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Convolutional neural networks (CNNs) are vulnerable to adversarial attacks in
computer vision tasks. Current adversarial detections are ineffective against
white-box attacks and inefficient when deep CNNs generate high-dimensional
hidden features. This study proposes MeetSafe, an effective and scalable
adversarial example (AE) detection against white-box attacks. MeetSafe identifies
AEs using critical hidden features rather than the entire feature space. We observe
a non-uniform distribution of Z-scores between clean samples and adversarial
examples (AEs) among hidden features and propose two utility functions to
select those most relevant to AEs. We process critical hidden features using
feature engineering methods: local outlier factor (LOF), feature squeezing, and
whitening, which estimate feature density relative to its k-neighbors, reduce
redundancy, and normalize features. To deal with the curse of dimensionality
and smooth statistical fluctuations in high-dimensional features, we propose
local reachability density (LRD). Our LRD iteratively selects a bag of engineered
features with random cardinality and quantifies their average density by its k-
nearest neighbors. Finally, MeetSafe constructs a Gaussian Mixture Model (GMM)
with the processed features and detects AEs if it is seen as a local outlier,
shown by a low density from GMM. Experimental results show that MeetSafe
achieves 74%, 96%, and 79% of detection accuracy against adaptive, classic,
and white-box attacks, respectively, and at least 2.3x faster than comparison
methods.

KEYWORDS

adversarial attack, convolutional neural network, Gaussian Mixture Model, adversarial
example, local reachability density

1 Introduction

Deep neural networks (DNNs) have emerged as highly effective models in machine
learning (ML) tasks. Among DNNG, convolutional neural networks (CNNs) revolutionized
various computer vision applications, such as medical image recognition (Litjens et al.,
2017) and facial recognition (Zhao et al., 2003). However, the robustness of CNNs remains
a significant concern, as even a slight and imperceptible perturbations deliberately designed
to manipulate images can result in high misclassification rates (Szegedy et al., 2014).
Therefore, adversarial detections are in urgent demand to guarantee the integrity of CNN
models.
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A plethora of adversarial detections (Feinman et al., 2017;
Hu et al.,, 2019; Hendrycks and Gimpel, 2017; Raghuram et al.,
2021; Ma et al., 2018; Aldahdooh et al., 2022) have been proposed
to identify adversarial examples (AEs). However, these methods
remain vulnerable to white-box adversarial attacks (Carlini and
Wagner, 2017a; Athalye et al., 2018; Athalye and Carlini, 2018;
Tramer et al., 2020), which assume full access to the model and
training process. Several defenses (Raghuram et al., 2021; Hu et al,,
2019) have been developed against white-box AEs. They obscure
the detector’s gradients, leading to: (1) diminished security, as
gradient obfuscation is proven to be an ineffective strategy for
enhancing robustness (Athalye et al., 2018); and (2) inefficient for
large CNNs, as computing exact gradients becomes prohibitively
expensive.

It has been reported (Hendrycks and Gimpel, 2017; Aldahdooh
et al., 2022) that the integration of multiple detections to limit
adversary capabilities, a strategy termed “meet the defense”, is
promising in countering adversarial attacks. However, these studies
did not include any implementation or experimental results.
Indeed, exploiting synergistic effects of multiple detections is
challenging due to their ineffectiveness. For example, certified
methods (Weng et al., 2018; Raghunathan et al., 2018), a widely
studied adversarial defense that employs minimum distance
decoding (Tramer, 2022) for AEs detection, are generally effective
only for AEs with small ¢, distances from clean samples.
This limitation renders them ineffective against semantically
stealthy adversarial examples (Ghiasi et al., 2020), which achieve
substantially large but visually imperceptible perturbations by
manipulating image factors such as color or shadows. As such,
Ghiasi et al. (2020) show that any perturbation on semantic
attributes such as shadows is as effective as contrived noise.
However, the vast number of semantics in images renders
supervised detection inadequate for adversarial attacks (Zheng and
Hong, 2018) due to its limited generalization and dependence on
patterns specific to the existing dataset.

Meanwhile, many effective adversarial defenses (Zheng and
Hong, 2018; Feinman et al., 2017) fail to scale efficiently as CNNs
deepen and their number of parameters increases. For instance,
the full covariance matrix ¥ in I-Defender (Zheng and Hong,
2018) scales as O(d?) w.r.t. the input dimension d of the hidden
features extracted by CNN. Similarly, an increase in the number of
features exponentially reduces the efficiency of Euclidean distance
computations, as noted by Feinman et al. (2017), due to the curse of
dimensionality. The complexity of distance calculation also impacts
density-based outlier detection methods, such as local outlier factor
(LOF) (Breunig et al, 2000), which require repeated distance
evaluations between data points and their neighbors in the feature
space.

This study proposes MeetSafe, a scalable and effective detection
for strong white-box adversarial attacks. MeetSafe selects critical
hidden features obtained by convolutional layers, applies feature
engineering techniques, and utilizes a Gaussian Mixture Model
(GMM) to estimate their distribution. AEs are then identified by
the GMM as outliers as they deviate from the distribution of benign
hidden features.

In detail, we first observe that the Z-scores of hidden
features from selected neurons are non-uniformly distributed
(see Figure 1b) in each CNN layer, with not all layers actively
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extracting features from AEs (see Figure 3a-d). We propose
two utility functions to identify the layers most sensitive to
adversarial perturbations and the neurons with the largest Z-
score differences between benign and adversarial features. By
leveraging only the hidden features from the selected neurons,
we significantly reduce the feature dimension. Then, our GMM
estimates the distribution of selected features processed by three
feature engineering techniques: feature squeezing (Xu et al,
2018), which compares the model’s predictions on the original
and feature-squeezed inputs;whitening (Hendrycks and Gimpel,
2017), captures the principal component of the covariance of
inputs; and LOF, which estimates the sparsity of images based on
their neighbors in the processed feature space. LOF is ineffective
and inefficient in high-dimensional spaces as increased sample
distances reduce critical feature impact and raise computational
costs for density estimation. To enhance LOF’s scalability in high-
dimensional feature spaces and reduce statistical fluctuations for
improved precision, we propose reachability density (LRD) for
local outlier detection. LRD iteratively selects feature subsets with
random cardinality and estimate the density of images based on
their k-nearest neighbors in the feature space. Finally, an AE is
identified if its sparsity, as estimated by the GMM, exceeds the
90th percentile. Experimental results on real-world datasets show
that MeetSafe attains a 74%+ detection accuracy against adaptive
adversaries, 96%+ against classic adversarial attacks, 79%+ accuracy
under white-box attacks, and at least 2.3 x faster speed.

2 Related work
2.1 Notation

A deep neural network can be expressed as the mapping
function f(X): R” — RL, where the hidden units at layer [ are
f)((l) € Rl for the input X € {® | ® € R™} in dataset . For
simplicity, we define units of the last layer of this network (i.e.,
logits) to be z; € Z(X) and the predictions to be y; € Y(X).
Neural networks often minimize the empirical risk with a loss
function L¢(X) with a batch of RBEX™ a5 input. Our method also
utilizes GMMs for detection, which is a linear superposition of
Gaussians with the form M(X|u;, £;) where ¥ and u denote its
covariance matrix and mean, respectively. Each Gaussian has a
mixing coefficient 7; that equals the probability p(§;) of a latent
variable &;.

2.2 Adversarial attacks

One can define at least three threat models for adversarial
attacks: the white-, gray-, and black-box scenario. The white-box
setting indicates that the adversary has perfect information about
the system. The detector should thus be deterministic for the
adversary (Athalye et al., 2018). A weaker assumption is a gray-box
model in which the attacker has no knowledge about the defenses.
Black-box attacks only assume knowledge of the output and input
space, possibly with access to a querying oracle. The empirical risk
of an actual threat is often measured with the £,-norm required by
adversarial attacks like the ones below.
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2.2.1 Fast gradient sign method (FGSM)
(Goodfellow et al., 2015)

FGSM is a one-step £, perturbation toward the gradient of the
loss function Vx Lr. FGSMs perturbation is € - sign(Vx L), where €
is the £+ norm of the perturbation. The method assumes linearity
in the proximate region of sample X.

2.2.2 Carlini & Wagner (C&W) (Carlini and
Wagner, 2017b)

C&W is a first-order constrained optimization that closely
resembles Szegedy et al. (2014) method for adversarial example
generation. Both define the objective to be [|X||, + ¢ - f (X). This
objective function includes the £, distance with a custom criterion
f(X), modulated by the sensitivity parameter ¢ and confidence
parameter x. C&W uses f‘(X) = (maxjx(z;) — 2zt + k)" where ¢

is the targeted class.

2.2.3 DeepFool (Moosavi-Dezfooli et al., 2016)

DeepFool fits a hyperplane on the target model. The hyperplane
is an aggregate of binary classifiers, which encloses the true class k.
The algorithm applies Newton’s method on the probits to move to
the closest non-maximal class ¢. To misclassify the sample, a small
overshoot 7 is added as scalar.

We describe the perturbations generated by the three methods
as near-optimal as they are optimized within the constraints of
the Zp-ball. However, recent studies on semantic perturbations
have identified approaches that produce adversarial examples more
closely aligned with human perception (Luo et al.,, 2022; Duan et al.,
2021; Zhao et al., 2020; Ghiasi et al., 2020). For instance, PerC uses
color differences, which considerably increases the Ly distance of
adversarial examples. The primary focus in this study is on adaptive
near-optimal perturbations on state-of-the-art defenses that do not
rely on obfuscated gradients.

2.3 Adversarial detection

2.3.1 Adversarial pockets

A common intuition of adversarial perturbation is that it
pushes examples off the manifold of training data. Szegedy et al.
(2014) were the first to conjecture the idea with the Lipschitz
constant. A high constant enables the manifold to be dense,
with low-probability pockets containing adversarial examples.
Therefore, generative classifiers may detect these adversarial
pockets (Lee et al, 2018; Raghuram et al., 2021; Yin et al,
2019; Feinman et al,, 2017; Zheng and Hong, 2018; Li et al,
2019). An example of this is Deep Bayes (Li et al., 2019), which
uses a deep latent variable model on the logits to estimate a
joint distribution. JTLA (Raghuram et al., 2021) aggregates class-
conditional probabilities from each layer by computing kNN class
counts. Others trained a more simple GMM (Zheng and Hong,
2018) and utilized Kernel Density Estimation (KDE) (Feinman
et al,, 2017) on deep layers. Lee et al. (2018) performed a density
estimation with the Mahalanobis distance.
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2.3.2 Boundary tilting

A geometric analysis renders a different perspective on
adversarial examples. When the decision boundary tilts too much
toward a submanifold of one class, then the distance of another
classification is relatively close. Tanay and Griffin (2016) therefore
measured adversarial strength as the deviation angle with a
bisecting boundary that maximizes the inter-class distance. This
angle can, without major performance hits, be higher along
directions of low variance. Near-optimal perturbations may thus
be detected by manipulating such components with semantic-
preserving image filters (Xu et al., 2018; Tian et al., 2021; Liang
et al., 2018). In particular, feature squeezing (Xu et al., 2018) uses
median smoothing and bit-depth reduction. Tian et al. (2021) train
a dual model on the sample’s wavelet transform. Others (Song
et al, 2018; Hu et al, 2019) propose denoisers which perturb
samples with optimizers. Scene statistics may also detect the
perturbation, like whitening (Hendrycks and Gimpel, 2017) that
measures the variance of low-rank eigenvectors. Li and Li (2017)
also use low-rank eigenvectors with their extremal value to detect
extreme deviations, both (Kherchouche et al., 2020; Akhtar et al.,
2018) train simple classifiers on BRISQUE’s (Mittal et al., 2012)
features, and Local Intrinsic Dimensionality (LID) (Ma et al., 2018)
directly calculates the dimensionality. However, current adversarial
detection methods are ineffective at identifying hidden anomalies
in high-dimensional spaces and are not efficient for large dataset.

Contributions of this study are as follows: (i) We propose
MeetSafe, a scalable detection algorithm for adaptive adversarial
examples. (ii) Two utility functions that allow LRD and other
detectors to scale based on a unit’s Z-scores or rate of change under
perturbation. (iii) Extensive empirical evaluations on 4 datasets and
14 models that show effectiveness of whitening and MeetSafe under
adaptive white-box attacks.

3 Method

The main idea of MeetSafe is to combine discrepant detectors
in an ensemble. In particular, we use the scores of whitening
(Hendrycks and Gimpel, 2017), feature squeezing (Xu et al., 2018),
and a density estimation, called LRD, within a GMM. LRD makes
two novel improvements on existing density estimates. First, we
noticed that the activation’s Z-score of hidden features is not
uniform under perturbation (see Figure 1b); we therefore use two
utility functions to select the 10 units that were most anomalous
under perturbations. Second, kernel density estimation does not
adjust for local densities, which carries the risk of over-smoothing
as illustrated by Ma et al. (2018). Like Ma et al., LRD uses an
extension of the k-distance.

We now turn to LRD and its relation to non-parametric
methods. Then, we explain the used features and feature selection
of LRD. Finally, this section introduces MeetSafe.

3.1 Density estimation with k-distances
Non-parametric methods model the distribution p(X) with

limited assumptions for the true distribution. This makes the
models flexible. Distribution p(X) can, for instance, be generalized
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(a)

FIGURE 1

X Yields max(d’, d)

LRD for a MNIST model learned with RCE, utilizing the 10 hidden units with the largest, absolute Z-scores. (a) LRD metric, which uses the averaged
maximum of the ¢,- (d) and k-distance (d’) among k nearest neighbors. (b) The distribution for test- and FGSM samples with ¢, ~ 5 and k = 8.

B Original Image
Adversarial Image

=)
LRD!

(b)

with its volume V and cardinality K of X’s proximite region, given
enough observations. In contrast to KDE, the kNN method fixes the
cardinality and finds the appropriate volume from the data. For a
sample X, one can then estimate p(X) using the frequentist notion:

pX) =K/(ID]-V) (1)

where the dataset ® is sampled from p(X). The volume is defined
by a sphere with the k-distance as radius, which makes the k-
distance of a test sample X sufficient to approximate p(X). The
estimate would only be shallow with limited information from its
neighbors. Recursive calls on neighbors may improve the estimate
due to greater depth.

Notice that BRISQUE hidden features may be affected by
unequal standard deviations as these are not normalized. Some
have thus more influence on the k-distance than others. This is not
favorable, especially because we stated earlier that the low variance
components may be an important characteristic of some adversarial
examples. Our method will therefore use the scaled Euclidean
distance. This normalizes the k-distance with respect to a diagonal
covariance matrix X. In addition, we will lower the memory burden
of the kNN algorithm in Section 3.2, after we discuss the details and
idea of LRD.

3.1.1 Local reachability density (LRD)

The intuition behind LRD comes from Breunig et al. (2000),
in which they propose LOE, a heuristic for finding local outliers.
LRD extends the k-distance as it smooths out statistical fluctuations
in at least two ways. First, the actual distance, called reachability,
used to estimate the volume V is capped by the k-distance of
the neighbor. Second, the average is taken among the k nearest
neighbors. The reachability measure reach(X, X») of two nodes (A
& D) is demonstrated in Figure 1, and the value depends on the
volume of node D and its Euclidean distance to A. Whichever value
is bigger equals the reachability from D to A:

ax[d;(Z,k’\/(Xl - X)T=71(X, —Xz)} (2)
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where d’ is the k-distance. Substituting the reachability from A to its
neighbors N in Equation 1 yields its reachability density (Equation
3). Using reachability as a measure to assess the density in the
proximate region of node A has the advantage that only a fixed
amount of neighbors needs to be considered.

LRD(X) = |NX|/(Zn,-eNX reach(X, n;)) (3)

We add one novel improvement called feature bagging (Lazarevic
and Kumar, 2005). This enables LRD to capture higher dimensions.
The generalizability of kNN degrades under these circumstances, as
the distance between all data points becomes larger and individual
features have less of an impact. Bagging is a popular approach to
limit this issue. It takes a subset (with random cardinality) of the
features for multiple iterations and returns a combined LRD score.

3.2 Feature engineering for LRD

We now consider two possible Points Of Interests (POI) for
LRD: the layer after convolution and the pixel values, where we
refer to the former as Learned Feature Analysis (LFA). Specifically,
we explain how we select its features for both options as without
limiting its feature space, LRD would be space inefficient and suffer
from sparse data.

On raw pixel values, we advise the use of BRISQUE. BRISQUE
fits a Gaussian-like distribution on the raw image while maintaining
structural information, which can evaluate the naturalness of
an image. Moreover, BRISQUE is 149 times faster than wavelet
methods such as DIIVINE and performs almost similar on white
noise (Mittal et al., 2012).

On hidden layers, we extract a random set of hidden features.
Depending on the chosen POI, the Z-scores of FGSM examples X’
will be used to select the best 10 features of BRISQUE or the best 10
hidden features. We will further explain this feature selection more
formally.
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3.2.1 Selecting hidden features

For the hidden features f’), a pool P Cg f is defined, so that
its members are chosen randomly at initialization and preserved
during execution. The detector then follows a watching scheme
upon P and its utilities (Equation 4, 5). The first equation calculates
the difference in Z-scores of all features in the pool. It estimates the
units that were relevant under perturbation. The second estimates
the rate of change of one layer. The first utility is calculated with
FGSM after every epoch, and this is the fastest evasion method we
know, limiting the constraints on scalability or parameter updates.
The second utility showed most potential in the final layers, making
that our preferred choice (Section 5.1). Because of this, we believe
the second utility is optional.

[Px — Px|
op

1
Up = @Zx@ (4)

Iy 0] — By 1K1
IEy o 1112

Urny =

3.3 MeetSafe

Our MeetSafe combines LRD, using hidden features as POI,
with variance-based anomaly detection—whitening (Hendrycks
and Gimpel, 2017)—and feature squeezing (Xu et al., 2018) in a
GMM, for which an ablation study is given in Section 4.3. The
scores of the three heuristics are learned through Expectation-
Maximization (EM).

~logp(x) = —log XX 7 - NHxlun 2] ()

Concretely, to detect a sample, we first select the best features
based on Up for LRD and the eigenvectors of the training data
(Algorithm 1). Then, we evaluate the three heuristics (denoted as
Hx). Assuming normality, a three-dimensional GMM fitted on
benign data can classify the sample as malicious when it exceeds
the 90th percentile of the Equation 6. The workflow of MeetSafe is
shown in Algorithm 2.

4 Experiments

We evaluate MeetSafe and LRD against several adversarial
attacks including FGSM, DeepFool, and C&W. The experiments
will demonstrate white- and/or gray-box performance for
four datasets: Tiny-ImageNet (Le and Yang, 2015), CIFAR-10
(Krizhevsky and Hinton, 2009), MNIST (LeCun, 1998), and
STL-10 (Coates et al., 2011). Only for Tiny-ImageNet, we resized
the samples to be in R3*%4X64 The attacks are restricted to an £,
distance to ensure a fair comparison across datasets and £, -based
methods. For instance, an £, distance permits more noise for
higher resolution images. Consequently, we use the € parameter
given by Equation 7, so that the maximum allowed perturbation
of FGSM equals that of £, methods (8max); where the image X is
given by a R™ flattened matrix.

€= ||8max||%/m

7)
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P: Set of
basis functions that maximizes Up; Pmax: Maximum

Require: ©: Dataset of benign samples;

amount of features; X: A benign or adversarial
sample.

Ensure: H yX's Features

1: if kKNN or SVD is not initialized then  Prepare

heuristics

2: KNN < Prepare,kNN(f(@l)) where (fDyep

3: Ug, S¢, V& < SVD(D) > Truncated to Ppax

4: for Xe® do

5: X'« X+e-sign(VxLs)

6: Py < XV

7: Py <~ X'V

8: end for

90 Up < gy Xxed % > Equation 4

10: Vi < top_n(Ppax, P*) > Pick the best
eigenvectors

11: end if

12: Ny <—kNN(f§l)) where {f1)}eP

13: % <« Diag(op)

14: Hg < ——5—— where {f(}eP = Equation 2, 3,
LRD(FD Ny, %)

with feature bagging

15: Xpg, Xp1 < Reduce_Bit_Depth(X), Blur(X)

165 Hy < max {IlY (X) = Y (Xea) 11, 1Y (X) =Y (Xe1) 11}

17: Hy < Var(XVyg) o Whitening Hendrycks and Gimpel
(2017)

18: return {Hp, Hy, Ho} > Hi is Feature Squeezing Xu
et al. (2018)

Algorithm 1. MeetSafe's feature extraction.

Each attack, defense, and target model is re-implemented in
PyTorch. Herewith, we evaluated 14 models based on ResNet-50
(He et al,, 2016) and VGG-13 (Simonyan and Zisserman, 2015).
Ten of them are trained with robust optimization techniques,
utilizing gradient smoothing (RCE) (Pang et al, 2018) or
adversarial training with FGSM (¢;-radii of 5) (AL) (Goodfellow
etal., 2015).

The experiments also include some related methods that will
be compared to MeetSafe and LRD. The baseline for MeetSafe
(MS) is KDE with predictive uncertainty (KDE+BU) (Feinman
et al,, 2017), I-Defender (I-Def) (Zheng and Hong, 2018), and
the Mahalanobis measure (MAH) (Lee et al., 2018). Additional
work that we tested are LID (Ma et al., 2018), Whitening (PCA)
(Hendrycks and Gimpel, 2017), Feature Squeezing (FSQ) (Xu et al.,
2018), extremal value (EXM) (Li and Li, 2017), and Kherchouche
et al. (2020)’s third model for BRISQUE (SVM).

4.1 Experimental setup

We trained the models for 150 epochs on predetermined
training sets. During training, a batch size was used of 256,
learning rate of 0.01 with momentum 0.9 under a cosine annealing
schedule, and le—4 weight decay. The model is also adapted to
exhibit required invariances. All training samples are normalized
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Require: ©: dataset of benign samples; Ppax: maximum

amount of features; K, rgp: Gaussian components
and threshold: f(): basis function of the neural
network; X': suspicious samples.

Ensure: My : MeetSafe classifications.

1: Upa) <0

2: for Xe® and basic block 1 do » Get the utility

of each layer (optional)

3: X' « X+e-sign(VxLs)

4: Ur) < Sequential _Avg (U, f;l), ff(l)) >
Equation 5

5: end for

6: Let ({1} have the largest Ugi value and let

(Pycp ).

7: for Xe® do > Get the utility of each hidden
unit in P

8: X <« X+e-sign(VxLs)
9: Pxefﬁl) where {(f(D)}eP
10: wa—fy) where {f(D}ep
11: end for
120 Up < o Syep PP
13: P« top_n(Pmax, P) > Pick the best hidden units
14: for Xe® do > Initialize the GMM

15: Initialize {u;j} € R via the K-means algorithm

> Equation 4

and
{ri, i} e R, R3*® uniformly at random.
16: Hy < Extract_Features(®, P, Pnax, X) >
Algorithm 1

17: end for

18: wi, i, i < EM(pi, 2, 7, Hy) 1€[0..K), VXeD

19: for X' eX do > Classify samples

20: Hy < Extract_Features(®, P, Pnax, X')

21: end for

22: return —1log {ZKﬂi N (Hy s, Ei)] >t V XeX »
Equation 6

Algorithm 2. MeetSafe.

on each channel, randomly flipped horizontally, and randomly
cropped within a padding of 4. Adversarially learned models were
additionally trained half-on-half on benign and perturbed data.
We evaluated the detectors on unseen test images and their
perturbed variants as follows. First, we evaluate the defense and
model on non-adaptive gray-box perturbations. That includes the
one-step FGSM perturbation as well as the DeepFool and C&W-¢5.
Second, for each defense, we evaluate its best-performing technique
(RCE or AL) on DeepFool against adaptive white-box attacks.
White-box attacks can be generated by adding the detector’s
likelihood function (Equation 6) to C&W'’s objective (Carlini
and Wagner, 2017a). In essence, this optimizes a multi-objective
gradient with Adam that considers both the gradient of the
detector’s internals and the confidence of the target model:

IXI]p + ¢ fX) + - (=t ogh(X) —14+16)T  (8)

where 7 is a given threshold and ¢* a constant that controls the
sensitivity toward the detector’s gradient, optimized with binary
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search. The sample is updated with perturbation § when its
aggregate X + § fools successfully. For our experiments, we limit
the perturbation to a €, distance of 5.

Our white-box attack follows an all-or-nothing criterion: the
batch with adversarial examples is either clean or fully successful.
For this reason, we assume that the detector is successful if either
the white-box perturbation is detected or classified by the target
model. Its true positives are thus in the set {X | argmax Y(X) #
k v —logp(X) < 7} for true class k and threshold 7.

The performance of the defenses is measured using its overall
detection accuracy of one test run in both adversarial and benign
situations, where the detector classifies at a TNR of 90%+. The
adversarial setting may include samples without perturbation
when the target model already misclassifies the clean sample. We

therefore have an optimal detection accuracy of 1 — % with
standard empirical risk Ry of the target model.

During test runs, we reduced the batch size to 128 (64 for white-
box); other hyperparameters, used for the attacks and defenses,
were as follows. The magnitude € of FGSM is deduced from
Equation 7, DeepFool had an overshoot of 0.02, and C&W executed
5 steps with 500 iterations (10 and 1000 for white-box) under a
0.05 confidence «. For all defenses, we applied the same feature
selection. That took the best 10 in a pool of at most 500 features,
given Up. We choose the k of kNN to be 8 for LRD and LOF based
on the ablation study in Sec. 5.3. See Section 5.3 for details. The
experiments were conducted on AMD Ryzen 7 7700X and Nvidia
RTX 4070 Ti.

4.2 Model performance

The accuracy of the models is shown in Table 1. The CIFAR-
10 ResNet-50 model is able to reach an average cross-entropy of
0.0249 and a test accuracy of 93.2%. The cross-entropy for robust
optimization techniques is notably higher, and this increased to 0.47
for adversarial training and 431.1 for RCE. A higher value for RCE
was expected as almost each class now adds to the error instead of
only the true class. We also observe that the fit and convergence
changes dramatically when the amount of classes is increased. Take
Tiny-ImageNet which has 200 classes, where the others have 10, a
RCE model trained on ImageNet does only reach an accuracy of 3%.
When we test the STL-10 subset, RCE does not show this behavior.

Robust optimization shows a descent mitigation of FGSM for
all models and no meaningful mitigation of C&W attacks. The
results of DeepFool show that the optimized models are often
more robust than the plain ones under smaller perturbations. Still,
the high adversarial accuracy of the plain model is somewhat
unexpected. However, this may have a clear reason. Namely,
the confidence of this model is higher, which causes vanishing
gradients.

4.2.1 Vanishing gradients

The confidence score of the plain ResNet-50 is near a unit
vector toward the correct class for some images (Table 1), which
makes that gradient zero due to rounding errors. Such images sit
on a stationary point for the current parameters. This is a major
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TABLE 1 Accuracies and proportion of stationary points for FGSM of the trained target models on the CIFAR-10, Tiny-ImageNet, STL-10, and MNIST
testing set, respectively.

Robust Evasions (¢, < 5) — Model's top-1 accuracy
optim. Stat. Points (%) | Benign FGSM csWw DeepFool
k = 0.05 n = 0.02
ResNet-50 0.01 0 50.5,0.0 0.932, 0.581 0.619,0.013 0.000, 0.000 0.061,0.188
13.7,12.8 0.711, 0.992 0.111, 0.307 0.008, 0.000 0.214,0.130
ResNet-50 0.01 AL 37.9,0.0 0.916, 0.559 0.640, 0.176 0.000, 0.003 0.086, 0.149
26,8.1 0.612, 0.991 0.229, 0.2704 0.200, 0.000 0.221,0.385
ResNet-50 0.01 RCE 0.0,0.0 0.885, 0.030 0.485, 0.003 0.000, 0.000 0.106, 0.015
0.0,0.0 0.614, 0.990 0.081, 0.085 0.000, 0.000 0.147,0.228
VGG-13 0.01 0 22.4 0.928 0.294 0.000 0.096
VGG-13 0.01 AL 29 0.885 0.578 0.000 0.158
VGG-13 0.01 RCE 0.0 0.883 0329 0.000 0.060

VGG-13 is only trained on CIFAR-10. More details in-text.

drawback of FGSM, but not present for DeepFool and C&W which
use gradients of different loss function. Vanishing gradients do give
a sense of robustness for the plain model, while it is probably not.

4.2.2 Utility of hidden layers

The utilities discussed in Section 3.2 grow more or less each
layer for the CIFAR-10 ResNet. The RCE and plain model exhibit
the largest normalized £, distance at the fourth bottleneck and the
smallest distance at the raw input. The utility Uf(l) at the first and
last bottleneck differs significantly with RCE; as for 5 samples, the
95% t-confidence interval (CI) is 0.29 &£ 0.003 and 0.51 & 0.01,
respectively. This supports the unfolding intuition of Bengio et al.
(Bengio et al., 2013). Although, we find the behavior of adversarial
learned models to be different. There, the first layers seem to be the
most sensitive, with the first bottleneck (0.66+£0.14) having a higher
utility than the fourth (0.48 &£ 0.13). Detection methods may thus
be fine-tuned by utilizing different layers.

4.3 Detection results

The following section will primarily discuss the performance on
near-optimal perturbations. We showcase more results in Section
4.1 regarding the accuracies under semantic adversarial attacks
such as shadow attack (Ghiasi et al., 2020) and PerC (Zhao et al.,
2020).

4.3.1 Against gray-box attacks

We start by examining gray-box attacks on CIFAR-10. This
provides a more comprehensive understanding of our method’s
performance. Table 2 shows LRD in addition to various other
works. Instance-based methods similar to ours are KDE+BU, LID,
and MAH. We see that LID does not lead to practical results. On
the other hand, LRD reaches an accuracy above 85% for FGSM
perturbations, and this outperforms similar methods.

Frontiersin Computer Science

We also consider Robust optimization beneficial. The detection
accuracy is frequently higher with one of these methods.
Particularly for PCA, its accuracy against DeepFool and FGSM
shows a respective difference of 15% and 26%. Moreover, PCA
shows strong and similar results as the supervised method SVM on
FGSM; the extremal measure, that also uses PCA, is less effective.
Finally, we consider feature squeezing’s performance limited for
FGSM perturbations. It achieves the lowest accuracy of 76% after
LID.

These results largely change for smaller perturbations. SVM
drops from 90%+ accuracy to a random classifier. In fact, almost all
methods suffer from smaller perturbations, except for purification
measures such as feature squeezing. Its situation is reverse for
smaller perturbations and does improve in this setting, which
suggests that most methods do not have a sufficient scope to cover
all adversarial attacks.

4.3.2 Against adaptive attacks

We test MeetSafe against adaptive adversaries, a challenging
AEs detection scenario, and also show in Table 3. We find that
an adaptive attacker can break most methods. In particular, the
results for KDE+BU, LID, EXM, and MAH showed a true positive
rate close to 0% on the CIFAR-10 and STL-10 datasets, which is
consistent with prior works (Carlini and Wagner, 2017a; Athalye
etal., 2018).

Regarding the other methods, we see that especially PCA excels
with accuracies of approximately 80% for CIFAR-10. Surprisingly,
PCA was proven as not robust earlier (Carlini and Wagner, 2017a).
LRD is, in addition to PCA, also somewhat resilient against adaptive
attacks, although it should be noted that BRISQUE does utilize local
non-linear operations to estimate generalized gamma functions
(Mittal et al., 2012), which are not smooth functions. We can
therefore only consider LRD robust on the hidden features. Some
results are worse than in the gray-box setting, that is possible due
to the positive confidence value. Hence, the adversarial example
is stimulated to be 5% below the detector’s threshold, which
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TABLE 2 Accuracies of several detection algorithms against gray- and white-box (GB/WB) adversaries with a £, -radii of 5.

Evasion Robust POI — Detection accuracy 1t
attack optim. Stat.
points . L
(%) | Units of the fourth bottleneck  max Uy Scene statistics
LRD KDE+BU LID EXM SVM  PCA

FGSM O 0 0.680 0.545 0.508 0.584 0.698 | 0.725 | 0722 | 0570 0.596

FGSM AL 0 0.852 0.663 0.586 0.863 0815 | 0.884 | 0.878 | 0.757 0.792

FGSM RCE 0 0.644 0.818 0.545 0.726 0.875 | 0.987 | 0990 | 0.636 0.639
S | DeepFool | AL 0 0.516 0.596 0511 0.499 0500 | 0502 | 0.663 | 0.890 0.676
’E DeepFool | RCE 0 0.775 0.785 0.513 0.564 0498 | 0501 | 0.533 | 0.759 0.756
N C&W AL 0 0.520 0.561 0.501 0.500 0502 | 0500 | 0758 | 0.744 0.635

C&W RCE o 0.621 0.707 0.513 0.558 0497 | 0500 | 058 | 0.780 0.647

C&W Best Perf. v 0.516 0.489 0.453 0.450 0.660 | 0.619 | 0792 | 0.484 0.474

FGSM AL O 0.928 0.957 0.856 0.901 0930 | 0927 | 0614 | 0.828 0915

FGSM RCE 0 0.955 0.975 0.936 0.952 0.955 | 0974 = 0678 | 0915 0.659
= | DeepFool | AL O 0.744 0.829 0.592 0.684 0745 | 0820 | 0.645 | 0915 0.927
% DeepFool | RCE 0 0.925 0.960 0.468 0.498 0770 | 0533 | 0.505 | 0.947 0.945

C&W Best Perf. O 0.894 0.866 0.522 0.538 0.655 | 0505 | 0.609 | 0.949 0.947

C&W Best Perf. v 0.940 0912 0.457 0.558 0983 | 0990 | 0599 | 0.986 0.988

FGSM AL 0 0.517 0.498 0.505 0.503 0502 | 0524 | 0.506 | 0.497 0.505

FGSM RCE 0 0.528 0571 0.511 0.498 0511 | 0.540 | 0531 | 0.667 0.635
v | DeepFool | AL 0 0.509 0.503 0.504 0.502 0.495 | 0498 | 0500 | 0.588 0.510
E DeepFool | RCE 0 0.647 0.611 0.515 0.506 0505 | 0493 | 0500 | 0.634 0.524

C&W Best Perf. 0 0.512 0.524 0.507 0.505 0513 | 0499 | 0500 | 0.586 0.522

C&W Best Perf. v 0.507 0.498 0.450 0.470 0.806 | 0498 | 0456 | 0.547 0.479

White-box attacks are evaluated on the detector’s best performing robust optimization under DeepFool. DeepFool’s and C&W's results are dependent on the error rate Ry of ResNet-50 (more
details in-text). Top-3 results are bolded, and the worst-case of a detection algorithm is underlined. Top-1 results are highlighted in blue.

improves its transferability on models with feature bags or other
uncertainties.

We show the performance of LRD, PCA, and FSQ and
their MeetSafe ensemble across datasets in Table 2. The p-
values of the methods’ confidence are computed and compared
against a threshold. Specifically, we evaluate the p-values for
10 random FGSM samples using a reversed ResNet-50 model
trained on a benign dataset. A low p-value is beneficial
for the GMM’s generalization as this assumes normality. On
MNIST, an opposing utility between LRD and whitening
techniques becomes clear. Here, LRD has a p-value of near
zero (< 107%), while whitening has a value of 6e-6. On
the other hand, whitening performs relatively better on CIFAR-
10 with a p-value smaller than le-80 against 5e-17 for LRD.
Whitening and LRD might therefore offset each other’s effects
against FGSM.

The added value of feature squeezing is apparent for small
CIFAR-10 perturbations. Figure 2a shows the performance of the
three detectors for DeepFool and FGSM. It shows a noticeably
higher AUROC for feature squeezing on DeepFool. Furthermore,
feature squeezing has the smallest p-value of 0.01, followed
by LRD with 0.25. Feature squeezing could thus be helpful
in the case when the adversarial sample is near the benign
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input. Section 5.2 discusses the importance of each components
of MeetSafe.

4.3.3 GMM-based detection

Our MeetSafe constructs a GMM-based detection with PCA,
feature squeezing, and LRD. We test MeetSafe’s performance under
certain number of Gaussian components: 4, 8, and 16 (Table 4).
For gray-box perturbations, we see that only 4 components may
be useful for FGSM, but this increases for small perturbations. To
balance these accuracies, we think that 8 components are desirable.
Comparing the performance of MS-8 to that of I-Defender shows
similar results on FGSM, but lower accuracies on stronger attacks.
Meanwhile, the accuracy for RCE and MeetSafe does not scale well.
This is most notable when we compare the efficacy for datasets of
higher resolution. Tiny-ImageNet shows accuracies on C&W of at
most 0.553 for MeetSafe and 0.511 for I-Defender. STL-10 shows
similar results (Table 4). However, the effect of dimensionality is
not a limitation specific to our method but rather a general issue
of defenses against AEs (Goodfellow et al., 2015). MS-8 achieves
an improvement of at least 8.1% on adaptive attacks and 10.2%
on the worst-case results for each evaluated method by averaging
across STL-10, MNIST, and CIFAR-10. MeetSafe may therefore be
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TABLE 3 Accuracy of comparison detections evaluated against gray- and white-box (GB/WB) adversaries on STL10, MNIST, and CIFAR10; with a £>-radii
of 5.

Evasion Robust Dataset WB Detection accuracy 1
attack optim.
I-Def LRD (LFA) PCA KDE+BU
FGSM O STL-10 0 0.520 0.549 0.511 0.521 0.542 0.494 0.546
MNIST 0.823 0.814 0.829 0.612 0.809 0.667 0.797
VGG-13: CIFAR-10 0.808 0.569 0.690 0.843 0.748 0.594 0.682
FGSM AL STL-10 0 0.485 0.508 0.517 0.506 0.498 0.497 0.505
MNIST 0.897 0.894 0.928 0.614 0.957 0.828 0.915
VGG-13: CIFAR-10 0.942 0.508 0.489 0.941 0.538 0.676 0.571
FGSM RCE STL-10 0 0.737 0.567 0.528 0.531 0.571 0.667 0.635
MNIST 0.953 0.935 0.955 0.678 0.975 0.915 0.659
VGG-13: CIFAR-10 0.956 0.606 0.570 0.949 0.602 0.593 0.592
DeepFool O STL-10 0 0.540 0.495 0.507 0.500 0.542 0.481 0.556
MNIST 0.951 0.877 0.726 0.522 0.840 0.942 0.938
VGG-13: CIFAR-10 0.640 0.568 0.519 0.502 0.601 0.894 0.756
ResNet-50: CIFAR-10 0.729 0.700 0.546 0.506 0.630 0.900 0.801
DeepFool AL STL-10 0 0.665 0.502 0.509 0.500 0.503 0.588 0.510
MNIST 0.941 0.880 0.744 0.645 0.829 0.915 0.927
VGG-13: CIFAR-10 0.686 0.552 0.501 0.560 0.579 0.857 0.650
DeepFool RCE STL-10 0 0.612 0.531 0.647 0.500 0.611 0.634 0.524
MNIST 0.953 0.934 0.925 0.505 0.960 0.947 0.945
VGG-13: CIFAR-10 0.657 0.633 0.546 0.567 0.850 0.759 0.698
C&W Best perf. STL-10 u] 0517 0518 0512 0.500 0.524 0.586 0.522
MNIST 0.958 0.924 0.894 0.609 0.866 0.949 0.947
VGG-13: CIFAR-10 0.803 0.574 0.542 0.564 0.652 0.870 0.638
C&W Best perf. STL-10 v 0.619 0475 0.507 0.456 0.498 0.547 0.479
MNIST 0.989 0.953 0.940 0.599 0912 0.986 0.988
VGG-13: CIFAR-10 0.896 0.492 0.536 0.581 0.521 0.606 0.485
PerC-AL RCE STL-10 u] 0.523 0.503 0.503 0.526 0516 0.533 0.505
MNIST N/A N/A N/A N/A N/A N/A N/A
VGG-13: CIFAR-10 0.815 0.745 0.771 0.795 0.782 0.514 0.766
ResNet-50: CIFAR-10 0.553 0.529 0.560 0.612 0.525 0.548 0.667
Shadow RCE STL-10 0 0.587 0.479 0.624 0.450 0.683 0.597 0.464
attack
MNIST 0.927 0.937 0.887 0.453 0.963 0.449 0.833
VGG-13: CIFAR-10 0.665 0477 0.511 0.698 0.529 0.504 0.663
ResNet-50: CIFAR-10 0.653 0.561 0.596 0.716 0.485 0513 0.619

Note that PerC-AL requires color datasets so we do not include results for MNIST, a dataset contains gray scale images. The top-3 results are bolded. Top-1 results are highlighted in blue.

employed universally while maintaining a considerable detection  Tiny-ImageNet, and STL-10. Plotted according to the input size
accuracy. of one sample: 784, 3,072, 12,288, and 27, 648, respectively. From
the figure, we can observe that the discrepancy of ResNet-50 and

MeetSafe converges to a factor of approximately 2.3 when the input

4.3.4 Inference time size gets larger. We increased the feature size from 10 to 17 and
Figure 2b shows the inference time of MeetSafe and a  the pool size from 500 to 850. We anticipated that this would
ResNet-50 target model on four datasets: MNIST, CIFAR-10, lead to increased computation, especially for LRD. The results on
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TABLE 4 Accuracies of GMM-based detectors against gray- and white-box (GB/WB) adversaries with a £, -radii of 5 like in Table 2.

Detection accuracy =+ [t-Cl 95%] 1

optim.
CIFAR-10 STL-10 MNIST VGG-13
MS-8 MS-16 |-Def MS-8 |-Def MS-8 |[|-Def MS-8 [-Def
FGSM O O 0.680 0.671 0.672 0.627 0.520 0.549 0.823 0.814 0.808 0.569
FGSM AL o 0.876 0.829 0.853 0.925 0.485 0.508 0.897 0.894 0.942 0.508
FGSM RCE O 0.965 0.926 0.895 0.717 0.737 0.567 0.953 0.935 0.956 0.606
DeepFool AL O 0.691 0.752 0.762 0.520 0.665 0.502 0.941 0.880 0.686 0.552
DeepFool RCE O 0.738 0.785 0.745 0.571 0.612 0.531 0.953 0.934 0.657 0.633
C&W AL 0 0.746 0.804 0.815 0.518 0517 0.498 0.958 0.696 0.803 0.509
C&W RCE O 0.810 0.818 0.814 0.557 0.574 0.518 0.958 0.924 0.689 0.574
C&W RCE v 0762 | 0.745 + 0.04 0.689 0.469 0.544 0.475 0.989 0.953 0.896 0.492

underlined. Top-1 results are highlighted in blue.

We show experimental results on additional datasets and model architectures in Table 5. The t-CI is based on 5 runs. Top-3 results are bolded, and the worst-case of a detection algorithm is
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(a) ROC curves of MeetSafe's features on CIFAR-10 and a reverse ResNet-50 as target model. The curves show the performance against DeepFool
and FGSM. (b) Graph that shows the inference times of MS-8 and a reversed ResNet-50 on MNIST, CIFAR-10, Tiny-ImageNet, and STL-10. The error
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CIFAR-10 demonstrate that this increase led to a slower processing
rate, with the model running 0.28 batches per second slower than
before. We consider this change to be limited, indicating that the
computational overhead is also manageable given the increased
feature and pool sizes.

5 Ablation study

5.1 Sensitivity and utility of the hidden
layers

Figure 3 explores the Uy utility in the study. The barplots show
the utility at the outputs of that layer, which tends to increase when
the perturbed sample traverses deeper layers, but this may come
with fluctuations. For instance, the values for the STL-10 models
seem to decrease in the last layers. The adversarial learned CIFAR-
10 model also decreases in utility after the first bottleneck. Still,
the final bottleneck remains in the Top-3, suggesting its pivotal
role in model performance and feature extraction. Conversely, the
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initial convolution, denoted as “conv1”, frequently exhibits the least
utility.

We also see a major difference in the CIs critical region of
the CIFAR-10 models. Specifically, the adversarial learned model
displays notable variability on each layer, especially when compared
to the RCE model. That is in line with the narrow activations
in the scatterplots of Figure 4. The RCE models exhibit greater
utilities in its deeper layers. Consequently, we anticipate enhanced
performance when these hidden units are utilized for detection
purposes. Otherwise, adversarial learning would become more
intriguing due to the improved model accuracy (see Table 1).

5.2 On the impact of MeetSafe
components

We check the detection performance by removing each
component of MeetSafe (MS-8) to establish its importance within
the ensemble. For the ablation, we trained 3 GMMs all with
two components (LRD, PCA, FSQ) on a reversed ResNet-50 and
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FIGURE 3
Average of normalized Euclidean distance between FGSM AEs (¢, of 5) and benign samples under U at each ResNet-50 layer. The error bars denote

the 95% t-Cl across 5 runs. (a) CIFAR-10 dataset, (b) MNIST dataset, and (c) STL-10 dataset.
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FIGURE 4
Activations’ Z-Score of three hidden features before and after an FGSM perturbation, with a £, -radii of 5. The activations are sampled from a random

pool of 500 hidden features, directly after convolution. We show the activation of hidden features with the highest and lowest Z-score in (a, b) for an
adversarially trained ResNet50 on CIFAR10 and non-adversarially trained results in (c, d).
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Performance of LOF and LRD under different k with the amount of feature bags t=30 under CIFAR-10 and adversarial learned ResNet-50.
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TABLE 5 Accuracies of GMM-based detectors against gray-box adversaries on Tiny-ImageNet, STL-10, and CIFAR-10, with a £;-radii of 5.

Evasion Detection accuracy 1
attack
Robust optim. Plain model AL model RCE model
MS-8 I-Def MS-8 I-Def  MS-8 I-Def

FGSM ResNet-50 Tiny-ImageNet 0 0.954 0.532 0.939 0.533 0.976 0.503
C&W VGG-13 CIFAR-10 0 0.790 0.593 0.803 0.509 0.689 0.574
C&W ResNet-50 STL-10 0 0.531 0.499 0.517 0.498 0.574 0.518
C&W ResNet-50 Tiny-ImageNet 0O 0.553 0.494 0.523 0.497 0.502 0.511

Demonstrating the efficacy of small-scale models in comparison with datasets containing images of higher resolution. DeepFool’s and C&W’s results are dependent on the error rate Ry of the

models, like in Table 2. Best results are bolded. Top-1 results are highlighted in blue.

CIFAR-10. First, when we remove LRD the accuracy decreases by
0.054 for C&W, —0.027 for FGSM, and 0.117 for DeepFool. For
FGSM perturbations, the results do show that LRD does not add
much for on CIFAR-10, as its ablation leads to equivalent accuracies
of the GMM. Overall, LRD increases the effectiveness of MeetSafe
across various scenarios, aligning with the findings presented in
Section 4.3. Second, when we remove PCA, the accuracy decreases
by 0.191 for C&W, 0.234 for FGSM, and 0.145 for DeepFool.
Whitening is thus an important component on CIFAR-10. Third,
when we remove FSQ, the accuracy decreases by 0.197 for C&W,
—0.048 for FGSM, and 0.137 for DeepFool, which is also in line
with the results in Section 4.3.

5.3 On the impact of k for kNNs

To determine the optimal k, we evaluated the accuracy of LOF
and LRD using features from a random pool of 500 hidden features,
as shown in Figure 5. The left axis represents LRD accuracy,
while the right axis denotes LOF accuracy. The results are plotted
separately to highlight their distinct trends, each spanning an
accuracy range of 0.06. The elbow points indicate an optimal k = 8
for both methods, which we adopt for all k-NN-based approaches.
Notably, LRD achieves significantly higher accuracy than LOF, and
k impacts LOF more than LRD.

6 Conclusion and limitation

This study present MeetSafe, a scalable and effective framework
to detect white-box AEs. By leveraging insights from feature
distribution irregularities, MeetSafe integrates utility-based feature
selection with feature squeezing, whitening, and feature squeezing
to achieve high defense effectiveness and scalability against
model size with the increase of high-dimensional feature spaces.
Experimental results demonstrate an high detection accuracy of
MeetSafe across adaptive and classic adversarial attacks, as well as
robust whitening under white-box scenarios.

6.1 Limitations
Due to resource constraints, we considered I-Defender and

Feinman et al. (2017) KDE not practical in certain situations.

Frontiersin Computer Science

For models like ResNet-50, it would cost at least 372.53 GiB to
evaluate [-Defender. On the other hand, KDE+BU required a large
computational graph in Pytorch during white box testing. That was
because of the tens of forwards for dropout. For the same reason,
we could only utilize Uf(z) for the extremal value. Other methods
(LRD, LID, and KDE+BU) require instance-based learning and
more memory.
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