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A B S T R A C T   

Outdoor microclimates vary among different urban neighbourhoods depending on their morphological varia
tions. The Local Climate Zone (LCZ) framework is a well-developed typomorphological classification used to 
capture the variation that characterises neighbourhood microclimates. However, it does not include detailed 
morphological parameters within neighbourhoods that have synergistic effects on microclimates. It is thus 
essential to develop neighbourhood typologies with detailed spatial descriptions. This study first identifies the 
LCZ in Amsterdam, London and Paris with the highest Land Surface Temperature (hereinafter referred to as the 
most heat-prone areas). Subsequently, parameters which are not covered by the LCZs were analysed, including 
building block’s floor area ratio and shape factor, street canyon’s orientation and Height-to-Width ratio, street 
total length, green space area, and tree cover ratio. The results show that LCZ 2-compact mid-rise areas are the 
most heat-prone. Employing K-means cluster analysis, four neighbourhood typologies are distinguished within 
the LCZ 2: mainly wide streets with N-S and E-W orientations, mainly narrow streets with N-S and E-W orien
tations, mainly narrow streets with NE-SW and NW-SE orientations, mainly wide streets with four orientations 
divided by 45◦. These generalised neighbourhood typologies can be used as the basis for design interventions 
aiming at climate adaptation in heat-prone urban areas.   

1. Introduction 

European cities with temperate climates have been suffering more 
and more from heat stress. The 2003 summer heatwave caused an 
estimated 70,000 excess deaths across Europe (Robine et al., 2008). In 
the summer of 2019, exceptional heatwaves also occurred in Western 
Europe. According to the Centre for Research on the Epidemiology of 
Disasters, the European summer heatwave was regarded as the deadliest 
extreme event in 2019 with a total of approximately 2500 deaths in 
France, the Netherlands, the UK, and Belgium (measured by excess 
mortality) (Froment and Below, 2020). In mid-July of 2022, the UK hit 
the temperature above 40 ◦C, which is the highest on record since 
measurements started (Witze, 2022). Due to climate change, the in
tensity of urban heat stress and the likelihood of extreme weather 

conditions are expected to increase in the near future (Raymond et al., 
2017). This situation worsened, particularly in Western Europe, which 
becomes a hotspot for heatwaves (Witze, 2022; Rousi et al., 2022). 
Therefore, climate adaptation measures to prepare for the coming 
extreme weather conditions are essential. Within this context, transfer
able microclimate knowledge is needed for urban planners and policy 
makers in their decision-making process (Brown, 2010; Lenzholzer, 
2015). 

Interventions for urban climate adaptation are thus highly deman
ded, especially at the neighbourhood level. Indeed, the neighbourhood 
scale is where small and fast interventions can be implemented to ach
ieve cooling effects (Roe & McCay, 2021). The neighbourhood scale is 
the level where local government plans are developed and implemented 
for microclimate improvement, yet research at this scale received 
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limited attention (Norton et al., 2015; Bartesaghi-Koc et al., 2018). 
Given the impact of morphological characteristics on urban neigh
bourhoods’ microclimates (Aghamolaei et al., 2020), quantitative de
scriptions of neighbourhoods’ morphological parameters can support 
design interventions aiming at urban microclimate adaptation. 

The concept of typomorphology (also known as typologies of urban 
surface properties) was proposed to describe the diversity of urban form 
characteristics and describe urban form in an integrative way that can 
effectively inform urban planning and design practices (Eldesoky et al., 
2022; Berghauser Pont et al., 2019). Creating spatial representations of 
neighbourhood typologies can be used as a basis to plan or formulate 
design interventions, as design interventions require easily applicable 
knowledge that works beyond a specific case to a more generalisable set 
of situations (Lenzholzer & Brown, 2016; Prominski, 2016; Hidalgo 
et al., 2018). At a neighbourhood level, Local Climate Zones (LCZ) have 
been widely used as a typomorphological classification (Eldesoky et al., 
2022; Bartesaghi-Koc et al., 2018; Middel et al., 2014; Yang et al., 2021; 
Zheng et al., 2018). Originally developed by Stewart & Oke (2012), LCZs 
categorise landscape characteristics into 17 different types based on 
generalised knowledge of built forms and land cover types and quanti
fiable measures. 

The Local Climate Zone (LCZ) classification was developed as a 
universal description of local scale landscape types, distinguishing pa
rameters that directly influence 2-m air temperature in the canopy layer 
(Stewart & Oke, 2012). The main parameters included in the LCZ clas
sification are the ratio of building plan area to total plan area, ratio of 
impervious plan area (paved, rock) to total plan area, and ratio of 
pervious plan area (bare soil, vegetation, water) to total plan area, mean 
height of roughness elements (geometric average of building heights and 
tree/plant heights), sky view factor, and anthropogenic heat flux 
(Stewart & Oke, 2012). Many studies have shown the significant rela
tionship between Land Surface Temperature (LST) and LCZ types 
(Bechtel et al., 2019; Cai et al., 2018), providing evidence to support the 
use of this classification as an effective tool to identify heat-prone areas 
in the city. The World Urban Database and Access Portal Tools 
(WUDAPT) platform made the LCZ classification an open tool to apply to 
cities worldwide (Demuzere et al., 2019). As it grew in popularity, the 
LCZ framework allowed the tackling of urban climate issues using a 
common language. 

However, from the perspective of formulating design guidelines at 
the neighbourhood scale, the LCZ classification still has limitations. 
Currently, LCZs are typically considered as homogenous configurations 

(Stewart & Oke, 2012; Bechtel & Daneke, 2012). There is a lack of 
studies which identified the typomorphologies within an LCZ, which 
could also be called sub-LCZs. Indeed, LCZs only capture the variation in 
microclimates that characterises neighbourhoods of ≥1km2 in cities 
(Bechtel et al., 2019). However, LCZs do not include a variety of other 
essential morphological parameters which potentially affect urban 
climate at the neighbourhood level, such as the micro-scale character
istics of block, street, and vegetation patterns. 

Urban neighbourhoods are complex combinations of different micro- 
scale parameters that can have a synergistic effect on the microclimate 
(Ramyar et al., 2019; Yin et al., 2019; Aghamolaei 2020). Some re
searchers have identified typical street typologies with different 
height-width ratios (Aboelata, 2020; Chatzidimitriou & Yannas, 2017; 
Klemm et al., 2015; Srivanit & Jareemit, 2020) or building typologies 
including pavilions, slabs, courtyards etc., (Ratti et al., 2003; Taleghani 
et al., 2015). However, only focusing on certain streets or buildings 
cannot provide a holistic basis for urban designers to plan their in
terventions at a neighbourhood scale (Erell, 2008). Multiple factors, 
rather than single elements, need to be considered in urban climate 
research since the thermal environment is influenced by complex in
teractions of multiple factors in the urban environment (Aleksandrowicz 
et al., 2017; Yao et al., 2020; Yin et al., 2019; Elbondira et al., 2021). 
Although some researchers explored urban design parameters such as 
floor are ratio (FAR) and tree cover ratio (TCR) as quantitative de
scriptions to propose neighbourhood typologies (Maiullari et al., 2021), 
knowledge about how other parameters, such as the street orientations 
and H/Ws can be reflected at the neighbourhood scale is still lacking. Yet 
these two parameters are among the most influential factors in urban 
climate (Sangiorgio et al., 2020). Taking micro-scale design elements 
into account, Yin et al. (2019) identified neighbourhood typologies with 
different combinations of canyon types and layouts. Their simulation 
results show that synergistic effects exist among micro-scale elements in 
the neighbourhoods, and the favourable thermal sensation conditions 
were found in the neighbourhood with long East-West oriented arcade 
streets. Yet as mentioned in the limitations of their studies, there are 
many other parameters that need to be considered at the same time, such 
as the canopy ratio of greenery, the type of vegetation and four street 
orientations’ combinations. 

It is therefore important to consider morphological parameters for 
design interventions that are not yet included in the LCZ typologies. 
More detailed morphological parameters should cover key aspects of 
urban and architectural design, which are well known by architects and 

Table 1 
Neighbourhood morphological parameters affecting microclimates.  

Parameter 
type 

Name of 
Parameter 

Abbreviation Definition Reference Included in 
LCZ 

Block Building 
coverage ratio 

BCR The ratio of the building area divided by the site area (footprint). (Martins et al., 2019; Oke et al., 2017; 
Xu et al., 2017) 

Yes  

Mean building 
height 

MBH The ratio of total heights of buildings of a given area to the number of 
the building in this area. 

(Oke et al., 2017; Sangiorgio et al., 
2020; Xu et al., 2017) 

Yes  

Floor area ratio FAR The ratio of all buildings’ total floor area (gross floor area) to the size 
of the piece of the land which the buildings were built. 

(Pan, 2019; Rode et al., 2014;  
Maiullari et al., 2021)  

No  

Shape factor SF The ratio of the perimeter of the patch to the equivalent circular 
perimeter of the same area. The larger the ratio, the more developed 
the periphery of the block. 

(Liu et al., 2019; Louf & Barthelemy, 
2014) 

No 

Street Sky view factor SVF The percentage of visible sky. (Oke et al., 2017; Xu et al., 2017) Yes  
Height-to-Width 
ratio  

H/W The ratio of the height of buildings to the width of the street canyon. (Ali-Toudert & Mayer, 2006;  
Chatzidimitriou & Yannas, 2017) 

No  

Canyon axis 
orientation 

CAO The orientation of the street canyon. (Ali-Toudert & Mayer 2006) No  

Street length SL The total length of street in a given area. (Knight & Marshall, 2015) No 
Vegetation Tree cover ratio TCR The ground tree coverage of the given site. (Rahman et al., 2019; Ziter et al., 

2019; Kim & Brown, 2022) 
No  

Greenspace area AGS The size of greenspace in a given area. (Amani-Beni et al., 2018; Cohen et al., 
2012; Perini & Magliocco, 2014) 

No  
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urban designers and can be efficiently utilised during both the pre- 
design stage and the post-occupancy evaluation period (Pan & Du., 
2021). Based on existing studies, there are three types of parameters 
concerning block, street and vegetation that can influence microclimates 
(Table 1). 

A city is constituted of various types of morphological patterns, and 
their components are difficult to understand in isolation (Demuzere 
et al., 2022). Under the current threat of severe heatwaves that are 
widespread across the world, the aim of this study is to propose a new 
analysis approach that identifies heat-prone neighbourhood typologies 
from real-world data. These typologies can act as a basis to plan or 

formulate design interventions. To focus on the most problematic area, 
the widely adopted LCZ scheme is used for identifying the most 
heat-prone LCZ type. Considering that the LCZs that suffer urban heat 
require heat-mitigating measures, there is a necessity to analyse the 
micro-scale urban design parameters that influence microclimates. The 
objective of this study is to determine the combinations of micro-scale 
morphological parameters for the formulation of heat-prone neigh
bourhood typologies, assessing if there are significant morphological 
differences across the most heat-prone LCZ. To that end, the study puts 
forward two research questions: 1). What is the most heat-prone Local 
Climate Zone (LCZ) in European cities with temperate climate? 2). What 

Fig. 1. Methodological flowchart of the process of this research.  

Fig. 2. Köppen-Geiger climate classification. This study focuses on Amsterdam, London, and Paris in the Cfb climate zone.  
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are the most frequent neighbourhood typologies within the identified 
LCZ based on the characteristics of blocks, streets, and vegetation? 

2. Methodology and data 

The methodology of this study was designed to systematically cap
ture empirical data of real urban settings with diverse morphological 
characteristics. 

The methodology of this study consists of two main steps (Fig. 1): to 
answer the first research question of identifying heat-prone Local 
Climate Zone (LCZ), three European cities of Amsterdam, London, and 
Paris in the temperate climate zone (Cfb) were selected as study areas. 
Then the spatial data of Land Surface Temperature (LST) and LCZ within 
the three cities was overlapped and the LCZ with the highest level of LST 
was identified. To answer the second research question of identifying 
frequent neighbourhood typologies, each morphological parameter was 
first calculated and mapped within the identified heat-prone Local 
Climate Zone. K-means cluster analysis was then conducted to identify 
the frequent combinations of morphological parameters. Final generic 
typologies were developed based on the urban analysis values and 
cluster centres. All the spatial analysis was conducted and visualised in 
ArcGIS Pro 2.9. All the statistical analysis was conducted and visualised 
using IBM SPSS Statistics 26 and R Studio 1.4. In the following sections, 
the methods are described in detail. 

2.1. Study area 

This study focuses on the temperate climate zone in Europe, or Cfb 
(Temperate oceanic climate, warm summer and no dry season), ac
cording to the Köppen-Geiger classification (Fig. 2, Beck et al., 2018). 
Among the cities in Cfb, three cities were selected based on the following 
two criteria: (1) A city that includes as many different LCZ types as 
possible; (2) The availability of data on building geometry and heights, 
as well as block geometry. Based on these criteria, Amsterdam, London 
and Paris were selected as cases to identify representative neighbour
hood typologies. Given the fact that urban heat island effects are most 
prominent at night when people mostly do activities within residential 
areas (Zhang et al., 2017; Deilami et al., 2018), this study only considers 
residential neighbourhoods as they need prioritised design interventions 
to improve microclimates. 

2.2. Relating local climate zone and land surface temperature 

To examine which Local Climate Zone (LCZ) type is most heat-prone 
across these three cities, Land Surface Temperatures (LST) was used as 
an indicator of heat stress (Bechtel et al., 2019). To spatially relate LCZ 
and LST data, LCZ was resampled to the same grid size of LST using the 
majority function in ArcGIS Pro 2.9. To compare the significant differ
ences between the means of LST in different types of LCZ, a one-way 
ANOVA with post hoc Bonferroni test was conducted (Appendix A). 

The data of the Local Climate Zone map was retrieved from the 
WUDAPT team’s research on mapping European LCZs (Demuzere et al., 
2019) which consists of open data with a resolution of 100 metres. The 
boundary of the three studied cities is based on the data from Urban 
Atlas Copernicus 2018. The Land Surface Temperature map that com
bines the data of three studied cities was produced based on the MODIS 
satellite data MOD11A2 and MYD11A2 (Wan et al., 2015) using Google 
Earth Engine. LST of four different overpassing at local times at each of 
the periods was retrieved: MODIS Terra day (10:30 a.m.), MODIS Terra 
night (10:30 p.m.), MODIS Aqua day (1:30 p.m.), and MODIS Aqua night 
(1:30 a.m.). The spatial resolution is 1 kilometre. 

To identify the months these cities suffer most from heat stress in a 
year, we used the EnergyPlus Weather File (EPW) of climate data from 
the meteorological station of Amsterdam Schiphol, London Weather 
Centre St. James Park, and Paris Mont Souris (Climate.Onebuilding, 
2021). It shows that June to August are the hottest months. The LST data 
from June 1st to August 31st 2020 was thus used to represent the hottest 
period of the year. The data of MODIS Terra day (10:30 a.m.) and 
MODIS Aqua day (1:30 p.m.) were averaged to represent daytime LST, 
and MODIS Terra night (10:30 p.m.) and MODIS Aqua night (1:30 a.m.) 
were averaged to represent nighttime LST. 

Surface albedo, which indicates surface ability to reflect the 
incoming direct and diffused irradiance, is an important factor affecting 
the ground temperature (Mitraka et al., 2015). In the urban context, the 
relatively low albedo and subsequent more thermal energy storage in 
pavement tend to generate a more severe urban heat island effect, 
whereas the high albedo materials covering urban surfaces are able to 
counteract the temperature increase and thereby mitigate the urban heat 
island effects (Yuan et al., 2017; Chen et al., 2020). Considering that 
surface albedo is a significant factor in influencing the urban heat island 
effects (Sangiorgio et al., 2020), the surface albedo of the three cities 
was also analysed. This is to verify if the surface albedo is constant in the 
focused heat-prone LCZ, otherwise it needs to be included as a param
eter for cluster analysis in the next step. MODIS albedo product 
MCD43A3 (Schaaf & Wang, 2015) was used to estimate the surface al
bedo in the three cites with a resolution of 500 metres with the time 
period from June 1st to August 31st 2020 aggregated. Shortwave 
broadband albedo was used to represent the surface albedo value (Liang, 
2001; Schaaf & Wang, 2015). To compute the blue-sky albedo, white- 
and black-sky albedo was averaged to represent the results of surface 
albedo (Schwaab et al., 2021). 

2.3. Cluster analysis for combinations of neighbourhood morphological 
parameters 

In order to conduct cluster analysis, the study areas were split into 
homogeneous grids. The size of the grids is 300 × 300m which, ac
cording to Aminipouri et al. (2019) and Yin et al. (2019), is suitable for 
neighbourhood-level climate studies. Using the vegetation canopy cover 
data (DiMiceli et al., 2015) as the basis, the heat-prone LCZ type of the 
three cities was divided into grids of 300 × 300m area. 

All the detailed morphological parameters analysed can be divided 
into three neighbourhood element types: block, street, and vegetation. 
The description, equation and data source of each parameter are pre
sented in Table 2. All morphological parameters were analysed for the 
areas within the heat-prone LCZ in the three cities. 

Regarding block-related parameters, floor area ratio (FAR) and 

Table 2 
Overview of neighbourhood morphological variables calculated in this study.  

Parameter 
(unit) 

Variable Calculation per grid Raw data 

FAR (>0) FAR BCR × Floor Building height 
of Amsterdam ( 
Peters et al., 
2021), London ( 
OS MasterMap 
Building Height 
Attribute, 2019), 
Paris (Atelier 
Parisien 
d’Urbanisme, 
2020) 
Block, street, 
and green space 
polygon (Urban 
Atlas 2018 — 
Copernicus Land 
Monitoring 
Service, 2020) 
Tree canopy 
cover (DiMiceli 
et al., 2015) 

SF (>1) SF 0.5 × Block Perimeter/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
π × Block Size

√

SL (metre) SL Total street length 
CAO PN-S Street length(N− S) / SL 

PE-W Street length(E− W) / SL 
PNW-SE Street length(NW− SE) / SL 
PNE-SW Street length(NE− SW) / SL 

H/W (>0) P0<H/ 

W≤1 

Street length(0<H/W≤1) / SL 

P1<H/ 

W≤2 

Street length(1<H/W≤2) / SL 

PH/W>2 Street length(H/W>2) / SL 
TCR (≥0) TCR Tree canopy area / Grid size 
AGS (m2) AGS Total green space area  
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shape factor (SF) were chosen. FAR is a building density indicator, 
influencing the magnitude of overheating and solar irradiance (Maiul
lari et al., 2021). Each block’s FAR was calculated by multiplying the 
block’s average floor and the block’s building coverage ratio (BCR). BCR 
was calculated as the ratio of the building footprint inside one block and 
the area of the block. Each floor was 3 metres in mean building height 
(MBH) of the block. MBH was calculated as the mean height value of all 
the building heights. At the grid level, the FAR was calculated as the 
average FAR of the blocks inside the grid. SF reflects the length-to-width 
ratio of the block that can also make an impact on microclimates (Yin 
et al., 2019). The formula for calculating shape factor included the area 
of the block and the perimeter of the block. The grid-level SF was the 
mean value of each block’s shape factor inside the grid. The higher the 
number, the more elongated or less uniform the block shape is. 

Regarding street-related parameters, street height-to-width ratio (H/ 
W) and street orientation are the morphological parameters that most 
affect microclimates (Ali-Toudert & Mayer, 2006; Chatzidimitriou & 
Yannas, 2017). Street polygons were converted to centreline. All street 
polylines were clipped at vertices. To calculate H/W, the height of a 
street canyon was considered to be the MBH of the closest block, and the 
width of the street canyon was estimated as twice the distance between 
the street and the closest building. To calculate street orientation, the 

linear directional mean function was used. Every 45 degrees were 
regarded as one direction. For example, the range between northwest 
22.5◦ and northeast 22.5◦ was considered as the direction of north. 
Besides, given the fact that the total length of streets of a neighbourhood, 
or street density, can also influence connectivity and airflows (Knight & 
Marshall, 2015), street total length (SL) was also listed as one of the 
street-related parameters, which was analysed using the total length of 
streets for each grid. 

Regarding vegetation-related parameters, the influential factors 
include green space and canopy ratio of greenery (Rahman et al., 2019; 
Rakoto et al., 2021). To reflect these two factors, green space area (AGS) 
and tree cover ratio (TCR) were adopted in the analysis. AGS was 
calculated as the total area of green space inside the grid. TCR was a 
factor measured by the percentage of a grid covered by tree canopy. 

It was then necessary to identify the representative combinations of 
the neighbourhood parameters. As the category that each data should 
fall into is unknown, unsupervised cluster analysis (James et al., 2013) 
was used. Cluster analysis is a statistical method used to find similarities 
between instances in order to group them into classes: the greater the 
similarity (or homogeneity) within a class and the greater the difference 
between classes, the better (or more distinct) the clustering solution 
(Berghauser Pont et al., 2019). 

Fig. 3. Daytime Land Surface Temperature (LST) in Amsterdam (a), London (b), and Paris (c). Nighttime LST in Amsterdam (e), London (f), and Paris (g). The 
boxplot of LST for daytime (d) and nighttime (h) both show that LCZ 2-compact mid-rise has the highest LST. Local Climate Zone (LCZ) types in Amsterdam (i), 
London (j), and Paris (k). LCZ 2 areas of the three cities are all situated in the city core, while the total area of LCZ 2 in Paris is much larger than in Amsterdam and 
London. Surface albedo in Amsterdam (l), London (m), and Paris (n). 
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K-means is a cluster analysis algorithm and is the most commonly 
used approach to produce tighter clusters for large datasets (Kodinariya 
& Makwana, 2013). In previous studies, Song and Knaap (2007) utilised 
the K-means cluster analysis to identify distinct neighbourhood types in 
Portland. Schirmer and Axhausen (2019) utilised the K-means to char
acterize the 15 attributes concerning building, block, and streets into 
different urban forms at different scales. Thus, this study adopted 
K-means for cluster analysis. 

The first step of this approach is to transform all the selected pa
rameters into a standardized format (Z-score) for a better outcome (Paul 
& Sen, 2018). The number of clusters was chosen based on two criteria: 
the value of Akaike’s information criterion (AIC) and Schwarz’s 
Bayesian criterion (BIC) (Kodinariya & Makwana, 2013; Li & Quan, 
2020). TwoStep cluster analysis was used to calculate the AIC and BIC. 
The final clusters were obtained, and the F-value, the distance between 
each case and the cluster centre was also calculated. 

It should be noted that in the cluster analysis, the parameters of CAO 
and H/W need to be categorised as they have many variations inside one 
neighbourhood. The orientation was divided into four categories (North- 
South, East-West, Northwest-Southeast, Northeast-Southwest) with each 
direction ranging 45 degrees. And according to previous studies, H/W 
can be divided into three groups that have significant differences in 
microclimates: 0<H/W≤1, 1<H/W≤2, and H/W>2 (Ali-Toudert & 
Mayer, 2006). Thus, in the final cluster analysis, we used four variables 
to describe CAO and three variables to describe H/W. 

3. Results and discussion 

3.1. Heat-prone local climate zone type 

Regarding the LST distribution, it could be found that in general 
London and Paris have more severe heat problems in the daytime than 
Amsterdam (Fig. 3, a-c). But the nighttime heat problems in London are 
less severe as opposed to in Amsterdam and Paris (Fig. 3, e-g). As shown 
in the LCZ distribution map (Fig. 3, i-k), 11 types of LCZ are found in the 

selected three cities. The boxplots of the relationship between LST and 
LCZ show that LCZ 2 is hottest both in the daytime (Fig. 3, d) and 
nighttime (Fig. 3, h). By comparing the means of LST using post-hoc 
Bonferroni test, it shows that LCZ 2 in the nighttime is more promi
nently problematic than other LCZs (Table A.2), while in the daytime the 
difference is not significant (Table A.1). According to Bechtel et al. 
(2019), who analysed 50 cities on the relations between LCZ and LST, it 
was found that LCZs 2, 3, 8 at daytime and LCZ 1,2 at night time are 
warmest in general, which is in line with the most heat-prone types 
identified in this study. LCZ 1-compact high-rise, which usually only 
consists of small patches in central business districts, is not present in the 
three cities, so this type is not discussed in this study. LCZ 2-compact 
mid-rise has the highest mean LST, which can be explained by the 
high compactness, anthropogenic heat, the lack of greening, and con
struction materials (Cai et al., 2018; Yang et al., 2021). Benjamin et al. 
(2021) analysed LCZs in London and also showed that LCZ 2 is the 
warmest, which is consistent with our results. The reason that LCZ 3 is a 
lot lower than LCZ 2 in our analysis can be partially explained by the 
limited presence of LCZ 3 in the three cities (Table B.1). LCZ 5 and LCZ 8 
are colder than LCZ 2 considering the lower level of human activity and 
the increased vegetation coverage. Thus, from this analysis, it can be 
concluded that LCZ 2-compact mid-rise is the most heat-prone LCZ in the 
three cities of London, Paris and Amsterdam. 

The results of surface albedo (Fig. 3, l-n) show that the LCZ 2, which 
is regarded as homogeneous areas in LCZ classification, has a rather 
constant surface albedo value of 0.091-0.125. This analysis provides a 
more detailed range compared to the LCZ classification, and it proves 
that the average surface albedo remains constant in LCZ 2. Hence, this 
parameter will not be included in the next analysis steps but only the 
seven morphological parameters are to be examined. 

3.2. Most frequent combinations of neighbourhood parameters 

Regarding the LCZ parameter performance in LCZ 2 (Table C.1), it 
could be found that in average, the ratio of building plan area to total 

Fig. 4. Height-to-Width ratio distribution in Amsterdam, London, and Paris.  

Y. Wu et al.                                                                                                                                                                                                                                      



Sustainable Cities and Society 87 (2022) 104174

7

plan area is 60.0 %, which is compact and within the range of 40-70 % in 
the LCZ classification (Stewart & Oke, 2012). The average building 
height is 22.4 metres, which is mid-rise and within the range of 10-25 
metres in the LCZ classification. The AHF is 88.9 Wm− 2, which is 
higher than the range of <75 Wm− 2 in the classification, indicating that 
the LCZ 2 in the three cities has a high level of human activities that 
produce local heating of the atmosphere. 

The urban analysis for the morphological parameters that are not 
included in the LCZ scheme was then carried out within LCZ 2 in the 
three cities. The street H/W distribution map as an example shows that 
their combinations are varied in different areas of LCZ 2 (Fig. 4). Other 
parameters analysed in this study are included in Appendix D (Fig. D.1- 
D.4). The descriptive statistics present all the parameters used in the 
cluster analysis (Table 3). 

To examine the most frequent combinations of parameters at a 
neighbourhood level, a K-means cluster analysis for all 12 variables was 
conducted, including the building block’s shape factor and floor area 

ratio, percentage of four street orientations, percentage of three street 
H/W categories, street length, area of green space and tree cover ratio. 

Using the K-means analysis, the maximum iteration number was set 
as 30, as our result shows that the change of cluster centre will stop after 
22 iterations. Using Akaike’s information criterion and Bayesian infer
ence criterion, it was found that the best K number is 4. With the input of 
K=4 and the 12 variables, the results show that the p-value of all vari
ables is less than 0.001 and case numbers are relatively evenly distrib
uted in each cluster (Table 4). 

Final cluster centres (Table 4 and Fig. 5) provide information on each 
parameter’s value for the final typologies. Each cluster represents one 
typology. In total, there are 656 neighbourhoods analysed in this study, 
including Cluster 1 (Typology 1) of 80 cases, Cluster 2 (Typology 2) of 
213 cases, Cluster 3 (Typology 3) of 258 cases, and Cluster 4 (Typology 
4) of 105 cases. In general, Typology 1 has building blocks with lower 
FAR and more irregular or elongated block shape, mainly consists of N-S 
and E-W streets, and has more wide street canyons, less green space area 
but more canopy cover. Typology 2 has building blocks with higher FAR 
and less irregular or elongated block shape, mainly consists of N-S and E- 
W streets, and has more narrow street canyons, medium green space 
area but less canopy cover. Typology 3 has building blocks with higher 
FAR and less irregular or elongated block shape, mainly consists of NW- 
SE and NE-SW streets, has more narrow street canyons, longer street 
total length, less green space area and less canopy cover. Typology 4 has 
building blocks with lower FAR and more irregular or elongated block 
shape, streets with all four directions, more wide street canyons, shorter 
street total length, more green space area and less canopy cover. 
Regarding the main differences between the four typologies, they are 
named as Typology 1-Orthogonal 0◦-Shallow (mainly wide streets with 
N-S and E-W orientations), Typology 2-Orthogonal 0◦-Deep (mainly 
narrow streets with N-S and E-W orientations), Typology 3-Orthogonal 
45◦-Deep (mainly narrow streets with NE-SW and NW-SE orienta
tions), and Typology 4-Cross-Shallow (mainly wide streets with four 
orientations divided by 45◦), separately. 

Regarding the difference in the value of each variable, it was found 
that the F-value of the ANOVA test is different across the clusters 
(Table 4). Most variations are from the parameters of street orientation 
and street H/W. Among them, P1<H/W≤2 is less variable across these 
typologies, indicating that for the four typologies the percentages of 
street canyons of 1<H/W≤2 are comparatively similar to each other, 
while the percentage of other H/Ws and orientations are more variable. 
Different percentages of street orientations and H/Ws result in different 
neighbourhood layouts, and the possible design interventions for the 
available open space inside these neighbourhoods can thus be different. 
The rest of the parameters are less effective in explaining the difference 
across four typologies. Building block’s floor area ratio (FAR) is another 
factor that results in variance between the typologies with compara
tively high F-value, followed by tree cover ratio, building block’s shape 
factor, street total length and green space area. 

Regarding the spatial and numerical distribution of the typology 
types, it was found that the three cities have different patterns (Fig. 6, 
top and bottom left). About half of the neighbourhoods (56%) in 
Amsterdam are Typology 1, which are distributed in most areas of LCZ 2. 

Table 3 
The descriptive statistics of the neighbourhood morphological variables.  

Variable Minimum Maximum Mean Std. Deviation 

SF 1.16 2.19 1.39 0.13 
FAR 1.69 8.34 4.53 1.13 
SL 489.00 4614.00 2421.05 556.17 
PN-S 0.00 0.78 0.23 0.16 
PE-W 0.00 0.80 0.24 0.18 
PNW-SE 0.00 0.75 0.26 0.17 
PNE-SW 0.00 0.80 0.27 0.18 
P0<H/W≤1 0.00 0.80 0.17 0.14 
P1<H/W≤2 0.02 0.93 0.34 0.15 
PH/W>2 0.00 0.98 0.49 0.21 
TCR 0.00 18.00 5.98 1.96 
AGS 0.00 17812.47 2125.31 3666.40  

Table 4 
Final cluster centres showing the values of each neighbourhood morphological 
variables.  

Variable Cluster F-value 

1 2 3 4 

FAR 3.2 4.9 4.9 3.7 115.3*** 
SF 1.5 1.4 1.4 1.5 35.5*** 
SL 2310 2414 2573 2146 17.2*** 
PN-S 36.6% 36.2% 10.4% 14.1% 296.8*** 
PE-W 48.7% 35.5% 10.5% 18.1% 378.6*** 
PNW-SE 7.3% 14.8% 39.1% 30.7% 259.2*** 
PNE-SW 7.4% 13.5% 40.0% 37.1% 311.5*** 
P0<H/W≤1 27.0% 12.2% 10.4% 38.0% 235.4*** 
P1<H/W≤2 53.2% 30.8% 30.6% 33.2% 72.0*** 
PH/W>2 19.8% 57.0% 59.0% 28.7% 252.8*** 
TCR 7.9% 5.4% 5.8% 6.1% 38.7*** 
AGS 1448 1761 1885 3973 11.3*** 
Number of cases 80 213 258 105   

In total 656      

*** The mean difference is significant at the 0.001 level. 

Fig. 5. Radar chart of the values of final cluster centres for the four typologies. Each chart shows the standardised z-score value for all 12 variables.  
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Typology 3 has the second largest number of typology cases in 
Amsterdam, followed by Typology 2 and 4. London has half of the 
neighbourhoods (55%) with Typology 2, followed by Typology 3, 1, and 
4. Paris has 44% of Typology 3 and 32% of Typology 2, followed by 
Typology 4 and Typology 1. The only limited Typology 1 in Paris is 
located mostly in the periphery of LCZ 2. 

More explanations of morphological features of the four typologies 
can be generated from real-world examples (Fig. 6, bottom right). The 
FAR in Typology 1 is lower as the building cover ratio (BCR) and mean 

building height (MBH) is lower in Amsterdam. The shape factor is higher 
due to the more elongated perimeter block in Amsterdam. Also, the 
street tree coverage in Amsterdam is higher than in the other two cities. 
Typology 2 and 3 mainly consist of narrow street canyons located in the 
city core of Paris and London. Typology 4 is seen around the round
abouts where main boulevards intersect. The shape factor is also higher 
due to the existence of irregular courtyards located in Paris, as some of 
the Haussmann blocks are multi-sided instead of rectangles (Jallon, 
2017). 

Fig. 6. Typology type distribution map of the three cities (top); Numerical distribution of typology types in the three cities shown in the circle charts (bottom left); 
Representative real-world examples in the three cities (bottom right). 
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Based on the above cluster centres and real-world examples, 
approximate generic typologies can be proposed (Fig. 7). According to 
the final cluster centres and the F-values (Table 4), the percentage of 
street canyon orientation, percentage of street canyon H/W, and vege
tation cover are the main parameters to generate neighbourhood ty
pologies. Street canyon width is accordingly set as 24 metres, 16 metres, 
and 8 metres with regard to the H/W categories of 0<H/W≤1, 1<H/ 
W≤2, and H/W>2. Six-floor buildings are used to represent the 20- 
metre height. The rectangular building block is 72 metres x 50 metres 
considering the average street total length, building block size (Fig. C.1) 
and shape factor. 

As shown by the onsite measurements and simulations from previous 
studies, the different neighbourhood layouts, concerning the combined 
effects from street orientations of only N-S or both N-S and E-W, the H/ 
Ws ranging from 0.5 to 2, street with or without trees, street total length, 
and building block’s shape in different neighbourhoods, can result in 
different microclimate variations across neighbourhoods (Yin et al., 
2019). Onsite measurements also show that areas with the same street 
profile but in different neighbourhoods have different thermal sensation 
performances, if the two neighbourhoods vary in terms of building 
density, street H/W, street orientation, street trees, and green space 
(Elbondira et al., 2021). Based on the above facts, it can be concluded 
that the combined effects of our selected morphological parameters can 
have an impact on the variations of microclimates across the four 
neighbourhood typologies. 

3.3. Originality of this study 

In this study, a novel methodological framework to identify neigh
bourhood typologies is proposed, starting from the relation of LCZ and 
LST, down to the neighbourhood-level cluster analysis for parameters 
that influence microclimates. The generalisation from real-world 
neighbourhoods to generic typologies bridges the gap between 
research and practice. Instead of proposing neighbourhood typologies 
from expert consultation or directly choosing one real neighbourhood, 
the present study uses a much larger area of three cities (in total 656 
neighbourhoods) to generalise the results, making the proposed typol
ogies more applicable in a wider range of future design projects. This 
provides a common language for future research to analyse thermal 
sensation at the neighbourhood scale, or to propose cooling and energy- 
saving design strategies adapted to each typology. This will help 

contribute to habitability and sustainability, meeting the sustainable 
cities and communities development goals (Khosla et al., 2021; Liu et al., 
2021). Besides, not only can this methodology be applied in Western 
Europe, but also in other geographical or climatic contexts. Especially 
with severe heatwaves occurring across the world more often, these 
generic heat-prone neighbourhood typologies are in urgent need for 
different stakeholders to take action. 

Additionally, this study adds more detail to the LCZ framework as 
micro-scale microclimate-related urban design parameters are analysed 
within a specific LCZ. Synergistic effects among different parameters are 
complex at the neighbourhood level (Yin et al., 2019). The seven 
detailed urban design parameters, such as block’s FAR, block’s shape 
factor, street orientations, street H/W, street total length, green space 
area and tree canopy cover included in this study, make the resulting 
typologies more closely related to real-world neighbourhoods and 
therefore more useful to inform real-world urban design solutions. With 
the above taken into account, this study provides new insights to the 
existing LCZ scheme and acts as a basis for outdoor climate adaptation 
solutions. 

4. Limitations 

We acknowledge that there are limitations in this study. Firstly, due 
to data availability, other European cities with temperate climates were 
not included in the analysis. The involvement of cities other than 
Amsterdam, London and Paris in the study could have resulted in dif
ferences in the final cluster values and the final typologies. Secondly, to 
make the typologies more generic, the parameter values adopted are not 
completely the same as the values of the final cluster centre. For 
example, when the percentage of 0<H/W≤1 is 0.1, which is compara
tively negligible compared to 1<H/W≤2 and H/W>2, it was translated 
as H/W=0 for simplification, while the real case is more complex than 
our proposed typologies. Further studies need to find the most typical 
heat-prone neighbourhood typologies in other geographical or climate 
contexts so they can be compared, and may use the methodology used in 
this study. Moreover, statistical analysis between urban heat indicators 
(LST or thermal comfort indices) and urban design parameters could be 
further explored. Especially, the comparison of the individual parame
ters and the typology-based integrated parameters could be interesting 
for planners in climatic planning. 

Fig. 7. Generic neighbourhood typologies (top); Cross section of the E-W 24m street in typology 1 (bottom).  
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5. Conclusion 

This research is an initial attempt to identify representative neigh
bourhood typologies that capture the different microclimate-related 
morphological parameters across a large number of neighbourhoods in 
different cities. This research specifically raised two questions in the 
process of developing heat-prone neighbourhood typologies: firstly, 
what is the most heat-prone Local Climate Zone (LCZ) in European cities 
with temperate climate? Secondly, what are the most frequent neigh
bourhood typologies within the identified LCZ based on the character
istics of blocks, streets and vegetation? 

With regards to question 1, it has been found that LCZ 2-compact 
mid-rise areas in the three European cities with temperate climates of 
London, Paris and Amsterdam are most heat-prone based on the rela
tionship between LCZ and LST. With regards to question 2, four heat- 
prone neighbourhood typologies were identified based on seven 
detailed morphological parameters, resulting in different combinations 
of block’s FAR and shape factor, street orientations, street H/W, street 
total length, green space area and tree canopy cover. In particular, the 
percentage of street canyons orientations and H/Ws are most variant 
across the neighbourhood typologies. Given the impact of these factors 
on urban microclimates, the findings of this study suggest that although 
areas of each LCZ type share similar morphological properties, one-size- 
fits-all design solutions cannot be adapted for each LCZ type. Based on 
these findings, design solutions within the LCZ need to pay particular 
attention to street canyon orientation and height-to-width ratio, and the 
four typologies proposed in this study pave the way for the elaboration 
of different design interventions to that end. Designers working on a 
specific project can refer to a certain typology and plan their in
terventions accordingly. 

The LCZ framework is a useful tool to represent the heterogeneity of 
urban thermal environments at a larger scale, and it may be extended 
with sub-LCZs that consider more detailed morphological characteristics 
of blocks, streets and vegetation. This research provides a first study for 
such a finer morphology-based classification method to supplement LCZ. 
The heat-prone neighbourhood typologies proposed in this study are 
four sub-LCZs within the LCZ 2- compact mid-rise, being: 1) mainly wide 
streets with N-S and E-W orientations, 2) mainly narrow streets with N-S 
and E-W orientations, 3) mainly narrow streets with NE-SW and NW-SE 
orientations, 4) mainly wide streets with four orientations divided by 
45◦. The seven detailed parameters in addition to LCZ parameters 
significantly differentiate the areas with the most heat-prone neigh
bourhoods in European cities with temperate climates. The method 

developed in this study can also serve to identify heat-prone neigh
bourhood typologies in other geographical or climate contexts. The 
generalised neighbourhood typologies can act as the basis for designing 
future strategies to generate thermally comfortable outdoor space, 
contributing to a more climate-resilient city under the threat of urban 
heat stress. 
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Appendix A. Bonferroni test 

Table A1, Table A2 

Table A1 
Post-hoc Bonferroni test comparing the means of daytime LST.   

LCZ 3 LCZ 5 LCZ 6 LCZ 8 LCZ A LCZ B LCZ D LCZ E LCZ F 

LCZ 2 1.000 1.000 *** * *** *** *** 1.000 *** 
LCZ 3  1.000 1.000 1.000 *** ** *** 1.000 *** 
LCZ 5   *** * *** *** *** 1.000 *** 
LCZ 6    1.000 *** *** *** 1.000 *** 
LCZ 8     *** *** *** 1.000 *** 
LCZ A      ** * 0.755 1.000 
LCZ B       *** 1.000 * 
LCZ D        0.056 1.000 
LCZ E         0.225  

* The mean difference is significant at the 0.05 level. 
** The mean difference is significant at the 0.01 level. 
*** The mean difference is significant at the 0.001 level. 
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Appendix B. LCZ frequency 

Table B1 

Appendix C. Values of LCZ parameters 

Table C1, Fig. C1 

Table A2 
Post-hoc Bonferroni test comparing the means of nighttime LST.   

LCZ 3 LCZ 5 LCZ 6 LCZ 8 LCZ A LCZ B LCZ D LCZ E LCZ F 

LCZ 2 *** *** *** *** *** *** *** ** *** 
LCZ 3  *** 1.000 ** 1.000 1.000 0.696 1.000 1.000 
LCZ 5   *** 1.000 *** *** *** 1.000 1.000 
LCZ 6    *** 0.308 *** *** 1.000 1.000 
LCZ 8     *** *** *** 1.000 1.000 
LCZ A      *** *** 1.000 0.062 
LCZ B       1.000 1.000 *** 
LCZ D        1.000 *** 
LCZ E         1.000 

* The mean difference is significant at the 0.05 level. 
** The mean difference is significant at the 0.01 level. 
*** The mean difference is significant at the 0.001 level. 

Table B1 
The frequency of LCZ types of the three cities.  

LCZ type Frequency Percent Valid Percent Cumulative Percent 

2 149 4.4 4.4 4.4 
3 20 0.6 0.6 5 
5 320 9.6 9.6 14.6 
6 1767 52.7 52.7 67.3 
8 247 7.4 7.4 74.7 
9 1 0 0 74.7 
11 179 5.3 5.3 80.1 
12 404 12.1 12.1 92.1 
14 223 6.7 6.7 98.8 
15 6 0.2 0.2 99 
17 34 1 1 100 
Total 3350 100 100   

Table C1 
Descriptive analysis of LCZ parameters.  

LCZ parameters Minimum Maximum Mean Std. Deviation 

Ratio of building plan area to total plan area (%) 0 100.0 60.0 13.0 
Building height (m) 0 113.5 22.4 6.9 
Anthropogenic heat flux (Wm− 2) 1.5 227.8 88.9 53.8  

Fig. C1. Probability density figures of block size, mean building height, and building coverage ratio of the building blocks in the LCZ 2 of the three cities.  
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Appendix D. Maps of different parameters analysed in this study 

Fig. D1, Fig. D2, Fig. D3, Fig. D4 

Fig. D1. Building coverage ratio (BCR) and building height in Amsterdam, London, and Paris.  

Fig. D2. Building block’s floor area ratio (FAR) in Amsterdam, London, and Paris.  
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