Skip navigation

Fuzzy decision support system for demand forecasting with a learning mechanism

Fuzzy decision support system for demand forecasting with a learning mechanism

Petrovic, Dobrila, Xie, Ying and Burnham, Keith (2006) Fuzzy decision support system for demand forecasting with a learning mechanism. Fuzzy Sets and Systems, 157. pp. 1713-1725. ISSN 0165-0114 (doi:

Full text not available from this repository.


In this paper, a new decision support system for demand forecasting DSS_DF is presented. A demand forecast is generated in DSS_DF by combining four forecasts values. Two of them are obtained independently, one by a customer and the other by a market expert. They represent subjective judgments on future demand, given as linguistic values, such as “demand is around a certain value” or “demand is not lower than a certain value”, etc. Two additional forecasts are crisp values, obtained using conventional statistical methods, one using time-series analysis based on decomposition (TSAD), and the other using an auto regressive integrated moving average (ARMA) model. The combination of these four forecast values into one improved forecast is made by applying fuzzy IF-THEN rules. A modified Mamdani-style inference is used, which enables reasoning with fuzzy inputs. A new learning mechanism is developed and incorporated into the DSS_DF to adapt the rule bases that combine the individual forecasted values. The rule bases are adapted taking into consideration the performance of each of the forecast methods recorded in the past. The application of DSS_DF is demonstrated by an illustrative example. The forecasts obtained by DSS_DF are compared with results procured by applying the conventional TSAD and ARMA methods separately. The results obtained are encouraging and indicate that combining forecasts obtained by different methods may be beneficial.

Item Type: Article
Additional Information: [1] First available online 30 March 2006
Uncontrolled Keywords: fuzzy inference systems, forecasting, learning, decision support systems
Subjects: H Social Sciences > H Social Sciences (General)
H Social Sciences > HB Economic Theory
Faculty / Department / Research Group: Faculty of Business > Department of Systems Management & Strategy
Related URLs:
Last Modified: 14 Oct 2016 09:13
Selected for GREAT 2016: None
Selected for GREAT 2017: None
Selected for GREAT 2018: None
Selected for GREAT 2019: None
Selected for REF2021: None

Actions (login required)

View Item View Item