
Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version 11 January, 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.011100

A Survey on Privacy and Security in
Distributed Cloud Computing: Exploring

Federated Learning and Beyond
Ahmad Rahdari 1(Member, IEEE), Elham Keshavarz2, Ehsan Nowroozi3 (Senior Member,

IEEE), Rahim Taheri4 (Senior Member, IEEE), Mehrdad Hajizadeh5 , Mohammadreza
Mohammadi6, Sima Sinaei6 AND Thomas Bauschert5

1School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
2Department of Computer Engineering, Pishtazan Institute of Higher Education, Shiraz, Iran

3Centre for Sustainable Cyber Security (CS2), University of Greenwich, United Kingdom
4PAIDS Reserach Centre, School of Computing, University of Portsmouth, United Kingdom
5Chair of Communication Networks, Technische Universität Chemnitz, Chemnitz, Germany

6RISE Research Institutes of Sweden

CORRESPONDING AUTHOR: Mehrdad Hajizadeh (e-mail: mehrdad.hajizadeh@etit.tu-chemnitz.de)

This work was supported by SUSTAINET-Advance (16KIS2280) and 6G-RIC (16KISK032) projects.

ABSTRACT The increasing need to process large, high-dimensional datasets and the substantial compu-
tational power required have made the use of distributed cloud servers essential. These servers provide
cost-effective solutions that make storage and computing accessible to ordinary users. However, they might
face significant vulnerabilities, including data leakage, metadata spoofing, insecure programming interfaces,
malicious insiders, and denial of service. To gain public trust in distributed computing, addressing concerns
related to privacy and security while ensuring high performance and efficiency is crucial. Multiparty
computation, differential privacy, trusted execution environments, and federated learning are the four
major approaches developed to address these issues. This survey paper reviews and compares these four
approaches based on a structured framework, by highlighting recent top-tier research papers published in
prestigious journals and conferences. Particular attention is given to progress in federated learning, which
trains a model across multiple devices without sharing the actual data, keeping data private and secure.
The survey also highlights federated learning techniques, including secure federated learning, by detecting
malicious updates and privacy-preserving federated learning via data encryption, data perturbation, and
anonymization, as new paradigms for building responsible computing systems. Finally, the survey discusses
future research directions for connecting academic innovations with real-world industrial applications.

INDEX TERMS Distributed Cloud Computing; Edge Computing; Privacy-Preserving Computing; Federated
Learning; Multi-Party Computation; Differential Privacy; Trusted Execution Environments.

I. INTRODUCTION

IN recent years, many service providers and companies
have adopted cloud-based services to perform tasks, store

data, and manage online information. These services typi-
cally rely on centralized setups with computing power, stor-
age, and networks in big data centers. However, as connected
devices grow rapidly through the Internet of Things (IoT),
emerging new applications, such as self-driving cars, video
surveillance, Augmented Reality (AR), and Virtual Reality
(VR), have highlighted the limitations of this centralized

cloud model [1]. For instance, AR and VR require very
fast response times, often in milli- or nanoseconds, which
remote cloud services struggle to meet owing to latency. In
addition, transmitting large volumes of IoT data to the cloud
can overload the network bandwidth. Consequently, there is
a growing need to move beyond traditional cloud models
to create faster, more efficient, and cost-effective solutions.
New computing concepts, such as edge computing, cloudlets,
and fog computing have been introduced to address these
challenges [2]. These approaches reduce bandwidth conges-
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TABLE 1. Abbreviations and Definitions

Abbreviation Definition Abbreviation Definition
AI Artificial Intelligence LSTM Long Short-Term Memory
AQs Analytical Questions MitM Man in the Middle
AR Augmented Reality MPC Multi-Party Computation
BGW Ben-Or, Goldwasser, Wigderson OMTP Open Mobile Terminal Platform
CSPs Cloud Service Providers PaaS Platform-as-a-Service
DCC Distributed Cloud Computing PoPs Points of Presence
DDoS Distributed Denial of Service PPC Privacy-Preserving Computing
DoS Denial of Service RANs Radio Access Networks
DP Differential Privacy ROM Read Only Memory
FL Federated Learning SaaS Software-as-a-Service
GAN Generative Adversarial Network SDN Software-Defined Networking
GPUs Graphics Processing Units SFE Secure Function Evaluation
IaaS Infrastructure-as-a-Service SSS Shamir’s Secret Sharing
IAI Industrial Artificial Intelligence TAs Trusted Applications
IDS Intrusion Detection System TEE Trusted Execution Environments
IID Independent and Identically Distributed TOS Trusted Operating System
IIoT Industrial Internet of Things VIM Virtual Infrastructure Manager
IoT Internet of Things VR Virtual Reality
IPS Intrusion Prevention System WoS Web of Science

tion and enhance latency by handling data closer to its source
rather than relying on distant cloud data centers. While the
distinctions between these paradigms are still debated within
the research community, they all contribute to a broader
shift towards decentralizing cloud computing, known as
Distributed Cloud Computing (DCC) [3]. The development
of 5G networks has made this trend by enabling the pro-
cessing of larger data volumes more efficiently, particularly
through innovative architectures such as distributed Radio
Access Networks (RANs) and Software-Defined Networking
(SDN) [4]. A distributed RAN architecture breaks down
traditional RAN functions into smaller, distributed units. This
allows for flexible deployment, improved network perfor-
mance, and reduced latency. Likewise, SDN complements
this by decoupling the control plane from the data plane,
enabling dynamic resource allocation and enhanced network
programmability. Today, Microsoft Azure, Google Cloud,
IBM Cloud, VMware Cloud, Oracle Cloud, and Amazon
Web Services offer affordable and scalable cloud solutions
that provide private and public access to data via the Internet
[5].

Although DCC systems offer numerous advantages, they
also intensify the privacy and security challenges of central-
ized cloud systems and may introduce new attack vectors. In
DCC, raw data from different decentralized nodes are often
sent to a central server for processing. Taking healthcare
as an example, sensitive patient data from various hospitals
can be shared with a central cloud to train machine learning
models. This process can increase the risk of data breaches,
unauthorized access, or interception during transmission and
storage because the raw data passes through multiple points
where it can be exposed. Furthermore, DCC systems manage

massive datasets spread over different servers. This raises
serious security concerns, as the presence of a few malicious
or colluding workers could jeopardize all data and put it at
risk [6]. Users often provide sensitive information, which
they expect to be protected. Simultaneously, they might
want to share more data to make their experiences smarter
and better. For example, in AR, providing a system with
more data can lead to better object recognition, personalized
content, and a more realistic experience [7]. However, as
more data are added, it becomes more difficult to protect the
data. This makes it important to prevent unauthorized access
to and misuse of data during collection, processing, and
analysis. The question is: “Can DCC benefits be achieved
while addressing privacy and security?”

This survey study presents Federated Learning (FL) as
a promising solution to these privacy and security issues.
FL is a fast-growing distributed learning model that runs
across multiple data sources and addresses privacy concerns
by keeping raw data locally stored with the participants.
The main idea behind FL is that model hyperparameters,
such as gradients and loss functions, can be shared and
protected more easily, while still providing the necessary
information for improving a global model. In simple terms,
FL allows different participants to collaborate through the
exchange of model updates, rather than sharing raw data
during training [8]. By combining FL with DCC, we can
enhance data processing and bring about significant ad-
vancements in data science. DCC is required to address the
limitations of centralized clouds by bringing resources closer
to users and improving latency, scalability, and compliance,
especially for data-intensive applications. FL complements
DCC by enabling collaborative Artificial Intelligence (AI)
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model training without centralizing sensitive data, preserving
privacy, or meeting regulatory requirements. Together, DCC
and FL provide scalable, efficient, and secure solutions
for modern decentralized computing needs. Because the
distributed nature of DCC systems intrinsically aligns with
FL, it has gained significant popularity in academic research
and industry.

FL should be considered as part of a wider area of Privacy-
Preserving Computing (PPC) techniques. In computer sci-
ence, PPC includes various technologies that allow for
computation while keeping participants’ privacy safe. Since
the 1970s, researchers have been working on PPC, focusing
on finding a balance among security, performance, accuracy,
and efficiency [9]. The four main categories from different
angles or generations of PPC include Multi-Party Compu-
tation (MPC), Differential Privacy (DP), Trusted Execution
Environments (TEE), and FL. The classification of PPC
into different generations in the literature is based on broad
paradigms that represent fundamental architectural shifts in
how privacy is protected. Each generation reflects a major
evolution in privacy-preserving methodologies, addressing
the limitations of its predecessors, and introducing a new
way of thinking about privacy protection. These generations
are often combined. For example, MPC, DP, and TEE can
work with FL to create techniques, such as FL-MPC, FL-DP,
and FL-TEE [17]. In this survey, however, we examine these
generations individually, as each offers a distinct perspective
on the problem and has its strengths and weaknesses. By
comparing FL with other privacy-preserving generations, this
study highlights its advantages, limitations, and potential as
a key solution for secure distributed cloud environments. We
also introduce other FL techniques, such as secure FL, by
detecting malicious updates and privacy-preserving FL via
data encryption, data perturbation, and anonymization, as
new paradigms for building responsible computing systems.
Our goal is to present a thorough evaluation by highlight-
ing recent top-tier research papers published in various
prestigious journals and conferences and offering valuable
suggestions for future work and real-world applications.
In doing so, we hope to bridge the gap in understanding
the intersection of FL and DCC and provide insights into
building responsible PPC systems.

A. ANALYTICAL QUESTIONS
This study includes the following Analytical Questions
(AQs) and provides clear and straightforward answers for
each:

AQ1: What are the key advantages of FL over MPC, DP,
and TEE when addressing privacy and security challenges
in DCC?

AQ2: What challenges arise when using FL in DCC, and
how can they be mitigated?

AQ3: What are the advantages and disadvantages of
each secure FL technique, including methods for detecting

malicious updates, data encryption, data perturbation, and
anonymization?

AQ4: How can FL establish a fair balance between
security, performance, efficiency, and accuracy in DCC?

B. CONTRIBUTIONS
Figure 1 illustrates the graphical abstract for privacy-
preserving and secure DCC, which will be discussed in this
survey. The primary contributions of this survey are outlined
below:

• We present a comprehensive review of the cutting-edge
privacy and security challenges and proposed solutions
in DCC, including an introduction to different PPC
generations and an analysis of underlying philosophies
guiding their integration.

• While other studies often focus on a single PPC tech-
nique, such as MPC, DP, or TEE, our survey covers
all of these alongside FL, offering a comprehensive
assessment of the available strategies.

• We analyze recent top-tier research papers from presti-
gious conferences and journals on MPC, DP, TEE, and
FL to provide a detailed overview of current privacy
and security techniques in DCC.

• We introduce a structured evaluation framework that
compares the methods proposed in recent top-tier re-
search papers across six key dimensions: privacy, secu-
rity, scalability, maturity, advantages, and limitations,
providing an objective assessment of their practical
deployment considerations.

• We highlight FL as a key method for mitigating security
risks in DCC systems and position it as a more suitable
solution than other methods in this domain.

• We present a taxonomic structure of privacy-preserving
and secure FL techniques, including methods such
as malicious update detection, data encryption, data
perturbation, and anonymization, and outline their main
strengths and weaknesses in real-world DCC applica-
tions.

• We discuss open research directions in the privacy and
security of DCC to bridge the gap between academic
advancement and industry requirements.

Section II reviews existing surveys that focus on privacy
and security in DCC and FL. It also highlights how our
study differs from earlier studies. Section III provides a basic
overview of DCC and their structure. Section IV examines
the vulnerabilities associated with the DCC systems. Section
V explains the methods used to search for topics, includ-
ing relevant keywords, and how we chose the bibliometric
database. Section VI analyzes the four generations of PPC,
featuring key research papers from leading conferences and
journals, and evaluating their strengths and weaknesses using
our structured framework. Section VII discusses the AQs
proposed in the Introduction. Section VIII suggests direc-
tions for future research and exploration. Finally, Section IX
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FIGURE 1. Graphical abstract for privacy-preserving and secure DCC.

concludes the study by summarizing the main insights and
contributions.

II. EXISTING SURVEYS
This section presents a collection of relevant and related
studies that review the use of cloud computing or federated
learning in the security field. Next, we compare our work
with existing surveys.

In [9], the authors evaluated the foundations, objec-
tives, details, architectures, and implementation of privacy-
preserving FL for computing. However, they did not pro-
vide a comprehensive view of DCC. In [10], the authors
conducted a methodical review of privacy-preserving FL
and examined potential privacy breaches, but did not thor-
oughly explore its integration with DCC and compared it
with other techniques such as MPC, DP, or TEE. In [11],
the applications of FL for edge computing were reviewed
considering existing research problems and their possible
solutions. This article lacks depth in comparing FL with
other critical PPC approaches such as MPC and DP. In
[12], the authors analyzed the routing protocol, architec-
ture, and hardware requirements of FL in edge comput-
ing, demonstrating its practicality through case studies, but
failing to provide a comprehensive comparison of all PPC
techniques. In [13], the authors provided an overview of
FL methods with a specific focus on edge devices and
their computational constraints. They discussed various FL
frameworks, challenges related to hardware heterogeneity,
and communication issues. However, their study primarily
focused on FL implementation and scalability without ex-
tensively addressing the security challenges and privacy-
preserving techniques. In [14], the authors reviewed security
and privacy issues in decentralized FL, emphasizing how

blockchain-based architectures could mitigate server-related
vulnerabilities. Although the survey effectively categorized
security mechanisms, it did not provide a comparative anal-
ysis of FL with other PPC approaches, which limited its
applicability to broader DCC paradigms. In [15], the au-
thors reviewed PPC techniques in FL, categorizing different
inference attacks and discussing countermeasures, such as
adversarial training and homomorphic encryption. Although
this work systematically analyzed privacy challenges, it did
not thoroughly examine FL integration with cloud comput-
ing. In [16], the authors explored the integration of FL and
edge computing in IoT applications, highlighting various
cryptographic techniques, perturbation-based privacy mech-
anisms, and adversarial training approaches. However, this
survey lacked an analysis of FL with other PPC techniques.
The authors of [17] presented a survey on robust FL and
categorized existing schemes without discussing solutions to
privacy and security challenges across DCC. In [18], the
authors investigated FL and addressed its challenges, privacy
risks, and security solutions, such as secret sharing and
quantum FL methods, with limited attention to the broader
range of PPC techniques, narrowing its scope in a DCC
context.

A. DIFFERENCES FROM EXISTING SURVEYS
Unlike previous surveys, our research emphasizes the privacy
and security challenges related to DCC. We highlight the key
solutions proposed by researchers to address these concerns.
Although some studies have focused on traditional cloud
computing, our study is the first to specifically investigate
security and privacy techniques in DCC. Our review dis-
tinguishes itself from existing surveys by emphasizing its
practical and real-world applications. Although many studies
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TABLE 2. The differences between our work and existing surveys.

Ref. Privacy Security FL Cloud Computing Description Differences from Our Work
[9] ✓ ✓ ✓ × Provided an overview of FL and its

application in PPC.
This review did not provide a comprehensive view of
DCC. In contrast, our review integrates FL with DCC
for a broader perspective.

[10] ✓ × ✓ × Surveyed privacy-preserving FL. This review presented a study on FL but did not thor-
oughly explore its integration with DCC and comparison
with other PPC techniques. In contrast, our review delves
deeper into FL within the context of DCC.

[11] ✓ ✓ ✓ ✓ Reviewed FL challenges and po-
tential solutions in edge computing.

This article lacks depth in comparing FL with other
PPC approaches. Our review, however, provides a more
thorough exploration of FL in the context of DCC.

[12] ✓ ✓ ✓ ✓ Surveyed FL implementations in
edge computing.

This survey failed to provide a comprehensive com-
parison of all PPC techniques. Conversely, our review
emphasizes the advantages of FL when considered as a
solution for DCC challenges.

[13] × × ✓ ✓ Provided an overview of FL with
a focus on edge devices and their
computational constraints.

This review does not deeply explore privacy-preserving
computation techniques or the security challenges in
DCC, which our work addresses comprehensively.

[14] ✓ ✓ ✓ × Examined security and privacy
issues in decentralized FL and
discussed blockchain-based
approaches.

This survey focused on security threats in decentralized
FL but did not explore the comparison of FL with other
PPC techniques, which our review covers in depth.

[15] ✓ ✓ ✓ ✓ Surveyed various privacy-
preserving computation protocols
in FL.

This work focuses primarily on FL security threats and
mitigation methods, whereas our review expands on FL’s
role in DCC and compares multiple PPC approaches.

[16] ✓ ✓ ✓ ✓ Investigated security and privacy-
preserving techniques in FL within
edge IoT environments.

This paper discussed cryptographic solutions in FL but
lacked a holistic comparison of FL with other PPC
techniques, which our work provides.

[17] ✓ ✓ ✓ × Surveyed the strengths and
weaknesses of various privacy-
preserving FL techniques.

This study concentrated on FL solutions using blockchain
without discussing it across DCC. Our review explores
FL within the broader context of DCC.

[18] ✓ × ✓ × Reviewed privacy challenges and
preservation solutions in FL.

This study did not consider cloud computing, which
limited its scope. Our work, however, concentrates on
privacy and security in DCC.

Our work ✓ ✓ ✓ ✓ Reviews privacy and security vul-
nerabilities in DCC, proposed PPC
solutions (i.e., MPC, DP, TEE, and
FL), and their comparison, high-
lighting the advantages of FL and
providing an overview of open re-
search directions.

Not Applicable (NA).

have investigated FL, we consider it a key solution for
security issues in DCC systems. Typically, other studies
reviewed FL separately; however, our review includes all
four PPC techniques: FL, MPC, DP, and TEE. Therefore,
one of the key advantages of our review is the comprehensive
comparison of the strengths and weaknesses of the four
major PPC techniques. After comparing these methods in the
context of DCC, we found that using FL in DCC is the most
effective way to address security and privacy challenges. We
also highlight FL techniques such as secure FL through the
detection of malicious updates and privacy-preserving FL
via data encryption, data perturbation, and anonymization.
While previous studies have tended to focus on individual
methods or specific applications such as IoT, our research
integrates these techniques into a unified framework and

shows how they can be combined or adapted to meet the
unique challenges of DCC.

This comprehensive overview not only broadens the scope
of privacy and security considerations but also provides prac-
tical insights for both researchers and industry professionals.
Furthermore, none of the existing review articles has fully
addressed the implementation challenges and practical uses
of DCC. Here, we highlight real-world examples and outline
the research directions required by the industry. Our study
identifies gaps and provides a roadmap for future research,
emphasizing the need for scalable, efficient, and secure
solutions for evolving DCC environments. This focus makes
our review particularly relevant to developers, engineers, and
policymakers tasked with ensuring the security and privacy
of the distributed systems. Table 2 compares our findings
with those of other surveys in this area.
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FIGURE 2. Distributed cloud architecture.

III. BACKGROUND ON DCC
A distributed cloud is a modern cloud computing model in
which Cloud Service Providers (CSPs) augment their cloud
services to encompass different physical locations beyond
their usual data centers. It allows clients to operate their
applications or parts of them in various places, such as public
clouds, edge locations, and data centers, to meet specific
needs such as faster replies and legal requirements. Even
though the services are spread out, CSPs are still respon-
sible for operating and maintaining the distributed cloud
infrastructure. The widespread adoption of cloud technology
is primarily owing to its scalability and affordability. The
growth of DCC is now closely tied to the increasing use
of big-data applications. Solutions powered by the DCC can
provide valuable insights, aiding in more precise decision-
making. DCC is also recognized for its manageability and
scalability, offering independent and on-demand access to
network resources and connectivity [19].

As shown in Figure 2, the architecture of a distributed
cloud follows a three-layered network structure: core, re-
gional, and edge clouds [1], [20]. The core cloud manages
the overall coordination and control of the distributed cloud,
thereby addressing heavy workloads and permanent storage.
The regional layer, which sits between the core and edge
layers, supports edge clouds in the same region, helps with
traffic load balancing by caching data, and improves service

quality. It can also host network services such as the 5G
core, while the edge cloud, which operates at the network’s
edge, supports services such as IoT and RAN, which require
low latency. CSPs such as Google, AWS, and Azure own
the core cloud layer, which acts as the central point for
managing cloud resources. These companies might also
have some edge Points of Presence (PoPs), but they often
partner with third-party telecom providers to expand their
edge infrastructure. Regional clouds can be set up at CSP’s
PoPs or in partner data centers to serve specific regions,
whereas edge clouds are deployed at the network edge to
serve end users who need low-latency services. Each layer
of a distributed cloud has a different infrastructure. The
core and regional layers typically use standard commercial
hardware and hybrid platforms with virtual machines and
containers. However, edge clouds, which have more limited
resources and operate in harsher environments, rely on
lightweight virtualization platforms (e.g., Unikernels and
MicroVMs) and time-sensitive networking for deterministic
communication [21]. Additionally, edge clouds must address
environmental factors such as power efficiency, thermal
constraints, and intermittent connectivity, requiring advanced
workload migration strategies and energy-aware scheduling
policies. To meet the performance demands of specific appli-
cations, they may also integrate hardware accelerators such
as SmartNICs for packet processing, TPUs for AI inference,
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and FPGAs for workload offloading. These specialized accel-
erators enable edge computing environments to support high-
performance applications, such as real-time video analytics
and autonomous system control.

To ensure seamless coordination among cloud layers, dis-
tributed clouds require comprehensive orchestration mech-
anisms that manage computing, networking, and storage
resources dynamically. This orchestration is critical for main-
taining service-level agreements and adapting to changing
network conditions. The orchestration framework consists
of multiple layers, including a service orchestrator, work-
load scheduler, and cross-domain controller, each respon-
sible for different aspects of cloud resource management.
The service orchestrator abstracts infrastructure complexity
by providing an end-to-end view of available resources,
dynamically allocating tasks based on real-time demand.
A multidomain orchestrator with cloud schedulers ensures
efficient task execution by integrating different orchestration
modules, including the Virtual Infrastructure Manager (VIM)
orchestrator and the Software-Defined Networking (SDN)
orchestrator. The VIM orchestrator oversees cloud-native
platforms such as OpenStack, Docker, and Kubernetes, man-
aging virtualized resources across geographically distributed
cloud nodes. It dynamically provisions and scales workloads,
ensuring optimal resource utilization and balancing work-
loads between cloud layers. The SDN orchestrator integrates
software-defined wide-area networks that manage distributed
SDN controllers across network domains, providing dynamic
traffic engineering, latency-aware routing, and automated
fault recovery. Unlike traditional networking approaches,
SDN-enabled distributed clouds allow for programmable
network control, improving adaptability to changing net-
work conditions and enhancing security through policy-
driven enforcement [22], [23]. Advanced traffic optimization
strategies, such as intent-based networking further enhance
network performance and resilience against disruptions. To-
gether, these orchestrators provide a comprehensive view
of resources and make it possible to deliver end-to-end
services that combine cloud-based tasks (as data processing
and storage) and network tasks (as data transmission).

The distributed cloud offers three distinct service delivery
models: Software-as-a-Service (SaaS), Infrastructure-as-a-
Service (IaaS), and Platform-as-a-Service (PaaS). Each of
these models addresses various business needs and offers
unique advantages, as outlined below:

• SaaS: Allows customers to utilize cloud-based software
applications via the internet. With SaaS, setup expenses
and fundamental infrastructure management costs are
eliminated and updates are handled efficiently. How-
ever, customers possess minimal security because the
technical infrastructure and implementation platform
are externally managed. The SaaS model concentrates
on policy-driven access management, in which users
are typically only permitted to download specific in-
formation from applications. This approach makes the

service available to a large number of users. Common
examples of SaaS include Google Drive, Microsoft 365,
Dropbox, and Zoom, which provide seamless access to
essential business and collaboration tools through the
cloud [24].

• IaaS: Involves the virtual provision of computing re-
sources, including hardware, networking, and storage
services. This model encompasses operating systems,
operational services, and specific network components,
all of which fall under customer management. Managed
exclusively by a CSP, IaaS is notable for its application
in security fields such as Intrusion Detection Systems
(IDS), Intrusion Prevention Systems (IPS), firewalls,
and virtual machine monitoring. A prime example of
this is Amazon Web Services, which delivers these
services through its cloud platform, allowing businesses
to manage their software [25], [26].

• PaaS: Facilitates the development and deployment
process, offering a more streamlined and convenient
approach. Essentially functions as an online computing
platform, allowing CSPs to manage the underlying
infrastructure, including networks, storage, servers, and
operating systems. Meanwhile, customers retain some
control over the applications they deploy and potentially
some configuration settings. When compared to SaaS
and IaaS, PaaS provides enhanced extensibility and
greater customer control over security. PaaS integrates
various operating systems and application servers, such
as Microsoft Azure, Google App Engine, and the
LAMP stack (Linux, Apache, MySQL, PHP) [27], [28].

Distributed cloud also comes in distinct deployment mod-
els, generally categorized as public, private, hybrid, and
community, each offering different levels of control, security,
and customization.

• Public cloud: A third-party vendor hosts a public cloud
application in a data center and offers resources over the
Internet shared by organizations and individuals who
wish to use or purchase them. Public cloud services
provide varying levels of security and confidentiality
that may not be suitable for handling highly sensitive
data or specific use cases. Most offerings in IaaS,
PaaS, and SaaS fall under the public cloud model.
These services allow users to access computing power,
applications, and complete platforms remotely through
a web browser or terminal without the need to host
or maintain software or hardware on-site. While some
public cloud resources are free, others may require pay-
ments through subscription plans or on a pay-as-you-
go basis. This type of cloud is a cost-effective option
for users because of its multitenant nature, flexibility,
scalability, and location independence [29], [30].

• Private cloud: Organizations use the private cloud
model to meet the cloud needs of various departments.
This approach allows them to maintain their infrastruc-
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ture to deliver cloud services. The private cloud model
can operate within the organization’s network or by au-
thenticating users at the firewall. These clouds provide
significantly greater control, security, and customization
compared to public options. The higher level of control
simplifies compliance with regulations concerning sen-
sitive data and offers better protection for trade secrets
and internal communications. However, the nature of
private clouds also means they tend to be more costly
and labor-intensive to establish and maintain. Thus, this
model is ideal for large enterprises and government
agencies to secure critical data [31], [32].

• Hybrid cloud: This type combines the speed and se-
curity benefits of a private cloud with the cost-effective
computing and storage advantages of a public cloud.
In this setup, companies can store sensitive information
and vital applications on a private cloud that meets the
regulatory requirements. Simultaneously, they can use
a public cloud for less sensitive tasks. In addition, a
hybrid cloud enhances disaster recovery and backup
options. However, in practice, managing a hybrid cloud
can be difficult, especially when expanding the system.
Every time a system updates or a new member joins
the system, new challenges can arise [33].

• Community cloud: This type of cloud functions as a
private cloud but is shared by multiple organizations,
motivated by common operational or regulatory needs.
Infrastructure can be owned, managed, and operated
by one or more organizations within the community
or by an external third party. Community clouds also
offer advantages over public clouds, such as scalability
and cost-effectiveness. A community cloud is a spe-
cialized type of hybrid cloud that serves the needs
of a specific group. By concentrating on a particular
purpose, community clouds can offer essential services
while minimizing the complexities and challenges often
associated with broader hybrid cloud models [34], [35].

Figure 3 compares the distributed cloud service and de-
ployment models, highlighting trade-offs in security, access
control, and cost. Public clouds offer affordability with
limited security, private clouds provide security at a higher
cost, hybrid clouds balance both, and community clouds
serve specialized needs.

IV. DCC VULNERABILITIES
DCC, despite its many benefits, has several vulnerabilities
that can jeopardize the privacy and integrity of data be-
cause of their reliance on multiple interconnected servers,
one of which is the fragmentation of data across different
geographical locations and cloud providers. This exposes
the system to data breaches, especially during data transit
between nodes, owing to insecure sharing methods and weak
encryption [36]. To mitigate this, MPC can be employed to
ensure that no single party ever has access to the complete
dataset. Another approach is the application of DP, which

FIGURE 3. Overview of distributed cloud service delivery and deployment
models, illustrating differences in security, access control, and cost using
visual icons: shields for security, currency for cost, briefcases for tasks,
user for restricted access, and locks for authentication mechanisms.

introduces controlled noise into datasets, preventing adver-
saries from extracting sensitive information from aggregate
outputs. However, the existence of multiple access points
for data recovery makes it challenging to secure potential
vulnerabilities in transit [37]. Furthermore, differences in
security policies among cloud providers can cause miscon-
figuration and increase the risk of exposure. The presence
of anonymous profiles also reduces control over regulatory
compliance and auditing, leading to exposure to sensitive
data [38].

Another significant vulnerability arises from the shared re-
sponsibility model of cloud services. While cloud providers
are responsible for securing the infrastructure, users are
accountable for securing their own data and applications.
Many users either lack the expertise or awareness to im-
plement adequate security measures. This often results in
poor identity and access management [39]. One strategy
to counteract this issue is the use of FL, which enhances
security by ensuring that only model updates are shared. In
addition, TEEs can be leveraged to execute code in isolated,
hardware-protected environments. However, the complexity
of managing distributed environments across multiple clouds
also increases the likelihood of human error or mismanage-
ment. Users are often unaware of risks such as phishing,
which can result in unauthorized access to cloud systems
[40].

Another critical area of vulnerability lies in programming
interfaces, which, while facilitating user engagement in ap-
plication development, also introduce weaknesses that unau-
thorized users can exploit. This complexity within the cloud
framework often leads to backdoor access [41], [42]. Cloud
providers should enforce strict gateway security policies,
including rate limiting, authentication tokens, and access
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control. Interface request anomaly detection, combined with
AI-based behavioral analysis, can help identify and block
malicious interactions in real-time. Service and account
hijacking can occur when adversaries exploit vulnerabilities
to access legitimate websites and reuse credentials for ma-
licious purposes [43]. The potential for malicious insiders
to manipulate or steal data also presents a significant risk
because their high-level access can bypass many detection
mechanisms. The issue of colluding workers also persists,
as they may share confidential information or misuse their
access to disrupt operations. To defend, Role-Based Ac-
cess Control and Attribute-Based Access Control should be
combined with continuous user behavior analytics. Secure
audit trails with blockchain technology can further enhance
the transparency and traceability of user actions. However,
weak isolation mechanisms between workers, insufficient
encryption techniques, and vulnerabilities in trust models
can exacerbate this problem [44], [45]. In addition, services
may be misused, especially in the PaaS and IaaS models,
where control over user activity can be limited. If not
properly managed, running multiple virtual machines on a
single server in multi-tenant environments can also lead to
unauthorized access [46].

DCC’s distributed nature introduces further challenges,
such as latency and coordination issues between nodes,
which can be exploited to overwhelm systems with exces-
sive traffic and disrupt services. This overload can cause
significant financial and reputational harm to cloud service
providers. Vulnerabilities related to network protection, such
as poorly configured firewalls, often contribute to these
security concerns [47], [48]. A mitigation strategy involves
deploying AI-driven anomaly detection systems that contin-
uously monitor traffic patterns.

The Other risks include side-channel vulnerabilities,
where information may be leaked during process execu-
tion, and issues such as metadata manipulation, which can
compromise the service confidentiality [49]. To counter this,
techniques such as constant-time cryptographic operations
can be enforced to ensure execution patterns do not reveal
sensitive information. Hardware-based solutions, including
TEEs, also play a crucial role in preventing attackers from
gaining insights through cache timing or power consumption
analysis. Furthermore, the use of noise injection methods in
computations can obfuscate exploitable patterns. Metadata
spoofing can be mitigated by implementing cryptographic
signatures and authenticated encryption mechanisms. The
deployment of blockchain-based integrity verification can
further enhance the authenticity of metadata across dis-
tributed cloud networks. Moreover, reliance on third-party
providers for cloud services introduces supply chain risks,
where vulnerabilities in a provider’s infrastructure can affect
customer systems. providers’ lack of transparency about
their security practices adds another layer of uncertainty
to customers [50]. A defense strategy against supply chain
vulnerabilities involves enforcing contractual security re-

quirements on third-party providers. Continuous monitoring
of supplier security through Security Information and Event
Management systems and independent audits can enhance
supply chain resilience.

Overall, the roots of these vulnerabilities are insecure shar-
ing methods, weak encryption, inadequate security measures,
insufficient user awareness, and complexities in managing
distributed systems. Thus, these systems have an inherently
large surface area for potential security issues, making them
susceptible to exploitation if not properly managed. Collec-
tively, DCC vulnerabilities can be categorized based on the
nature and part of the cloud infrastructure they affect, which
are listed with an explanation and root cause analysis in
Table 3.

V. METHODOLOGY
This section explains the research methodology used for
this survey, including the relevant keywords, bibliometric
databases, and evaluation framework.

A. SEARCHED KEYWORDS
To comprehensively explore the relevant field, we searched
the literature using a range of keywords, including
“Distributed Cloud Computing, “Edge Computing”, “Fog
Computing”, “Cloudlets”, “Privacy-Preserving Computing”,
“Multi-Party Computation”, “Differential Privacy”, “Trusted
Execution Environments”, “Federated Learning”, “Collabo-
rative Learning”, “Distributed Machine Learning”, “Secure
Function Evaluation”, “Multi-User Computation”, “Data
Perturbation”, “Data Encryption”, “Anonymization”, “Ad-
ditive Masking”, “Secret sharing”, “Homomorphic Encryp-
tion”, “Malicious Updates”, “Anomaly Detection”, “Mali-
cious Workers”, and “Colluding Workers”. We conducted
this search using the Web of Science (WoS) and Scopus
databases, focusing on articles from conferences and journals
written in English. Furthermore, we ensured that all the
references we included were from the last decade, from 2015
to the date of this survey’s preparation.

B. SELECTION OF BIBLIOMETRIC DATABASE
Scopus and WoS were chosen as the key bibliometric sources
for this study to ensure an extensive literature review. By in-
corporating both databases, we aimed to conduct a thorough
exploration of academic publications, thereby improving
the completeness and credibility of the survey. The review
specifically focused on selecting research from well-regarded
journals and conferences in the fields of DCC, FL, security
and privacy, networking, information theory, and communi-
cation, including CCS, S&P, USENIX, ESORICS, ICML,
NeurIPS, PMLR, ICCV/ECCV, NDSS, CVPR, ACM CCS,
ACM CODASPY, ACM MobiCom, ITW, ISIT, INFOCOM,
IEEE Cloud Computing, IEEE Transactions on Information
Forensics and Security, IEEE Transactions on Dependable
and Secure Computing, IEEE Transactions on Mobile Com-
puting, Computers & Security, IEEE Internet of Things
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TABLE 3. DCC Vulnerabilities, their explanations and cause analysis.

Vulnerability Explanation and root cause analysis
Data Leakage and Loss DCC faces data leakage issues, leading to significant risks. Major causes of data loss include weak encryption and verification

methods, damaged data centers, and poor disaster planning [51].

Anonymous Profiles DCC reduces the need for direct hardware and software management, which can weaken security practices such as regulatory
compliance, auditing, and system hardening. This lack of control increases the risk of sensitive data exposure, particularly
when anonymous profiles are present [52].

Vulnerable
Programming Interfaces

While these interfaces facilitate user engagement in application development, they also create vulnerabilities that unauthorized
users can exploit through backdoor access. [53].

Services and Account
Hijacking

An adversary sends a web service to an unauthorized website. This allows the adversary to access the legitimate site, reuse
usernames and passwords, and conduct phishing [43].

Malicious Insiders With high-level network access, these insiders can alter valuable and protected data. Intrusion detection systems and firewalls
often fail to detect suspicious activity that appears legitimate [44], [54].

Colluding Workers Workers may collaborate to breach data privacy, manipulate computations, or disrupt operations, resulting in unauthorized
access and data leakage. This vulnerability arises from inadequate isolation between workers, weak trust models, and
insufficient encryption to protect data during processing [45].

Abuse and Immoral Use The DCC infrastructure offers storage and bandwidth; however, limited control can result in security weaknesses that
unauthorized users may exploit. Because PaaS and IaaS involve a high level of user participation, these vulnerabilities have
significant impacts [55].

Distributed Technology
Vulnerabilities

Multi-tenant architecture enables multiple users to share a single application in a virtualized environment. However,
adversaries may take control of authorized virtual machines, potentially disrupting the cloud’s core operations and affecting
its functionality [56].

Denial of Service (DoS) Adversaries generate massive amounts of traffic to disrupt service accessibility. The main causes of this vulnerability include
insufficient network protection, unmonitored traffic patterns, and weak firewall configurations [47].

Distributed Denial of
Service (DDoS)

An advanced form of denial of service that overwhelms a target server with excessive traffic from multiple sources, leading
to partial or total inaccessibility [48].

Probing User information that can identify individuals may be at risk of data breaches due to insufficient monitoring, the multi-tenant
nature of cloud environments, human error in configuration, and unsecured channels [57].

Man in the Middle
(MitM)

An unauthorized entity may intercept the communication between users and cloud services. This vulnerability is often caused
by weak encryption or poor authentication measures [58].

Phishing Involves deceiving users into providing sensitive information, like login credentials, by directing them to malicious websites.
This could result in unpermitted access to cloud systems, risking data and resources. Common causes include low user
awareness, poor email security, and weak authentication protocols [59].

Side Channel Targets the execution of computer processes and compromises data integrity by exploiting the side-channel information [49].

Zombie Affects service availability by causing disruptions to legitimate virtual machines, either by directly flooding the host machine
or through indirect methods [60].

Spoofing Meta Data Undermines the confidentiality of services by altering the web service description, leading to irregular service behaviors [61].

Remote to Local Vulner-
abilities

Occur when an unauthorized entity remotely gains local access owing to weak authentication and access controls, insecure
protocols and configurations, unpatched software, and misconfigured cloud services [62].

User to Root Vulnerabil-
ities

Occur when a user with limited access gains unauthorized root or administrative privileges owing to flaws in privilege
mechanisms, misconfigured cloud services, unpatched software and security holes, weak access controls, and insecure
configurations [63].

Journal, IET Information Security, ACM Transactions on
Privacy and Security, IEEE Transactions on Neural Networks
and Learning Systems, IEEE Transactions on Big Data, IEEE
Transactions on Services Computing, IEEE Transactions
on Network Science and Engineering, Journal of Informa-
tion Security and Applications, IEEE Internet Computing,
Journal of Machine Learning Research, IEEE Journal on
Selected Areas in Information Theory, IEEE Transactions
on Information Theory, Neurocomputing, Journal of Parallel
and Distributed Computing, Journal of Supercomputing,
Future Generation Computer Systems, IEEE Transactions
on Communications, IEEE Journal on Selected Areas in
Communications, Computer Communications, IEEE/ACM

Transactions on Networking, IEEE Transactions on Network
and Service Management, IEEE Open Journal of the Com-
munications Society, and other top-tier venues. This selec-
tion underscores our dedication to showcasing cutting-edge
research from esteemed conferences and journals renowned
for their significant contributions and strict standards in these
advancing fields. To manage this literature methodically and
comprehensively, we follow the following approach:

1) A keyword search will be conducted by combining
terms related to the general concept “AND” terms spe-
cific to summarization papers. An illustrative example
of such a search is as follows:
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FIGURE 4. Methodology for searching topics within the taxonomy.

(TITLE-ABS-KEY((“Cloud Computing” OR
“Edge Computing” OR “Privacy-Preserving
Computing”) AND (“Federated Learning” OR
“Multi-Party Computation” OR “Differential
Privacy” OR “Trusted Execution Environments”)))

FIGURE 5. Publications that were found for MPC, DP, TEE, and FL using
the methodology in WoS and Scopus over the past decade. ”Raw search”
shows initial results, while ”Filtered results” indicate finalized counts
after removing duplicates and filtering by quality and relevance to DCC.

2) Once the taxonomy is selected, each branch and
subtopic is investigated using topic or subtopic names
as keywords. A filtering approach similar to the previ-

ous method will be applied. Removing the keywords
related to summarization publications will significantly
increase the number of papers, so an additional filter
based on the quality of venues and journals will be in-
troduced to ensure that high standards are maintained.
Figure 4 shows the applied process. After filtering,
we reviewed all papers for final selection based on
our expertise. The following example demonstrates the
search for a topic by referencing a list of top-tier
conferences and publications.
(TITLE-ABS-KEY((“Cloud Computing” OR
“Edge Computing” OR “Privacy-Preserving
Computing”) AND (“Federated Learning” OR
“Multi-Party Computation” OR “Differential
Privacy” OR “Trusted Execution Environments”))
AND (SRCTITLE(“IEEE Open Journal of
the Communications Society” OR “IEEE
Cloud Computing” OR “IEEE Transactions on
Information Forensics and Security” OR “USENIX
Security Symposium” OR “Neurocomputing” OR
“ICML” OR “Journal of Supercomputing” OR
“ACM Transactions on Privacy and Security”
OR “ACM Conference on Data and Application
Security and Privacy” OR “IEEE Transactions on
Neural Networks and Learning Systems”))

C. THE EVALUATION FRAMEWORK
We introduce an evaluation framework to facilitate a rigorous
comparison of PPC techniques in DCC. This framework
enables a comprehensive and objective analysis of various
MPC, DP, TEE, and FL methods proposed by the scholars.
By assessing these methods through integrated metrics, we
provide deeper insights into their practical deployment con-
siderations, helping policymakers select the most appropriate
mechanism based on their specific needs.

Our structured framework evaluates each study across
six key dimensions: privacy, security, scalability, maturity,
advantages (pros), and limitations (cons). Privacy examines
whether the proposed approach in a study meets the nec-
essary privacy criteria. Specifically, it considers data expo-
sure—whether raw data is exposed at any stage or remains
protected during computation. It also evaluates anonymiza-
tion mechanisms, privacy-enhancing techniques, resistance
to inference attacks, and the ability to prevent unauthorized
data mining. Security assesses the resilience of each study
against various vulnerabilities based on the reports provided.
This includes the presence and strength of cryptographic
algorithms, the robustness of security mechanisms such as
encryption, and the use of secure protocols. It also considers
the degree of reliance on external entities, such as centralized
servers, cloud providers, or trusted intermediaries.

Scalability examines computational complexity by evalu-
ating the processing power, memory, and bandwidth required
to execute the proposed approach, as reported in the studies.
It also assesses communication costs and their impact on
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system performance. Furthermore, it considers deployment
feasibility by focusing on how easily the technique can
be integrated into distributed systems, cloud environments,
or edge computing infrastructures. Maturity measures the
stage of development of each method, categorizing them
into three levels: Concept refers to theoretical proposals
without real-world implementation. Prototype represents an
early-stage implementation demonstrating feasibility in a
controlled environment. Experimental techniques have been
tested under real-world conditions, often accompanied by
performance evaluations.

The pros metric highlights the key benefits of each tech-
nique, such as increased efficiency, reduced computational
or communication costs, robustness under varying network
conditions and adversarial settings, and compatibility with
cloud computing services or resource-constrained edge de-
vices. In contrast, the cons metric identifies key challenges
and limitations, including high computational costs, signif-
icant processing and memory requirements, and scalability
constraints.

VI. GENERATIONS OF PRIVACY-PRESERVING AND
SECURE DCC
Privacy-preserving technologies have evolved over several
generations, each building on the previous one to enhance
data security and privacy in increasingly sophisticated ways.
This section comprehensively overviews the key generations
and most significant studies conducted in each area (chosen
through the methodology). This highlights the strengths and
weaknesses of each study.

A. MULTI-PARTY COMPUTATION (MPC)
The field of MPC, also called Secure Function Evaluation
(SFE), began with Yao’s millionaire problem [64], [65]. This
famous problem asks how some millionaires can determine
who has more wealth without revealing the exact amounts to
each other. For instance, imagine three entities, Alice, Bob,
and Charlie, each with a salary. They want to find out who
earns the most without telling each other their actual salaries.
Mathematically, this is similar to calculating the function
max(x, y, z), where x, y, and z are the salaries. If they had a
trusted friend like Tony, they could tell him their salaries, and
Tony would tell them the highest one. However, MPC allows
Alice, Bob, and Charlie to determine the highest salary
without Tony’s involvement or disclosing individual salaries
mainly based on Shamir’s Secret Sharing (SSS) [66]. They
only learn what they can infer from the results and inputs.
This basic example can be expanded to situations in which
participants have multiple inputs and outputs and where
different parties receive distinct outputs from the function.
In addition, the function being computed could be more
complicated than simply determining the maximum [67].
Generally, in an MPC scenario, multiple entities, denoted
as e1, e2, . . . , eN , possess secret data (s1, s2, . . . , sN ). Their

objective is to collaboratively compute the outcome of a
function F (s1, s2, . . . , sN ) while ensuring that their inputs
remain confidential.

The two important goals of any MPC protocol are input
privacy and correctness. Input privacy implies that no
private data are revealed during the process, except for what
can be gained from the outcome. Correctness means that
even if some participants try to cheat or share information,
they cannot make honest participants accept an incorrect
result [68]. Some protocols guarantee correctness by ensur-
ing that honest participants always obtain the correct result,
whereas others allow participants to stop the process if they
detect cheating. MPC protocols are often evaluated using
the real-world/ideal-world paradigm. In the ideal world,
a trustworthy party executes the result, whereas in the real
world, participants exchange messages directly. A protocol
is considered secure if real-world interactions reveal no more
information than what would be revealed in an ideal world
scenario [69].

MPC assumes that adversaries could be the participants
themselves, who may try to collude and break the security.
Let t represent the total number of parties in the protocol and
m denote the number of potentially adversarial parties. The
approaches and protocols for scenarios in which m < t

2 dif-
fer from those without this assumption [70], [71]. The latter
includes significant cases, such as two-party computations
in which one party might be compromised, as well as more
general situations in which numerous participants might be
corrupted and collaborate to undermine the honest parties.
Different security models have been used to deal with other
types of adversaries. For example, covert security assumes
that adversaries will only try to cheat if they believe they will
not be caught [72]. This model balances efficiency and secu-
rity by ensuring that dishonest behavior is detected with high
probability while still allowing for efficient computations.
The security of MPC protocols relies on multiple factors,
including the complexity of the computation, the type of
network used, and message exchange. Adversaries can be
static, targeting specific participants, or dynamic, where they
change their targets during the process, making defending
against them more difficult [73].

Despite its strong security guarantees, MPC presents
significant computational trade-offs, particularly in terms
of communication overhead and efficiency. Many proto-
cols require extensive message exchange, leading to high
bandwidth consumption. For instance, Garbled Circuits [74]
involves transmitting large encrypted data, which can be
impractical for bandwidth-limited settings. In contrast, SSS-
based approaches reduce the computational complexity but
require more communication rounds. Lighter methods, such
as Oblivious Transfer [75], improve efficiency but rely on
additional security assumptions. Another critical issue in
MPC is scalability. Many protocols struggle to handle a
growing number of participants because communication and
computational costs increase significantly. Traditional thresh-
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old schemes often exhibit O(n2) complexity, which makes
them inefficient for large-scale applications. To mitigate this
problem, modern MPC frameworks employ precomputation
and parallel processing. A real-world implementation of
these optimizations is the Conclave Query System [76],
an MPC-based secure data query system developed by the
SAIL Lab at Boston University. Conclave mitigates MPC’s
inherent overhead by leveraging data parallelism, plaintext
computation, and optimized secure MPC instructions. How-
ever, precomputation introduces challenges, such as storage
overhead and vulnerabilities to adaptive adversaries who may
exploit precomputed values [77].

Companies such as Unbound Tech, Cypherium, IBM,
Intel, Kudelski Security, and R3 have recently founded an
MPC Alliance to raise awareness and encourage the adoption
of MPC technology. Significant studies in this domain have
recently emerged. The authors of [78] explored the scenario
of cooperative learning involving datasets protected with
various keys, and presented a solution using MPC leveraging
multi-key fully homomorphic encryption. Similarly, secure-
multiparty privacy-computation-based collaborative learning
was developed in [79] using the Diffie-Hellman key agree-
ment and ElGamal encryption to provide both parameter
and data privacy without compromising the efficiency of
the output model. In [80], a privacy-preserving classification
scheme that uses gated recurrent unit networks and MPC
technology that relies on secret sharing was outlined. The au-
thors of [81] developed an MPC framework to safeguard data
privacy during the evaluation of complex polynomials on
large matrices. They introduced a novel polynomial-sharing
approach and demonstrated its efficacy in executing essen-
tial operations, such as matrix addition and multiplication.
In [82], the authors integrated concepts from the Ben-Or,
Goldwasser, and Wigderson (BGW) scheme with polynomial
codes, leading to the creation of polynomial sharing. This
innovative approach offers a secure method for computing
arbitrary matrix polynomials while ensuring the confiden-
tiality of the data matrices. In [83], a technique for secure
data sharing was developed and designed to produce a single
matrix result, while ensuring that the input matrices remain
confidential and safeguarded against potential interception
by adversaries. The authors of [84] introduced a multiparty
neural network training framework that achieved linear com-
munication complexity. This framework ensures end-to-end
information-theoretic privacy through an iterative multiparty
coded computing approach. In [85], the authors explored
the range of optimal MPC costs by drawing a connec-
tion between covering codes and syndrome decoding. They
offered an algebraic explanation, showing that the largest
fraction of servers required to compute each subfunction
became more constrained. In [86], the authors investigated
distributed computations among several users based on linear
separability, wherein N servers assist K users in calculating
their desired functions. They established connections among
matrix factorization, covering codes and syndrome decoding,

thereby reducing computational and communication costs.
The researchers in [87] introduced a secure way to share
IoT data using MPC and blockchain smart contracts. Their
approach helps prevent data leaks and unauthorized access
in edge computing by ensuring only trustworthy IoT devices
can participate by utilizing a Bloom filter. In [88], the authors
presented a cloud-based system designed to protect privacy
in distributed applications. It uses a Naı̈ve Bayesian classifier
along with multi-party random masking and polynomial ag-
gregation to enhance security while avoiding the downsides
of traditional encryption methods. The study in [89] focused
on improving privacy-preserving authentication mechanisms
for smart cities. Instead of relying on a single certification
authority, their approach distributes identity management
across multiple service providers using an MPC protocol and
a pseudonym-based signature system. This setup prevents
any single entity from controlling user credentials. Finally,
Körner’s characteristic graph method was applied in [90]
to a promising multitask, multiserver distributed comput-
ing framework. The authors explored a scenario involving
linearly separable functions and cyclic dataset placement
and demonstrated significant performance improvements.
According to the selected literature, Table 4 compares these
MPC approaches using our structured evaluation framework.

B. DIFFERENTIAL PRIVACY (DP)
DP is a formalized framework designed to release statistical
insights from datasets, while safeguarding individual privacy.
It allows data controllers, such as CSPs, to disclose overall
trends within a group without revealing specific information
about individuals. This protection is achieved by introducing
calibrated noise into statistical computations that ensure
that the resulting statistics are still useful but prevent any
meaningful inferences about individual data entries [91]. For
example, an algorithm that computes various statistics (such
as variance, median, and mean) on a dataset is considered
differentially private if its output does not reveal whether it
contains data from a specific individual.

DP was introduced by Cynthia Dwork and Frank Mc-
Sherry in 2006, as outlined in their landmark studies [92]
and [93]. Their work proposed a formal method for ensuring
privacy in data analysis by highlighting the inherent ten-
sion between maintaining statistical accuracy and protecting
privacy. As a result, one of the key computational trade-
offs in DP is balancing privacy guarantees with data utility.
Increasing the level of noise enhances privacy protection but
simultaneously reduces the accuracy of analytical results.
Moreover, answering too many queries, even random ones,
about a database can inevitably lead to privacy breaches.
The challenge is to formally define privacy to effectively
understand and manage this trade-off.

Thus, DP is formally characterized by an accumulative
risk model, rather than a binary one, meaning that every
time a person’s data are accessed or processed, the risk of
exposing that individual increases slightly. This is where the
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TABLE 4. Summary and Comparison of recent significant MPC approaches.

Ref Privacy Security Scalability Maturity Description Pros Cons
[78] ✓ ✓ × Concept A cloud computing scheme for

privacy-preserving deep learning that
employs double decryption and fully
homomorphic encryption.

There is no need for data owners
to be involved in decrypting the
learning outcomes.

The computational and communi-
cation costs for the owner(s) are
significant.

[79] ✓ ✓ ✓ Prototype An approach for multi-party deep
learning in cloud environments.

Protects both data and parameter
privacy and is compatible with
any deep neural network.

It is based on the assumption that
gradients are provided by partici-
pants.

[80] ✓ ✓ × Prototype Leverages MPC and gated recurrent
units to facilitate relation classifica-
tion.

Each cloud server takes part in the
classification of relational data.

Tend to be inefficient because
of their substantial computational
demands. In addition, intricate
service infrastructures may put
users’ privacy at risk.

[81] ✓ ✓ ✓ Concept Utilizes a group of workers to divide
the operation of calculating a poly-
nomial function over large private
matrices.

Ensuring the privacy of the data
remains intact.

This scheme relies on random-
ness, which cannot be fully ob-
tained or secured without the in-
volvement of trusted entities.

[82] ✓ ✓ × Concept Presents a new sharing method along
with several operations, such as ma-
trix multiplication, addition, and ma-
trix transposition.

Delivers efficiency optimized for
the order of fundamental opera-
tions like addition and multiplica-
tion.

Data accuracy and privacy are
emphasized, but the computation
complexity between workers is
not minimized.

[83] ✓ ✓ × Concept In this scheme, matrices are divided
into blocks of varying sizes based
on an entangled polynomial sharing
protocol.

Allows fundamental operations
such as addition, multiplication,
and transposition to be executed
privately.

The recovery threshold for poly-
nomial codes does not increase
the number of workers participat-
ing.

[84] ✓ ✓ × Prototype A neural network training architec-
ture for multiple parties that achieves
linear complexity of communication
and end-to-end privacy ensured by
information theory.

Improves communication com-
plexity from quadratic to linear
and supports adversary tolerance
and dropout resilience.

High communication complex-
ity and iterative coded comput-
ing mechanisms are resource-
intensive.

[85] ✓ ✓ × Concept Investigates multi-user linearly-
separable function computation with
a relationship between covering
codes and syndrome decoding.

Achieves a lower computation
cost while preserving function ac-
curacy.

Suffers from communication
overhead in large-scale distributed
systems.

[86] ✓ ✓ × Concept Studies multi-user linearly-separable
distributed computation and explores
the relationship between computation
cost and matrix factorization over fi-
nite fields.

Reduces computation and com-
munication costs through sparse
matrix factorization and coding-
theoretic properties.

Limited scalability due to the
complexity of sparse matrix op-
erations.

[87] ✓ ✓ ✓ Prototype A secure data-sharing approach by
leveraging MPC and blockchain.

Provides a public verifiability
mechanism and filters out non-
trustworthy devices via Bloom fil-
ters.

Relies on a trusted third-party ser-
vice.

[88] ✓ ✓ × Prototype A cloud-based classification
framework using multi-party random
masking and polynomial aggregation.

Balancing privacy preservation
and accuracy.

Still involves computational over-
head in prior probability calcula-
tions.

[89] ✓ ✓ × Prototype Develops an authentication mecha-
nism for smart cities through MPC.

Eliminates the need for a trusted
certification authority and ensures
unlinkability between anonymous
accounts.

Computationally expensive for
large-scale implementations
due to the complexity of the
pseudonymization scheme.

[90] ✓ ✓ × Concept Applies Körner’s characteristic graph
approach to multi-server multi-task
distributed computation, showing
gains in linearly separable functions
and cyclic dataset placement.

Achieves considerable reductions
in communication cost for multi-
linear functions and cyclic dataset
placements.

The gains are specific to certain
types of functions.

parameters ϵ (epsilon) and δ (delta) are used to quantify
the privacy loss or individual-level risk arising from the use
of their data. Regardless of the additional information an
adversary may possess, privacy is always bounded by these
parameters [94].

Let ϵ represent a real number in the positive range and
consider a randomized algorithm A that takes a dataset as
input, representing the actions of the trusted party managing
the data. The image of A, denoted by im(A), refers to
the possible outcomes of this algorithm. The algorithm is
said to provide (ϵ, δ)-differential privacy if for any two

14 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3560034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



datasets D1 and D2 there is a difference of only one element
(representing one person’s data), and for every subset S of
im(A) [94], [95]:

Pr[A(D1) ∈ S] ≤ eϵ Pr[A(D2) ∈ S] + δ (1)

When δ = 0, this is known as pure differential privacy, and
the algorithm meets ϵ-differential privacy.

The concept of composability in DP allows the inte-
gration of multiple privacy-preserving mechanisms while
maintaining the privacy guarantees of the overall system.
In sequential composition, when a mechanism is queried
multiple times, the cumulative privacy loss is the sum of the
privacy parameters of individual mechanisms. For instance,
if an ϵ-differential privacy mechanism is queried k times, the
system ensures ϵk-differential privacy. By contrast, parallel
composition applies to mechanisms working on distinct sub-
sets of data, where the overall privacy loss is determined by
the mechanism with the highest privacy cost [96], [99]. Here,
a crucial property is robustness to post-processing, which
ensures that once a mechanism satisfies a privacy guarantee,
any further manipulation of its output, whether random
or deterministic, does not reduce the privacy level. This
maintains privacy guarantees throughout the data lifecycle
even after subsequent transformations or analyses [100].

DP can be extended to protect groups of records through
the concept of group privacy, which safeguards neighboring
databases that vary over one record. As the number of differ-
ing records increases, the privacy loss increases. Specifically,
if c records differ between the two datasets, then the privacy
loss is bounded by exp(ϵc) rather than exp(ϵ). By adjusting
ϵ to ϵ/c in equation 1, the group as a whole receives ϵ-
differential privacy protection, whereas each item within the
group is protected by ϵ/c-differential privacy [101]. Because
DP is probabilistic, it inherently relies on randomization.
Mechanisms such as Laplace and exponential methods use
controlled noise or sampling from problem-specific distribu-
tions to achieve privacy. Sensitivity is another key concept,
which measures how much a function’s output changes upon
modification of a single dataset entry. For example, let f
represent a mapping function linking datasets to real numbers
and let ∆f denote the sensitivity of f . Sensitivity is defined
as [96]:

∆f = max ∥f(D1)− f(D2)∥1 (2)

Here, the maximum is computed across all the dataset
pairs D1 and D2 which are distinct by a single element, and
∥ · ∥1 represents the L1-norm. In this context, if f computes
a query on a medical database, for example, the sensitivity
would be one, as changing any one data entry would alter the
result by at most one. Sensitivity can be generalized to other
metrics and is essential for designing differentially private
algorithms, including those that use noise from Laplace or
Gaussian distributions.

Achieving scalability in DP remains an issue, particu-
larly when dealing with large-scale distributed data sys-

tems. The primary difficulty arises from the computational
demands associated with generating private statistics for
high-dimensional datasets. As the number of dimensions
increases, the complexity of ensuring privacy increases expo-
nentially, thereby requiring substantial computational power.
To address this, several techniques have been developed. One
such method is moment accounting [97], which provides
a more precise estimation of cumulative privacy loss over
multiple queries. Another approach is privacy amplifica-
tion via subsampling [98], which leverages the fact that
analyzing only a randomly selected subset of data can
effectively reduce the overall privacy cost. However, these
techniques require careful implementation and fine-tuning
because improper configurations may lead to either excessive
noise or insufficient privacy protection.

In recent years, significant research has been conducted on
DP approaches for preserving the privacy of DCC applica-
tions. In [102], researchers developed an edge-driven frame-
work for sensor cloud systems, emphasizing the differential
processing of data on edge servers to protect privacy while
reducing storage and communication costs. Their approach
involves the DP of raw data from sensor networks and
ensures that the core data remain protected, even if the cloud
is compromised. In [103], a DP sustainable fog-oriented
query model for computing data centers was proposed. Their
model effectively balances privacy preservation and data
utility. Their model demonstrated robust resistance to various
privacy vulnerabilities by injecting Laplacian noise. In [104],
the authors proposed a classification approach based on DP
to manage sensitive information during data mining. Their
experiments revealed enhanced iteration efficiency and high-
lighted the algorithm’s reliability and timely response while
maintaining strong privacy safeguards. In [105], the authors
explored an Internet-of-Edge framework that combines DP
and blockchain to enhance privacy and energy efficiency in
IoT systems, which was validated through experimental eval-
uations of Ethereum. Their energy-efficient design improves
privacy protection without compromising performance. The
authors of [106] proposed a DP fog-computing-oriented
approach for governmental data publishing that incorpo-
rates a MaxDiff histogram algorithm to protect citizens’
privacy while improving data utility. Their approach effec-
tively mitigated privacy vulnerabilities by adding Laplace
noise to the dataset and optimizing the data bins based on
frequency differences. In [107], the researchers presented
a novel local DP algorithm designed to address privacy
issues in deep-learning IoT applications by incorporating a
randomization layer before data transmission. The authors
of [108] explored the protection of medical information
in a digital era. They introduced a model that integrates
k-anonymity with DP to enhance security. In [109], the
authors examined how incorporating second-tier data into
the loss function can enhance DP in convex optimization.
They showed that their proposed method achieves quadratic
convergence and effectively minimizes excess loss for highly
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convex loss functions. In [110], it was observed that the bias-
variance trade-off becomes more significant in differentially
private learning scenarios when users are allowed to submit
multiple examples, owing to the limitations imposed by
the contribution-bounding datasets. In [111], the authors
investigated how noisy gradient descent algorithms affect DP
during training. They demonstrated that the Rényi divergence
between models trained on similar datasets has a tight bound,
and for smooth, strongly convex loss functions, privacy loss
decreases rapidly. In [112], the authors introduced a data
aggregation method for edge computing that combines DP
with secret sharing. They employed Gaussian noise and
a two-layer aggregation approach to reduce the probabil-
ity of privacy breaches. In [113], the authors tackled the
challenge of privacy in edge computing by developing a
location data collection method based on local DP. Their
approach uses Voronoi diagrams to divide the road network
into regions, then applies randomized perturbation to ob-
scure users’ exact locations. This method strikes a balance
between privacy protection and data utility. In [114], the
researchers focused on privacy-aware video streaming in
mobile edge computing. Their system dynamically adjusts
privacy levels based on real-time conditions, ensuring that
users’ location and usage patterns remain private. Their
online learning-based algorithm optimized video frame rate,
resolution, and offloading decisions, reducing latency and
energy consumption without compromising performance. In
[115], researchers proposed a privacy-preserving framework
that effectively connects individuals and their virtual twins
and integrates DP, multitask learning, and blockchain to
address the influence of diverse environments. They also
introduced a validation mechanism based on model quality
to ensure precise and legitimate updates to models in a
virtual setting. In [116], the authors created Time Intervals
via DP and Frequency Vectors to ensure the privacy of
the time interval data. They also introduced an algorithm
for optimizing maximum likelihood estimation using these
vectors and space partitioning to improve privacy. Drawing
from our review of the selected DP studies, Table 5 presents
a comparison of their strengths and limitations based on the
criteria of our structured evaluation framework, including
privacy, security, scalability, and maturity.

C. TRUSTED EXECUTION ENVIRONMENT (TEE)
A TEE refers to a secure zone inside a processor that protects
both the data and the program being used, especially during
tasks such as model training and computing. The primary
objective of TEEs is to strengthen data confidentiality and
integrity by keeping everything hidden from external access.
Typically, data are encrypted when sent and decrypted within
the TEE. Software and hardware solutions work together to
ensure data safety [117]. Applications that operate inside
a TEE are called Trusted Applications (TAs) and operate
in a much more secure environment than those operating
in regular operating systems. This additional security layer

guarantees that the Trusted Operating System (TOS) and
TAs are significantly more reliable than the general-purpose
software environments [118].

The concept of a TEE was first formally established by the
Open Mobile Terminal Platform (OMTP) in its “Advanced
Trusted Environment (OMTP TR1)” standard [119]. Azure
Confidential Computing, introduced in 2020, is a well-known
example of real-world TEE. This enables customers to move
existing workloads to Azure without the need to change
any code or experience performance issues. This service
offers two types of workloads: enclave-based and lift-and-
shift workloads. The enclave-based option uses Intel Soft-
ware Guard Extensions to create a protected memory area,
known as an Encrypted Protected Cache, within a virtual
machine. The lift-and-shift option allows organizations to
quickly transition their existing workloads to the cloud with
minimal disruption while retaining flexibility for future cloud
optimization. New technologies such as modern Graphics
Processing Units (GPUs) also support the TEE features. For
example, NVIDIA introduced products that support secure
AI applications using GPU TEE solutions.

TEEs rely on hardware isolation, in which only TAs
can access the full processor, memory, and peripherals of
the device. Regular applications such as those installed
by users cannot interact with these resources. To prevent
tampering, a “hardware root of trust” is embedded in the
chip during the manufacturing stage. This involves private
keys stored in one-time programmable memory to ensure
that these keys cannot be changed, even if the device is reset.
Public versions of these keys are stored in a manufacturer’s
database, and only software signed with a trusted party key
can access critical system features. When a TA is loaded
into memory, it undergoes a process called attestation. This
guarantees that the TA has not been tampered with. A
server provides a cryptographic “nonce” (a random number
used only once) to verify the integrity of the application.
Importantly, faking this process with simulated hardware is
impossible without access to the private keys embedded in
the hardware of the device, which is unique to each piece
of hardware [120], [121]. However, this strict attestation
process incurs additional operational costs. Many TEEs rely
on remote attestation services that require trusted third-party
infrastructure to verify enclave integrity. This dependency
not only increases the cost of deployment but also raises
concerns regarding vendor lock-in, as organizations must
often rely on a single hardware manufacturer’s ecosystem
to maintain TEE security.

Trust in a TEE includes all elements involved, from the
code to the underlying TOS and supporting infrastructure.
Every step in setting up and running a TEE follows a strict
process beginning with the read-only memory (ROM) boot
stage. Only the verified code is allowed to run, and TAs can
only access their data. No one TA can access the assets of
another TA to ensure strong isolation between them. Inside a
TEE, TAs need only trust the TOS and not worry about the
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TABLE 5. Summary and Comparison of recent significant DP approaches.

Ref Privacy Security Scalability Maturity Description Pros Cons
[102] ✓ × × Prototype A data collection framework based on

edge computing, where raw data is
processed with DP on edge servers.

Enhances privacy protection by
ensuring original data is not re-
trievable even if leaked; reduces
communication and storage costs.

Dependence on edge servers may
create scalability challenges and
introduce new points of failure.

[103] ✓ ✓ × Prototype A DP-based sustainable fog comput-
ing query model for data centers that
quantifies privacy-preserving quality
through mathematical proof.

Effectively resists various privacy
attacks while achieving high data
utility; flexible to device hetero-
geneity.

May require computational re-
sources for real-time queries, im-
pacting performance under heavy
load.

[104] ✓ ✓ ✓ Experimental A local classification algorithm for
data centers that adds DP mecha-
nisms to handle sensitive information
during data mining.

Higher iteration efficiency and
better security with reliable pri-
vacy protection characteristics.

Performance may vary signifi-
cantly based on data center het-
erogeneity and data distribution.

[105] ✓ ✓ × Prototype A blockchain-enabled Internet of
Edge framework integrating DP for a
scalable, privacy-preserving system.

Improves privacy protections
without compromising
performance; energy-efficient
design.

Complexity of integrating multi-
ple technologies can lead to im-
plementation challenges and po-
tential delays.

[106] ✓ ✓ × Prototype A fog-computing-enabled DP model
for governmental data publishing to
protect citizens’ privacy against po-
tential vulnerabilities.

Effectively prevents privacy dis-
closure even with strong back-
ground knowledge from adver-
saries.

Implementation may be limited
by computational resources and
may not scale well under high
query volumes.

[107] ✓ × × Prototype A local DP algorithm that adds a ran-
domization layer in a convolutional
neural network architecture for pre-
serving privacy in deep learning.

Maintains high accuracy with low
privacy budgets while enhancing
practical utility for IoT-driven en-
vironments.

Requires significant
computational resources and
may be challenging to implement
in highly constrained IoT devices.

[108] ✓ ✓ ✓ Concept An algorithmic model incorporating
both DP and k-anonymity ensured
minimal risk of privacy breaches.

Can effectively reduce privacy
leakage and prevent information
security breaches.

Lacks proper safeguards for node
security and remains in the simu-
lation phase, with no operational
testing carried out yet.

[109] ✓ × × Concept Introduces an enhanced version of
Nesterov and Polyak’s regularized
cubic Newton method and presents
a second-order DP algorithm for un-
constrained logistic regression.

Illustrates that second-order tech-
niques are applicable in the
DP setting both for strengthen-
ing worst-case convergence assur-
ances and developing faster prac-
tical algorithms.

The expense of constructing and
inverting the Hessian becomes
unmanageable when the diameter
is very large.

[110] ✓ × ✓ Concept Investigates the clipping bias-
variance trade-off, concluding that
it is a fundamental aspect of DP
learning.

Users can adjust contribution lim-
its according to the data’s statis-
tical properties utilizing boundary
conditions.

Increased noise leads to model
accuracy and efficiency drops.

[111] ✓ × × Concept Enables noise gradient descent algo-
rithms to be examined by considering
the dynamics of privacy loss.

The information leakage rate dur-
ing training is analyzed, revealing
significantly tighter bounds com-
pared to composition-based meth-
ods.

The problem lies in extending
this analysis to cover non-convex,
non-smooth loss functions, as
well as stochastic gradient up-
dates.

[112] ✓ ✓ ✓ Prototype Employs a sensor fog-cloud archi-
tecture along with DP and additive
homomorphic encryption.

Requiring only a single round of
data exchange between the smart
meter, its connected Fog node,
and the Cloud.

Adding more noise results in a
decline in both model accuracy
and efficiency.

[113] ✓ × ✓ Prototype Proposes a local differential privacy-
based mechanism for data collection
in edge computing, using Voronoi di-
agrams and randomized perturbation.

Reduces latency and improves
data processing efficiency in IoT
environments.

Relies on the assumption that
edge nodes behave honestly,
which may pose risks in
adversarial settings.

[114] ✓ ✓ × Prototype Introduces a personalized and
privacy-aware video stream
offloading scheme in mobile edge
computing.

Dynamically adjusts privacy lev-
els based on real-time constraints,
balancing accuracy, energy effi-
ciency, and security.

Increased computational
complexity due to the
optimization process may lead
to higher latency in resource-
constrained devices.

[115] ✓ ✓ × Prototype A connectivity approach for human-
to-virtual twins that incorporates DP,
multi-task learning, and blockchain
for secure, privacy-preserving, and
efficient communication.

Accelerates learning while main-
taining accuracy and privacy, and
minimizing communication costs.
Ensures authorized model evolu-
tion.

May face challenges with scala-
bility when dealing with larger,
more complex systems due to het-
erogeneous environments.

[116] ✓ × ✓ Prototype Enhances the release of time intervals
under DP using a partitioning tech-
nique for frequency vectors.

Balance noise and structural er-
rors.

Sensitive queries to a differen-
tially private database may pro-
duce incorrect conclusions.
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presence of other TAs. For example, if one TA creates a file
named “Secrets”, another TA can create a file with the same
name. However, these are treated as completely separate.
The files did not interfere with each other. Additionally, no
application in a regular operating system can access the files
created by TAs. An adversary cannot move a TA’s assets
between devices because all the TEE storage is tied to the
original device [122].

Many cloud-native workloads rely on seamless data shar-
ing and interoperability between virtualized environments,
which TEEs inherently restrict. As a result, TEEs are
often unsuitable for highly parallelized tasks that require
frequent communication between instances. Furthermore,
performance overhead associated with switching between
secure and non-secure execution modes can degrade system
responsiveness, particularly in high-throughput applications.
Although TEEs can be tested in laboratories, this level of
testing is rare because of its high cost. Instead, most users
rely on attestation services to prove the trustworthiness of
TEE. If any signature check failures occur, the TEE does
not function. Therefore, users must trust that the device
manufacturer has properly designed the TEE. The funda-
mental hardware isolation of TEEs creates scalability bottle-
necks, as individual instances must independently manage
security states, increasing overhead when deployed across
multiple nodes. Additionally, as TEEs evolve, backward
compatibility becomes a concern. Organizations investing in
current-generation TEEs must ensure that future hardware
releases maintain compatibility with existing applications,
which is not always guaranteed. This poses a risk to long-
term adoption, particularly in enterprise environments with
extensive legacy infrastructure.

In recent years, governments, companies, and CSPs have
increasingly used TEEs to manage sensitive information
securely. For instance, the Memory Safe Trusted Execution
Environment is an open-source secure computing platform
developed by Baidu and Intel in 2018. This platform is de-
signed with privacy at its core, using Rust for memory safety
and Intel SGX for secure execution. It comes with built-in
tools for machine learning and cloud computing, simplify-
ing complex tasks and helping developers efficiently create
new SGX applications using dedicated development toolkits.
Much other outstanding research has also been conducted to
secure DCC with the help of TEEs. To safeguard against
leakage of sensitive data, in [123], the authors introduced a
detailed access-control method utilizing attribute-based en-
cryption in conjunction with a TEE under ciphertext policies.
In [124], a trusted IoT architecture was presented for IoT
systems that incorporate TEEs and various security mea-
sures. They used hierarchical Colored Petri Nets for model-
based testing to examine essential security aspects, such
as communication and encryption. The study also involved
creating a formal security model and employing model
checking to ensure alignment with expected functionality.
In [125], the authors suggested a novel trust zone structure

that provides the essential components of the TEE to enhance
the security of edge devices. In [126], the authors presented
a privacy protection strategy that emphasizes aggregation
based on individual customers. The TEE handles critical
operations including critical distribution, data decryption,
load monitoring, billing, and additional related services.
Instead of using a central aggregator, this approach utilizes
aggregation functions customized for specific customers over
a designated timeframe. In [127], the authors introduced a se-
cure access method for mobile devices using TEE. They de-
signed a multi-environment framework known as open TEE
to create a trustworthy environment that is separate from a
standard rich environment. Their approach includes mecha-
nisms such as file slicing and authorization checks to protect
the confidentiality of private files. In [128], the researchers
described a TEE architecture for neural processing units
aimed at improving security and addressing vulnerabilities.
It uses tile-based translation and verification to ensure strong
isolation and reduce the memory check overhead. To address
the security challenges in IoT, [129] developed an IoT data-
sharing framework that combines TEEs with blockchain
technology. This architecture incorporates both the on- and
off-chain strategies. The authors of [130] addressed problems
such as imprecise granularity, insufficient audit capabili-
ties, and inadequate process management in IoT access
control. They developed a solution using blockchain and
currency-based access control models that incorporated TEE
technology to enhance privacy protection in IoT systems.
Likewise, [131] introduced a lightweight TEE for in-storage
computing that addresses security concerns in modern solid-
state drives by isolating programs from flash management
functions. In [132], the authors proposed a novel framework
that leverages the TEE of an edge device to limit the
vulnerability surface of Deep Neural Networks. The more
sensitive layers are executed inside the TEE by partitioning
the model layers, whereas the less critical layers are run in
the untrusted operating system. The authors of [133] focused
on privacy concerns in IoT devices that collect sensitive
personal and behavioral data. They proposed a generic data-
aggregation scheme utilizing TEEs to guarantee data privacy
in cloud environments. Their method accommodates diverse
data types and executes sophisticated computations such as
machine learning and deep learning algorithms with strong
privacy guarantees. In [134], the authors proposed a TEE-
based architecture to enhance the security and privacy of
cloud-hosted cyber-physical systems. The paper presents an
implementation setup validated through a testbed system.
The authors of [135] introduced a blockchain-based IoT data-
sharing framework that integrates ciphertext-policy attribute-
based encryption with TEE. Their approach enables efficient
policy updates and attribute revocation, reducing the compu-
tational overhead associated with traditional access control
mechanisms. In [136], the authors proposed a distributed
TEE architecture designed for secure interactions between
multiple trusted devices. Their framework enables seamless
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TABLE 6. Summary and Comparison of recent significant TEE approaches.

Ref Privacy Security Scalability Maturity Description Pros Cons
[123] ✓ ✓ × Experimental Ciphertext-policy attribute-based en-

cryption has been applied to enhance
security by enabling fine-grained ac-
cess control and supporting critical
operations in a TEE environment.

Minimizes vulnerabilities in sen-
sitive data, reducing risks associ-
ated with a single authority.

Time overhead; lack of efficiency
in access control.

[124] ✓ ✓ × Prototype Security features related to both ac-
ceptable and restricted behaviors are
represented using hierarchical Col-
ored Petri Nets, facilitating model-
based testing.

Demonstrates the ways in which
the TEE strengthens security and
privacy.

Lacks performance and scalabil-
ity.

[125] ✓ ✓ × Prototype A trust zone-based architecture that
provides the TEE’s essential compo-
nents to enhance edge devices’ secu-
rity.

As a result of this trusted zone,
devices can communicate in a
completely secure environment.

Requires external hardware re-
sources.

[126] ✓ ✓ × Experimental A privacy-preserving method for
smart grid based on TEE.

Ensures data accuracy and pro-
tects against false data injection.

Limited scalability; updating me-
ters affects aggregation opera-
tions, especially with selected
customer aggregators.

[127] ✓ ✓ × Prototype An access method based on a TEE
designed to protect the integrity of
private files.

Satisfies requirements for both
privacy and security.

Limited stability and resources;
relies heavily on trust; requires
enhanced client efficiency for ac-
cessing multiple files simultane-
ously.

[128] ✓ ✓ × Prototype A TEE architecture for neural pro-
cessing units is designed to enhance
security and address vulnerabilities
through the use of tile-based trans-
lation and verification methods.

Runtime costs for security checks
are reduced effectively.

Lack of transparency; challenges
in handling resource-intensive
tasks.

[129] ✓ ✓ × Prototype A novel TEE-blockchain-powered
data sharing framework.

Enhanced performance compared
to centralized methods.

Lacks scalability and interoper-
ability.

[130] ✓ ✓ × Experimental A TEE-supported access control
model based on encrypted currency
and blockchain.

Precise control, strong oversight,
and access process management.

Potential overhead due to
blockchain integration; May
be complex to implement in
large-scale IoT networks.

[131] ✓ ✓ × Prototype A lightweight TEE for in-storage
computing that addresses the security
concerns in modern solid-state.

Minimal hardware cost; maintains
performance benefits of in-storage
computing.

Requires additional hardware re-
sources for trust zone extensions.

[132] ✓ ✓ × Experimental A novel framework leveraging an
edge device’s TEE to limit the vulner-
ability surface of Deep Neural Net-
works.

Provides model privacy with only
3-10% performance overhead.

Limited by the memory of the
edge device’s TEE, requiring
careful partitioning of model lay-
ers.

[133] ✓ ✓ × Experimental A data aggregation framework to pro-
tect the privacy of heterogeneous IoT
data.

Supports heterogeneous data pro-
cessing and complex computa-
tions, ensuring privacy in cloud-
based aggregation.

Data must be extracted from each
party’s site and consolidated at
the data center where the TEE
is located, a scenario frequently
encountered in cloud computing.

[134] ✓ ✓ × Prototype A TEE-based architecture for secur-
ing cloud-hosted cyber-physical sys-
tems.

Reduces deployment costs and
enhances system resilience.

Performance overhead due to
TEE integration; limited scalabil-
ity in large-scale deployments.

[135] ✓ ✓ × Prototype A TEE blockchain-based IoT data-
sharing scheme.

Efficient policy updates and revo-
cation processes.

Complexity in managing crypto-
graphic operations; limited scala-
bility and widespread adoption.

[136] ✓ ✓ × Prototype A distributed TEE architecture en-
abling secure interactions across mul-
tiple trusted devices.

Provides seamless digital trans-
actions with lightweight secure
channels.

Complexity in managing multiple
TEEs; requires extensive integrity
verification.

communication between heterogeneous TEEs, allowing in-
terconnected wearable devices, such as smartwatches and
smartphones, to conduct secure transactions collaboratively.
The study also includes a proof-of-concept implementation
based on the European Digital Identity wallet, demonstrating
its feasibility for electronic identification applications. Table

6 presents a detailed comparison of relevant studies incorpo-
rating TEE, based on our structured evaluation framework.

D. FEDERATED LEARNING (FL)
FL was developed by Google in 2016 to address rising con-
cerns regarding data abuse and communication costs [137],
[138]. In today’s world, with growing concerns over personal

VOLUME , 19

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3560034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE OPEN JOURNALS

information usage, FL has emerged as a critical tool for
safeguarding data privacy. By keeping raw data stored locally
on participant devices, FL enables collaborative learning
and computation without the need to centralize sensitive
information.

Integrating FL into a DCC involves utilizing edge or cloud
servers that periodically collect the trained parameters to
refine the global model. This global model is subsequently
returned to the edge devices for additional local training to
ensure that the sensitive data are safe and decentralized. The
FL training process consists of five essential stages. First,
the FL server selects a model tailored to the local data
available from clients. Next, a group of clients is selected
randomly or through selection algorithms that optimize client
selection based on the data quality or device performance
criteria. The server then broadcasts the updated or original
global model to the chosen clients who download the model
parameters for local training. Upon finishing local training,
every client transmits its updates to the server. Finally, the
server aggregates these updates to create a new global model
without accessing client data. This iterative cycle continued
until the model fulfilled the accuracy criteria.

Suppose N clients each hold their respective training
datasets D1, D2, ..., DN . The aforementioned iterative pro-
cess runs to refine the global model Mglob. The performance
metric, Psum, derived from training the aggregated model
Msum, serves as the baseline. The evaluation metric for the
FL-trained model Mglob is represented as Pglob. Accuracy
is typically used as the core evaluation metric, where the
difference between Psum and Pglob is small, denoted by
|Psum −Pglob| < δ, with δ being a non-negative real number.
A smaller δ signifies that the FL model operates closer to the
centralized benchmark. The objective function for FL can be
mathematically represented as:

min
w

F (w) =

N∑
j=1

qjFj(w), (3)

where:

Fj(w) =
1

mj

mj∑
i=1

L(xi, yi;w), (4)

with qj ≥ 0 and
∑

j qj = 1. The term w represents a single
global model and qj specifies the relative contribution of
each client, with common choices for qj being qj = 1

m or
qj =

mj

m , where mj is the sample size for the j-th client and
m is the total combined sample size across all clients. Fj(w)
expresses the local objective function for the j-th client,
where x is the data feature, y is the corresponding label,
and L is the loss function. The main purpose of FL is to
optimize this objective function while reaching a consensus
on model weights among all participating clients [139]. By
achieving this goal, FL minimizes the bandwidth and time
needed for inference and training. Since local data is stored
on user devices and is rarely shared with remote servers,
the updated model can make predictions directly on users’
devices. Thus, this design enhances privacy and security and

promotes efficient collaborative learning that consumes less
power.

Scheduling optimization techniques in FL are generally
categorized as either synchronous or asynchronous [140],
[141]. Figure 6 illustrates the synchronous and asynchronous
workflow of FL. In synchronous communication, a selected
group of clients is assigned to train local models during
each training round. However, inconsistencies in device
performance or network stability can lead to some clients
failing to respond within the expected timeframe. When
this happens, the server must wait until a sufficient number
of responses are received. If this threshold is not met, the
server discards the round and proceeds to the next iteration.
On the other hand, asynchronous communication operates
differently by allowing clients and the server to interact
without waiting for all responses to arrive at once. This is
particularly beneficial when distributed across multiple edge
devices, as it enhances convergence speed. In asynchronous
optimization, FL participants can transmit gradient updates
to the central server immediately after completing each local
update, a feature not feasible in synchronous FL. It is less
affected by variations in client resources, making it a more
reliable option in heterogeneous environments [142].

FL can be structured into three primary configurations:
Cloud-Enabled, Edge-Enabled, and Hierarchical (Client-
Edge-Cloud-Enabled). The choice of configuration depends
on the specific application and infrastructure available, as
well as the performance requirements. Figure 7 demonstrates
these three configurations.

In cloud-enabled FL, the global learning process relies
on geographically dispersed edge devices that communicate
with a central cloud server [143]. Clients, such as IoT
devices, collaborate by training local models on their data
and sending updates to the cloud for aggregation. The cloud
server consolidates these updates into a global model, which
is then redistributed to the clients for further local training.
Although cloud-enabled FL can scale across millions of
clients and cover large geographic areas, it faces challenges
related to communication costs and network congestion.
Large model updates transmitted between clients and the
cloud can slow the learning process. Moreover, frequent
communication between devices and the cloud requires sub-
stantial bandwidth and may result in performance degrada-
tion under heavy traffic conditions.

In edge-enabled FL, learning is localized because nearby
devices interact with a local edge server to compute the
global model. Every device performs local training and
sends the results to the edge server, aggregating the updates
and refining the global model before redistributing them
to the device. This configuration reduces communication
latency owing to the proximity between the devices and
the edge server, making it ideal for real-time applications,
such as autonomous driving or smart cities [144]. However,
edge-enabled FL is restricted by the limited computational
resources of edge servers, which are less powerful than cloud
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FIGURE 6. Synchronous and asynchronous workflow of FL.

servers. This limits the scale of computing tasks that can be
handled and the volume of devices that can connect to an
edge server.

Hierarchical FL combines the strengths of both cloud-
and edge-enabled configurations. Clients first communicate
with their local edge servers, which perform a preliminary
aggregation of the local model updates before sending them
to the cloud. The cloud server aggregates these high-level
updates to produce the global model. This setup minimizes
direct communication between clients and the cloud, reduces
network congestion, and improves efficiency. Hierarchical
FL also helps manage geographical distribution effectively,
as nearby clients can optimize local models at the edge
level before contributing to the global model [145]. This
structure is particularly beneficial for reducing cross-region
communication and ensuring region-specific accuracy during
the learning process. By involving both edge and cloud
resources, hierarchical FL balances scalability, efficiency,
and privacy [146], [147].

A significant feature of FL is its robust privacy guarantee,
as private data never leaves local devices. These guarantees
can be reinforced using three dominant techniques: Data
Encryption, Data Perturbation, and Anonymization [10],
[17]. Data encryption is crucial for securing communicated

parameter updates. For instance, Homomorphic Encryption
is a widely used data encryption technique that allows
computations to be processed with encrypted data, meaning
that user data remain confidential even while being pro-
cessed. This technique ensures that sensitive information
is never exposed during training because only encrypted
values are exchanged. A case study of this technique is
Federated AI Technology Enabler an open-source project
launched by WeBank in 2019 to support the FL ecosys-
tem. It provides a distributed secure computing platform
that integrates homomorphic encryption and hash functions
to facilitate collaboration between multiple parties while
maintaining compliance with privacy regulations [148]. In
addition to encryption, FL employs data perturbation tech-
niques to enhance privacy. For example, Additive Masking
involves introducing noise to the gradient updates sent by
clients, obscuring sensitive information, while still allowing
the server to aggregate useful insights. This method protects
client details by ensuring that the server sees only the
aggregated information to minimize the risk of identifying
individual users. Although data perturbation techniques offer
robust privacy protection, they often result in a decline
in data utility. Anonymization has been introduced as a
solution to protect user identities by ensuring that their
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FIGURE 7. Cloud-Enabled, Edge-Enabled, and Hierarchical FL configurations.

contributions cannot be linked to them during model updates.
It removes identifiable information, aggregates user data to
prevent isolation, and may use methods such as randomized
communication or mixed networks to obscure the origin of
the updates. This approach enhances privacy by ensuring
compliance with privacy regulations. However, this can in-
crease computational complexity.

Another key aspect of FL is its robust security, which can
be ensured through three major techniques for identifying
malicious updates: Anomaly Detection, Statistical Infor-
mation, and Blockchain [149], [150]. Anomaly detection
identifies disruptions caused by external threats such as in-
ternal issues and server malfunctions. By analyzing patterns
in incoming updates, anomaly detection can flag unusual
behaviors that deviate from expected norms, thus safeguard-
ing the training process from potential disruptions. More-
over, leveraging statistical information can be an effective
method for mitigating the impact of malicious activities. For
instance, Geometric and Coordinate Medians can aggregate
updates to minimize the influence of outliers and malicious
contributions. Finally, blockchain technology can further
promote authentic contributions and enable reliable tracking
of updates. A transparent ledger can verify each update
to ensure that only legitimate contributions are considered
in the model-training process. By utilizing decentralized
consensus protocols, blockchain addresses issues related to
single points of failure and possible malicious activities in
the FL.

Recently, researchers have developed numerous exciting
privacy-preserving and secure FL frameworks for DCC.
In [151], an FL framework was introduced to enhance
Block Hunter detection with minimal bandwidth usage in
blockchain-enabled Industrial IoT (IIoT). This system uses

a cluster-based structure for anomaly detection by integrat-
ing several learning models in a decentralized setting. In
[152], the authors addressed privacy vulnerabilities in next-
generation IoT environments using a privacy-preserving FL
model. Their approach combines synchronous and asyn-
chronous FL modes, utilizing homomorphic encryption to
safeguard sensitive information. The authors of [153] ex-
plored anonymization techniques to address user-level pri-
vacy vulnerabilities and introduced a Generative Adversar-
ial Network (GAN)-based FL framework incorporating a
multitask discriminator. In [154], a novel FL architecture
was proposed to detect malware in IIoT environments by
focusing on Android applications. The architecture employs
a GAN to enhance the defense mechanisms and ensure
robust collaboration. In [155], the authors presented a pri-
vately enhanced FL model to secure Industrial Artificial
Intelligence (IAI) applications. Their non-interactive model
prevents data leakage, even in the event of collusion between
entities, with experimental results showing its superiority
in both accuracy and efficiency over traditional approaches.
In [156], an FL anomaly detection system for smart electric
grids was presented, combining Long Short-Term Memory
(LSTM) networks and autoencoders with Median Absolute
Deviation and Mean Standard Deviation techniques to im-
prove detection accuracy. The use of FL guarantees the
privacy of the critical energy data. In [157], an FL and
blockchain-based approach was proposed to preserve the pri-
vacy of electronic health records. In [158], a federated deep
reinforcement-learning framework was developed to address
privacy issues related to task offloading in distributed cloud
environments. The framework manages context-aware data at
different system levels—CloudAI, EdgeAI, and DeviceAI—
to ensure privacy during the task execution process. In [159],

22 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3560034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



the Light-SecAgg method was introduced to enhance the
performance of secure FL aggregation by using mask coding
and decoding. This method minimizes the dropout effects
and improves scalability by combining model training with
on-device encoding. Furthermore, the modular architecture
and parallel processing of the system enhance the efficiency
of chunked mask management. In [160], the authors de-
signed a secure FL framework with optimized algorithms
that could effectively withstand Byzantine failures in DCC
systems. Their work emphasizes achieving the best possible
statistical performance, making it a reliable solution for real-
world applications. The authors in [161] developed an FL
approach that guarantees privacy protection and verification.
To maintain privacy while minimizing both computational
and communication costs, their method incorporates Chinese
remainder theorems along with homomorphic encryption.
The authors of [162] discussed the integration of FL into IoT-
based healthcare systems, utilizing data encryption methods,
such as homomorphic encryption, to safeguard local data.
In [163], researchers focused on blockchain-based FL and
introduced a reputation-based approach to encourage data
owners to contribute high-quality data. They implemented
a reward distribution system as an incentive mechanism for
the FL process. The authors of [164] introduced a privacy-
preserving FL approach for DCC to enhance security and
efficiency. In their approach, fog nodes were used to collect
data, addressing challenges such as uneven data distribution
and differences in computational power among users. They
utilized homomorphic encryption combined with blinding
to protect the model’s security. In [168], the authors intro-
duced a non-interactive, privacy-preserving FL framework
for DCC that leverages a dual-server architecture. This
approach enhances both system security and efficiency and
shows resilience to client dropouts. The model maintains a
communication burden on client-server interactions that is
limited to no more than twice that required for plaintext
processing. Finally, in [169], an FL-based anomaly detection
system was introduced to secure the IoT networks. This
approach preserves user data privacy by training Gated
Recurrent Units models on-device and sharing only learned
weights with a central server. Table 7 compares recent major
FL studies according to our structured evaluation framework.

VII. DISCUSSION
Building on the comprehensive review presented in Section
VI, this section addresses the AQs raised in the Introduction.
It first provides a detailed summary of the performance
and efficiency of the four generations of PPC (i.e., MPC,
DP, TEE, and FL) within real-world DCC applications
that emphasize how each generation contributes to ongoing
development. To address AQ2, we discuss the challenges
in implementing FL frameworks in DCC environments and
propose strategies to overcome them. We also assess the
strengths and limitations of new paradigms for enhancing FL
security and privacy, including secure FL based on malicious

updates and privacy-preserving FL techniques involving data
encryption, perturbation, and anonymization. Finally, we
explore how FL can balance security, performance, accuracy,
and efficiency using these methods in the DCC context.

AQ1: What are the key advantages of FL over MPC,
DP, and TEE when addressing privacy and security
challenges in DCC?

FL stands out as a particularly effective solution for
managing large datasets in distributed environments. While
MPC, DP, and TEEs offer unique privacy advantages, they
often face scalability and efficiency challenges in large-scale
DCC contexts. FL’s decentralized architecture enables it to
maintain user privacy while meeting the scalability and per-
formance demands of modern distributed cloud applications.
This makes FL a more adaptable approach to PPC in today’s
data-driven landscape, supported by the following five key
strengths [165], [166], [167]:

1) Decentralized Privacy Model: FL stands out for
its unique distributed design, which minimizes the
potential for unauthorized access by keeping user
data on-device, transmitting solely model updates to
the server. This is a significant departure from the
process used in MPC, where raw data must be split
among various parties and securely computed together,
which can be complicated for large-scale applications.
By contrast, DP works by adding random noise to
data or query results to prevent sensitive information
from leaking during analysis. However, if queries are
repeated or additional information is available, the
privacy assurance provided by the DP can weaken.
This makes DP less effective in DCC environments,
where sensitive data are frequently accessed. Similarly,
TEEs secure data within hardware-protected environ-
ments; however, they rely on extracting data from
various devices to a central location, which can be
cumbersome in distributed cloud settings.

2) Resilience to Non-IID Data: In real-world DCC
scenarios, user data are usually not uniform. Although
non-IID data may occasionally lead to biased FL
models, FL is generally better equipped to handle
such data through adaptive techniques, such as fed-
erated averaging adjustments, compared to other PPC
methods. With FL, model training can occur directly
on user devices, allowing the models to learn from
the specific characteristics of the data of each user.
This localized training means that the FL can produce
models that reflect user- or location-specific insights.
In contrast, MPC and TEEs are not designed to address
data distribution issues; instead, they primarily rely on
data splitting or encryption for centralized processing.
This focus implies that the non-uniformity of updates
from non-IID data can lead to suboptimal model con-
vergence and performance degradation. Additionally,
DP suffers from non-IID data, because adding noise
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TABLE 7. Summary and Comparison of recent significant FL frameworks.

Ref Privacy Security Scalability Maturity Technique Description Pros Cons
[151] ✓ ✓ ✓ Prototype Anomaly Detection An FL framework for minimum

bandwidth Block Hunter identifi-
cation using cluster-based archi-
tecture in IIoT networks.

High accuracy in detecting
anomalous activities while re-
quiring minimal bandwidth.

Does not specify how to
handle non-IID data or user
dropout issues.

[152] ✓ ✓ ✓ Experimental Data Encryption A privacy-preserving FL model
in IoT environments by com-
bining synchronous and asyn-
chronous modes with homomor-
phic encryption.

Addresses user dropout and
low-quality data; high func-
tionality and accuracy; low
system overhead.

The involved clients may
be unreliable since they
commonly rely on battery-
powered systems and less
powerful communication
media.

[153] ✓ ✓ × Experimental Anonymization A GAN-based FL framework
that employs anonymization tech-
niques to address user-level pri-
vacy vulnerabilities.

Effective anonymization tech-
niques to address user-level
privacy leakage; novel use of
multi-task GAN-AI for fine-
grained privacy preservation.

Large-scale updates can cause
bandwidth and latency issues,
with efficiency based on com-
munication channels.

[154] ✓ ✓ ✓ Prototype Anomaly Detection An FL architecture for malware
detection in IIoT utilizing GANs
to bolster defense mechanisms.

Robust malware detection
with high accuracy.

Focuses primarily on Android
malware and performance in
other types of malware de-
fense not addressed.

[155] ✓ ✓ × Prototype Data Perturbation A non-interactive privacy-
enhanced FL model securing
IAI applications, preventing data
leakage even with collusion
among entities.

Strong privacy protection
against data leakage and
collusion, efficiency in IAI
applications.

May not fully scale for ex-
tremely large networks due to
non-interactive model param-
eters.

[156] ✓ ✓ × Prototype Anomaly Detection An FL anomaly detection system
for smart electric grids, integrat-
ing LSTM networks and autoen-
coders with statistical and encryp-
tion techniques.

High accuracy and low com-
putational cost in anomaly de-
tection for smart grids.

Communication overhead may
limit scalability in large smart
grid deployments.

[157] ✓ ✓ × Prototype Blockchain A secure FL framework based
on identifying malicious updates
through blockchain to enhance
the security of electronic health
records.

High accuracy and perfor-
mance in malicious updates
classification.

Blockchain can introduce
overhead in terms of
bandwidth and latency.

[158] ✓ ✓ × Prototype Anonymization A privacy-preserving deep
reinforcement FL framework for
DCC environments, managing
context-aware data across
multiple system levels.

Ensures high-context privacy
on local devices while offload-
ing tasks; improves schedul-
ing efficiency through context-
aware management.

Increased complexity in
managing different levels
of context-awareness;
performance might vary
depending on task types and
offloading requirements.

[159] ✓ ✓ ✓ Experimental Data Perturbation The Light-SecAgg approach im-
proves secure FL aggregation per-
formance through mask coding
and decoding.

Enhances scalability and mini-
mizes dropout effects; reduces
training time while maintain-
ing privacy as leading ap-
proaches.

Requires retransmission of in-
correct gradients due to noise
masking unmasked gradient
values.

[160] ✓ ✓ × Experimental Statistical Information A secure FL framework designed
to withstand Byzantine failures,
optimizing algorithms for statisti-
cal performance.

Robust against Byzantine fail-
ures; achieves optimal statis-
tical performance with strong
error rate guarantees for con-
vex loss functions.

Single-round median-based
distributed algorithms may
face limitations in complex
environments with non-
convex functions.

[161] ✓ ✓ ✓ Prototype Data Encryption An FL approach ensuring privacy
protection and verification, utiliz-
ing Chinese remainder theorems
and homomorphic encryption.

Detects malicious behavior
on aggregate servers; reduces
communication and computa-
tion costs while enhancing ef-
ficiency.

Public key misuse by the
server could reduce model ac-
curacy by extracting informa-
tion from shared gradients.

[162] ✓ ✓ × Prototype Data Encryption An FL framework for IoT-based
healthcare systems, employing
homomorphic encryption for safe-
guarding local data privacy during
model training.

Effectively meets users’ pri-
vacy and security needs, with
detailed security analysis con-
firming its reliability.

Does not address challenges
related to heterogeneous
clients with limited hardware
or asynchronous FL, which
affects overall efficiency.

[163] ✓ ✓ × Prototype Blockchain A reputation-based approach in
blockchain-based FL, motivating
data owners to contribute high-
quality data through a reward dis-
tribution system.

Significantly improves high-
quality model aggregation in
FL while safeguarding the
training process from interfer-
ence by malicious nodes.

Dependence on the blockchain
infrastructure may introduce
scalability challenges in large-
scale deployments.

[164] ✓ ✓ ✓ Experimental Data Encryption A privacy-preserving FL scheme
for fog computing, utilizing ho-
momorphic encryption and blind-
ing.

Efficient against collusion by
multiple malicious entities;
addresses uneven data dis-
tribution and computational
power in IoT devices.

Potential overhead from ho-
momorphic encryption in fog
computing environments.
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might reduce the usefulness of the data when the
distributions vary significantly.

3) Computational Efficiency: By distributing the com-
putational workload across user devices, FL reduces
the strain on centralized servers. This is particularly
important in DCC, where participation can involve
millions of devices, and relying on a central server
would be impractical due to resource limitations and
communication delays. Unlike MPC, which involves
multiple rounds of secure exchanges that can be
time-consuming and resource-intensive, FL conducts
computations locally on devices. Only the aggregated
model updates are sent to the server, which mini-
mizes interaction and lowers the overall computational
and communication costs. TEEs require specialized
hardware for each participating device, making them
impractical for large-scale DCC networks.

4) Hardware Flexibility: FL also offers greater flexi-
bility in terms of hardware requirements compared
with TEEs, which rely on specific hardware setups to
secure data. In diverse DCC ecosystems, devices range
widely in their capabilities from powerful servers to
low-power IoT devices. The necessity for specialized
hardware can complicate deployment and integration
and limit scalability. However, FL adapts well to
different types of devices, allowing organizations to
leverage existing hardware without requiring special
security components.

5) Performance: FL’s incorporation of secure aggrega-
tion methods enhances its resilience against potential
vulnerabilities such as side channels. Thus, FL is a
balanced solution that maintains security while ensur-
ing performance. Although MPC provides strong se-
curity through encrypted data sharing, its computation
and communication overhead can lead to performance
trade-offs that are unacceptable in real-time DCC sce-
narios. DP, while effectively preventing data leakage
by adding noise, can reduce model accuracy, particu-
larly in complex models that require minimal noise to
function well. Similarly, although TEE methods offer
robust security within their hardware environments,
the need to consolidate data for secure processing can
introduce inefficiencies that counteract the benefits of
the DCC environment. In FL, adjustments can be made
in real-time with minimal impact on the performance.

Overall, each generation of PPC evolves in response to the
limitations or challenges posed by its predecessor, promoting
the ongoing development of stronger and more efficient
privacy-preserving solutions. Table 8 provides a summary of
the four generations in terms of their security, performance,
scalability, and efficiency.

AQ2: What challenges arise when using FL in DCC,
and how can they be mitigated?

Utilizing FL in DCC has several challenges that must be
addressed to ensure its effectiveness. One of the main issues
is achieving convergence of the global model, which can be
challenging owing to the diversity of data and the potential
unreliability of updates from client devices. To tackle this
problem, it is important to use adaptive learning rates and
robust aggregation techniques such as Krum [170], Trimmed
Mean [171], or FedShare [172]. These methods can help
manage outliers and ensure the successful convergence of
the model. In addition, the incorporation of regularization
techniques can stabilize the training process.

Another challenge is the availability and reliability of
the clients. Since clients may not always be available for
training due to network issues or device limitations, this can
disrupt the training process. A flexible participation strategy
can help solve this problem, allowing clients to join and
leave training as needed. Furthermore, addressing the issue
of stragglers—clients who respond slowly—is crucial for
maintaining the efficiency of the training. Resource con-
straints also play a significant role, as limited computational
power and battery life on client devices can affect their
ability to participate. To mitigate this, optimizing training
algorithms for resource-constrained environments, such as
Federated Transfer Learning [173], can enable clients to use
pre-trained models.

In addition to these challenges, FL in DCC may face
problems related to communication costs and network con-
gestion. Transferring large model updates between clients
and the cloud can slow the learning process, and frequent
communication can lead to performance drops during peak
usage times. As discussed in Section VI, a hierarchical
approach to FL can be achieved by combining the strengths
of both cloud and edge configurations. This structure is
particularly beneficial for reducing communication across
regions and ensuring that learning is accurate and relevant
in specific areas.

Poisoning attacks, such as data poisoning and model
poisoning, which can undermine the training process, are
another critical concern in FL. Data poisoning involves
altering input data to negatively affect outcomes, whereas
model poisoning targets local model updates to introduce
harmful behaviors into the global model [174], [175]. To
combat such vulnerabilities, it is essential to use robust
aggregation algorithms that are less sensitive to outliers
along with leveraging anomaly detection and statistical in-
formation techniques. Establishing a reputation system for
client whitelisting can further enhance security. It is also
important to conduct validation checks on the data submit-
ted by clients and implement model update validation to
help identify and address potential poisoning vulnerabilities.
Additionally, methods such as weight clipping [176] or
weight watermarking [177] can limit the size of updates and
unauthorized model tampering, preventing drastic changes
from harmful inputs, while still allowing legitimate updates
to be processed. Regularization techniques can also help
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TABLE 8. Comparison of the four generations of PPC.

Generation Security Performance Efficiency
MPC Strong security as data is split among parties,

preventing anyone from seeing the full dataset.
It may be vulnerable to collision if parties
combine their information; however, their se-
curity is supported by rigorous mathematical
foundations.

Model performance is mostly preserved as com-
putations occur on shared encrypted data, but
some operations are limited or resource inten-
sive. Not suited for complex AI models and
computing functions.

Low efficiency owing to multiple rounds of
secure communication and heavy computations,
making it unsuitable for real-time systems or
large datasets owing to high overhead.

DP Privacy leakage still exists, especially with aux-
iliary data or multiple queries.

Model accuracy can be decreased, particularly
with higher noise levels, requiring a balance
between privacy and utility.

Suitable for small datasets, but computationally
expensive for larger datasets or complex models
owing to noise and query management.

TEE Fortified security in hardware-protected en-
claves, but vulnerable if the hardware is com-
promised.

Minimal effect on performance, as sensitive
data operations occur in a secure environment,
maintaining accuracy and utility.

Offers moderate efficiency owing to hardware-
specific requirements and overhead from data
exchange between secure and non-secure parts.
However, a key drawback is the need to extract
and consolidate the data from each party at a
central TEE location.

FL Robust security and privacy by keeping raw data
on user devices and sharing only model updates.
However, it remains susceptible to data poison-
ing, model poisoning, and malicious updates.
Emerging methods, such as anomaly detection
and data encryption, can help mitigate these
vulnerabilities.

Strong performance levels comparable to those
of centralized AI models.

High efficiency in distributed networks. How-
ever, large-scale updates may cause bandwidth
and latency issues, with efficiency depending on
communication channels between parties.

stabilize the training process and reduce the susceptibility
to noisy updates.

AQ3: What are the advantages and disadvantages
of each secure FL technique, including methods for
detecting malicious updates, data encryption, data per-
turbation, and anonymization?

Each FL technique offers specific strengths and lim-
itations, particularly in addressing the challenges within
DCC systems. The ideal approach depends on the specific
goals and resources available because each solution uniquely
balances privacy, security, performance, accuracy, and effi-
ciency. Table 9 shows a comparison of these techniques.

Data encryption is highly effective in maintaining data
confidentiality during the entire computational and training
process. This allows computations on encrypted data, mean-
ing that sensitive information remains hidden from the view
at all times. However, encryption has a significant cost that
requires substantial computing power, especially when using
advanced forms such as homomorphic encryption. Managing
encryption keys in a DCC system can also be complex, which
adds another layer of difficulty.

Data perturbation and additive masking provide an alter-
native by adding a level of noise to the gradient updates
sent by clients, which reduces the required computing power
compared with encryption. Carefully designed noise can
preserve utility, allowing models to learn without exposing
sensitive information, and this technique can be efficiently
scaled across various model types. The main challenge
with data perturbation is the balance between privacy and
accuracy, which is similar to the issues encountered in DP.

Higher privacy levels, achieved by adding more noise, often
reduce the accuracy of a model. In addition, perturbation
relies on a “privacy budget” to control how often data can
be perturbed, thus limiting the number of updates that can
be made before privacy becomes compromised.

Anonymization is attractive owing to its simplicity and
low computational requirements. Removing identifiable in-
formation preserves data accuracy without altering the un-
derlying data. However, anonymization is vulnerable to
advanced attacks, particularly when adversaries have ac-
cess to additional information. This makes it less reliable
in situations where adversaries may attempt to re-identify
individuals using supplementary data.

Anomaly detection strengthens FL by identifying and
reacting to suspicious patterns or unusual data behaviors
in real-time. This adaptability helps to prevent corrupted
data from affecting the model. However, anomaly detection
can sometimes misclassify data by flagging safe updates as
malicious (false positives) or overlooking harmful updates
(false negatives). Implementing this approach may also re-
quire additional computing power for constant monitoring,
which may strain the resources.

Statistical information methods offer an efficient method
to handle potentially malicious activities with relatively low
computational demands. By tolerating some level of unusual
behavior, this technique is robust against outliers and gener-
ally requires less ongoing maintenance, because it does not
rely heavily on continuous learning. The primary drawback
of these methods is that they are static and may struggle to
recognize new vulnerability patterns over time. Additionally,
aggressive filtering can reduce the model’s accuracy.
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TABLE 9. Advantages and disadvantages of privacy-preserving and secure FL techniques.

Technique Pros Cons
Data Encryption - Strong Security: Ensures data remains confidential during

computing and training.
- End-to-End Privacy: Allows computations on encrypted data.

- Computational Overhead: Resource-intensive, especially with
homomorphic encryption.
- Complex Key Management: Challenging in DCC system.

Data Perturbation - Low Overhead: Less intensive than encryption.
- Model Utility: Carefully calibrated noise preserves data utility.
- Scalable: Suitable for large datasets and various architectures.

- Accuracy-Privacy Trade-off: Higher privacy levels can reduce
model accuracy.
- Privacy Budget Limitations: Restricts the number of updates.

Anonymization - Simplicity: Easy to implement and computationally efficient.
- Data Usability: Preserves data accuracy since data is unaltered.

- Weak Against Advanced vulnerabilities: Can be compro-
mised by linking auxiliary data.

Anomaly Detection - Real-Time Detection: Identifies unusual patterns quickly.
- Adaptive: Can learn and adapt to new malicious behaviors.
- Data Integrity: Prevents corrupt data from influencing the
model.

- False Positive/Negative Rate: May misclassify legitimate
updates.
- Resource Intensive: Requires additional computational re-
sources for monitoring.

Statistical Information - Efficiency: Lower computational requirements.
- Robustness: Tolerates some malicious behavior, reducing
outlier impact.
- Low Maintenance: Minimal need for continuous learning.

- Static Models: Non-adaptive, may miss evolving vulnerable
patterns.
- Accuracy Impact: Aggressive filtering can affect model accu-
racy.

Blockchain - Transparency: Immutable ledger provides accountability and
traceability.
- Decentralized Trust: Reduces reliance on a central authority.
- Strong Security: Cryptographic foundations resist malicious
activity.

- Computational Overhead: Consensus mechanisms add la-
tency and increase computational costs.

Blockchain technology brings transparency to FL through
an unchangeable record of activities that promotes account-
ability and traceability. Its decentralized nature removes the
need for a central authority, reducing the risks of single
points of failure, whereas its cryptographic foundations make
it highly resistant to malicious interference. However, con-
sensus mechanisms that maintain blockchain integrity are
computationally intensive and can slow down DCC systems.

AQ4: How can FL establish a fair balance between
security, performance, efficiency, and accuracy in DCC?

Hierarchical FL effectively balances security, privacy,
performance, accuracy, and efficiency in DCC by combin-
ing a decentralized framework with the benefits of both
cloud and edge configurations, along with adaptive security
measures. Sensitive data remain on user devices, thereby
reducing the risk of exposing the raw information. Additional
protections, such as data perturbation and anonymization,
render FL more resistant to data breaches. Furthermore, FL’s
secure aggregation methods maintain the accuracy of the
model while safeguarding user data. With added features,
such as leveraging statistical information, anomaly detection,
and robust aggregation algorithms, FL can address data
poisoning, model tampering, and malicious updates [178],
[179]. Although data encryption and blockchain significantly
enhance security guarantees, their computational load can
disrupt balance. Therefore, they are recommended only for
cloud environments that require a very high level of privacy
and security.

On the performance side, FL distributes computing tasks
across millions of devices instead of relying on centralized
servers. Local processing on each device helps avoid com-

munication slowdowns, enabling FL to perform well even
in environments with limited bandwidth or high traffic. The
local training of models on user data also enables FL to cap-
ture unique location-specific patterns, thereby strengthening
the predictive capability of the global model. By transmitting
only model updates to the central server rather than whole
datasets, FL lowers latency and optimizes data transfer,
which is particularly valuable in DCC settings, where quick
responses are critical. Methods such as Federated Averaging
improve model performance by allowing FL to manage
diverse data more effectively than other privacy-preserving
techniques such as MPC or TEE. FL is highly flexible
with hardware, and seamlessly operates across a variety of
devices, from robust edge servers to simpler IoT devices,
making it easy to integrate into current DCC systems while
minimizing setup costs.

VIII. OPEN RESEARCH DIRECTIONS
Future research on DCC, particularly in terms of privacy
and security, offers numerous directions for improving FL
and other PPC generations. Here, we discuss key areas for
future work, including ways to enhance security, optimize
performance, and develop user-centered solutions. Table 10
provides a summary of open research areas along with their
key directions.

Optimizing Security, Performance, and Efficiency in
MPC, DP, and TEE: MPC allows secure calculations but
is susceptible to privacy vulnerabilities when participants
collude. Adaptive protocols that are resistant to collusion
can be developed to detect and counteract such collusions
using the probabilistic behavior of the participants. Inte-
grating these protocols with DP can further protect the
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aggregated data analysis. However, DP also faces vulner-
abilities, particularly when adversaries exploit auxiliary data
to infer private information. Solutions, such as adaptive noise
mechanisms and Bayesian DP models [180], can strengthen
DP resilience. Thus, future research should explore advanced
privacy-preserving noise injection strategies. TEEs provide
additional security by isolating sensitive data, although hard-
ware dependency often limits it. Research should focus
on the development of software-defined or virtual TEEs
and lightweight secure enclave architectures that reduce
reliance on proprietary hardware. MPC’s high computational
and communication demands necessitate optimizing crypto-
graphic algorithms. Additionally, addressing the challenges
of data transfer in PPC may involve the creation of effi-
cient communication protocols (e.g., low-latency encrypted
channels and proactive caching mechanisms), hierarchical
DP techniques, and virtual distributed TEEs to improve
scalability and reduce latency across secure applications.

Optimizing Privacy-Preserving and Secure FL Tech-
niques: Current privacy-preserving and secure techniques in
FL, such as data encryption and blockchain, are essential but
still have substantial computational and processing demands.
Traditional encryption methods require significant power and
time, which hinders their scalability in settings with limited
resources such as mobile and edge devices. Research is
increasingly focused on developing homomorphic encryp-
tion, which allows computations of encrypted data without
decryption. Although promising for privacy, homomorphic
encryption itself is resource-intensive. Therefore, future work
should develop hybrid encryption models to balance security
and efficiency and make it suitable for real-time FL appli-
cations. Extreme learning machine offers fast and efficient
learning for FL by eliminating iterative weight tuning, mak-
ing it ideal for resource-constrained environments like edge
computing. However, its security against adversarial attacks
and privacy risks remains underexplored. Future research
should integrate extreme Learning with privacy-preserving
methods to enhance security while maintaining efficiency
[181], [182]. Deep active learning also improves FL by
selecting key data samples for labeling, reducing annotation
costs and computation. It accelerates learning but raises
privacy concerns in decentralized settings. Optimizing secure
deep active methods for low-bandwidth environments re-
mains a key research area [183]. Additionally, FL-blockchain
consensus mechanisms are being explored to secure oper-
ations across distributed clouds. Standard Proof of Work
protocols are not well-suited for FL due to high energy
consumption and latency [184]. Instead, lightweight alter-
natives, such as IOTA and HashGraph, offer more efficient
solutions, reducing processing overhead while maintaining
high transaction throughput and security with minimal re-
source use [185]. More research is needed to integrate
directed acyclic graph-based consensus mechanisms with FL
frameworks to achieve scalable, privacy-aware coordination
among distributed nodes.

Adversarial Training and Self-Healing Mechanisms:
FL systems are susceptible to adversarial vulnerabilities, par-
ticularly data poisoning, where malicious actors manipulate
training data to degrade performance [186], [187]. Adversar-
ial training like GANs can counteract these vulnerabilities by
exposing models to synthetic adversarial examples during
training, thereby helping them learn to identify and resist
manipulative patterns. However, GAN-based approaches can
introduce mode collapse; therefore, novel meta-learning ad-
versarial training strategies should be investigated to enhance
model generalization. Additionally, dynamic algorithms can
enhance the FL model adaptability by learning from and ad-
justing to known vulnerable signatures. Developing federated
reinforcement learning frameworks that adaptively update
security policies in response to detected adversarial behavior
will further strengthen FL security. Self-healing mechanisms
[188], such as periodic snapshots and rollback protocols,
can add another layer of resilience by allowing systems to
revert to a secure state following an attack, automating the
detection and repair of compromised model components to
maintain integrity without human intervention.

Game-Theoretic Strategies: Game theory models the
interactions between adversaries and defenders, and provides
a framework for predicting and countering potential vulner-
abilities in privacy systems. In FL and DCC, game-theoretic
approaches such as Stackelberg games can allow defenders
to develop preemptive strategies, positioning themselves ad-
vantageously before an attack occurs [189]. Thus, future re-
search should explore stochastic game-theoretic frameworks
that consider uncertainties in adversary actions to design
more robust countermeasures.

Multi-Layer User-Centric Privacy Solutions: User-
centered privacy is essential in DCC because users have
diverse preferences regarding data privacy and participation
levels. Privacy solutions tailored to individual preferences
allow users to choose privacy settings based on data sensi-
tivity, thereby giving them more control. This can involve
an adjustable privacy slider or other intuitive interfaces that
allow users to manage their level of involvement. Elements
of gamification, such as privacy-related rewards, could incen-
tivize users to actively manage their settings, thus encourag-
ing a privacy-conscious data-sharing culture. Multi-layered
privacy controls could provide users with granular privacy
options tailored to each layer of application interaction, from
data entry to processing and storage. A priority research
area involves designing automated privacy-adaptive systems
that adjust permissions dynamically based on contextual
factors such as location, data type, and past user behaviors.
These multi-tenant environments can benefit from real-time
compliance monitoring and privacy assessments to ensure
that shared platforms dynamically meet privacy standards
across various users and applications.

Real-World Applications and Case Studies: Testing
FL and other PPC techniques in real-world applications is
essential to assess their effectiveness. Sectors such as health-
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care, where patient confidentiality is critical, and smart city
infrastructure, provide rich environments for practical trials.
Privacy-preserving analytics in electronic health records,
secure vehicular data sharing in intelligent transportation
systems, and confidential transaction verification in financial
services represent key domains requiring further research.
Case studies could reveal insights into the operational ben-
efits of FL, evaluate privacy and security impacts, establish
benchmarks for PPC effectiveness, and guide future research
and implementation.

Cross-Layer Privacy Mechanisms: Cross-layer privacy
integration in DCC can secure data throughout the system,
from application to infrastructure layers, creating a compre-
hensive defense against a range of security challenges. De-
veloping privacy-aware middleware that ensures consistent
data protection across different cloud layers through unified
encryption policies and adaptive access control mechanisms
is a critical area of research.

Quantum Security: With the rise in quantum comput-
ing, traditional cryptographic methods are at risk, making
quantum-resistant security a top priority. Developing effi-
cient and scalable post-quantum cryptographic algorithms
is essential for protecting DCC and FL systems. Another
key challenge is quantum key distribution, which offers
strong security but is difficult to implement on a large
scale. Further research should focus on integrating this with
existing networks to make it more practical. In addition,
secure key exchange mechanisms must be redesigned to
remain effective against quantum threats without adding
excessive complexity. Beyond encryption, quantum machine
learning has the potential to transform cybersecurity by
detecting threats; however, more work is needed to make
it applicable in real-world scenarios. To ensure a smooth
transition to quantum-resistant security, standardization and
interoperability must be prioritized.

Long-Term Studies on Privacy Systems: Privacy sys-
tems must adapt to changes in user preferences and emerging
vulnerabilities. Longitudinal studies can provide valuable
insights into user trust and behavioral patterns over time,
allowing privacy frameworks to evolve in response to users’
needs. Researchers can refine privacy metrics and techniques
by studying privacy systems across diverse demographics
and developing adaptive privacy mechanisms to ensure their
ongoing relevance and effectiveness in real-world conditions.

Ethics and Regulation in Privacy: Privacy frameworks
must comply with data protection laws to remain viable.
Research on compliance-by-design architectures can ensure
that privacy protocols adapt to regulatory shifts, creating
systems that inherently align with current and future laws.
Frameworks that emphasize fairness and transparency are
crucial for preventing biased outcomes and promoting user
trust. In addition, research on consent mechanisms and trust-
building methods can enhance user confidence in privacy
protocols and ensure that systems align with shifting user
expectations. A promising direction is the development of

regulatory sandboxes where privacy-preserving techniques
can be experimentally validated under real-world regulatory
constraints before full-scale deployment.

Implementing Zero-Knowledge Proofs: Zero-knowledge
proofs provide a powerful tool that enables verification
of data integrity without revealing sensitive information
[190]. This allows participants to prove data authenticity or
computational correctness without disclosing data, which is
invaluable for the decentralized nature of DCC. Lightweight
zero-knowledge protocols could optimize their application,
making them suitable for resource-constrained environments.
This research area focuses on creating efficient proof systems
that can securely validate computations across untrusted
networks. Future research should focus on reducing proof
generation times and optimizing proof verification processes
to enhance scalability in real-time cloud environments.

Maintaining Service Quality in High-Mobility DCC: In
high-mobility DCC environments, users frequently change
network zones, thereby creating challenges for data conti-
nuity and service quality. Research should focus on service
migration strategies and predictive models that track user
mobility to ensure a seamless transition. Machine learning-
driven mobility prediction algorithms can help anticipate
user transitions and proactively reallocate computing re-
sources. Caching strategies can temporarily store data to
improve access, while the adaptive Quality of Service frame-
works can adjust to varying network conditions. Addition-
ally, efficient handover mechanisms could reduce delays,
helping maintain consistent data access in dynamic mobile
DCC environments. Future research should explore integrat-
ing edge intelligence with federated caching to dynamically
adapt storage and computation based on real-time mobility
patterns.

IX. CONCLUSION
The survey highlighted a significant shift from centralized
cloud models to DCC environments, driven by the increasing
number of connected devices and the rise of data-intensive
applications. It identified unique security and privacy con-
cerns associated with DCC and provided a comprehen-
sive classification of PPC generations designed to address
these challenges. In each category, the review examined the
most significant research conducted over the past decade
in various prestigious conferences and journals, analyzing
the methods used, the challenges addressed, and strengths
and weaknesses of each approach. Particular attention is
given to FL, as the research concluded that it holds greater
potential than other generations, such as MPC, DP, and TEE,
in tackling the privacy and security issues faced by DCC.
The decentralized nature of FL aligns well with that of
DCC, offering several advantages: it can handle diverse data,
achieve strong performance and high efficiency in distributed
systems, and adapt to different hardware configurations. The
review also identified the challenges that FL faces in DCC,
including the convergence of the global model, management
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TABLE 10. Summary of Open Research Directions

Research Area Key Directions Research Area Key Directions
MPC, DP, and TEE Opti-
mization

- Adaptive collusion-resistant MPC.
- Adaptive noise and Bayesian DP models.
- Virtual TEEs and lightweight enclaves.
- Low-latency encrypted channels and proactive
caching mechanisms.

Game-Theoretic Strategies - Stochastic game-theoretic models.
- Stackelberg game for defense.

Optimizing FL Techniques - Hybrid encryption models.
- Secure extreme learning in FL.
- Deep active learning for low-bandwidth.
- FL-blockchain with directed acyclic
graph-based consensus mechanisms.

User-Centric Privacy - Adjustable privacy sliders.
- Multi-layer privacy controls and real-time
compliance monitoring.
- Context-based privacy adaptation.
- Gamification techniques.

Adversarial Training and
Self-Healing

- GAN-based adversarial training.
- Meta-learning adversarial training strategies.
- Federated reinforcement learning security.
- Self-healing rollback protocols.

Real-World Applications - Privacy-preserving healthcare analytics.
- Secure vehicular data sharing.
- Confidential transactions in finance.

Cross-Layer Privacy - Middleware for cross-layer security. Quantum Security - Post-quantum cryptography research.
- Optimized quantum-resistant key exchange.
- Standardization and interoperability.

Long-Term Privacy Studies - Longitudinal user behavior analysis.
- Privacy evaluations across demographics.

Ethics and Regulation - Compliance-by-design architectures.
- Fair and transparent privacy frameworks.
- Regulatory sandboxes for experimental
validation.

Zero-Knowledge Proofs - Lightweight zero-knowledge proofs for
low-power devices.
- Optimization of proof verification.

Maintaining Service Quality
in DCC

- ML-driven mobility prediction.
- Federated caching for adaptation.

of unreliable client devices, concerns about communication
costs and network congestion, and certain vulnerabilities,
such as data and model poisoning. To address these issues,
this review discusses various solution techniques, including
data encryption and perturbation, robust aggregation, flexible
client engagement, federated transfer learning, blockchain
technology, anomaly detection, and leveraging statistical
information. A thorough comparison of these FL techniques
is presented, highlighting their respective advantages and dis-
advantages. Finally, future research directions are introduced
to assist researchers and policymakers in the development of
effective security strategies for real-world DCC applications.
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