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Abstract

This study investigates the optimization of electric discharge machining (EDM) parameters
for gunmetal using copper electrodes in two different dielectric environments, which are
conventional EDM oil and EDM oil infused with Al,O3 nanoparticles. A Taguchi L27
orthogonal array design was used to evaluate the effects of current, voltage, and pulse-on
time on Material Removal Rate (MRR), Electrode Wear Rate (EWR), and surface roughness
(Ra, Rq, and Rz). Analysis of Variance (ANOVA) was used to statistically evaluate the influ-
ence of each parameter on machining performance. In addition, machine learning models
including Linear Regression, Ridge Regression, Support Vector Regression, Random Forest,
Gradient Boosting, and Neural Networks were implemented to predict performance out-
comes. The originality of this research is not only rooted in the introduction of new models;
rather, it is also found in the comparative analysis of various machine learning method-
ologies applied to the performance of electrical discharge machining (EDM) utilizing
Al,O3-enhanced dielectrics. This investigation focuses specifically on gunmetal, a material
that has not been extensively studied within this framework. The nanoparticle-enhanced
dielectric demonstrated improved machining performance, achieving approximately 15%
higher MRR, 20% lower EWR, and 10% improved surface finish compared to conventional
EDM oil. Neural Networks consistently outperformed other models in predictive accuracy.
Results indicate that the use of nanoparticle-infused dielectrics in EDM, coupled with
data-driven optimization techniques, enhances productivity, tool life, and surface quality.

Keywords: EDM; gunmetal; Al,O3 nanoparticles; machine learning; Taguchi design;
surface roughness; tool wear rate; ANOVA

1. Introduction

Electric discharge machining (EDM) is a widely adopted non-traditional machin-
ing process used to fabricate intricate and high-precision components, particularly from
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difficult-to-machine materials [1]. Unlike conventional methods, EDM operates through a
series of electrical discharges between a tool and workpiece, both submerged in a dielectric
fluid [2—4]. The dielectric fluid acts as an insulator until breakdown voltage is reached, fa-
cilitating controlled spark erosion [5-7]. Over the years, a considerable amount of research
has been conducted to optimize various aspects of the EDM process, including electrode
materials, dielectric fluids, and machining parameters. Among the critical process vari-
ables that influence EDM performance, there are the dielectric fluid properties, machining
parameters, and electrode-workpiece material pairing [8-10].

Traditionally, hydrocarbon-based dielectric oils have been the preferred choice, given
their high breakdown voltage and effective flushing capabilities [11]. However, these con-
ventional dielectrics also present drawbacks, including high costs, environmental concerns,
and the need for frequent fluid replacement [4]. This has motivated researchers to explore
alternative dielectric solutions that could offer improved performance, lower environmen-
tal impact, and reduced operational costs [12-15]. Recent trends in dielectric modification
include powder-mixed EDM, nanoparticle-infused dielectrics, gaseous dielectrics, and
cryogenic or hybrid treatments [16-18]. While many of these studies are devoted to ma-
chining materials with limited electrical conductivity, their theoretical frameworks are also
applicable to conductive alloys [19].

One of the most promising developments in this area is the use of nanoparticle-infused
dielectrics [20]. These advanced dielectric fluids, which incorporate nanoparticles like
Al,Og3, have been shown to enhance the EDM process by improving electrical conductivity
and thermal properties [21,22]. This, in turn, can lead to increased MRR, reduced EWR,
and improved surface finish [23,24]. Despite these advancements, there is still a need for
more comprehensive studies that compare the performance of these alternative dielectrics
under varying machining conditions [25]. In particular, the interaction between specific
tool-workpiece combinations and dielectric fluids remains underexplored.

Another critical factor influencing EDM performance is the flushing of the machining
gap, which ensures debris removal and stable discharge conditions [26]. Various methods
such as jet flushing, side flushing, suction flushing, and rotary flushing are used in EDM
practice [27-29]. In the present study, direct nozzle flushing was employed in the tool-
workpiece gap to maintain a stable machining zone. The dielectric fluid temperature was
maintained at room temperature.

In the literature, most of the research related to EDM parameter optimization de-
pends on trial and error, a time-consuming and costly approach that limits machining
efficiency [30]. In contrast, machine learning offers a data-driven methodology capable of
identifying complex patterns and relationships between machining parameters and per-
formance outcomes [31-34]. Moreover, the integration of machine learning into the EDM
optimization process opens new possibilities for the manufacturing industry, providing a
framework for future innovations [35,36].

Gunmetal, an alloy composed primarily of copper, tin, and zinc, is widely used in
industries such as marine engineering and hydraulic casting due to its excellent corro-
sion resistance and machinability [37,38]. To address these gaps, this study systematically
compares EDM performance under conventional and nanoparticle-enhanced dielectric
conditions using gunmetal as the workpiece material and copper as the tool. Key response
metrics including MRR, EWR, and surface roughness (Ra, Rq, Rz) are experimentally mea-
sured, and predictive modeling is carried out using various machine learning algorithms
to enhance process optimization and forecasting. The novelty of this study lies in integrat-
ing Al,O3 nanoparticle-enhanced dielectrics with a comparative application of multiple
machine learning models, specifically for EDM of gunmetal. This dual approach provides
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both new experimental insights and predictive capability, offering practical guidance for
real-world EDM applications.

2. Materials and Methods
2.1. Material Selection

The choice of materials for the tool electrode and workpiece is critical in influencing
the efficiency and quality of the EDM process [39]. Copper was selected as the electrode
material due to its exceptional electrical conductivity (100% IACS) and high thermal
conductivity (390-400 W/m-K), which enable efficient energy transfer and stable spark
generation [40-43]. Its good machinability and moderate hardness also allow for fabrication
into precise geometries while maintaining structural integrity during machining [44].

Gunmetal, an alloy containing approximately 88% copper, 10% tin, and 2% zinc, was
used as the workpiece owing to its corrosion resistance, machinability, and moderate
mechanical strength. With tensile strength ranging from 200 to 250 MPa and a thermal
conductivity of 40-50 W/m-K, gunmetal withstands thermal stress and maintains dimen-
sional stability under EDM conditions. Its industrial relevance in marine and hydraulic
applications further justifies its selection for this study.

The copper-gunmetal pairing offers a compatible combination for EDM, with man-
ageable electrode wear and efficient spark erosion as shown in Figure 1. Their relatively
close thermal expansion coefficients and thermal properties help minimize distortion and
enhance surface finish. This synergy makes the pair ideal for investigating the effects of
dielectric modification. A summary of material properties and machining parameters is

provided in Table 1.

Tool/Electrode
(Copper)

82 mm

Workpiece
(Gun-metal)

Machined
Impression

(b) (c)

Figure 1. (a) Copper tool; (b) gunmetal as workpiece; (c) schematic diagram with dimensions of
electrode and workpiece.
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Table 1. Properties of electrode, workpiece, and machining parameters.

Material/Parameters Properties and Its Values (Units)

Copper (19 mm dia. and 82 mm length)
Density—38.96 g/cm?
Melting Point—1084 °C

Electrode Electrical Conductivity—100% IACS
Tensile Strength—200-250 MPa
Thermal Conductivity—390—-400 W/m-K
Hardness (Vickers)—50-100 HV

Gunmetal (80 mm dia. and 10 mm thickness)
Density—8.7 g/ cm?
Melting Point—1000-1050 °C

Workpiece Electrical Conductivity—15-18% IACS
Tensile Strength—200-250 MPa
Thermal Conductivity—40-50 W/m-K
Hardness (Brinell)—60-100 HB

Al,O3 (Spherical with dia. 20-50 nm)
Density—3.95-4.1 g/cm?3
Melting Point—2072 °C

N ticl
anoparticie Electrical Resistivity—10'4-10'¢ -cm

Thermal Conductivity—30 W/m-K
Hardness (Mohs)—9

Dielectric Pure EDM oil and Al,O3 mixed EDM oil

Current (I) 5,10,and 15 A

Voltage (V) 30,40, and 50 V

Pulse on time (Top) 30,50, and 75 us

2.2. Preparation of AlO3 Nanoparticle-Mixed EDM Oil

To enhance the dielectric properties of conventional EDM oil, aluminum oxide (Al,O3)
nanoparticles with an average particle size of 50 nm were incorporated at a concentration
of 0.5 wt.%. The inclusion of these nanoparticles aimed to improve thermal conductiv-
ity, promote micro-convection through Brownian motion, and establish efficient thermal
pathways during machining [45].

The preparation followed a two-step dispersion process (Figure 2). First, 2 g of Al,O3
nanoparticles was added to a measured volume of EDM oil and subjected to magnetic
stirring using a Remi laboratory stirrer (Model: REMI 10 MLH PLUS, Mumbai, India),
initiating dispersion by generating a vortex. This step was followed by ultrasonication at
~40 kHz in a Sonics Vibra-Cell bath for 12-18 h, producing cavitation and high shear forces
that de-agglomerated particles and ensured homogeneous mixing. Finally, the nanoparticle-
mixed dielectric was filtered to eliminate residual agglomerates and impurities. This well-
established procedure facilitates consistent machining performance through improved heat
dissipation, enhanced MRR, reduced EWR, and superior surface quality.

Figure 2. Preparation of Al,O3 nanoparticle-mixed EDM oil.
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(a)

2.3. FTIR Spectral Analysis of EDM Oil with and Without Al;O3

Fourier Transform Infrared spectroscopy was performed on (Model: FTIR spectropho-
tometer Alpha-II, Bruker, Chennai, India) to examine the chemical interactions induced
by the addition of Al,O3 nanoparticles to EDM oil. Figure 3a shows the FTIR spectrum
for pure EDM oil, which displays characteristic hydrocarbon peaks such as C-H stretching
(29002950 cm ') and C-O stretching (1000-1300 cm ™~ 1).

o [ AR

(b) | |

Figure 3. (a) FTIR spectrum of pure EDM oil; (b) Al;O3 nanoparticle-mixed EDM oil.

Upon adding Al,O3 nanoparticles, the FTIR spectrum (Figure 3b) exhibited new peaks
in the 500-800 cm~! range, corresponding to metal-oxygen (M-O) stretching, confirming
the presence of Al,Os. The observed changes in peak intensity and position suggest
meaningful interactions between the nanoparticles and the base fluid. Table 2 summarizes
the key spectral differences. These spectral modifications support the hypothesis that
Al>,Oj3 incorporation enhances the dielectric properties, potentially leading to more stable
discharges and improved machining output.

Table 2. FTIR spectrum analysis with and without the addition of Al,O3 in EDM oil.

Wavenumber (cm~1) Functional Group EDM Oil (Sample 1) EDM Oil + Al,O3 (Sample 2)
2900-2950 C-H Stretching (Alkanes) Present Present, with potential intensity changes
1750-1700 C=0 Stretching (Carbonyls) Possibly present Possibly present with slight shifts
1450-1375 C-H Bending (Alkanes) Present Present, possibly modified
1000-1300 C-O Stretching (Alcohols, Ethers) Present Present with potential shifts

500-800 M-O (Metal-Oxygen) Stretching Not Present Present (due to Al,O3)

2.4. Equipment and Experimental Setup

All EDM experiments were conducted on a CNC EDM machine (Model: 5030 ZNC,
Make: Electronica, Munich, Germany) equipped with high-resolution control systems. The
setup included a dielectric supply unit, electrode holder, and workpiece fixture. Gunmetal
samples were fabricated from waste flange material and were machined flat to ensure
uniform contact. Figure 4 illustrates the experimental arrangement, including detailed
views of the equipment, the dielectric flow system, and the sparking zone.

A dedicated reservoir supplied either pure EDM oil or Al,O3z-enhanced EDM oil as
needed. To maintain dielectric integrity, the system included a filtration unit. Schematics
of the EDM mechanism and real-time sparking visuals are also provided in Figure 4.
This setup ensured consistency across all trials and minimized external variability. The
dielectric was flushed using a direct flushing system, in which pressure was directed
into the tool-workpiece gap. The flushing electrode was lifted every ~2 s for ~0.5 s to
facilitate debris removal. The duty cycle (Ton/Toff) was maintained at ~0.5-0.6, while the
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dielectric temperature was kept constant at 27 & 2 °C. The burn-through state duration of
the electrode was consistently <1 s across all experiments.

- EDM head
Control
valve Control panel
&
Pressure )
gauge
o) 'ﬁ el I : =
 seoxaee Reservoir
- Z-axis
High :
pressure X axis
pump Y axis
DC power
supply
(@)
Servo motor EDM Control System

Pulse generator

(d)

R=9.5mm

L=82mm

(c)
Anodic heat affected zone Anodic recast layer

Anodic crater // /— Positive ions
N /] /- Dielectricfuid

Qp)ode, - Plasma channel

Spark

athoae

(.
Cathodic crater
Cathodic recast layer
Cathodic heat affected zone

Figure 4. (a) Complete experimental setup (b,c); close view of the EDM experimental setup; (d) graph-

ical illustration of the EDM process; (e) plasma generation during sparking; (f) electrode material

(copper) and workpiece (gunmetal) sample preparation from waste flange coupling.
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2.5. Experimental Design

The experimental plan was developed using a Taguchi L27 orthogonal array to analyze
the effects of machining parameters and dielectric type. The variables studied included
current (5 A, 10 A, 15 A), voltage (30 V, 40 V, 50 V), and pulse-on time (30 ps, 50 ps, 75 ps).
Each experiment was repeated three times to ensure statistical reliability, yielding a total of
54 trials (27 per dielectric condition).

Design of Experiments (DOE) was created using Minitab Statistical Software (Version
21.1.0). For each test, the machine was flushed and filled with the designated dielectric fluid.
The electrode and gunmetal workpiece were mounted, and machining was conducted
until the specified depth was reached. After completion, the workpieces were cleaned
and prepared for surface and wear analysis. A schematic overview of the experimental
methodology is shown in Figure 5.

Experiments & Response

Industrial Measurements
Problem AEEREEET ~
S | I :
Literature Specimen
Review Preparation

Selection df
Respanse!

-

Identification of 1 Preliminary
Research Gap (j | Experimentation

)

Selection of I | Calculation &
Input Features Materiall | Measurements

Selectionl

)

Design of
Experiments

:

Software Based Analysis

Data Optimization & Data Data Train Model Cross- [yper-parameter
Prediction Processing /7 Splitting ML Models valuation // Validation Tuning

Analysis of Variance jonificance & Mathematica G b i e ; X
(ANOVY) >" Modelling >>}pumlzamn of Resul§>Pr&d1cme Analy 519>0nf1rmamr_\ ]'99

DN i i i s e i it e i e s e i e s e i v

i .\letall.urglcal FTIR Surface Roughness tical Microscopy
Analysis = .

Conclusion

-

e ——

Figure 5. Methodology of the research work.

3. Results and Discussion

Following the design of experiments, machining was carried out using the EDM ma-
chine, and data were collected for each set of parameters. All the readings were measured
five times, and averages of the values were recorded for each set of experiments. After each
experiment, the machine was cleaned and reconfigured with new parameters. A total of 54
experimental runs were conducted, i.e., 27 with pure EDM oil and 27 with Al,O3-mixed
EDM oil. Tables 3 and 4 display the measured MRR, EWR, and surface roughness values
(Ra, Rq, Rz) for both dielectric conditions.
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Table 3. Experimental design matrix for MRR, EWR, and surface roughness (Ra, Rq, Rz) for EDM oil.

E‘(}:' Clggnt Vo(lxt/a)ge ;{?Sr; (ml\gllr{nlin) EWR (mg/min) Ra (um) Rq (um) Rz (um)
1 5 30 30 22.28 £0.45 3.49 + 0.07 4.09 £ 0.08 5.02 £0.10 22.36 £ 0.45
2 5 30 50 40.72 £ 0.81 827 £0.17 4.52 +£0.09 577 £0.12 29.25 £ 0.58
3 5 30 75 25.54 £0.51 3.68 + 0.07 4.29 £0.09 5.26 £0.11 22.65 £ 0.45
4 5 40 30 20.28 £ 0.41 3.72 £ 0.07 3.51 +0.07 441+ 0.09 20.93 £ 0.42
5 5 40 50 24.09 £0.48 4.40 £ 0.09 3.91 £0.08 491 £0.10 23.95 +0.48
6 5 40 75 26.75 £ 0.54 2.86 + 0.06 4.27 £0.09 532 +£0.11 25.51 £0.51
7 5 50 30 27.01 £ 0.54 6.24 £ 0.12 3.98 £ 0.08 496 £0.10 23.66 £+ 0.47
8 5 50 50 23.26 +0.47 4.23 +£0.08 4.48 +0.09 5.63 £0.11 27.95 £ 0.56
9 5 50 75 24.67 £0.49 3.77 £ 0.08 523 +£0.10 6.26 + 0.13 27.59 £ 0.55
10 10 30 30 31.59 £ 0.63 16.40 £ 0.33 4.34 +£0.09 547 £0.11 26.76 + 0.54
11 10 30 50 34.64 £ 0.69 16.71 £ 0.33 5.08 £0.10 6.16 £ 0.12 26.55 £ 0.53
12 10 30 75 47.10 £ 0.94 12.90 + 0.26 5.10 £ 0.10 6.07 £ 0.12 26.27 £0.53
13 10 40 30 26.34 £ 0.53 590 £ 0.12 4.25 +0.09 525£0.11 23.30 £ 0.47
14 10 40 50 26.77 £ 0.54 6.16 £ 0.12 5.82 £0.12 6.88 £ 0.14 28.78 = 0.58
15 10 40 75 23.53 £ 0.47 3.82 + 0.08 6.70 £ 0.13 8.01 £ 0.16 33.86 £ 0.68
16 10 50 30 12.58 + 0.25 3.76 £ 0.08 4.88 +0.10 592 £0.12 26.69 £+ 0.53
17 10 50 50 25.52 £0.51 9.13 £0.18 551 £0.11 7.01 £0.14 33.83 £ 0.68
18 10 50 75 21.99 £ 0.44 1.91 £ 0.04 5.07 £ 0.10 6.38 + 0.13 30.34 £ 0.61
19 15 30 30 20.06 £+ 0.40 725+ 0.15 6.60 £ 0.13 8.26 £0.17 36.78 £ 0.74
20 15 30 50 20.63 £ 0.41 6.30 £0.13 5.06 £0.10 6.50 £ 0.13 30.61 £ 0.61
21 15 30 75 20.16 £ 0.40 6.78 + 0.14 5.59 £ 0.11 6.85 + 0.14 31.00 £ 0.62
22 15 40 30 16.96 + 0.34 6.09 £0.12 4.55 +£0.09 5.61 £0.11 25.44 +£0.51
23 15 40 50 16.43 +0.33 4.55 +0.09 521 £0.10 6.84 £ 0.14 34.17 £ 0.68
24 15 40 75 23.98 £0.48 5.01 £+ 0.10 5.38 £ 0.11 6.74 + 0.13 32.59 £ 0.65
25 15 50 30 18.67 £+ 0.37 6.57 £0.13 4.22 +£0.08 552 £0.11 28.30 £ 0.57
26 15 50 50 2411 +0.48 573 £0.11 4.68 = 0.09 598 £0.12 28.77 £ 0.58
27 15 50 75 25.17 £ 0.50 528 £ 0.11 6.20 £ 0.12 7.77 £ 0.16 33.33 £ 0.67

Table 4. Experimental results for MRR, EWR, and surface roughness (Ra, Rq, Rz) for EDM oil mixed
with Al,O3 nanoparticles.

Exp. Current Voltage Ton MRR

No (A) W) (us) (mg/min) EWR (mg/min) Ra (um) Rq (um) Rz (um)
1 5 30 30 25.78 +0.52 3.52 £0.07 3.75 + 0.08 4.60 + 0.09 20.19 £ 0.40
2 5 30 50 36.79 £ 0.74 7.47 +0.15 414 £0.08 5.36 £ 0.11 27.71 £0.55
3 5 30 75 28.62 + 0.57 3.32 £0.07 3.93 £+ 0.08 4.88 +0.10 21.07 £ 0.42
4 5 40 30 22.52 £0.45 3.54 + 0.07 3.26 + 0.07 4.10 £+ 0.08 19.36 + 0.39
5 5 40 50 26.76 + 0.54 4.18 £0.08 3.64 + 0.07 457 £+ 0.09 22.07 £0.44
6 5 40 75 32.43 4+ 0.65 2.31 £0.05 3.97 £ 0.08 4.65 £+ 0.09 23.72 £ 0.47
7 5 50 30 28.71 £ 0.57 5.85+0.12 3.70 + 0.07 4.59 + 0.09 22.61 £0.45
8 5 50 50 25.60 £+ 0.51 3.98 £ 0.08 417 £0.08 5.12 £+ 0.10 23.50 + 0.47
9 5 50 75 27.22 +0.54 3.58 £ 0.07 4.86 +0.10 5.52 +£0.11 25.66 + 0.51
10 10 30 30 34.75 +0.70 15.38 + 0.31 4.04 £0.08 5.10 £ 0.10 24.89 + 0.50
11 10 30 50 38.11 £0.76 15.86 + 0.32 4.72 £0.09 5.75+0.12 24.68 £ 0.49
12 10 30 75 51.81 4+ 1.04 12.26 + 0.25 4.74 +0.09 5.67 £0.11 21.53 +0.43
13 10 40 30 28.97 4+ 0.58 5.60 + 0.11 3.95 + 0.08 4.88 +0.10 22.67 £0.45
14 10 40 50 29.45 £ 0.59 5.85 + 0.12 541+ 0.11 6.40 + 0.13 26.77 £ 0.54
15 10 40 75 25.88 +0.52 3.93 £ 0.08 6.23 +£0.12 715+ 0.14 31.48 +0.63
16 10 50 30 20.84 +0.42 3.57 + 0.07 4.53 £0.09 551 +0.11 24.82 £+ 0.50
17 10 50 50 28.08 £ 0.56 8.67 + 0.17 5.12+0.10 6.51 + 0.13 31.16 £ 0.62
18 10 50 75 24.81 4+ 0.50 1.81 + 0.04 4.71 +0.09 5.94 +0.12 28.21 4+ 0.56
19 15 30 30 22.07 £ 0.44 6.89 + 0.14 6.14 +0.12 7.68 + 0.15 32.40 £ 0.65
20 15 30 50 22.99 £ 0.46 5.99 + 0.12 4.70 £0.09 5.04 £ 0.10 28.47 £ 0.57
21 15 30 75 22.19 +0.44 6.44 £+ 0.13 5.19 £0.10 6.37 £ 0.13 28.83 +0.58
22 15 40 30 19.66 + 0.39 5.79 + 0.12 4.23 £0.08 5.22 +£0.10 23.66 + 0.47
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Table 4. Cont.

E(g. Cu(;l;;znt Vo(l\t;ge '(l;(l)sf; (ml\gllr{lﬁn) EWR (mg/min) Ra (um) Rq (um) Rz (um)
23 15 40 50 18.07 £+ 0.36 4.32 +0.09 3.85 + 0.08 6.36 £ 0.13 31.78 £ 0.64
24 15 40 75 26.38 + 0.53 4.76 £ 0.10 5.00 £ 0.10 6.27 £0.13 30.31 + 0.61
25 15 50 30 20.54 4+ 0.41 6.24 +0.12 3.92 +£0.08 5.13 £0.10 26.32 + 0.53
26 15 50 50 24.52 + 0.49 544 +0.11 4.35 + 0.09 5.56 + 0.11 26.76 + 0.54
27 15 50 75 28.59 + 0.57 5.02 £ 0.10 5.77 £0.12 723 +0.14 30.99 + 0.62

3.1. Influence of Process Parameters on MRR and EWR

Graphical representations were used to visualize the distribution and trends of the
response variables. Figure 6 shows the influence of current (Ip), voltage (Vg), and pulse-on
time (Ton) on MRR. Higher currents (e.g., 15 A) generally resulted in increased MRR.
Among the factors, current and Ton had a more significant impact on MRR than voltage.
Longer pulse durations, particularly at 75 ps, led to greater material removal. The trend
line in the graph demonstrates this combined effect.

(a) Effects of process parameters on Material Removal Rate

Material remova

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
No. of experiments

Current (A) == Voltage (V) Ton (us) MRR (mg/min) Linear (MRR (mg/min))

(b) Surface plot with Ton=30 (c) Surface plot with Ton=50

MRR
MRR

0 S
Voltage Current
Voltage
(d) Surface plot with Ton=75 (e) Parallel coordinate plot of Current, Voltage, Ton vs MRR
154 !ﬂ’ 75
144 .\\\ p.
131 \ W o
124 Y N«
35 14 %
N\
10
e ¥ o4\ Ve
o 81 \ 36
= W
25~ 64 ey 38/ B
04 -~ — — 15 ) 2 ) P
5 \5 —- =L I 10 Current
4 40 —
0 15 0 5 . Vo;::lge
Voltage urrent MER

Figure 6. (a) Effect of combined set of process parameters on MRR; 3D surface plots representing the
effect of voltage, current, and Ton on MRR at (b) Ton = 30 ps, (c) Ton = 50 ps, and (d) Ton = 75 ps; and
(e) interaction plot.
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The highest MRR value (47.1 mg/min) was observed at 10 A, 30 V, and 75 ps, indicating
that high current and extended Ton are optimal for maximizing MRR. Results indicate that
the highest MRR is achieved at a combination of high current and long pulse duration
during the machining of gunmetal workpieces using a copper tool in EDM. Finally, the
results clearly reveal that current and pulse-on time are the primary factors that influence
MRR, while voltage also plays a crucial role, but its impact on MRR is comparatively smaller.

Figure 7 illustrates the effect of process parameters on EWR. Lower currents (e.g.,
5 A) yielded lower EWR values, although exceptions occurred at specific combinations.
EWR peaked at 10 A and 30 V and stabilized at higher voltages (50 V). Ton also influenced
EWR, with shorter pulses (30 ps) showing higher variability and longer pulses (75 ps)
contributing to stable wear rates. The findings suggest that minimizing EWR requires
higher voltages and moderate pulse durations, with careful selection of current.

(a) Effects of process parameters on Electrode Wear Rate
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Figure 7. (a) Effect of the combined set of process parameters on EWR; 3D surface plots representing
the effect of voltage, current, and Ton on EWR at (b) Ton = 30 s, (c¢) Ton = 50 ps, and (d) Ton = 75 ps;

and (e) interaction plot.
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3.2. Influence on Surface Roughness (Ra, Rq, Rz)

Figure 8 shows the effect of parameters on Ra. The lowest Ra values were recorded
at 5 A current, with minimal changes as voltage and Ton increased slightly. The highest
Ra values occurred at 15 A, especially with lower voltage and shorter Ton. Voltage had a
significant effect on Ra, particularly at increased Ton values. Shorter Ton (30 ps) resulted in
lower Ra, while longer Ton (75 ps) increased Ra. The optimal Ra was achieved through the
effective control of current and Ton.

(a) Effects of process parameters on Average Roughness(Ra)

No. of experiments

Current (A) = Voltage (V) Ton (us) Ra (pm) Linear (Ra (um))

(b) Surface plot with Ton=30 (c) Surface plot with Ton=50
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Figure 8. (a) Effect of the combined set of process parameters on average surface roughness, Ra; 3D
surface plots representing the effect of voltage, current, and Ton on average surface roughness at
(b) Ton = 30 ps, (c) Ton = 50 ps, and (d) Ton = 75 ps; and (e) interaction plot.

Figure 9 presents the impact on Rq (root mean square roughness). At5 A, Rq values
were low but rose with increases in voltage and Ton. The lowest Rq (4.41 pm) was observed
at5 A, 40V, and 30 us, while the highest (6.26 um) occurred at 5 A, 50 V, and 75 ps. As
current increased, Rq became more variable. The highest Rq (8.26 pm) was recorded at
15 A and 30 V with a short Ton. Ton had a significant influence on Rq, with lower values at
30 ps and higher values at 75 ps.
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(a)Effects of process parameters on Root Mean Square (Rq) surface roughness
parameter

~

o
Root mean square (Rq)

© = N w A O

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
No of experiments

Current (A) Voltage (V) Ton (ps) Rq(pum) Linear (Rq(pum))

10 10

30
Voltage 5 30 5
Current Voltage Current
(d) Surface plOt with Ton=75 (e) Parallel coordinate plot of Current, Voltage, Ton vs Rq
15K 50, 78
14 - \\\\ A \b /re
: j ] \\\‘\ 4: A\ Y
L\ \ 60 \ %
1 \ R s
10 fe 0 4 o’ -
s 1N/ \ A - \ »
8 4 .\\'if 45 F *
’ 4 ,“\ W 40 > 4
o1 “x B " 25
%
1 3 4
Current
Voltage
Ton
Voltage Current Ra

Figure 9. (a) Effect of the combined set of process parameters on root mean square parameter, Rq; 3D
surface plots representing the effect of voltage, current, and Ton on Rq at (b) Ton = 30 ps, (c) Ton =
50 ps, and (d) Ton = 75 us; and (e) interaction plot.

Figure 10 illustrates the effect on Rz (peak-to-valley height). The lowest Rz (20.93 um)
occurred at 5 A, 40 V, and 30 ps. Rz increased slightly with higher voltage and Ton, peaking
at 33.86 um for 10 A, 40 V, and 100 ps. The maximum Rz (36.78 um) was recorded at 15 A,
30V, and 30 ps. These results highlight the importance of selecting optimal parameters to
minimize Rz.

3.3. Implementation of Machine Learning Models

Figure 11 illustrates the comprehensive machine learning workflow adopted in this
study. It starts with data collection, capturing inputs such as current, voltage, and pulse-on
time, along with outputs like MRR, EWR, and surface roughness parameters (Ra, Rq, Rz).
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(a) Effect of process parameters on peak to valley height(Rz)
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Figure 10. (a) Effect of the combined set of process parameters on mean peak-to-valley height, Rz; 3D
surface plots representing the effect of voltage, current, and Ton on Rz at (b) Ton = 30 ps, (c) Ton =
50 ps, and (d) Ton = 75 ps; and the (e) interaction plot.

The collected data underwent preprocessing, which included splitting into training,
validation, and test sets. Various regression and ensemble models were trained and eval-
uated based on their performance. The final models were tested, with optional inclusion
of dimensionality reduction and ensemble techniques. The entire process was visually
summarized in the flowchart shown in Figure 11.

a.  Experimental Design and Data Collection

A structured design approach was implemented using the Taguchi L27 orthogonal
array to explore the effects of current, voltage, and pulse-on time on machining responses.
Data were collected under the following two dielectric conditions: pure EDM oil and
Al,O3-mixed EDM oil. The results were compiled in a spreadsheet for analysis.

b.  Data Preprocessing
To prepare the data for machine learning models, several preprocessing steps were
carried out:

e Data Cleaning: Missing values and outliers were addressed.
e Normalization: Numerical features such as current, voltage, and Ton were scaled for
consistency.
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e  Feature Engineering: The categorical variable “Dielectric Type” was one-hot encoded
to differentiate the two dielectric conditions.

c.  Model Selection and Training

The dataset was divided into training, validation, and test subsets. The following six
machine learning models were selected to capture both linear and nonlinear patterns:

Linear Regression;

Ridge Regression;

Support Vector Regression (SVR);
Random Forest;

Gradient Boosting;

Neural Networks.

T ——r

START
Inputs: Current, Voltage, Pulse
Time
[ Outputs: MRR, EWR, Ra, Rq, Rz ] h 4
. . - Data Collection ‘
[]'\\o .Dle.!ectrl{;s. EDM oil an.d ED)I} Data Cleaning: Missing Values,
oil with A1203 nanoparticles Outliers
[ DOE: Taguchi L27 Orthogonal \ 4
Array [ Normalization/Standardization }
Data Preprocessing
Feature Engineering: Interaction
[ Training Set ] L Terms, Polynomial Features
o Splitting the Data ‘
Validation Set Models: Linear Regression, Ridge
Regression, Support Vector
Test Set _ A § Regr?ssion (ST.R), R_andom ijest_.
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A S
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Hyperparameter Tuning: Grid M i
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S vy
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Figure 11. Schematic flowchart of the machine learning workflow for EDM research.
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Each model was tuned using techniques such as grid search and random search to
optimize hyperparameters. The models were evaluated using the following metrics:

e  Mean Squared Error (MSE): Measures the average squared difference between actual
and predicted values.

e  Absolute Mean Error (AME): Represents the average of absolute differences between
actual and predicted values.

e  Sum of Squared Errors (SSE): Sum of squared differences between actual and predicted
values.

e  Root Mean Squared Error (RMSE): Square root of MSE, gives an idea of the magnitude
of the errors.

e Coefficient of Determination (R?): Indicates how well the model explains the variability
of the target variable; a value closer to 1 means a better fit.

3.3.1. Model Performance Metrics for MRR and EWR

Table 5 summarizes the model performance for predicting MRR and EWR. Gradient
Boosting outperformed other models in predicting MRR, showing the lowest MSE (28.28)
and RMSE (5.31) with a relatively high R? value (0.54) as seen in Figure 12. Neural Networks,

while slightly less accurate in MRR, performed best for EWR, achieving the highest R?
(0.87) and lowest MSE (7.58).

Table 5. Model performance metrics for MRR and EWR.

Performance Metrics for MRR

Model MSE (MRR) AME (MRR) SSE (MRR) RMSE (MRR) R2 (MRR)
Linear 57.60 6.34 576.04 7.58 0.069
Regression
Ridge Regression 52.87 5.15 528.74 7.27 0.15
SVR 68.98 5.90 689.81 8.30 —0.12
Random Forest 42.90 4.82 429.05 6.55 0.30
Gradient 28.28 4.36 282.82 531 0.54
Boosting
Neural Network 68.96 7.18 689.69 8.30 0.65
Performance Metrics for EWR
Model MSE (EWR) AME (EWR) SSE (EWR) RMSE (EWR) R? (EWR)
Linear 12.17 2.45 121.73 3.49 0.2390
Regression
Ridge Regression 353.81 18.43 3538.072 18.81 —21.1177
SVR 282.37 16.09 2823.67 16.80 —16.6517
Random Forest 334.48 17.99 3344.77 18.29 —19.9093
Gradient 388.93 18.97 3889.26 19.72 —23.3131
Boosting
Neural Network 7.58 1.99 75.83 2.75 0.8726

Furthermore, support vector regression (SVR) exhibited poor performance, with
negative R? values for both MRR and EWR, indicating that it is not suitable for this dataset.
Figure 13 shows the actual vs. predicted values for all six models used for EWR.
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Figure 12. Actual vs. predicted values for MRR in different models, including (a) Linear Regression,
(b) Ridge Regression, (c) Support Vector Regression (SVR), (d) Random Forest, (e) Gradient Boosting,
and (f) Neural Networks.
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Figure 13. Actual vs. predicted values for EWR in different models, including (a) Linear Regression,
(b) Ridge Regression, (c) Support Vector Regression (SVR), (d) Random Forest, (e) Gradient Boosting,
and (f) Neural Networks.
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3.3.2. Model Performance Metrics for Ra, Rq, and Rz

Table 6 presents the performance metrics for predicting the surface roughness parame-
ters Ra (average roughness), Rq (root mean square roughness), and Rz (mean peak-to-valley
height) using different machine learning models. Among all the models tested, Neural
Network consistently emerged as the top performer, achieving high predictive accuracy
across all surface parameters. For Ra, the Neural Network model achieved a remarkably
low Mean Squared Error (MSE) of 1.12 and a high R? value of 0.99, indicating that it could
predict surface roughness with excellent precision. This model also demonstrated the
lowest Absolute Mean Error (AME) and Sum of Squared Errors (SSE), outperforming all
other models in predicting average surface finish.

Table 6. Model performance metrics for R,, Rq, and R;.

Performance Metrics for R,

Model MSE (R,) AME (R,) SSE (R,) RMSE (R,) R? (R,)
Linear Regression 0.17 0.37 1.66 0.41 0.76
Ridge Regression 434.62 20.76 4346.21 20.85 —629.42

SVR 346.72 18.42 3467.15 18.62 —501.91
Random Forest 418.85 20.32 4188.50 20.47 —606.54
Gradient Boosting 482.05 21.30 4820.48 21.96 —698.21
Neural Network 1.120 0.92 11.95 1.09 0.99
Performance Metrics for Rq

Model MSE (R,) AME (Rq) SSE (Rq) RMSE (Rq) R? Rg)
Linear Regression 0.21 0.40 2.14 0.46 0.81
Ridge Regression 390.22 19.63 3902.17 19.75 —354.67

SVR 308.13 17.30 3081.26 17.55 —279.85
Random Forest 375.56 19.20 3755.58 19.38 —341.31
Gradient Boosting 436.45 20.18 4364.47 20.89 —396.81
Neural Network 1.59 1.05 15.94 1.26 0.98
Performance Metrics for R,

Model MSE (Rz) AME (Rz) SSE (Rz) RMSE (Rz) R? (Rz)
Linear Regression 524 1.88 52.43 2.29 0.74
Ridge Regression 30.84 4.46 308.42 5.55 -0.51

SVR 53.79 6.05 537.88 7.33 —1.63

Random Forest 35.41 4.67 354.06 5.95 —0.73

Gradient Boosting 55.51 6.08 555.08 7.45 -1.72
Neural Network 17.54 3.39 175.36 4.19 0.90

Linear Regression, while significantly less accurate than the Neural Network, still
performed reasonably well with an R? of 0.76. However, Ridge Regression, Support Vector
Regression (SVR), Random Forest, and Gradient Boosting models yielded negative R?
values, signifying poor predictive ability for Ra. These models tended to overfit or underfit
the data, likely due to their limitations in modeling the nonlinear and complex interactions
among EDM parameters. The trend continued with Rq predictions. Neural Networks
again delivered superior results, achieving an MSE of 1.59 and an R? of 0.98. The Linear
Regression model produced an R? of 0.81, making it the second-best performer, though it
lagged significantly behind the Neural Network in terms of accuracy and consistency. The
remaining models, including Ridge Regression, SVR, and Gradient Boosting, performed
poorly, exhibiting high error values and negative R? scores. A similar pattern was observed
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for Rz predictions. Neural Network achieved the best performance with an MSE of 17.54
and an R? of 0.90, which, while slightly lower than that for R, and Rg, still indicated
strong predictive capacity. Linear Regression again provided moderate performance with
an R? of 0.74. The other models failed to generalize well, returning R? values below
zero, which highlights their unsuitability for predicting R, under the current dataset and
modeling configuration. The consistently strong performance of the Neural Network
across all surface roughness metrics underscores its capability to model complex, nonlinear
relationships between input parameters (current, voltage, and pulse-on time) and output
responses. This performance advantage likely arises from its ability to learn intricate
patterns and interactions within the data, which simpler models like Linear Regression or
tree-based ensembles may fail to capture effectively. These findings affirm the suitability of
Neural Networks for predictive modeling in EDM processes, particularly when the accurate
forecasting of surface integrity is crucial for quality assurance and process optimization.

3.4. Analysis of Variance (ANOVA) with Pure EDM Oil and AlyO3z-Infused EDM Oil

Table 7 presents the comparative analysis of machining performance using pure
EDM oil versus Al,O3 nanoparticle-mixed EDM oil. The focus is on the following three
primary responses: Material Removal Rate (MRR), Electrode Wear Rate (EWR), and Surface
Roughness (Ra, Rq, Rz). The results indicate that the AlO3 nanoparticle-mixed dielectric
achieved higher MRR under optimal conditions, with improvements of approximately
15% over conventional EDM oil. This enhancement is attributed to improved thermal
conductivity and better spark stability enabled by the presence of Al,O3 nanoparticles.
EWR was consistently lower when using the nanoparticle-enhanced dielectric. At 30 A
current and 75 ps pulse-on time, the EWR was reduced by around 20% compared to the
conventional dielectric. This reduction highlights the improved cooling and debris removal
capabilities of the Al,O3-mixed oil.

Table 7. Analysis of variance for MRR, EWR, and surface roughness parameters (R,, Rq, and Ry).

Significant Factors

2 2 (2 di 2 .
Response (p < 0.05) R R” (adj) R* (pred) Interpretation
Current (A), o o o Moderate model fit; both current and
MRR Voltage (V) 47.50% 31.74% 4.31% voltage significantly affect MRR.
Current (A), o o o Good model fit; both current and
EWR Voltage (V) 56.58% 43.56% 20.87% voltage significantly affect EWR.
Ra Current (A), 50 779% 38.61% 13.93% Modera’se mgdel fit; current and Ton
Ton (us) significantly affect Ra.
Rq Current (A), 55 489% 42.12% 18.85% Good model fit; current significantly
Ton (us) affects Rq.
Rz Current (A) 57.15% 44.30% 21.91% Good model fit; current significantly
affects Rz.
Current (A), o o o Moderate model fit; both current and
MRR Voltage (V) 47.50% 31.74% 4.31% voltage significantly affect MRR.
Current (A), o o o Good model fit; both current and
EWR Voltage (V) 56.58% 43.56% 20.87% voltage significantly affect EWR.
Ra Current (A), 50 779 38.61% 13.93% Modera’ge Irpdel fit; current and Ton
Ton (us) significantly affect Ra.
Rq Current (A), 55.48% 42.12% 18.85% Good model fit; current significantly
Ton (ps) affects Rq.
Rz Current (A) 57.15% 44.30% 21.91% Good model fit; current significantly
affects Rz.

In terms of surface roughness, the nanoparticle dielectric achieved an average 10%
improvement in Ra, Rq, and Rz values, indicating smoother surfaces. This is linked to
enhanced spark energy dispersion and reduced arcing effects due to the dielectric’s superior
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insulation characteristics. Table 7 also includes ANOVA results identifying the significant
parameters (p < 0.05). For MRR and EWR, both current and voltage were influential.
Surface roughness parameters were primarily affected by current and pulse-on time. The
R-squared values suggest a good model fit for EWR and Rz and a moderate fit for MRR
and Ra.

3.5. Optical Microscopy and Surface Topography Analysis

Optical microscopy was used to evaluate the surface morphology of gunmetal work-
pieces before and after EDM machining under various dielectric conditions. Observations
were made at magnifications of 5x and 10x to assess both macro and micro features of
the surface.

Figure 14a shows the unmachined gunmetal surface at 5x magnification, where clear
machining marks, grooves, and irregularities can be seen. This serves as a baseline to
understand how EDM affects the surface. Figure 14b—d shows Samples 1, 15, and 27,
respectively, at 10x magnification. Sample 1, machined with pure EDM oil at lower
energy settings, shows some re-solidification and debris, with relatively minor surface
damage. Sample 15, also machined with pure EDM oil but at higher energy, displays more
melting, re-solidified layers, and some visible micro-cracks and pits. Sample 27, processed
using Al,O3 nanoparticle-mixed EDM oil, shows a smoother and more consistent surface
compared to the others. It has fewer defects, a thinner re-solidified layer, and almost no
micro-cracks. This suggests that the nanoparticle-enhanced dielectric fluid improves heat
dissipation and flushing, leading to better machining quality and indicating better surface
finish with lower Ra, Rq, and Rz values.

Figure 14. Optical microscopy images of gunmetal workpiece surfaces, i.e., (a) unmachined surface;
(b) Sample 1; (c) Sample 15; and (d) Sample 27.

Figure 15 shows the 3D surface topography of the same samples at both 5x and 10x
magnification. The unmachined sample (Figure 15a,b) has visible tool marks and a rough
surface with uneven peaks and valleys. Sample 1 (Figure 15¢,d), machined with pure
EDM oil, shows some melted areas and solidified material on the surface, with moderate
height variations. Sample 15 (Figure 15e), also machined with pure oil but at higher energy,
appears rougher, with deeper valleys and more pronounced peaks. In contrast, Sample 27
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(Figure 15f), processed with Al,O3-mixed EDM oil, has a noticeably flatter and smoother
surface. The variations in height are reduced, suggesting improved surface quality. This
reinforces the earlier findings that the nanoparticle-mixed dielectric helps achieve better
machining results. Overall, the 3D topography images visually confirm the benefits of
using Al,Oz in improving EDM surface characteristics.

)

Figure 15. Three-dimensional surface topography of gunmetal workpieces. (a) Unmachined surface—5x,
(b) unmachined surface—10x, (c) Sample 1—EDM with pure o0il—5x, (d) Sample 1—EDM with pure
0il—10x, (e) Sample 15—EDM with pure 0il—10x, (f) Sample 27—EDM with Al,O3 oil—10x.

The comparison of both magnifications provides a comprehensive understanding of
the surface characteristics of the machined gunmetal. These observations are crucial for
optimizing the machining process, as they help in correlating the machining parameters
with the observed surface quality. Figure 15 shows the detailed surface topography analysis
that aids in identifying potential issues that could affect the performance of the machined
components in practical applications.

4. Conclusions

This study presented a comparative evaluation of conventional EDM oil and Al,O3
nanoparticle-mixed EDM oil for machining gunmetal using copper electrodes. The perfor-
mance was assessed in terms of Material Removal Rate (MRR), Electrode Wear Rate (EWR),
and surface roughness parameters (Ra, Rq, Rz), supported by predictive modeling through
machine learning techniques. The experimental results clearly demonstrate the superior-
ity of nanoparticle-enhanced dielectrics, while the machine learning models provide an
effective framework for process optimization.
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Key findings include the following:

e  Productivity improvement: Al,O3 nanoparticle-mixed EDM oil achieved up to 15%
higher MRR than conventional dielectric fluid under optimal conditions, highlighting
its potential for rough machining applications where efficiency is critical.

e Tool life extension: EWR was reduced by ~20% with the Al,Os3-based dielectric,
indicating more efficient heat dissipation and reduced electrode degradation.

e  Surface quality enhancement: Average surface roughness values improved by ~10%
due to more stable discharge conditions and uniform flushing in the nanoparticle fluid.

e  Microscopic evidence of new science: Surface analysis confirmed fewer micro-cracks
and improved surface integrity when using the Al,O3-based dielectric, offering a clear
scientific contribution to understanding dielectric effects on surface morphology.

e  Predictive accuracy: Among the six machine learning models tested, Neural Networks
and Gradient Boosting consistently delivered the highest prediction accuracy for
MRR and surface finish, even with limited experimental data. This demonstrates the
potential of combining data-driven approaches with EDM research.

While the fixed nanoparticle concentration (0.5 wt.%) ensured consistency, it also
represents a limitation. Future research should perform a sensitivity analysis across varying
nanoparticle concentrations to identify the optimal range as well as investigate long-term
stability and applicability to other alloys. Comparative studies using different nanoparticles
and advanced dielectric systems could further enhance the industrial scope of this work.

In summary, this research establishes that integrating nanoparticle-enhanced di-
electrics with machine learning-driven process optimization not only improves produc-
tivity, tool life, and surface quality, but it also advances the scientific understanding of
EDM processes.
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