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The recent pandemic outbreak has posed significant challenges for medical research, particularly in drug discovery. Machine
learning (ML) has become increasingly prevalent in various stages of drug discovery, aiming to support the advancement
of new drug research while reducing time and cost investments. Furthermore, the emergence of quantum computing and
quantum machine learning (QML) represents a significant advancement in this field, offering the ability to tackle the complex
processes involved in drug discovery. This review provides a comprehensive perspective, comparing advanced QML to
classical ML in drug discovery applications including drug design, virtual screening, and ADMET (absorption, distribution,
metabolism, excretion) and toxicity prediction. Additionally, we summarize the current applications of QML algorithms to
real-world data sets utilized in clinical research and drug discovery.

Additional Key Words and Phrases: Quantum Machine Learning, Drug Discovery and Development, Medical Research

1 Introduction

In recent years, the emergence of the COVID-19 pandemic has indicated the significant role of drug discovery,
attracting substantial attention from scientists in various disciplines. Drug discovery is the process of identifying
a disease target such as protein, DNA, RNA and receptors to find an appropriate drug that is capable of preventing
the disease and improving the lives of patients [111]. As shown in Fig 1, drug discovery involves five main
stages: identifying target and validation, lead optimization, pre-clinical testing, clinical trials, and Federal Drug
Administration (FDA) approval [31]. From 2009 - 2018, the FDA has approved over 350 new drugs, approximately
35 drugs per year from this period [184]. From 2019 to the present, the FDA has approved 259 new drugs, nearly

Corresponding authors are Trung Q. Duong and Hyundong Shin.

Authors’ Contact Information: Hoang Phi Yen Duong, Electrical and Computer Engineering, Memorial University, St. John’s, Newfoundland
and Labrador, Canada; e-mail: yhpduong@mun.ca; Syed Muhammad Abuzar Rizvi, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
(the Republic of); e-mail: smabuzarrizvi@khu.ac.kr; Brad McNiven, Memorial University, St. John’s, Newfoundland and Labrador, Canada;
e-mail: bm2570@mun.ca; Thanh Tuan Nguyen, University of Greenwich, London, United Kingdom of Great Britain and Northern Ireland;
e-mail: tuan.nguyen@greenwich.ac.uk; Hyundong Shin, Kyung Hee University, Dongdaemun-gu, Seoul, Korea (the Republic of); e-mail:
hshin@khu.ac.kr; Octavia Dobre, Memorial University, St. John’s, Newfoundland and Labrador, Canada; e-mail: odobre@mun.ca; Trung Q.
Duong, Memorial University, St. John’s, Newfoundland and Labrador, Canada and Queen’s University Belfast, Belfast, United Kingdom of
Great Britain and Northern Ireland and Kyung Hee University, Suwon, Republic of Korea; e-mail: tduong@mun.ca.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 1557-7341/2025/12-ART

https://doi.org/10.1145/3785660

ACM Comput. Surv.


https://orcid.org/0000-0002-8748-5826
https://orcid.org/0000-0002-1871-4058
https://orcid.org/0000-0003-3111-1419
https://orcid.org/0000-0003-0055-8218
https://orcid.org/0000-0003-3364-8084
https://orcid.org/0000-0001-8528-0512
https://orcid.org/0000-0002-4703-4836
https://orcid.org/0000-0002-8748-5826
https://orcid.org/0000-0002-1871-4058
https://orcid.org/0000-0003-3111-1419
https://orcid.org/0000-0003-0055-8218
https://orcid.org/0000-0003-3364-8084
https://orcid.org/0000-0001-8528-0512
https://orcid.org/0000-0002-4703-4836
https://orcid.org/0000-0002-4703-4836
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3785660

2 « H.P.Yen Duong et al.

43 drugs per year [32]. The drug discovery process is time-consuming and requires huge investment sums. For
example, successful FDA approval of a new medicine can require more than $2 billion over a timescale of 13 - 15
years [107]. This is risky, however, as the process of drug discovery carries many challenges and a high possibility
of failure. For instance, approximately 50% of drug discovery fails in lead optimization, which is attributed to poor
pharmacokinetic properties, including absorption, distribution, metabolism, excretion, and toxicity (ADMET)
[77]. In clinical trials (late stage), more than 90% of cancer drugs fail [58].

The first step of drug discovery and development is to discover the best targets (i.e., proteins, genes, and
receptors) and each target plays a different role for treating and preventing disease. The challenge of this step
is to identify which targets (which are usually proteins) are relevant and more significantly to confirm their
role in disease. Researchers will often focus on understanding cellular networks of proteins or pathways and
help to find the most appropriate target for a drug. After determination and validation, the list of molecules is
identified and screened based on a variety of factors, including pharmacological activity and ADMET [34]. The
critical purpose is to narrow down the selection to a smaller group, a process known as lead optimization [10].
The process from target identification to lead optimization encounters several challenges, such as conducting
numerous extensive experiments, performing statistical analysis, virtual screening of compound libraries, and
synthesizing new compounds [28]. Therefore, solving these difficulties effectively at this initial stage contributes
to increasing the likelihood of success in the following stages [84]. To overcome these challenges, artificial

"*

L] S
- f
= ¢ |
Disease
Chemical Compound = 5
. 8 . sl Cell .  Animal |
e = PER TN
! / i \ T 1g
\ . (Y \ ‘,‘/ <

TARGET DISCOVERY LEAD OPTIMIZATION S PRE-CLINICAL TRIAL

° Py Py Py N
>

Fig. 1. The general drug discovery pipeline.

intelligence (Al) including machine learning (ML) has increasingly been utilized in the pharmaceutical industry
[33] and has been used widely in the discovery process and drug design. ML can learn and convert chemical
molecular structures into computer-readable data by using available data from the library such as PubChem,
ChEMBL, DrugBank and others (described in detail in section 4). These libraries offer extensive datasets that
can be used to train ML models for various applications in drug discovery, such as predicting the biological
activity of compounds, understanding molecular properties, and aiding in the design of new drugs. The main
categories of ML approaches are divided into structure-based (SB) and ligand-based (LB) [119]. The SB method
is appropriate when the three-dimensional (3D) structure of the target is known [21]. These structures have
been well established through experiments or computational modelling, and then a docking algorithm is used to
determine the positioning of the interaction between the target (protein) and the drug (ligand). A scoring function
is used to score and rank these compounds, which are then verified through experimental tests. Suppose the 3D
structure of the target is not available, the 3D structure is predicted through X-ray crystallography and nuclear
magnetic resonance spectroscopy [11]. Applying ML to obtain the structure of a protein involves predicting
its 3D conformation based on the available amino acid sequence data, which indicates how the protein folds
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and arranges itself in 3D space. Without information about the 3D structure of proteins, the LB approach is
used as a primary step. Based on the quantitative structure-activity relationship (QSAR) model, the selection
of candidates has been carried out by comparing the structures to a set of known active ligands based on their
molecular similarity index and evaluating their performance [189].

The application of ML in drug discovery also has several drawbacks. One example is dealing with the fast-
folding of the protein as well as very small peptides in the protein structure prediction stage [18]. Moreover,
the accuracy and reliability based on training models [9] and the scoring function [44] can vary significantly
between different protein systems and can result in predictions that poorly match experimental data. The specific
cause of errors in the scoring function remains unclear. However, it is believed to be influenced by several factors,
including the spatial arrangement and electronic nature of atoms, as well as their interactions with the target
biological macromolecule. These factors collectively affect the pharmacological activity of the drug [101]. The
most accurate predictions come from density functional theory (DFT), but these calculations are limited to small
molecules and receptor fragments [23]. To tackle these issues, quantum computing has been established for many
applications in drug discovery and development. The new quantum computing demonstrate higher accuracy
than classical methods [74]. Compared to classical computing, quantum computing could use large amounts of
information from available biochemical data to accelerate drug discovery, and increase the speed of problem-
solving exponentially [194]. Rapid advances in quantum machine learning (QML) techniques are gradually closing
the gap between classical computing and synthetic chemistry [150]. QML plays an important role in replacing
traditional ML methods by offering unprecedented computational power and precision. Quantum computers
can perform many calculations simultaneously through the principle of superposition, where a quantum bit
(qubit) can represent both 0 and 1 at the same time. This allows quantum algorithms to process and analyze
large datasets much faster than classical computers, which process data sequentially [62]. In addition, quantum
computing can solve the data problem in drug discovery research, potentially increasing screening capacity from
millions of molecules to trillions through fragment-based combination libraries, a million-fold increase in scale.
QML has shown strong potential to revolutionize multiple aspects of drug discovery. One key area is molecular
property prediction, where QML enhances the evaluation of ADMET properties, a critical yet costly step in
pharmaceutical R&D. Another important direction is docking simulations and binding affinity estimation. Hybrid
quantum-classical models that integrate 3D convolutional neural networks (CNNs) with spatial graph CNNs
have improved prediction accuracy by about 6% over classical models, outperforming traditional docking tools
such as AutoDock Vina and DIFFDOCK in several benchmarks [52]. Another study showed that replacing the
first layer of a classical 3D-CNN model with a quantization layer reduced model complexity by 20% and training
time by 40% without affecting prediction accuracy [51]. QML also contributes to protein structure prediction
and quantum chemistry through variational quantum algorithms (VQAs), particularly the variational quantum
eigensolver (VQE), which estimates ground-state energies of peptides with higher accuracy and efficiency than
traditional molecular dynamics simulations [129]. QML holds promise in biomarker identification, supporting
precision medicine by uncovering key molecular signatures. In the coming years, companies such as IBM and
Origin Quantum are expected to launch quantum processors with more than 1000 qubits, which will bring a
breakthrough to the research field of QML applications in drug discovery [140].

In this paper, we concentrate on the utilization of QML to enhance the application of ML in the field of
drug discovery and replace currently employed classical computing methods for solving specific computational
problems, as shown in Fig. 2. As a consequence of that, we emphasize the significance of quantum computing
applications in research and shed light on the associated challenges, all towards the common goal of contributing
to sustainable economic development.
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Fig. 2. The overview in drug discovery with quantum machine learning

2 Related Works, Contributions and Novelty

2.1 Quantum Computing and Quantum Machine Learning in Drug Discovery

In recent years, reviews published from 2018 to 2025 as summarized in Table ??, have captured a comprehensive
picture of the rapid development of QML and quantum computing in drug discovery. These reviews cover
theoretical foundations, practical applications, and remaining challenges. In the strategy and integration group,
Ginex et al. [65] emphasize quantum mechanical (QM) strategies combined with ML to maintain high accuracy
at lower computational costs; Cova et al. [43] highlight the role of Al and quantum computing in the industry,
pointing to large-scale molecular comparison; Blunt et al. and Santagati et al. [22, 152] provide a balanced view
of the opportunities and challenges in applying quantum computing to drug design, especially for predicting
interactions in complex cellular environments. In the applications group, Cao et al. [29] discuss the potential of
quantum computing for quantum chemistry simulation, optimization, and ML acceleration; Li et al. [106] review
QML approaches for drug discovery, including quantum biomimetic models for small molecules. Several reviews
address current challenges, such as limitations of quantum hardware in the noisy intermediate-scale quantum
(NISQ) era, data requirements, quantum embedding, and scalability issues. For example, Pyrkov et al. [140] focus
on feasible strategies on NISQ devices for biomimetic chemistry and drug discovery, highlighting the potential
for exponential speedups in certain problems; Kumar et al. [102] extend the scope to CADD, quantum simulation,
quantum chemistry, and clinical trials.

In the QML application group, Avramouli et al. [7] provide the first systematic review of QML applications
across the entire drug discovery pipeline (2017-2022), and compare the performance of QML with classical
and hybrid methods, classifying five major algorithmic groups. More recently, Haque, Azizul et al. [71] give a
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comprehensive overview of QML for property prediction, binding affinity, docking, and de novo design; Smaldone
et al. [165] review QML on gate-based platforms for both academia and industry. Finally, Zhang et al. [191] survey
quantum algorithms for molecular systems, including approaches towards fault-tolerant quantum computing. All
reviews focus on applying quantum computing or QML in drug discovery. The common goal is to use quantum
technology to accelerate research, reduce costs, and improve efficiency in drug discovery and development.

2.2 Contributions and Novelty

Our review makes several unique contributions that distinguish it from previous surveys on QML and quantum
computing in drug discovery: Focus and Structured Framework: This study not only synthesizes existing
works but also introduces a structured taxonomy of QML methods, while highlighting research challenges and
outlining a road ahead for future development. It emphasizes the use of QML to enhance ML applications and to
replace classical computational approaches for specific problems, underlining the transformative role of quantum
computing. Emphasis on Quantum-Inspired Technologies: A key distinctive aspect of our review is its
dedicated attention to quantum-inspired technologies. In-depth Analysis of Classical Computational Limits:
Our review clearly articulates the computational bottlenecks of traditional ML techniques when dealing with
massive datasets (thousands to billions of molecular descriptors). This serves as a key motivation for pursuing
quantum-based solutions to overcome these challenges. Comparison of Data Encoding Approaches: Our
survey provides a clear comparison between classical encodings (binary bits, 0/1) and quantum encodings (qubits
in superposition and entanglement) for molecular representation, discussing their computational basis and
potential advantages. Overall, unlike individual studies that contribute to specific aspects of QML or quantum
computing in drug discovery, our review emphasizes the aspect of being both a comprehensive synthesis and
a roadmap towards the future. It not only summarizes the advances but also provides a structured analysis,
identifies challenges, and highlights the potential of quantum computing in the field of drug discovery and
development.

3 Classical Al in Drug Discovery

Drug discovery is a complex and time-consuming process that traditionally involves extensive laboratory
experiments and clinical trials. The landscape of drug discovery is rapidly evolving with advancements in
computational methods, biotechnology, and novel experimental approaches. Al and ML have emerged as a
powerful tool that can accelerate and enhance drug discovery by automating tasks, analyzing vast amounts of
data, and predicting outcomes. These technologies are revolutionizing drug discovery by predicting drug-target
interactions, optimizing drug candidates, and identifying novel pathways for drug development. We highlight
several Al approaches in the field of drug discovery

(1) Machine Learning (ML) and Deep Learning (DL): ML and DL have emerged as core technologies in
Al-driven drug discovery. Studies have highlighted their application in predicting drug-target interactions,
ADME properties, and toxicological profiles. Several types of ML algorithms are used in the field of drug
discovery, with some examples being Decision Tree [154], Naive Bayesian [100], Support Vector Machines
(SVM) [26], Random Forests (RFs) [171], and DL algorithms like convolutional neural network (CNN)
and Recurrent Neural Network (RNN). These two networks are frequently employed for their strong
predictive performance in chemical property prediction and biological image analysis. A DL technique
named deepDTnet [188] was created to identify new targets and repurpose drugs within a complex network
involving drugs, genes, and diseases. This method incorporates various profiles, e.g., chemical, genomic,
phenotypic, and cells. By applying deepDTnet, researchers predicted that topotecan, a drug known as
a topoisomerase inhibitor, could potentially be utilized for treating multiple sclerosis. DNNs have been
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applied to repurpose existing drugs with proven activity against viruses like SARS-CoV, HIV, and influenza
by predicting their interactions with viral proteins[94].

(2) Natural Language Processing (NLP): NLP methods like Named entity recognition (NER) and Relation
Extraction (RE) play vital roles in biomedical fields. They help extract important details from scientific
papers, patents, and databases of clinical trials. This assists in formulating hypotheses and pinpointing
new potential treatment objectives. This capability significantly reduces the time spent on literature
review and data interpretation, streamlining the initial stages of drug discovery. Several models have been
pretrained on biomedical literature and produce state-of-the-art results on biomedical text mining tasks,
entity recognition, relation extraction, and patient enrollment tasks. BioBERT [105] has revolutionized
biology research by enabling the rapid extraction of information from the research literature. SciBERT
[16] addressed the challenge of acquiring labelled data in scientific domains by leveraging unsupervised
pre-training on a large corpus of scientific data. ClinicalBERT [82] can help researchers and clinicians
extract valuable insights from clinical notes, enhance personalized medicine, and optimize patient care
delivery.

(3) Reinforcement Learning (RL): RL approaches have shown promise in optimizing chemical structures
and synthesis routes for novel compounds. By iteratively learning from trial and error, RL algorithms
can propose novel chemical entities that meet desired criteria, accelerating the hit-to-lead phase of drug
discovery. ReLeaSE (Reinforcement Learning for Structural Evolution) [137] integrates deep and RL for
designing molecules with desired properties. Research presented in [161] used RL targeting molecule
generation and personalizing drug design. This approach aimed to optimize molecule properties and
accelerate the drug development process. Furthermore, Ref. [70] presented a unified framework for using
RL in de novo drug design. They developed an RNN-based policy to generate new molecules predicted to
be active against the dopamine receptor DRD2.

The study explored various on- and off-policy RL algorithms and their impact on generating molecules
predicted to be active against specific receptors.

(4) Generative Modeling: Adversarial autoencoder (AAE) models, e.g. druGAN [90], were used for generating
novel anti-cancer molecules. Researchers have developed generative models like variational autoencoders
(VAEs) combined with RL to design novel drug candidates with desired properties for diseases like cancer
[141]. The MedGAN model, which combines Wasserstein GAN and graph convolutional networks (GCN),
has successfully generated novel quinoline-scaffold molecules with high efficacy [116]. Wasserstein GAN
was designed to improve the stability and quality of the training process and generated outputs. It used of
the Earth mover’s distance as a measure of how different two probability distributions are.

In summary, the advantages of using Al and ML in drug discovery include accelerated identification of drug
candidates, improved decision-making processes, enhanced predictive capabilities for properties and interac-
tions, efficient chemical synthesis, personalized medicine prospects, and overall cost-effectiveness in the drug
development pipeline. Despite the growing excitement around the application of Al in drug discovery, there
are several limitations and challenges. One of them is ensuring the availability of appropriate data. Al methods
rely heavily on vast amounts of detailed and high-quality data to learn and make predictions. Mining a large
volume of accurate and relevant information for training purposes is not easy and computationally costly. Recent
advancements in quantum computing hold the promise of revolutionizing drug discovery. Quantum algorithms,
the backbone of quantum computing, provide researchers with a powerful new tool. These algorithms can tackle
the intricate complexities of molecular interactions, potentially speeding up drug discovery. By leveraging these
cutting-edge algorithms, scientists aim to achieve highly accurate predictions of how drugs interact with their
targets within the body, a critical aspect of developing effective treatments. Accurately predicting drug-target
binding affinities enables researchers to forecast the efficacy of medicines.
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4  Quantum Computing

Quantum computing represents a paradigm shift in information processing, harnessing the non-classical principles
of quantum mechanics to perform computations that are infeasible for conventional digital computers. By
exploiting phenomena such as larger Hilbert spaces, superposition, entanglement, and quantum interference,
quantum systems can encode and manipulate information in fundamentally richer ways than their classical
counterparts [128]. These intrinsic properties provide computational advantages for certain problem classes,
offering the potential for exponential speedups over the best-known classical algorithms. Notable examples
include Shor’s algorithm for integer factorization [163], which threatens the security of widely used cryptographic
schemes, and Grover’s algorithm for unstructured search, which provides a quadratic improvement in search
efficiency [68]. Beyond theoretical breakthroughs, quantum computing holds promise for practical applications
in quantum simulation, enabling accurate modeling of complex molecular systems and materials at the atomic
scale [29], in combinatorial optimization, with implications for logistics and scheduling [72], in financial risk
modeling[132], and in ML, where quantum-enhanced models can exploit high-dimensional feature spaces
inaccessible to classical methods[118].

The rapid evolution of the field over the past decade has been driven by simultaneous advances in quantum
hardware, algorithm design, and software toolchains. Experimental demonstrations of quantum advantage [6]
have validated the feasibility of executing specific tasks more efficiently on quantum processors than on state-
of-the-art supercomputers. Industrial and academic stakeholders are heavily investing in the development of
scalable architectures, robust error-correction techniques, and domain-specific quantum applications. Present-day
quantum computers operate in the NISQ regime [138], characterized by tens to hundreds of noisy qubits without
full fault tolerance. While current hardware is limited, it already enables proof-of-concept demonstrations and
hybrid quantum-—classical workflows that integrate quantum subroutines into classical algorithms.

4.1 Qubits and Quantum Gates

In quantum computing, the fundamental unit of information is the quantum bit, or qubit, which unlike a
classical bit restricted to discrete values of 0 or 1, a qubit can occupy a coherent superposition of both basis
states, enabling the simultaneous representation of multiple computational paths. Qubits can also be entangled,
producing non-classical correlations that underpin quantum parallelism and many quantum algorithms. State
manipulation is achieved through quantum gates, which are deterministic, reversible operations represented by
unitary transformations. Single-qubit gates, such as the Pauli-X, Y, and Z gates, apply rotations about specific axes
of the bloch sphere, while the Hadamard gate creates uniform superposition states. Multi-qubit gates, such as the
controlled-NOT (CNOT) and controlled-phase (CZ), are essential for generating entanglement and implementing
conditional logic, enabling universal quantum computation when combined with a complete set of single-qubit
gates.

Upon completion of gate operations, quantum information must be extracted through the process of measure-
ment, which projects each qubit onto a classical basis state with a probability determined by its prior quantum
state. This collapse of the wavefunction is irreversible and inherently probabilistic, introducing variability into
the computation results. To mitigate sampling uncertainty, quantum algorithms often require repeated circuit
executions, or “shots,” to obtain statistically meaningful distributions over measurement outcomes. The outcomes
are then post-processed on classical hardware to infer the solution to the computational problem, often involving
aggregation, error mitigation, and statistical analysis [128].

ACM Comput. Surv.



8 « H.P.Yen Duong et al.

4.2 Quantum Algorithms

A variety of quantum algorithms have been developed, ranging from those requiring error-corrected, large-scale
quantum computers to more NISQ-friendly algorithms that can run on imperfect hardware. Below we highlight
some prominent quantum algorithms and their relevance in drug discovery:

e Shor’s Algorithm: Shor’s algorithm, introduced by Peter Shor in 1994, is one of the most significant

quantum algorithms due to its capability to solve the integer factorization problem exponentially faster
than the best-known classical algorithms [163]. Given a composite integer N, the task is to find its prime
factors, which is classically believed to be intractable for large N and underpins the security of widely used
cryptosystems such as RSA.
While factoring itself is not a drug discovery task, Shor’s result was foundational, it proved the viability of
quantum speedup and spurred interest in quantum computing’s potential to tackle other complex problems.
The ability to perform certain computations (like finding eigenvalues or solving discrete logarithms)
exponentially faster has dramatic implications, motivating research into whether similar speedups can be
achieved for chemistry and optimization problems relevant to pharmaceuticals.

e Grover’s Algorithm: Grover’s search algorithm [68] provides a quadratic speedup for unstructured search

problems. In a database of N items, a classical search takes O (N) time in the worst case, whereas Grover’s
algorithm can find a marked item in O(VN) steps. It works by iteratively amplifying the amplitude of the
target state using an oracle and an inversion-about-the-mean operation.
In principle, Grover’s algorithm could accelerate virtual screening by treating the search for a molecule with
desired properties as an unsorted search problem. In this context, an extended and modified Grover’s search
algorithm has been proposed for protein-ligand docking site identification [110]. Additional methods and
applications may be investigated to obtain computational speedups in searching through astronomically
large chemical spaces.

e Quantum Fourier Transform (QFT) and Quantum Phase Estimation (QPE): QFT is the quantum

analogue of the discrete Fourier transform, efficiently mapping quantum states into frequency space. It is a
fundamental subroutine in many quantum algorithms, most notably Shor’s factoring algorithm, where it
enables efficient period finding. QPE builds upon the QFT to estimate the eigenvalues of unitary operators.
By encoding phase information into quantum states and extracting it through the QFT, QPE achieves
exponential speedups over classical eigenvalue estimation methods. It is a core component of algorithms
for factoring, quantum simulation, and solving linear systems [2].
In the context of drug discovery, QPE plays a central role in algorithms for simulating molecular systems,
enabling the calculation of electronic energy levels of drug molecules and protein active sites with high
precision [182]. Looking ahead, fault-tolerant implementations of QPE could make it possible to solve the
electronic Schrédinger equation for complex biomolecules exactly, providing predictive capabilities beyond
the limits of current classical approximations. Such advances hold the potential to significantly accelerate
the identification and optimization of novel therapeutic compounds [131].

e Variational Quantum Eigensolver (VQE): The VQE is a hybrid quantum-classical algorithm tailored
for the NISQ era [135], primarily used to find the ground state energy of a quantum system [175]. In this
framework, the quantum hardware is used only for short circuits to evaluate an energy objective, while a
classical computer performs the optimization loop. The VQE has been successfully applied to compute
ground-state energies of small molecules such as H,, LiH, and BeH; [91]. In some cases, incorporating error
mitigation or partial error correction, VQE on early quantum processors has achieved chemical accuracies
beyond those obtainable with brute-force classical diagonalization [121], underscoring its potential.

For drug discovery, the VQE offers a route to quantum computational chemistry calculations, enabling the
determination of minimum-energy conformations of drug-like molecules, evaluation of reaction energetics,
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and computation of properties dependent on electronic structure [13, 30]. Although current demonstrations
are limited to small molecules, improvements in hardware will extend VQE applicability to pharmaceutically
relevant systems. Its iterative nature allows progressive exploitation of higher-fidelity qubits and reduced
error rates to refine accuracy, positioning VQE as a strong candidate for bridging present NISQ devices
and future fault-tolerant quantum computers, particularly in applications of quantum chemistry and drug
discovery [120].

4.3  Challenges

Quantum computing holds the potential to address computational problems that are intractable for classical
systems; however, in the current NISQ era [139], characterized by processors with only a few hundred noisy
qubits and the absence of full-scale quantum error correction, several critical challenges remain. A primary issue
is quantum decoherence and noise as currently qubits are extremely sensitive to environmental interactions,
leading to state collapse and computational errors. Furthermore, high gate error rates necessitate the use of
quantum error correction (QEC), which encodes logical qubits into many physical qubits [39]; however, QEC is
resource-intensive and currently infeasible for large-scale implementations on NISQ devices:

Another fundamental bottleneck is data encoding, the mapping of high-dimensional classical data into quantum
states. Many quantum algorithms, including QML methods, require complex feature maps or amplitude encoding
schemes whose circuit depth scales with data size [155]. This can negate theoretical speed-ups if the cost of state
preparation exceeds that of classical preprocessing. In quantum drug discovery pipelines, inefficient encoding
limits the size and complexity of molecular descriptors or electronic structure data that can be processed on
current hardware.

The absence of scalable quantum random access memory (QRAM) architectures is another issue. Current
quantum devices cannot store or retrieve large classical datasets in superposition, limiting the applicability
of algorithms that assume efficient quantum data access [66]. Without QRAM, data must be re-encoded into
quantum states at each execution, whichis particularly costly for QML applications requiring repeated access
to large feature sets. This bottleneck, combined with the overhead of state preparation, can negate potential
quantum speed-ups in tasks.

Despite these challenges, the field of quantum computing is progressing rapidly: each year brings record-
breaking qubit counts, improved gate fidelities, and enhanced performance benchmarks such as increased
quantum volume and executable circuit depth [6, 89]. If these trends continue, current obstacles are expected to
be gradually mitigated. In the long term, quantum processors are anticipated to operate in synergy with classical
high-performance computing (HPC) resources, forming hybrid workflows capable of addressing problems that are
currently intractable. In pharmaceutical research and development, such integration could dramatically accelerate
the identification, design, and optimization of novel therapeutics by enabling accurate quantum simulations of
molecular systems and drug-target interactions.

5 Quantum Machine Learning (QML)

QML is an interdisciplinary field that combines the principles of quantum computing and ML to create new
algorithms designed to improve the performance and efficiency of ML tasks [20, 55]. QML models typically
comprise classical processing layers implemented with conventional ML models, and quantum processing layers
realized with quantum circuits. The hope is that QML algorithms might train faster, handle higher-dimensional
data more efficiently, or produce more accurate models by leveraging quantum phenomena [156, 158]. This
integration has the potential to transform many domains, including drug discovery, finance, material science,
and optimization [85].
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Researchers are actively advancing the theoretical foundations of QML to realize its full potential and enable
practical applications across diverse domains. To systematically address the challenges and opportunities of
QML, four primary paradigms have been identified based on the origin of the data (quantum or classical) and the
type of processing device employed (quantum or classical) [81, 157]. These paradigms are as follows: Quantum
data with quantum processing (QQ): Data generated by quantum systems are processed using quantum
algorithms executed on quantum computers. Classical data with quantum processing (CQ): Classical data
are analyzed using quantum algorithms implemented on quantum hardware. Quantum data with classical
processing (QC): Data originating from quantum systems are processed with conventional ML algorithms on
classical hardware. Classical data with classical processing (CC): Classical datasets are processed through
traditional ML algorithms on classical computing systems.

In this paper, our primary focus will be on the CQ regime of QML, integrating both the NISQ and fault-tolerant
devices.

5.1 Quantum Support Vector Machines (QSVM)

QSVMs represent an advanced iteration of SVMs, a well-established supervised ML algorithm for classification
and regression tasks. SVMs are effective at constructing hyperplanes in high-dimensional spaces to separate
classes, offering robustness and scalability for large datasets [144]. QSVMs extend this capability by leveraging
quantum states in Hilbert spaces, where classical data vectors are encoded as quantum states to enable kernel
inner-product evaluations in exponentially large feature spaces. This quantum-enhanced kernel computation
captures complex data relationships and nonlinear patterns that are intractable for classical methods, thereby
providing a potential route toward quantum advantage in ML [64]. QSVMs are suited for classification and pattern
recognition tasks, ranging from image classification to large-scale data analysis, where quantum algorithms
might deliver gains in efficiency and accuracy [109].

5.2 Quantum Neural Networks (QNNs)

Similar to classical neural networks, QNNs are composed of layers of interconnected nodes, where each node
is represented by a qubit and the layers are realized through parameterized quantum circuits [1, 15]. The first
stage involves encoding classical data into quantum states using various embedding schemes. A variational
circuit, consisting of parameterized gates that act as trainable weights, is then applied. These parameters are
iteratively optimized to minimize a loss function, analogous to weight optimization in classical networks [172].
QNN architectures encompass quantum feedforward models, quantum convolutional neural networks, quantum
graph neural networks, and quantum recurrent models such as quantum analogs of LSTMs.

In practice, most QNN implementations adopt a hybrid design [148], wherein quantum circuits execute complex
state transformations while classical optimizers perform gradient-based updates and loss minimization. This
hybrid paradigm enables QNN to efficiently capture intricate data patterns [159] and, in some cases, achieve
faster training convergence compared to fully classical methods [86].

QNNs have demonstrated potential in diverse application domains. In computer vision, they enhance image
recognition by extracting complex features from large-scale datasets with high accuracy [108]. In NLP, QNN
support tasks such as sentiment analysis and machine translation by exploiting quantum state representations
to model nuanced language structures [69]. In quantum chemistry and material science, QNNs are employed
to simulate quantum systems for predicting molecular properties, thereby accelerating drug discovery and the
design of novel materials [150].
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5.3 Quantum Generative Adversarial Networks (QGANs)

QGANSs represent a novel integration of quantum computing with classical generative adversarial network
(GAN) architectures, enhancing the generative and discriminative capabilities of traditional models. In classical
GANeS, a generator and a discriminator compete in a minimax game: the generator produces synthetic data, while
the discriminator attempts to differentiate generated data from real samples. QGANs extend this paradigm by
employing quantum circuits as the generator, typically implemented through variational quantum circuits, to
create data distributions that mimic real-world sources. The discriminator, also parameterized and often hybrid in
nature, evaluates the authenticity of the generated data against true datasets [45, 113]. Through iterative training,
the generator improves its capacity to produce highly realistic data, while the discriminator becomes increasingly
adept at classification, resulting in refined generative performance [195].

QGANSs have demonstrated potential in several domains, including data generation, compression, and trans-
formation. In image processing, QGANs can generate high-quality synthetic data and support efficient feature
transformations [80]. They are also applicable to quantum system simulation, where they generate target quantum
states or approximate complex distributions, aiding in the design and validation of quantum algorithms [46].
Furthermore, QGANSs hold promise in scientific discovery by generating accurate molecular structures and
predicting material properties, thereby accelerating advancements in drug discovery and novel material design
[93, 106].

5.4 Quantum Reinforcement Learning (QRL)

QRL is an emerging area that combines quantum computing with RL, a branch of ML in which an agent learns
to make sequential decisions through interactions with an environment to maximize cumulative rewards. .
QRL algorithms extend this paradigm by investigating how quantum systems can either realize the agent’s
decision process or accelerate the learning of optimal policies. In QRL, quantum states can encode the agent’s
policy or value function, while quantum computation enables the evaluation of multiple action trajectories in
superposition. Essentially, QRL applies the principles of RL states, actions, rewards, and feedback-driven learning
within a quantum framework [36, 53]. By representing the agent’s states and actions as qubits, which can exist
in superpositions of multiple configurations, QRL allows concurrent updates of value functions across a large
state space. Furthermore, quantum transformations provide efficient exploration—exploitation strategies, thereby
accelerating the training process compared to classical RL [103].

QRL exhibits wide applicability across several domains where decision-making and adaptive learning are
critical. In combinatorial optimization, QRL enables more efficient approaches to resource allocation, scheduling,
and logistics by simultaneously exploring multiple candidate solutions [124]. In robotics and autonomous systems,
QRL supports fasterlearning of control policies, leading to improved navigation, adaptability, and task execution
in dynamic environments [56]. These applications highlight the potential of QRL to significantly advance both
theoretical research and practical implementations in Al-driven systems.

5.5 Quantum Transformers (QTs)

Transformers have become a dominant architecture in ML, particularly in NLP and vision, due to their self-
attention mechanisms that capture long-range dependencies in data [178]. In QTs, quantum circuits are employed
to realize attention layers, embedding modules, and state transformations, often through parameterized quantum
circuits that serve as trainable components [95]. Quantum self-attention can be implemented by encoding token
embeddings into quantum states and leveraging inner-product estimation or swap tests to compute similarity
between tokens in parallel across Hilbert space. Such mechanisms enable exponentially large feature spaces to be
explored more efficiently than their classical counterparts, particularly for high-dimensional or structured data
[38].
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QTs are a very recent addition to the landscape of QML. Current demonstrations have been largely restricted
to image classification and, to a limited extent, NLP. While theoretical advantages in parameter efficiency and
runtime complexity have been established, applications beyond these domains remain largely unexplored and
present important directions for future research.

5.6 Hybrid Quantum-Classical Models

Hybrid quantum-classical approaches in QML introduce a novel framework that leverages the strengths of both
classical and quantum computing [114, 122]. These models use quantum circuits for certain subroutines or layers
and classical algorithms for the rest of the workload. The rationale is to let quantum compute modules tackle
the parts that might offer a quantum advantage (like computing a kernel, projecting data into a large feature
space, or evaluating a complex wavefunction), while relying on classical processing for tasks that are efficient on
conventional hardware (data preprocessing, simple nonlinear transformations, training loop coordination, etc.).
This division helps circumvent the depth and qubit limitations of NISQ devices, and it often improves overall
performance and stability [147].

Hybrid algorithms frequently employ parameterized quantum circuits, consisting of a sequence of parameter-
ized single- and two-qubit gates with classical optimization techniques to train QML models efficiently. By tuning
these parameters through iterative optimization, parameterized quantum circuits can approximate complex
functions and serve as quantum analogues of neural network layers [35].

Many of the previously discussed QML models are realized through hybrid quantum-classical implementations.
For example, a QSVM can operate as a quantum kernel machine, where the quantum processor computes the
kernel matrix, capturing similarities, while a classical SVM solver determines the optimal separating hyperplane.
Similarly, in QGANS, hybrid architectures that combine a quantum circuit with a classical neural network for the
generator, alongside a classical discriminator, have been shown to be effective. Another representative example is
the quantum convolutional neural network proposed for image classification, in which a compact “quanvolutional”
circuit extracts quantum-enhanced features that are subsequently processed by a classical deep neural network
for the final classification task [75].

6 QML in Drug Discovery

In the field of drug discovery, QML holds significant potential to revolutionize the process by enabling more
efficient identification of novel drug candidates, enhancing molecule design, and predicting ADME-Tox properties.
Quantum algorithms such as Quantum Support Vector Classifiers (QSVC), QGANs, Quantum Convolutional
Neural Networks (QCNNs), and Quantum Variational Autoencoders (QVAEs) have emerged as essential tools for
addressing the complex optimization problems in drug discovery [9] [46] [170].

In recent years, the application of these quantum algorithms has become increasingly important due to
their ability to handle large datasets containing complex molecules more effectively than classical computing.
Integrating these quantum algorithms into the drug discovery workflows presents promising opportunities
for enhancing efficiency and accuracy throughout the drug development pipeline. Similar to classical ML, the
application process in QML follows a consistent framework. It begins with the collection of relevant data,
including molecular structures, biological activity, and pharmacological properties. Subsequently, mathematical
models are constructed to represent the relationship between input features, such as molecular descriptors, and
output variables, such as biological activity. Using mathematical representations of the molecule property to
define the molecular descriptors throughout algorithm generation. For instance, in drug design, LogP (descriptor)
helps predict the lipophilic properties of chemical compounds. This is important because lipophilicity affects
the absorption of drugs across biological membranes, especially through cell membranes [97]. The next step
involves subset selection, where the most informative subset of features contributing to the predictive power
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of the model is identified. Following this, quantum algorithms are employed to train the model on the selected
dataset, with the aim of optimizing model parameters to minimize prediction errors. Finally, model validation is
conducted to assess the performance of the trained model. This validation process involves utilizing techniques
such as cross-validation or holdout validation to ensure the model’s generalization ability on unseen data [73]. By
following this systematic approach, the discovery and development of pharmaceuticals are safer, more effective,
and faster.

6.1 Data-bank

Several types of data sets relevant to drug discovery are identified during an examination of the available big
data landscape. The dataset is classified based on different attributes and conditions. It provides comprehensive
datasets covering various aspects of drug development, from chemical compounds to biological targets and
pharmacological properties [192]. The appropriate data set is chosen depending on the goal and application field
in the drug discovery research process. There are extensive repositories containing diverse chemical collections,
including many drugs, their derivatives (such as metabolites), lead compounds, and drug candidates. In addition,
some collections focus specifically on drug targets, including data related to receptor and protein genomics.
Additionally, some databases store biological information obtained from various studies, such as screening tests,
metabolic assessments, and efficacy studies. In addition to screening, there are repositories dedicated to assessing
the liability and toxicity associated with drugs and other chemicals. By leveraging these diverse sources of big
data, researchers can gain valuable insights in discovering new and effective treatments.

Some of the data banks used in the field of drug discovery and medicine in general are shown in Fig. 3. The
datasets below are illustrated and have been constructed to highlight their unique purposes and contributions to
the fields of drug discovery and medicine. These datasets are sorted to match their primary focus areas, such
as disease, chemical structure, and biological activities. Each dataset is crucial for specific aspects of research,
providing valuable resources for scientists and researchers.

The Broad Institute's Drug Repurposing Hub UniProt
Drug Repur&ng

Bioassay Datasets SymMap
Genomics DisGeNET
Tox21 LINCS L1000
ADMET-Properties Prediction
DILI GDSC

DrugBank
CHEMBL KEGG
Chemical Structure Data-bank Drug-target interaction
PubChem SymMap
SymMap TCMSP
DisGeNET DrugBank

TCMSP CHEMBL

Disease Clinical Information

KEGG PharmGKB

CMap Clinical Trials Data

Fig. 3. An example is outlining the currently employed data bank in drug discovery.
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o ChEMBL: A key dataset widely used for drug discovery by aiding in drug efficacy prediction. It is maintained
by the European Bioinformatics Institute and is one of the largest and most comprehensive resources
available. It provides comprehensive information on small molecules and their biological activities [63].

e DrugBank: Another widely used dataset that contains detailed information about drugs, their targets, and
their interactions. It assists in understanding drug properties and identifying potential drug candidates
[183].

e PubChem: Maintained by the National Center for Biotechnology Information (NCBI), it provides informa-
tion on the biological activities of small molecules. PubChem is a key resource for chemical molecules and
their activities against biological assays [98].

e LINCS L1000: A dataset that captures gene expression profiles after perturbing cells with small molecules.
It helps in understanding the effects of drugs on cellular pathways and enables the identification of novel
drug targets [169].

e Tox21 Data Challenge: A public competition for the use of computational methods to predict chemical
toxicity. Also available is a large dataset of molecules and their toxicity labels [83].

o Drug-induced liver injury (DILI): A databank that the FDA approves based on the analysis related to
liver injury and toxicity [143].

e Genomics of Drug Sensitivity in Cancer (GDSC): A database that contains information on drug
sensitivity in cancer cells and molecular markers of drug response [187].

e The Connectivity Map (CMap): Aims to discover functional connections between diseases, genetic
perturbation, and drug action. This dataset contains expression datasets for thousands of compounds such
as vorinostat, sirolimus, and trichostatin [169].

e The Broad Institute’s Drug Repurposing Hub: Contains a wide variety of biochemical and cell-based
assay results, along with information about many known drugs and compounds that can be used for drug
repurposing research [41].

o The Pharmacogenomics Knowledgebase (PharmGKB): A resource that collects, encodes, and dissemi-
nates clinical information about the impact of human genetic variation on drug responses [174].

e Bioassay Database: Similar to PubChem, the BioAssay Database includes results from biological research
and screen tests on a wide range of bioactive compounds, with applications for Al models in predicting
biological activities [180].

e Clinical Trials Data: Includes datasets derived from clinical trial results, such as those available from
ClinicalTrials.gov or the WHO’s International Clinical Trials Registry Platform, that can be used in Al
models to predict trial outcomes, patient recruitment success rates, or adverse drug reactions [60].

e Universal Protein Resource (UniProt): Provides data on protein sequences and their functions [40].

e SymMap: [s a data set of 1717 symptoms, 5235 disease samples, and 19595 herbal ingredients. SymMap
is based on traditional medicine which has integrated with modern medicine for use in diagnosing and
treating diseases [186]

o KEGG: A comprehensive information resource related to drugs and disease and shows a list of known
disease genes [92]

o DisGeNET: A database containing the largest available genes and human diseases collections, including
rare disease [136]

6.1.1  Dataset Challenges and Quantum Solutions. The growing availability of public and private datasets focused
on small molecules screened against biological targets or organisms provides a valuable resource for drug
discovery research. These datasets contain a wealth of relevant information, including compound structures,
biological activities, and pharmacological properties. To effectively leverage this data, ML algorithms such as
SVMs and deep neural networks are often used to extract complex patterns and relationships from the data,
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enabling the prediction of various drug-related properties and activities. For example, in virtual screening (VS) and
optimization—an important area in the early stages of drug discovery—molecules are characterized by multiple
fingerprint descriptors that can reach thousands of vectors. The study of Batra et al. [9] on the application
of quantum computing to drug discovery, specifically focused on compressing molecular descriptors to make
them compatible with quantum computers, used larger datasets related to Krabbe disease and SARS-CoV-2. This
research demonstrated methods for compressing large molecular descriptors and compared the performance of
SVMs and data reload classifiers on quantum computers and hybrid quantum-classical systems, showing that
quantum computing can handle large amounts of information. Quantum computers have the potential to exploit
massive parallelism and manage exponential growth in data dimensionality, which can significantly accelerate ML
algorithms. Quantum algorithms are expected to provide exponential speedups compared to classical algorithms
for certain classes of problems. One of the greatest potential advantages of quantum computing lies in its
ability to reduce computational complexity. While matrix multiplication in classical deep learning models has a
complexity of O(n®) (and even with improvements remains close to cubic), some quantum-hybrid frameworks
have demonstrated the ability to reduce this to O(n?). This aids in significantly accelerating basic deep learning
tasks, thus improving the efficiency and scalability of QML in applications such as drug discovery.

6.1.2 Computational Limitations and Future Prospects. However, as datasets continue to grow with thousands
to billions of molecular descriptors screened against biological targets, traditional ML techniques on classical
computing face computational limitations. Performing ML tasks on massive datasets with such scale becomes
computationally expensive, as the dimensionality of the data increases along with the complexity of the com-
putational tasks involved. This necessitates efficient computational resources and optimization techniques to
handle the processing and analysis of large-scale datasets effectively. Due to these limitations, quantum computer
algorithms have been proposed as a promising means to accelerate progress in drug discovery, offering potential
solutions to overcome the computational bottlenecks encountered in classical approaches.

6.2 Molecular descriptor selection in drug discovery and quantum computing applications

In the realm of basic research, commercial chemical collections can encompass up to 10° compounds, however, by
incorporating additional proprietary libraries, the number of substances may surge to as high as 102, effectively
rendering the research chemistry space limitless [76]. In the absence of constraints, the accessible chemical space
expands exponentially, which can surpass approximately 10°° compounds for molecules under 500 Da [145]. This
vast chemical diversity is evident in the burgeoning number of biologically active molecules catalogued in open
databases, which now collectively exceeds two million entries [149]. The expansive array of available compounds
underscores the significance of employing both experimental and computational methods to efficiently navigate
and prioritize molecules for drug discovery and development endeavours.

6.2.1 Drug representations. During the 1960s, the emergence of data-based chemistry revolutionized the man-
agement of chemistry-related data. This innovation has ultimately allowed chemical structures to be encoded
and described in a computer-compatible format, facilitating the creation of searchable databases of molecules
and reactions [62]. With the advancement of AI, ML techniques are becoming increasingly indispensable for
the effective processing of chemical data. ML algorithms can analyse large data sets of chemical structures and
related properties, allowing researchers to derive valuable insights and patterns to support drug discovery efforts.
Depending on the correlation between molecular structure as well as drug and biological activities, the choice
of descriptors used to process input data in the drug discovery process is determined. Chemical descriptors are
calculated on different levels of representation of the molecular structure, ranging from 0- to n-dimensional, and
then correlated with the biological property using ML techniques [126]. Typically, descriptors are classified into
many dimensional dependent types, as shown in Fig. 4.
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Fig. 4. Different types of drug representations. This figure is an example of buprenorphine representation from 0D to 4D in
chemical space. These are the normal chemical formulas that need to be encoded into a compatible format for the computer
to read. In this case, the arrow in the clockwise direction shows the computational ability, indicating that from 4D to 0D the
computational resource requirement decreases due to the complicated information. Conversely, the counterclockwise arrow
shows the level of detail in the chemical formula representation; as the dimension increases, the detail in the formula also
increases, characterizing more essential features in space.

o 0D: This.molecular representation is based solely on the chemical formula of the drug, providing extremely
basic information such as molecular weight and the total count of atoms. These descriptors are straight-
forward to calculate and interpret, making them accessible even to those with limited computational
resources or expertise in computational chemistry. However, their major limitation lies in the information
content. Due to this, they are unable to sufficiently differentiate between isomers — molecules with the
same molecular formula but different structural arrangements.

o 1D: These descriptors are used to encode SB drugs in a priority order depending on their substructures,
including important structural orientations such as the ordering of chemical functional groups, number of
rings, number of primary carbon atoms, substituted atoms, and atom-centered fragments. The elements of
a 1D descriptor are typically binary, where the value 1 represents the presence of a particular substructure,
while 0 represents its absence. For atomic order-based, the simplified molecular-input stream entry system
(SMILES) is used for representing a drug with a character string. Atomic order-based refers to the method of
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encoding molecular structures by considering the sequence of atoms, as exemplified by the SMILES notation.
The order of characters in the SMILES string corresponds to the order in which atoms are connected in the
molecule.

o 2D: Takes into account the adjacency and arrangement characteristics of atoms in a molecule, as well as
their arrangement in space. 2D descriptors typically represent atoms as nodes and use edges to represent
their connections to each other. To further enhance the information captured by 2D descriptors, molecular
fingerprints (FP) were introduced, which encode molecules in binary form, and indicate the presence or
absence of particular substructures through a string of binary digits. Each digit in the string represents
the presence (1) or absence (0) of a specific substructure. Commonly used 2D FP include molecular access
system FP, daylight-like FP, and extended-connectivity FP. The input SMILES above also can be used as
input data to transform the data to FP. After using SMILES this binary vector is [1, 1, 0, 0, 1, 1] which
encodes the presence or absence of specific structural features of acetic acid in a simplified 1D format.

e 3D: Represents a complex depiction of a drug’s physical and chemical properties. It encompasses details
regarding the arrangement of a molecule’s atoms, including bond angles, bond distances, and overall
stereochemistry within 3D space. This descriptor is defined by the molecule’s geometrical and spatial
configuration, articulated through x, y, and z coordinates. By capturing such spatial intricacies, the 3D
descriptor unveils essential properties such as hydrophobicity and hydrogen bonding capabilities, which are
pivotal for understanding the molecule’s potential biological activity. This comprehensive representation
enables researchers to visualize and analyze the spatial organization of atoms, empowering them to optimize
the drug’s interaction with its biological target.

e 4D: A complex descriptor derived from a reference mesh and molecular dynamics simulation. It is a voxel,
which is a combination of volume and pixel. Each atom’s presence in space is represented by assigning
a value, describing the specific geographic location where the atom is situated, while empty positions
are denoted by 0. The assigned value can be either 1, signifying the sole presence of an atom, or it may
represent an encoded value associated with the type of atom or a quantum chemical property [3].

6.2.2 Descriptors selection methods and quantum encoding. Descriptors are essential for converting chemical
molecules into consistent numbers or bit strings suitable as input to a model. Figure 5 illustrates various types of
input representations and how they are represented in the field of drug discovery.

6.2.2.1 Descriptors selection methods. Descriptor selection is a critical step in drug discovery for several reasons.
Firstly, choosing the appropriate descriptors enhances model understanding and provides detailed information
about the researched elements; leading to a cost reduction. Secondly, proper descriptor selection reduces noise
and helps avoid over-fitting, ensuring that the model generalizes well to new data. The number of descriptors
used depends on the computational tools available and the number of molecules used in drug discovery. If the
number of descriptors exceeds the number of molecules, errors may arise due to the linear regression model’s
inability to describe each independent molecule adequately. Conversely, if the number of descriptors is too small,
the search space becomes unrealistic, and there may not be enough information to adequately describe the
molecules. Therefore, it is essential to choose descriptors that contain the correct information to avoid noise and
redundancy, allowing for the removal or reduction of size without losing important information.

6.2.2.2 Quantum Computing Approach to Descriptor Selection. In the context of quantum computing, the selection
of descriptors and quantum encoding schemes plays a crucial role in transforming classical molecular data into
quantum processing. Due to the limited number of qubits available in current NISQ devices, directly handling
large molecular representations such as 2048-bit fingerprints is not feasible. This creates a major challenge
of reducing data dimensionality while still preserving the most important information. Principal Component
Analysis (PCA) is a widely used method in drug discovery for dimensionality reduction [1, 57]. This technique
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Fig. 5. Descriptors selection methods and quantum encoding. This figure shows quantum encoding pipeline for molecular
drug data. The framework processes multiple molecular representations (SMILES, descriptors, images, and graphs) through
specialized encoding methods including fingerprint encoding with unitary transformations U (8), sequential image encoding,
and graph-based quantum operations. The quantum encoder combines these inputs using variational quantum circuits to
generate quantum molecular states, which are subsequently decoded for drug analysis applications.

employs singular value decomposition to create lower-dimensional representations of the data, enabling the
compression of hundreds of molecular descriptors into N principal components that fit the available number of
qubits. In addition, Analysis of Variance (ANOVA) with the f-test provides another approach by selecting the N
most significant features based on the numerical structure of the input and the binary classification property
of the output [134]. The study by Batra et al. [12] proposed alternative methods such as splitting molecular
fingerprints into smaller groups and converting them into decimal values, with optimal results obtained when
combining bit-grouping and PCA.

6.2.2.3 Quantum Encoding Techniques. After dimensionality reduction, the feature vectors are standardized
using normalization methods before applying quantum encoding techniques. The ZZ Feature Map is a widely
adopted parameterized encoding method in quantum kernel approaches, where each classical data point is
represented as a real-valued vector and used as rotation angles in single-qubit gates. This process combined
with two-qubit entangling operations, creates quantum superposition states—a linear combination of multi-qubit
basis states with non-trivial input-dependent complex coefficients—embedding the data into a quantum Hilbert
space. However, the ZZ Feature Map is qubit-intensive, as typically one feature is assigned to one qubit. This
makes the implementation of workflows with hundreds of descriptors highly challenging, even for the largest
current quantum processors such as IBM Eagle with 127 qubits [61]. To address this issue, studies often reduce
the number of descriptors to around 47 chemical features, extracted from SMILES representations and processed
through optimal normalization and dimensionality reduction pipelines.
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6.2.2.4 Alternative Encoding Methods. Beyond the ZZ Feature Map, other encoding methods include Angle
Encoding, which encodes real numbers by rotating qubit states around the Bloch sphere axes, and Amplitude
Encoding, which can compress a vector of length N into only [log,(N)] qubits, although it requires a large
number of gates for state preparation [4, 162]. In quantum chemistry applications, after computing the necessary
integrals, the fermionic Hamiltonian can be transformed into a spin Hamiltonian through parity transformation
to save qubits for VQE calculations. The final feature vectors are then used to parameterize the initialization
of the corresponding quantum states, upon which quantum kernel entries are evaluated, thereby forming an
effective bridge between classical molecular information and quantum processing.

6.2.3 Classical vs. Quantum Encoding Methods for Molecular Representation. In drug discovery, there are some
different ways to represent molecules so that ML models can analyze them. Table 1 shows the difference of
classical encoding and quantum encoding using for molecular representation. Classical encoding methods
translate molecules into formats that today’s computers can easily handle. For example, molecular descriptors
and fingerprints turn chemical structures into vectors of numbers or bits, while graph-based models represent
atoms as nodes and bonds as edges [153, 160]. Another widely used format is SMILES strings, which record
the structure as a text sequence. These approaches are powerful and well established, with many successful
applications in virtual screening and toxicity prediction. However, they face natural limits. As molecules become
larger and more complex, the required computations grow very quickly, and such encodings cannot directly
capture true quantum behaviors of electrons that often drive molecular activity.

By contrast, quantum encoding tries to represent molecules using the principles of quantum mechanics
itself. Instead of simple bits, it uses qubits, which can exist in multiple states at once and interact through
entanglement. Several methods have been proposed. For example, MolQAE maps SMILES strings into quantum
states, while Quantum Molecular Structure Encoding (QMSE) directly turns bonds and atomic couplings into
quantum operations. Other techniques, such as quantum kernels, amplitude or angle encoding, and even hybrid
qubit-qumode circuits, allow information to be stored and processed in richer ways than classical methods.
These quantum encodings may compress data more efficiently and capture subtle chemical effects that classical
encodings miss.

Quantum approaches currently have limited by hardware. Quantum computers only have a small number of
qubits, are very sensitive to noise, and often require dimensionality reduction of data before use. Most practical
applications therefore combine quantum encodings with classical processing in hybrid models. If hardware and
algorithms continue to improve, quantum encodings could eventually overcome the exponential barriers of
classical computation and open new ways of modeling the true quantum nature of molecules in drug discovery.

6.3 Application of QML in Drug Discovery

The rapid progression of Al offers great opportunities to address challenges in medicine and society, while also
introducing new obstacles. Classical Al has laid the foundation for emerging computing paradigms, particularly
quantum computing, which has the potential to solve some problems much faster than classical methods. In
theory, quantum computers can process large datasets and run ML algorithms with higher efficiency, and when
combined with QML, they can greatly improve the speed and accuracy of drug discovery.

Next, we discuss the significant potential of QML in transforming the drug discovery process. This process is
usually divided into five main stages. Our work focuses mainly on the early stages, such as target identification,
validation, and lead optimization, since success in these stages strongly influences the later phases. QML can
significantly accelerate these stages through different applications. For example, in virtual screening and hit
identification, QML applies algorithms such as the Variational Quantum Classifier (VQC). For ADME-Tox property
prediction, it uses Quantum Kernel (QK) and QSVC. In drug design, QGAN and QVAE are applied for molecular
generation, while QAOA, VQE, and VQC are used for protein and DNA structure prediction.

ACM Comput. Surv.



20 .

H. P. Yen Duong et al.

Table 1. Comparison of Classical vs. Quantum Encoding Methods for Molecular Representation in Drug Discovery

Aspect Classical Encoding Quantum Encoding Ref.
Computational | Binary bits (0/1). Qubits in superposition and entangle- | [27]
Basis ment.
Representation | « SMILES strings « MolQAE (Quantum Autoencoder for | [25, 133,
Methods « Molecular descriptors (physicochem- | SMILES) 165]
ical properties) « Quantum Molecular Structure Encod-
« Molecular fingerprints (ECFP, Mor- | ing (QMSE)
gan, 2048-bit vectors) + Quantum kernels (e.g., ZZFea-
« Graph Neural Networks (atoms = | tureMap)
nodes, bonds = edges) « Amplitude, angle, Hamiltonian
« Chemical molecule images encodings
« Data re-uploading, tensor embedding,
qubit-qumode circuits
Strengths « Mature, widely adopted in drug | « Captures quantum properties (elec- | [27, 71]
discovery tron correlation, delocalization)
« Supported by existing hard-| - Potential exponential compression
ware/software (e.g., MolQAE)
« Proven success with ML models « Richer feature spaces via entangle-
ment and superposition
Limitations « Exponential growth in molecular | « Limited qubit counts (NISQ era) [24, 138]
state space « Sensitive to noise and decoherence
« Cannot natively capture quantum- | « Expensive state preparation
mechanical properties « Requires dimensionality reduction for
« High computational cost for large | large molecules
datasets
Interpretability| Often abstract (bit vectors, embed- | Some quantum methods (e.g., QMSE) di- | [25, 87]
dings) rectly map chemical features into qubit
rotations, improving interpretability
Current De- | Mature and essential in modern drug | Early stage, mostly proof-of-concept | [47, 165]
ployment discovery workflows and hybrid quantum-classical models
Scalability Limited by exponential scaling of clas- | Potential polynomial or exponential | [125,
sical algorithms speedups, though not yet fully realized | 165]

From 2018 to 2025, numerous studies have shown the growing importance of quantum computing and QML
in drug discovery, with scientific studies gradually improving the methods during this time. Initial studies in
2018 used QM/MM methods to understand how molecules bind to proteins, which helped lay the foundation
for later quantum research. These early efforts led to cutting-edge methods in 2020, when studies introduced a
new quantum-based scoring system for virtual screening and repurposing of COVID-19 drugs, showing superior
results compared to traditional docking methods, while also demonstrating how quantum methods can help solve
health problems. Meanwhile, other studies have created the first QML system to predict toxicity in chemical
compounds, a major step forward in the use of QML for drug safety.

The years 2021 to 2023 have brought major advances as studies develop innovative hybrid methods that
combine quantum and classical computing. New quantum algorithms outperform traditional methods on virus
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data, while advanced frameworks make quantum chemistry predictions more accurate and reasonable, and
quantum systems can create molecules with superior drug-like properties. Additionally, hybrid models combining
different neural network methods achieved significant improvements, including 6% higher accuracy in predicting
how molecules bind to their targets, 20% simpler models, and 40% faster training times, demonstrating the
practical benefits of combining quantum and classical computational methods.

Recent research in 2024 and 2025 has focused on developing more complete and useful quantum computational
tools for drug discovery. New studies have created specialized hybrid quantum systems designed for practical
drug design tasks, while other studies have developed advanced methods for representing molecules using
quantum methods and shown the additional benefits of combining different modeling methods. Most recently,
novel quantum methods have been developed to encode molecular structures, outperforming traditional methods
in both classification and prediction tasks. Meanwhile, comprehensive studies have examined emerging quantum
algorithms for molecular systems, which will be deployed as quantum computers improve, thereby providing a
clear direction for future quantum computing applications in drug discovery.

Overall, these studies demonstrate the strong potential of QC and QML in addressing drug discovery challenges,
from accurate molecular simulations to faster screening and de novo design.

6.3.1 Drug design. In the field of de novo drug design, navigating through chemical space is essential for
discovering new drugs [14]. These new drugs are small molecules with the appropriate structural and functional
characteristics to bind to the receptors of the disease [146]. The application of ML in the process of designing
desired drug molecules is essential for increasing accuracy and shortening research time. In order to discover
the representation of molecules, various generative models have been applied such as GANs, neural networks
and VAEs [99][67]. Based on its probabilistic nature, quantum generative models can offer more comprehensive
algorithms than classical ML ones. Furthermore, compared to classical GANs, quantum GANs have the potential
for stronger expressibility and faster learning which enables the learning of richer representations of molecules
to become feasible. Additionally, quantum GANSs have the ability to explore exponentially expanding chemical
spaces as the number of qubits increases as well as a sample from distributions that may be difficult to model
classically [168].

Due to the complexity of learning the distribution of molecules, a full quantum GAN may struggle to encode
all training data quantum mechanically. To reconstruct synthetic molecules from this dataset, a total of more
than 90 qubits would be needed due to the number of bonds, atoms, and bond types contained in the QM9
dataset [142]. In this study, the QM9 dataset offers quantum chemical properties calculated at the DFT [177]
level for a wide-ranging, consistent collection of small organic molecules. This comprehensive database is
valuable for benchmarking current methods, developing new approaches like hybrid quantum mechanics/ML,
and systematically identifying structure-property relationships. In previous studies, existing gate-based quantum
computers did not support more than 90 qubits (except quantum annealers) for developing variational quantum
GAN algorithms. These limitations were addressed by the proposal of a novel approach that combines quantum
mechanics with a hybrid generator and a classical discriminator to effectively learn molecular distributions based
on the classical MolGAN framework [48, 106]. This hybrid approach is termed the quantum GAN mechanism
with a hybrid generator (QGAN-HG). Unlike the full quantum GAN, this method employs fewer qubits but can
still leverage the advantages of quantum computing over classical computing. Compared to classical MolGAN,
QGAN is less intricate and requires fewer parameters. In this regard, when combined with a reduced version
of MolGAN (with 85% fewer parameters), QGAN-HG only needs 15 quantum gate parameters to reach similar
results. This represents the first successful application of quantum generative models to drug design. Recently,
IBM released a quantum computer with 433 qubits [140], which is an important step forward in addressing the
issues surrounding inadequate numbers of qubits required.
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6.3.2  Virtual Screening (VS) - Hit identification. In the finding of new drugs in drug discovery, VS is used in
silico and is known as an essential computational method [115]. VS methods can search databases for potential
compounds that are likely to interact with a specific biological target (a disease-related protein or enzyme) without
having to immediately perform actual experiments [167]. The primary aim of VS is to enhance computational
efficiency and decrease the number of molecules requiring experimental testing, rather than substituting for in
vitro or in vivo testing. In the ideal case, the structure of the target and the pharmacological binding site are well-
defined. However, when the target is unknown, as was the case during the early stages of the COVID-19 pandemic,
LB approaches are applied. When the SAR-COVID-2 virus first appeared, its protein sequences were unknown,
making SB methodological approaches difficult to implement. At that time, predicting protein sequences was
challenging due to the limited information available in the existing data. Consequently, ligand-based virtual
screening (LB-VS) became the appropriate method to use. This approach accelerates the design process by
exploring molecular descriptors with the available information [164]. A large number of elements with common
characteristics are identified to perform the molecular filtering methods. The main task of this filtration method
is to evaluate the preliminary experiment as well as reduce the chemical dimension space, which is an important
step to support the subsequent screening process. Classical ML is used in LB-VS to train a classifier with the
main purpose of identifying the potential candidates from the digitalised library. Normally, SVMs including
the Support Vector Classifier (SVC) model [42] are a valuable tool for LB-VS because they effectively handle
high-dimensional data, providing robustness against overfitting when dealing with complex molecular datasets
[179]. However, SVC still has it has limitations in processing complexity and scalability [130].

To improve the success rate of classical ML, QML with higher precision is recommended, especially QSVC in
QK methods, which involve mapping classical data into a high-dimensional Hilbert space [185]. This mapping
allows the extraction of patterns from the data that are not easily accessible with classical methods. QSVC
utilizes QK estimation to potentially enhance performance over classical approaches, especially when processing
extensive datasets and intricate feature spaces [112]. This advantage leads to more efficient handling of the
complexities inherent in large-scale data analysis. For example, MENSA [123] presented the novel QML for
the LB-VS workflow as a general framework, combining classical SVC algorithms with QK estimation. This
study provided the prospective quantum advantage of this approach, highlighting its potential to outperform
state-of-the-art classical algorithms in specific instances. In particular, the methodology involves the use of
cheminformatics descriptors (SMILES), feature selection methods, and quantum encoding techniques to train and
evaluate the quantum classifier on real-world datasets, including ADRB2 and COVID-19 [176] [96]. A database
containing SMILES-encoded molecules is utilized to extract diverse molecular features using RDKit. Through
applying various feature reduction and selection techniques, the feature vectors were refined. These vectors
were subsequently utilized to train and evaluate an SVC algorithm. This study compared the performance of
the SVC when trained with classical and quantum algorithms on different hardware types, revealing situations
where quantum simulation outperforms classical methods. These results also demonstrated that the quantum
method can provide a tangible advantage in accuracy and classification performance compared to classical
counterparts, especially as the problem size increases. While facing challenges, especially in achieving robust
quantum advantage with real-world data, QML protocols are particularly promising for complex data scenarios
like LB-VS given their ability to handle extensive information effectively. This research highlighted the potential
of QML in advancing drug discovery processes by efficiently managing large datasets and intricate data structures,
paving the way for the application of QML in drug discovery in the future.

In addition, quantum-inspired technologies are revolutionizing drug discovery with significant improvements
in scale and efficiency. In terms of screening capabilities, while traditional virtual screening methods can only
handle about 10 million molecules statistically from the market, quantum-inspired technologies enable screening
of trillions of molecules through fragment-based combinatorial libraries, representing a million-fold increase in
scale. The improvements in time are even more impressive, with the target discovery process shortened from 15
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months (standard method) to just 7-8 weeks. The overall drug discovery and lead optimization time is shortened
from 3-5 years to just 8 months. Furthermore, the computational efficiency also shows clear advantages while
screening 100 million molecules using traditional methods requires half a million CPU hours, while complex
problems involving large proteins that cannot be solved by conventional computers after 3-4 hours are solved by
Digital Annealer in about 20 seconds. These breakthroughs are the result of a collaboration between Fujitsu and
Polarisqb, combining quantum-inspired technology with ML and quantum mechanical/molecular mechanical
(QM/MM) simulations [59]. Overall, this technology not only significantly expands the chemical search space
but also reduces the time and resources required, promising to fundamentally change the way drug discovery
research is conducted in the future.

6.3.3  Predicting ADMET properties - Lead optimization. AMDET prediction is a crucial stage in the lead optimiza-
tion phase. For instance, approximately 40% of drug failures are attributed to unfavourable ADMET properties,
leading to failures in the final steps of bringing a new drug to market [181]. The prediction of ADMET properties
for chemical compounds is complicated because of the complex physiological properties: To increase the percent-
age of success rate in this process, using ML is a significantly helpful method, and the SVC algorithm is used in
classical ML to perform classification. Moreover, quantum computing combined with ML offers many optimized
solutions beyond what is possible with classical computing alone [127] such as analyses with large datasets and
more efficient performance. The use of QML for ADMET prediction as an alternative or complement to classical
ML approaches due to several potential advantages that QML offers such as handling the huge input data from
thousands to billion molecules with the number of molecules that classical ML could not deal with. Bhatia et
al. [17] presents the prediction of ADMET properties of chemical compounds by using QML, and designed a
framework for this field. This work applied the QSVC algorithm and compared it to the best-known classical
algorithms, which showed the advantages QSVC offered over the classical algorithm due to its noise resistance.
The datasets used in this case are collected from the Therapeutic Data Commons (TDC) including HIA, DILI,
CYP2D6 Substrate and Carcinogens, which are full of chemical compound properties [88] [173] [193]. This study
integrates with open-source cheminformatics RDKit [104], which aims to collect standard molecular properties
from SMILES structures and allows the conversion of molecular structures to a machine-readable format. The
molecular FP are generated with a standard size of 2048 bits and a maximum path length of seven links. Due to
the limitations of current quantum hardware technology, directly processing such large bit strings on a quantum
computer is not feasible. To overcome this, dimensionality reduction techniques are necessary, and the principal
component analysis (PCA) method is applied. This is a popular and frequently used method in the field of drug
development, to compress thousands of molecular features. The fingerprint size has been shrunk from 2048
features to 2, 4, 8 and 16, preserving most of the important information. Once the FP are generated been reduced
in size, each classic data feature is normalized. The classical feature vectors are then encoded into quantum states
and the QK is evaluated. To evaluate the effectiveness and robustness of the quantum model, the area under the
curve of the receiver operating characteristic (AUC-ROC) curves for QSVC across various quantum simulators
and for different ADMET dataset features were plotted in this study. The QK technique has proven its efficacy in
predicting ADMET properties by achieving F-scores ranging between 0.80 and 0.90 and AUC-ROC scores from
0.85 to 0.95 (except for the DILI dataset). This study highlighted the benefit of QML when they simulated a large
number of features with 40 - 60 qubits and concluded that quantum classifier has the potential to enable the
complex molecular with more accurately in ADMET prediction.

6.4 Quantum integrated Medical Research

Apart from the application of QML in drug discovery, quantum technology also is crucial to the advancement
of the field of medical imaging to support the detection of cancer as well as several other diseases. In previous
research, numerous kinds of neural networks in ML have been investigated, especially CNNs. CNN has been
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considered one of the most effective algorithms related to image content recognition and has provided satisfactory
results [79]. The CNN system is based on many combination models (AlexNet, MobileNet or ResNet) that have
been used in the problem of cancer classification, the purpose of which is to classify into benign or malignant
prediction [49]. However, one of the disadvantages of CNN is its comprehensive framework. The more it advances
into the neural network, the more elaborate features it can distinguish due to the aggregation and combination
processes involved, but with a cost of high-dimensional complexity. Therefore, improving the speed of these
networks can significantly influence the training of models that use high-resolution images as inputs, like
mammograms, lung scans, or other anatomical images. Breast cancer, for example, is a popular disease among
women and it is considered a serious health problem in the world (after lung cancer) because the mortality rate
of this disease is affected by age. If they could be diagnosed in the early stages, the death rate would decrease,
and there can be a high chance to completely cure this malignant disease. Owing to the feature extraction ability
of CNN, the detection process would be enhanced, making it easier to see malignant tumours in the breast (also
in the case of cancer detection problems). Therefore, supporting the early detection of breast cancer is pivotal so
that the disease can be treated at a lower stage before it spreads further [50].

Neural network like CNN is mostly performed to identify, examine or classify images because they help to
simplify images to get a good analysis. It is important to note that there is a different architecture of CNN and
QNN methods for image prediction in medical research. Corresponding to classical CNN, it includes one input
layer, one or multi-hidden layers and an output layer. Each neuron can connect with every neurons in the next
layer. The convolutional layer is used to filter the image with the aim of achieving its features. In order to ensure
non-linearity, an activation function is used, normally Rectified Linear Unit (ReLU). The images are also reduced
in size BY the pooling layers for convenience in training and to suit computer resources due to smaller amount
of parameters. Finally, the feature maps go through the fully connected layer which connects all neurons and
the output with many classes is predicted. This process from input to output is called as feed forward. For the
opposite direction, the loss (difference between predicted and actual output) is calculated and back-propagated to
update the parameters of each layer. This is done by calculating the gradient of the loss function concerning each
parameter in the network. The gradients indicate how much each parameter needs to be adjusted to minimize
the loss. Using optimization algorithms like Gradient Descent or Adam optimizer, the parameters are updated in
the direction that reduces the loss as much as possible. This iterative process of forward and backward passes
continues until the network converges, meaning the loss is minimized, and the network can make accurate
predictions. In summary, CNN is structured into multi-stage convolutional layers with the main goal of data
compression and feature extraction. Employing high-resolution raw images necessitates expanding the number
of nodes within the neural network, this may not necessarily enhance pattern recognition. Various CNN models
were developed to adjust the optimal number of neurons, starting from millions of neurons. The most efficient
CNN architecture and the optimal number of neurons are determined by evaluating the learning ability of model
and validation performance. The capacity to learn is the most crucial aspect of ML, as it determines whether a
program or system can improve and adapt efficiently or not.

For QNN identification algorithm, it is a model that combines quantum computing and artificial neural
networks. The operational workflow of QNN typically includes several important steps, from data preparation
to quantum circuit design and training. The first step in QNN is data preparation. Classical data, such as images
or other forms of digital information, are loaded into the model and stored as classic bits in RAM. Since quantum
computing only deals with quantum data, an important step is to convert these classical bits into quantum
bits (qubits). This conversion is typically performed using quantum computing libraries. This process involves
mapping classical bits into a qubit matrix using tensor products. This step allows classical data to be represented
in a form suitable for quantum processing. Once the data is converted into qubits, the next step is to design the
quantum circuit. A quantum circuit consists of a series of quantum gates that perform quantum operations on
qubits. These gates are similar to the layers in a classical neural network. In QNNs, specific types of gates such as
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Ising gates are used because of their good recognition capabilities. The arrangement and order of these gates are
important because they determine how quantum information is processed. Designing an efficient quantum circuit
is key to the performance of QNNs. For practical implementations, especially when dealing with large-sized data
such as images, it is often necessary to reduce size through image compression techniques. This step is performed
for efficient management of computational resources. For example, images can be compressed from their original
size to a much smaller size, ensuring QNNs can process the data without overloading resources. After converting
the data and designing the quantum circuit, QNNs continue to process the quantum data. During this stage,
the quantum circuit applies a series of quantum gates on the qubits. The process of training QNNs involves
iterative processes where the network adjusts parameters to minimize the loss function, similar to a classical
neural network. However, in QNNs, this process takes advantage of quantum properties suchas superposition
and quantum entanglement to improve learning efficiency and solve problems that are difficult for classical
neural networks. Optimization techniques are used to fine-tune the parameters of QNNs. The feedback process in
QNN s includes calculating the gradient of the loss function for each parameter and updating these parameters to
improve the model performance. This iterative process continues until the model achieves the desired accuracy
and minimum loss function.

Besides, some types of medical applied research focusing on model comparison between classical NN and QNN
have been used such as COVID-19 prediction, biomedical image classification, heart disease classification, and
breast cancer using QNNs algorithm has been applied and listed in Table 2. Applying QNN in medical research,
especially cancer diagnoses, could revolutionize this field. QNNs can leverage the immense processing power and
speed of quantum computing to analyze complex medical data more efficiently and accurately than classical ML
models, potentially leading to breakthroughs in early detection and individualized treatment plans. In addition,
several studies related to images in QML clearly show that there is interesting research on dimensionality
reduction[54], quantile feature extraction[190] and quantiles for digital imaging number [151]. QNN has been
applied in diagnostic medicine mainly based on computer vision and has recently been introduced by Google,
IBM and Microsoft. Databases in this field are mainly based on imaging such as magnetic resonance imaging
(MRI), X-rays and computed tomography. This shows not only the development of advanced technology but
also its great potential to revolutionize health care and medicine. The unparalleled quantum computing ability
to process and analyze complex data sets at unprecedented speeds is poised to open new avenues in medical
research, enabling more accurate simulations that can significantly cut the time and cost associated with bringing
new therapies to market.

Table 2. A collection of work presented to date which has used QML techniques in clinical research.

Applications Description Algorithms References
Classification of breast cancer ONN [8]
Classification of ischemic heart ONN, QSVC [117]
disease
Clinical Research Classification of COVID-19 ONN, VQC [78]
Prediction of COVID-19 outbreak ONN [19]
Classification of biomedical images ONN [37]

7 Research challenges and future works

While QML is a highly anticipated application in the way we approach complex biological systems and molecular
simulations, the scalability and computational limits of current quantum hardware pose significant challenges. As
mentioned above, the reliability of quantum simulations capturing complex molecular interactions is currently
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limited by the available qubits [166]. Quantum computers are sensitive to noise and errors, which heavily
impacts their reliability. This concern demonstrates the urgent need for advanced error correction mechanisms
quantum-based approaches [5].

The integration of QML and classical models also remains a complex problem. As discussed in the previous
section, many studies indicate that data compatibility and algorithm integration present significant obstacles and
require new solutions for effective workflow management. Additionally, high-quality drug discovery data has
limited the training of QML models because of its scarcity. This issue needs further attention so that it can be
mitigated through the development of open and collaborative data-sharing platforms.

7.1 Research Challenges

QML algorithms face substantial computational complexity challenges that directly impact their applicability in
drug discovery, with quantum neural networks often requiring deep circuits that significantly increase noise
levels and limit scalability on current NISQ devices. This fundamental limitation constrains the ability to process
large molecular datasets and complex pharmaceutical prediction tasks, while also contributing to the critical
barren plateau phenomenon where gradients vanish exponentially with increasing numbers of qubits, making
optimization impractical for large molecular systems. The computational cost of parameter optimization presents
another major challenge, as common optimization techniques scale quadratically with the number of trainable
parameters, resulting in prohibitive training overhead for complex molecular prediction tasks. While newer
methods aim to achieve near-linear scaling, quantum circuit evaluations remain computationally expensive,
limiting practical deployment in pharmaceutical workflows.

Quantum generative approaches face significant challenges in producing chemically valid and pharmaceu-
tically relevant molecular structures, struggling to consistently generate valid or drug-like molecules due to
limitations imposed by circuit depth constraints and noise accumulation during training processes, despite
demonstrating superior parameter efficiency compared to classical counterparts. The choice of quantum data
encoding significantly influences both computational cost and achievable performance in molecular applications,
with different encoding strategies dramatically affecting model effectiveness and some quantum approaches
underperforming compared to classical alternatives, depending on the specific encoding methodology employed.
Basic neural network operations present ongoing challenges in quantum implementations, and while theoretical
advances suggest potential improvements in computational complexity for fundamental operations like matrix
multiplication, these benefits remain largely confined to simulation environments rather than practical quantum
hardware implementations.

Current QML approaches face fundamental limitations imposed by the intersection of algorithmic require-
ments and hardware capabilities, and while quantum methods show potential advantages, including richer
feature spaces, parameter efficiency, and improved generalization capabilities, realizing these benefits in practice
remains constrained by training costs, optimization complexity, and hardware noise limitations. Overcoming
these challenges requires coordinated advances in algorithms, quantum data embeddings, and fault-tolerant
quantum hardware development to bridge the gap between theoretical advantages and real-world performance
in pharmaceutical applications.

7.2 Future works

To fully exploit the potential of QML in drug discovery, many future research and development directions are
needed, focusing on hardware, software, algorithms, and integration aspects. On the hardware and software
side, further refinement of quantum devices and platforms is needed to expand the ability to simulate larger
molecular systems and more complex chemical data that current classical methods cannot handle, and to develop
specialized algorithmic solutions for biochemistry.
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On the algorithmic side, the focus is on developing and optimizing models such as QGAN, QAE, and extending
to other neural network architectures such as quantum self-organizing feature maps or quantum evolutionary
models. Research is also directed towards improving QML algorithms to generate new drug-like molecules with
predefined properties, exploring quantum transformation models to uncover hidden features that classical ML
cannot access, combining quantum and classical components to gain a more complete understanding of chemical
and biological functions.

In the field of molecular property prediction and simulation, directions for development include extending the
use of QMSE to other structural forms, improving ML protocols to more accurately predict molecular properties,
and performing quantum chemical calculations to reduce the cost of experiments. Accurate force field calculations
using QNN and VQE are important for expanding molecular dynamics, while methods such as QPE and VQE need
to be investigated for the active space of chemical systems. For QNN, issues such as state preparation, barren
plateaus, and efficient quantum gradient computation remain bottlenecks that require innovative solutions. At
the same time, optimizing existing QML architectures for generative chemistry and developing explainable AI
methods will also help improve transparency and reliability.

Data-related aspects are also important, including performing prospective predictions and experimental
validation to provide clear evidence of the value of QML, integrating different types of data such as images,
genomics, and electronic health records, and addressing the challenge of availability and diversity of training
data, especially labeled data. These initiatives to promote open data sharing and develop quantum-friendly data
preprocessing techniques will be important.

Future research will focus more on developing quantum algorithms that are not only more efficient but
also tailored to the complexities of drug discovery. This includes pursuing advances in all aspects of quantum
computing to support larger-scale simulations, with the aim of significantly expanding the computational
boundaries of drug discovery.

8 Conclusions

The use of AI/ML techniques for drug discovery has appeared for many years, while quantum computing and
QML applications represent a new frontier in medical applications. Leveraging independent quantum algorithms
and hybrid classical-quantum computing approaches has revolutionized drug discovery. In recent years, quantum
computing has evolved significantly and is now capable of solving complex problems. Additionally, applied
quantum computing for drug discovery and clinical research can increase the success rate of the discovery process,
decrease error rates, and shorten the overall process duration. QML aims to address and process vast amounts
of data related to drugs and diseases while enhancing the accuracy of predictions and mitigating the issue of
insufficient input information. This capability contributes to reducing investment costs and human resource
requirements and ultimately saving patients’ lives. Despite current qubit limitations, the future of QML holds
immense potential for groundbreaking innovations in the scientific domain.
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