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Despite the use of various construction planning and control systems, no prior data-driven and knowledge-based
system provides optimized solutions based on specific project team needs and applications. This paper presents a
data-driven and knowledge-based decision support system that utilizes a knowledge database constructed from
experts’ experience and proposes multi-level and integrated systems for planning and control of construction
projects. A mixed-method approach gathers data from industry professionals, develops a knowledge repository
based on Rough Set Theory (RST), launches an inference engine using the Pyke package, and integrates these
insights into a decision support system optimized by a multi-objective mathematical model. The developed
system considers the functional requirements of the project team and suggests an optimized and fit-for-purpose
planning and control system. To demonstrate its practicality, it applies to a real-world renovation project. This
paper contributes to enhancing systematic and data-driven decision-making for planning and control systems

based on expert knowledge and the specific needs of the project team.

1. Introduction

Project planning and control stands as a fundamental element of
construction project management. This multi-functional domain han-
dles a broad spectrum of decision-making challenges. These functions
not only ensure that all project activities are meticulously planned,
sequenced, and resourced to promote a seamless operational flow but
also deal with analyzing deviations and delays, managing constraints
and commitments, and fostering collaboration and communication
among project team members [37,42]. To tackle these decision-making
challenges, a wide variety of methods, techniques, and tools have been
devised over decades. The critical path method (CPM) represents one of
the earliest methods conceived for project planning, scheduling and
control [29]. While it’s still widely used and often required by project
owners for scheduling needs, there are several concerns with this
approach, including a tendency to create overly detailed schedules even
when project details are uncertain, failure to encourage collaboration
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during the planning phase, oversight of non-critical tasks, and limita-
tions in monitoring resource allocation [34]. Given the complexity of
construction projects and the engagement of numerous stakeholders, the
Architecture, Engineering and Construction (AEC) industry has recog-
nized the need for more effective project planning and control methods.
In this regard, the introduction and adoption of lean-driven planning
and control methods, such as the last planner system (LPS) [8,19],
location-based management system (LBMS) [40], and takt time planning
(TTP) [15], represented a significant paradigm shift in project planning
and control domain. Emerging building information modelling (BIM)
and its integration with industry 4.0 technologies was another signifi-
cant advancement in project planning and control [32,52]. While these
developments have notably improved the project planning and control
field, the scholars identified certain shortcomings in the independent
implementation of these methods [11]. Standing alone, each system is
strong in some functions but requires improvements in others [34].
Therefore, several academics have attempted to integrate these planning
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methods, aiming to establish a comprehensive approach that effectively
mitigates their limitations. In this context, Olivieri, et al. [34] synthe-
sized CPM, LBMS, and LPS to enhance the modelling of workflow dy-
namics. This integrated approach was intended to facilitate managerial
analysis and communication regarding delays, as well as to inform
decision-making processes regarding the best strategies for the critical
path. Rashidi, et al. [38] focused on employing a virtual reality (VR)
environment to improve 4D-BIM-based construction planning. They
uncovered the potential enhancements in construction planning,
particularly in spatial understanding, spatial-temporal conflict resolu-
tion, stakeholder collaboration, training and education, and safety
management, through integrating these innovative technologies. Liu,
et al. [30] investigated a novel experimental tool developed to examine
the social mechanisms of LPS implementation by utilizing immersive
virtual reality (IVR) gaming technology. Additionally, it has been pro-
posed to utilize the LPS along with Location-Based Planning (LBP)
methods to better organize work sequences across different project lo-
cations, aiming to streamline workflows further [7].

These developments go beyond just improving planning methods.
Endeavors have additionally been directed towards establishing and
utilizing control metrics for the continual monitoring and analysis of
project performance, efficiency, and other dynamic aspects, including
the efficiency of resource allocation, quality of the construction flow,
constraints removals, labour productivity, and quality of the commit-
ments [41,45]. This guarantees that projects are not solely meticulously
planned but are also regularly evaluated and updated based on ongoing
actual data [20].

Despite the widespread implementation of these individual and in-
tegrated planning methods and control metrics globally, the choice to
prefer one planning method over another, or to integrate multiple
methods, was driven by the need to address their respective shortcom-
ings and leverage their strengths [11]. Selecting the most effective
planning and control system based on the specific needs of the project
team has often been overlooked in both literature and practice. There-
fore, there is a need for a tool that can propose the planning and control
approached based on project-specific requirements. To fill this academic
and practical gap, this research aims to develop a data-driven and
knowledge-based decision support system (DSS) that suggests multi-
level and integrated project planning and control systems for construc-
tion projects. To achieve this aim, the research outlines the following
objectives:

1- Capture and extract the knowledge and experiences of professionals
in project planning and control to construct a knowledge repository

2- Develop a decision support system to use the knowledge database
and suggest planning and control systems based on the project team’s
requirements

3- Develop and execute a mathematical model to optimize the proposed
solutions by DSS

To achieve the objectives, this research captures and analyzes the
knowledge and experiences of domain experts to build a knowledge
repository for the DSS. An inference engine is then launched to recom-
mend suitable planning and control systems, taking into account both
the knowledge database and the project team’s functional requirements.
A mathematical model is subsequently developed to optimize the solu-
tions proposed by the DSS. The practicality and usability of the system
are evaluated through a case study and feedback from experts.

The paper is organized as follows: Section 2 provides the research
methodology. Section 3 includes the analysis and outcomes derived
from data collection efforts, extending to mathematical modelling and
validation results. In section 4, the paper delves into research discussion
and implications. Finally, section 5 highlights the conclusion, limita-
tions, and avenues for future investigation.
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2. Knowledge-based systems in construction management

The rapid advancement of artificial intelligence (AI) and its diverse
applications have significantly enhanced decision-making processes,
particularly in construction management. Given that the construction
sector heavily relies on expert experience, best practices, and lessons
learned, knowledge-based systems play a crucial role in capturing and
preserving tacit knowledge [12]. This is especially important in miti-
gating the loss of critical insights due to the industry’s high staff turn-
over. In this context, several studies have proposed knowledge-based
systems to address various challenges in construction management. For
instance, Dikmen, et al. [12] developed a rule-based decision support
system for risk and complexity assessment in construction projects.
Their mixed-method research approach involved semi-structured in-
terviews with 18 senior project managers to explore the risk-complexity
relationship and inform the knowledge framework underlying the DSS.
Similarly, Okudan, et al. [33] introduced a case-based reasoning
approach for a knowledge-driven risk management tool tailored to
construction projects. Hwang, et al. [24] presented a knowledge-based
DSS for prefabricated prefinished volumetric construction which fol-
lowed a comprehensive literature review, pilot interviews with industry
experts, and structured questionnaires to collect the required data and
build a knowledge database. Akbari, et al. [3] employed a rough set-
based fuzzy inference system to create a DSS for dynamically assessing
the sustainable success of infrastructure projects.

Such advancements have also had a notable impact on construction
planning and control, where systems have been developed for various
functions such as schedule updating, schedule analysis, time prediction,
activity duration estimation, cost estimation, and project network gen-
eration. For instance, Hendrickson, et al. [22] pioneered a knowledge-
intensive expert system for generating project activity networks, cost
estimates, and schedules, including defining activities, specifying pre-
cedences, selecting technologies, and estimating durations and costs.
More recently, Jahr and Borrmann [25] proposed a rule-based knowl-
edge inference system that supports semi-automated site equipment
planning using data from building information models and work
schedules. Additionally, Hajdasz [18] introduced an intelligent decision
support tool for flexible site management in repetitive projects, while
Mohamed [31] offered a knowledge-based approach for analyzing fac-
tors that influence project duration, generating both normal and
productivity-adjusted schedules.

Despite the extensive developments in decision support systems and
knowledge management tools within construction manage-
ment—especially in project planning and control—there remains a gap
in capturing expert knowledge on the applicabilities and functionalities
of various planning and control systems. Addressing this gap, the present
study aims to develop a data-driven and knowledge-based DSS designed
specifically for the preconstruction phase, which can recommend fit-for-
purpose, multi-level, and integrated planning and control systems
tailored to the unique needs of construction projects.

3. Adopted research methodology

This paper’s objectives were achieved through a mixed-method
approach, as demonstrated in Fig. 1. This methodology encompasses
three primary phases: data collection and preprocessing, expert system
development, and results optimization. During the data collection
phase, semi-structured interviews and surveys were conducted by
domain experts to gather the requisite data for further analysis. Subse-
quently, in the expert system development phase, a rule-based knowl-
edge repository was constructed. Following this, an inference engine
was launched using the forward chaining method and the Pyke which is
a knowledge engine in Python, aimed at recommending the most suit-
able planning methods, control metrics, and schedule levels based on the
project team’s requirements. Finally, a multi-objective mathematical
model was formulated to optimize the suggestions provided by the
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Fig. 1. Mixed-method adopted methodology.

expert system and propose an enhanced multi-level planning and control
system. The following subsections provide detailed explanations for
each aspect of the research methodology.

3.1. Data collection and preprocessing

3.1.1. Sampling and data collection approaches

This study used purposive sampling to select the population mem-
bers to participate in the data collection process. Given the constrained
availability of domain experts versed in various project planning and
control systems, as well as the need to select a sample of individuals with
diverse knowledge and experience in this domain, purposive sampling
was deemed appropriate for the data collection process within the scope
of this study. Suri [49] and Hennink, et al. [23] clarified the method’s
validity by highlighting its ability to allow researchers to select partic-
ipants who have specific expertise relevant to the study topic.

Regarding the data collection method, a semi-structured interview
was chosen as the primary approach to collect the necessary data for
building a knowledge repository for project planning and control sys-
tems. In addition, a survey was designed to provide a consistent struc-
ture in the interview process, standardize the topics discussed, as well as

collect the required quantitative data for building a knowledge
database.

3.1.2. Data preprocessing

Following the data understanding, it was observed that the initial
dataset exhibited an imbalance due to variations in expertise among
participants in different planning methods. For instance, while all par-
ticipants responded to the last planner system inquiries, only 50 % of
participants responded to inquiries regarding the critical chain project
management method. Additionally, certain responses displayed outliers,
further challenging the integrity of the dataset. As a result, two pre-
processing steps were deemed imperative to enhance data quality:
outlier detection and addressing the imbalances inherent in the dataset.

The interquartile range (IQR) method was selected for managing the
outliers. In addressing imbalanced datasets, given that this study
employed purposive sampling for data collection, which inherently
limits the dataset, adopting undersampling as a strategy was deemed
suboptimal due to the potential data loss. Therefore, oversampling be-
comes the preferred approach. To do this, the Synthetic Minority
Oversampling Technique (SMOTE) was employed to handle the imbal-
ance dataset in this study. SMOTE is a powerful approach utilized for
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mitigating class imbalance in datasets and has demonstrated remarkable
performance in a variety of applications [21]. SMOTE enhances data
representation by synthesizing samples from the minority class rather
than just duplicating existing records. This technique operates by
identifying the nearest neighbors of a minority instance and interpo-
lating between them to create new synthetic samples [21]. Such a pro-
cedure balances the dataset by increasing the diversity of the minority
class, reducing the risk of overfitting, and enhancing model performance
in scenarios where data imbalance would make accurate forecasting
more difficult.

3.1.3. Reliability and consistency of the data

The consistency and reliability of the survey data were assessed using
Cronbach’s a coefficient method [10]. Cronbach’s Alpha is a commonly
used measure to assess internal consistency, which shows how effec-
tively several survey questions evaluate the same concept. A higher
Cronbach’s Alpha value, typically above 0.7, indicates a higher level of
reliability in the collected data. The formula for Cronbach’s Alpha is:

-
n ; %

1|l e

a =

@

where n is the number of survey items, 2 is the variance of each indi-
vidual item, and o2 is the total variance of all items combined.

3.2. Knowledge management and expert system development

An expert system is a kind of artificial intelligence program which
leverages either a predetermined set of rules or a repository of human
expertise, known as a knowledge base, to replicate the decision-making
ability of a human expert [1]. These systems are designed to address
complex problems by reasoning a knowledge repository, typically
encoded in the conditional statements form (if-then rules), rather than
relying on conventional procedural programming paradigms. The main
components of an expert system include 1) a knowledge database, 2) an
inference engine, and 3) a user interface [2]. The outline of the imple-
mented steps to initialize the expert system is depicted in Fig. 2 and
discussed in more detail in the following subsections.
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3.2.1. Building knowledge repository

A knowledge repository is a centralized system designed to collect,
manage, and share valuable insights, best practices, and expert knowl-
edge. It organizes and stores information in a structured manner, making
it easily accessible for users who need it to make informed decisions
[13]. This repository ensures knowledge continuity, preventing loss
when team members leave, and fostering a culture of continuous
learning and improvement. Within the construction sector, a knowledge
repository holds significant value because the sector relies heavily on
experience, best practices, and lessons learned. Such a repository en-
ables project teams to quickly access essential information, reducing the
chances of repeating past mistakes, streamlining workflows, and
enhancing project outcomes. As expert insights often come with un-
certainties due to subjective interpretation, incomplete data, and vary-
ing contexts, it’s crucial to apply a method that effectively builds the
knowledge database while addressing these uncertainties. Rough Set
Theory (RST) effectively handles uncertainties by enabling data analysis
with imprecise boundaries [3,28]. Thus, this method was selected to
establish the knowledge database for the project planning and control
system. The following subsections explore the details of the RST
approach.

Rule Generation Using Rough Set Theory (RST)

Rough set theory, proposed by [35], is a key component of inter-
pretable machine learning. It plays a vital role in artificial intelligence
research, particularly in the classification, knowledge discovery, data
mining, and pattern recognition domains [17]. The core principles and
implementation processes of RST are outlined below:

Concept 1: Information system

In RST, a dataset is structured within an information system table
wherein each column represents an attribute, such as a variable, and
each row corresponds to an object or case. Formally, a dataset comprises
a pair denoted as S = (U, A), where U is a finite set of objects and A is a
finite set of attributes. The attribute sets are split into condition attri-
butes (C) and decision attributes (D). Thus, any information system
structured as S = (U,A = CUD) becomes a decision system, where D =
dand d ¢ Crepresent the decision attribute. Table 1 presents an example
of an information system table that includes five functionalities of
planning and control systems as condition attributes (F1 to F5), along
with two planning methods, LPS and 4DBIM, as decision attributes. The
table also incorporates ten objects (O1 to O10), representing expert
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Fig. 2. Overview of the conducted steps to initialize the expert system.
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Table 1
Example of an information system table.

Objects F1 F2 F3 F4 F5 Planning methods
o1 1 0 3 4 4 4DBIM
02 3 2 4 1 3 LPS
03 4 1 3 0 2 LPS
04 0 1 4 3 3 4DBIM
05 0 1 3 3 3 LPS
06 3 1 4 1 4 LPS
o7 4 0 3 0 3 LPS
08 1 0 3 4 4 4DBIM
09 3 1 4 1 4 LPS

010 0 1 3 3 3 4DBIM

opinions on the level of support of each functionality by the planning
methods. For instance, O1 indicates Expert 1’s view on the level of
support provided by the 4DBIM for functionalities F1 to F5. The values
0 (without support) to 4 (very high support) illustrate a Likert scale for
the level of support of each functionality by the planning methods.

Concept 2: Indiscernible relation

For any subset, B C C, an equivalence relation denoted as IND(B) is
defined in Eq. (2), known as the B-indiscernibility relation.

IND(B) = {(x,x) € U* : Va € B,a(x) = a(x) } (2)

If (x,x') € IND(B), then x and x are objects that are indiscernible
based on the attributes in B.

In the information system presented in Table 1, objects O6 and 09
are indiscernible concerning the recorded attributes and therefore
comprise an equivalence class. Similarly, objects O5 and O10 also
constitute an equivalence class. However, these objects fall into different
decision classes (LPS, 4DBIM). The information system can be sum-
marised in terms of the following equivalence classes:

Concept 3: Lower and upper approximation

Two crisp sets referred to as lower and upper approximations of a
given set X concerning IND(B) are defined in the approximation space.

BX = {x:IND (B) C X} 3)

BX={x:IND (B)nX # @} @)

BX and BX represent the B-lower and B-upper approximations of X,
respectively. The B-lower approximation includes objects that are
certain to be in X, whereas the B-upper approximation includes objects
that may be in X. The difference is known as a boundary of X in U.

BN(X) = BX-BX (5)

The set X is called rough if BN(X) # @ and crisp otherwise.

Considering the example, the decision classes of LPS and 4DBIM
objects are rough sets because they cannot be precisely defined using a
single set of equivalence classes. Instead, they are characterized by
upper and lower approximations. For instance, the decision class LPS
can be outlined through the equivalence classes in which all objects
belong to the LPS decision class, which forms the lower approximation
(i.e., equivalence classes E2, E4, E5, and E7). Alternatively, it can be
described by the equivalence classes containing at least one object
classified as LPS, constituting the upper approximation (i.e., E2, E3, E4,
E5, and E7), as shown in Fig. 3.

Concept 4: Core and reduct of attributes

If the number of equivalent classes formed by the attribute set A is
the same as that formed by — a;, where a € A, then q; is redundant.
Otherwise, q; is indispensable in A. In Rough Set Theory (RST), the
concept of a “reduct” is fundamental to feature engineering. A reduct
refers to a minimal subset of attributes that preserves the same classi-
fication ability as the full attribute set. It is derived from the dis-
cernibility matrix using the discernibility function. By identifying and
removing redundant or non-essential attributes, the reduct simplifies the
dataset without compromising decision-making accuracy. This process

Automation in Construction 173 (2025) 106066

Lower approximation:

E2, E4, E5, E7

LPS / 4DBIM

El,E6 4DBIM

Fig. 3. Lower and upper approximation for the example.

not only streamlines the connection between input data and the condi-
tions necessary for decisions but also enhances computational effi-
ciency. As a feature selection technique, the reduct improves
interpretability while reducing complexity. Finding a reduct, however,
is an NP-hard problem, making it computationally difficult to discover
all minimal reducts. To address this, algorithms like genetic reducers
and Johnson reducers can be used to approximate the optimal reduct by
iteratively selecting attributes that maximize the dependency degree,
which reflects the classification power of the feature set. In this study,
the genetic reducer was employed to compute reducts [6,17].

Another fundamental principle in RST is the concept of the “core”
which is defined as the common portion of all reducts. For a given subset
B C A, the core of B represents the set of attributes within B that are
indispensable. The following equation embodies the connection be-
tween the core and reducts concepts.

Core(B) = NRED(B) (6)

where RED(B) is the set of all reducts of B.

Based on the equivalence class representation in Table 2, the dis-
cernibility function can be constructed by first developing a dis-
cernibility matrix that specifies the attributes of the different
equivalence classes. The discernibility matrix for the example is shown
in Table 3. It should be noted that the discernibility matrix is symmetric;
for example, the entries for E1-E2 and E2-E1 are identical, so only one-
half of the matrix needs to be considered. As shown in the highlighted
column in Table 3, the entry for E2-E2 is empty (@) since, naturally, the
equivalence class E2 cannot be distinguished from itself. The entry for
E2-E3 involves a different decision and includes attributes F1, F3, F4,
and F5, for which differing values are observed between equivalence
classes E2 and E3; for instance, F1 is 3 for E2, while it is O for E3. The
entry for E2-E4 is also empty because equivalence classes resulting in the
same decision do not require further discernment. The rest of the matrix
is constructed similarly.

The minimal information required to discern E2 from all other ob-
jects with different decisions can now be expressed as a discernibility
function:

fr2(F1,F2,F3,F4,F5) = (F1 OR F3 OR F4 OR F5) AND (F1 OR F4 OR F5)

To satisfy the condition for this function to be true, it is essential that
at least one attribute from each E2-related entry within the discernibility

Table 2
Equivalence classes of the information system.

Equivalence classes F1 F2 F3 F4 F5 Planning methods

El = {01, 08} 1 0 3 4 4 {4DBIM}

E2 = {06, 09} 3 1 4 1 4 {LPS}

E3 = {05, 010} 0 1 3 3 3 {LPS, 4DBIM}
E4 = {02} 3 2 4 1 3 {LPS}

E5 = {03} 4 1 3 0 2 {LPS}

E6 = {04} 0 1 4 3 3 {4DBIM}

E7 = {07} 4 0 3 0 3 {LPS}
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Table 3
Discernibility matrix for the example.
El E2 E3 E4 ES E6 E7
El %)
E2 F1,F2,F3, o
F4
E3 F1,F2,F4, Fl1,F3, %)
F5 F4, F5
E4 F1,F2,F3, (%) F1, F2, %]
F4, F5 F3, F4
E5 F1, F2, F4, [%] F1, F4, (%] 4]
F5 F5
E6 (%) F1, F4, F3 F1,F2, F1, F3, %]
F5 F4 F4, F5
E7 F1,F4,F5 o F1, F2, %) %) F1, F2, @
F4 F3, F4

matrix is included. Consequently, the function can be simplified to:

fe2(F1,F2.F3.F4,F5) = (F3 AND F1) OR (F3 AND F4) OR (F3 AND F5)

which reflects the three reducts: { F3,F1}, {F3,F4}, and {F3,F5}.

It is important to note that identifying all reducts is an NP-complete
problem [48]. Nonetheless, several approximation algorithms, such as
greedy algorithms [27] and genetic algorithms [51], have been devel-
oped to facilitate the search for reducts. In this study, a genetic algo-
rithm was employed to compute the reducts.

Concept 5: Decision rules

Rule generation is a crucial step derived from reduct computation in
RST. Decision rules capture the knowledge extracted from the data and
typically take the form: r: IF C THEN D. where the condition (C) is a
conjunction of attribute-value pairs, like a3 = v; Aaz = v2, which
specify the attribute values that define a particular condition. The de-
cision (D) indicates the value associated with the decision attribute, such
asd =vy. These rules serve as a structured representation of knowledge,
which facilitates decision-making by mapping conditions to specific
outcomes.

Considering the reducts {F3, F1}, {F3, F4}, and {F3, F5} for
discerning equivalence class E2 in the example, the resulting rules based
on the attribute values would be:

e R1: IF F3 (4) AND F1 (3) THEN LPS
e R2: IF F3 (4) AND F4 (1) THEN LPS
e R3: IF F3 (4) AND F5 (4) THEN LPS

Rule evaluation

Rule evaluation is essential for assessing the accuracy, reliability,
and usefulness of generated rules. It helps validate the rules to ensure
they accurately reflect data relationships. By doing so, rule evaluation
ensures that extracted knowledge is reliable and practical for informed
decision-making. There are different measures for rule evaluation,
including support, coverage, accuracy, and p-value. In this research,
support, accuracy, and p-value were preferred as measures for rule
evaluation. These three metrics offer comprehensive insights into the
significance and applicability of rules, making coverage unnecessary as
it doesn’t add much beyond what others already reveal. Therefore,
coverage was not included in the evaluation. Support measures how
many instances meet the conditions of the rule. Left-hand side support
(LHS support) counts the number of instances that satisfy the conditions
in the IF part of the rule, while Right-hand side support (RHS support)
measures the instances that meet the specified classes in the THEN part
of the rule. The predictive efficacy of a rule is reflected in its accuracy, a
metric determined through the computation of support values. More
precisely, the following formula calculates a rule’s accuracy:

support (rule) pys

support (rule) @

accuracy(rule) =
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Moreover, the p-value is a measure that evaluates the statistical
significance of the generated rules in the context of rule evaluation.
Garbulowski, et al. [17] adopted the hypergeometric distribution to
compute these p-values, a method that assesses the representation of
rule support relative to the total number of objects. A p-value less than
0.05 is considered acceptable, indicating that the rule is statistically
significant, which ensures that only meaningful rules are included in the
model. Eq. (8) depicts the calculation of the p value.

PX=r)= % (8)

where r is the RHS support of the rule, [ is the LHS support of the rule.
The total number of objects that align with the rule’s decision class d is
denoted as t;, while t; indicates the number of objects belonging to
decision class(es) other than the one targeted by the rule. The total
number of objects within the dataset is depicted by T.

Table 4 summarizes the evaluation metrics for the rules generated
from the equivalence class E2 in the example.

The first rule, R1, corresponds to the condition part of three objects
in Table 1, resulting in a left-hand side support of 3. Additionally, R1
aligns with the decision part of these same three objects in Table 1,
giving it a right-hand side support of 3.

Among the three objects that satisfy the IF-part of rule R1, all three
also belong to the decision class specified in the THEN-part (i.e., the LPS
decision class). Consequently, the rule’s accuracy is 1.0. Furthermore,
according to Eq. (8), the calculated p-value for this rule is 0.16.

RST Implementation Using R.ROSSETA

This study used the R.ROSETTA package in the R programming
language to implement rough set theory. R.ROSETTA is an advanced
toolkit designed to facilitate the entire spectrum of data mining and
knowledge discovery processes [17]. It is an extension of the original
ROSETTA system, augmenting its functionality, accessibility, and flexi-
bility. Notably, R.ROSETTA specializes in developing and analyzing
rule-based classification models, encompassing features such as data
preprocessing, discretization, and reduct computation [17]. For reduct
computation, a Genetic algorithm was utilized, which excels in identi-
fying minimal attribute sets that retain essential information. R.
ROSETTA’s robust analytical capabilities enable the generation of
effective decision rules and filters according to rigorous evaluation
metrics, which offers a reliable platform for extracting insights from
uncertain data.

Implementing the Inference Engine

The forward chaining approach was employed for implementing the
inference engine and rule activation. Rule activation approaches include
forward chaining and backward chaining [4]. Forward chaining begins
with available facts and applies inference rules to derive new facts until
a conclusion is reached. In contrast, backward chaining starts with a
goal and works backwards to identify the supporting facts. Forward
chaining was chosen for this study due to its ability to derive conclusions
iteratively by applying rules based on existing data [4]. Pyke was
selected for implementing the inference engine with the forward
chaining approach. It is a Python knowledge engine that provides a logic

Table 4
Rule assessment results for the generated rules in the example.
ID Rules RHS LHS Accuracy p-
support support value
IF F3 (4) AND F1 (3)
Rl THEN LPs 3 3 1.0(3/3) 016
IF F3 (4) AND F4 (1)
R2 " THEN LPs 3 3 1.0(3/3) 016
IF F3 (4) AND F5 (4)
R3  rHEN LIPS 2 2 1.0(2/2) 033
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programming framework and supports knowledge-based inference
through rule-based programming. Users are empowered to define rules
and facts, making it easier to create decision-making programs that rely
on logical conditions [16]. This made Pyke ideal for implementing for-
ward chaining in this study, as it facilitated structured rule activation
and data-driven reasoning processes. Pyke starts with a knowledge base,
which consists of a set of facts and rules. Facts in this research are the
user requirements in terms of functionalities and will be collected
through the system’s interface, whereas rules are conditional statements
that indicate what conclusions can be inferred from what facts.

To perform forward chaining, Pyke finds rules whose “if clause
matches its list of known facts. When a rule’s conditions are met, It
activates the rule, which adds the facts in the “then” clause of the rule to
the existing list of known facts. These newly added facts can then trigger

other rules with matching “if clauses, continuing the chaining process
to any depth. In this way, Pyke links the “then clause of one rule to the

“if" clause of the next, progressively drawing logical inferences from the
data. Pyke effectively manages the flow of rule activation, ensuring that
rules are fired in a logical sequence, which allows for efficient knowl-
edge discovery and reasoning [16].

It is worth noting that although the implemented Pyke engine initi-
ates forward chaining and typically activates rules in a logical succes-
sion, the activation process in this study is linear and straightforward as
the generated rules follow a flat structure and each rule is processed
independently in a linear sequence, without triggering or relying on
other rules. Rules are evaluated one by one, simplifying execution
without the need for cascading activations.

Following the deployment of the inference engine, a Python script
was formulated to parse the outcomes of the inference process and
construct a part of the input dataset for the mathematical model and
optimization purposes, which will be explained in the next sections.

User Interface

A user interface plays a crucial role in bridging the gap between end
users and technical systems, enhancing user experience by providing an
intuitive platform for interaction. In this study, a user interface was

MECPS-DSS

.- 1@

Ceanr’Gan @
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designed to gather user requirements effectively and facilitate commu-
nication between users, system engineers, and knowledge engineers.
One of its roles is to collect project team requirements for a planning and
control system. Also, by reasoning through the inference engine and
optimizing via a mathematical model, the interface visually displays the
results of the suggested planning methods and control metrics across
three schedule levels. Fig. 4 depicts the configuration of the interface
designed for the Multi-level Planning and Control System Decision
Support System (MPCS-DSS). Notably, the interface comprises four
primary components. The initial page outlines the key objectives of the
DSS and the requisite data. Subsequently, the second component en-
deavors to gather project-related information, while the third segment is
dedicated to collecting functional requirements, based on Sheikh-
khoshkar, et al. [42], Sheikhkhoshkar, et al. [43,45] and Sheikh-
khoshkar, et al. [44], from the project team for a planning and control
system, serving as the primary input data for the DSS. Finally, the last
component demonstrates the outcomes proposed by the DSS.

3.2.2. Mathematical model for the results’ optimization

This section introduces a multi-objective mathematical model
developed to optimize the results of DSS and suggests a multi-level and
integrated project planning and control system for construction projects.
The objective is to minimize the number of planning methods and
control metrics at each schedule level for more practical implementation
while satisfying the maximum project team’s requirements. The
following subsection outlines the relevant sets, indicators, parameters,
decision variables, objective functions, and constraints used in the
mathematical model.

Sets and Indices:

i: index for the planning method, i € [1..1]

j: index for the control metric, j € [1..J]

I: index for the schedule level, 1 € [1..L]

f: index for the functionalities, f € [1..F]

Input parameters:

P = number of planning methods

s m s WS -
MePS-DSS

Please provide some information about your project:

Project Name

Project Type

Form of Contract
Level of Complexity
Level of Uncertainty

Location of Construction Site

Required
Functionalities

Please provide some information about importance of
the below requirements for your project:
Coordinating and integrating suppliers, materials, and

construction site processes to optimize the flow of resources
and information

MEPS-DSS
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with various stakeh

O Not imponant O veryLow Olow  Owmigh O very High
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y delays and
on reducing production cycle time
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Using digital tools and technologies to enable real-time
collaborative project planning and tracking on construction
site
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Go to questions

©

Download implementation guideline

Fig. 4. Configuration of the designed interface for MPCS-DSS.
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C = number of control metric

L = number of schedule levels

F = number of functionalities

Mg;: level of support for functionality f in planning method i, Mg =
[0,1,2,3,4]

Kj: level of support for functionality f in control metric j, Ky
[0,1,2,3,4]

Sp: level of support for functionality fin schedule level I, Sq =
[0,1,2,3,4]

Ajj: connects planning method i to control metric j. Aj = 1 means
that the planning method i mapped by control metric j.

B;;: connects planning method i to schedule level . B; = 1 means
that the planning method i matched with schedule level L

Cji: connects control metrics j to schedule level L Cj; = 1 means that

the control metric j matched with schedule level L.
W;: A weight to evaluate the coverage of the suggested planning
methods by DSS for user requirements in terms of functionalities.

F
=1
Vj: A weight to evaluate the coverage of the suggested control met-
rics by DSS for user requirements in terms of functionalities.

F
Vi=> Kp (10)
f=1

U;: A wight to evaluate the coverage of the suggested schedule levels
by DSS for user requirements in terms of functionalities.

F
U=Y 5 an
f=1

Output variables:

Binary decision variable X;:

X; = 1 If planning method i is decided to be deployed
X; = 0 Otherwise

Binary decision variable Yj:

Y; = 1 If control metric j is decided to be deployed

Y; = 0 Otherwise

Objective Functions:

Z, = max (Zwi.xi + Z\G.Y,-)) (12)
i J
Zg = min (lel> (13)

Z3 = min <Zj¥}> a4

Egs. (12)-(14) aim to maximize project team requirements in terms
of functionalities while minimizing the number of planning methods and
control metrics at each level of schedule.

Constraints:

I
velJ,) (AjxX)-Y >0 (15)
i=1

Eq. (15) ensures that if a control metric is selected, then at least one
planning method that supports this control metric must also be selected.

1
Vi€ [1.L],> (BuxXi) > U (16)

i=1

Eq. (16) demonstrates that deploying a particular schedule level
requires the simultaneous deployment of at least one planning method
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corresponding to that level.

J
Vie[l.L,Y  (CixY) > U 17)
j=1

Eq. (17) specifies that once a particular level of schedule has been
designated for deployment, at least one corresponding control metric for
that level must be deployed.

L
Vie[l.d.) BixU > X (18)
=1
Eq. (18) enforces that if a schedule level is active, at least one
planning method that is applicable to this level must be selected.

L
Vie1J.) CixU>Y; 19)
=]

Eq. (19) enforces that if a schedule level is active, at least one control
metric that is applicable to this level must be selected.

The selection of appropriate planning and control systems for pro-
jects is influenced by a range of external factors, including project type,
scale, contract type, and the project team’s expertise in planning and
control systems. These variables contribute to the complexity of the
decision-making process. To address this complexity, this study utilizes
Pareto front plots to present the outcomes of the mathematical model.
This approach offers project teams the flexibility to choose solutions that
best meet the specific requirements of diverse project conditions. A
Pareto front chart is a graphical tool used in multi-objective optimiza-
tion to display a set of feasible solutions. It identifies options where no
single solution is superior in all aspects, highlighting the trade-offs be-
tween competing objectives. This helps decision-makers find a balance
between conflicting goals by illustrating where improvements in one
objective may require sacrifices in another.

The mathematical model was executed using Python 3.11, and the
Gurobi linear solver, under academic licence.

3.2.3. Solution evaluation and case project application

In this study, two approaches were adopted to assess the usability
and practicality of the solution. First, a case study was conducted within
the IsoBIM project framework to showcase the practicality of the deci-
sion support system and mathematical model in proposing a multi-level
planning and control system for a renovation project. Second, quanti-
tative performance measures from satisfaction surveys, as recommended
by Peffers, et al. [36] were used for a general evaluation. Accordingly, a
team of five experts along with the research team evaluated the usability
of the proposed solution and its integration into current project planning
and control processes. Through semi-structured interviews, the partici-
pants shared their functional requirements for a planning and control
system using the user interface. They then assessed the DSS using a
Likert scale, considering the recommendations provided by the tool. To
facilitate this process, five dimensions of evaluation were considered,
including ease of use, interface quality, comprehensiveness, response
time, and decision quality improvement. The specifics of the evaluation
criteria are detailed in Table 5. Such end-user survey for evaluating a
DSS or framework was also considered in the studies by Dikmen, et al.
[12], Barkokebas, et al. [9], and Sheikhkhoshkar, et al. [47].

4. Results and analysis
4.1. Data collection efforts

Using a purposive sampling approach, a targeted cohort of 45 in-
dividuals was identified for this study’s data collection through a thor-
ough review of LinkedIn profiles, peer-reviewed articles, and various
online repositories. Following this identification, invitations to partici-
pate were sent via email and direct messaging channels. Of these, 23
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Table 5
Details of the evaluation criteria.

Evaluation criteria Objective

Assess how easy it is for new users to learn and for all

Ease of use

users to operate the system

Assess the extent to which the system includes all
Comprehensiveness relevant data, variables, and functionalities necessary to

support thorough and informed decision-making
Determine whether and how much the DSS improves the
quality of decisions compared to pre-implementation
Evaluate the intuitiveness, clarity, and aesthetic of the
user interface.

Measure the time it takes for the system to provide
outputs after inputs are given.

Decision quality
improvement

Interface quality

Response time

individuals (51 % of the identified sample) responded affirmatively. The
respondents were subsequently scheduled for interviews, which
included participation from both industry and academic experts. These
interview sessions collectively contributed approximately 23 h of valu-
able insights.

To ensure data saturation and validate the sample size, numerous
studies in construction management have advocated and utilized pur-
posive sampling, typically selecting sample sizes varying from 5 to 25
[26,50,53]. Moreover, the 23 interviews were conducted with experts
possessing specialized knowledge in various planning methods and their
applications. As the target population of these experts is relatively nar-
row worldwide, the 23 interviews provide a strong and representative
sample of the targeted population. The details of the participants are
provided in Table 6.

This study employs a structure, depicted in Fig. 5, which synthesizes
various planning methods and control metrics across different schedule
levels to suggest multi-level and integrated project planning and control

Table 6
Profile of Interviewees.
Expert Type of Role Organization Years of
ID Expert Type Experience in
Project Planning
and Control
IE1 Department head General 11-15 years
contractor
IE2 Natior?al director General Over 15 years
of projects contractor
IE3 Process manager General 1-5 years
contractor
IE4 Sen%or innovation  General 6-10 years
engineer contractor
IES R&D manager General 11-15 years
contractor
Industry General
1IE6 experts Lean director Over 15 years
contractor
1IE7 Scheduler Client Over 15 years
IE8 Project manager Client Over 15 years
1IE9 Project manager Client Over 15 years
IE10 Project manager Consultant Over 15 years
IE11 Project manager Consultant Over 15 years
IE12 Superintendent Consultant Over 15 years
1E13 Project manager Consultant 11-15 years
E14 Manager - Software 6-10 years
customer success vendor
AE1 Professor University 11-15 years
AE2 Professor University 11-15 years
AE3 Professor University Over 15 years
AE4 Academic Professor University 6-10 years
AES5 experts Professor University 11-15 years
AE6 Senior lecturer University 6-10 years
AE7 Lecturer University 6-10 years
AE8 Researcher (PhD University 6-10 years
student, post-doc)
AE9 Researcher (PhD University 6-10 years

student, post-doc)
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Fig. 5. Main elements of multi-level framework.

systems. The structure is underpinned by the functionality concept,
which acts as a common principle among planning methods, control
metrics, and scheduling levels to facilitate their harmonious integration.
More information about defining, extracting and analyzing the func-
tionalities is elaborated in [42,45,46].

To operationalize this structure, eight commonly used planning
methods in construction for different project types [42] were examined,
including advanced work packaging (AWP), 4D building information
modelling (4DBIM), critical chain project management (CCPM), critical
path method (CPM), last planner system (LPS), location-based man-
agement system (LBMS), linear scheduling method (LSM), and takt time
planning (TTP). Furthermore, the study considered nine control metrics
frequently referenced in the academic literature and practical guidelines
[20,45]: cost performance index (CPI), schedule performance index
(SPI), milestone variance (MV), percent planned complete (PPC),
required level (RL), tasks made ready (TMR), capacity to load ratio
(CLR), location risk index (LRI), and task anticipated (TA). The frame-
work also incorporates three schedule levels comprising short-term,
mid-term, and long-term. Regarding the functionalities, 19 main

Table 7
Incorporated functionality concepts in multi-level planning and
control systems.

D Functionalities

F1 Collaboration management

F2 Commitment planning

F3 Communication management
F4 Conflict management

F5 Constraint management

F6 Contract and delay management
F7 Integration management

F8 Learning and knowledge sharing
F9 Risk management

F10 Process and flow management
F11 Project performance management
F12 Reliability management

F13 Resource management

F14 Root cause analysis

F15 Safety and logistic management
F16 Supply chain management

F17 Visualization

F18 Waste management

F19 Real-time site monitoring
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concepts of functionalities were considered, drawing upon prior
research conducted by Sheikhkhoshkar, et al. [43] illustrated in Table 7.
To enhance clarity and facilitate understanding for non-expert users, the
extended functionality concepts presented in Table 7 are further elab-
orated in Table A1, located in the appendix. It should be noted that these
detailed definitions of the functionalities were incorporated into the user
interface, serving as the user requirements in terms of the functionalities
for a planning and control system.

Utilizing these classifications, a relational diagram was developed, as
shown Fig. 6 to guide data collection and serve as a foundational
element of survey design for data-gathering purposes. The survey
questions were formulated to gather data aimed at identifying potential
connections between planning methods and control metrics, evaluating
the alignment of planning methods and control metrics across various
schedule levels, and assessing the degree of support offered by each
planning method, control metric, and schedule level for different
functionalities.

To cover all the necessary data for the connections between the
components in Fig. 6, six groups of questions needed to be addressed,
including:

. How well did each planning method align with each schedule level?

. Which schedule level is best suited for each control metric?

. Which planning method does each control metric align with?

. To what extent did each planning method support a specific
functionality?

5. To what extent did each control metric support a specific

functionality?
6. How much did each schedule level contribute to supporting a specific
functionality?

A WN =

During the interview process, experts’ opinions were assessed using a
Likert scale ranging from 0 (no support) to 4 (very high support).
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4.2. Data preprocessing efforts

Following the application of the IQR method in the data pre-
processing phase, the detected outliers were carefully investigated.
Given that some outliers could potentially contain valuable information
or represent errors, deliberate consideration was given to appropriately
address genuine outliers and anomalies before determining whether to
remove or replace them. Consequently, the real outliers were replaced
with the average responses for that specific record in the whole dataset
and for all classes. Fig. 7 indicates an example of detected outliers for the
last planner system and long-term schedule level data.

After handling outliers, SMOTE was employed to address the chal-
lenge of imbalanced data. Fig. 8 depicts the class distribution of the
imbalance dataset pre- and post-SMOTE augmentation.

To assess the reliability of the collected data, Cronbach’s « coeffi-
cient was computed for all classes of the dataset, including eight classes
for planning methods, nine classes for control metrics, and three classes
for schedule levels. Table 8 displays the computation results. Cronbach’s
a coefficient for all classes is more than 0.7. Therefore, the data derived
from the survey is considered reliable.

4.3. Building the knowledge repository

The Genetic reducer is utilized for reduct computation in the rule
generation process. A considerable number of outputs can be produced
from Genetic heuristics in R.ROSETTA [17], making it challenging to
interpret such models. To deal with this challenge, defining precise
thresholds was imperative to identify the most significant and valid rules
derived from the rule generation process. To this end, multiple criteria
were set, including a p-value threshold of less than 0.05, an accuracy
greater than 0.7, a minimum RHS and LHS support of five, and a
maximum rule length of eight. The outcomes of the rule generation
process and the construction of a knowledge repository employing
Rough Set Theory (RST) with R.ROSETTA are presented in Table 9. The
table contains the total number of generated rules for each category, the
number of rules that meet the thresholds, as well as the mean values of

Control_metrics
9

isMeasuredWith

isAdjustedTo

isAlignWith

Functionalities

isSupportedBy

Planning_methods
8

Schedule_levels
3

isSupportedAt

isMatchedWith

Fig. 6. Relational diagram of the main elements of the multi-level framework.
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Fig. 7. Detected outliers for the last planner system (LPS) and long-term level of schedule data.
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Fig. 8. Class distribution of the imbalance dataset before and after SMOTE implementation.

Table 8
Cronbach’s alpha for collected data.

Planning methods Control metrics Schedule levels

Class Cronbach’s Class  Cronbach’s Class Cronbach’s
Alpha Alpha Alpha
4DBIM 0.838 CLR 0.726 Long- 0.924
term
AWP 0.841 CPI 0.814 Mid- 0.897
term
CCPM 0.970 LRI 0.815 Short- 0.824
term
CPM 0.935 MV 0.715
LBMS 0.953 PPC 0.921
LPS 0.908 RL 0.774
LSM 0.949 SPI 0.707
TTP 0.929 TA 0.782
TMR 0.879

support, accuracy, and p-values associated with the generated rules.
Analysis of rule generation across planning methods, control metrics,

and schedule levels reveals differentiated functionalities’ support for

each class and their implications for knowledge databases and decision-
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making. Planning methods, with a significant generation of 39,977 rules
and 1753 meeting rigorous selection criteria (P < 0.05, accuracy >0.7,
support >5, length < 8), illustrate a multifunctional aspect, supporting a
broad spectrum of functionalities within the system. In contrast, the
control metrics class, generating only 463 rules with 80 meeting the
thresholds, reflects its inherently focused functionality. The relatively
low number of generated rules in this class is reasonable, as control
metrics are designed to support specific and limited aspects of project
control rather than multiple functionalities. Meanwhile, schedule levels,
generating 12,962 rules with 447 qualifying the selection criteria,
indicate a level of multifunctionality greater than control metrics.

The selected rules across all classes demonstrate high accuracy and
validity, essential for integrating them into a knowledge repository and
effective decision-making. Specifically, planning methods exhibit an
accuracy of 0.895, control metrics show a remarkable accuracy of 0.962,
and schedule levels maintain a strong accuracy of 0.935. These accuracy
levels, coupled with very supportive p-values and substantial LHS and
RHS support metrics, confirm the robustness and utility of the rules.

Table 10 depicts the rules information and distribution within the
subclasses of the planning methods class, detailing the specific methods
such as 4BIM, AWP, CCPM, CPM, LBMS, LPS, LSM, and TTP. Each
subclass demonstrates a robust distribution of essential rules that
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Table 9
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Performance evaluation of rules for the Genetic reduction method.

Class ——>»  Planning Methods Control Metrics Schedule Levels
Total number of rules 39,977 463 12,962
Selected rules statistics

Number of rules

considering thresholds

(P <0.05, accuracy 2 0.7, 1753 80 447

support (RHS & LHS ) > 5,

length<8)

Mean LHS support 10 12 13

Mean RHS support 9 11 12

Mean accuracy 0.895 0.962 0.935

Mean p-value 0.0065 0.00012 0.0306

Table 10
Rules information for the planning methods class.
Class —» 4BIM AWP CCPM CPM LBMS LPS LSM TTP
Total number of rules 5786 3899 5307 6427 5776 5259 4102 3421
Selected rules statistics

Number of rules
considering thresholds
(P <0.05, accuracy 20.7, 120 143 197 378 249 208 285 173
support (RHS & LHS ) >
5, length < 8)
Mean LHS support 10 10 9 13 9 10 9 9
Mean RHS support 9 8 8 11 8 9 8 8
Mean accuracy 0.893 0.865 0.943 0.852 0.911 0.887 0.916 0.893
Mean p-value 0.0062  0.010 0.0054  0.0013  0.0088  0.0052 0.0068  0.0083

effectively contribute to the knowledge repository, indicating a well-
rounded approach to capturing diverse functional requirements. This
distribution highlights that each subclass maintains a relatively consis-
tent spread of rules that meet the selection criteria, underscoring all
planning methods are included in the knowledge database.

The rule distribution is also relatively robust for subclasses of
schedule levels, as shown in Table 11. This distribution indicates that the
existing rules in each subclass hold a relatively compatible spread of
rules, ensuring that the necessary aspects of schedule levels are effec-
tively covered.

Conversely, the control metrics class displays fewer rules, as evi-
denced by the limited rules meeting the stringent criteria. This shortfall

Table 11
Rules information for the schedule levels class.

is consistent with the inherent nature of control metrics, which are
typically not multifunctional and are designed to measure specific as-
pects of projects. The limited rule count in this class illustrates a gap in
the coverage of control metrics, highlighting the need for further
research and development in this area to ensure that essential aspects of
project control are comprehensively addressed within the knowledge
repository.

Fig. 9 illustrates a visual representation of the interactions among
functionalities within each subclass of the knowledge database, depicted
through R.ROSETTA’s rule-based model visualization feature. This ho-
listic approach displays the entire knowledge repository as an interac-
tion network that organizes different subclasses and their respective

Class — Long-term Mid-term Short-term

Total number of rules 4254 5341 3367
Selected rules statistics

Number of rules,
considering thresholds
(P <0.05, accuracy 2 0.7, 107 99 241
support (RHS & LHS ) 2 5,
length<8)
Mean LHS support 13 12 15
Mean RHS support 12 11 13
Mean accuracy 0.939 0.944 0.921
Mean p-value 0.028 0.05 0.013

12
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(a) Planning methods class

Fig. 9. Visual representation of knowledge repository, (a) planning methods class, (b) schedule levels class, and (c) control metrics class, (d) rule visualization guide.

functionalities. This kind of visualization not only highlights the integral
network of interactions but can also be adjusted to emphasize the most
relevant co-predictive functionalities and their intensity levels in each
class. Additionally, Fig. 9 further supports our claim regarding the low
functionalities’ support by the control metrics class. It clearly shows
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that, compared to the planning methods and schedule levels classes, the
control metrics class supports only a limited number of functionalities.
This contrast underscores the multifunctional nature of the other two
classes, highlighting their broader applicational scope within the
knowledge database.
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Fig. 9. (continued).

Following the rule generation and validation process employing RST
methodology, a set of 2280 rules was formulated. These rules are stated
as individual statements or combinations of statements linked by “AND”
or “OR” conditions, classified into three distinct categories: planning
methods, control metrics, and schedule levels. The resulting database
functions as a knowledge repository for project planning and control
systems. Table 12 provides a sample of selected rules within each class.

To implement the inference engine using the Pyke engine, which
requires a knowledge database in its specific syntax, the syntax of the
generated rules had to be converted for compatibility with Pyke. A Py-
thon script was developed to handle this conversion efficiently. An
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example of the converted rule syntax is illustrated in Fig. 10, demon-
strating how the rules were adapted for Pyke’s framework.

The system’s inference engine utilizes a forward chaining approach,
which aligns with the flat rule structure observed in the knowledge base.
Since the rules are designed to directly map conditions to decisions
without engaging in complex inference chains, forward chaining effi-
ciently linearly processes these rules. The inference engine evaluates the
conditions and triggers the appropriate decisions immediately, consis-
tent with a flat structure. This straightforward reasoning process is well-
suited for the system’s rule-based design.
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Table 12
Filtered rules examples.

Rule LHS

support

Rule class

RHS
support

Accuracy

P-value

IF F1(1) AND F4
(1) AND F5(1)
AND F6(2) THEN
CPM
IF F11(2) AND
F12(3) AND F14
(3) AND F19(3)
THEN LPS
IF F4(3) ANDF13
(1) AND F19(3) 12
THEN 4DBIM
IF F2(2) AND F8
. (3) AND F10(3)

pli:gizgs AND F15(2) 12

THEN TTP

IF F2(2) AND F7

(2) AND F11(1)

AND F13(2)

THEN LBMS

IF F7(2) AND F8

(2) AND Fo(1)

AND F16(2)

THEN AWP

IF F2(2) AND F3

(1) AND F10(1)

AND F17(1)

THEN CCPM

IF F2(3) AND F10

(3) AND F12(1) 18

THEN PPC

IF F6(3) AND F7

(3) THEN MV

IF F5(3) AND F10

(1) AND F12(1) 13

THEN TA

IF F5(1) AND F10

(1) AND F11(1)

AND F12(2)

THEN CLR

IF F5(3) AND F10

(3) THEN TMR

IF F3(2) ANDF19

(3) THEN Short- 21

term

IF F8(2) AND F16

(3) AND F17(2) 14

THEN Mid-term

IF F6(3) AND F17

(1) AND F19(1) 13

THEN Long-term

14

11

12

16

12

15

Control
metrics

13

20

Schedule
levels

10

11

10

11

10

13

12

18

15

13

10

20

13

0.714

0.913

0.916

0.857

0.813

0.769

0.905

0.929

0.00360

3.58E-07

0.000274

4.02E-06

0.000274

7.05E-07

2.48E-08

3.49E-28

2.57E-22

1.14E-18

4.54E-11

1.79E-32

4.44E-07

0.00448

0.000383

IF F5(1) AND F15(2) THEN LBMS

IF F2(3) AND F8(3) THEN AWP

IF F5(2) AND F13(1) THEN CPM
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4.4. Case study and inference engine results

A renovation project targeting the campuses of the University of
Lorraine was considered as a case study to demonstrate the practicality
of the decision support system and mathematical model for suggesting a
multi-level planning and control system. This initiative is part of a sig-
nificant energy renovation project launched for the IUT Nancy-Brabois
campus. Over two years, the project seeks to refurbish four de-
partments and two workshops to enhance energy efficiency and foster a
more conducive learning environment. This endeavor aligns with
governmental initiatives aimed at reducing carbon emissions and
upgrading public building infrastructure, thereby emphasizing a
commitment to sustainability and the welfare of both students and staff,
while concurrently advancing academic excellence. The layout and an
overview of this case study are depicted in Fig. 11. It is worth noting that
this case study was selected due to the inherent planning complexity
associated with renovating educational campuses, where ongoing op-
erations must be maintained throughout the renovation process. Also,
effective stakeholder collaboration was required, given the involvement
of numerous parties, which necessitates precise coordination to achieve
project objectives. Furthermore, the project’s scale, encompassing
multiple buildings across the campus, demands a multi-level and
collaborative planning approach to ensure efficient management.

Various discussions with the project team revealed the importance of
adopting a systematic approach for planning and control of diverse as-
pects such as resources, workflows, logistical considerations, un-
certainties, and promoting collaboration and coordination among
subcontractors, among other relevant aspects. To systematically collect
the functional requirements for the case study concerning a planning
and control system, which will provide input data for the DSS, the
project team was asked to outline their functional requirements (based
on 19 functionalities) using a Likert scale ranging from 0 (not important)
to 4 (very important) via the designed interface.

Following collecting the project team functional requirements as
input data for the DSS and establishing the knowledge repository, the
inference engine was initiated and fired the rules that their conditions
were satisfied by the requirements, as illustrated in Fig. 12. Out of the
2280 rules stored within the knowledge database, 59 rules specifically
related to project planning methods, control metrics, and schedule levels
were activated and fired. Based on the fired rules, 4DBIM, TTP and LPS
are suggested for planning methods across all three schedule levels.
Moreover, MV, PPC, RL, and CLR are proposed as the control metrics
that align more with the project control requirements. This activation
highlights the dynamic capability of the inference engine to selectively
apply relevant rules based on the contextual demands of the project
team.

The following section presents the results of the mathematical model
to suggest the feasible and optimize solutions provided by the decision

Method_Fun.krb X

1 rule_142:
foreach

method.attributes_of ($F1, $F2, $F3, $F4, $F5, $F6, $F7, $F8, $F9, $F10, $F11, $F12, $F13, $F14, $F1S, $F16, $F17, $F18, $F19)

check($F5 == 1) & ($F15 == 2)

$message = "rule_142

assert

method.message($F1, $F2, $F3, $F4, $F5, $F6, $F7, $F8, $F9, $F10, $F11, $F12, $F13, $F14, $F15, $F16, $F17, $F18, $F19, $message)

rule_143:
foreach

method.attributes_of ($F1, $F2, $F3, $F4, $FS, $F6, $F7, $F8, $F9, $F10, $F11, $F12, $F13, $F14, $F1S, $F16, $F17, $F18, $F19)

check($F2 == 3) & ($F8 == 3)

$message = "rule_143 -

assert

method.message($F1, $F2, $F3, $F4, $FS, $F6, $F7, $F8, $F9, $F10, $F11, $F12, $F13, $F14, $F15, $F16, $F17, $F18, $F19, $message)

rule_144:
foreach

- The suggeted planning method is LBMS."

The suggeted planning method is AwP."

Fig. 10. (a) Examples of the generated rules’ syntax through applying rough set theory using R.ROSETTA, (b) examples

method.attributes_of($F1, $F2, $F3, $F4, $F5, $F6, $F7, $F8, $F9, $F10,
check($F5 == 2) & ($F13 == 1)
$message = "rule_144 - The suggeted planning method is CPM."

assert

method.message($F1, $F2, $F3, $F4, $F5, $F6, $F7, $F8, $F9, $F10, $F11,

$F11, $F12, $F13,

$F12, $F13, $F14,

$F14,

$F15,

$F15,

$F16,

$F16,

$F17,

$F17, $F18,

$F18, $F19,

$F19)

$message) (b)

applying a Python script, readable in Pyke engine.
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of the converted rules’

syntax through
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Fig. 11. Outline and layout of the case study.

support system for the case study.

4.5. Mathematical model results

Based on the collected data and the functional requirements outlined
by the project team in the case study, the mathematical model was
employed to propose feasible and optimized solutions provided by the
DSS across various scheduling levels.

Fig. 13 illustrates the input data feasible and best-fitted scenarios,
highlighting potential planning strategies and corresponding control
metrics across various schedule levels for the case study. Specifically,
Fig. 13 (a) displays the input data derived from parsing the information
of activated rules and expert knowledge. Fig. 13 (b) outlines multiple
scenarios, showcasing possible planning strategies and their respective
control metrics at different schedule levels. Lastly, Fig. 13 (c) presents
feasible and optimal solutions via Pareto front charts, representing the
findings for the case study graphically. As previously mentioned, the
project team selects the most suitable solution for each scheduling level,
taking into account both project-specific factors and relevant external
conditions. The project team provides the following rationale for their
selection:

Scenario 1 with Z1 = 19 at the long-term level was chosen as the best
fit for the case study, employing two planning methods: 4DBIM and takt
time planning (TTP), along with a control metric: milestone variance
(MV). This scenario was selected because it differed not much in terms of
Z1 values from other scenarios while offering a more practical approach
to implementation due to its reduced number of planning methods and
control metrics. The use of 4DBIM provides a comprehensive visuali-
zation of the project timeline, while TTP ensures steady flow and
progress. MV offers precise tracking of schedule efficiency and critical
milestones, which is required for long-term windows. The scenario’s
advantage is its ease of use and reduced complexity, making it ideal for
long-term schemes where maintaining focus and adaptability over time
is crucial.

In the mid-term schedule level, takt time planning (TTP) and last
planner system (LPS) were selected for planning methods, while location
risk index (LRI) and task made ready (TMR) were considered as control
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metrics based on the project circumstances and external factors. This
integration enables a more thorough and practical approach to project
planning and control. TTP enhances the predictability and synchroni-
zation of work across the project, standardizing the work rhythm and
facilitating efficient resource management. Complementing this, LPS
involves team members in the planning process, ensuring plans are
realistic and achievable through its collaboration. This adaptability is
vital for mid-term planning, where project conditions can change
rapidly. LRI aids in early risk identification, allowing for strategic
resource allocation and effective risk mitigation. Similarly, TMR gua-
rantees that all prerequisites for upcoming tasks are complete, thus
enhancing task execution and minimizing potential delays. Together,
these methods and metrics create a robust framework that significantly
improves the effectiveness of lookahead planning by ensuring consistent
workflow, collaborative planning, meticulous risk management, and
thorough preparation.

In short-term planning, takt time planning (TTP) and last planner
system (LPS) were again selected as the planning methods, com-
plemented by percent planned complete (PPC) and capacity to load ratio
(CLR) as control metrics. By aligning the work sequences with the
overall project schedule, TTP optimizes workflow efficiency, preventing
delays between tasks in tightly coordinated renovation projects. This
approach supports the weekly work plan by establishing a clear,
consistent pace that all team members can follow, ensuring tasks are
completed within designated time slots. LPS augments the functionality
of TTP by promoting a collaborative environment where daily and
weekly work plans are developed through consensus among all project
stakeholders. This system facilitates daily coordination by enabling
immediate adjustments to the plan based on real-time feedback from the
ground, ensuring that the project responds adaptively to any challenges
or changes. This level of coordination is vital in renovation projects,
where unexpected issues often arise and require quick decision-making
and flexibility.

Furthermore, PPC as a control metric provides immediate feedback
on the progress against the weekly plans, promoting a cycle of contin-
uous improvement in planning accuracy and execution. CLR, on the
other hand, ensures that the capacity of resources matches the demand
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Input data (User requirements in terms of functionalities)

FL F2 F3.F4 F5 F6:F7 F8 F9

F10

F11: F12 ;: F13 : F14 : F15: F16 : F17 ;: F18 ;| F19

Value 2i3:2i{2i3

3

2 3 4 3 2 3

Inference Engine

Dynamic data for the mathematical
model: Relationship between planning
methods, control metrics and schedule
levels with functionalities, extracted
through parsing the information of the
activated rules [

=

3 3333333333333 i A A aaa aa a E a E

Total

Planning and control

TTP

rules fired: 59

system suggestions:

4DBIM

RL
PPC
MV

LRI

Mid-

LPS

term

Long-term

Shor

rule_70 -
rule_1092
rule_1124
rule_2007
rule_2102
rule_2256
rule_1686

rule_1674
rule_1137
rule_1961
rule_1713
rule_1098 -

t-term

The suggeted planning method is 4DBIM.

- The suggeted planning method is LPS.

The suggeted planning method is LPS.

The required schedule levels is Mid-term.
The required schedule levels is Long-term.
The suggested control metrics is PPC.

The suggeted planning method is TTP.

The suggeted planning method is TTP.

The suggeted planning method is LPS.

The required schedule levels Short-term.
The suggeted planning method is TTP.

The suggeted planning method is LPS.

i e
S

Fig. 12. Rule activation process through running the Pyke knowledge engine.

of the daily and weekly schedules, preventing overextension or under-
utilization of the workforce and materials. Together, TTP and LPS not
only support the structuring of weekly work plans but also enhance daily
coordination and operational efficiency, crucial for the dynamic and
unpredictable nature of renovation projects.

The overview of the optimized planning and control system for the
case study, presented in Fig. 14, demonstrates a shift in perspective to-
wards considering the project planning and control approach as a sys-
tem. This study supports moving beyond conventional project planning
methods to embrace a multi-functional system designed and imple-
mented at various levels. By adopting this comprehensive approach, the
study aims to revolutionize traditional thinking about project planning
and control, emphasizing the need for a holistic and integrated system
that addresses the complexities and dynamics of construction projects.
This multi-level and integrated approach ensures more effective man-
agement and oversight, facilitating the achievement of project objec-
tives through enhanced coordination and efficiency.

Regarding the engineering insights, this study adopts a data-driven
and knowledge-based approach through a comprehensive and inte-
grated process that leverages the mixed-method methodology to extract
and utilize the expertise of construction professionals. By combining
qualitative insights from industry experts with quantitative data anal-
ysis, the research develops a robust decision support system. This
approach ensures that the practical experiences and knowledge of en-
gineers are systematically captured and applied, leading to more accu-
rate, reliable, and adaptive project management solutions.

17

To successfully implement the suggested solutions, it is critical to
meticulously plan the process and workflow for integrating the proposed
methods at each scheduling level, identify the responsible parties,
specify the necessary reference and exchange information, and detail the
required steps and activities. These essential elements for the seamless
adoption of the suggested system, fall outside the scope of this research.
To provide a practical guide on implementing the proposed system by
DSS in practice, a methodological guideline will be developed in a
subsequent step. This guideline will aim to ensure that the theoretical
strategies are effectively translated into actionable, efficient practices
within project management environments.

4.6. General evaluation of the proposed DSS

Although the application of the DSS to the case study has indicated
its applicability, for a more comprehensive and general assessment, the
DSS’s overall performance was evaluated by experts using a Likert scale.
This evaluation focused on several criteria, including ease of use,
comprehensiveness, decision quality improvement, interface quality,
and response time. As depicted in Table 13, user satisfaction across all
criteria ranged between 3 and 5 out of 5. Experts generally recognized
the practicality and user-friendliness of the MPCS-DSS, highlighting its
consistent outputs and its role in augmenting decision-making processes
within project teams concerning the selection of planning and control
systems. However, limitations have been raised about the knowledge
database’s comprehensiveness. The knowledge repository was constru
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Input data for the mathematical model

Dynamic data: Relationship
between planning methods,
control metrics and schedule
levels with functionalities,
extracted through parsing
the information of the
activated rules

Static data: Relationship
between planning methods,
control metrics and schedule
levels, collected by experts’
opinion
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Feasible scenarios and selected plani

Max. No.PM No.CM Planning Methods (PM) Control Metrics (CM)
Functionalities 22) (z3)
(z1) 4DBIM  AWP CPM CCPM LIBMS LSM LIPS TTP | CLR CPI MV PPC RL SPI TA TMR
Long-term level
19 2 il 28 0 0 0 a 0 Q il 0 0 0 1 0 0 0 0 0
29 3 i 1 0 1 0 Qo 0 [s] 1, 0 1 [o] 0 0 o] 1] ] 0
29 4 il 1 4] 1 1 0 0 0 i 0 1 0 0 0 0 0 0 o]
29 5 1 1 1 1 1 0 0 [s] 1 [¢] 1 0 0 0 ] 0 0 0
29 6 1 1 1 1 1 0 1 0 1 [¢] 0 0 0 0 o] 1 0 0
29 6 2 1 1 1 1 0 1 1] 1 0 1 0 0 0 4] 1 0 0
Mid-term level
26 1 A 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
55 3 i 1 0 1] 0 0 0 1 1 0 o] 1 0 0 0 0 0 o]
55 4 2 1 0 0 1 0 0 1 i i 4] 1 1 (] 0 o] 1] ] o]
55 5 2 1 4] 0 1 i 0 1 i 0 1 1 0 0 ] 0 (] 0
55 6 3 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0
Short-term level
30 1 1 0 4] 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
36 1 2 0 o] ] 0 Q0 4] 1 0 1 0 0 0 1 0 0 0 0
49 2 1 0 0 0 0 0 0 1 el 0 0 0 0 1 0 0 0 0
2 2 0 [t} 0 (4] 0 0 1 ik 1 0 0 0 i 0 [ 0 0
49 3 i 0 0 0 0 il 0 1 i i o] 0 (o] 0 1 0 0 0 0
55 3 Zz 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0

Pareto front charts and optimize solutions for the case study
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Fig. 13. (a) Input data for the mathematical model, (b) potential scenarios at each schedule level, (c) Pareto front plots of the findings.

rthermore, given the specific nature of control metrics, which cover a

limited scope of functionalities, this segment of the knowledge re-

pository contained merely 80 rules, which may have impacted its

breadth. Despite these challenges, the satisfaction levels with the

comprehensiveness of the DSS still surpassed the threshold of 3, which
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was deemed acceptable within the context of this study.
5. Research discussion and implications

This discussion tries to synthesize the key aspects and contributions
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Fig. 14. Suggested multi-level and integrated solution for the case study.
Table 13
Experts’ evaluations in 5-point Likert-scale.
Likert scale
) . Strongly X Strongly
Evaluation criteria ; Disagree Neutral Agree Average
Disagree Agree
1 2 3 4 5
Ease of use E | 4.8
Comprehensiveness -:| .:| 3.4
Decision quality improvement Ij -:| I] &
Interface quality B | F 4.4
Response time - 5

of the paper, highlighting its significance, innovations, and implications
within the field of project management. This study focuses on the
development of a decision support system for multi-level and integrated
project planning and control systems. By bridging theoretical frame-
works with practical applications, this study marks a pivotal step for-
ward in storing and applying the experts’ knowledge to propose
planning and control systems for construction projects. To do so, the
research methodology adopted a mixed-method approach, integrating
data collection, expert system development, and result optimization.
First, essential insights were gathered through semi-structured in-
terviews and surveys conducted by domain experts. The expert system
development phase involved building a rule-based knowledge re-
pository using rough set theory (RST) and Pyke—a Python-based
knowledge engine—to infer recommendations based on project re-
quirements. The following phases involved launching an inference en-
gine using forward chaining techniques as well as structuring and
optimizing the suggestions by DSS through a mathematical model.

A key aspect of this research was the application of rough set theory
(RST) to analyze the collected data systematically. RST was a crucial
component in discovering and extracting the essential knowledge from
experts, effectively capturing the complexities inherent in construction
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project planning and control systems. By structuring the data within an
information system and employing concepts such as indiscernibility
relations, lower and upper approximations, and attribute reducts, RST
facilitated data exploration and knowledge extraction. This method not
only preserved the expert insights but also ensured that the resulting
decision rules were both relevant and robust. To ensure the knowledge
repository’s robustness, stringent criteria were established for rule se-
lection, including P-value thresholds, accuracy benchmarks, and support
metrics. This meticulous selection process was pivotal in retaining only
the most pertinent and reliable rules, which crucially mitigated the risk
of overfitting and minimized noise within the decision-making process.
Consequently, this enhanced the reliability and applicability of the DSS.
The high accuracy and validity of the selected rules further warranted
their effectiveness in accurately representing expert knowledge and
facilitating informed decision-making. Furthermore, the system’s prac-
ticality was demonstrated through a case study involving a renovation
project. This practical application highlighted the DSS’s effectiveness in
navigating complex project requirements and adapting to varied plan-
ning and control needs.

Although the developed DSS suggests a combination of advanced
planning methods and control metrics as a system for project planning
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and control, it asks very simple questions based on tangible functional
requirements that even non-experts can understand. The final solution is
not only an advanced system, but it is also tailored for those who might
not have extensive information and knowledge about these methods.
The DSS provides a suggested system as an input for methodological
guidelines. Domain experts can then use these suggested systems to
develop step-by-step methodological guidelines, explaining in detail
how the proposed approach by the DSS can be implemented in projects.
This ensures that even non-experts can effectively utilize the DSS and
implement its recommendations in a practical and comprehensible
manner.

While in this research a renovation project was selected as a case
study to demonstrate the effectiveness of the developed DSS, this tool
can be generalized for different project types, including infrastructure
projects, new construction projects, and industrial projects. The devel-
oped knowledge repository is not dependent on project types but rather
on planning and control systems. By importing the functional re-
quirements of project teams for various project types, the DSS can pro-
vide the most appropriate results. This approach ensures the system’s
applicability and repeatability across diverse case study projects,
allowing it to be used effectively in various project management sce-
narios. Eventually, the system’s design and functionality were evaluated
on multiple dimensions, including ease of use, comprehensiveness, de-
cision quality improvement, interface quality, and response time. The
evaluation revealed generally high user satisfaction, with scores ranging
from 3 to 5 on a 5-point scale. These results underscore the practicality
and user-friendliness of the MPCS-DSS, particularly in its ability to
deliver reliable outputs that enhance decision-making processes.

The originality of this study lies not only in developing a DSS for
construction projects but also in proposing a replicable, integrated
methodology for creating robust knowledge-based systems applicable
across various domains. This mixed-method approach is particularly
innovative in seamlessly integrating qualitative and quantitative tech-
niques. By combining expert knowledge with advanced computational
tools, the methodology establishes a tightly interconnected framework.
The study’s unique contribution stems from its ability to merge tradi-
tional expert systems with forward-chaining inference engines, data-
driven rough set theory, and mathematical optimization models. These
interconnected layers of analysis ensure that the knowledge base is not
only comprehensive but also adaptable, allowing the system to evolve
and provide optimized context-specific recommendations. This holistic
approach offers a scalable model that other fields can adapt to develop
similar decision support frameworks, thereby advancing both the theory
and practice of intelligent system development.

The processes of knowledge extraction and DSS development in this
research significantly contribute to the academic environment by
demonstrating how rough set theory can be effectively used to handle
uncertain data, a characteristic inherent to the built environment, and to
harness the expertise of industry professionals. This approach is crucial
in construction, a sector that heavily relies on experience, best practices,
and lessons learned. Moreover, the integration of mathematical models
with DSS not only showcases how theoretical applications can provide
practical solutions but also suggests an optimized approach for handling
complex decision-making processes in construction management. This
study not only bridges the gap between theoretical research and prac-
tical application but also advances the understanding of adaptive
decision-making frameworks that can cater to the dynamic nature of
construction projects.

Regarding the practical implications, as several studies have shown
[5,39], there is generally a low level of knowledge, understanding, and
familiarity among project stakeholders regarding planning and control
systems in construction. Addressing this challenge, the developed DSS
simplifies the decision-making process by asking straightforward and
sensible questions tailored to the project team’s requirements, thus
suggesting the best approach for project planning and control. This
makes it a versatile tool that can be applied across various project types
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during the preconstruction phase to determine the most effective plan-
ning and control strategies based on team inputs. Furthermore, by pre-
senting the results in a Pareto front plot, the DSS offers the project team
multiple scenarios, providing them the flexibility to choose the most
suitable option in light of specific project conditions and constraints.
This adaptability enhances decision-making efficacy and promotes a
more informed selection process, leading to optimized project outcomes
and better alignment with strategic objectives.

While the developed DSS provides a valuable tool for project plan-
ning and control, several limitations must be acknowledged when
considering its application in real-world engineering projects. Although
the DSS offers multiple scenarios for integrating planning methods and
control metrics at each scheduling level, the selection of the most
appropriate solution is influenced by various factors, including the
specific characteristics of the project, the maturity level of the organi-
zation and its stakeholders in planning and control systems, and external
environmental conditions such as legal and regulatory frameworks. Due
to the complexity of accounting for these variables, expert input may
still be required to ensure the selection of the most suitable scenario.
Additionally, implementing the multi-level and integrated system pro-
posed by the DSS in actual construction projects would require a
detailed, step-by-step methodological guideline, which falls outside the
scope of this research. Future work could focus on developing such
practical guidelines to facilitate the system’s application. Additionally,
the knowledge repository of the DSS is somewhat generalized due to the
limited availability of experts with comprehensive knowledge of various
planning and control systems tailored to specific project types. As such,
some functionalities or rules may not be fully relevant to specific project
types and would need further customization for optimal applicability.

6. Conclusion, limitations and future directions

This paper successfully demonstrated the development and practical
application of a data-driven and knowledge-based decision support
system for multi-level planning and control in construction projects. The
study utilized rough set theory integrated with a Python-based knowl-
edge engine, Pyke, to develop a rule-based expert system that system-
atically leverages experts’ knowledge and builds a knowledge database
for the DSS. The development of the DSS involved formulating a multi-
objective mathematical model designed to enhance decision-making by
evaluating various feasible solutions simultaneously. This model lever-
aged the outputs from the DSS—primarily the recommended planning
methods and control metrics—to generate a set of optimized solutions
that balance competing project requirements. The optimization
component of the DSS was implemented through Pareto front plots,
which are critical in multi-criteria decision-making. These plots visually
represent the trade-offs between different objectives, allowing decision-
makers to understand the implications of various choices and select the
most appropriate strategies based on specific project needs. The case
study involving a renovation project at the University of Lorraine
showcased the DSS’s capability to suggest a multi-level planning and
control system and adapt to the specific needs of the project.

This study has several limitations that should be acknowledged.
First, the data collection was limited to 23 experts, which, while suffi-
cient for this study’s scope, might not fully represent the broader range
of expertise available in the construction management field. Another
significant limitation is that although the DSS and mathematical model
suggest a multi-level planning and control system for construction pro-
jects, there is a need for a methodological guideline to assist the project
team in implementing the suggested solutions by the DSS. This aspect
falls outside the scope of this study, and future research could focus on
developing these methodological guidelines, which are crucial for the
practical application and operational success of the DSS results in real-
world settings.

Considering the scope and successful application of the DSS in this
study, future research could expand in several directions. Investigating
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the application of the DSS in different types of construction projects,
including new construction and infrastructure projects, could validate
the system’s adaptability and effectiveness across various contexts.
Additionally, exploring alternative methods for DSS development, such
as case-based systems, could offer valuable perspectives on different
approaches and their respective benefits. Another promising direction
involves investigating optimization algorithms beyond the current
methods. Exploring alternative algorithms like metahuristic algorithms
to identify the best fit could improve the robustness and effectiveness of
the DSS results. Furthermore, extending the analysis to include Bayesian
networks could introduce additional flexibility to the inferences pro-
duced by the system. Integrating insights from studies like Feng, et al.
[14] could enrich the research and offer new avenues for enhancing the
DSS’s capabilities.

Future research also could explore the development of next-
generation DSSs by combining rule-based expert systems with Rein-
forcement Learning with Human Feedback (RLHF). Such a hybrid
approach would enable dynamic adjustments to rules, via penalties or
rewards informed by expert insights, to prioritize the activation of
contextually appropriate rules.

In conclusion, this paper marks a significant step forward in the
application of decision support systems within construction manage-
ment. It offers a robust framework for enhancing project outcomes by
proposing multi-level and integrated planning and control systems. The
implications of this research are far-reaching, promising to influence
both current practices and future innovations in the construction in-
dustry. Furthermore, this framework can be applied to other case
studies, demonstrating its scalability and potential for broader impact
across various project management contexts.
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