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Abstract

The electricity grid is a pivotal element in the energy transition, serving as the backbone for
integrating and distributing renewable energy. However, amid rapid digitalisation and
decentralisation of energy systems, its limitations have become increasingly apparent, posing
significant challenges for inclusive and equitable stakeholder engagement in the transition.
Stakeholders including consumers, prosumers, energy communities, aggregators and electricity
utilities, face unequal distribution of grid-related costs and benefits. There is thus a need to
understand and address coupled grid-societal vulnerability (GSV). However, there is still no
comprehensive study identifying factors influencing GSV and the corresponding challenges
vis-a-vis stakeholders. Previous studies have predominantly focused on the disparities in access to
hosting capacities for new renewable energy projects and grid congestion due to increased energy
demand from households and businesses. We contribute to the literature by developing a
comprehensive view of GSV through a systematic literature review of 185 peer-reviewed academic
papers focusing on the European context. Three main factors influencing GSV are identified: grid
constraints, cybersecurity risks, and regulatory barriers. A complex interrelationship exists between
stakeholders in the electricity grid and, as a result, we find there are (in)direct implications of their
grid challenges across stakeholders. Therefore, tackling GSV and inequalities in the energy
transition requires an integrated solutions approach combining supportive policies, regulatory
frameworks and market-based mechanisms with technological integration, innovations and
consumer engagement.

Abbreviations: 1. Introduction
DER Distributed energy resources Achieving the histqric 2015 Paris Agreement .to
EC Energy community reduce global warming from greenhouse gas emis-
EV Electric vehicle sions by 2050 necessitates a rapid shift from tradi-
PV Photo voltaic tional fossil fuels, and the immediate and extens-
EP Energy poverty ive deployment of clean alternatives to meet future
GV Grid vulnerability energy demands [1]. There are also plans to halt
GSV Grid-societal vulnerability . .

oo sales of new fossil fuel-based passenger vehicles by
DSO Distribution system operator . N .

o 2035, while gradually eliminating coal and oil power

TSO Transmission system operator R
P2P Peer-to-peer plants by 2040 [2]. This will lead to more dependence
GW Gigawatt on electricity, spanning various sectors including
ML Machine learning transportation, building, and industry [3, 4]. The
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ascendancy of electricity in energy systems is powered
by the dynamic growth of renewable technologies,
notably solar and wind. An unprecedented increase
in the deployment of these renewables is required
to meet future energy demands—targeting a 370%
increase in solar photovoltaics and 242% for wind by
2030, compared to the 134 GW and 114 GW capacit-
ies achieved in 2020 [5].

The great challenge for the electricity grid is to
handle all generated and consumed electricity by
2050. It is insufficient, causing problems in access to
hosting capacities for the installation of new renew-
able energy projects and grid congestion due to
increased energy demand from producers and con-
sumers (households, businesses, etc). To ensure a resi-
lient grid that can facilitate the energy transition,
global investment in grid infrastructure would need
to triple by 2030, reaching approximately $900 bil-
lion annually [5]. Such massive investment is crucial
not only for expansion but also for the modernisa-
tion of ageing infrastructure to adapt to the increased
integration of renewables [6]. However, as Sovacool
et al emphasise, without a focus on equity, this invest-
ment risks leaving vulnerable communities dispro-
portionately burdened by grid limitations during the
transition [7].

Thus, there is an urgent need to better under-
stand and address the intersection between social and
equity challenges, and GV. The term GV is well-
established and defined in the energy and power sys-
tems literature as the technical and operational sus-
ceptibility of electricity grid systems to systemic and
operational disruptions (e.g. [8—10]. This could be
due to physical, cyber, and natural incidents [11, 12].
In this study, we bring attention to a societal per-
spective by considering stakeholders’ challenges and
equity issues with respect to the electricity grid. To
encompass this intersection and distinguish it from
the established GV definition, we refer to it as coupled
GSV.

This study aims to understand GSV, which we
define as, ‘the likelihood of an unequal distribution of
costs and benefits vis-a-vis grid services among stake-
holders due to the technical, economic, spatial, and legal
challenges that arise with the increasing digitalisation
and decentralisation of energy systems.” Stakeholders
include households, businesses, energy suppliers, and
grid operators. Grid services® refer to the opportunit-
ies presented by the electricity grid for stakeholders’
engagement. These include electricity transmission
and distribution services, trading and sharing of elec-
tricity, demand response, charging services for elec-
tric cars and services to integrate renewable energy.

4 Similar terminologies are found in the social-science literature for
‘energy services’ [14, 44].
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Low grid capacity can prevent stakeholders from
leveraging the electricity grid to participate and
equally benefit from the clean energy transition. For
example, early adopters of renewables can bene-
fit more from existing grid capacities for clean
energy, limiting the participation of disadvantaged
households [13]. This could significantly exacerbate
the risk of EP. The consequences of this include
impacts on good health and well-being [14, 15].
Additionally, over and above grid congestion and
capacity limits for new renewable energy installations
[16—-18], GSV is also related to the information secur-
ity of stakeholders [19, 20].

Despite the urgency surrounding GSV, there is
still no comprehensive study identifying factors influ-
encing GSV and the corresponding challenges vis-a-
vis stakeholders. Research on the (in)direct implic-
ations for stakeholders also remains underexplored,
especially given their complex interrelations in the
electricity grid. This study contributes to the liter-
ature by developing a comprehensive view of GSV
through a systematic literature review of 185 peer-
reviewed academic papers. We also propose an integ-
rated solutions approach for tackling GSV consisting
of, for example, market-based mechanisms combined
with consumer engagement. This leads to the follow-
ing research questions:

— What factors influence GSV and how do their key
features relate to stakeholders?

— What are the (in)direct implications of stakehold-
ers’ electricity grid challenges for other stakehold-
ers?

— How can technological innovations, policy
reforms, market design, and stakeholder engage-
ment effectively address GSV and promote a more
equitable participation in the energy transition?

Considering the diverse nature of the global energy
landscape, this study focuses on the European con-
text, where a convergence of policy frameworks
presents a unique opportunity for analysis. The
European energy landscape is characterised by a suite
of harmonised policies, including the clean energy
for all Europeans package (CEP) [21], the EU Green
Deal [22], and the European SuperGrid [23]. These
initiatives highlight the collective European resolve
towards sustainability, energy security and market
integration.

The study proceeds as follows. Section 2 provides
background on relevant developments in energy sys-
tems and stakeholders in the electricity grid, serving
as a basis to unravel GSV and the corresponding chal-
lenges vis-a-vis stakeholders. Section 3 introduces the
research design and methods. Section 4 presents our
results, while section 5 highlights the complex stake-
holder interrelations and resulting (in)direct implic-
ations of their grid challenges for other stakeholders.
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Section 6 discusses an integrated solutions approach
for tackling GSV based on key strategies from the lit-
erature. Section 7 provides concluding thoughts.

2. Background

The electricity grid (or power grid) is an intric-
ate infrastructural network designed to facilitate the
transmission of electricity from its points of gener-
ation to end-users [24]. Electricity utility compan-
ies (grid operators and suppliers) are responsible
for generating, transmitting and distributing electri-
city to consumers [25]. Large-scale energy suppli-
ers, who operate high-capacity generation facilities,
play a vital role in the wholesale electricity market by
trading electricity in bulk. Meanwhile, the TSOs and
DSOs, collectively called ‘network (or grid) operat-
ors, maintain and coordinate electricity flows. They
are pivotal for guaranteeing the reliability of electri-
city supply, achieved through balancing the load on
the network and fostering the efficiency of electricity
markets [26]. On the consumption end of the spec-
trum lies households, businesses, and/or industries
such as data centres that depend on the grid for their
electricity needs, thus completing the cycle of energy
distribution from generation to consumption.

Historically characterised by a centralised model,
controlled by utility companies, European energy sys-
tems have become more decentralised and digitised
[27]. This transformation—marked by the integra-
tion of DERs, such as wind turbines, solar PVs, and
EVs—is bolstered by policy initiatives like the CEP,
EU Green Deal and European SuperGrid. As a result,
new stakeholders have emerged that can actively par-
ticipate through the generation and trading of renew-
able energy, namely prosumers and energy com-
munities (ECs) [28, 29]. Prosumers are households,
businesses, and industrial actors, that locally gener-
ate, consume, and trade excess clean energy [30].
ECs are initiatives formed to foster energy autonomy
and reduce carbon emissions by enabling joint invest-
ments in clean energy projects. For this purpose, they
pool resources [28, 31], share clean energy generation
[32, 33] and storage capacities [34, 35], and engage in
joint decision-making [36].

Ultimately, the existing infrastructure is strained
by the increasing stakeholder engagement [31, 37].
This necessitates substantial financial investments in
infrastructure upgrades and expansions to allevi-
ate grid congestion and increase capacity for more
renewable energy integration [6]. There is also grow-
ing demand for aggregator services to enhance grid
stability by optimising demand flexibility from con-
sumers, prosumers and ECs [38-40]. Aggregators
play a crucial role in integrating disparate small-scale
renewable energy-producing stakeholders and con-
sumers to participate effectively in the broader energy
market [38]. They optimise the aggregated energy
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and demand flexibility—from energy stored in sta-
tionary batteries and EVs, and modified user demand
profiles—to provide stability and enhance grid host-
ing capacity [41].

Low grid capacity not only restricts stakehold-
ers’ involvement but also exacerbates inequalities in
their ability to both benefit from and contribute
to the energy transition. For instance, early adop-
ters of DERs—particularly seen among wealthier
households [42]—saturate the grid with their excess
renewable energy exports, and can hence impact
access to cheap and clean energy for new or prob-
able adopters of DERs [17]. As a result, vulnerable
stakeholders remain disproportionately constrained,
reinforcing existing inequalities within the transition
process. It also can significantly exacerbate the risk
of EP—aka ‘energy insecurity',‘energy injustice’ and
‘energy vulnerability—and lead to broader socio-
economic inequalities for stakeholders [43]. In the
literature [14, 44, 45], EP is described as a situation
in which individuals, households, and communities,
‘cannot attain and/or use the energy services required
for good health, wellbeing, and the ability to fully parti-
cipate in society.” Energy services refer to those services
that require energy to function like mobility, cooking,
cooling, lighting, and space and water heating [44].
Therefore, EP can be the result of GSV and vice versa.

3. Research design and methods

To address our research questions, we applied the
PSALSAR framework [46]. It is a six-step process
for conducting a systematic literature review, namely
the protocol, search, appraisal, synthesis, analysis and
reporting.

Phase 1: protocol and search

There is a growing literature on unequal opportun-
ities for citizens to participate in the energy trans-
ition, and terms such as inequalities, unfairness,
poverty, privileges, and vulnerabilities have become
increasingly popular. We reviewed past literature that
address these, and given the research questions, that
cover issues related to ‘grid congestion, ‘hosting capa-
city) ‘grid limits), ‘decentralised energy’, energy shar-
ing or trading, ‘consumers, ‘prosumers’ and ‘ECs.
Following section 2, we also consider articles on
‘EP’, ‘energy vulnerability’ and ‘energy justice’ (search
string in appendix).

The Scopus search resulted in 17,579 publications
as of April 2025 when the search was conducted’. We
further refined our search to concentrate on stud-
ies pertinent to the European energy context, spe-
cifically within the disciplines of ‘Environmental sci-
ence, ‘Social sciences, ‘Business, management and

5 A first search was conducted up until 31 August 2023 and has now
been updated to 30 April 2025.
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t Protocol & Search

Studies identified from Scopus
search (n=711)

Appraisal & Synthesis

(Title and abstract review)
Results excluded (n=344)

( Reports sought for retrieval (n=367)

‘ Reports not retrieved (n=2) 1

Reports assessed for eligibility
(n=365)

(Final selection after full
reading of the articles)

Results excluded (n=180)

Studies included in the review
(n=185)

7

Analysis & Reporting J

Studies analysed and reported
(n=185)

Figure 1. PRISMA flow diagram.

accounting, ‘Economics, econometrics and finance,
and ‘Multidisciplinary. We included peer-reviewed
articles published in English since 2000, whereby we
identified 711 peer-reviewed articles as seen in the
PRISMA Flow Diagram in figure 1.

Phase 2: appraisal and synthesis
Next, we read through the titles and abstracts of the
selected articles to assess the relevance and quality. A
total of 344 articles did not meet the inclusion criteria
detailed in appendix table A1, and were excluded; 65
of which were from regions outside of Europe. 367
reports were then sought for retrieval of which two
of them were unavailable. The remaining 365 articles
underwent a comprehensive full-text screening pro-
cess, repeating the steps in appendix table Al. This
led to an additional 180 articles being excluded. In
all, 81 studies involving other regions were excluded
from the initially identified 711 reports; Asia (n = 20),
North America (n = 14), Central and South America
(n = 8), Africa (n = 33) and the Caribbeans and
Australia (n = 6).

Finally, of the 185 peer-reviewed articles identi-
fied for our study, four main recurring themes on
the electricity grid emerged; namely, grid congestion

issues, cybersecurity risks, regulatory challenges and
nature-related incidents (also see figure 3). These
identified studies have also been complemented with
additional grey literature and some relevant stud-
ies from other countries which are included in the
footnotes. The grey literature was selected from
citations in our reviewed articles—primarily from
sources such as the European Commission, IEA, WEF,
UNFCCC, and OECD. Additionally, from the ini-
tial pool of 711 articles, insights from studies in
other countries were included where contextually
relevant.

Phase 3: analysis and reporting

Reports that looked at multiple countries were redis-
tributed across the countries of focus for ease of
analysing the distribution of countries considered
in the literature. Also, studies involving simulations
and reviews have been classified as hypothetical stud-
ies and make up about 16% of all reviewed articles.
Countries exhibiting strong policies and high levels
of citizen engagement in the energy transition such as
Germany, the United Kingdom and the Netherlands,
have relatively higher representation in the literature,
as seen in figure 2.
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Grid Constraints
59%

Cybersecurity Risks “
9% T

Figure 3. Distribution of the factors influencing grid-societal vulnerability.

. Extreme weather events
and uneven Infrastructural
Development 5%

4. Factors influencing GSV

Despite grid congestion being the predominant
focus—constituting 54% of all reviewed works as
seen in figure 3—we have pinpointed other factors
influencing GSV that have been relatively over-
looked in existing literature. These include extreme
weather events and uneven infrastructural develop-
ment, cybersecurity risks and regulatory barriers. To
structure our results, we have classified the factors
directly related to the limitations of the electricity
grid under grid constraints. Hence, three main factors
influencing GSV were identified—grid constraints,
cybersecurity risks, and regulatory barriers.

4.1. Grid constraints
Grid constraints originate from the electricity grid’s
technical and operational limitations. While not

directly caused by stakeholder participation, the
growing involvement of prosumers, consumers, and
ECs in the energy transition reveals and amplifies
these existing limitations of the grid. Table 1 summar-
ises the factors influencing GSV and some of the key
features as discussed in the literature. Most featured
studies on the high penetration of DERs, intermit-
tency of renewable energy sources, spatial and tem-
poral mismatch in energy demand and supply, and
capacity limits. To a lesser extent, studies also dis-
cuss variations in building occupancy patterns, ageing
electricity grid infrastructure and network malfunc-
tion. The following subsections highlight findings on
the factors classified under grid constraints.

4.1.1. Grid congestion
Grid congestion is intricately woven into both the
supply and demand sides of energy flows. In the




Table 1. Factors influencing GSV from the literature.

Factors Description Key features References
Grid constraints This relates to the capacity and flexibility of Uncontrolled charging of EVs [47-51]
Grid congestion the electricity grid to handle spatial and Spatial and temporal mismatch in energy supply and [52-57]
temporal variations in electricity demand demand
and supply, and ensure reliable and resilient High penetration of DERs [6, 18, 58-62]
operation. Variations in building occupancy patterns [63-65]
Integration of ECs [33, 66—68]
Intermittency of renewable energy and inaccurate [6,69-72]
forecasting
Extreme weather events Increased self-consumption [73-76]
and uneven infrastructural Growing energy demand from residential, [62,77-79]

development non-residential and industrial sectors
Capacity limits for DERs and new grid connections [16, 18, 58, 80-83]
Ageing electricity grid infrastructure [15]
Uneven development and weather-induced disruptions [84-90]
Network malfunction [91]
Cybersecurity risks This relates to the digital infrastructure of User information security and hacking and [92-99]
the electricity grid, which exposes it to impersonation concerns
cyber-attacks from malicious entities. Potential disruption of services due to cyber threats [100-102]
Electricity thefts [103]
Regulatory barriers Arising from legal and regulatory Regulatory and incentive frameworks that reflect [104-118]
frameworks, and the broader policy diverse consumer preferences and support storage,
decisions that may hinder stakeholder efficiency, and demand flexibility
participation and the effective development, Customer-centric energy policies enabling P2P energy [119-124]
deployment, and integration of energy trading and protecting vulnerable populations
technologies and practices in the clean Grid tariff designs, energy taxes, and legal barriers [30, 125-138]

transition.

affecting equitable participation

Legal frameworks and market design for innovative
and flexible grid solutions, and EC initiatives

Gaps in standardised communication protocols across
energy devices and systems

Insufficient incentives and regulatory support for smart
grid investments and infrastructure upgrades

[26, 33, 139—145]
[146]

[147-149]

Note: To enhance readability, a selection of references is included in this table; additional references related to these factors appear in other tables.
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literature, this issue is mostly collectively referred
to as, ‘network congestion’ [47] or ‘grid congestion’
[26] with hardly a clear distinction between electri-
city feed-in capacity limits and demand-side con-
gestion. Both cases are connected. For example,
load curtailment or shifting demand through flex-
ibility measures, to minimise demand peaks, may
also enhance the limited grid’s capacity for fur-
ther renewable energy supply when demand is
moved to peak generation periods [80, 150]. Hence,
for clarity, we separate our findings into two
sub-groups: feed-in capacity limits and demand
congestion.

4.1.1.1. Feed-in capacity limits

Several factors contribute to feed-in capacity limits
in the European context, given the rapid expansion
of decentralised renewables, especially wind and solar
power [6]. This growth can sometimes surpass the
capacity of existing infrastructure [18], which was
not originally designed to accommodate such a rapid
diffusion [15]. As the deployment of DERs contin-
ues to expand, the existing distribution network can
be strained, leading to costly project delays [18, 77],
aiming to increase ‘hosting capacity’ or ‘feed-in capa-
city) i.e. the maximum level of DERs that the grid can
support [80].

Residential solar PV hosting capacities are not
evenly distributed [16, 18]. In Sweden, socio-
economic deprivation is associated with lower host-
ing capacity [16]. Communities with higher edu-
cation, income, home ownership and employment
enjoy larger solar PV hosting capacities. Also, single-
family houses receive more-than-average incent-
ives to install solar PV in most European countries
[18].

Costly grid upgrades are often required to
increase feed-in capacity, and these costs can be
unevenly distributed among consumers [151]. In
Germany®, the higher network reinforcement costs
passed on through electricity bills, disproportion-
ately affects those without solar PV [125] or those
living in areas with lower hosting capacity’ [81].
In Switzerland, projections show that increasing
solar PV deployment on low-voltage distribution
networks could lead to 18.5% and 13.7% more
voltage violations in 2035 and 2050 [18], compared
to 0.5% and 2.5% overloading for heat pumps and
EVs. Reinforcing the grid to handle this could cost

6 The same for the findings in the United States [13], although out-
side the scope of our study. The authors report that unequal access
to hosting capacities limits the penetration of solar PVs and EVs
particularly among African Americans.

7 Although, in the long run, these upgrades in hosting capacity
could mean that more individuals can adopt PV, and despite incur-
ring expenses (i.e. investment), it would yield savings for owners.
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€11.6 billion by 2050, €3,062 per household®, high-
lighting the cost implications of expanding host-
ing capacity and the risk of exacerbating inequality
[73, 126].

Feed-in capacity is also affected by the spatial dis-
tribution of DERs and by forecasting inaccuracies,
both of which can create mismatches between gen-
eration and demand [58, 69]. In Germany, high res-
idential PV penetration combined with low energy
grid consumption rates has led to overloading of low-
voltage networks in the summer months [59], requir-
ing grid operators to re-dispatch the supply’ [152]
and potentially costing up to €5 billion annually by
2025 [66]. Solutions aimed at maximising existing
feed-in capacity—such as sharing the grid [81]—
could avoid or defer expensive upgrades. For instance,
in Ireland, grid-sharing approaches could increase
participation from 77.9% to 100% and unlock access
for 364,064 customers. Similarly, siting wind turbines
closer to demand centres in Spain can reduce the need
for grid expansions, effectively preserving available
hosting capacity [58].

Prosumers’ self-consumption practices also influ-
ence feed-in capacity [60]. By using more energy loc-
ally, prosumers reduce exports to the grid, easing
stress on hosting capacity [73]. This could reduce
investment needs in distribution networks by 48%
and enable an additional 6.7 GW of solar PV in
Belgium by 2050 [153]. That being said, at high levels
of self-consumption, there may be trade-offs, includ-
ing impacts on energy security and potential increases
in EP [74]. Local coordination by DSOs through
‘smart prosumer’ models such as energy hubs and
EV parking lots, can optimise exports, reducing grid
operational costs by 46.85% while protecting feed-in
capacity [154].

The collective activities of ECs can significantly
shape local hosting capacity. As community PV capa-
city and membership grow, higher electricity exports
risk increasing congestion in distribution networks
[33]. Coordinated control of privately owned batter-
ies for shared objectives can ease these constraints
[155]. Also, optimal placement of these battery stor-
age in residential communities could reduce over-
loading at the low-voltage distribution by more
than half, freeing up additional capacity for DER
integration [67].

Expanding feed-in capacity can also be achieved
through targeted technical innovations. Scheduling
flexibility helps accommodate periods of high PV
generation [70, 71, 156], while storing excess PV

8 CHF 10.78 billion by 2050, CHF 2,845 per household
(Conversion rate as of 04/2025). This is already around 8.3%
of the annual Swiss median disposable household income [233].

9 At some point in the Netherlands, to address the overcapacity of
renewable energy in the north, they allowed Google data centres to
be built to balance the demand on the grid [234].
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electricity as thermal energy can prevent curtailment
[157]. Advances such as deep learning-based PV
forecasting and battery management can further
enhance PV hosting capacity in distribution networks
[158]. Grid-support functionalities in inverters can
reduce voltage deviations and grid instability [159],
while P2P energy trading—when designed to balance
local supply and demand—can ease grid saturation
[47, 156]. However, scaling P2P trading presents
persistent challenges, including managing uncer-
tainty, and resolving transmission and distribution
coordination issues, which must be addressed to
ensure it contributes positively to feed-in capacity
[160].

4.1.1.2. Demand congestion

Growth in energy demand in Europe is driven by
transport electrification, heating demands, and other
household and industrial loads [48, 78, 161, 162].
Excessive demand can cause demand-side congestion,
particularly in urban areas, during peak hours and
cold seasons [15]. In the UK, peak demand from heat-
ing alone is expected to increase by around 14% for
20% more adoption of heat pumps [78]. Demand-
side congestion, e.g. from uncontrolled charging of
EVs [51, 163] or variations in building occupancy
patterns [63, 64, 164] (see table 1), can cause voltage
fluctuations and frequent interruptions in power
supply.

The rapid diffusion of EVs strains existing grid
infrastructure and impacts the power quality in
European cities [48, 51], which can compromise the
functioning of the grid in densely populated areas
such as Amsterdam [15], prompting further grid
investments. Energy efficient buildings on the other
hand, can contribute a 75% decrease in transmission
grid congestion by reducing peak heating demand in
Europe by up to 49% [165]. The €44.2 billion sav-
ings in distribution grid investments could in turn
lead to lower electricity prices, improving energy
equity in pricing and significantly reducing energy
bills [165].

With the digitisation of appliances, energy con-
sumers have become active players in energy systems
[52]. Aggregators can manage these appliances—
either through decentralised or centralised control—
to flatten demand peaks [72, 166] in exchange for
preferable rates [55, 167]. Demand flexibility can
also be achieved through battery energy storage or
the smart charging of EVs [50]. However, EV own-
ers tend to prefer manual control over a centralised
control [168, 169], while some owners have inelastic
demands'® [137].

10 price elasticity of demand measures how responsive consumers
are to changes in price. The more inelastic, the more unlikely to
change their behaviour in response to price signals [54].
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A growing number of new or expanded grid con-
nection requests face long waiting lists due to lim-
ited transport capacity and required upgrades, result-
ing in substantial socioeconomic losses [83]. Through
‘coordinated non-firm connections’, new industrial
customers can form ECs with existing grid custom-
ers to coordinate flexibility and capacity utilisation
[82]. Such coordination can unlock latent flexibility
in existing businesses that previously lacked motiva-
tion to engage in demand response.

Other than shaving peak demand, demand-side
flexibility can be optimised by the supply of renew-
able energy in the grid [150]. By aligning consumer
energy consumption with periods of abundant, low-
cost renewable energy, consumption patterns can be
optimised to support grid stability [53, 54, 80, 161].
However, it is not yet well understood why people
struggle to shift demand patterns [170]. Methods to
understand user energy behaviour are often oversim-
plified, hence the complexity, diversity, and temporal
dynamics are overlooked [171]. Sustaining energy-
efficient behaviour though visible energy feedback via
smartphone apps shows promise—especially among
already energy-efficient households [172].

The potential of EV charging via vehicle-to-grid
(V2G) and smart charging is estimated to provide a
large storage buffer with little to no impact on EV util-
isation and cover a substantial portion of household
consumption [163, 173, 174]. Emergency cases when
the electricity demand exceeds the supply may require
grid operators to resort to load shedding, temporarily
cutting off power in certain areas [48].

4.1.2. Extreme weather events and uneven
infrastructural development
In addition to congestion, the grids are constrained
by extreme weather events and uneven infrastructural
development, affecting grid service accessibility for
stakeholders (see table 1), particularly in remote areas
such as mountainous locations with high renewable
energy potential but low or no grid capacity [88].
Power grids are vulnerable to extreme weather
conditions!! including storms, hurricanes and
wildfires [175]. Most grids are designed based on
available historical climate data and may not be
adequately prepared for climate change [87, 176].
In Greece where overhead lines constitute most of the
medium voltage network length due to the rugged
terrain and dispersed population centres, nearly
18.54% of the country’s exposed grid infrastructure
was impacted by extreme weather incidents in 2021,

11 Some extreme cases are more frequent in other regions, impact-
ing the health and well-being of the affected populations. They
include the tropical cyclones and coastal flooding in Southeast and
East Asia [235], and the wildfires and extreme temperature changes
in North America [236, 237].
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leading to major infrastructure damages and equip-
ment failures [90].

Although decentralised energy systems can
increase reliability and resilience to extreme events,
they are not immune from the impacts due to their
reliance on existing grid services [86]. Previously,
weather events such as heavy snowfall, thunderstorms
[84] or hurricanes [87] often resulted in blackouts in
vulnerable regions in Finland [84] and Poland [87],
limiting renewable energy generation and P2P trad-
ing opportunities.

Failure of interconnected electricity grids due to
weather events can lead to cascading effects'?, severely
disrupting power supply for households, businesses,
and industries [90]. This urges grid reinforcement
to predict and manage future weather conditions
[85], reducing the cost of grid failure which con-
sumers would ultimately bear. For instance, in the
Netherlands, the €50 million in losses from a 2 h out-
age every 4 years, cost €2.80 per household and €33.10
for SME firms in 20093 [91].

4.2. Cybersecurity risks

The least identified factor influencing GSV is cyberse-
curity risks, appearing in only 9% of previous studies
(see figure 3). As reliance on digital communication
and control technologies in managing DERs intens-
ifies, the grid becomes increasingly susceptible to a
spectrum of cyber threats [98], e.g. data breaches,
hacking of smart meters, and denial-of-service, which
negatively impact consumers’ and producers’ confid-
ence in energy transition [92, 102] (see table 2).

The international Energy Agency reported 140
attacks in 2022, with numerous significant social and
economic disruptions [5, p 35]. Notable examples are
the 2015-16'* cyberattacks on Ukraine’s electricity
grid [187]. These incidents highlight the potential for
attackers to destabilise critical energy infrastructure
on a large scale [96, 101].

Deploying smart meters and EV charging sys-
tems in grids introduces new cyberattack vectors [93,
97]. Power overloading cyberattacks on smart meters
can exploit the vulnerabilities of load control sys-
tems, such as dynamic pricing and direct load control,
or the Open Charge Point Protocol for EV charging
[100]. Attackers can communicate false electricity
prices—creating peaks or demand fluctuations—to

12 This means that the surviving grid infrastructure will have to
bear the additional burden from the damaged parts, which may be
larger than their maximum loading capacity.

13 The IEA (2023) report estimates that global economic losses due
to power interruptions amounted to at least $100 billion in 2021,
with major economies like the U.S., China and Germany being the
most affected [5, p 40].

14 1n both of these cases, attackers gained unauthorised access
to control equipment and were able to disrupt grid operations,
depriving thousands of households of electricity [5, p 36].
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overload grid sections, causing blackouts or grid
damages [95, 177].

Beyond direct operational disruption, electricity
theft facilitated through meter tampering or data
interception presents further risks for load forecast-
ing, voltage regulation, and revenue losses for grid
operators'® [103]. In response, ML algorithms have
been deployed for anomaly detection in demand
patterns and household energy profiles [100, 101].
However, these Al-based solutions are themselves
vulnerable to adversarial attacks and data poisoning,
underscoring the need for careful integration and risk
management [99].

Demand aggregation can contribute to the grids’
cyber resilience, providing flexibility and support
in recovering critical infrastructure in the event of
cyber incidents [94]. Aggregators can provide backup
power, frequency and voltage regulation, and isolate
and restore affected areas. However, their reliance on
real-time data and automated control makes them
attractive targets for cyber attacks [96].

The expansion of IoT-enabled devices across
grid infrastructures compounds these risks by mul-
tiplying potential entry points for attackers, includ-
ing man-in-the-middle and device impersonation
threats [99]. Recent studies have sought to integrate
blockchain and physically unclonable functions, to
enhance access control and decentralised authentic-
ation frameworks [99]. Nevertheless, the deployment
of such solutions requires substantial computational
resources and also institutional readiness, as organ-
isational and regulatory gaps often hinder cybersecur-
ity preparedness, particularly for DSOs [188].

Advanced computational approaches such as
deep reinforcement learning, while offering optim-
isation advantages, introduce new vulnerabilities.
Studies reveal that these models can be exploited
through message spoofing and false data injection,
potentially destabilising grid operation [187]. In
P2P energy trading, while blockchain and ML-based
optimisations enhance efficiency and security, they
also exacerbate risks like latency and transaction
errors, especially with expanding distributed systems
[180].

Systemic risks from both physical and digital
disruptions, are also intensified by centralised
grid infrastructure and the lack of standardised
data governance frameworks [177]. This under-
mines a unified cybersecurity approach across
grid operators [188, 189]. As geopolitical tensions
heighten the threat landscape, adopting resilient
control frameworks—Ilike model predictive control
for networked microgrids—becomes critical. These
frameworks enable autonomous energy exchanges

15 Nearly 20% of the electricity generated in India is lost due to
theft [238]. In the U.S., the financial losses are estimated to be
around $6 billion annually [239].
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Table 2. The factors influencing GSV and how their key features relate to stakeholders.

Grid constraints

Cybersecurity risks

Regulatory barriers

Grid operators & suppliers

Spatial and temporal mismatch in energy supply and
demand [55, 56]

Extreme weather conditions [84, 85, 87, 89, 90]
Ageing electricity grid infrastructure [15]

Network malfunction [91]

Uneven development of grid infrastructure [88]

Unauthorised access to network control systems,
demand manipulation and remote shutdown of grid
infrastructure [95, 101]

Users’ data and electricity theft attacks [103]

False electricity price signals [100, 177]

Harmonisation of the power grid to support DER
penetration [148]

Investment incentives for smart grids [148]

Legal frameworks and market design for testing
innovative flexible grid solutions [140, 144, 178]
Regulatory frameworks for infrastructural upgrades
[147]

Delays in updating grid codes and market rules [61,
143]

Equitable grid tariff and pricing mechanisms for grid
cost recovery [30, 125, 138]

Legal frameworks to encourage DSO-TSO cooperation
for congestion management [26]

Aggregators

Intermittency and variability of renewable energy
sources [55, 71]
Scheduling of stakeholder flexibility [70, 166, 167, 199]

Power overloading cyberattacks [100]
Data theft, unauthorised transactions, identity fraud,
and physical damage to aggregator platforms [96]

Standardisation of communication protocols for
energy devices and systems [146]

Regulatory frameworks to support investments in
innovative aggregator services and business models
[105, 111, 112]

Energy communities

Rapid growth in decentralised, small-scale ECs [67]
Uncoordinated demand profiles [66, 68]
Heterogeneity of ECs; differences in community
configurations, size, and prosumer ratios [33, 179]

Privacy breach, reduced reliability/disruptions to clean
energy exports, financial losses and impacts members
trust [177, 180]

Regulatory frameworks and incentives for the
formation of EC initiatives [129, 145]

Regulatory frameworks for local energy and flexibility
trading within distributed networks [129]

(Continued.)
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Table 2. (Continued.)

Grid constraints Cybersecurity risks Regulatory barriers
Prosumers High penetration of (intermittent) renewable energy Privacy breach and financial losses/disruptions to clean Grid tariff designs, tax breaks and incentives for
and DERs (solar PV, wind turbines, battery storage, energy exports [92] investments in clean energy and storage solutions [134,
etc) [18, 58, 116] 136, 182, 183]
Increasing self-consumption [73-76, 181] Regulatory frameworks for the participation of
prosumers in LEMs that apply P2P energy trading
[184]
Consumers Inefficient energy use and variations in building Impersonation threats [99] Access to financing options for investments in

occupancy patterns [63, 64, 206]

Uncontrolled charging of EVs [47-49, 51]

Rapid increase in energy demand from households,
non-residential buildings and industries [54, 77-79]

Privacy breach, financial losses from damages to
household equipment and potential power outages [98]

energy-efficient technologies [113, 114, 124]

Fair regulatory frameworks for low-income households
and vulnerable populations [88, 119-121, 123, 185,
186]

Energy policies considering the heterogeneity of
consumer preferences for demand flexibility [104—106,
109, 130]

Note: the key features listed are prevalent points from the literature on each of the factors influencing GSV as it relates to the stakeholders. These features, while being positive for some stakeholders, could cause (in)direct

burdens/challenges for others. For example, high penetration of (intermittent) renewable energy and DERs also contributes to grid congestions, slower PV uptakes for late adopters and potential increased electricity bills from grid

upgrades. Details on these (in)direct effects are discussed in section 5.

suiysiiand dol

L00€0T (ST0T) 0T HIT sy “uosraug

1P 12 913q9 D



10P Publishing

Environ. Res. Lett. 20 (2025) 103007

during disruptions, mitigating reliance on central-
ised infrastructure and the cascading impacts of grid
failure [189].

4.3. Regulatory barriers

Regulatory barriers were the most frequently iden-
tified factors influencing GSV, appearing in 32% of
reviewed studies (figure 3); defining frameworks and
market design for inclusive energy transition [105,
190, 191]. They determine the accessibility and trans-
parency of electricity markets, grid tariffs and fees,
the availability and affordability of smart metering
devices, and data privacy, security, and ownership.
These factors affect the engagement of prosumers,
ECs and consumers, and their interaction with other
stakeholders, including grid operators and aggregat-
ors. Across Europe, regulatory frameworks and, con-
sequently, GSV spatially vary [145, 192, 193].

Some studies have identified the distributive
effects'® of grid costs and incentives for stakeholders
[30, 194, 195]. The transition of consumers to
prosumers requires more active infrastructure man-
agement and reinforcement by the grid operators,
increasing grid costs. While prosumers reduce their
grid dependence through self-consumption, they
benefit from incentives for low-carbon electricity
generation and demand [73, 196]. However, con-
sumers may face higher electricity bills and lower
quality of service [194] due to the current volumetric
pricing mechanism, which is indifferent to customer
profiles and grid impacts, and may lead to cross-
subsidisation and unfair cost allocation [118, 138].
Volumetric tariffs charge per kWh of used power,
incentivising the diffusion of solar prosumers, and
creating winners and losers in the energy transition.
The regulatory barriers can unfairly distribute the
grid costs of offshore wind installations too [197].

Feed-in tariffs (FiTs) influence prosumers’ prof-
itability and self-consumption and can incentiv-
ise them to export or store excessive self-generated
energy [73]. Lowering FiTs!” incentivises self-
consumption over exports, decreases grid operat-
ors’ revenues, and likely increases consumer energy
bills [183]. Some studies suggest implementing self-
consumption charges on prosumers [74, 75]. In
Germany, for instance, prosumer households pay
value-added tax on self-consumed energy and PV
investments [182].

16 1t is the difference in the grid tariff paid by consumers and solar
prosumers due to the diffusion of prosumer self-consumption [30].
17 As is the case in countries like the United Kingdom [240]. Apart
from the FiTs which are largely popular in European countries,
the net metering and net purchasing schemes are also mechanisms
designed to encourage solar prosumers and are popular in most
cities in the U.S. and countries like India [30, 241].
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Higher FiTs, on the other hand, reduce self-
consumption levels and increase PV feed-in, enhan-
cing the grid energy mix and providing afford-
able electricity for consumers. However, it also
risks overloading the grid with peak supplies, caus-
ing congestion [55]. Therefore, regulations like
Germany’s Renewable Energy Sources Act (2017) cap
feed-in power at 70% of a PV plant’s nominal power
to minimise strain on grid infrastructure [59].

The absence of comprehensive policy frameworks
that account for household practices and usage beha-
viours (highlighted in table 1), may result in flex-
ibility instruments'®, which unintentionally widen
socioeconomic inequalities [115, 117, 119, 186].
Households with high flexibility potential may be
indifferent to price incentives for load-shifting [198].
Flexibility instruments might inadvertently enforce a
uniform sustainable energy concept, conflicting with
the stakeholders’ varied values and living standards
[199]. Rather than curbing energy use, these instru-
ments may spawn counterproductive behaviours,
leading to the so-called rebound effect [130, 200].

Congestion management approaches reveal crit-
ical policy limitations, particularly around fairness
and access to grid capacity. Uncertainty about the
transaction costs, distrust for grid operators and
the complexity of the institutional context may
increase transaction costs for households offering
demand-side flexibility and reduce effectiveness of
grid tariffs [201]. Current regulatory frameworks for
the allocation of scarce grid capacity often priorit-
ise existing connected parties over those on the wait-
ing list including new businesses, renewable energy
developers, and community energy projects [83].

Smart meter adaptations marginalise some
households [123] due to their ICT literacy, particip-
atory attitudes, infrastructure and home ownership,
and income. These vulnerable groups, often homo-
geneously represented, are neglected in allocating
public investments and regulatory support [92, 113].
Implementing tradable green certificates presents
intricate challenges for market dynamics and over-
looks the demand side [141]. Aggregated storage sys-
tems and digital eMobility platforms provide grid-
scale flexibility and yield sufficient annual revenue to
compensate for grid operator losses. However, they
are also hindered by regulatory barriers [111, 139].

Regulations hindering flexible electricity pricing
mechanisms which ensure a win-win for prosumers
and consumers can cost €67 billion in savings on
capacity and transmission costs in the EU alone [136].

18 Flexibility instruments for incentivising grid flexibility services
include flexible energy tariffs, stakeholder-targeted business mod-
els and supporting incentives. The supporting policy frameworks
vary across European States [105].
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This makes smoothing out demand fluctuations bur-
densome for all parties involved [133]. However, cre-
ating fair grid tariffs that include DERs and EVs is
complex and faces significant challenges [126].

Flexible pricing mechanisms must sync with the
grid’s carbon intensity [128], the ‘price elasticity of
demand’ for EV charging, and price elasticity vari-
ations for different income groups [137]. Flexible
electricity pricing can promote EV adaptation and
V2G trading, reduce operational costs, and enhance
user convenience. They, however, can also increase
regulatory uncertainty and market distortions [142].

Regulatory barriers and tariff designs also signi-
ficantly impact the implementation and operation
of local electricity markets (LEMs) employing P2P
electricity trading among prosumers and consumers
(see also table 2). Across EU countries, the regulat-
ory frameworks for LEMs and P2P trading exhibit
considerable variation, shaped by national laws, mar-
ket structures, and grid conditions [129]. Differences
emerge in the proximity, participation, and grid tariff
requirements for ECs.

Lastly, the deregulation of electricity grids in
many jurisdictions poses a hurdle as their integra-
tion into market frameworks encounters inevitable
delays in updating grid codes and market rules [61].
This delay inhibits the effective utilisation of emer-
ging technologies critical for transitioning towards
low-carbon futures [140].

5. Complex interrelations and trade-offs
between stakeholders’ GSV challenges

Figure 4 is a conceptual illustration of the com-
plex stakeholder interrelations in the electricity grid
and the associated factors influencing GSV, outlined
in table 2. As described in section 2, utility com-
panies (grid operators and suppliers) play a critical
role in managing power generation, transmission,
and distribution to ensure reliability and efficiency
across the grid. Hence, electricity flows from them
to other stakeholders. However, the flow of electricity
could be in the reverse direction for Prosumers, ECs
and even Aggregators who are producers and traders
of renewable energy [55]. In the process, financial
exchanges could also be in both directions except
in the case of the consumers, who rely mostly on
energy imports. Demand flexibility is then optim-
ised by the Aggregator and used to balance the dis-
tribution networks while the stakeholders involved
can receive incentives for their demand response [72].
Therefore, we highlight a direct relationship between
utility companies and the rest of the stakeholders,
and the same for the aggregators. Between the con-
sumers, prosumers and ECs, an indirect relationship
exists (represented by the dashed lines in figure 4)
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as they are all directly connected to both the operat-
ors and aggregators but not necessarily to each other
(202, p 5].

As a result of the engagement with the grid and
their interrelations, there are (in)direct implications
for other stakeholders. For example, the spatial and
temporal mismatch in energy supply and demand
[55, 56], and extreme weather-induced network dis-
ruptions faced by grid operators and suppliers [84,
89] (table 2), can have broader consequences for other
stakeholders (table 3). This could be in the form of
power outages for consumer households and busi-
nesses due to grid operator-induced load-shedding
[91], and limited grid capacity to accommodate new
renewable energy installations for prosumers, ECs
and potential adopters (consumers) [16]. Challenges
associated with cybersecurity risks, such as demand
manipulation and remote shutdown of grid infra-
structure by cyber attackers, can cause damage to
household equipment, and difficulties for aggregat-
ors to optimise critical demand flexibility [95, 101].
Also, current volumetric grid charges, as discussed in
the regulatory barriers (section 4.3.), do not reflect
the actual grid utilisation and contribution of each
customer and may lead to cross-subsidisation and
unfair cost allocation for consumers [30, 118, 125].
Flexible tariffs offer consumers only marginal eco-
nomic benefits [200]. Inequitable frameworks for
energy markets and regulations can hinder the forma-
tion and integration of EC initiatives in the electricity
grid [145].

Grid aggregators also experience challenges that
could have (in)direct implications for others, such as
with scheduling stakeholder flexibility to provide grid
stability [70]. Potential implications from the literat-
ure, as outlined in table 4, are distortions in demand
forecasts for grid operators and operational ineffi-
ciencies in monitoring and controlling DERs [199].
Furthermore, maintaining reliable electricity exports
and imports for prosumers and ECs could prove chal-
lenging, impacting the economic viability of renew-
able energy investments [55, 167]. Also, the fluctu-
ations in energy costs could contribute to EP for con-
sumer households as much more of their income
could be spent on energy bills [71, 167]. Cyberattacks
such as power overloading, data theft, unauthorised
transactions and identity fraud could create chal-
lenges in maintaining the integrity and security of
customers’ data and energy systems, thereby impact-
ing public trust [92, 96]. This may also cause dam-
age to essential grid infrastructure, requiring expens-
ive, time-consuming restoration efforts that could
impact further grid operations [100]. Regulatory bar-
riers to investments in innovative aggregator ser-
vices and business models could impede stakeholders’
interest and participation in demand flexibility [105,
112], further hindering attempts at ensuring grid
stability [199].
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Figure 4. Stakeholders’ (in)direct interrelations in the electricity grid and GSV factors.

Similar to how electricity grid challenges faced by
aggregators can (in)directly impact other stakehold-
ers, the rapid growth in decentralised ECs—varying
in configurations, size, and prosumer ratios—can
also contribute to grid congestion, exacerbating
voltage violations and transformer overloads in dis-
tribution networks [33, 67]. The benefits of P2P
trading in ECs are almost exclusively shared among
prosumers while the late adopters could be vulner-
able to inequalities in available hosting capacity for
new renewable energy projects [80, 204]. For aggreg-
ators, more investments in technologies for managing
and aggregating demand flexibility is required [66,
205], as outlined in table 5. Regulatory frameworks
for local energy and flexibility trading within distrib-
uted networks can incite price disparities in P2P mar-
kets and widen socioeconomic inequalities within
ECs [129]. It impedes aggregators’ efforts to optim-
ise community-based flexibility resources, causing
sudden fluctuations in peak demand and supply
periods [67].

For prosumers, their distinct energy consump-
tion and production patterns introduce complexities
to grid management, affecting forecasting accuracy
and contributing to energy imbalances [69]. While,
their growing self-consumption supports local energy
use and generates economic benefits for community
energy projects [33, 184], it may also have indir-
ect implications for consumer households and busi-
nesses, as reduced grid operator revenues may be
recovered through increased electricity prices [73,
194] (see table 6). It may further impact supply
security and intermittency management for grid
aggregators [74]. Inequitable regulatory frameworks
for the participation of prosumers in LEMs that
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apply P2P energy trading may limit their forma-
tion and participation in EC initiatives [129, 145].
Furthermore, it may encourage unchecked prosumer
trading activities that incite fluctuations in electricity
prices and exacerbate demand peaks and grid feed-in
during off-peak periods [204]. In line with the point
of Mlecnik et al, it can translate to missed opportun-
ities for the development of new aggregator products,
services or business models that cater to the needs of
prosumers [105].

Grid-related challenges of consumer households,
businesses and industries, as seen in table 2, including
inefficient energy use, variations in building occu-
pancy patterns, and the rapid increase in energy
demand, contribute to the sudden changes in demand
profiles that prevent adequate grid optimisation
[63, 64, 78]. Apart from the increased invest-
ments required for infrastructure upgrades [136],
the grid aggregators’ ability to optimise their port-
folios and achieve cost-effective energy trading
is affected [167] (table 7). On the positive side,
there is a growing market for the sale of surplus
clean energy to the grid [184, 212]. Flexibility
mechanisms, like tariffs and incentives, risk com-
moditising household behaviours—engaging in
demand flexibility mainly for financial benefits—
potentially diminishing their participation in renew-
able energy generation [115], and indirectly exacer-
bating inequalities within EC initiatives [129]. The
resulting unforeseen energy practices could cre-
ate rebound effects in the electricity grid, such as
increased use of energy storage or EVs [115, 130],
and prevent reliable aggregators’ demand flexib-
ility services in response to rapid load balancing
requirements [178].
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Table 3. Implications of grid operators and suppliers’ electricity grid challenges for other stakeholders.

Grid operators &
suppliers

Factors influencing
GSV

Direct Impacts

Consumers Prosumers Energy communities

Aggregators

Grid constraints

Power outages [84, 85, 87, 89, 91]
Reduced power quality [15]
Higher electricity bills [88]

Higher feed-in tariffs,
Hinders the economic viability of RE
investments, and limits the adoption
and trading of clean energy [88, 156]

Limited grid capacity to accommodate new RE installations [16, 80]

Potential penalties for not meeting
contractual obligations [55]

Cybersecurity risks Potential power outages and damages to household equipment [101, 103] Challenges in optimising grid
Higher electricity bills and grid taxes to compensate aggregation requirements [93]
for the revenue losses from energy suppliers [103] Tighter regulations and standards for
Challenges in maintaining the integrity and security of custom- grid cybersecurity, potentially
ers’ data and energy systems, thereby impacting public trust [95, 101] increasing costs [98, 102]
Regulatory barriers Encourages cross-subsidisation Impacts prosumer Hinders the formation Impedes the assimilation of innovative

and unfair cost allocation to
consumers [125, 138, 201]

competitiveness in
the electricity
market [30, 132]

and integration of
energy initiatives in the
energy grid [140, 145]

Delays the integration of renewable energy sources into the grid [147]

aggregator business models,
technologies, and services in the
energy grid [105, 112]

suiysiiand dol

L00€0T (ST0T) 0T HIT sy “uosraug

1P 12 913q9 D



91

Table 4. Implications of aggregators’ electricity grid challenges for other stakeholders.

Aggregators

Factors influencing
GSV

Direct impacts

Consumers Prosumers Energy communities

Grid operators & suppliers

Grid constraints

Fluctuations in energy costs [71, 167]
Reduced economic benefits, cus-
tomer comfort and satisfaction [167]
Damages to household appli-
ances and financial losses [166]

Partly grid-dependent customers may
experience challenges in maintaining
reliable electricity imports [55, 167]

Distortion in demand forecasts
[70]

Power losses [203]
Operational inefficiencies in
monitoring and controlling
DERSs [199]

Cybersecurity risks Possible power disruptions [96] Attacks distort demand forecasts,
Increased vulnerability to electricity price attacks [100] cause blackouts and damage to
Challenges in maintaining the integrity and security of custom- essential grid infrastructure,
ers’ data and energy systems, thereby impacting public trust requiring expensive,
[92, 96, 97] time-consuming restoration
Breaches on aggregator plat- efforts [100]
forms may impact the export
of excess generated energy [97]
Regulatory barriers Limits the availability and adoption rate for innovative aggregator services, and tech- Hinders load balancing efforts

nologies that could enhance energy efficiency and affordability for customers [112]
Impedes customers’ interest and participation in demand flexib-
ility business models (a potential new revenue stream) [105, 112]

from demand response programs
[199]
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Table 5. Implications of ECs’ electricity grid challenges for other stakeholders.

Indirect impacts

Direct impacts

Energy Factors influencing
communities GSV Consumers Prosumers Aggregators Grid operators & suppliers
Grid constraints Inequalities in available Benefits of EC trading are More investments in Voltage violations,

hosting capacity for late
adopters of renewables [67,
80]

almost exclusively shared
among prosumers [204]

EC configurations impact the
economic viability of
prosumers investments [33,
179, 207]

Opportunities for participating in local energy initiatives
for trading clean and cheap energy [33, 205, 208, 209]

technologies for managing
and aggregating demand
flexibility [66, 205]
Enhanced flexibility portfolio
from a diverse pool of
community DERs [68]

transformer overloading and
substantial investments in
grid upgrades from increased
distributed generation, i.e. in
(rural) areas with limited
capacity [33, 67, 68]

Regulatory barriers Inequitable distribution of
grid financing costs among
consumers [129]

Price disparities in P2P markets and widening socioeconomic inequalities within ECs [204]
Limits the formation and participation in EC initiatives [129, 145]
Hinders participation and benefits of local energy and flexibility trading [184]

Impedes efforts to optimise
community-based flexibility
resources [129]

Sudden changes in peak
demand and supply periods
due to unregulated
profit-centric behaviours [67]

Note: Cyberattacks on the electricity grid, according to the literature, are mostly targeted at utility companies and aggregators platforms, and the impacts reaching other stakeholders. Hence, only tables 3 and 4—on grid operators
and aggregators, respectively—highlight the implications of cyberattacks for other stakeholders. However, there is growing concern that with increased digitalisation and IOT, the other stakeholders could be targeted directly [99].
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Table 6. Implications of prosumers’ electricity grid challenges for other stakeholders.

Prosumers

Factors influencing

GSV

Indirect Impacts

Direct Impacts

Consumers

Energy communities

Aggregators

Grid operators & suppliers

Grid constraints

Inequalities in available hosting
capacity for late adopters of clean
energy systems [16, 58, 81, 116]
Consumers bear the cost of
infrastructure expansion
[18,194]

Fosters local energy use, and
economic benefits for
community energy projects
[33, 184]

Forecast uncertainties and
insufficient demand flexibility to
meet load-balancing
requirements [70, 119]
Self-consumption impacts
supply security and
intermittency management [74]

Complexity in data collection
[210]

Rising grid investments in
upgrades [6, 18, 151, 162]

Grid instability, and transformer
overloading [59, 61, 159, 211]
Energy losses [59, 60]

Revenue losses from increased
self-consumption [74, 75]

Regulatory barriers

Fluctuating electricity prices
from unchecked prosumer
trading activities [204, 212]
Higher electricity bills [126]

Limits the formation and
participation in EC initiatives
[129]

Hinders the creation of
innovative aggregator products
and business models [105]

Grid feed-in during off-peak
periods [204]

Inefficiencies in network
planning [129, 184]

Impedes the utilisation of distributed renewable energy resources
for grid flexibility, balancing, and ancillary services [182]

Note: See notes in table 5.
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Table 7. Implications of consumers’ electricity grid challenges for other stakeholders.

Factors influencing
Consumers GSV

Indirect impacts

Direct impacts

Prosumers Energy communities

Aggregators

Grid operators & suppliers

Grid constraints

Existing market for the sale of surplus clean
energy in the electricity grid [184, 212]
Increased overall energy costs and feed-in tariffs hinder
the economic viability of renewable energy investments [72]

Challenges in optimising their
portfolios and achieving
cost-effective energy trading
[167]

Increased peak demand and
investments in upgrades [49, 51,
78]

Load shedding and unbalanced
distribution networks [48, 80]
Sudden changes in demand
profiles [63, 64]

Regulatory barriers

Flexibility mechanisms risk Exacerbated inequalities among
commoditising household members of energy initiatives
behaviours, potentially [129]

diminishing their participation

in renewable energy generation

[115]

Prevents the freeing up of grid capacity necessary for
integrating generated renewable energy [107, 133, 185]

Limits access to real-time
information and demand
flexibility for responding to rapid
load-balancing requirements
[178]

Uncertainty in recouping grid
investments [127]

Hinders savings in capacity and
transmission costs [128, 136]
Unforeseen energy practices create
rebound effects [106, 115, 130]
Inequitable incentives and greater
investment in upgrades [104, 108]

Note: See notes in table 5.
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Although prosumers and ECs are clean energy
producers, they may still be dependent on the elec-
tricity grid for some or part of their energy imports;
hence, there are some shared implications with con-
sumer stakeholder groups (cf tables 3 and 4). There
are also shared implications between the prosumers
and ECs, which consumers may not experience.
Similarly, implications peculiar to ECs, are seen in
tables 5-7. This is because ECs, unlike prosumers, are
legal entities with multiple partners.

6. Integrated solutions approach to
tackling GSV

In the face of rising inequalities among stakeholders
in the energy transition, innovative, integrated and
adaptive solutions, rather than one-size-fits-all, are
needed to harmonise stakeholders’ interests, taking
into account their GSV challenges. In this section,
we synthesis based on the literature, an integrated
approach to tackling GSV and the implications for
other stakeholders, drawing upon key strategies from
the literature outlined in table 8. An integrated solu-
tions approach in the European energy transition
requires supportive policies, regulatory frameworks
and market-based mechanisms combined with tech-
nological integrations, innovations and consumer
engagement, to facilitate a resilient and equitable elec-
tricity grid.

Supportive policies in this case are aimed at
addressing inequalities in the energy transition by
redistributing costs and benefits more equitably,
ensuring that vulnerable stakeholders receive sup-
port while the privileged ones take more respons-
ibility. These policies aim to promote mutually
beneficial stakeholder engagement in the transition.
For example, consumer-centric energy policies and
investment incentives can encourage investments in
energy hubs for low-income consumer households
living in rented apartments, who ordinarily do not
have access to rooftop spaces for PV installation.
They can also encourage the participation of vul-
nerable households in forming community energy
projects by prioritising grid connection for renew-
able energy, ensuring affordable connection prices
and the active involvement of local authorities. This
is because many of these ECs are in more afflu-
ent neighbourhoods with higher grid capacities, and
can afford to spend more for the necessary upgrades
[16, 18].

Concerning feed-in capacity limits, technolo-
gical innovations such as household and community
energy storage, including stationary batteries and
EVs, can soak up excess generated clean energy
behind the meter and from the grid, freeing up
capacity for more supply. This can be encouraged
especially among prosumers by introducing feed-
in limits for excess renewable energy exports to
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the grid [59, 223]. However, it is also important
that while we control excess feed-in, there should
be a counter policy introducing self-consumption
charges, to ensure grid stability and availability of
cheap and clean energy supply for consumers includ-
ing businesses and industries [73]. This would help to
control the rate of energy islanding—disconnection
from the grid for energy-self-sufficient households
[148, p 108, 230]. It will also ensure that costs
are not redistributed among fewer consumers [195],
potentially triggering a ‘death spiral’ where the grid
becomes unsustainable due to diminishing participa-
tion and rising costs [231]. Such solutions, combining
supportive policies and technology to check the levels
of self-consumption and feed-in, could minimise rev-
enue loss for grid operators while hedging consumers
against rising electricity bills and EP.

Next, regulatory frameworks can improve stake-
holders’ access to grid services by providing a struc-
ture to ensure compliance with electricity grid stand-
ards and goals for an equitable energy transition. For
instance, regulations for infrastructure reinforcement
and insulation to enhance resilience under weather
uncertainty. Regulations aimed at compensating cus-
tomers, including households, businesses and indus-
tries, for energy supply interruptions, spur grid oper-
ators to minimise restoration times, reduce inter-
ruptions, and consider backup options like on-site
heat and power production to maintain reliability
and service quality. The standardisation of commu-
nication protocols across different energy devices
and systems is fundamental to achieving and ensur-
ing the integration of innovative aggregator services
and technologies that could enhance energy effi-
ciency and affordability [146]. Also crucial are frame-
works to facilitate the development of new mar-
ket mechanisms for deploying flexible energy solu-
tions and demand response technologies, making
them economically viable and technically feasible for
vulnerable households, and updated grid codes to
accommodate the increasing penetration of prosumer
DERs [61].

Market-based mechanisms rely on energy mar-
ket design and economic measures to guide and
ensure fair and inclusive engagement of consumers
and prosumers. They should be designed to be flex-
ible enough to adapt to changes in the electricity
market by efficiently allocating resources to drive
innovation and stakeholders’ participation in the
transition, through market signals. Flexible grid tar-
iff structures and energy taxes could incite smart
energy management using smart meters, enabling
consumers to be more intentional about their elec-
tricity use [133, 185]. This would engage the res-
idential, non-residential and industrial consumers
in shaving demand peaks through demand flexib-
ility, minimising network fluctuations that require
aggregation services and expensive investments in
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Table 8. Strategies for addressing GSV.

Main categories Examples References
Technological integration and innovation
Smart energy management Home energy management system (68,97, 213]
Smart energy hubs [94]
Smart meters for smart grids [95, 98]
Grid enhancement Grid infrastructure reinforcement, insulation and expansion 6, 18,77, 87, 89, 147, 151]
Active power management in low voltage networks [60]
On-site combined production of heat and power [157,214]
Enhancing hosting capacity for DERs via optimal load re-phasing [80]
Enhancing grid infrastructure resilience under weather uncertainty (85, 86]
Energy storage Energy storage solutions—household and community energy storage [56, 59, 67, 155, 157, 205, 209, 215, 216]
Advanced grid technologies Blockchain technologies and ML-based frameworks in energy systems (65,93, 99-101, 103, 158, 187, 217]
Electric vehicles Flexible EV services: vehicle-to-Grid and Smart charging of EV's [15,47-51, 62, 116, 150, 153, 163, 203,
218-222]

Policy and regulatory frameworks

Supportive policies

Policy frameworks that match energy consumer preferences to encourage electricity storage, energy-saving

measures and demand flexibility activities
Introducing self-consumption charges
Introducing feed-in limits for excess renewable energy exports to the grid

Consumer-centric energy policies and investment incentives to enable participation of the most vulnerable

population in the energy transition
Customer-centric energy policies for P2P energy trading
Policies that encourage the formation of community energy projects

[104-115, 138, 181]

[73-75]
(59, 223]

[16, 58, 81, 88, 119-123, 183]

[92, 124]
[33, 145]

(Continued.)
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Table 8. (Continued.)

Main categories

Examples

References

Regulatory frameworks

Infrastructure upgrades, and investment incentives for smart grids

Integrating new grid codes and market mechanisms for facilitating innovative and flexible grid solutions
towards the energy transition

Standardisation of communication protocols for energy devices and systems

DSO-TSO cooperation for grid congestion management

[91, 122, 148, 149]
(61,71, 139-144, 224]

(146, 148]
[26, 138]

Market design and economic incentives

Economic measures

Energy trading and markets

Fairer grid tariff designs and energy taxes

Locational incentives for future renewable energy projects
P2P energy trading, local energy and flexibility market design

[30, 76, 118, 122, 125137, 182, 183, 185,
194, 197]

(58]

[47, 82, 152, 156, 160, 178, 184, 204, 208,
212, 225]

Consumer engagement

Sector-specific Demand response

Demand response in the residential, non-residential and industrial sector

[52-55, 57, 64, 66, 70, 72, 78, 79, 161,
164, 166, 199, 206, 211, 226-229]
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infrastructure upgrades. A tariff structure, with max-
imum and minimum limits for grid charges around
the average rate coupled with a capacity-based tariff
for prosumers’ grid exports, could address the unfair
cross-subsidisation of solar prosumers by consumers
in current electricity grid tariff designs by redistribut-
ing costs more evenly.

Furthermore, the location of future renewable
energy projects might be a relevant consideration
from the socio-economic welfare point of view when
private decisions might affect the power system
efficiency [58, 232]. Incentives for new projects are
necessary for discouraging such developments in
areas where the demand is not, as this could con-
strain locations for future hosting capacity and raise
energy prices. Also important is the design of equit-
able P2P electricity markets, since the benefits are
almost exclusively shared by prosumers (see section 5
and table 5). With the increasing volatility in the pub-
lic market, prosumers could mostly benefit as they
can buy electricity from the grid when prices are
low, and sell at high margins in later periods when
public electricity prices are high [204]. This would
send prices soaring in the P2P markets, incite socio-
economic inequality among stakeholders and dis-
courage the formation of ECs.

7. Conclusion

The electricity grid, central to the energy transition,
faces challenges due to the rapid decentralisation and
digitalisation of energy systems. These developments
on the already ageing grid hinder its ability to sup-
port inclusive and equitable stakeholder engagement
[7]. Stakeholders including utility companies, aggreg-
ators, ECs, prosumers and consumers, can face an
unequal distribution of costs and benefits vis-a-vis
grid services due to technical, economic, spatial, and
legal challenges arising from the grid limitations. We
refer to this as GSV, providing a societal perspective to
GV from the power systems literature. Consequently,
this leads to disparities, where some benefit signific-
antly while others bear disproportionate burdens.

The literature mostly focuses on the disparit-
ies in access to hosting capacities for installing new
renewable energy projects and grid congestion due to
the increased energy demand from households and
businesses [13, 16—18]. However, there is still no com-
prehensive study identifying factors influencing GSV
despite its pressing nature, nor on the corresponding
challenges vis-a-vis stakeholders. This study contrib-
utes to the literature by developing a comprehensive
view of GSV and stakeholder implications through a
systematic review of 185 peer-reviewed articles in the
European context, as well as synthesis based on the
literature, an integrated solutions approach to tackle
GSV.
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Three major factors influencing GSV are iden-
tified, namely, grid constraints, cybersecurity risks
and regulatory barriers. The literature highlights vari-
ous primary causes of grid congestion; however, it
often fails to differentiate between congestion origin-
ating from feed-in capacity limits (supply-side) and
demand-side issues challenging stakeholders’ parti-
cipation. Also, cyberattacks threaten the integrity and
efficiency of the electricity grid and are particularly
targeted at disrupting grid infrastructure. However,
the resulting stakeholders’ challenges, encompassing
a range of issues, extend beyond technical vulnerabil-
ities for the utilities and aggregators. They also impact
consumers’ and prosumers’ confidence and engage-
ment in the energy transition. Complex interrelation-
ships exist between stakeholders in the electricity grid,
and as a result, there are (in)direct implications of
their grid challenges for other stakeholders, which in
some cases can contribute to EP. Consequently, a uni-
form policy approach to tackling GSV and inequalit-
ies risks neglecting vulnerable groups in the pursuit
of net zero goals.

In essence, policy decisions may have unintended
implications, especially for vulnerable stakeholders.
For instance, demand flexibility instruments, rather
than curbing energy use, may spawn counterproduct-
ive behaviours like the increased reliance on energy
storage or EVs, leading to rebound effects—shifting
peak demand times to other times in the day—
on the electricity grid. This could disrupt demand
forecasts and even electricity prices. These indirect
implications may not be totally avoidable, as the per-
fect policies for tackling GSV and inequalities in the
energy transition may not exist. Therefore, an integ-
rated solutions approach based on the comprehensive
understanding of GSV and the implications for stake-
holders is crucial.

Insights from the study can inform future policies
and studies for a more equitable energy transition.
By recognising GSV and the (in)direct implications
for stakeholders, policymakers can put measures for-
ward that are more effective, adaptable, and equit-
able, to achieve a fair and sustainable energy future.
Also with increased digitalisation, future cyberat-
tacks could be more targeted at households and
businesses, i.e. through security gaps in their elec-
trical appliances and EVs while connected to the
grid. The cybersecurity literature makes up 9% of
the study on these societal perspectives and should
warrant more attention. Further studies can explore
policy-backed innovations, like blockchain techno-
logy to address cybersecurity risks in the energy
transition. Other studies can also explore the inter-
connections of GSV and transport poverty, partic-
ularly as the growth of e-mobility relies on users’
access to an adequate network of charging stations,
which is constrained by the electricity grid’s limited
capacity.
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Search String: (‘Prosumer®” OR ‘Consumer™®’
OR ‘Household*” OR ‘Energy community*” OR
‘Community energy’ OR ‘Community renewable
energy”” OR ‘Energy cooperative®”> OR ‘Energy
vulnerability*” OR ‘Grid vulnerability*” OR ‘Energy
Justic  OR ‘Energy poverty’ OR ‘Distributed
energy’) AND (‘Energy grid’ OR ‘Power grid’ OR
‘Electricity grid’ OR ‘Grid capacity*> OR ‘Hosting
capacity®” OR ‘Grid limit*” OR ‘Grid congestion*” OR
‘Distribution congestion*” OR ‘Network constraint*’
OR ‘Distributed* network’ OR ‘Transmission net-
work’)
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Table Al. Selection criteria for identifying relevant articles on GSV for the study.

Steps  Criteria Decision Reason

1 Articles focusing on countries outside of Europe. Exclude  The research scope focuses on studies within
the European context.

2 Articles of a technical/non-technical nature on

the electricity grid, exploring the intersection

of social and equity challenges in the energy

transition, including;

a. Articles exploring various perceptions on the Include  The research objective is to understand GSV,
limitations of the fixed electricity grid and the identify the key influencing factors and the
impact on stakeholders in the energy corresponding challenges vis-a-vis
transition. stakeholders.

b. Articles addressing the challenges stakeholders  Include  The research scope focuses on the implications
face in actively participating in the energy of GSV for stakeholders.
transition due to the inequalities in accessing
reliable connections in the electricity grid.

c.  Articles analysing solutions to the issues Include  The study aims to identify key strategies for
plaguing the electricity grid and causing tackling GSV (i.e. through policy
inequalities among stakeholders in the energy interventions, technological advancements,
transition. etc) and ensure equality for stakeholders in the

energy transition.
3 Articles analysing solutions to electricity Exclude It goes beyond the research scope.
grid-related challenges, with no intersection

with stakeholders’ concerns and equity issues

with respect to the electricity grid.
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