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ABSTRACT

Ecological models can support land management decisions and optimisation schemes that need to account for
invertebrate population responses at the field to landscape level. However, models that incorporate greater
biological detail (e.g. individual-level physiological and behavioural responses) often become computationally
intractable at larger spatial extents. Such trade-offs in model development lead to ad hoc model design for
different species and management questions, hindering generalisable insights needed to advance predictive
ecological models for decision support. To facilitate model comparison, we developed and applied a novel
approach to quantify the biological realism of models for two functionally important invertebrate groups
commonly targeted by management interventions. Mechanistic and process-based population models for
earthworms (n = 23) and wild pollinators (n = 24) were identified through a structured review. We find that
earthworm models are predominantly non-spatial or micro-scale (<10 m extent) and often incorporate detailed
physiological mechanisms. Pollinator models frequently simulate landscape-scale scenarios (>1 km extent) and
typically rely on aggregated processes to predict population dynamics or crop visitation rates, although some
include detailed individual-level movement behaviours. Species- and scale-specific model structures highlight
the need for greater integration of physiological and behavioural mechanisms across broader spatial extents. We
recommend systematic strategies to build on the progress made by existing models, aiming to resolve the trade-
off between realism and tractability for more informed population predictions at management-relevant spatial
scales. Our framework complements existing efforts towards greater transparency in model development,
communication, and application for robust environmental decision support.

1. Introduction

(Accolla et al., 2021; Gregr and Chan, 2015). A clear understanding of
how model structure influences predictive power and scope of applica-

Ecological models are important tools for supporting evidence-based
land management, as they enable the investigation of alternative pol-
icies, management scenarios, and changing environmental conditions,
which are difficult to test experimentally (McLane et al., 2011; Schmolke
et al., 2010b; Schuwirth et al., 2019; Stevens et al., 2007). All models are
simplified representations of real systems, and so model development
necessarily involves decisions and assumptions about the features that
are included and how they are represented (i.e. the model structure)
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bility to environmental and management scenarios is critical for robust
and transparent decision support (Gregr and Chan, 2015; Grimm et al.,
2020b; Schmolke et al., 2010b; Schuwirth et al., 2019). However, model
comprehension and evaluation can be hindered by inconsistent model
communication and infrequent model comparisons (Grimm, 2023;
Schmolke et al., 2010b; Schuwirth et al., 2019).

Model structure is fundamentally constrained by a trade-off between
realism and tractability (Wang et al., 2024). Models that include more
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detail of the organisation of a real system can generate more informed
predictions, but increased model complexity amplifies output uncer-
tainty and computational demand (process time and memory use)
(Grimm and Berger, 2016a; Singer et al., 2016; Wang et al., 2024).
Grimm and Berger (2016a) identified structural realism as an essential
element of next-generation ecological modelling, highlighting the cen-
tral importance of the interactions between biotic model components
with one another and the abiotic model environment. These interactions
can be represented statistically (i.e. correlative models) or causally
(process-based or mechanistic models), representing different degrees of
the realism-tractability trade-off (see Supplementary Table 1 for termi-
nology and definitions used throughout) (Dormann et al., 2012; Gregr
and Chan, 2015; Johnston, 2024).

Correlative, process-based and mechanistic predictive models differ
in key aspects relating to accuracy, uncertainty, transferability, input
data requirements, and computational demand (Dormann et al., 2012;
Mouquet et al., 2015; Singer et al., 2016; Urban et al., 2016). Correlative
species distribution models (SDMs), for instance, use statistical re-
lationships between species occurrence and environmental predictors
that are assumed to indirectly capture the biological processes driving
observed distributions (Dormann et al., 2012; Guisan and Thuiller,
2005). Correlative SDMs are typically implemented over relatively large
spatial extents, such as an entire species range, but are unable to account
for nonstationarity and so have limited transferability beyond the
original environmental domain (Rollinson et al., 2021; Yates et al.,
2018). Process-based models can provide more informed predictions by
accounting for the underlying dynamics (e.g. population growth,
dispersal) that shape population patterns (abundance, distribution)
(Briscoe et al., 2019; Guisan and Thuiller, 2005; Johnston, 2024; Schurr
et al., 2012). Process-based models are a common choice for environ-
mental decision support, as the use of aggregated functions and empir-
ical parameters constrains uncertainty and reduces computational
demand (Evans et al., 2013; Gardner et al., 2024; Johnston, 2024; Singer
et al.,, 2016). This structure, however, restricts modelled population
responses to the range of environmental and demographic variation
present in the input data (Dormann et al., 2012; Johnston et al., 2019;
Radchuk et al., 2019).

Mechanistic models are distinguished by their explicit representation
of the physiological and/or behavioural responses from which popula-
tion processes and patterns emerge (Johnston, 2024). These
individual-level mechanisms are based on fundamental principles of life
history theory that are expected to support model transferability
(Grimm and Berger, 2016a; Kearney and Porter, 2009; Radchuk et al.,
2019; van der Vaart et al., 2016). Physiological and/or behavioural
mechanisms can be incorporated in several modelling frameworks,
including SDMs (Evans et al., 2015; Kearney and Porter, 2009), de-
mographic models (Jager et al., 2014), and individual-based models
(IBMs) (Johnston et al., 2019). An IBM structure is ideally suited for
representing the physiological and behavioural variation and in-
teractions of autonomous individuals within heterogeneous environ-
ments, thereby capturing nonlinear responses, feedbacks, and
interactive effects of multiple stressors to predict context-dependent
population dynamics (Catford et al., 2022; DeAngelis and Grimm,
2014; Galic et al., 2018; Jager et al., 2014; Johnston et al., 2019).
However, the computational demands of simulations involving detailed
submodels for many individuals across fine-resolution heterogeneous
environments can be substantial, typically limiting applications to small
spatial scales (Gardner et al., 2024; Johnston, 2024). Furthermore,
mechanistic IBM outputs may have high uncertainty due to their com-
plex structure and requirement for detailed individual-level data, which
can lead to the accumulation of stochastic effects and propagation of
parameter and structural uncertainties (Evans, 2012; Johnston et al.,
2019; Singer et al., 2016).

Here, we conduct a structured review and analysis of mechanistic
and process-based population models for earthworms and wild polli-
nators, with the aim of evaluating a specific aspect of structural realism,
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which we term biological realism. We define biological realism as the
level of detail in the representation of biological mechanisms and pro-
cesses operating at the individual to population level (e.g. physiology,
vital rates, population growth, dispersal), while excluding the repre-
sentation of the model environment (e.g. resource dynamics, abiotic
factors). Earthworms and wild pollinators (wild bees and hoverflies)
exemplify the diverse invertebrate taxa that underpin key ecosystem
functions commonly targeted by management interventions in agricul-
tural landscapes (Bommarco et al., 2013). Wild bees (bumblebees and
solitary bees) are efficient pollinators of widely grown and economically
important crops, while hoverflies are abundant pollinators, with some
species having aphidophagous larvae that also serve as important pest
regulators (Breeze et al., 2011; Doyle et al., 2020; Garratt et al., 2014;
Pekas et al., 2020). Earthworms play a central role in soil functioning (i.
e. soil formation and structure, nutrient cycling, pest and disease con-
trol), both through their own activities and indirectly by modulating the
wider soil environment and community, and are commonly seen as in-
dicators of soil quality (Barrios, 2007; Blouin et al., 2013; Brown et al.,
2000; Rombke et al., 2005).

Agri-environment schemes (AES), which incentivise environmen-
tally sustainable land management, are the primary framework for
implementing interventions to support invertebrate populations in
agricultural landscapes (Batary et al., 2020, 2015; Ekroos et al., 2014).
AES actions can include a range of agricultural management practices
and interventions, such as reduced tillage, beetle banks, and hedgerows,
implemented at the field, farm, or landscape level (DEFRA, 2023;
Garibaldi et al., 2014; Pe’er et al., 2017). While we understand the ef-
fects of certain individual actions, such as wildflower strips increasing
pollinator visits to crops, the effects of implementing different combi-
nations of management practices and interventions within the same field
or across a larger area are more difficult to determine (Garibaldi et al.,
2014; Kleijn et al., 2019; Pufal et al., 2017). Mixed findings regarding
the effectiveness of AES for biodiversity outcomes have been attributed
to taxon-specific and nonlinear responses to the interacting factors of
landscape complexity and land-use intensity (Batary et al., 2010; Diaz
and Concepcion, 2016; Diekotter et al., 2010; Gabriel et al., 2010; Kleijn
et al., 2006). Optimising AES for diverse invertebrate taxa and different
regional contexts will therefore require a better understanding of the
interplay between in-field management practices, landscape composi-
tion and configuration, and species population responses (Batdry et al.,
2020; Diaz and Concepcion, 2016; Fahrig et al., 2011; Martin et al.,
2019).

Biologically realistic models are essential for understanding and
predicting emergent population responses under novel management
scenarios and changing environmental conditions (Johnston et al.,
2019; McLane et al., 2011; Stillman et al., 2015). However, land man-
agement decisions such as AES implementation also require reliable
predictions at relevant spatial scales (DeAngelis and Yurek, 2017;
Lindborg et al., 2017; Schuwirth et al., 2019; Stevens et al., 2007; Wang
etal., 2024). Tractability at larger modelled extents is typically achieved
through aggregation, which inherently involves a loss of biological
detail (Fritsch et al., 2020). Decisions regarding model structure also
depend on factors such as species traits, model purpose (i.e. manage-
ment question), modeller preferences, and data availability (Gregr and
Chan, 2015; Grimm, 2023; Johnston et al., 2019). Together, these
constraints contribute to a culture of siloed modelling in ecology, where
models are often developed in isolation, following the assumptions of
different modelling paradigms, without systematic evaluation of the
strengths and limitations of alternative model structures for supporting
real-world management decisions (Grimm, 2023; Johnston, 2024).

While predictive ecological models can address critical evidence
gaps for effective land management, those that incorporate greater
biological detail often become computationally intractable at larger
spatial extents. In practice, models tend to be developed on an ad hoc
basis, with structures optimised for specific species, scenarios, and
spatial scales. This strategy avoids directly addressing the trade-off
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between realism and tractability. Nevertheless, integrating insights and
advances from a range of models offers a promising way forward to
improve predictive ecological models for decision support. As a first step
towards evaluating the relationship between structural realism, pre-
dictive performance, and computational tractability across diverse
models, we developed and applied a novel approach to quantify bio-
logical realism. We demonstrate how this approach can be used to
compare structural trade-offs across taxa and spatial scales. Finally, we
identify how future modelling efforts can build on the progress made by
existing models to resolve the realism-tractability trade-off, thereby
enabling more informed population predictions at management-
relevant spatial scales.

2. Methodology

Wild pollinators and earthworms were selected as the focus of this
structured review and conceptual synthesis based on a literature review
of functionally important invertebrates in agricultural systems and the
authors’ expert knowledge of taxa for which multiple population models
exist. Our review is limited in scope to models in which population-level
outputs result from biological mechanisms or processes relating to de-
mographics and/or movement behaviour (e.g. physiology, vital rates,
population growth, foraging, dispersal), elements that jointly determine
emergent population responses at the spatiotemporal scales relevant to
land management decisions (Cooke et al., 2014; Johnston et al., 2019).
To synthesise the information extracted from the models identified in
our structured review and facilitate their comparison, we developed a
scoring scheme to quantify the representation of demographics and
movement behaviour. The following sections detail the methodology of
the structured review and biological realism scores.

2.1. Structured review

The structured review was conducted between December 2023 and
February 2024 using the SciVerse Scopus database (www.scopus.com)
to search for relevant models published at any time up to the end of
February 2024. The general search strategy for both groups was:
(“taxonomic/common name”) AND (“model type”). For example, the
final search terms for pollinators included "wild bee*", bumblebee*,
bombus, "solitary bee*", syrphid*, hoverfl*, pollinator*, and "population
model*", "individual-based model*", "mechanistic model*", "process-
based model*". The full list of search terms is provided in Supplementary
Table 2. We are aware that the limitations of using a single database,
alongside the large variation in modelling terminology, mean that a
number of models may not have been captured in these searches. The
systematic search was therefore supplemented with additional unique
models identified from citations (Supplementary Figure 1).

A total of 998 article abstracts (204 for earthworms, 794 for wild
pollinators) were screened for relevance and read in full where neces-
sary. We excluded those that did not present an original model, or
implementation of a model, that met all the review criteria (Supple-
mentary Figure 1). The full review criteria are provided in Supplemen-
tary Table 3, with an overview of the exclusion criteria provided here:
(1) models that were not parameterised with realistic values for taxa
included in this review, therefore excluding models of other taxa, and
theoretical models which are typically unable to make specific pre-
dictions to support land management decisions; (2) models that did not
include mechanisms and/or processes relating to demographics and/or
movement behaviour, therefore excluding purely statistical models, and
those which only included mechanisms and/or processes outside the
scope of this review (e.g. evolutionary adaptation, community-level
biotic interactions); (3) models that did not provide population-level
outputs, therefore excluding models which did not use mechanisms
and/or processes to provide predictions that could support land man-
agement decisions, and those focused on higher ecological levels which
were not within the scope of this review.
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Articles presenting the same model were grouped, and multiple
models from the same article were considered separately. The lead
article for each unique model was read in full and key information was
collated in Supplementary Table 4. Models were classified according to
group (pollinator/earthworm), species, and model type; the represen-
tation of demographics and movement behaviour was summarised and
scored using our biological realism scores (detailed below); and the
main model outputs, spatial and temporal scales, and methods of vali-
dation were recorded. Our analysis focuses on the relationship between
biological realism and spatial representation due to the relevance for
land management decisions and the challenges involved with upscaling
detailed models, outlined above. The spatial resolution and extent of
spatially explicit models were categorised in relation to a land man-
agement context rather than from a species-specific perspective: for
example, we define a landscape as greater than or equal to 1 km? based
on average farm sizes (see landscape definition, Supplementary
Table 1). Count data extracted from Supplementary Table 4 was
visualised in RStudio 4.3.0 (R Core Team, 2023) using the ggplot2
package (Wickham, 2016).

2.2. Biological realism scoring scheme

We established a scoring scheme (summarised in Fig. 1) to quantify
the level of detail with which key biological mechanisms and processes
are represented in the models reviewed here (full details are provided in
Supplementary Table 5). The scoring scheme does not evaluate model
performance, but instead provides a common framework for comparing
and communicating biological realism across a range of models designed
for different taxa and management questions. The scores are intended to
align with the definitions of mechanistic and process-based given in
Supplementary Table 1, so that high scores correspond to individual-
level representations based on fundamental principles, whereas lower
scores reflect aggregated representations and those with reduced bio-
logical detail.

Demographics refers to physiological processes, traits, or rates
relating to growth, reproduction, and survival (for example: energy
budgets, thermal performance curves, vital rates, life history traits,
population growth rate). Movement behaviour incorporates the move-
ment process, the representation of motion or the movement path, and
behavioural decision-making, the way in which internal and/or external
factors (e.g. energy level, memory, habitat quality) influence the
movement direction and distance (DeAngelis and Diaz, 2019; Nathan
et al., 2008). Movement process and behavioural decision-making are
scored separately and summed to produce an overall score for move-
ment behaviour that has a 1:1 relationship with the demographics score.
This does not imply that the numerical scores are directly comparable,
but ensures that demographics and movement behaviour are equally
emphasised when presenting biological realism across models.

Although the scoring scheme does not explicitly consider the repre-
sentation of the model environment or management practices, the bio-
logical mechanisms and processes categorised under demographics and
movement behaviour are inherently shaped by external factors. Bio-
logical realism is also intrinsically related to model spatiotemporal
resolution, as higher biological detail typically requires finer temporal
and/or spatial resolution (e.g. daily allocation of energy to reproduction
by individuals) compared with representations that aggregate over in-
dividuals, space, and time (e.g. annual reproduction rate of an entire
population) (Fritsch et al., 2020; Radchuk et al., 2014). Thus, biological
realism is directly linked to overall model complexity and associated
tractability challenges.

3. Results
3.1. Model summary

Our structured review identified 87 articles, containing a total of 47
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Fig. 1. Schematic representation of the biological realism scores used to compare earthworm and wild pollinator population models included in our review,
depicting examples of mechanisms and processes relating to demographics and movement behaviour (separated into movement process and behavioural decision-
making) with low, moderate, and high scores. Full details are available in Supplementary Table 5.

unique models comprising 24 wild pollinator and 23 earthworm models. The publication of articles presenting or implementing mechanistic or

We find that comparatively few models have been developed for hov- process-based pollinator models has increased in recent years, whereas

erflies, which are represented by only 1 model in the pollinator group. model development for earthworms has not followed the same trend
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Fig. 2. Number of articles for earthworms (orange bars) and wild pollinators (blue bars) identified in the structured review. The number of articles (87 in total) is
different to the number of reviewed models (47 in total) as some articles contained multiple models, and some models were presented in multiple articles. The figure
includes articles published up to the end of February 2024.
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(Fig. 2).

Table 1 provides a summary of the reviewed models, demonstrating
the different population modelling approaches applied to earthworms
and wild pollinators.

Earthworm models are predominantly non-spatial (56.5 % of
models, compared to 4 % spatially implicit and 39 % spatially explicit),
whereas spatially explicit models comprise the majority of wild polli-
nator models (62.5 %, compared to 12.5 % spatially implicit and 25 %
non-spatial) (Fig. 3a). Spatially explicit earthworm models are typically
at micro scale (<10 m spatial extent) (Fig. 3b), whilst spatially explicit
pollinator models are largely at landscape (>1 km spatial extent) or
regional scales (Fig. 3c). The global earthworm model is a mechanistic
SDM (Ruiz et al., 2021).

The inclusion of demographics and movement behaviour changes
according to spatial representation, with non-spatial models focused on
demographics and spatially implicit or explicit models more likely to
include movement behaviour (Fig. 3a). Models that represent both ele-
ments are in the minority overall (25.5 %), as well as within spatially
explicit models (42 %) (Fig. 3a). Across all spatial representations, 61 %
of earthworm models represent demographics alone, followed by both
elements (30 %) and movement behaviour alone (9 %); wild pollinator
models are split across those which represent movement behaviour
alone (42 %), demographics alone (37.5 %), and both elements (21 %)
(Fig. 3a). For spatially explicit pollinator models, those representing
movement alone rises to 67 % (Fig. 3c).

3.2. Biological realism scores

The distribution of biological realism scores, which quantify model
representations of demographics and movement behaviour, shows that
most of the reviewed models consider either demographics or movement
behaviour alone (74.5 %), with very few models including detailed
representations of both elements (Fig. 4). Models that score highly for
movement behaviour or demographics alone tend to be IBMs for wild
pollinators and DEB-based models for earthworms, respectively (Fig. 4).

Table 1
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3.3. Spatially explicit models

Spatially explicit models plotted in Fig. 5 show that there is very little
overlap in the spatial extent and resolution of earthworm and wild
pollinator models. Except for a mechanistic SDM (E26), spatially explicit
earthworm models are limited to micro or local extents and very fine to
fine resolutions (Fig. 5). Spatially explicit pollinator IBMs tend to be at
landscape extent and medium resolution, while process-based and dis-
tance decay models also extend to regional extent with coarse resolution
(Fig. 5).

4. Discussion

Our structured review and conceptual synthesis reveal how popu-
lation models for earthworms and wild pollinators employ distinct
structures to address scale-specific environmental and management
questions (Table 1, Fig. 3). Biological realism scores highlight structural
trade-offs in model representations of demographics and movement
behaviour, reflecting differing priorities in model development for these
taxa (Fig. 4). Combined with a trade-off between spatial resolution and
extent (Fig. 5), this leads to a notable distinction: earthworm models are
predominantly non-spatial or micro-scale and often incorporate physi-
ological mechanisms, whereas pollinator models are typically imple-
mented across landscape to regional extents and focus on individual-
level or aggregated movement behaviours. Greater integration of
physiological and behavioural mechanisms across broader spatial ex-
tents would enable more informed predictions at management-relevant
scales. The models reviewed here have made important advances in
predictive ecology, and our review serves to catalogue these alternative
modelling approaches as a starting point for future adaptation and
testing.

4.1. Modelling approaches and structural trade-offs across taxa and
spatial scales

Earthworm models reviewed here are largely demographic frame-
works, applied primarily to predict population responses to non-spatial
stressors, reflecting the common role of earthworms as environmental

Summary model table categorising the reviewed earthworm and wild pollinator population models according to key features of model structure. Full details for in-
dividual models are available in Supplementary Table 4 along with references for model IDs.

Model type Focus level Output Demographics Movement Spatial Dynamic/ Earthworm IDs Pollinator IDs
behaviour representation static
Energy budget IBM Individual PD, Yes, EB Yes, IL SE Dynamic E4M2, E10, E11, E13
@ STRUC,
DIST
IBM @ Individual PD, BR Yes, LHP. No (E3, Yes, IL SE Dynamic E3 P2, P7, P8, P20,
P7, P39, P47) P39, P40, P47,
P49
DEB-based Individual + PG, STRUC  Yes, EB No NS Dynamic E4M1, E9M1, E9M3,
demographic population E17, E31
Demographic Population PD, PG, Yes, DR, GF No NS Dynamic E1, E5, E7, E8, P5, P6, P10, P13,
STRUC E9M2, E14, E23, P15, P16, P30
E27, E29
Spatially explicit Population PD, VISIT, Yes, DR, GF. No Yes, DK SE Dynamic E2, E22, E35 P11, P29, P33,
process-based DIST (P11, P33, P48) P48
Distance decay Population VISIT No Yes, DDF SE Static P22, P36, P42,
P44
Mechanistic SDM Individual DIST TPF (P52) BP (E26) SE Static E26 P52

(1) Includes E4M2 (IBM parameterised with DEB model) which does not represent movement
(2) Includes P40 which is non-spatial and P49 which is spatially implicit; these models do not explicitly represent movement behaviour
(3) Includes E23, P13 and P30, which are spatially implicit; E23 and P30 include spatially implicit movement behaviour

Abbreviations key.

Model type: DEB Dynamic Energy Budget; IBM Individual-Based Model; SDM Species Distribution Model.

Output: BR behavioural response; DIST distribution; PD population dynamics; PG population growth; STRUC population structure; VISIT visitation rates.
Demographics: EB energy budget; DR demographic rates; GF growth function; LHP life history parameters; TPF thermal performance function.
Movement: BP biophysical model; IL individual level; DDF distance decay function; DK dispersal kernel.

Spatial representation: NS non-spatial; SE spatially explicit; SI spatially implicit.
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elements. Movement behaviour refers to summed scores for movement process and behavioural decision-making. One spatially explicit earthworm model is excluded
from panel b due to missing information (E22: spatial extent not reported). Spatial extent is standardised as the length of 1D models, square root of area of 2D models,
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Fig. 4. Biological realism scores for demographics and movement behaviour (summed scores for movement process and behavioural decision-making). Shapes
correspond to the model categories in Table 1 (also shown in the inset legend) and references for model IDs are available in Supplementary Table 4. Model IDs are
given for spatially explicit models included in Fig. 5. Orange and blue shapes represent models for earthworms and pollinators, respectively, and have been jittered
for visibility.

indicators (Table 1). In several cases, non-spatial demographic models
have been linked with DEB models, which provide increased physio-
logical detail and enable extrapolation of population responses to un-
tested conditions (Jager et al., 2014). Johnston et al. (2018, 2014a,
2014b) employed an alternative energy budget modelling approach in a
series of spatially explicit earthworm IBMs (E10, E11, E13). In addition

to the detailed representation of physiology in these models, the inclu-
sion of directional movement behaviour has proven critical for pre-
dicting population responses to multiple, often interacting, stressors
such as tillage, herbicide applications, and climate change (Johnston
et al., 2018; 2015). Although earthworms have relatively low mobility,
experimental data indicates maximum annual dispersal rates that
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Fig. 5. Spatially explicit earthworm and wild pollinator models plotted against modelled spatial extent and resolution (excluding spatially implicit and non-spatial
models). Shapes correspond to the model categories in Table 1 (also shown in the inset legend) and references for model IDs are available in Supplementary Table 4.
Orange and blue shapes represent models for earthworms and pollinators, respectively, and have been jittered for visibility. Biological realism scores for these models
can be identified from Fig. 4. Three spatially explicit earthworm models are excluded from this figure due to missing information (E3: micro extent, resolution not
reported; E4M2: micro extent, resolution not reported; E22: continuous resolution, extent not reported). For spatial extent categories see Fig. 3 caption. Spatial
resolution categories are as follows: very fine: <1 m% fine: <100 m% medium: <1000 m? coarse: >1000 m? Models that represent space continuously do not have a

specified resolution.

exceed the spatial extent of existing mechanistic IBMs (e.g. 4.6 m per
year for Lumbricus terrestris in an arable field; Nuutinen et al., 2011).
However, uncertainty propagation, the accumulation of stochastic ef-
fects, and the computational demands of biologically detailed,
fine-resolution simulations present tractability challenges for extending
mechanistic IBMs to larger spatial extents (Evans, 2012; Johnston,
2024).

Wild pollinator models have often been developed to predict crop
visitation rates (as a proxy for pollination services) and so characteris-
tically represent movement behaviour within spatially explicit model
environments (Table 1). Spatially explicit pollinator IBMs relate
individual-level movement behaviour to landscape composition and
configuration through decision-making processes informed by assess-
ment of habitat quality or memory of rewarding locations. For example,
Arrignon et al. (2007, P7) and Everaars and Dormann (2014, P20)
implement patch departure rules based on the Marginal Value Theorem
(Charnov, 1976) to describe fitness-maximising foraging behaviour and
its influence on survival or reproductive outcomes, respectively. How-
ever, the integration of movement behaviour with a complete life cycle
is rare within pollinator IBMs (Becher et al., 2018, P8 is a notable
exception; Fig. 4). At the population level, wild pollinator models often
employ functional responses between colony or population growth and
floral resources in demographic models, or use aggregated representa-
tions of movement, such as diffusion equations or dispersal kernels, in
spatially explicit models (Table 1). Model capacity to predict population
abundance or visitation rates will, however, be limited when feedback
between these dynamics is not accounted for (Haussler et al., 2017).

The trade-off between biological realism and spatial extent is well
demonstrated by distance decay models, which achieve tractability at
the landscape level through simplifying assumptions that derive polli-
nator abundance from habitat suitability and equate foraging behaviour
with diffusion (Lonsdorf et al., 2009, P36) (Fig. 5). Subsequent adap-
tations have incorporated principles of optimal foraging, enhancing
model capacity to predict spatial variation in visitation rates in response
to small-scale interventions such as flower strips (Fernandes et al., 2020,

P22; Nicholson et al., 2019; Olsson et al., 2015, P44). Nevertheless,
models of this type produce static predictions that cannot account for the
effects of intra- and inter-seasonal population dynamics on visitation
rates. Of the process-based pollinator models reviewed here, only
Haussler et al. (2017, P29) combine demographics and movement
behaviour in a spatially explicit model, enabling predictions of con-
trasting short- and long-term effects of land management interventions
on visitation rates, driven by increasing population abundance over
time. Gardner et al. (2021) note that the explicit representation of
dispersal paths could improve predictions for fragmented agricultural
landscapes by accounting for adaptive movement behaviour. However,
the continued refinement of landscape-level pollinator population
models is constrained by computational demand (Gardner et al., 2020).

Mechanistic SDMs are based on fundamental constraints to species
distribution (here, thermal performance functions in Tomlinson et al.,
2018, P50; and biomechanical limits to burrowing in Ruiz et al., 2021,
E26), which enable extrapolation of individual-level responses over
large spatial extents. In this way, mechanistic SDMs subvert the overall
trend for decreasing biological realism with increasing spatial scale.
However, similar to correlative SDMs, mechanistic SDMs are designed to
provide static, equilibrium predictions rather than to simulate the de-
mographic and dispersal processes that determine population dynamics
in spatiotemporally heterogeneous environments (Briscoe et al., 2019;
Evans et al., 2015; Guisan and Zimmermann, 2000; Kearney and Porter,
2009; Peterson et al., 2015). Mechanistic SDMs therefore have limited
capacity to address critical evidence gaps regarding land management
interventions, such as the occurrence of time lags in population re-
sponses, which require predictions of transient dynamics (Guisan and
Zimmermann, 2000; Iles et al., 2018; Kleijn et al., 2019; Zurell et al.,
2022).

4.2. Evaluating biological realism: strengths and limitations of our
approach

The variation in earthworm and wild pollinator population model
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structures was addressed, for the purpose of this review, by developing a
novel scoring scheme. The biological realism scores were critical in
enabling us to quantify trade-offs in model structure across taxa and
spatial scales (Figs. 4 and 5), which has rarely been attempted in
ecological modelling. Model intercomparisons which involve the re-
implementation of models under a standardised environmental sce-
nario, such as that of Bahlburg et al. (2023), enable a comprehensive
assessment of model structures, computational demands, predictive
performance, and transferability. However, this type of comparison will
not necessarily be possible or informative across models developed for
different taxa, management questions, and spatiotemporal scales. Our
approach therefore relies on model documentation, which does not
consistently include measures of computational tractability (e.g. CPU
time) or predictive performance (validation).

Our scoring scheme holds promise for reproducible and transparent
model comparisons by providing a common framework to evaluate
diverse models. The biological realism scores can also be used to guide
model development and communicate design choices in a similar
manner to how the categories of general, realistic, and precise are used
within the Pop-GUIDE framework to link model purpose and data
availability to the appropriate representation of model characteristics
(Raimondo et al., 2021). However, our approach is not without limita-
tions and could be refined in future applications. Developing stand-
ardised scores for a wide range of models inevitably involved a loss of
nuance regarding some aspects of the representation of demographics
and movement behaviour. For example, the distinct ecology of eusocial
pollinators presented a complication: colonies function as reproductive
units and could arguably be considered individuals for demographic
purposes, but were treated here as sub-populations for consistency.
More generally, the scheme allocates a single score to each of de-
mographics, movement process, and behavioural decision-making, and
therefore does not fully account for the number or variety of mecha-
nisms and/or processes included in a model.

Our approach is restricted to demographics and movement behav-
iour because our aim was to evaluate biological realism in relation to
population-level outputs at the spatiotemporal scales relevant to land
management decisions. However, these are not the only elements that
contribute to biological or structural realism. Future applications could
extend the framework to include additional biological mechanisms and
processes (e.g. evolutionary adaptation, community-level biotic in-
teractions) and/or incorporate other dimensions of structural realism (e.
g. resource dynamics, landscape heterogeneity, weather, climate)
(Evans et al., 2019; Grimm and Berger, 2016a; Johnston, 2024; Rouabah
et al., 2024). A comprehensive evaluation of structural realism,
including the representation of biotic and abiotic model components and
their relevance to the system in question, would enable assessment of
model suitability for specific land management or environmental sce-
narios (Schuwirth et al., 2019).

Although our analysis focuses on biological realism in relation to
spatial scale, we recognise that different temporal representations (e.g.
continuous time or discrete time steps, varying temporal extents) may
strongly influence predictions, and warrant further investigation
(Radchuk et al., 2014). For example, pollinator population dynamics in
the Poll4pop model are closely tied to the definition of seasons (floral
periods), which can be varied for different applications (Gardner et al.,
2021; Haussler et al., 2017; Image et al., 2022).

4.3. Future directions for earthworm and wild pollinator population
modelling

Grimm and Berger (2016a) argue that ecological models achieve
greater structural realism when population dynamics emerge from
lower-level interactions described by first principles of physiological
and behavioural ecology. Such approaches allow for phenotypic plas-
ticity in spatiotemporally heterogenous environments, which is partic-
ularly important for small ectotherms such as bees and earthworms,
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whose demographic and behavioural responses are strongly shaped by
physiological processes (e.g. thermal performance, moisture sensitivity)
(Abram et al., 2017; Deutsch et al., 2008; Kenna et al., 2021; Singh et al.,
2019; Woods et al., 2015). Our findings indicate, however, that inte-
grating physiological and behavioural mechanisms remains a key chal-
lenge for predicting invertebrate population responses at
management-relevant spatial scales. Despite the divergent trajectories
of earthworm and wild pollinator population models (Figs. 4 and 5), our
framework therefore points to complementary directions for future
work, for instance by scaling up dispersal processes for earthworms and
incorporating greater physiological detail in landscape-level pollinator
models.

In a recent review, Rouabah et al. (2024) identified weather and
climate, floral resource dynamics, and agricultural management prac-
tices such as pesticide applications as future avenues for improving
pollination models. However, concurrent advances in the representation
of physiological detail will be required to capture the interactive effects
of these factors on emergent population dynamics (Leroy et al., 2023).
Since the completion of our literature review, several models have made
progress in this direction through distinct approaches. Schmolke at al.
(2024) extended an existing trait-based solitary bee model by incorpo-
rating a  toxicokinetic-toxicodynamic module to capture
individual-level effects of pesticide exposure. Capera-Aragones et al.
(2025) linked a colony-level DEB model for bumblebees with spatially
explicit predictions of forager distributions, using a system of differen-
tial equations and MaxEnt methods to manage computational demand.
Addressing the limited availability of hoverfly models, App et al. (2025)
developed an IBM that simulates in detail the life cycle and movement
behaviour of Episyrphus balteatus. App et al. (2025) follow a similar
approach to BumbleBEEHAVE (Becher et al., 2018, P8) (for example in
terms of the landscape representation, use of cohort-based life stages,
and tracking of energy gain and expenditure) to predict population re-
sponses to resource availability at the landscape level. These publica-
tions reflect sustained momentum in pollinator model development
(Fig. 2) and are not matched by recent progress in earthworm population
modelling.

Small-bodied yet highly mobile invertebrates such as bees and hov-
erflies present particular difficulties regarding the realism-tractability
trade-off due to the need for large model spatial extents relative to
resolution. However, future directions in earthworm modelling also
pose significant tractability challenges, with calls for further integration
of the complex feedbacks between earthworms and soil properties
alongside extension of models to larger spatial scales (Johnston et al.,
2018; Reed et al., 2016). More informed predictions of spatiotemporal
earthworm population dynamics at the field level could address key
evidence gaps in agricultural management and ecological risk assess-
ment (Bartlett et al., 2010; Schneider and Schroder, 2012). Cross-taxon
approaches that support the application of mechanistic models across
broad spatial extents will therefore be highly valuable and contribute to
reduced siloing in ecological modelling.

4.4. Strategies to advance ecological models for evidence-based land
management

Optimising model structure for a specific species, management
question, and spatial scale allows model development to fall within the
Medawar zone of effort versus payoff, leading to models that appear
suitable for, and may perform well in, a certain context (Grimm, 2023;
Wang et al., 2024). Nevertheless, the potential for enhanced predictive
power and transferability across management scenarios, environmental
conditions, and geographic regions provides a strong rationale for
focusing modelling efforts towards approaches that enable greater bio-
logical realism over broader spatial extents (Grimm and Berger, 2016a;
Radchuk et al., 2019; Schuwirth et al., 2019; Topping et al., 2015).
Systematic model testing is a crucial next step for quantifying the rela-
tionship between biological realism, spatial extent, computational
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demand, and predictive performance (Grimm and Berger, 2016b;
Johnston, 2024). Where possible, building on the progress made by
existing models (for example, adapting an energy budget for a new
species or using established theories of behavioural decision-making)
will allow for more effort to be put towards model implementation,
modification, and testing (Grimm, 2023; Grimm et al., 2017; Thiele and
Grimm, 2015).

Several strategies are available to streamline this process. Deep-
shallow model comparison can be used to systematically simplify a
complex model to identify a minimum realistic model at a new spatial
scale (Fulton et al., 2003; Raick et al., 2006). Pattern-oriented modelling
(POM) evaluates the ability of alternative submodels to reproduce
multiple empirical patterns across different spatial scales and ecological
levels (Gallagher et al., 2021; Grimm et al., 2005; Grimm and Railsback,
2012; Wang et al., 2024). Complementing POM, robustness analysis
(RA) involves making modifications to model structure and parame-
terisation to identify robust explanations of system behaviour (Grimm
and Berger, 2016b). Rejection-Approximate Bayesian Computation
(ABC) further provides a quantitative method for comparing submodels
with different structures while accounting for variations in complexity
and uncertainty (Grimm and Berger, 2016a; van der Vaart et al., 2016).
These strategies can help reveal relationships between mechanisms,
processes, and system behaviour across spatial scales, providing evi-
dence for where higher biological realism is important and where effi-
ciencies can be gained. It may not always be possible to initiate these
strategies with highly detailed (sub)models, depending on existing
models of the intended species or the availability of suitable
individual-level data for model development. However, identifying
knowledge gaps that cause parameter and structural uncertainty
through model development and testing can guide empirical research,
thereby enabling greater biological realism and improved predictions in
future model iterations (Railsback et al., 2025; Urban et al., 2016).

Systematic model testing will underpin the development of more
predictive models at management-relevant spatial scales. In turn,
adaptive management practices provide the opportunity to test models
in a real-world setting, where the implementation and monitoring of
land management interventions generates empirical data to inform
iterative model refinement and validation (Lahoz-Monfort et al., 2014;
Perry and Bond, 2013; Schuwirth et al., 2019). Validation is essential for
assessing model predictive performance and should ideally encompass
transferability, requiring independent data sets that also represent
distinct conditions (Schuwirth et al., 2019; Wenger and Olden, 2012).
New monitoring requirements associated with national AES schemes
and the European Union’s Nature Restoration Law are set to improve
future data availability for earthworms and pollinators (European
Commission, 2024; Rural Payments Agency, 2023). Models that can
incorporate greater biological detail at broad spatial extents will be best
able to make use of both large-scale data sets for model validation and
individual-level data for parameterisation, to improve the reliability of
predictions supporting management decisions (Railsback et al., 2025;
Rouabah et al., 2024; Singer et al., 2016; Urban et al., 2016).

Transparency in model development must be accompanied by
consistent model communication to overcome the culture of siloed
modelling in ecology and increase the accessibility of biologically real-
istic models for decision support (Gregr and Chan, 2015; Grimm, 202.3;
Grimm and Berger, 2016a; Schuwirth et al., 2019). Model reviews and
comparisons provide a synthesis of existing approaches that is crucial for
guiding future modelling efforts but can be hindered by unclear termi-
nology and incomplete model documentation (Grimm, 2023; Thiele and
Grimm, 2015). Consistent and precise use of key terms aids the identi-
fication and categorisation of relevant models (Schmolke et al., 2010a).
However, the terms ‘mechanistic’ and ‘process-based’ are often used
interchangeably, obscuring a critical distinction between ecological
modelling approaches (Johnston, 2024). Discrepancies in model
reporting make it difficult to locate information about model structure,
whereas articles that adopt the Overview, Design concepts and Details
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(ODD) protocol (Grimm et al., 2020a) or the TRAnsparent and
Comprehensive Ecological modelling documentation (TRACE) frame-
work (Grimm et al., 2014) facilitate clearer model comprehension and
here enabled more direct evaluation using our biological realism scores.

5. Conclusion

Biologically realistic models are essential for predicting emergent
population responses under alternative land management scenarios and
changing environmental conditions. Yet, model development faces a
fundamental trade-off between realism and tractability, which is
magnified with increasing spatial extent. Our novel biological realism
scores reveal how existing earthworm and wild pollinator population
models address this trade-off through species- and scale-specific ap-
proaches. Consequently, there remains a need for greater integration of
physiological and behavioural mechanisms across broader spatial ex-
tents and alongside other essential elements for representing detailed
land management and environmental scenarios (e.g. resource dynamics,
landscape heterogeneity, weather, climate). We propose systematic
model testing across spatial scales as a crucial next step to advance
predictive ecological models. This process would: (1) enable further
quantification of the relationship between biological realism, compu-
tational demand, predictive performance, and spatial extent; (2) facili-
tate the identification of new approaches to resolve the trade-off
between realism and tractability; and (3) ensure decisions about model
structure are explicit, supporting transparent model communication.
Our biological realism scoring scheme complements this process by
providing a framework to categorise, communicate, and compare key
model elements. The scoring scheme will benefit from further testing
and refinement to ensure its applicability across diverse taxa and model
types and establish its use across model development, reporting, and
comparisons. Lastly, integrating model development with empirical
research and adaptive management practices will be essential for
accessing data to support reliable predictions. Together, these de-
velopments will be critical to strengthening the role of ecological models
in evidence-based land management.
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