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A B S T R A C T

Mapping urban pollution is essential for assessing population exposure and addressing associated health impacts. 
High urban concentrations are due to the proximity of sources such as traffic or residential heating, and to urban 
density with the presence of buildings that reduce street ventilation. This urban complexity makes fine-scale 
mapping challenging, even for regulated pollutants such as NO2 and PM2.5. In this study we apply state-of- 
the-art empirical and deterministic modeling approaches to produce high-resolution (<100 m) pollution maps 
across five European cities (Paris, Athens, Birmingham, Rotterdam, Bucharest). These methodologies enable full- 
city mapping capturing intra-urban gradients of concentrations. Depending on the methodology, regulated 
pollutants (NO2, PM2.5) and/or emerging pollutants (black carbon (BC) and ultrafine particles (UFP character-
ized here by particulate number concentration PNC)) are considered. For deterministic modelling, different 
approaches are presented: a multi-scale Eulerian modelling chain down to the street scale with chemistry/aerosol 
dynamics at all scales, multi-scale hybrid models with Eulerian regional dispersion and Gaussian subgrid 
dispersion, and a Gaussian-based model. Empirical land use regression models were developed based upon 
mobile monitoring.

To compare the relative performance of the methodologies and to evaluate their performance and limitations, 
the modelling results are compared to fixed measurement stations. We introduce a standardized metric to 
quantify spatial and seasonal variability and assess each method’s capacity to reproduce fine-scale urban het-
erogeneity. We also evaluate how data assimilation affects both concentration accuracy and variability repre-
sentation—particularly relevant for emerging pollutants where measurement data are sparse. We confirm 
established seasonal and spatial patterns: spatial variability is more pronounced for PNC, NO2 and BC than PM2.5, 
and concentrations are higher during the winter periods. We also observe reduced spatial variability in winter for 
PM2. 5 (linked to residential heating) and for BC in cities with significant wood burning emissions. This study 
adds unique value by evaluating these patterns using fixed measurement stations, and quantifying them across 
entire urban areas at very fine spatial resolution (<100 m). Furthermore, important methodological strengths 
and limitations are pointed out, providing practical guidance for the selection and improvement of urban 
exposure mapping methods, supporting the implementation of the new EU Air Quality Directive.
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1. Introduction

The global impact of outdoor air pollution on health is very high 
(Brauer et al. 2024). The World Health Organization (WHO) estimates 
that air pollution is responsible for 6 to 7 million premature deaths a 
year worldwide, and 300 000 in Europe. It is the fourth leading health 
risk factor worldwide. A large part of the health impacts is attributed to 
particles (Cohen et al. 2015, Southerland et al., 2022). Nevertheless, 
particles of varying sizes and characteristics impact health differently 
(Park et al., 2018; Schraufnagel, 2020; World Health Organization, 
2021a). While the effects of fine particles expressed as PM2.5 are well- 
established, resulting in guidelines values by WHO, the evidence for 
health effects of black carbon (BC) and ultrafine particles (UFP) is 
judged less certain by WHO (WHO, 2021). BC and UFP are considered as 
emerging pollutants (WHO 2021b, Goobie et al. 2024). Thus, they 
should now be monitored at different sampling sites following the recent 
European Directive 2024/2881. Long-term UFP and BC exposure was 
shown to be associated with natural and lung cancer mortality among 
adults independently from other regulated air pollutants (Lequy et al 
2021, 2023, Bouma et al. 2023). Strong gradients of concentrations are 
particularly observed in urban environments for these emerging pol-
lutants (Llyod et al. 2023, Park et al. 2024), whose concentrations are 
there strongly influenced by road traffic (Ridolfo et al. 2024). The 
population exposure to outdoor concentrations is strongly influenced by 
these local variabilities, with larger differences for NO2 than for PM2.5 
(Lugon et al. 2022, Wang et al. 2024). Although the new Air Quality 
Directive explicitly recognizes modeling applications as valuable tools 
for informing air quality plans and roadmaps, accurately modeling the 
sharp gradients between roads and urban background for NO2 remains 
challenging, with many models struggling to do so, as recently noted by 
de Meij et al. (2024) for CAMS (Copernicus Atmosphere Monitoring 
Service) models (Colette et al. 2024). This challenge is even more pro-
nounced for black carbon (BC) and ultrafine particles, which are still 
rarely represented in modelling frameworks.

One of the main objectives of the RI-URBANS European project 
(https://riurbans.eu/) is to bring accessible service tools to enhance air 
quality monitoring networks, including evaluating air pollution expo-
sure. To assess the population exposure to pollutants, mapping is 
required at spatial scales below 100 m, at the minimum at the annual 
average scale but preferably at shorter time scale, in order to assess 
short-term exposure to those pollutants. The precision of spatial and 
seasonal variability representation directly determines the accuracy of 
exposure characterization. Given that different pollutants may exert 
distinct health effects it is important to determine techniques to map for 
accurately mapping all pollutants of interest. Fine-scale inter-compari-
sons usually focus on a district rather than a city, and meteorology or 
NO2 comparisons rather than multi-pollutant assessments (Thouron 
et al. 2019, Martin et al. 2024). Different mapping techniques exist: from 
empirical techniques using fixed-site or mobile measurements and Land- 
Use-Regression (LUR) modelling (Apte and Manchanda 2024, Ma et al. 
2024) to deterministic modelling (Lugon et al. 2022, Patino et al. 2024, 
Sartelet et al. 2024). Deterministic modelling may involve different 
scales, from regional to local scales, and can be used in synergy with 
statistical approaches to assess local concentration gradients (Valari 

et al. 2010, Squarcioni et al. 2024). Mapping fine-scale urban hetero-
geneities is challenging, especially for emerging pollutants, for which 
tools have only been recently developed (Kerckhoffs et al 2022b, Park 
et al. 2024). Furthermore, it requires extensive input data—such as 
mobile measurements for LUR or detailed fine-scale emission in-
ventories for deterministic modeling. Evaluation of the validity of maps 
of modelled air pollutant concentrations across cities is also challenging 
because of the generally spatially sparse monitoring data. The difficulty 
lies in evaluating the models at different types of stations characteristic 
of urban areas (traffic, urban background, suburban). This applies to 
regulated pollutants such as NO2 and PM2.5 in most cities, but even more 
to the emerging pollutants UFP and BC, for which routine monitoring is 
still scarce. We can evaluate however whether the models broadly 
represent the measurements at the few monitoring sites that are typi-
cally available in cities. The simulated concentrations may be corrected 
using ground-based observations and algorithms based on spatial 
interpolation techniques such as kriging (Shukla et al. 2020), or data- 
assimilation techniques (Tilloy et al. 2013).

Rather than intending a harmonized modelling inter-comparison, 
this study aims to benchmark current empirical and deterministic 
methodologies under the operational constraints faced by cities. The 
wide range of modelling techniques across cities and variability in the 
pollutant modelled reflects both the realities of data availability and the 
emerging nature of tools for fine-scale mapping of pollutants. Hence, 
this study aims to compare state-of-the-art mapping techniques 
(empirical and deterministic modeling) in capturing the spatial and 
seasonal variability of air pollutants (NO2, PM2. 5, black carbon, and 
ultrafine particles), provided the technique supports their modeling. The 
evaluation of the accuracy of methods in representing spatial and tem-
poral variation is crucial to provide insights in their effectiveness in 
estimating population exposure.

The different mapping techniques used here (Land-Use Regression 
and deterministic multi-scale modelling) are presented in section 2. The 
statistics used to evaluate modelled concentrations, assess variability 
and integrate across cities are detailed in section 3. The models’ setup 
and comparisons of concentrations to measurements are detailed in 
section 4. Section 5 presents the assessment of seasonal and spatial 
variability, along with their evaluation using fixed station 
measurements.

2. Mapping techniques

Different techniques may be used to provide high-resolution outdoor 
exposure city maps for pollutants. Techniques based on Land-Use 
Regression with mobile measurements and deterministic modelling 
have been used in this work.

2.1. Land-Use Regression models

In epidemiological studies of long-term air pollution exposure, land- 
use regression (LUR) models are often used (Hatzopoulou et al., 2017; 
Hoek, 2017; Jerrett et al., 2005; Ma et al., 2024) to determine the 
concentrations to which people are exposed. They are usually based on 
multiple linear regression using measurements from fixed monitoring 
stations, passive sampling or more recently mobile monitoring, and 
land-use features that can explain the variation in those measurements 
(Ma et al. 2024). An extension of this approach is a mixed-effect model, 
which uses fixed effects estimated from a linear regression model and 
random intercepts for all individual street segments (random-effect). 
The mixed effect model finetunes the prediction of the fixed-effect LUR 
model based on the measured between and within-street segment con-
centration variation. The mixed-effect modelling framework has been 
applied to develop high-resolution NO2, UFP and BC concentration maps 
for Amsterdam and Copenhagen based on mobile monitoring with better 
performance than data-only and LUR-only approaches (Kerckhoffs et al. 
2022, Kerckhoffs et al, 2022b).

Nomenclature

BC Black carbon
PNC Particle number concentration
NSD Normalised standard deviation
LUR Land-Use Regression
CTM Chemical transport model
UFP Ultrafine particles
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The required input data are measurement data and land-use pre-
dictor variables, such as land cover, population density on a specific 
area, road network and traffic intensity. Land cover and land use of 
terrain may be obtained from the CORINE dataset (European Environ-
ment Agency, 2018), while the population density may be obtained from 
national or European statistics catalogues. The road network along with 
traffic intensity variables may be obtained from the national statistics, if 
available, but can be also calculated using an available repository such 
as Open Street Maps (OpenStreetMap, 2021). Measured concentrations 
are provided for each road segment. They are averaged in time over the 
period studied. The same spatial resolution is used all-over the area, the 
concentrations are computed using the regression coefficients 
(Kerckhoffs et al. 2022, Kerckhoffs et al., 2024).

2.2. Deterministic models

Techniques based on deterministic modelling may also be used to 
provide high-resolution outdoor exposure city maps. They usually 
require an emission inventory, meteorological data and a model that 
estimates the evolution of concentrations in the atmosphere due to 
chemical and physical transformations. At the regional scale, Eulerian 
chemical transport models are often used for forecasting, scenarios, or to 
assess health effects (Adelaide et al 2021). The simulated domain is 
discretized into cells of fixed size and the concentrations of the pollut-
ants are assumed homogeneous in each grid cell. They typically have 
horizontal resolutions coarser than 1 km2. To represent the locally high 
concentrations, local-scale models account for the dispersion and 
sometimes the chemical transformation of the pollutants in the vicinity 
of their emissions. Different approaches may be used to represent the 
local dispersion. The computational fluid dynamics approach is the most 
complex and accurate: the simulated domain is discretized in a Eulerian 
way and the flow is explicitly solved (Moin and Mahesh 1998), leading 
to a detailed representation of dispersion even when buildings are pre-
sent. Closure schemes may be used to represent the variations of the 
fluctuations of the flow, such as Large Eddy Simulation or Reynolds- 
averaged Navier–Stokes (Salim et al. 2011). These approaches require 
large computational time, limiting the domain and period of study, 
especially if chemistry and aerosol dynamics are taken into account (Lin 
et al. 2023, 2024).

2.2.1. Local-scale Gaussian-based models
To reduce computing time, Gaussian models are widely used, 

assuming that the dispersion of pollutants follows a Gaussian law (Hood 
et al. 2014, Rood 2014, Karl et al. 2019, Denby et al. 2020, Fernandes 
et al. 2021), which characteristics depend on the wind and atmospheric 
stability. Although this approach may be well suited to represent flat 
terrain, it is not designed to represent built or irregular domains (Patino 
et al. 2024, Martin et al. 2024), and adaptations of the Gaussian law 
have been proposed (Bercowitz 2000, Hood et al. 2021). For example, in 
the ADMS-Urban model, a street canyon module was added to represent 
the circulation of air flow for street canyon environments (Hood et al., 
2021). These approaches based a Gaussian representation of the local 
flow only deal with simple chemistry scheme, often assuming particles 
to be inert (Patino et al. 2024), and they may need some adaptations to 
be coupled to Eulerian chemical transport models (CTM) (Hood et al. 
2018; Denby et al. 2020), in order to avoid double counting of emissions 
that could occur if the regional and local concentrations are just added. 
For example, in EPISODE City-Chem, a time-stepping scheme that dif-
ferentiates the local and regional contributions is used (Hamer et al. 
2020). Furthermore, the assumption of homogeneity required in 
Gaussian plume is challenged in an urban environment, because the 
length of roughness varies greatly with the different heights of blocks of 
flats, the different widths of streets, avenues, boulevards, green spaces 
and squares. The Gaussian-based local-scale models are often gridded on 
a grid of size ranging from 10 m x 10 m to 100 m x 100 m.

2.2.2. Local-scale street-network models
To avoid the tricky coupling between a local Gaussian model and a 

regional model, a Eulerian approach may be used at the local-scale in 
urban areas composed of streets. Those are then explicitly meshed. The 
concentrations are often assumed to be uniform in each street segment, 
or discretized with a few vertical levels (Kim et al., 2022; Sarica et al., 
2023). In these street-network models, the flow inside streets and the 
exchange between the street and the above canopy are parameterized 
depending on the meteorology and the street characteristics, using 
wind-tunnel experiments or computational fluid dynamics simulations 
(Maison et al., 2022a; Soulhac et al., 2009), potentially considering the 
effects of street trees (Maison et al. 2022b). In the street-network model 
MUNICH, the street-network is discretized into street segments, which 
exchange between them, as well as with the urban background using a 
Eulerian approach and parameterized local meteorology. The regional- 
scale concentrations are boundary conditions of the street-scale con-
centrations, allowing to have a continuity in the modelling of dispersion, 
chemical transformations and aerosol dynamics at all scales (Lugon et al. 
2021).

In terms of input data, for the regional-scale modelling, CTM require 
several input data that are specific to the domain of study: meteorology, 
boundary conditions, emission inventory. Meteorological fields may be 
obtained by different agencies, such as ECMWF (European Centre for 
Medium-Range Weather Forecasts), NCEP (National Centers for Envi-
ronmental Prediction), and downscaling down to the urban scale may be 
performed using different models, such as WRF (Weather Research & 
Forecasting Model). Boundary conditions may be obtained from global 
models or regional reanalysis, such as those provided by CAMS 
(Copernicus Atmosphere Monitoring Service), and/or from a nested 
domain approach down to the city scale. Emission inventories using a 
top-down approach are available at the European scale (e.g. EMEP, 
CAMS), and they may be downscaled to the city scale. Tools for this 
purpose may be embedded in chemistry-transport models (e.g. 
CHIMERE, Menut et al. 2021), or use a spatial disaggregation method, 
for example based on developments of the UrbEm tool (Ramacher et al. 
2021) for the European CAMS-REG emission inventory. Bottom-up in-
ventories may also be used.

For local-scale modelling, hourly road-network emissions are 
needed. Correction of the traffic flow and hence of the traffic emissions 
using traffic count loops may improve the modelling for some pollutants, 
such as BC and PNC concentrations (Park et al 2024). For street-network 
models, not only emissions, but also the characteristics of the main 
streets (lengths, widths and heights) are necessary for local-scale simu-
lations. Concentrations of the different pollutants are output hourly, 
with a spatial resolution of 1 km2 (or more) for the urban background 
concentrations from the CTMs. The street-network models provide 
concentrations in each street segment of the network.

2.3. Deterministic models with data assimilation

The simulated concentrations may be corrected using data assimi-
lation techniques. Here, a technique based on the BLUE (best linear 
unbiased estimator) algorithm of Tilloy et al. (2013) is presented. The 
assimilated concentrations are linearly dependent on the simulated 
concentrations and the observations, and their estimations require the 
estimation of the state errors covariance matrix B and the observational 
errors covariance matrix R. The covariance matrix B represents the 
uncertainty in the estimate of the concentrations. Here, it is expressed, 
such as incorporating model properties, and more specifically, the 
simulated concentrations xb

i and xb
j at grid points i and j, respectively: 

Bi,j = φ
(
xb

i
)
φ
(

xb
j

)
exp− di,j/d0 (1) 

where φ(x) = φ0 + x, with φ0 > 0, and di,j represents the Euclidean 
distance between the grid points, and d0 > 0 is a characteristic distance 
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scale. The retained values for these parameters are d0 = 75 km and φ0 =

10 µg/m3, which allows to adapt the error covariance to the local 
pollution conditions.

This formulation brings several notable advantages. First, the prior 
variance is non-uniform, as it increases with the simulated concentration 
xb, reflecting higher uncertainty in regions with elevated pollution 
levels, such as near major traffic routes. This feature ensures that areas 
with more significant pollution are treated with appropriately greater 
uncertainty. Second, the model effectively captures spatial heterogene-
ity by tailoring the uncertainty to the local characteristics of the envi-
ronment. This represents a significant improvement over the uniform 
treatment of road segments that characterized the approach by Tilloy 
et al. (2013). Moreover, the exponential decay factor e− di,j/d0 ensures that 
correlations diminish with distance, progressively reducing long- 
distance correlations and eliminating them at larger distances, thereby 
preventing spurious correlations between distant points. The con-
structed covariance matrix B is symmetric and positive semi-definite, 
which preserves the essential mathematical properties required for 
data assimilation.

The observation uncertainty is modelled through a diagonal obser-
vation covariance matrix R, which is defined as 

R = r0HBHT (2) 

where 0 < r0 < 1, ensuring that the observation uncertainty is lower 
than the model uncertainty at each grid point. Here, the value r0 = 0.05 
is retained, providing a suitable balance between model and observation 
uncertainties.

Since both the background covariance matrix B and the observation 
covariance matrix R are functions of the simulated concentrations xb, 
they change dynamically every hour. The assimilation process is con-
ducted every hour using hourly available measurement data, which 
means that both B and R are updated at each assimilation step to reflect 
the latest pollution levels.

To assess the accuracy of the assimilation system, cross-validation 
was performed using the leave-one-out method every hour (not shown 
here). For each measurement station, an analysis is performed excluding 
the observation from that station, using the remaining available mea-
surements. Given the computational intensity of this process, the fast 
computation formula was used for cross-validation to reduce computa-
tional time while maintaining the robustness of the evaluation.

2.4. Mapping techniques and pilot cities

The different approaches presented above are used to estimate 
pollutant concentrations and variabilities over different European cities 
(Paris, Birmingham, Athens, Rotterdam and Bucharest). They are sum-
marized in Table 1.

For deterministic modelling, four models based on different meth-
odologies and complexity are used: 

• Multi-scale Eulerian modelling over Paris with the CHIMERE/ 
MUNICH/SSH-aerosol modelling chain. It is a 3-dimensional (3-D) 
Eulerian CTM grid model with sub-grid Eulerian dispersion and 
chemistry/aerosol dynamic at all scales (Maison et al. 2024, Park 
et al. 2024).

• Multi-scale hybrid modelling with the Episode-CityChem modelling 
chain over Athens and the CHIMERE/ADMS modelling chain over 
Paris. They are 3-D Eulerian CTM grid model with sub-grid Gaussian 
dispersion (Karl et al. 2019, Lasne et al. 2023).

• The Gaussian-based model ADMS-Urban over Birmingham (Zhong 
et al. 2023)

The mixed-effect LUR model (Kerckhoffs et al. 2022) is used over 
Rotterdam and Bucharest.

3. Methodology for the statistical analysis

3.1. Concentrations

To evaluate the modelled concentrations, for regulated pollutants 
(NO2 and PM2.5), the yearly Modelling Quality Indicator (MQI, Janssen 
and Thunis, 2022) for the 95th percentile is determined (Fig. 1). It 
corresponds to the difference between the measured and observed 
concentrations normalised by the measurement uncertainty and by a 
coefficient β of 2. The quality of the modelling is good for MQI < 1, 
which reflects that the model bias is less than twice the measurement 
uncertainty. Yearly concentrations are here approximated by averaging 
seasonal concentrations. MQI at each fixed measurement stations and 
for each season are shown in Appendix. For deterministic modelling, 
hourly concentrations are also evaluated in the Appendix by comparison 
to fixed measurement stations using the Mean Fractional Bias (MFB), 
Mean Fractional Error (MFE), and the fraction 2 (FAC2), representing 
strict and less strict criteria for model evaluation1 (Boylan and Russell 
2006, Hanna and Chang 2012).

To integrate concentrations over the cities, the average modelled 
concentrations Cloc is estimated by averaging concentrations over grid 
cells: 

Cloc =
1
n
∑

i
Cloc(i) (3) 

where n is the number of cells, and Cloc(i) is the local concentration in 
the cell i. For deterministic modelling based on sub-grid Gaussian 
dispersion, the surfaces range between 50 x 50 m2 and 100 x 100 m2. For 
the street-network model and the mixed-effect LUR model, the con-
centrations are averaged over the different street segments, rather than 
grid cells.

3.2. Variability

Urban variabilities are quantified using coefficients of variation, 
specifically the normalized standard deviation (NSD), which is calcu-
lated to represent either seasonal or spatial variability. For NO2 and PM, 
the Model Performance Indicator (MPI) proposed by de Meij et al. 
(2025) is also studied.

3.2.1. Spatial variability
The spatial sub-grid variability within a regional model grid, aver-

aged over the time, can be characterized by the NSD of the sub-grids 
within the grid. Each city is meshed using a regular 1 km2 grid. For 
each mesh of the 1 km2 grid, the NSD can be used to indicate and 
quantify the difference between the sub-grid or street concentrations 
and the mean value: 

NSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑

i(Cloc(i) − Cloc)
2

√

Cloc
(4) 

where Cloc(i) is the local concentration in the subgrid or street i,
Cloc is the mean concentrations of the sub-grids and n the total 

number of sub-grids/streets within the 1 km2 grid. Maps of NSD for the 
different pollutants are shown in Appendix B.

The variability is also characterized over the whole city in the 
Table Appendix C and in Fig. 8. These averages are computed by sum-
ming i in equation (4) over all grid mesh located in the considered area. 
The higher the NSD, the more variability of the concentrations, indi-
cating the strong influence of highly localized sources such as traffic.

To enable a comparison of variability between the model and mea-

1 Strict: MFE < 50%, |MFB| < 30%, FAC2 > 50%, Less strict: MFE < 75%, | 
MFB| < 50%, FAC2 > 30%.
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surements, the variability between background and traffic concentra-
tions at fixed measurement sites is estimated using both measured and 
modeled data. Hence, taking Cloc as the mean concentration at traffic 
and background sites, 

Cloc =
Cbackground + Ctraffic

2
(5) 

Equation (4) may then be rewritten as 

NSDstat =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2(
(
Cbackground − Cloc

)2
+
(
Ctraffic − Cloc

)2
)

√

Cloc
(6) 

This NSD at stations quantifies the variability between background 
and traffic measurement sites. The variability is estimated using either 
the measured concentrations or the modelled data (Observed Stations 
NSD and Modelled Stations NSD), and the resulting values are compared 
to assess consistency between observations and model outputs. Note that 
the variability integrated over a city is expected to be lower than the 
variability between concentrations at background and traffic stations, as 

Table 1 
Summary of the mapping methodologies used in each pilot city, as well as the pollutant mapped, and pollutants for which fixed urban background and traffic 
measurements are available.

City/ 
Method.

Mixed-effect 
LUR

CHIMERE 
MUNICH

CHIMERE 
ADMS

CHIMEREADMS with 
DA

EPISODE- 
CityChem

ADMS Fixed urban 
meas.

Fixed traffic 
meas.

Paris  NO2, PM2.5, BC, 
UFP

NO2, PM2.5, 
BC

NO2, PM2.5, BC   NO2, PM2.5, BC, 
UFP

NO2, PM2.5, BC

Athens     NO2, PM2.5  NO2, PM2.5 NO2, PM2.5

Birmingham      NO2, PM2.5, 
UFP

NO2, PM2.5, UFP NO2, PM2.5

Rotterdam NO2, BC, UFP      NO2, BC NO2, BC
Bucharest NO2, PM10, 

UFP
     NO2, PM10 NO2, PM10

Fig. 1. Comparisons of NO2 (upper panel) and PM2.5 (lower panel) to fixed-station measurements at urban background and traffic stations. The concentrations are 
averaged over the winter and summer seasons. The model quality indicator MQI is obtained by averaging the errors over the measurement stations.
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it may be more or less pronounced depending on the area’s specific 
contrasts between background and traffic influences.

For NO2 and PM2.5, the MPI of deMeij et al. (2025) is also estimated 
by computing the differences between measured and modelled gradients 
of concentrations between urban background and traffic measurement 
sites. These differences are normalised by the measurement uncertainty, 
which value is representative of the maximum allowed measurement 
uncertainty, and by a coefficient β of 2. The quality of the modelling is 
good for MPI < 1, which reflects that the model bias is less than twice the 
measurement uncertainty.

3.2.2. Seasonal variability
Similarly to the spatial NSD, the seasonal NSD is estimated by 

calculating the coefficient of variation between summer and winter: 

NSDseas =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2((Csummer − Cseas)

2
+ (Cwinter − Cseas)

2
)

√

Cseas
(6)

with Cseas the mean concentration between summer and winter.
For NO2 and PM2.5, the MPI of deMeij et al. (2025) is also estimated 

by computing the differences between measured and modelled gradients 
of concentrations between winter and summer at measurement sites. 

These differences are normalised by the measurement uncertainty and 
by a coefficient β of 2. As for the spatial variability, the quality of the 
modelling is good for MPI < 1.

4. Models’ set-up and evaluation of the modelled concentrations

In each pilot city, concentrations are measured and simulated over a 
winter and a summer period. The modelling set-up is briefly presented 
for each pilot city, and the modelled concentrations are evaluated by 
comparison to fixed measurements when possible, and concentrations 
maps are built over the pilot cities. More detailed concentrations maps 
and model evaluations are shown in Appendix A.

For the comparisons to fixed measurement stations, the comparison 
is performed for concentrations averaged over a winter and a summer 
period in Fig. 1 for NO2 and PM2.5 and in Fig. 2 for BC and PNC. The 
averages of MQI over all stations are shown in Fig. 1, and the detailed 
statistics per stations are shown in Appendix A. All the models per-
formed well for the modelling of seasonal averages with MQI always 
lower than 1.Table 2 details the modelled concentrations averaged over 
the different cities, and Fig. 3 shows the maps of PNC for winter in Paris, 
Bucharest, Birmingham and Rotterdam. Strong gradients in PNC near 
roads, highways and industrial areas are observed, because of the 

Fig. 2. Comparisons of BC (upper panel) and PNC (lower panel) to fixed-station measurements at urban background and traffic stations. The concentrations are 
averaged over the winter and summer seasons.
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proximity of emission sources and the limited lifetime of ultrafine par-
ticles, which grow fast by coagulation and condensation of low-volatile 
species.

Care should be exercised in making comparisons between cities, as 
the model formulations and emission factors used in the deterministic 
models were not the same. However, useful insights can be gained from 
the within-model evaluations and limited intercomparisons reported 
below.

4.1. Eulerian approach with the CHIMERE/MUNICH/SSH-aerosol chain 
over Paris

The Eulerian CHIMERE/MUNICH/SSH-aerosol chain was setup over 
Paris. The segments of the street network are those defined by Airparif, 
the ̂Ile-de-France air quality agency. They correspond to the main roads. 
The main street characteristics are obtained from the French BDTOPO 
database (https://geoservices.ign.fr/bdtopo). The street network is 
made of 4655 streets and extends over the city of Paris and its nearby 
suburbs. Regional-scale concentrations are simulated with the CHIMERE 
model (Menut et al. 2021) coupled to the street network MUNICH (Kim 
et al., 2022). The concentrations of NO2, PM2.5, PNC, BC and other 
particle components (e.g. inorganic and organic aerosols) are simulated. 
All the gas and particle components simulated at the regional scale are 
also simulated down to the street scale. Indeed, the chain CHIMERE/ 
MUNICH use the same aerosol module (SSH-aerosol, Sartelet et al. 2020) 
at both the regional and local scales, allowing it to take into account the 
dynamic of particles at all scales. In the CHIMERE/MUNICH chain, 
nested domains are considered using CAMS boundary conditions over 
Europe. The smallest domain of CHIMERE simulation is discretized with 
a 1 km2 resolution over Greater Paris. A zoom is performed in the streets 
of Paris, which are explicitly represented using a Eulerian approach with 
the street network MUNICH. The bottom-up Aiparif inventory of the 
year 2019 is used, except for the traffic fleet and emissions which are 
specific to the period of simulation (winter 2020 and summer 2022 
here). The road traffic emissions data were produced based on the re-
sults obtained using the Heaven system. The strength of this system is to 
use a traffic model that is corrected from the count data received in near 
real time. In the chain CHIMERE/MUNICH, the regional-scale traffic 
emissions were estimated by aggregating the local-scale emissions.

Number emissions and the size distribution of emissions were esti-
mated from the emission inventory using the methodology detailed in 
Sartelet et al. (2022) and Park et al. (2024). The emission inventories 
provide estimations of PM2.5 emissions for the different activity sectors. 
To distribute PM2.5 emissions in the modelled particle size sections, 
emissions of particles in the range PM0.1-PM1 and PM0.01-PM0.1 are 
estimated using the PM1/PM2.5 and PM0.1/PM1 ratios given in Sartelet 

et al. (2022) (Table A2) for each activity sector. The emissions in each of 
the size ranges: PM0.01-PM0.1, PM0.1-PM1, and PM1-PM2.5 are then 
distributed amongst the model size sections with an algorithm that 
conserves mass and number. Note that for the residential sector, the 
lowest diameter considered for emission is 80 nm (against 10 nm for the 
other sectors).

For comparisons to observations, the simulated BC concentrations 
are obtained by multiplying the simulated EC concentrations by a 
harmonization factor, following Savadkoohi et al. (2024). A harmoni-
zation factor of 1.79 and 1.70 was determined for Paris in the summer 
2022 and the winter 2020/2021 respectively using EC and eBC collo-
cated measurements at Châtelet-les-Halles station, which is an urban 
background station operated by Airparif in the centre of Paris. The 
simulation was performed with the set-up detailed in Park et al. (2024) 
between 2 June 2022 and 31 July 2022 for the summer period, and 
between 7 December 2020 and 28 February 2021 for the winter period. 
Particles of diameters between 10 nm and 10 µm were modelled.

The simulated concentrations are evaluated by comparison to mea-
surement stations from the Airparif network, as well as from a Airparif 
campaign for the winter period 2020/2021. Regional-scale concentra-
tions (in 1 km2 cells) are compared to measurements at background 
stations, and street concentrations (in the street cells) are compared to 
measurements at traffic stations. 24 and 9 background and traffic sta-
tions respectively are available to evaluate NO2 in summer and winter. 
For PM2.5, 10 and 8 background stations are available in the summer and 
winter, and the number of traffic stations is lower: 3 and 1 in summer 
and winter. Less stations are available to evaluate BC: 4 background and 
2 traffic stations in both winter and summer, while for PNC only back-
ground stations are available: 4 in the summer and 5 in the winter. The 
location of the stations is detailed in Appendix A. The mean NO2, BC, 
PM2.5 and PNC at urban background stations are higher than the con-
centrations at traffic sites. As detailed in Appendix A (Tables A.1.1, 
A.1.2, A.1.3 and A.1.4), the modelled concentrations satisfy the strictest 
performance criteria for all pollutants (NO2, BC, PM2.5 and PNC) at both 
background and traffic stations. The average concentrations over the 
different streets of Paris range between 32 and 44 µg m− 3 for NO2, 1.4 to 
2.4 µg m− 3 for BC, 7 and 18 µg m− 3 for PM2.5 and 13 500 and 17 800 for 
PNC, with huge variations within the city (see Table 2).

4.2. Hybrid approach with the CHIMERE/ADMS chain over Paris

The Hybrid CHIMERE/ADMS chain was setup over Paris with and 
without data assimilation. The segments of the street network are the 
same as in section 3.1. Regional-scale concentrations are simulated with 
the CHIMERE model (Menut et al. 2021) at a 3 km x 3 km resolution, to 
which are superposed the local-scale concentrations simulated with the 

Table 2 
Modelled concentrations of NO2, BC, PM2.5, and PNC in the different cities for summer and winter. The “Mean” column corresponds to the averaged concentrations 
simulated taking into account the urban variabilities. The “min–max” column corresponds to the min and max time-averaged concentrations in the urban area.

Concentrations (µg m− 3 for NO2, BC and PM2.5 and #particles cm− 3 for PNC)
NO2 BC PM2.5 PNC
Mean Min-max Mean Min-max Mean Min-max Mean Min-max

Paris Euler. Summer 32.6 15.4–110 1.4 0.7 – 4.7 7.8 6.0–18.7 13,600 6,200–43,600
Winter 43.8 27.6–117 2.4 1.3 – 8.4 17.5 13.1–33.9 17,900 8,300–72,900

Paris hybrid Summer 30.6 18.6–69.6 2.2 1.4–5.9 9.0 7.2–22.2 − −

Winter 44.7 30.3–77.8 3.0 2.1–6.4 20.9 17.8–35.9 − −

Paris hybrid 
assimilated

Summer 24.8 16.9–63.2 1.7 0.78–6.1 8.6 6.5–20.9 − −

Winter 35.0 27.9–66.3 1.7 0.85–5.6 14.4 12.1–27.8 − −

Birmingham Summer 14.6 7.8–91.1 − − 6.9 5.9–16.5 2,400 2,200–4,100
Winter 26.5 17.4–98.7 − − 13.2 10.4–24.0 2,800 2,400–4,700

Athens Summer 11.7 0.3–38.2 − − 13.0 11.2–25.4 − −

Winter 12.7 0.8–39.5 − − 13.2 9.8–27.0 − −

Bucharest Summer 29.2 18.0–56.9 − − 12.7 9.3–19.1 26,200 15,300–42,000
Winter 28.7 13.0–53.8 − − 19.9 4.7–35.4 29,200 14,700–45,600

Rotterdam Summer 14.0 7 – 58 1.2 0.5–2.9 − − 23,300 13,700–119,100
Winter − − 1.8 0.7–4.5 − − 20,300 8,800–78,700
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Gaussian-based model ADMS-Urban (Stocker et al. 2012). The concen-
trations of NO2, PM2.5 and BC are gridded at a 50 m x 50 m resolution. 
The boundary conditions of CHIMERE are obtained from CHIMERE 
simulations through PREV’AIR (https://www.prevair.org/). The 
bottom-up Aiparif inventory is used, and at the local scale, traffic fleet 
and emissions are specific to the period of simulation as in 3.1. For 
comparisons to observations, the simulated BC concentrations are ob-
tained by multiplying the simulated EC concentrations by a harmoni-
zation factor, following Savadkoohi et al. (2024). The simulation was 
performed for June and July 2022 for the summer period, and January 
and February 2022 for the winter period. Although the summer period is 
the same as in 3.1, the winter period is a different year. It corresponds to 
the same year as the summer period (winter 2022), whereas winter 
2020/2021 was chosen in 3.1 because of an intensive Airparif PNC 
measurement campaign that year.

The simulated concentrations at a 50 m x 50 m resolution are eval-
uated by comparison to measurement stations from the Airparif 

network. As detailed in Appendix A, the modelled concentrations satisfy 
the strictest performance criteria for NO2, PM2.5 and BC at background 
and traffic stations when data assimilation is not performed. NO2 and BC 
concentrations are over-estimated at background sites, likely due to an 
overestimation of the background concentrations combined to the 
addition of both background and local contributions. Data assimilation 
systematically improves the error MFE and the FAC2 statistics. How-
ever, it sometimes leads to an increase in the bias MFB, especially at 
traffic stations for BC. This bias at traffic sites could be due to the limited 
number of stations at traffic sites for DA. Thus, the bias is higher for BC 
(only 2 to 3 traffic stations used for DA) than for NO2 (9 stations used for 
DA). More observation stations would be needed for further 
improvements.

4.3. Hybrid approach with the EPISODE-CityChem model over Athens

The concentration variability of NO2 and PM2.5 in Athens was 

Fig. 3. Average PNC in #particles cm-3 over Paris (upper left panel), Birmingham (upper right panel), Rotterdam (lower left panel), Bucharest (lower right panel).
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assessed using the multi-scale numerical atmospheric model system 
CAMS/WRF/EPISODE-CityChem. The core of the system is the chem-
istry transport model EPISODE-CityChem (Karl et al. 2019, Lasne et al. 
2023). Its comprehensive chemistry scheme is designed for treating 
complex atmospheric chemistry in urban areas and improved repre-
sentation of the near-field dispersion. Emissions are provided by UrbEm 
(Ramacher et al., 2011), which disaggregates the regional CAMS data-
base down to emission rates in 1 km resolution. In the frame of RI- 
URBANS, both tool and database have been refined (Kuenen et al., 
2024). The model performs a specialized treatment on road and over the 
adjacent urban areas. Specifically, it is fed with hourly road network 
emissions in a linear format, applies a Gaussian dispersion scheme in the 
street canyons, and an extra photochemical scheme over the greater area 
of road surfaces, gridded in 100 m-by-100 m cells. These two schemes 
are superimposed to the Eulerian treatment of atmospheric processes in 
the whole 3D urban domain, with a horizontal spatial resolution of 1 km 
and a 24-layered atmosphere up to 3.7 km.

Local-scale atmospheric simulations are performed for 2019, which 
is a recent year, free of Covid-related activity restrictions, and with a 
wind field representative of 2016–2020. Numerical predictions have 
been evaluated against local air quality measurements from the National 
regulatory network and from the PANhellenic infrastructure for Atmo-
spheric Composition and climatE change (PANACEA) Research Infra-
structure (RI). The months used to represent summer are June, July, 
August and for winter they are December, January, February for winter.

The simulated concentrations (in 100 m cells) are evaluated by 
comparison with measurement stations. Four background and traffic 
stations are available to evaluate NO2, one background station is 
available to evaluate PM2.5 concentrations in summer, and two traffic 
stations are available to evaluate PM2.5 concentrations in summer and 
winter. As detailed in Appendix A (Tables A.2.1 and A.2.2), the strictest 
performance criteria are met for NO2 at traffic stations in summer and 
winter, the less strict criteria are met for NO2 at background stations in 
summer. NO2 concentrations tend to be under-estimated by comparisons 
to measurements at urban background stations. For PM2.5, the strictest 
criteria are met at background and traffic stations in summer and winter. 
In the simulation, the average concentrations over Athens range be-
tween 11 and 13 µg m− 3 for NO2, and are around 13 µg m− 3 for PM2.5, 
with huge variations within the city for NO2 (see Table 2). The average 
modelled NO2 concentrations of Table 2 are lower than those in Paris, 
although measurements at traffic and background sites are higher, 
probably because of the under-estimation of modelled NO2 concentra-
tions in the urban background.

4.4. Gaussian-based approach with the ADMS-Urban model over 
Birmingham

The local scale ADMS-Urban Gaussian plume air dispersion model 
has been used for the Birmingham Pilot to generate high resolution air 
quality datasets for NO2, PM2.5 and PNC (Zhong et al., 2021; Zhong 
et al., 2023). Meteorological parameters measured at Birmingham 
Airport synoptic meteorological site were applied to drive the atmo-
spheric dispersion in the boundary layer in the model. Background 
concentration input files were derived based on measured air quality 
datasets from rural background sites (available via the UK Automatic 
Urban and Rural Network, AURN) surrounding the West Midlands re-
gion. The upwind background site for each hour over the year was 
selected based on the monitored wind direction at that hour for NO2, and 
PM2.5. For PNC, there is a limited number of AURN sites in the UK, and 
Chilbolton was considered as an appropriate rural background site to 
inform the modelling background. For NO2 and PM2.5, the emission 
inventories were derived based on the UK NAEI emissions at a spatial 
resolution of 1 km × 1 km. Unlike emission inventories for traditional air 
pollutants (e.g. NO2 and PM2.5), there are limited sources for the emis-
sion inventory for UFPs in the UK. Therefore, for particle number, the 
emission inventory developed in the RI-Urbans project with a 6 km × 6 

km spatial resolution was taken as an input for gridded emissions in the 
ADMS-Urban model. For the explicit major road emissions, the local 
traffic model datasets for traffic activities, average speed and fleet 
composition have been obtained from Transport for West Midlands and 
Birmingham City Council. An Atmospheric Emissions Inventory Toolkit 
(EMIT developed by Cambridge Environmental Research Consultants, 
CERC) has been used to pre-process all types of emission sources before 
these can be formatted and used by the ADMS-Urban model. The 
advanced street canyon and urban canopy modules have been applied to 
consider local street canyon effect on reduced dispersion of air pollut-
ants and urban canopy effect on larger scale atmospheric flow due to 
spatially varying roughness length. A novel task farming approach was 
adopted to optimise the computing time via the parallel running of on 
multiple cores on supercomputer clusters at the University of Birming-
ham. Simulations were for June, July and August 2019 (summer), and 
January, February and December 2019 (winter).

The simulated concentrations for receptor locations are evaluated by 
comparison to measured concentrations obtained from UK AURN and 
the BAQS supersites. Five background and three traffic stations are 
available to evaluate NO2, four background and one traffic stations are 
available to evaluate PM2.5, and one background station is available to 
evaluate PNC. The modelled concentrations satisfy the strictest perfor-
mance criteria for NO2 and PM2.5 at both background and traffic stations 
in winter and summer, and the less strict performance criteria for PNC at 
the background station. The mean NO2 concentrations are lower than 
Paris, but higher than Athens: they range between 13 and 29 µg m− 3 for 
NO2. Average concentrations of between 7 and 14 µg m− 3 for PM2.5 were 
lower than Paris and Athens (in summer), but equal to Athens in winter. 
The average PNC are at least 5 times lower than in Paris: the average 
ranges between 2,100 #particles cm− 3 and 2,900 #particles cm− 3.

4.5. Mixed-effect LUR modelling over Rotterdam

A car was used to measure the ambient concentrations of NO2, BC 
and PNC during two seasons; one in November-December 2022 and in 
May-July 2023. The car was equipped with lab-grade 1 Hz NO2 (CAPS, 
Aerodyne Research Inc., USA), 1 Hz BC (AE33, Magee Scientific), and 1 
Hz UFP (EPC 3783, TSI) monitors measuring simultaneously. UFP 
measurements include particles from 7 nm diameter. A Global Posi-
tioning System (GPS) (G-Star IV, GlobalSat, Taiwan) was used to record 
the location of the car, which was linked to the measuring equipment via 
date and time. The measurements were mainly carried out between 
08.00 and 22.00 h every day in the study period (including some 
weekend days) covering all parts of the city. For NO2, only summer 
measurements were available, due to malfunction of the equipment in 
the winter campaign.

The data was winsorised to the 2.5th and the 97.5th percentile. That 
is, measured concentration levels below the 2.5th percentile and above 
the 97.5th percentile were “replaced” by the respective percentile values 
(Kerckhoffs et al. 2022). This procedure is done to balance the undue 
influence of extreme values, while allowing very high pollution values. 
For averaging, the data was first assigned to the nearest street and 
aggregated over each 50-meter (min: 30 m and max: 60 m) street 
segment per individual drive day. In total about 40,000 street segments 
were measured (out of the 250.000 segments predicted in total).

The seasonal average concentrations over Rotterdam are about 14 in 
summer for NO2, they ranged between 1.2 to 1.8 µg m− 3 for BC, 20,300 
and 23,300 #particles cm− 3 for PNC, with huge variations within the 
city (see Table 2). Although the NO2 concentrations are lower than in 
Paris, but higher than in Athens, the BC concentrations are similar to 
those in Paris, and the PNC are slightly higher, probably because PNC 
include particles from 7 nm diameter in Rotterdam, against from 10 nm 
in Paris.

As UFP is not often measured by fixed stations, we only evaluated the 
model performance of NO2 and BC with fixed-stations (from DCMR) in 
the Appendix. For BC, the modelled concentrations are similar to the 
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fixed-site measurements during winter (when the AE33 was used), but 
they are over-estimated by a factor between 1.6 and 2 in summer (when 
the MA300 was used). These differences may be due to the differences in 
the instruments measuring BC at fixed-sited and with mobile data, as 
they were not corrected by a harmonization factor.

Mixed modelling followed the approach outlined in our earlier work 
(Kerckhoffs, 2022). Because of the smaller number of repeats per street- 
segment for the Rotterdam campaign compared to previous Amsterdam 
and Copenhagen campaigns, the LUR part of the model played a larger 
role. Furthermore, we did not drive all streets segments, so application 
of the mixed model only included the fixed part for non-monitored street 
segments.

4.6. Mixed-effect LUR modeling over Bucharest

Mobile measurements campaigns representative for summer and 
winter periods have been conducted in Bucharest on a 100 km route. The 
route included representative areas for the city, among them heavily 
trafficked roads inside the city and residential, industrial and commer-
cial areas, as well as sub-urban areas. Portable and high-time resolution 
instruments for UFP (Naneos Partector 2, 1 s), measuring particles from 
10 nm diameter, different particle matter fractions (PM2.5, PM10) and 
gaseous compounds (NO2) (Ecomesure EcomTrek − 10 s and/or Snif-
fer4D V2, 1 s) have been used during both campaigns. The car mea-
surements campaigns took place during two seasons: 04 May –13 July 
2022 (summer period) and 18 January − 28 February 2023 (winter 
period). A GPS (Navilock NL-442U, 1 s) was used to independently save 
the geographic coordinates. For averaging, the data was first assigned to 
the middle point of the street segment and aggregated over each 250- 
meter (min: 232 and max: 250 m) street segment per individual drive 
day. In total, 19,530 street segments were measured.

The measurement route has been designed to pass main sectors and 
areas representative of Bucharest city, with a total length of around 100 
km. The measurements durations were approximatively 8 h starting 
from 8:30 AM local time in order to catch rush hours, but also less 
intense traffic during the mid-day of working days. At least a full 15 
measurements routes were performed during each campaign, in 
different temperature conditions. The quality control of the data 
included data filtration to remove the spikes, but keeping pollution 
related values if they are valid for several consecutive measurements. 
The filtering used a moving average window on 3 datapoints, the con-
centrations higher and lower by more 1.5 times than the mean values 
being removed.

The ESCAPE Land Use Regression model (Schmitz et al., 2019) 
together with PyLUR tool and QGIS (Ma et al, 2020) was first set up. 
Then the mixed effect model was implemented, using the mean value 
from the fixed effect model together with the pollutant variability 
(intercept of mean standard deviation values) for all individual street 
segments at 1 min. Individual maps for each pollutant at 100 m x100 m 
grid have been retrieved for each season (Talianu et al., 2024).

The model performance has been evaluated for NO2 and PM10 con-
centrations using the hourly data available at the Romanian National Air 
Quality Monitoring Network (8 fixed stations representative for urban, 
industrial and suburban areas) and at the RADO-Bucharest ACTRIS site 
(Nicolae et al., 2010). The mean NO2 concentration is close to the 
observed one for the winter period, but it is overestimated by a factor 1.6 
during the summer period. However, the mean NO2 concentration of the 
modelled data is within the variability of the measurements, given by 
the standard deviation. For PM10, the mean concentration is close to the 
observed one for both the winter and the summer periods. The average 
concentrations over Bucharest range between 28 and 29 µg m− 3 for NO2, 
12 to 19 µg m− 3 for PM2.5. The PNC are higher than in Paris and Rot-
terdam: between 26,200 and 29,200 #particles cm− 3 (see Table 2). 
Although the same LUR modelling technique is used in Rotterdam and 
Bucharest, particles from 10 nm are measured in Bucharest and 7 nm in 
Rotterdam. Thus, the differences might not arise from the model, but 

they might be due to differences in traffic fleet composition between 
cities or to a larger influence of industrial sites. Fixed site measurements 
of PNC are thus desirable to confirm these differences.

5. Seasonal and spatial variability

The seasonal and spatial variability are detailed for the different 
pollutants. The seasonal changes are driven by changes in pollutant 
sources (e.g. heating), as well as atmospheric conditions with lower 
boundary layer heights in winter. The spatial changes are driven by the 
presence of localized sources (e.g. traffic or industrial), and they are 
strongly dependent on the lifetime of the pollutant.

Because different methodologies are employed to model the vari-
ability within the studied European cities, that may influence the ca-
pacity to get similar variability to the observed one at measurement 
sites. Also, a bias on the modelling of concentrations at either back-
ground or traffic stations may lead to a bias in the variability. The spatial 
variabilities at fixed measurement sites, i.e. the modelled and observed 
variabilities between background and traffic stations are compared in 
Fig. 4 for NO2 and PM2.5 and in Fig. 5 for BC. The seasonal variabilities 
from urban background and traffic stations are compared in Fig. 6 for 
NO2 and PM2.5 and in Fig. 7 for BC and PNC. For NO2 and PM2.5, the MPI 
is also provided in the Figures. When comparisons are available, the MPI 
is lower than 1, corresponding to a satisfying representation of the 
variability in the models. The NSD values are also summarized in the 
Table of Appendix C. The spatial variabilities integrated over cities for 
summer and winter are shown in Fig. 8.

5.1. Influence of the mapping methodology on the variability

For the spatial variability estimated using fixed measurement sites, 
the NO2 and BC variabilities tend to be similar and higher than the PM2.5 
variability. For NO2, the seasonal variability tends to be lower than the 
spatial variability, while for PM2.5, the seasonal and spatial variability 
are of the same order. Less data is available for BC and PNC. For BC, the 
seasonal variability is higher than the spatial one in Rotterdam, but 
lower in Paris. The PNC seasonal variability at urban background sites is 
very low in Paris, but higher in Rotterdam. The influence of the mapping 
methodology on the estimation of the variability is now first examined 
for cities using the LUR methodology and then for cities using deter-
ministic modelling.

For cities using the LUR methodology, the seasonal variability is 
underestimated (for NO2 in Bucharest and BC in Rotterdam). For the 
spatial variability, in Rotterdam, the NSD of BC based on measurements 
is similar to the modelled one in winter (0.13 for the modelled one and 
0.14 for the observed one), and lower by 38 % in summer. However, the 
simulated spatial variability of NO2 is much lower than the observed one 
in Bucharest (lower by 70 % to 80 %). As the mobile car measurements 
are done on roads, a large number of roads with different typologies may 
be required to estimate well the background concentrations and hence 
the variability between background and traffic stations. The number of 
sampled streets performed with mobile measurements is indeed higher 
in Rotterdam (40 000) than in Bucharest (about 20 000) for a similar 
land-surface area. This indicates that sampling a large number of streets 
could lead to better estimation of the background concentrations and of 
the variability using mobile measurements. Note that the statistical 
strength of the analysis is limited as there is only one NO2 measuring 
station available at a traffic site in Bucharest during winter.

For cities using deterministic modelling, the representation of the 
spatial and seasonal variability varies depending on the methodology. 
The seasonal variability tends to be underestimated in Athens, but well 
represented in Birmingham. The seasonal variability is well modelled at 
background sites in Paris, but overestimated at traffic sites.

In the Paris Eulerian methodology (CHIMERE/MUNICH), the 
modelled spatial NSD of NO2 is similar to the modelled one in summer 
(0.45 for the modelled one and 0.47 for the observed one), and higher by 

K. Sartelet et al.                                                                                                                                                                                                                                 Environment International 199 (2025) 109474 

10 



Fig. 4. Comparisons for summer and winter of NO2 (upper panel) and PM2.5 (lower panel) modelled spatial NSD to the spatial NSD estimated from measurements at 
background and traffic stations. The model performance indicator MPI quantifies the differences between model and measurements.

Fig. 5. Comparisons for summer and winter of BC modelled spatial NSD to the spatial NSD estimated from measurements at background and traffic stations.
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30 % in winter. The modelled spatial NSD of BC is very similar to the 
modelled one in both winter and summer (0.51/0.42 for the modelled 
ones in summer/winter respectively and 0.55/0.42 for the observed 
ones). The differences are higher for PM2.5: the observed NSDs are 
lower/higher than the modelled one by 20 %/47 % in summer/winter. 
These differences are due to an underestimation/overestimation of 
concentrations at traffic sites in summer/winter. The numbers of traffic 
stations for BC and PM2.5 are much lower than for NO2, limiting the 
strength of the analysis.

In the Paris hybrid methodology (CHIMERE/ADMS), the modelled 
spatial NSD of NO2 is underestimated by 34 % and 16 % in the summer 
and the winter. As Gaussian concentrations are superposed to the 
Eulerian ones in the approach used over Paris, the background con-
centrations are over-estimated especially for NO2, reducing the differ-
ences between the urban background and street concentrations. This is 
improved by data assimilation (DA), which does slightly increase the 
variability in summer, and improve the statistics in terms of errors be-
tween simulated and observed concentrations (MFE and FAC2 in Ap-
pendix A). However, this improvement of variability using DA is not 
systematic, because DA tends to lead to an underestimation of average 
concentrations of NO2 at traffic stations (greater negative bias at traffic 
stations with DA), thus underestimating the differences between back-
ground and streets. Hence, DA improves the representation of the 

variability in summer (27 % difference with the observations against 34 
% without), but degrades it in winter (28 % difference with the obser-
vations against 16 % without). For BC, the NSD is well modelled in 
summer without DA, but it is over-estimated in the winter by 37 % 
without DA and 32 % with DA. DA does not always improve the 
modelling of the variability: in summer, the NSD of BC is less well 
represented with than without DA (24 % over-estimation with DA and 6 
% under-estimation without). For PM2.5, the modelled NSD is over- 
estimated by 13 % and 18 % in summer and winter, and it is much 
better represented with DA, with less than 4 % difference between the 
observed and modelled ones.

Over Athens, the modelled spatial NSD of NO2 is over-estimated by 
24 % in summer and 92 % in winter. For both seasons, the over- 
estimation is due to an under-estimation of NO2 concentrations at 
background stations. The variability of PM2.5 is better modelled, with an 
under-estimation of 12 % in summer and an over-estimation of 24 % in 
winter.

Over Birmingham, the modelled spatial NSD of NO2 is under- 
estimated by 33 % in the summer and 25 % in the winter. For PM2.5, 
the spatial NSD is well modelled in summer, but over-estimated by a 
factor 6 in winter. This large difference should be treated with caution, 
as there is only one PM2.5 measuring station at a traffic site, limiting the 
statistical strength of the analysis.

Fig. 6. Comparisons at background and traffic sites of NO2 (upper panel) and PM2.5 (lower panel) modelled seasonal NSD to the seasonal NSD estimated from 
measurements during winter and summer. The model performance indicator MPI quantifies the differences between model and measurements.
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Fig. 7. Comparisons at background and traffic sites of BC (upper panel) and PNC (lower panel) modelled seasonal NSD to the seasonal NSD estimated from mea-
surements during winter and summer.

Fig. 8. Modelled pollutant variability across locations and seasons integrated over the different cities.

K. Sartelet et al.                                                                                                                                                                                                                                 Environment International 199 (2025) 109474 

13 



5.2. Analyses of the spatial variability

In both winter and summer, the concentrations of NO2 are higher on 
streets than in the urban background, and the concentrations are the 
highest along streets with high traffic in all pilot cities. For example, 
high NO2 concentrations are observed along the ring road in Paris and 
Bucharest. High concentrations are observed in the center of cities. As 
for NO2, concentrations of BC, PNC and PM2.5 are also high along roads 
and in the city center, but the contrast is not always as systematic for 
PM2.5. As shown in Fig. 1, which shows the PNC concentrations for a 
winter period over Rotterdam, Bucharest, Birmingham, Paris, the PNC 
gradients over short distances are significant, with for example differ-
ences up to a factor of 2 in the mean in Bucharest. In Rotterdam, the 
major roads in and around the city have the highest concentrations. This 
is more pronounced on the highways for PNC than for NO2 and BC. PNC 
are associated with UFPs. They quickly transform through physico-
chemical processes, like coagulation or condensation and can reach 
background levels within 300 m of a highway, with even sharper gra-
dients for the smaller particles. Concentrations are not only high along 
traffic routes and agglomerations, but also in industrial areas, where 
pronounced concentrations of PNC and PM are depicted in Bucharest. 
Away from major roads and in rural areas, concentrations are generally 
lower for all the pollutants studied.

For NO2, the largest NSD at stations are observed in Athens and Paris, 
and they are very similar (0.49 in Athens and 0.47 in Paris for the 
observed NSDs in summer). In Paris, the integrated variability modelled 
using the coupled Gaussian-Eulerian approach (CHIMERE-ADMS) is 
much lower than the Eulerian one (CHIMERE/MUNICH) (0.11 against 
0.28), in agreement with the lowest variabilities simulated by 
CHIMERE/ADMS at the measurement stations. This lower integrated 
variability using the local Gaussian modelling may be partly due to the 
assumption of homogeneity on which Gaussian models are based, and 
partly due to differences in the integration of the variability (over streets 
for CHIMERE/MUNICH and over 50 m x 50 m grid for CHIMERE/ 
ADMS). The observed NSD at stations are similar for Birmingham, and 
Bucharest, but lower than Athens and Paris (0.35 in Birmingham, 0.36 in 
Bucharest, 0.47 in Paris and 0.49 in Athens). Except for the simulated 
NSD in Athens in winter, which seems to have a bias due to an under- 
estimation of background concentrations, the winter NSDs are lower 
than the summer ones (for example 0.49 in summer and 0.26 in winter 
for the observed NSDs in Athens), indicating that diffuse sources of NO2, 
such as residential heating by gas, may reduce the variability in winter.

For NO2, BC, PM2.5 and PNC, the NSD is higher in places with large 
roads. For example, the NSD is 0.28 in Paris for NO2, but reaches 0.39 
when calculated for the cells that host the Paris ring road, with high 
traffic. For NO2, BC and PNC, the differences between winter and 
summer are lower near to the Paris ring road than within Paris, 
reflecting the strong influence of traffic near large roads all year along.

For PM2.5, for almost all cities and cases, the NSD is much lower than 
for NO2, by about a factor varying between 1.5 and 4, reflecting the large 
regional background of PM2.5 compared to NO2. The exception is 
Bucharest in winter, as the modelled city NSD is higher for PM2.5 (0.17) 
than for NO2 (0.10). The higher NSD values are located outside of the 
city center (Fig. B7 of Appendix), indicating the potentially large in-
fluence of industrial sources on the winter time variability in connection 
with lower boundary layer.

For BC, the NSDs tend to be similar to NO2. They are slightly lower 
than those of NO2 in Rotterdam in summer (0.13 for the city modelled 
NSD for BC and 0.17 for NO2). However, in Paris the NSDs of BC are 
higher than those of NO2, for both the NSDs at stations and those 
modelled using Paris Euler. The difference between the two cities could 
be attributed to a higher contribution of traffic with a higher fraction of 
diesel vehicles in Paris, or to emissions from ships in Rotterdam having a 
less significant influence on urban variability compared to the impact of 
road traffic. Furthermore, in Rotterdam, the variability of BC remains 
consistent across seasons (0.14 in winter and 0.13 in summer). In 

contrast, Paris shows lower BC variability during winter (with NSD 
values of 0.51 in summer and 0.42 in winter for observed NSD at sta-
tions, and 0.30 in summer and 0.22 in winter for city modelled NSD 
using the Paris Euler model). This reduced wintertime variability in 
Paris may result from residential heating emissions, with wood burning 
for heating being more prevalent in Paris than Rotterdam (Zauli-Sajani 
et al. 2024).

For PNC, the NSD is similar to the NSD of BC in summer in Paris and 
Rotterdam, and it is similar or higher than the NSD of NO2 in Bucharest, 
Rotterdam and Paris. The very low values of NSD in Birmingham for 
PNC may be due to an artefact, such as an underestimation of local 
emissions, uncertainties in background representation, or the lack of 
aerosol dynamics in the model. Another factor affecting Birmingham is 
the very small number of street canyon locations, although this might be 
expected to affect all traffic-generated pollutants similarly. Recent 
measurements of NSD in Birmingham for total PNC are higher than the 
model predictions, and closer to the values for the other cities in this 
study. The most probable explanation would be that road traffic emis-
sion factors were too low, which would also explain the small spatial 
variability predicted by the model in comparison to that in the other 
cities. As for NO2, the NSDs of PNC and BC are especially large near large 
roads or near industrial sources. For example, the NSD is 0.28 in Paris in 
summer, but 0.39 in cells that include the Paris ring road. Although the 
NSD of NO2 is clearly lower in winter than in summer, the wintertime 
NSD of PN is sometimes smaller but mostly similar with its summer 
value, e.g. 0.29 and 0.28 in Paris, and 0.17 and 0.16 in Rotterdam, in 
summer and winter, respectively. In Bucharest, higher PN variability is 
modelled in the summer (0.21) than in the winter (0.13). Wood burning 
emissions may have a low influence on the emissions of ultrafine par-
ticles, as the diameters of the emitted particles tend to be higher than 
0.1 μ m. However, depending on the environment, the largest concen-
trations of PM2.5 in the winter time could lead to enhanced coagulation 
of ultrafine particles, reducing their concentrations compared to sum-
mer time.

5.3. Analyses of the seasonal variability

For NO2, the concentrations are higher in winter than in summer in 
Birmingham and in the urban background of Paris and Athens. However, 
they are similar at traffic sites in Paris and Athens and in Athens city 
center. The higher urban background NO2 concentrations in Athens and 
Paris may be linked to lower boundary layer height during winter than 
summer, decreasing the volume in which city emissions are diluted. The 
influence may not be seen at traffic stations, because NOx emissions are 
for a large part emitted by traffic and as NO. The NO emissions are 
transformed into NO2 locally by reaction with ozone. Photochemistry, 
which leads to ozone formation, is higher in summer than in winter, 
leading to higher local-NO2 production in summer, more pronounced in 
the southern cities, e.g. Athens, which partly explains the higher sum-
mer (than winter) concentrations at the traffic sites. However, concen-
trations in streets are also influenced by the urban background. Hence, 
the higher local-NO2 production in summer is counterbalanced by the 
higher urban background NO2 in winter, leading to small seasonal dif-
ferences at the traffic sites. As seen in the NO2 maps of Bucharest or 
Paris, the NO2 concentration presents a higher gradient during summer, 
when the concentrations are higher on the main roads. The concentra-
tions are less street-confined during winter.

For BC and PM2.5, concentrations are higher in winter than in sum-
mer, probably because the boundary layer height is lower and the at-
mosphere may have greater stability occurrence due to the lower 
temperatures in winter, leading to an accumulation of anthropogenic 
pollutants emitted in the city. Also, during the winter season, the con-
tributions of residential emissions from heating tend to increase particle 
concentrations. In both Rotterdam and Paris, the BC concentrations are 
more than 1.5 times higher in winter than in summer, respectively 1.8 µg 
m− 3 and 1.2 µg m− 3 in Rotterdam and 2.4 µg m− 3 and 1.4 µg m− 3 in 
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Paris. The higher BC concentrations in the winter can potentially partly 
be attributed by wood smoke, as elevated concentrations are seen in the 
suburbs as well. In winter, the difference in concentration between the 
background and street concentrations seems relatively lower compared 
to summer.

For PNC, concentrations are higher in winter in Paris, Birmingham 
and Bucharest, but the concentrations are similar in winter and summer 
in Rotterdam. In Rotterdam, the concentrations are on average slightly 
higher in summer than in winter, respectively 23.000 #particles cm− 3 

and 20.000 #particles cm− 3, probably because of secondary particle 
formation (Gani et al. 2021). This can be expected with a large port and 
industrial cluster emitting SOx and NOx that will likely act as PNC 
precursors. In Bucharest, particle concentrations present higher loadings 
during the winter period, with decreased gradients, but gradients due to 
point sources linked to industries can still be distinguished. The lower 
differences between summer and winter for PNC than for PM2.5 and BC 
could be partly due to wood heating, which tends to emit particles of 
diameter higher than 80 nm (Garcia-Marlès et al. 2024), and partly due 
to enhanced coagulation of freshly emitted UFP with pre-existing fine 
particles, which have higher concentrations in winter.

6. Discussion

This study mapped air pollutants with large urban concentration 
gradients over Paris, Athens, Rotterdam, Birmingham, Bucharest, uti-
lizing several techniques, based on empirical or deterministic modelling. 
Depending on the method used, data may not be obtained for all pol-
lutants (NO2, PM2.5, black carbon BC and particulate number concen-
trations PNC for UFP). The concentrations mapped using the different 
approaches are compared to measurements performed at fixed stations. 
Modelled concentrations are compared at urban background sites and 
traffic sites when possible. Inter-season and inter-pollutant variability in 
each city are evaluated, highlighting the similarities among cities or 
representative pollutants levels distribution for some of them. For cities 
using the mixed-LUR approach, such as Bucharest and Rotterdam, the 
comparison focuses on seasonal mean concentrations and their spatial 
variations. For cities using deterministic modelling, more detailed sta-
tistics of comparisons, such as hourly concentrations are computed. The 
concentrations maps retrieved using Land-Use-Regression model rely on 
mobile measurements, which are quantitatively limited and are repre-
sentative for measurements conditions, such as time of the day, week-
days or weekend, and season. Deterministic modeling, on the other 
hand, relies on physical and chemical models that simulate how pol-
lutants are emitted, dispersed, chemically transformed, and deposited, 
using detailed meteorological data, emission inventories, and atmo-
spheric physics. Hence, deterministic models can capture day-to-day or 
even hour-to-hour variability, providing a detailed temporal resolution 
of pollutant behavior. Comparisons at several types of stations and 
multiple time periods (or seasons) allow for an increased confidence in 
the model ability to accurately map the pollutant concentrations and 
variability. A bias in the ability to represent a typology of stations leads 
to an error in the variability estimation.

The variability is characterized here by a normalized standard de-
viation (NSD). The differences in NSD values integrate across cities are 
likely influenced not only by local pollution sources and climatic con-
ditions but also by the tools used to characterize the variability. Hence, 
the variability between background and traffic stations is also estimated, 
to allow comparisons between the modelled variability and the vari-
ability measured at fixed stations. Modelling based on LUR needs to 
include measurements from a large-enough number of streets in the 
network. They tend to underestimate the seasonal variability. Gaussian 
approaches tend to smooth out variability in urban areas. With deter-
ministic modelling, aerosol dynamics need to be accounted for in order 
to represent the variability of ultrafine particles. For efficient data 
assimilation algorithms, there is the need to have sufficient number of 
stations representative of the different environments. Typically, over 

Paris, 2 to 3 traffic stations for BC have proven insufficient, and lead to 
large bias at traffic sites.

The variabilities of NO2, BC and PNC are between 1.5 and 4 times 
larger than those of PM2.5, except in locations with industrial sites, 
reflecting the large background and variety of sources of PM2.5 
compared to the other pollutants for which the influence of traffic 
emissions is strong. For PNC, NO2, BC, and PM2.5, the variability is high 
in areas close to large roads. The variability of NO2 and PM2.5 tends to be 
larger in summer than in winter, as other area sources such as residential 
heating may reduce the variability in winter. For BC, the winter vari-
ability may be reduced by wood burning. The variability of PNC and BC 
tends to be similar in summer, and to be similar or higher than that of 
NO2. Although the variability of NO2 is clearly lower in winter than in 
summer, the variability of PNC is almost always similar for winter and 
summer, as residential heating may tend to emit particles of larger 
diameter than traffic. For NO2, BC and PNC, the differences between 
winter and summer are lower near large roads, under strong traffic 
influence.

7. Conclusion

The study quantifies intra-urban air pollution variability across five 
European cities (Paris, Athens, Birmingham, Rotterdam, and Bucharest) 
with a fine resolution (<100 m) for regulated and emerging pollutants 
(NO2, PM2. 5, black carbon, and ultrafine particles), emphasizing dif-
ferences in pollution drivers such as traffic and residential heating 
emissions. Different state-of-the-art air pollution mapping techniques 
(empirical and deterministic modeling) are presented and their ability to 
capture this intra-urban spatial and seasonal variability is analyzed. A 
standardized methodology is defined to compare the mapping methods 
in terms of their accuracy in representing intra-urban air pollution 
patterns over space and time. Although the scarcity of fixed-site mea-
surements at traffic sites and/or for BC and UFP limits the robustness of 
these comparisons, the modeled pollutant’s spatial and seasonal vari-
ability is generally well represented across methodologies when 
compared to fixed-stations measurements. The deterministic modeling 
approaches (e.g., Eulerian or Gaussian dispersion models) are most 
effective when fine-scale emission inventories and urban morphological 
information are available, allowing an hourly representation of con-
centrations. They are well suited for NO2 and PM2. 5, and the Eulerian 
multi-scale model represents well both UFP and BC. The comparison 
also shows that better emission source characterization of UFP is 
essential for improving deterministic mapping capabilities. Land-use 
regression models based on mobile monitoring provide a valuable 
approach for seasonal concentrations, in places where mobile moni-
toring data are dense, allowing detailed mapping of both UFP and BC.

To facilitate comparisons, a metric was introduced to enable cross- 
pollutant comparisons (NO2, PM2. 5, BC, and UFP). The variability of 
BC and UFP was shown to be at least as high as the variability of NO2. 
This has important implications for exposure assessment and policy, 
emphasizing the need for operational implementation over cities of fine- 
scale mapping techniques to enhance population exposure estimation 
and public health evaluations, particularly for NO2, UFP, and BC. This 
study demonstrates that the variability integrated across a city differs 
significantly depending on whether it is estimated from a few fixed 
monitoring stations or across the entire domain, independently of the 
modelling technique used. Multi-scale modeling is hence essential to 
accurately assess population exposure, and more urban and traffic fixed- 
site measurements are needed, especially for UFP and BC, to support 
further refinement of models.

In addition to the presentation and evaluation of modeling tech-
niques, the influence of data assimilation on the intra-urban variability 
representation is analyzed. While data assimilation improves model to 
measurement comparisons of concentrations, it does not always enhance 
variability representation between traffic and urban background sites, 
emphasizing the need for more advanced assimilation approaches, in 
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particular to improve predictions of pollutants for which observations 
are scarce.

Future research should focus on comparing mapping techniques 
capable of representing all pollutants of interest within the same city and 
expanding their application across multiple cities to better assess pop-
ulation exposure to highly variable pollutants.

8. Model availability

- The code of the CHIMERE/MUNICH/SSH-aerosol chain may be ob-
tained from https://zenodo.org/records/12639507.

- The code of the EPISODE-CityChem model may be obtained from: 
https://zenodo.org/records/8063985.

- The code of the ADMS model (for case studies) needs a model licence 
from Cambridge Environmental Research Consultants (https 
://www.cerc.co.uk/environmental-software/ADMS-Urban-model. 
html).

- The LUR model for Bucharest was developed locally using the 
ESCAPE Land Use Regression model manual, available online: https: 
//escapeproject.eu/; https://www.escapeproject.eu/manuals/
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