prices, 

(4)xm(i) = [x(i), x(i + l), . . . , x(i + (m − 1)l)]
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representing the “abnormal” situation in the financial market (Schreiber 1999). !ere-
fore, the change in DET is positively related to the stress level of the estimated index. 
Algorithm 2 outlines the process of DET calculation.

Assessment of latent index of stress with instantaneous amplitude (iA-ALIS)
ALIS was proposed to quantify the “stress level of a financial organism” in Hemakom 
et  al. (2016). !e original ALIS used the low- and high-frequency band power of the 
detrended price after the MA filter. !e low-frequency band is considered to occupy 
the frequency band below 0.0042 Hz ( = 1

240
 ) with a time window of one year by con-

sidering the intrinsic properties of financial data. By contrast, the high-frequency band 
is set between 0.0167 Hz ( = 1

60
 ) and 0.2 Hz ( = 1

5
 ), corresponding to 2 months and 5 

days, respectively. Recently, ALIS has been enhanced with correct signal power esti-
mation by employing instantaneous amplitude via the Hilbert transform, as discussed 
in von Rosenberg et  al. (2017). !erefore, we employed the ALIS with Instantane-
ous Amplitude, iA-ALIS, based on the detrended financial time series. !e higher the 
iA-ALIS index, the more stressful the stock, with the threshold between stressed and 
normal derived based on the median value. !e details of iA-ALIS are summarized in 
Algorithm 3.

Algorithm 3. Assessment of Latent Index of Stress with Instantaneous Amplitude (iA-ALIS)

Given a univariate data set {x(i)}Ni=1 of length N.

1)    Remove the trend of the data by a MA filter with a window of 1 year, and obtain the detrended data, 
{z(i)}Ni=1.

2)    Bandpass-filter the detrended data, z(i), into the low-frequency Band and high-frequency bands.

3)    Apply the Hilbert transform to low-frequency and high-frequency, and obtain the instantaneous amplitude 
based on the analytic signals given by the Hilbert transform at every time point, denoted as iALF and iAHF.

4)    Take 4 years as the window length and 1 month as an increment. In every time window, the 20% largest 
and smallest values are excluded to remove the outliers and then calculate the mean iA for every window, 
denoted as LF(d) and HF(d), where d refers to a month.

5)    Normalize the LF(d) and HF(d) series by subtracting the mean and dividing by the standard deviation to 
alleviate the scaling problem.

6)    Remove the offset of LF(d) and HF(d).

7)    The ALIS is given by ALIS(d) = LF(d)+ HF(d)

8)    The median value in the ALIS(d) is a market stress threshold.

Data overview and methods
We applied several methodologies to four groups of indices or stocks over the last 31 
years, spanning the period between 1991.01.01 and 2021.12.31: 

• Stock market index • Price of the metal

   - Dow Jones Industrial Average (DJIA/DOW): 30 large companies;    - Gold (Au);

   - NASDAQ Composite (NAS): Mid- and large-caps;    - Silver (Ag);

   - Russell 2000 (RUS): Smaller companies;    - Copper (Cu);

   - Standard & Poor’s 500 (SNP): 500 large companies.    - Platinum 
(Pt).

• Equity • Currency

   - Apple Inc.: a large technology company;    - EUR-GBP;

   - Microsoft: a large technology company;    - GBP-JPY;

   - McDonald’s: Fast food company;    - GBP-USD;
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   - American International Group (AIG): Insurance company.    - USD-JPY.

 Figure  1 provides an overall view and exhibits the original price in the upper panels 
and the detrended price in the bottom panels of the six indices or stocks. !e detrended 
price in blue in each figure was produced by a MA filter at scale = 5, where the main 
signals involved in the following analyses were the detrended dynamical time series. !e 
price becomes more dynamic when a crisis arises, as can be observed in the detrended 
signals with the removal of the local mean. In Fig. 1, the SNP and DJIA/DOW are collec-
tions of large companies in the US market. !e NASDAQ and Apple Inc. illustrate the 
performance of the technology industry, where Apple Inc. is the largest stock in the NAS 
index. Furthermore, the bottom panels in Fig. 1 represent the food industry (McDon-
ald’s) and real estate (AIG Insurance), respectively.

In the past 30 years, seven consecutive periods of different natures were identi-
fied based on the world economies (Ofek and Richardson 2003; Demyanyk and Van 
Hemert 2011; Alabdullah et al. 2020; Baker et al. 2020) and are marked at the top of 
each figure: 

1) Economic boom/Dot-com bubble: 1997.01.01 to 1999.12.31.
2) Internet bubble burst (Crisis-1): 2000.01.01 to 2003.12.31.
3) Economic recovery: 2004.01.01 to 2007.12.31.
4) Subprime mortgage crisis (Crisis-2): 2008.01.01 to 2011.12.31.
5) Post-global financial crisis (GFC) recovery: 2012.01.01 to 2014.12.31.
6) Bull run: 2015.01.01 to 2019.12.31.
7) COVID pandemic (Crisis-3): 2020.01.01 to 2021.12.31.

Fig. 1 Exemplary price time series and their detrended dynamical signals over 1995-2021
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!e selected financial episodes span over 30 years and reflect various economic con-
ditions that have influenced global markets. !e Dot-com bubble (1997–1999) was 
a period of rapid growth in the technology sector. !is development was driven by 
speculative investments in Internet-based companies. !is phenomenon was fol-
lowed by the Internet bubble burst (2000–2003), during which many overvalued 
tech stocks collapsed. !e economic recovery (2004–2007) marked a period of sta-
ble growth driven by rising housing prices and increased credit availability. How-
ever, this event was followed by the subprime mortgage crisis (2008–2011), which 
triggered the global financial crisis, leading to severe disruptions in global financial 
markets. !e Post-GFC recovery (2012–2014) was characterized by gradual stabili-
zation and financial reforms to mitigate systemic risks. !is period was followed by 
a bull run (2015–2019), driven by strong corporate earnings and low-interest-rate 
environments. Finally, the COVID-19 pandemic (2020–2021) caused unprecedented 
global economic disruptions, leading to sharp market declines and heightened vol-
atility across all sectors. !ese varied episodes enable a comprehensive assessment 
of the robustness and sensitivity of the proposed indicators across different types of 
financial stress events. Different crises show varying influences on different indus-
tries, which is reflected in the following complexity analysis. Apart from the impact 
of the crisis, the trend of prices generally increases as time goes by, except for the AIG 
insurance, which was severely attacked by the subprime mortgage crisis around 2008.

!e length of 1 year contains 261 points owing to the properties of the price time 
series (one data point per weekday). !e analyses for the univariate time series include 
Mod-MSE, RQA, and iA-ALIS. !e multivariate time series analysis was generated 
using Mod-MMSE. Furthermore, from the Mod-MSE and Mod-MMSE analyses, the 
catastrophe analyses examine the performance of individual price series and the over-
all US financial market. Figure 2 shows the analysis framework using the algorithms 
presented in Section Algorithm and methods.

Fig. 2 The employed analysis framework illustrating the data processing flow. First, financial data are 
detrended using Moving Average (MA) filters at different time scales. The detrended data then undergoes 
three parallel analytical processes: (1) Modified Multiscale Sample Entropy (Mod-MSE/MMSE) for both 
individual assets and the entire market, (2) Recurrence Quantification Analysis (RQA) to assess determinism 
in individual indices, and (3) Assessment of Latent Index of Stress (iA-ALIS) to evaluate stress levels. The 
Mod-MSE and MMSE results were then used to construct Catastrophe plots that visualized the relationship 
between market-wide stress and individual asset performance
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Results and analysis
Modi!ed univariate multiscale sample entropy (Mod-MSE) and modi!ed multivariate 
multiscale sample entropy (Mod-MMSE)
!e different settings of the predefined scale factors, τ , have been discussed in Hema-
kom et al. (2016), where the various values exhibited the same trend. Here, the short-
term MA filter with τ = 5 was selected as it provided the most distinct tracking of the 
financial stress evolution. !e analysis window was set to N = 1044 (261 points× 4 
years) with a 1-day increment. !erefore, considering data from 1991, the complex-
ity plot started from 1995, whereby each entropy value was calculated based on the 
historical price in the past 4 years. !e default parameters of Mod-MSE/Mod-MMSE 
were set to the embedding dimension m = 2 and the delay factor l = 1.

Figures 3 and 4 show the complexity of the four indices and four equities considered 
via Mod-MSE, respectively. !e figures show the reciprocal of Mod-MSE, represent-
ing the level of stress according to the complexity-loss hypothesis. !e increase of 
Mod-MSE indicated higher randomness referring to a normal period and a decrease 
in stress when the dynamics of price were balanced and influenced by multiple fac-
tors. !e complexity plots in Fig.  3 reveal significant insights into market dynam-
ics during different economic periods. During normal periods (economic recovery, 
post-GFC recovery, bull run), higher MSE values (i.e., lower stress) indicate greater 
randomness in price movements, which aligns with the efficient market hypothesis 
where prices incorporate all available information. A sharp decrease in entropy (i.e., 
increase in stress) during crisis periods (2000–2003, 2008–2011, 2020–2021) quanti-
fies the systematic loss of complexity that characterizes financial stress.

Notably, NASDAQ (green line) exhibits the most dramatic response to the Inter-
net bubble burst, showing a peak value in 2000, followed by a steep decline in 2002, 

Fig. 3 Financial stress of four indices (DJIA, NASDAQ, Russell 2000 and S&P 500) estimated by Mod-MSE over 
1995-2022

Fig. 4 Financial stress of four leading equities in their sector (Apple Inc., Microsoft, McDonald’s and Gold 
price), estimated by Mod-MSE over 1995-2022
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indicating a stress reduction. !is event significantly exceeds its response to the sub-
prime crisis, numerically confirming the technology sector’s greater vulnerability to 
the earlier crisis. Conversely, Russell 2000 (yellow line) showed a more gradual stress 
response but maintained elevated stress levels for longer periods, particularly dur-
ing the recovery phases. For instance, although S&P 500 and DJIA returned to lower 
stress levels within approximately 12–18 months after the 2008 crisis, the Russell 
2000 maintained higher stress levels until mid-2011, providing quantitative evidence 
of the diminished resilience of small-cap companies to system-wide shocks.

Figure 4 depicts the distinct stress profiles of individual equities across different mar-
ket conditions. Gold prices (dashed line) demonstrate remarkable stability, maintain-
ing stress values between 0.4 and 0.5 throughout most of the 27 years, with minimal 
response even during the COVID-19 pandemic. !is quantitatively supports gold’s 
status as a safe-haven asset. Apple Inc. (black line) shows pronounced volatility in the 
company’s stress levels, with dramatic peaks reaching above 1.0 during the early 2000 s 
and around 2008, indicating periods of extreme structural change in the company’s price 
dynamics. !ese peaks align with major product innovations and business model transi-
tions, indicating that internal corporate developments can generate complexity patterns 
comparable to market-wide crises. McDonald’s (yellow line) exhibits a more similar 
stress profile to gold than to technology stocks, reflecting its status as a consumer sta-
ples company with relatively stable demand patterns regardless of broader economic 
conditions.

As shown in Figs. 3 and 4, entropy analyses based on individual indices or stocks can 
assess the internal stress from the signal dynamics. Although S&P 500 and DJIA are gen-
erally considered the leading indices, single-channel analysis is suboptimal for evaluating 
the overall performance of the US financial market. To this end, we applied the multi-
variate Mod-MSE with the four representative indices in Fig. 3 as multichannel data. !e 
Mod-MSE of the leading index (S&P 500) is jointly plotted with Mod-MMSE in Fig. 5 to 
visualize the advantages of multivariate analysis. Figure 5 reveals critical insights about 
system-wide stress as measured by multivariate entropy compared with individual index 
stress. !e multivariate measure (black line) shows dramatically higher stress levels dur-
ing crisis periods than the univariate S&P 500 measure (dashed red line). !is quantita-
tive difference demonstrates that the loss of system-wide complexity can be significantly 
greater than that observed in any single index.

!e temporal evolution of stress also differs between measures. !e multivariate 
stress began increasing approximately 4–6 months before significant changes appear 
in the S&P 500 stress during the Dot-com bubble (late 1998) and the subprime crisis 

Fig. 5 Financial stress of US market estimated by Mod-MSE and Mod-MMSE over 1995-2022
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(mid-2007), providing empirical evidence for the multivariate analysis’s early warning 
capability. Additionally, the rate of stress increase differed substantially, with multi-
variate stress increasing at approximately twice the rate of univariate stress during 
crisis onset. !ese differences underscore the importance of considering market-
wide complexity changes rather than relying solely on individual index analysis when 
assessing financial system stability.

Recurrence quanti!cation analysis
Next, we applied the RQA to yield the DET of each index, which is another quanti-
tative way to evaluate the stress level of the financial market. Recall that the EMH 
indicates that stock prices behave in a random (uncertain) way during normal finan-
cial regimes (Strozzi et  al. 2008). !e lower the determinism, the more stochastic 
components the system contains, referring to a normal situation in line with the high 
randomness in the entropy analysis. !erefore, the DET metric is consistent with the 
stress level of the index or stock; that is, we expect low determinism in normal situa-
tions and high determinism during financial crises.

In the analysis, the predefined scale factor, τ , was set to 5 days and the window for 
RQA to 4 years. !e optimal combination of the embedding dimension, m, and the 
delay parameter, l, was jointly selected using the DE-based method, proposed in Gau-
tama et al. (2003).

!e determinism values in Fig.  6 provide complementary insights to the entropy 
analysis. Entropy measures randomness, whereas DET quantifies predictability in the 
time series. During crisis periods, all indices show elevated DET values, with peaks 
during the COVID-19 pandemic, compared with values during stable periods such as 
2014–2016. !is dramatic contrast numerically demonstrates how market behavior 
shifts from being unpredictable (aligned with efficient market theory) to being highly 
deterministic during periods of stress.

!e indices exhibit distinct DET signatures: NASDAQ (green line) shows a peak 
DET of approximately 0.6 during the Internet bubble, but only reaches approxi-
mately 0.3 during the subprime crisis, reinforcing our entropy-based findings about 
sector-specific vulnerability. !e delayed response pattern of Russell 2000 is particu-
larly evident in the DET analysis, where its determinism increases approximately 3–4 
months after the other indices during each crisis onset and remains elevated for an 
average of 5–7 months longer during recovery periods. !is quantifies the distinct 

Fig. 6 Degree of determinism of four indices (DJIA, NASDAQ, Russell 2000 and S&P 500), estimated by RQA 
over 1995-2022
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stress response characteristics of small-cap markets, potentially reflecting their lower 
liquidity and information flow compared with large-cap indices.

Assessment of latent index of stress with instantaneous amplitude (iA-ALIS)
!e third methodology used to estimate the stress level of financial indices or stocks is 
the iA-ALIS (von Rosenberg et al. 2017). !e ALIS was originally proposed to examine 
the “economic organism” through the complexity-loss hypothesis, where a high stress 
level is indicated by the high value of ALIS (Hemakom et  al. 2016). Here, we applied 
the enhanced iA-ALIS, whereby when estimating the “power” of the low-frequency band 
and high-frequency band, the instantaneous amplitude is used in place of the absolute 
power. Following (Hemakom et al. 2016), a 4-year sliding window was employed with a 
1-day increment, and the detrended data were given by MA filter on a 1-year scale.

Figure  7 shows the stress levels of every index considered (DJIA, NASDAQ, Rus-
sell 2000, and S&P 500) given by iA-ALIS. !e black dashed line at the bottom repre-
sents the threshold, which is the indices’ median value over time. Notably, the iA-ALIS 
exhibited substantially high levels during the Internet bubble burst and the subprime 
mortgage crisis. However, considering the impact of the COVID-19 pandemic, the dra-
matically high stress caused by the pandemic among all industries rendered the meas-
ures of the previous two crises less significant when visualizing. During the Internet 
bubble burst, the NASDAQ demonstrated a higher stress level than the other three indi-
ces, as expected, which is supported by the Mod-MSE and RQA analyses.

Moreover, the problem with iA-ALIS is observed, whereby the highly dynamic changes 
in daily price were difficult to distinguish. With the same resolution, Mod-MSE in Fig. 3 
and RQA in Fig.  6 were able to give more details of the stress evolution, whereas the 
iA-ALIS measure, as shown in Fig. 7, smoothly evaluated the stress levels. Although the 
periods of crisis could be marked by iA-ALIS in 2000, 2008, and 2020, limited informa-
tion can be observed from iA-ALIS for further analysis.

Catastrophe plots based on entropy
!e complexity theory indicates that all aspects of complex problems have the charac-
teristics of catastrophes (Yang et  al. 2009). Catastrophe theory is a branch of applied 
mathematics that was developed by Rene !om in the late 1960 s (!om 1972), whereby 
the basic idea of catastrophe theory aims to explain the breakdown of relationships in 
variables of a dynamic system (Stewart and Peregoy 1983). More specifically, this theory 
can potentially describe the ability of a smooth change in system parameters to generate 

Fig. 7 Financial stress of four indices (DJIA, NASDAQ, Russell 2000 and S&P 500) estimated by iA-ALIS over 
1995-2022
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catastrophic behaviors (i.e., abrupt, discontinuous, sudden change) in a dependent vari-
able, termed critical points (Stewart and Peregoy 1983; Wesselbaum 2017; Birău 2013; 
Baruník and Vosvrda 2009). Catastrophe theory can describe all aspects of natural phe-
nomena because of their complex properties; it embodies a theory of great generality 
that is perceived as a state of mind (Zeeman 1979; Birău 2013).

In the realm of physiology, Hardy and Fazey (1987) stated that physiological arousal 
is related to performance in an inverted-U hypothesis when the athlete is not worried 
or has low cognitive anxiety. If cognitive anxiety is high, the increases in arousal pass 
a point of optimal arousal and a rapid decline in performance occurs (McNally 2002). 
Catastrophe theory has also been involved in brain modeling (Zeeman 1973); however, 
the catastrophe model remains in its conceptual framework state without computational 
analysis (McNally 2002). Catastrophe theory represents a unique hypothesis made up 
of different mathematical structures in financial applications, in contrast to the EMH 
(Birău 2013). Indeed, catastrophe theory has been tentatively employed to explain dis-
continuous jumps in bank investment (Wesselbaum 2017). Studies have shown that it 
could better explain the stock exchange crash than other models (Baruník and Vosvrda 
2009). However, few studies have used catastrophe theory in economics, with most rely-
ing on qualitative descriptions rather than quantitative applications (Wesselbaum 2017; 
Baruník and Vosvrda 2009). Considering the high complexity and unpredictability of the 
stock market and its chaotic and uncertain behaviors, catastrophe theory can explain 
the occurrence of financial events (Birău 2013). To this end, we propose a practical 
framework for the application of catastrophe theory based on entropy-based complexity 
estimation.

Arousal–performance index plot
Considering the similarity between the financial and physiological systems, an analogy 
can be drawn between the catastrophe theory applied to athlete performance and index 
or stock performance. !e catastrophe plot in physiological systems reflects the rela-
tionship between physiological arousal (anxiety) and performance. Accordingly, in the 
financial market, we observe the performance of individual indices or stocks evaluated 
by Mod-MSE; that is, the higher the stress level given by lower Mod-MSE, the lower 
the performance. Although the arousal in the physiological system is an internal trigger 
that determines performance, we modeled the dependent factor (arousal) as the external 
stress imposed by the external environment on the whole market and quantified by the 
Mod-MMSE because of the intrinsic property of a financial system. !erefore, the finan-
cial market catastrophe framework describes the relationship between the level of over-
all market anxiety (external stress) and the performance of individual indices or stocks 
(internal stress).

Two indices (i.e., S& P 500 and NASDAQ), three individual stocks in different indus-
tries (i.e., Apple Inc., AIG, and McDonald’s), and the price of gold (AU) were selected 
to demonstrate the arousal–performance plot, as shown in Fig. 8. Good performance is 
reflected in low internal stress, indicated as high sample entropy, whereas strong arousal 
or stimulus is designated as high external stress, given by the reciprocal of multiscale 
multivariate sample entropy, as shown in Fig.  5. !e line plots in Fig.  8 depict a rela-
tionship between the performance of each index or individual stock and external stimuli 
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during the entire 27 years (1995–2022), where light colors denote early years and dark 
colors represent late years; all the plots were adjusted to the same axis scale.

!e catastrophe plots of the two indices (i.e., S&P 500 and NASDAQ) are shown in 
the first two panels in Fig. 8. As a collection of large companies, S&P 500 and NASDAQ 
exhibit a similar tendency of performance increase as external stress decreases. Observe 
that the curve of S&P 500 tends toward more of a linear relationship compared with the 
curve of the NASDAQ, showing the higher predictability or regularity of S&P 500. !e 
larger slope of the NASDAQ curve in light green indicates that the technology market 
was under higher stress (with suboptimal performance) in the early years than in recent 
years.

Next, the curve of the most significant stock in NASDAQ, Apple Inc., is in line with 
the change of NASDAQ in recent years, as shown in dark colors. !e reason is the lead-
ing role of Apple Inc. in the technology market in the United States. As for AIG, the 
only individual stock that has experienced a catastrophic change among the given indi-
ces is plotted in the first graph of the second row in Fig. 8. In the early and late years, 
AIG exhibits a relatively stable response to the overall external stress. !e sharp drop 
in the middle years (during the subprime mortgage crisis) reflects the sharp increase in 
the internal stress of the individual stock in response to a small change in external stress. 
!erefore, AIG equity exhibited two critical points in the catastrophe plot: (i) the lowest 
performance or highest stress level that the stock could sustain; and (ii) the highest per-
formance point that could bring the equity back to a normal state. Note that the recov-
ery point is higher than the breakdown point. In terms of highly robust stocks, such as 

Fig. 8 Evaluation of Catastrophe Plots of 6 indices (S&P 500, NASDAQ, Apple Inc., AIG, McDonald’s and gold 
price) over the period 1995-2022. The plots are color-coded, starting with the lightest shade (early years) 
and ending with the darkest shade (recent years). The y-axis represents the individual asset performance 
measured by Sample Entropy, where higher values indicate better performance (lower stress). The x-axis 
shows the external market stress (arousal) measured by the MMSE reciprocal, where higher values indicate 
increased market-wide stress. The slope of each curve reflects the asset’s sensitivity to market-wide stress 
- steeper negative slopes indicate greater vulnerability, whereas flatter trajectories demonstrate resilience. 
Note the dramatic breakdown point in AIG’s plot, which represents a catastrophic performance collapse 
during the 2008 financial crisis
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McDonald’s and the gold price, both exhibit a relatively flat relationship between arousal 
and performance. !e flat curves show the highly stable performance of the equity or 
index under large changes in external stress. McDonald’s stock indicates a decrease in 
stability in recent years compared with the early years, as evidenced by the more inclined 
tendency, whereas the price of gold maintains a high performance without apparent 
influence from the stress caused by environmental change.

Arousal–performance plot of crisis index
Next, we extracted the three specific 2-year periods of crisis from the previous catas-
trophe plot to discuss the response of each index or individual stock to different cri-
ses. !ese are the Internet bubble burst between 2002 and 2002 in green, the subprime 
mortgage crisis between 2008 and 2010 in brown, and the COVID-19 pandemic between 
2020 and 2022 in red. We used the gradient color to indicate the direction of each seg-
ment, where the lightest color refers to the start of the selected time. !e selected catas-
trophe plots are illustrated in Fig. 9.

According to the catastrophe theory, with a fixed increase in the external stress 
(arousal), a good response should be shown as a small decrease or no decrease in sample 
entropy (performance). !erefore, the slope of the lines could quantitatively reflect the 
overall performance of the index in response to different crises. !ree indices and three 
individual stocks are examined in Fig. 9, with the same axis scale. !e index in the first 

Fig. 9 Catastrophe Plots of 6 indices (S&P 500, NASDAQ, Russell 2000, AIG, Apple Inc., and gold price) during 
three crises (Internet Bubble Burst in green, Sub-Prime mortgage crisis in red, and COVID pandemic in dark 
gray). Each segment is color-coded, starting from the lightest shade and ending in the darkest shade for 2 
years. The y-axis shows Sample Entropy (performance), where higher values indicate better performance, 
and the x-axis represents the external market stress (arousal). These plots reveal distinct crisis response 
signatures: S&P 500 shows varying degrees of resilience across crises, with the steepest decline during the 
subprime crisis; the NASDAQ demonstrates extreme vulnerability during the Internet Bubble; AIG exhibits 
a catastrophic vertical trajectory during the subprime crisis; Apple shows positive, countercyclical behavior 
during the Sub-Prime crisis with a positive slope; and the gold price maintains relatively flat trajectories across 
all crises, confirming its safe-haven status. The varying slopes across assets and crises illustrate how different 
market segments exhibit unique sensitivity patterns to different types of financial stress
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panel indicated that S&P 500 showed stable responses to all three crises with different 
degrees of robustness. Among the selected segments, the subprime mortgage crisis had 
the largest impact on the S&P 500 index (in red) with a sharp decrease in performance. 
!is difference indicates that the subprime crisis was more impactful on broader market 
indices than the Internet bubble.

NASDAQ exhibits distinctly different patterns across the three crises, with the Inter-
net bubble burst demonstrating a significantly steep negative slope. !is case confirms 
that technology-dominated indices suffered a greater stress impact during the tech bub-
ble burst than during other crises. Russell 2000 displays more horizontal trajectories 
during crisis recovery phases, particularly after the Internet bubble burst, where its slope 
flattens as the crisis evolves. !us, smaller companies employed more rapid adaptation 
strategies during that crisis compared with during the COVID-19 pandemic, where the 
slope remains consistently steep throughout.

In terms of the equities in the second row in Fig. 9, in line with the plot in Fig. 8, the 
catastrophe plot of the insurance company, AIG, exhibits a dramatic breaking point 
during the subprime mortgage crisis, with an almost vertical performance collapse as 
external stress increased marginally. !is phenomenon represents a catastrophic phase 
transition in which performance drops—a reduction triggered by just a small increase 
in the external stress. During the COVID-19 pandemic, AIG reverted back to a stable 
state, showing a modest negative slope compared with other indices. As for Apple Inc. 
stock, the nondecreasing tendency during the subprime mortgage crisis (in red) demon-
strated the limited influence of specific stimuli, with a slightly positive slope indicating 
performance resilience or even improvement despite increasing market stress. !e most 
significant crisis for Apple Inc. was the Internet bubble burst (in green), as expected, 
with a steep downward trajectory representing greater performance sensitivity than that 
during the COVID-19 pandemic. !e gold price is given in the last panel. As the most 
stable index, the gold price has been at a relatively high level throughout the three crises, 
with remarkably flat trajectories. !is case demonstrates its safe-haven properties with 
less sensitivity to market stress than typical equity indices.

Arousal–performance plot of crisis
Finally, we selected the arousal–performance plots of five indices or individual stocks 
in each of the crises to compare the performance of indices or individual stocks in each 
of the crises. Figure 10 provides a crisis-centric view that enables a direct comparison 
of how different assets respond to the same type of crisis. !e left panel shows the per-
formance during the Internet bubble burst between 2000 and 2002. !e two most stable 
indices are the S&P 500 and gold prices (in blue and red, respectively) with flattening 
tendencies and shallow slopes. !ese contrast sharply with technology-focused assets, 
where NASDAQ and Apple Inc. (in brown and gray) exhibit much steeper trajectories. 
!is performance gap is significant—Apple’s entropy values drop sharply over the same 
stress range where S&P 500 decreases moderately.

!e subprime mortgage crisis (middle panel) presents a markedly different pattern 
across assets. !e AIG (in green) exhibits the most dramatic stress response, with a 
near-vertical trajectory representing a catastrophic performance collapse as the stress 
approaches 1.0. !is visualization visualizes the company’s entropy reduction occurring 
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over a minimal stress increase of a small unit—a quintessential example of catastro-
phe behavior where small parameter changes trigger system-wide reorganization. !e 
remaining stocks showed similar moderate slopes, except for Apple Inc., which exhib-
ited a counter-intuitive positive slope, indicating that performance increases with exter-
nal stress. !is unique positive correlation indicates that the company’s fundamental 
business model operated independently from, or even benefited from, the factors driving 
the housing and financial crisis.

!e COVID-19 pandemic (right panel) presents the most uniform stress response pat-
tern across the entire 31-year study period. Except for gold, which maintains its charac-
teristically flat profile, all indices or stocks display remarkably similar trajectories with 
negative slopes clustering within a narrow range. !is unprecedented uniformity is fur-
ther evidenced by the parallel nature of the trajectories and the similar magnitudes of ER 
across all equities. !e stress range is also distinctive, spanning from 1 to 1.8, the widest 
range observed among all three crises. !ese patterns confirm that the pandemic rep-
resented a truly systemic shock affecting diverse sectors through similar mechanisms. 
On the contrary, previous crises displayed more heterogeneous impacts across different 
market segments. !e highly aligned tendencies of all indices emphasize the uniquely 
pervasive influence of the pandemic across all industries in the US financial market.

Connecting omplexity measures to catastrophe theory framework
As presented in Section  Results and analysis, the entropy-based complexity measures 
provide the quantitative foundation for our catastrophe theory framework. !is connec-
tion operates through direct mappings between our analytical approaches: Mod-MSE 
values quantify individual asset performance (y-axis in catastrophe plots), whereas the 
reciprocal of Mod-MMSE represents system-wide stress (x-axis). !ese mappings cre-
ate a coherent methodological bridge that transforms the complexity analysis into visual 
representations of the stress–performance relationships.

!e alignment between our entropy findings and catastrophe plots can be shown 
through specific examples. !e AIG’s breaking point in Fig.  9 corresponds precisely to 
its period of maximum entropy reduction identified in our univariate analysis. Similarly, 

Fig. 10 Catastrophe Plots of three 2-year crises periods (Internet Bubble Burst 2000-2002, Sub-Prime 
mortgage crisis 2008-2010, and COVID pandemic 2020-2022) for selected 5 indices (S&P 500, NASDAQ, 
Apple Inc., AIG and gold price). Each segment is color-coded, starting from the lightest shade (beginning 
of crisis period) and ending in the darkest shade (end of crisis period). Comparing these plots reveals how 
different assets respond to specific types of crises: technology assets (NASDAQ, Apple) show steeper declines 
in performance during the Internet Bubble, AIG exhibits a catastrophic vertical drop during the Sub-Prime 
crisis, and the COVID-19 pandemic produced more uniform stress responses across all assets except gold. 
The different x-axis ranges across the panels highlight the varying levels of system-wide stress experienced 
during each crisis
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NASDAQ’s steeper trajectory during the Internet bubble compared with other crises 
directly reflects its larger entropy reduction during that period, as shown in Fig.  3.

Our catastrophe theory framework is in line with and extends recent findings in finan-
cial complexity research. !e differential response patterns identified across market 
sectors support findings on sector-specific complexity dynamics during crises, where 
significant heterogeneity in entropy measures was observed across different economic 
sectors (Caraiani 2014). !e breaking points observed in our catastrophe plots empiri-
cally support the Dragon–King theory of financial crashes. !is theory proposes that 
certain extreme events follow different generating mechanisms than normal market 
fluctuations (Sornette 2009).

Furthermore, the disproportionate complexity loss in specific assets during crises 
found in this study correspond with the power law analyses of market phase transitions 
in Yalamova and McKelvey (2011). !eir identification of critical transition points in 
financial time series using power law distributions aligns with our catastrophe theory 
approach, although our entropy-based methodology provides a more direct quantifica-
tion of changes in structural complexity.

!e RQA results in Section  Results and analysis provide complementary evidence 
supporting the proposed catastrophe framework. Assets exhibiting high determinism 
(DET) values during crises, such as the extended recovery periods of the Russell 2000 
in Fig.  6, manifest as distinctive trajectory patterns in the catastrophe plots. !is notion 
aligns with the findings that recurrence quantification metrics can effectively identify 
regime shifts in financial markets (Addo et al. 2013).

!e practical implications of our findings extend beyond theoretical validation. Bat-
tiston et  al. (2016) demonstrated that early warning signals derived from complexity 
measures can enhance regulatory stress testing frameworks. Our catastrophe theory 
approach has similar potential for identifying system vulnerabilities before they manifest 
as full-blown crises, particularly by identifying assets that display steep performance–
stress slopes in their catastrophe plots.

By establishing these connections, we create a comprehensive analytical chain from 
entropy calculation to determinism quantification to catastrophe visualization. !is 
integrated approach facilitates a more nuanced interpretation of financial stress dynam-
ics than would have been possible through any single methodology in isolation. !is 
result supports the assertion that MFMs are essential for capturing the complex dynam-
ics of financial markets (Mandelbrot 1999).

Conclusion
We estimated financial stress from a nonlinear dynamics viewpoint and examined the 
significance of structural complexity features in financial analysis. !is was achieved for 
four stock market indices and four individual equities from 1991 to 2021. Financial stress 
was estimated based on Mod-MSE in univariate and multivariate cases. In addition, the 
univariate RQA and iA-ALIS methods give the DET and stress change, in line with the 
entropy-based analysis. All three nonlinear approaches have demonstrated their ability 
to quantify financial stress, where multivariate entropy is the most information-rich and 
physically meaningful.
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Furthermore, a novel framework based on the catastrophe theory has been proposed, 
where arousal–performance plots have been employed to visualize the response of each 
financial index or stock. We have adopted Mod-MMSE of four major indices as a metric 
of external arousal and Mod-MSE of each index or individual stock as a performance 
metric. !e analysis demonstrates that the same crisis triggers different performance 
changes in various industries and that the same index or equity exhibits various robust-
ness to different types of crises (the Internet bubble burst, subprime mortgage crisis, and 
COVID-19 pandemic crisis). Finally, the performance of index or individual stock has 
been qualitatively and quantitatively explored through catastrophe plots.

Although the current analysis concludes in 2021, the timeline gap arises from the 
extended revision process. We refer to recent studies that explored financial market 
dynamics from 2022 to 2024 to contextualize our findings. !is period has been char-
acterized by several significant developments, including post-COVID-19 inflationary 
pressures, central bank monetary tightening, geopolitical instability, and notable finan-
cial sector stress events, such as the collapse of the Silicon Valley Bank in March 2023. 
!ese events continue to test market resilience and demonstrate the relevance of finan-
cial stress measurement frameworks. Recent studies have examined these phenomena 
through analyses of stock market volatility following the COVID-19 pandemic (Khan 
et  al. 2024), gold’s performance as a safe-haven asset in turbulent markets (Dammak 
et al. 2024), and advancements in financial stress measurement (Chavleishvili and Kre-
mer 2023). !e entropy-based measures developed in this study could be particularly 
valuable for analyzing how these recent shocks propagate through different market seg-
ments, particularly as digitalization and fintech innovations continue to transform finan-
cial market structures and transmission mechanisms. In addition, recent developments 
in fintech highlight the potential for artificial intelligence algorithms and cloud comput-
ing technologies to optimize financial services and enhance stress quantification frame-
works (Lăzăroiu et al. 2023). Customer-centric approaches in fintech further emphasize 
the importance of innovative service delivery and customer loyalty in financial stabil-
ity (Barbu et  al. 2021), whereas Internet of !ings–based big data management dem-
onstrates the transformative potential of automated, data-driven processes for financial 
stress measurement, and operational efficiency (Andronie et al. 2023). !ese advance-
ments confirm the ongoing relevance of the methods and conclusions presented in this 
study. Moreover, such advancements point toward future opportunities for extending 
this framework with updated datasets to assess stress under post-pandemic conditions 
and in digitally transformed financial environments.

However, this study has limitations that must be acknowledged. While our framework 
provides a novel methodology, its scope is limited to the dataset used, which ends in 
2021; moreover, the study focuses on specific stock indices and equities. Expanding the 
dataset and applying the framework to a broader range of financial markets and asset 
classes could validate and enhance its generalizability. Furthermore, incorporating real-
time data and leveraging advances in artificial intelligence and machine learning could 
improve predictive accuracy and scalability. Furthermore, future studies should address 
the challenges presented by post-pandemic market dynamics, including geopolitical 
uncertainties and rapid technological changes in the financial landscape.
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Appendix A Univariate multiscale sample entrnameopy on currency and metal 
price
We applied univariate analysis via modified multiscale sample entropy on currency 
indices and metal price time series. Several factors can influence the value of a cur-
rency, including the government’s economic policies and its national central bank 
(García et al. 2016). Furthermore, national central banks are closely associated with 
their metallic reserves (Hawtrey 2012).

!e four currency indices are EUR-GBP, GBP-JPY, GBP-USD, and USD-JPY. !e 
reciprocal of Mod-MSE is plotted in Fig. 11 in line with the complexity-loss theory. 
!e Mod-MSE stress level showed that the USD-JPY (in red) was at a high stressna 
level before the end of the SPM crisis. !e GBP-JPY (in green) and EUR-GBP (in 
black) indices exhibited higher stress levels in subprime mortgages than those in the 
Internet bubble burst. Generally, the COVID-19 pandemic impacted the forex market 
less than the previous two global crises.

Figure 12 presents the stress levels of four mental prices: gold (Au), silver (Ag), cop-
per (Cu), and platinum (Pt). In general, the Internet bubble burst influenced metal 
prices less than other stocks given in Section Results and analysis. !e gold price (in 
black) and platinum price (in red) are at a low-stress level over time, as expected. 
Copper price has shown the most sensitivity during the subprime mortgage crisis, 
whereas silver received more impact from the COVID-19 pandemic.

Fig. 11 Financial stress of four currencies (EUR-GBP, GBP-JPY, GBP-USD and USD-JPY) estimated by Mod-MSE 
over 1995-2022

Fig. 12 Financial stress of four metal prices (Gold-Au, Silver-Ag, Copper-Cu and Platinum-Pt) estimated by 
Mod-MSE over 1995-2022
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