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Abstract: Nanofibrous membrane has great advantages in many fields, of which the micro-
structural analysis and optimization are the key to the industrial application. The U-Net multi-
classifier based on network structure together with the Jaccard-Lovasz extension loss function 
was proposed to classify the pixels of the nanofiber SEM image into three categories. A 
Conditional Random Field (CRF) network was utilized to post-process the segmentation 
results. Porosities of the filter membranes and the radii of the nanofibers were calculated based 
on the segmentation results. Experimental results show that the proposed U-Net multi-
classifier can be used to deal with overlapped nanofibers and the corresponding segmentation 
results can retain important details of the SEM image. The technique is beneficial to the 
subsequent numerical simulation, which is of great academic and practical significance for the 
subsequent film performance improvement and application promotion.
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1 Introduction

Nanofibrous filtration membranes, renowned for 
their economic feasibility and superior functional 
performance, have found wide-ranging applications in 
various fields[1,2], including water pollution treatment[3], 
air purification[4], and medical wound dressings[5]. The 
market for nanofiber membrane applications has 
significantly expanded, with a promising outlook for 
future growth[6]. To cater to the escalating market demand 
for high-performance products, it is imperative to 
enhance the performance of nanofiber membranes. 
Optimizing the microstructure of nanofiber membranes is 
a key method to improve their functions. Research 
conducted by Chu et al.[7] on electrospun fibers of diverse 
patterns shows how fiber arrangement influences 
filtration efficiency and overall performance. Similarly, 
Pujiarti et al.[8] increased the porosity of fiber membranes 
by applying ACB to PAN substrates, effectively 

enhancing their ability to store electrolytes. In recent 
years, the identification and analysis of microstructural 
characteristic parameters in fiber filtration membranes 
have effectively enhanced filtration performance and 
facilitated their specialized adaptation to the filtration 
needs of various industries[9,10].

Scanning Electron Microscopy (SEM) has become a 
key method for closely examining the tiny and intricate 
structures of nanofiber membranes. Qu et al. [11] 
introduced microscopic optical materials and developed 
an innovative SEM-based operating system that can 
characterize various features of individual fibers. Lu et al.
[12] used SEM and XRD to study fibers, exploring how 
process parameters affect their shapes. Their work shows 
the link between manufacturing conditions and fiber 
structures, highlighting the importance of these 
techniques in fiber analysis. Despite these advancements, 
extracting and analyzing structural characteristic 
parameters, such as fiber diameter and pore size within 
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nanofiber filtration membranes, remains fraught with 
challenges. First, the dimensions involved are at the 
nanoscale, much smaller than even a single bacterium, 
and are typically discernible only through SEM imaging, 
which precludes direct measurement. Secondly, the 
precision of feature extraction is compromised by the 
inherent limitation of two-dimensional SEM images to 
delineate the layered stacking of nanofiber membranes. 
Third, nanofiber membranes, composed of randomly 
stacked individual fibers, exhibit an intricate micro and 
nano topological structure that challenges traditional 
image processing techniques in analyzing complex 
random structures[13]. Therefore, segmenting SEM images 
and extract their topological structure characteristic 
parameters remains a significant challenge in the analysis 
and optimization process.

With the advancement of artificial intelligence 
technology, neural network algorithms have shown 
promising results in image recognition and processing. 
FCN[14], R-CNN[15], MASK R-CNN[16], and U-Net[17] are 
commonly used neural networks for image segmentation. 
U-Net excels at images by leveraging its U-shaped 
symmetric structure and skip connections to preserve fine 
structural details, while requiring fewer training samples, 
making it more adaptable to the limited SEM datasets 
commonly encountered in materials science. Ronneberger 
et al. introduced the U-Net neural network, which 
classifies SEM images of biological cells into foreground 
and background based on feature image information, 
achieving effective processing results. In this work, this 
method was applied to process SEM images of nanofiber 
filtration membranes. However, the standard U-Net, 
functioning as a binary classifier, showed poor 
performance when segmenting images with overlapping 
fibers, requiring optimization based on the characteristics 
of the fiber membranes.

This paper introduces an advanced multiclass 
classifier that combines the Jaccard-Lovász extension 
loss function[18] with the U-Net architecture for 
segmenting SEM images of nanofibers into foreground, 
mid-background, and background. After segmentation, a 
conditional random field was used to post-process the U-
Net segmentation results to reduce boundary blurring. 
Additionally, the segmentation results were used to 
calculate the characteristic radius of nanofibers and the 
porosity of air filtration membranes, further validating the 
effectiveness of the image processing results. Numerical 
experiments indicate that the SEM image segmentation 
results obtained using the U-Net multi-classifier better 
preserve the topological information of fibers and yield 
more accurate characteristic parameters, providing more 
reliable technical support for analyzing the structure of 
fiber membranes.

2 The U-Net Structure

The U-Net neural network, proposed by Ronneberger 

et al. in 2015, adopts a symmetric encoder-decoder 
framework[19], as depicted in Fig. 1. The encoder part 
consists of four blue NE nodes, denoted as NE1, NE2, 
NE3, and NE4, and four edges between the NE nodes 
denoted as φ1, φ2, φ3 and φ4. Each NE node encapsulates 
a pair of "convolution + activation" operations; and each 
edge φi represents one downsampling operation.

The decoder is the inverse process of the encoder, 
including four green ND nodes, denoted as ND1, ND2, 
ND3, and ND4, and four edges between ND nodes, 
denoted as ψ1, ψ2, ψ3 and ψ4. Each ND node also 
signifies a pair of "inverse convolution + activation" 
operations; and each edge ψi represents one upsampling 
operation.

In U-Net network, the ReLU function is used as the 
activation function. It is defined as the positive part of the 
argument and implemented via software computation.

The input image comes through NE1 node, 
performing double "convolution + activation" operations 
before converting to the feature map S which forms the 
argument of the downsampling operation φ1 and an input 
of ND1. The output of φ1is the input of the NE2 node. The 
same process is performed through NE2 to NE4 nodes.

In the decoder part, through ND4 to ND2 process, 
ND1 node receives two inputs: the output of the 
upsampling operation ψ1 and S, the output of the NE1; 
performs double "inverse convolution + activation", 
output the feature map L (the label map) and F (the 
confidence map) which are the outputs of the whole U-Net.

As an example, Fig.1(b) shows an enlarged structure 
of the NE1 node, where I is an input image, 
ξii = 164, are the intermediate feature maps; the 
vector of feature maps S = ( S1 S64 ) are the output of 

Fig.1 The U-Net Neural Network: (a) Schematic view of a U-Net 
Structure (b) Zoom in to NE1 of (a)
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the NE1 node; hi1  i = 164, and cji  i j = 164, are 
the convolution kernels. Each convolution is followed by 
a ReLU unit, which is not shown in the figure. The 
calculation can be expressed as following formulae:

ξi = σ ( I⊗ hi1 )  i = 164 (1)

Sj = σ (∑i=1

64 ξi⊗ cji )  j = 164 (2)

where σ stands for the ReLU unit.

3  Nanofiber SEM Image Multi-
classifier

3.1 The Network Structure

The U-Net network was used to obtain some good 

results in biomedical SEM image segmentation[17]. 
However,the U-Net network uses multiple downsampling 
operations, which leads to loss of some information. 
When this network is used to segment fiber SEM images, 
the target boundaries become blurred, and there are noise 
points inside the target (Fig. 3 (b)), which will affect the 
subsequent computational processes. In order to improve 
the accuracy of segmentation, a CRF (Conditional 
Random Field) module was used to post-process the 
prediction map output of the U-Net Network and fine-
tune the boundary of the target objects in this paper.

The network structure is shown in Fig. 2. The 
fractions 1, 1/2, 1/4, 1/8 and 1/16 as seen in the U-Net 
module represent the downsampling and upsampling 
factors of each layer respectively.

3.2 Loss Function

The standard U-Net network uses a cross-entropy 
loss function as the measurement of classification 
accuracy. However, early tests demonstrated that the 
cross-entropy loss function does not work well with the 
validation dataset. Therefore, the multi-classification 
Jaccard-Lovasz extension loss function[20], was used in 
this paper. This function is the Lovasz extension of the 
evaluation indicator Jaccard Index and is also known as 
intersection-over-union (IoU).

A training image with a size of η =H ´W can be 
represented as a row-wise data structure in the vector 
form I = (I1Iη ), where Ii is the intensity of the ith 
pixel. Define P = (P1Pη ), where Pi is the coordinate 
position of the ith pixel. The two feature vectors of the U-
Net outputs are the category label vector L = (L1Lη ) 
and corresponding confidence vector F = (F1Fη ), 
where LiÎC ={c1c2cτ|cjÎN j = 1} is a category 
label, τis the number of categories and0 £Fi =F(Li )£ 1 is 
the confidence value of the ith pixel classified as Li, 1 £ i £ η.

Suppose L* = (L*
1L*

η ) is the actual category label 
vector of image I (ground truth), L͂ = (L͂1L͂η ) is the 
predicted category label vector. For a certain type of 
cÎC,the Jaccard index is defined as:

  Jc(L*L͂) = ||{ }i1 £ i £ η|L*
i = c  { }i1 £ i £ η|L͂i = c

||{ }i1 £ i £ η|L*
i = c  { }i1 £ i £ η|L͂i = c

(3)

where |·| is the number of elements in the set. 
Accordingly, Jaccard loss function is defined as:

  ∆Jc(L* Ľ) = 1 - Jc(L* Ľ) (4)

If the error prediction pixel set related to the 
category c is defined as:

Mc(L* Ľ) = {i1£i£η|L*
i =cL͂i ¹c}  {i1£i£η|L*

i ¹cL͂i =c}(5)

Then, ∆Jc can be rewritten as,

∆Jc(Mc ) = || Mc

||{ }i1 £ i £ η|L*
i = c ÈMc

(6)

The above loss function is defined at discrete points 
and cannot be minimized through a continuous 

Fig.2 Network structure diagram

Fig.3 A SEM image and its segmentation results: (a) SEM original image; (b) U-Net segmentation; (c) CRF post-processing
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optimization framework. In this paper, the Jaccard-
Lovasz extension loss function was used in the same way 
as that proposed in the reference[20], which is the Lovasz 
extension of the Jaccard loss function and is defined on a 
continuous interval,

loss (L* Ľ) = 1
||C ∑cÎC

D̄Jc( )m ( )c     (7)

where cÎC is the category label, m (c) is the pixel 
labelling error vector corresponding to the c, defined as 
follows:

 m (c) = (m1(c) mη(c) ) (8)

 mi(c) =
ì
í
î

ïï
ïï

1 -Fi( )c     if L*
i = c

Fi( )c  otherwise
(9)

and D̄Jc is the Lovasz extension of the Jaccard loss 
function ∆Jc,

D̄Jc(m (c) ) =∑i=1

η
mi gi( )m (10)

gi(m) = ∆Jc({π1πi}) - ∆Jc({π1πi-1}) (11)

where (π1πη ) is a permutation ordering the 
components of m in descending order, i.e. mπ1 ³mπ2 ³ ³
mπη.

3.3 CRF Post-processing

CRF (Conditional Random Field, CRF) [21] is an 
extension of the logistic regression classifier to arbitrary 
graphical structures. In this paper, CRF was used to fine-
tune the classification results generated by the U-Net 
model for removing the blurred boundaries and obtaining 
a more accurate classification image.

The prediction category label Li of the ith pixel can 
be considered as a random variable, and so the prediction 
category label vector L = (L1Lη ) can be considered 

as a random field. For a given image I = (I1Iη ), the 
prediction category label can be considered as a condition 
random field with a distribution p(L|I).

The CRF network uses the maximum likelihood 
method [22] as the loss function, which is defined by the 
energy functional,

E (L) = ∑i
θu( )Li +∑j

θp(LiLj )  (12)

where θu is a single-pixel energy defined as
θu =-logFi =-logF (Li ) (13)

The greater the probability of classification 

label F (Li ), the smaller the penalty, indicating that the 
prediction is more accurate. Here, θp is the energy of a 
pixel pair, which is defined as

θp(LiLj ) = μ (LiLj ) (ω1k1 +ω2k2 ) (14)

 k1 = exp ( -  Pi -Pj

2

2σ 2
α

-
 Ii - Ij

2

2σ 2
β ) (15)

 k2 = exp ( -  Pi -Pj

2

2σ 2
γ ) (16)

where k1k2 are two Gaussian kernels defining the binary 
energy functional, and ω1, ω2 are the weights. The 
parameters σα, σβ, and σγ are the standard deviations of 
the Gaussian kernels; PiPj and IiIj represent the 
location information and the pixel values of pixel ij 
respectively. k1 tends to classify pixels with similar 
positions and similar pixel values as the same type of 
label; k2 can combine isolated points into the same labels 
as surrounding pixels which may increase the smoothness 
of the segmentation. Finally, μ(LiLj ) represents a 
measurement of compatibility between two labels 
Li and Lj. If the semantic categories represented by Li and 
Lj are not compatible with each other, the corresponding 
value of μ(LiLj ) is large which leads the large energy 
functional.

Fig. 3 consists of three parts in which (a) shows an 
original nanofiber SEM image, (b) with its U-Net 
segmentation result, and (c) the CRF post-processing 
results.

4 Numerical Experiments

4.1 Data Set

The data set used in this study contains a total of 30 
nanofiber SEM images, each with a resolution of 714 ´
1024 pixels in the data sets. Among them, 20 were used 
for training and the other 10 for testing. Given the small 
number of training images, each image in the data sets 
was divided into 35 overlapping blocks with the size of 
256 ´ 256, contributing to a total of 700 blocks for 
training. Each training block required manual annotation. 
Fig. 4 shows an enlarged block of a SEM image and its 
corresponding manual labeling result.

Fig.4 Manual annotation: (a) A block of a nanofiber SEM image; (b) The manual labeling map of (a)
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The experiments were performed on dual Intel Xeon 
E5-2620 v4 processors with dual NVIDIA Tesla P4 GPU, 
using the Python-OpenCV computer vision library for 
image processing and the PyTorch framework for 
network construction and training.

4.2 Segmentation Results and Comparison

The hyper parameters used for the network training 
in this paper are shown in Table 1.

There are a total of three hyper parameters used in 
this work. Epoch means a complete training of the model 

using all the data in the training set. Batch size means the 
number of samples selected for one training session. 
Learning rate means the speed of weight update.

Fig. 5 and Fig. 6 show one of the original SEM 
images used in the test and its segmentation results, 
respectively. The three segmentation results as shown in 
Fig. 6 were obtained using the U-Net multi-classifier, 
such that (a) shows the foreground, (b) the middle, and 
(c) the background.

In order to compare the results in Fig. 6 with the 
segmentation results by using the threshold method, a 
small block of the image from Fig. 5 is selected and 
shown in Fig.7.

Fig. 8 shows the segmentation results by using the 
threshold method and the U-Net multi-classifier in (a) 
and (b), respectively.

It can be seen that the segmentation results obtained 
by using the U-Net multi-classifier appear to have better 
details (white parts). This means that more detailed 
topology of nanofibers is retained and is beneficial to the 
extraction of the feature parameters.

Table 1 Hyper parameters used for the network training

Hyper Parameter

Epochs

Batch size

Learning rate

Value

20

4

0.001 Fig.5 An original SEM image for test

Fig.6 The segmentation results of the original SEM image in Fig.5:
(a) The foreground mage; (b) The middle image; (c) The background image

Fig.7 A small part extracted from Fig.5

Fig.8 Comparison of two segmentation methods: (a) Results obtained by the threshold segmentation;
(b) Results obtained by the U-Net multi-classifier
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5  Calculation of the Nanofiber 
Feature Parameters

In this section, two important feature parameters 
affecting the filtration performance were calculated based 
on the U-Net segmentation: porosity of a nanofiber filter 
membrane and the radius of the nanofibers.

5.1 Porosity

The porosity of nanofiber filter membranes varies 
between 0 and 1 (or, as a percentage between 0% and 
100%) and is defined as the fraction of volume of pores 
over the total volume in a nanofiber filter membrane,

ε =
AK

A
 (17)

where ε is the porosity, AK represents the area of the pores,
 A represents the area of the entire membrane image.

A nanofiber SEM image was partitioned into three 
images by using the U-Net multi-classifier: the 
foreground, the middle and the background. The 
background is the image obtained by removing the 
foreground and the middle from the original image, 
which is just the pore parts, as shown in the white parts of 
Fig. 6(c). The area of the white part can be calculated 
using the pixel numbers within it. On the other hand, the 
area of the entire image can be calculated using the pixel 
numbers of the entire image.

The porosities calculated from 10 testing SEM 
images range from 35.54% to 48.68%. For comparison, 
the actual values of the corresponding membranes were 
measured. The results shown in Table 2 indicate that the 
porosities calculated through segmented images are 
consistent with the measured values, although the former 
are generally smaller than the latter due to the loss of 
information caused by converting the 3D structure into a 
2D structure.

5.2 Nanofiber Radius

In the current study, only the radius of nanofibers 
located in the foreground were calculated. The medial 
axes of the nanofibers were extracted first by using 
morphological operators, and then the Circle function of 

the OpenCV library[20] was used to detect the radius for 
every pixel point in the medial axes. Fig. 9 shows a small 
part of the medial axes of Fig. 6 (a).

Fig. 10 shows the sketch of the nanofiber radius 
detection, and Fig. 11 gives the radius distribution maps 
of Fig. 8 (a) and 8 (b) respectively.

Table 2 SEM Image Porosity

Image identification

Porosity
Calculated values

Experimental values

Image1

39.44%

41.91%

Image2

48.68%

50.23%

Image3

35.54%

37.13%

Image4

41.98%

44.01%

Image5

39.70%

41.59%

Image6

37.28%

39.86%

Image7

38.48%

39.98%

Image8

43.62%

46.01%

Image9

45.26%

47.14%

Image10

40.89%

42.47%

Fig. 9 Medial axes of Fig. 6(a): (a) The enlarged image of Fig. 6 (a); (b) Part of the medial axes

Fig.10 Sketch of the nanofiber radius detection
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It can be seen that most of the nanofiber radii are 
distributed around one pixel, which means that the 
nanofibers are uniform, as illustrated in Fig. 7. There are 
3054 pixels in the medial axes obtained by the threshold 
method and 5084 pixels obtained by U-Net multi-
classifier. This means that the U-Net multi-classifier is 
able to retain better topological information of the 
nanofibers and is beneficial to the subsequent numerical 
simulation.

6 Conclusion

In this paper, a U-Net multi-classifier was proposed. 
The U-Net network structure with the Jaccard-Lovasz 
extension loss function was used to classify the pixels of 
the nanofiber SEM image in three categories: the 
foreground, the middle and the background; and a CRF 
network was used to post-process the segmentation 
results. Two feature parameters, porosities of the filter 
membranes and the radius of the nanofibers, were 
calculated based on the segmentation results. 
Experimental results show that the segmentation obtained 
by the proposed U-Net multi-classifier can deal with 
overlapped nanofibers and retain more details of the SEM 
images. The proposed method is beneficial to the 
subsequent numerical simulation. Further research will be 
conducted to promote real-world industrial applications.
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