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Abstract: Nanofibrous membrane has great advantages in many fields, of which the micro-
structural analysis and optimization are the key to the industrial application. The U-Net multi-
classifier based on network structure together with the Jaccard-Lovasz extension loss function
was proposed to classify the pixels of the nanofiber SEM image into three categories. A
Conditional Random Field (CRF) network was utilized to post-process the segmentation

results. Porosities of the filter membranes and the radii of the nanofibers were calculated based
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on the segmentation results. Experimental results show that the proposed U-Net multi-
classifier can be used to deal with overlapped nanofibers and the corresponding segmentation
results can retain important details of the SEM image. The technique is beneficial to the
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enhancing their ability to store electrolytes. In recent
years, the identification and analysis of microstructural
characteristic parameters in fiber filtration membranes
their economic feasibility and superior functional have effectively enhanced filtration performance and
performance, have found wide-ranging applications in facilitated their specialized adaptation to the filtration

. ! . . . SR 1 [9.10]

various fields!'?, including water pollution treatment!), needs ofva.rlous 1ndustrles. :
air purification”], and medical wound dressings™. The Scanning Electron Microscopy (SEM) has become a
market for nanofiber membrane applications has key method for closely examining the tiny and intricate
structures of nanofiber membranes. Qu et al. [

significantly expanded, with a promising outlook for _ _ : : :
future growth!®). To cater to the escalating market demand introduced microscopic optical materials and developed
an innovative SEM-based operating system that can

for high-performance products, it is imperative to
enhance the performance of nanofiber membranes. characterize various features of individual fibers. Lu et al.

1 Introduction

Nanofibrous filtration membranes, renowned for

Optimizing the microstructure of nanofiber membranes is
a key method to improve their functions. Research
conducted by Chu et al.”) on electrospun fibers of diverse
patterns shows how fiber arrangement influences
filtration efficiency and overall performance. Similarly,
Pujiarti et al.®) increased the porosity of fiber membranes
by applying ACB to PAN substrates, effectively

(2] ysed SEM and XRD to study fibers, exploring how
process parameters affect their shapes. Their work shows
the link between manufacturing conditions and fiber
structures, highlighting the importance of these
techniques in fiber analysis. Despite these advancements,
extracting and analyzing structural characteristic
parameters, such as fiber diameter and pore size within
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nanofiber filtration membranes, remains fraught with
challenges. First, the dimensions involved are at the
nanoscale, much smaller than even a single bacterium,
and are typically discernible only through SEM imaging,
which precludes direct measurement. Secondly, the
precision of feature extraction is compromised by the
inherent limitation of two-dimensional SEM images to
delineate the layered stacking of nanofiber membranes.
Third, nanofiber membranes, composed of randomly
stacked individual fibers, exhibit an intricate micro and
nano topological structure that challenges traditional
image processing techniques in analyzing complex
random structures"*). Therefore, segmenting SEM images
and extract their topological structure -characteristic
parameters remains a significant challenge in the analysis
and optimization process.

With the advancement of artificial intelligence
technology, neural network algorithms have shown
promising results in image recognition and processing.
FCN!', R-CNN', MASK R-CNN", and U-Net''"! are
commonly used neural networks for image segmentation.
U-Net excels at images by leveraging its U-shaped
symmetric structure and skip connections to preserve fine
structural details, while requiring fewer training samples,
making it more adaptable to the limited SEM datasets
commonly encountered in materials science. Ronneberger
et al. introduced the U-Net neural network, which
classifies SEM images of biological cells into foreground
and background based on feature image information,
achieving effective processing results. In this work, this
method was applied to process SEM images of nanofiber
filtration membranes. However, the standard U-Net,
functioning as a binary classifier, showed poor
performance when segmenting images with overlapping
fibers, requiring optimization based on the characteristics
of the fiber membranes.

This paper introduces an advanced multiclass
classifier that combines the Jaccard-Lovasz extension
loss function"™ with the U-Net architecture for
segmenting SEM images of nanofibers into foreground,
mid-background, and background. After segmentation, a
conditional random field was used to post-process the U-
Net segmentation results to reduce boundary blurring.
Additionally, the segmentation results were used to
calculate the characteristic radius of nanofibers and the
porosity of air filtration membranes, further validating the
effectiveness of the image processing results. Numerical
experiments indicate that the SEM image segmentation
results obtained using the U-Net multi-classifier better
preserve the topological information of fibers and yield
more accurate characteristic parameters, providing more
reliable technical support for analyzing the structure of
fiber membranes.

2 The U-Net Structure

The U-Net neural network, proposed by Ronneberger

et al. in 2015, adopts a symmetric encoder-decoder
framework!'”), as depicted in Fig. 1. The encoder part
consists of four blue NE nodes, denoted as NE1, NE2,
NE3, and NE4, and four edges between the NE nodes
denoted as ¢, 7, ¢3 and ¢4. Each NE node encapsulates
a pair of "convolution + activation" operations; and each
edge ¢; represents one downsampling operation.

The decoder is the inverse process of the encoder,
including four green ND nodes, denoted as ND1, ND2,
ND3, and ND4, and four edges between ND nodes,
denoted as wi, w,, ws; and w4 Each ND node also
signifies a pair of "inverse convolution + activation"
operations; and each edge y, represents one upsampling
operation.

In U-Net network, the ReLU function is used as the
activation function. It is defined as the positive part of the
argument and implemented via software computation.

The input image comes through NE1 node,
performing double "convolution + activation" operations
before converting to the feature map S which forms the
argument of the downsampling operation ¢, and an input
of ND1. The output of ¢,is the input of the NE2 node. The
same process is performed through NE2 to NE4 nodes.

In the decoder part, through ND4 to ND2 process,
ND1 node receives two inputs: the output of the
upsampling operation y; and S, the output of the NEI;
performs double "inverse convolution + activation",
output the feature map L (the label map) and F (the
confidence map) which are the outputs of the whole U-Net.

As an example, Fig.1(b) shows an enlarged structure
of the NEI node, where [ is an input image,
&i,i=1,---,64, are the intermediate feature maps; the
vector of feature maps S=( S, -, Ses) are the output of
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(b) Zoom in to NE1 of (a)

Fig.1 The U-Net Neural Network: (a) Schematic view of a U-Net
Structure (b) Zoom in to NE1 of (a)
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the NE1 node; 41, i=1,---,64, and c¢j;, i, j=1,---,64, are
the convolution kernels. Each convolution is followed by
a ReLU unit, which is not shown in the figure. The
calculation can be expressed as following formulae:

E=o(IQhy), i=1,---,64 )
S=0( > E® ). j=1. 64 @)

where o stands for the ReL U unit.

3 Nanofiber SEM Image Multi-
classifier

3.1 The Network Structure

The U-Net network was used to obtain some good

results in biomedical SEM image segmentation!”.

However,the U-Net network uses multiple downsampling
operations, which leads to loss of some information.
When this network is used to segment fiber SEM images,
the target boundaries become blurred, and there are noise
points inside the target (Fig. 3 (b)), which will affect the
subsequent computational processes. In order to improve
the accuracy of segmentation, a CRF (Conditional
Random Field) module was used to post-process the
prediction map output of the U-Net Network and fine-
tune the boundary of the target objects in this paper.

The network structure is shown in Fig. 2. The
fractions 1, 1/2, 1/4, 1/8 and 1/16 as seen in the U-Net
module represent the downsampling and upsampling
factors of each layer respectively.

(2)

Fig.3 A SEM image and its segmentation results: (a) SEM original image; (b) U-Net segmentation; (c) CRF post-processing

3.2 Loss Function

The standard U-Net network uses a cross-entropy
loss function as the measurement of classification
accuracy. However, early tests demonstrated that the
cross-entropy loss function does not work well with the
validation dataset. Therefore, the multi-classification
Jaccard-Lovasz extension loss function®”, was used in
this paper. This function is the Lovasz extension of the
evaluation indicator Jaccard Index and is also known as
intersection-over-union (IoU).

A training image with a size of y=Hx W can be
represented as a row-wise data structure in the vector
form /=({y,---,1,), where I; is the intensity of the ith
pixel. Define P=(P,---,P,), where P; is the coordinate
position of the ith pixel. The two feature vectors of the U-
Net outputs are the category label vector L= (Ll, ---,L”)
and corresponding confidence vector F= (F oy ),
where L; € C={ci,c2, -, ¢cfcje N, j=1,...,} is a category
label, zis the number of categories and0 < F;=F(L;)<1 is
the confidence value of the ith pixel classified as L;, 1 <i<#.

Suppose L =(L1, ---,L;) is the actual category label
vector of image / (ground truth), Z:(il, ---,I:,,) is the
predicted category label vector. For a certain type of
¢ € C,the Jaccard index is defined as:

{ir<isyLi=cf N{i1<i<yili=c|

J(L".L) = - —3)
{i1<isyLi=c} U{i1<igylli=c||
where || is the number of elements in the set.
Accordingly, Jaccard loss function is defined as:

AL L) =1-0(L" L) (4)

If the error prediction pixel set related to the
category c is defined as:

A/IC(L*,i) = {I;ISiSnIL::(;Ziic} U {LlSiSlyIL;;t(;Z,-:c}(S)
Then, A;, can be rewritten as,
| M. |
{ir<isqlLi=c} UM,

As (M) = (6)

The above loss function is defined at discrete points
and cannot be minimized through a continuous
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optimization framework. In this paper, the Jaccard-
Lovasz extension loss function was used in the same way
as that proposed in the reference!®”), which is the Lovasz
extension of the Jaccard loss function and is defined on a
continuous interval,

loss(L*, Z) = |é|zcecAJC(m(c)) @)

where c e C is the category label, m(c) is the pixel
labelling error vector corresponding to the ¢, defined as
follows:

m(c)z(ml(c),---,m”(c)) (8)
_|1-Fic) ifLi=c

Fi(c), otherwise

mi(c ) &)
and A 5, 1s the Lovasz extension of the Jaccard loss
function A,

Ar(m(c)) =" migi(m) (10)
gi(m) =AJ6({7T1, ---,m}) —AJC({”h "'7”1‘*1}) (1)

where (my,---,my) is a permutation ordering the
components of m in descending order, i.e. mz =nz, > 2

My,

3.3 CRF Post-processing

CRF (Conditional Random Field, CRF) *!! is an
extension of the logistic regression classifier to arbitrary
graphical structures. In this paper, CRF was used to fine-
tune the classification results generated by the U-Net
model for removing the blurred boundaries and obtaining
a more accurate classification image.

The prediction category label L; of the ith pixel can
be considered as a random variable, and so the prediction
category label vector L= (Ll, ---,L,,) can be considered

as a random field. For a given image /=(/y,---.1,), the
prediction category label can be considered as a condition
random field with a distribution p(Z|]).

The CRF network uses the maximum likelihood
method " as the loss function, which is defined by the
energy functional,

E(L)= 2 0u(L) + 2 6,(LiL;) (12)
where 6, is a single-pixel energy defined as
0,=—logF;=—logF (L;) (13)

The greater the probability of classification

@

label F(L;), the smaller the penalty, indicating that the
prediction is more accurate. Here, 0, is the energy of a
pixel pair, which is defined as

Op(LisLy) = u(Lis L) (0011 + 2k (14)
2 2
P,—P; I-1I;
e |8 _Lal)
2
ka=exp —Jl%lL (16)
Oy

where ki, k, are two Gaussian kernels defining the binary
energy functional, and w,, w, are the weights. The
parameters o,, 0, and o, are the standard deviations of
the Gaussian kernels; P;,P; and I;,/; represent the
location information and the pixel values of pixel i,j
respectively. &, tends to classify pixels with similar
positions and similar pixel values as the same type of
label; k, can combine isolated points into the same labels
as surrounding pixels which may increase the smoothness
of the segmentation. Finally, w(L; L;) represents a
measurement of compatibility between two labels
L;and L;. If the semantic categories represented by L; and
L; are not compatible with each other, the corresponding
value of u(L;,L;) is large which leads the large energy
functional.

Fig.3 consists of three parts in which (a) shows an
original nanofiber SEM image, (b) with its U-Net
segmentation result, and (c) the CRF post-processing
results.

4 Numerical Experiments

4.1 Data Set

The data set used in this study contains a total of 30
nanofiber SEM images, each with a resolution of 714 x
1024 pixels in the data sets. Among them, 20 were used
for training and the other 10 for testing. Given the small
number of training images, each image in the data sets
was divided into 35 overlapping blocks with the size of
256 x 256, contributing to a total of 700 blocks for
training. Each training block required manual annotation.
Fig. 4 shows an enlarged block of a SEM image and its
corresponding manual labeling result.

N
a2

Fig.4 Manual annotation: (a) A block of a nanofiber SEM image; (b) The manual labeling map of (a)
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The experiments were performed on dual Intel Xeon
E5-2620 v4 processors with dual NVIDIA Tesla P4 GPU,
using the Python-OpenCV computer vision library for
image processing and the PyTorch framework for
network construction and training.

4.2 Segmentation Results and Comparison

The hyper parameters used for the network training
in this paper are shown in Table 1.

There are a total of three hyper parameters used in
this work. Epoch means a complete training of the model

Table 1 Hyper parameters used for the network training

Hyper Parameter Value
Epochs 20
Batch size 4

Learning rate 0.001

AL AR
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using all the data in the training set. Batch size means the
number of samples selected for one training session.
Learning rate means the speed of weight update.

Fig. 5 and Fig. 6 show one of the original SEM
images used in the test and its segmentation results,
respectively. The three segmentation results as shown in
Fig. 6 were obtained using the U-Net multi-classifier,
such that (a) shows the foreground, (b) the middle, and
(c) the background.

Fig.5 An original SEM image for test

Fig.6 The segmentation results of the original SEM image in Fig.5:
(a) The foreground mage; (b) The middle image; (c) The background image

In order to compare the results in Fig. 6 with the
segmentation results by using the threshold method, a
small block of the image from Fig. 5 is selected and
shown in Fig.7.

Fig. 8 shows the segmentation results by using the
threshold method and the U-Net multi-classifier in (a)
and (b), respectively.

It can be seen that the segmentation results obtained
by using the U-Net multi-classifier appear to have better
details (white parts). This means that more detailed
topology of nanofibers is retained and is beneficial to the
extraction of the feature parameters.

AN
\)

@

Fig.7 A small part extracted from Fig.5
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Fig.8 Comparison of two segmentation methods: (a) Results obtained by the threshold segmentation;
(b) Results obtained by the U-Net multi-classifier
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5 Calculation of the Nanofiber
Feature Parameters

In this section, two important feature parameters
affecting the filtration performance were calculated based
on the U-Net segmentation: porosity of a nanofiber filter
membrane and the radius of the nanofibers.

5.1 Porosity

The porosity of nanofiber filter membranes varies
between 0 and 1 (or, as a percentage between 0% and
100%) and is defined as the fraction of volume of pores

over the total volume in a nanofiber filter membrane,

_ Ak
£= R (17)

where ¢ is the porosity, 4k represents the area of the pores,
A represents the area of the entire membrane image.

A nanofiber SEM image was partitioned into three
images by wusing the U-Net multi-classifier: the
foreground, the middle and the background. The
background is the image obtained by removing the
foreground and the middle from the original image,
which is just the pore parts, as shown in the white parts of
Fig. 6(c). The area of the white part can be calculated
using the pixel numbers within it. On the other hand, the
area of the entire image can be calculated using the pixel
numbers of the entire image.

The porosities calculated from 10 testing SEM
images range from 35.54% to 48.68%. For comparison,
the actual values of the corresponding membranes were
measured. The results shown in Table 2 indicate that the
porosities calculated through segmented images are
consistent with the measured values, although the former
are generally smaller than the latter due to the loss of
information caused by converting the 3D structure into a
2D structure.

Table 2 SEM Image Porosity

Image identification Imagel Image2 Image3 Image4 Image5 Image6 Image7 Image8 Image9 ImagelQ
Calculated values 39.44% 48.68% 35.54% 41.98% 39.70% 37.28% 38.48% 43.62% 45.26%  40.89%

Porosity
Experimental values  41.91% 50.23% 37.13% 44.01% 41.59% 39.86% 39.98% 46.01% 47.14% 42.47%

5.2 Nanofiber Radius

In the current study, only the radius of nanofibers
located in the foreground were calculated. The medial
axes of the nanofibers were extracted first by using
morphological operators, and then the Circle function of

NN
I S ; %

the OpenCV library® was used to detect the radius for
every pixel point in the medial axes. Fig. 9 shows a small
part of the medial axes of Fig. 6 (a).

Fig. 10 shows the sketch of the nanofiber radius
detection, and Fig. 11 gives the radius distribution maps
of Fig. 8 (a) and 8 (b) respectively.

-

Fig.10 Sketch of the nanofiber radius detection
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Fig.11 Nanofiber radius distribution maps: (a) The radius distribution map corresponding to the threshold segmentation;
(b) The radius distribution map corresponding to the U-Net multi-classifier (foreground)

It can be seen that most of the nanofiber radii are
distributed around one pixel, which means that the
nanofibers are uniform, as illustrated in Fig. 7. There are
3054 pixels in the medial axes obtained by the threshold
method and 5084 pixels obtained by U-Net multi-
classifier. This means that the U-Net multi-classifier is
able to retain better topological information of the
nanofibers and is beneficial to the subsequent numerical
simulation.

6 Conclusion

In this paper, a U-Net multi-classifier was proposed.
The U-Net network structure with the Jaccard-Lovasz
extension loss function was used to classify the pixels of
the nanofiber SEM image in three categories: the
foreground, the middle and the background; and a CRF
network was used to post-process the segmentation
results. Two feature parameters, porosities of the filter
membranes and the radius of the nanofibers, were
calculated based on the segmentation results.
Experimental results show that the segmentation obtained
by the proposed U-Net multi-classifier can deal with
overlapped nanofibers and retain more details of the SEM
images. The proposed method is beneficial to the
subsequent numerical simulation. Further research will be
conducted to promote real-world industrial applications.
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