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A B S T R A C T

The dynamic conditional correlation (DCC) and co-range models are two main frameworks used to incorporate 
range-based univariate volatility. Using the two approaches, we construct novel multivariate range-based 
EGARCH (REGARCH) models: a DCC-REGARCH and co-range REGARCH (CRREGARCH) model, and a co- 
range CARR (CRCARR) model. We compare these models with five existing models over twelve forecast hori
zons, ranging from one to twelve weeks, covering currencies and ETFs. Among the eight models, the DCC- 
REGARCH and CRREGARCH models show the best performance in out-of-sample forecasting of the variance- 
covariance matrix across a range of market conditions and forecast horizons. These models also generate the 
lowest variance and turnover for global minimum-variance (GMV) portfolios in the majority of cases.

1. Introduction

Extensive literature has developed various models aimed at 
improving volatility estimates to facilitate more informed financial de
cisions, particularly in asset allocation, risk management, and futures 
hedging (Kim et al., 2022; Koutmos et al., 2021; Wan, 2019). Among 
these, high-low range based models are notably informative and effi
cient (Bollerslev et al., 2024; Chou, 2005; Parkinson, 1980, among 
others). Portfolios constructed using these models tend to generate 
higher alpha than those using return-based ones (Lehnert, 2023). In 
particular, the range-based EGARCH (REGARCH) model (Brandt & 
Jones, 2006) is found to have a superior estimation and forecast accu
racy due to its ability to capture key stylised features of volatility, 
including an approximation to normality (Alizadeh et al., 2002), fewer 
estimation constraints due to the guaranteed positive conditional vola
tility, and the ability to capture the leverage effect. Despite its strengths, 
the REGARCH model has not been extensively applied in a multivariate 
context. To address this gap, we develop multivariate range-based 
EGARCH (REGARCH) models by integrating the dynamic conditional 
correlation (DCC) model (Engle, 2002) and the co-range framework 
(Brandt & Jones, 2006).

The use of the DCC model is popular in multivariate GARCH 
modelling for three main reasons: first, it guarantees a positive definite 

variance-covariance matrix; second, the time-varying conditional vari
ance and covariance can be captured; and third, it is a parsimonious 
model, requiring fewer parameters to be estimated relative to other 
approaches. Leveraging these benefits, several multivariate range-based 
models have been built in the literature using the DCC framework. For 
example, Chou et al. (2009) combine the DCC with the conditional 
autoregressive range (CARR) model (Chou, 2005) to create the DCC- 
CARR model, Fiszeder et al. (2019) integrate the DCC model with the 
range-based GARCH (RGARCH) model (Molnár, 2016) to develop the 
DCC-RGARCH model, and Fiszeder & Fałdziński (2019) introduce the 
co-range DCC (or DCC-CR)1 model.

The co-range model, introduced by Brandt and Diebold (2006), of
fers a unique multivariate framework for measuring covariance. This 
model is built by taking the linear combination of the ranges of indi
vidual assets. It capitalises on the strength of the range estimator, which 
is not only efficient in estimation but also affected less by microstructure 
noise. A significant advantage of this model is that it does not require 
parameter estimation at the multivariate level. Building on this and the 
idea of EWMA, Harris and Yilmaz (2010) develop multivariate range- 
based EWMA models. They first construct a univariate model by 
combining the Parkinson range with the EWMA model, creating what 
they term the hybrid EMWA (HEWMA) model. They then incorporate 
the HEWMA model into both the co-range and return-based multivariate 
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EWMA frameworks, resulting in two multivariate HEWMA models: the 
co-range-hybrid-EWMA (CRHEWMA) model, and the multivariate 
HEMWA (MHEWMA) model. They were among the first to employ the 
co-range framework for a range-based multivariate model. However, 
their evaluation of the models’ forecasting performance is limited to 
currencies.

Overall, the contribution of this paper is threefold. First, we develop 
three new multivariate models, including two multivariate REGARCH 
models - the DCC-REGARCH and the co-range REGARCH (CRREGARCH) 
- and one multivariate CARR model, the co-range CARR (CRCARR) 
model. The first two models newly extend the REGARCH model to the 
multivariate domain, essentially incorporating the REGARCH model 
into the popular DCC and co-range models described above and gener
ating the DCC-REGARCH and CRREGARCH respectively. Furthermore, 
we introduce the co-range-CARR (CRCARR) model by combining the co- 
range framework and CARR model. This not only broadens the selection 
of multivariate models but also facilitates a comparative evaluation of 
the DCC and co-range models.

The literature has demonstrated that at least three types of range- 
based multivariate models (i.e., DCC-RGARCH, DCC-CR and 
MHEWMA) are superior to return-based alternatives such as DCC- 
GARCH and EWMA models (see Chou et al., 2009; Fiszeder et al., 
2019; Fiszeder & Fałdziński, 2019; Harris & Yilmaz, 2010). However, a 
comprehensive comparison of all range-based models is lacking. 
Therefore, our second contribution is to find the best performing range- 
based covariance estimator in out-of-sample forecasts by comparing 
eight models: specifically, five existing range-based multivariate models 
(i.e., DCC-CARR, DCC-RGARCH, DCC-CR, MHEWMA, and CRHEWMA) 
and the three newly developed models (i.e., DCC-REGARCH, CRRE
GARCH, and CRCARR).

In a comprehensive forecasting exercise, we use currencies2 (i.e., 
GBP/USD and EUR/USD) and ETFs (i.e., S&P 500 ETF Trust and United 
States Oil Fund), to evaluate if models perform consistently across 
different asset types. Moreover, unlike previous studies that typically 
focus on one-day or one-week ahead forecasts (e.g., Fiszeder et al., 2019; 
Fiszeder & Fałdziński, 2019; Harris & Yilmaz, 2010), we extend the 
scope to twelve forecast horizons, ranging from one week to twelve 
weeks. This extension is underpinned by two main considerations. First, 
in forecasting S&P 500 volatility, Chou (2005) uses forecast horizons of 
up to 13 weeks noting that at longer horizons both the absolute and 
relative performance of rival models can differ to those at shorter ho
rizons. Second, we suggest that this approach is more representative of 
the range of hedging or investment positions an economic agent may 
encounter in real-world applications. Prior studies (e.g., Dichtl et al., 
2016; Dunis et al., 2003) highlight the benefits of longer-term reba
lancing in achieving optimal risk-adjusted portfolio returns. By evalu
ating the performance of the eight models across different forecast 
horizons, our study offers insight into the optimal model selection for 
portfolio management.

In addition to comparing the forecasting accuracy of the eight 
models by using purely statistical evaluation methods, we also compare 
their economic value in the context of asset allocation. The statistical 
criteria include the root mean squared error (RMSE), the Diebold- 
Mariano test, forecast regression test, Euclidean, Frobenius, and Quasi 
likelihood (QLIKE) loss functions (Laurent et al., 2012; Laurent et al., 
2013), and Model Confidence Set (MCS) approach (Hansen et al., 2011). 
We also construct out-of-sample global minimum-variance portfolios 
based on the eight models and compare the portfolios’ variance and 
turnover. Strikingly, the multivariate REGARCH models (i.e., CRRE
GARCH and DCC-REGARCH) generate the lowest variance and turnover 
in the majority of cases.

Finally, we conduct a series of additional tests to assess the perfor
mance of the models we have developed under different conditions. 
First, we examine the impact of the weight of individual assets on the 
performance of the CRREGARCH model. Consistent with Bannouh et al. 
(2009), we find that the impact of the weight is limited. Next, by 
changing the asset combination to gold and oil ETFs, we find that the 
robust performance of our models is not dependent on specific assets. 
Further, after adjusting the forecast period and the in-sample size, the 
models’ performance remains relatively unchanged. These tests confirm 
the consistently strong performance of the multivariate REGARCH 
models.

The paper is organised as follows. Section 2 covers the methodology 
behind constructing a proxy of the true covariance and the three newly 
developed models. Section 3 presents the evaluation methods and Sec
tion 4 presents the data used and the descriptive statistics of the 
covariance of different assets. The forecast performance and economic 
value of the competing models are analysed in Section 5 and Section 6, 
respectively. The robustness tests are discussed in Section 7. Finally, 
Section 8 concludes.

2. Methodology

This section presents the proxy of the true covariance, the realised 
covariance (Barndorff-Nielsen & Shephard, 2004), introduces three new 
estimators and subsequently reviews five existing covariance estimators.

2.1. Realised variance and covariance

We construct the realised variance-covariance matrix as the proxy of 
the true variance-covariance matrix. The realised variance (RVt) intro
duced by Andersen et al. (2001) is specified as, 

RVt =
∑M

m=1

(
lnPt,m − lnPt,m− 1

)2 (1) 

where in our case, Pt,m is the last observed price of the mth intraday 
trading interval3 on trading day t. The daily realised variance can be 
further aggregated to obtain weekly realised variance. Likewise, the 
realised covariance (RCVt) between assets i and j can be obtained by 
aggregating the cross product of returns in a specific trading interval, 

RCVt =
∑M

m=1
ri,t,mrj,t,m (2) 

where ri,t,m and rj,t,m denote the log return of the assets i and j in the mth 
trading interval on trading day t.

2.2. New covariance estimators

In this paper, we introduce three innovative covariance estimators: 
the DCC-REGARCH, the co-range REGARCH (CRREGARCH), and the co- 
range CARR (CRCARR) models. The development of these estimators 
also facilitates a comparison among range-based multivariate models. In 
particular, given the REGARCH model captures useful volatility char
acteristics such as log normality and the leverage effect, its extension 
into multivariate versions potentially enhances forecasting accuracy, 
particularly if these adaptations preserve the intrinsic benefits of the 
REGARCH model while integrating the depth of multivariate structures. 
In the following subsections, we embed the REGARCH model within the 
DCC and co-range frameworks. In a similar vein, we integrate the CARR 
model with the co-range framework, to allow comparison with the DCC- 
CARR model.

2 Harris and Yilmaz (2010) and Fiszeder and Fałdziński (2019) use only 
currencies in their forecasting exercises, with the cross rate calculated under the 
condition of no-arbitrage.

3 In this paper, we use 5-min data to estimate realised variance and covari
ance. See Section 4 for details.
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2.2.1. The DCC-REGARCH model
We introduce the DCC-REGARCH model by incorporating the 

REGARCH model developed by Brandt and Jones (2006) into the DCC 
framework (Engle, 2002). The REGARCH model is based on the finding 
that the log range is approximately Gaussian with a mean value of 
0.43 + lnσRE,t (conditional log volatility) and a standard deviation of 
0.29 (Alizadeh et al., 2002). Unlike the alternative range-based models, 
the REGARCH model captures the log normality and the leverage effect 
of asset volatility. This suggests that models based on the log range 
estimator might yield more accurate estimates. In addition, no param
eter constraints are required to ensure positive volatility, and such ad
vantages suggest that the REGARCH model is also well-suited for a 
multivariate context. The REGARCH (1,1) is given by, 

lnσRE,t − lnσRE,t− 1 = k
(
θ − lnσRE,t− 1

)
+ϕXt− 1 + δ

rt− 1

σRE,t− 1
(3) 

where Xt =
Dt − 0.43− lnσRE,t

0.29 , denotes the standardised demeaned log range; 
k measures the speed of the log conditional volatility reverting to long- 
run mean θ, ϕ measures the sensitivity of log conditional volatility to 
lagged log range, and δ measures the sensitivity of log conditional 
volatility to the lagged return.

Next, we specify the new DCC-REGARCH as, 

HDCC
t = DREGARCH

t RtDREGARCH
t , (4) 

Rt = diag{Qt}
− 1/2Qtdiag{Qt}

− 1/2
, (5) 

Qt = S∘(ιι’ − A − B) + A∘ZREGARCH
t− 1

(
ZREGARCH

t− 1
)’
+ B∘Qt− 1 (6) 

where Dt is the diagonal matrix of adjusted standard deviations 
measured by the REGARCH model (3), that is, DREGARCH

t =

diag
(

σ*
RE,1,t , σ*

RE,2,t ,⋯, σ*
RE,N,t

)
. σ*

RE,i,t is the adjusted REGARCH volatility 

to measure the return-based conditional covariance matrix (Qt) and 
correlation matrix (Rt), that is, σ*

RE,i,t = σRE,i,t × adjRE,i,t , where adjRE,i,t is 
a scale factor equal to the unconditional standard deviation over the 
mean value of the conditional volatility (i.e., adjRE,i,t = σi,t/σRE,i,t). Rt is a 
time-varying correlation matrix, which can be obtained from the con
ditional covariance matrix (Qt) of the standardised residuals. The ijth 
element of Rt is ρij =

qij,t̅̅̅̅̅̅̅̅̅̅qii,tqjj,t
√ . S is the unconditional covariance matrix 

containing the cross product of the standardised residuals, ◦ denotes the 
Hadamard product of two identically sized matrices and A and B are the 
parameter matrices. Lastly, ι is a vector of ones and ZREGARCH

t is a vector 
consisting of demeaned asset returns standardised by the conditional 
volatility. The standardised residuals of asset i at time t is given by, 
zREGARCH

i,t =
ri,t

σ*
RE,i,t

. To obtain stationary series for the conditional covari

ance and variance, ί − A − B is required to be positive semi-definite, and 
A and B need to be positive definite, ensureing that Qt remains positive 
semi-definite.

To estimate the parameters in the first and second steps, a quasi- 
maximum likelihood estimation (QMLE) is employed. The log likeli
hood function is divided into components of volatility and correlation in 
the following manner, 

L(θ1, θ2) = Lvol(θ1)+ Lcorr(θ1, θ2) (7) 

Lvol(θ1) = −
1
2
∑

t

(
klog(2π)+ log|Dt |

2
+ rʹtD

− 2
t rt

)
(8) 

Lcorr(θ1, θ2) = −
1
2
∑

t

(
log|Rt | +Zʹ

tR
− 1
t Zt − Zʹ

tZt
)

(9) 

For the standard DCC model (i.e., the return-based DCC model), the 
log likelihood function to estimate volatility is given by, 

Lreturn
vol (θ1) = −

1
2
∑

t

∑k

i=1

(

log(2π) + log
(
σi,t
)
+

r2
i,t

σi,t

)

(10) 

However, to incorporate range-based volatility estimates into the 
DCC framework, the adjusted volatility σ*

RE,i,t replaces σi,t in Eq. (10). The 
log likelihood function of the volatility component for DCC-REGARCH is 
therefore given by, 

Lrange
vol (θ1) = −

1
2
∑

t

∑k

i=1

(

log(2π)+ log
(

σ*
i,t

)
+

r2
i,t

σ*
RE,i,t

)

(11) 

Finally, to forecast the conditional covariance of assets, the condi
tional covariance matrix of standardised residuals needs to be forecasted 
first. Suppose the sample size is T, the conditional covariance matrix at 
time T + 1 is given by,  

where a, b are the parameters and q12 is the unconditional covariance of 
the standardised residuals of the two assets. Then the correlation at T +

1 can be obtained by ρT+1 =
q12,T+1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅q11,T+1q22,T+1

√ and the n-step ahead forecast of 
the conditional covariance matrix of the standardised residuals is 
specified as, 
[

q11,T+n q12,T+n
q21,T+n q22,T+n

]

=(1 − a − b)
[

1 q12
q12 1

]

+(a+b)
[

q11,T+n− 1 q12,T+n− 1
q21,T+n− 1 q22,T+n− 1

]

(13) 

2.2.2. The co-range REGARCH and co-range CARR model
In this subsection, we introduce the co-range REGARCH (CRRE

GARCH) and co-range CARR (CRCARR) model, which integrate the 
REGARCH and CARR model within the co-rang framework developed by 
Brandt and Diebold (2006). This framework constructs a linear combi
nation of the variances of two individual assets and the variance of a 
“pseudo portfolio4” under the no-arbitrage condition. Within this 
framework, any pair of assets can be treated as a pseudo portfolio. The 
covariance between the two assets is derived from the variance of the 
pseudo portfolio and the variances of the individual assets. Specifically, 
for two currency assets, the variance of the pseudo portfolio is equiva
lent to the variance of the cross rate between the two currencies. For two 
different asset types, the variance of the pseudo portfolio is determined 
by the weighted average of their natural logarithm prices.

[
q11,T+1 q12,T+1
q21,T+1 q22,T+1

]

= (1 − a − b)
[

1 q12
q12 1

]

+ a

⎡

⎣
z2

1,T z1,Tz2,T

z1,Tz2,T z2
2,T

⎤

⎦+ b
[

q11,T q12,T
q21,T q22,T

]

(12) 

4 Brandt and Diebold (2006) consider three portfolios, which consist of 
currencies, zero-coupon bonds and stocks. In the absence of arbitrage, the 
variance of the first two portfolios is equivalent to the variance of the cross rate 
of the two currencies and the variance of the forward contract of the two zero- 
coupon bonds. However, for the portfolio consisting of stocks, the close price of 
the portfolio needs to be computed first, which is equivalent to the weighted 
average price of the two assets.
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Therefore, we specify the CRREGARCH model for measuring the 
covariance of two non-currency assets (σCRREGARCH

ij,t ) and two currencies 
as follows, 

σCRREGARCH
ij,t =

1
2λiλj

(
σ2

RE,pf ,t − λ2
i σ2

RE,it − λ2
j σ2

RE,jt

)
(14) 

σCRREGARCH
ij,t

(
C1

$
,

C2

$

)

=
1
2

(

σ2
RE,t

(
C1

$

)

+ σ2
RE,t

(
C2

$

)

− σ2
RE,t

(
C1

C2

))

(15) 

where λi, λj denote the weights of assets i and j, respectively. 
Following Bannouh et al. (2009), we set equal weights for each asset (i. 
e., for the SPY and USO). σ2

RE,pf ,t , σ2
RE,it, σ2

RE,jt represent the variance of 
pseudo portfolio and individual assets i and j obtained by the REGARCH 

model in week t, respectively. σ2
RE,t

(
C1
$

)

and σ2
RE,t

(
C2
$

)

are the variance of 

the two currencies C1 and C2 in dollar denomination. σ2
RE,t

(
C1
C2

)

is the 

variance of the cross rate between the two currencies (pseudo portfolio) 
under the no-arbitrage condition.

Similarly, we construct the CRCARR model by using the following 
formulations for two non-currency assets and two currencies, 

σCRCARR
ij,t =

1
2λiλj

(
σ2

CA,pf ,t − λ2
i σ2

CA,it − λ2
j σ2

CA,jt

)
(16) 

σCRCARR
ij,t

(
C1

$
,

C2

$

)

=
1
2

(

σ2
CA,t

(
C1

$

)

+ σ2
CA,t

(
C2

$

)

− σ2
CA,t

(
C1

C2

))

(17) 

The variance of an individual asset is determined by the CARR(1,1) 
model, which is given by, 

δt = σCA,tεt , εt ∣It− 1 ∼ exp(1; ξt) (18) 

σCA,t = ω+αδt− 1 + βσCA,t− 1 (19) 

where δt denotes the high-low price range (i.e., δt = lnpH
i,t − lnpL

i,t), σCA,t 

denotes the conditional mean of the range, and the error term εt is 
expoentially distributed with mean equal to 1 and time-varying variance 
ξt . For σCA,t to be stationary, the sum of α and β needs to be less than 
unity and the parameters are estimated by quasi-maximum likelihood 
estimation (QMLE).

2.3. Existing models

In this subsection, we present an overview of existing covariance 
estimators used for comparison with our introduced models, including 
the DCC-CARR, DCC-RGARCH, DCC-CR, and the Hybrid EWMA model.

2.3.1. The DCC-CARR model
Chou et al. (2009) introduce a hybrid covariance estimator, the DCC- 

CARR model, by taking the product of the return-based correlation and 
scaled range-based standard deviation of two assets obtained by the 
CARR model. The DCC-CARR model is given by 

HDCC
t = DCARR

t RtDCARR
t , (20) 

Rt = diag{Qt}
− 1/2Qtdiag{Qt}

− 1/2
, (21) 

Qt = S∘(ιι’ − A − B) + A∘ZCARR
t− 1

(
ZCARR

t− 1
)’
+ B∘Qt− 1 (22) 

where DCARR
t is the diagonal matrix of adjusted standard deviations 

measured by the CARR model Eq. (18) and (19), that is, DCARR
t =

diag
(

σ*
CA,1,t , σ*

CA,2,t ,⋯, σ*
CA,N,t

)
. σ*

CA,i,t is the adjusted range, that is, 

σ*
CA,i,t = adjCA,i,t × σCA,i,t , where adjCA,i,t is a scale factor defined as the 

ratio of the unconditional standard deviation to the mean value of the 

conditional mean range (i.e., adjCA,i,t = σi,t/σCA,i,t

)
. ZCARR

t is the vector of 

standardised but correlated residuals. The standardised residuals of 
asset i at time t is given by, zCARR

i,t =
ri,t

σ*
CA,i,t

. The QMLE functions Eq. (7), Eq. 

(8), Eq. (9) and Eq. (11) are employed to estimate the parameters of the 
DCC-CARR model.

2.3.2. The DCC-RGARCH model
Fiszeder et al. (2019) develop the DCC-RGARCH model by incorpo

rating the RGARCH model (Molnár, 2016) within the DCC framework. 
The RGARCH model itself, introduced by Molnár (2016), is an extension 
of the GARCH model whereby the traditional variance estimator (i.e., 
the squared return) in the GARCH model is replaced by the Parkinson 
range and is given by, 

rt ∼ N
(
0, σRG,t

)
(23) 

σ2
RG,t = ω+αPRt− 1 + βσ2

RG,t− 1 (24) 

where rt denotes the close-price return and of course, for σRG,t to be 
stationary, the sum of α and β needs to be smaller than 1. Similarly to the 
DCC-CARR model, the volatilities of individual assets need to be ob
tained first before building the diagonal volatility matrix, Dt, and 
standardised residual matrix, Zt. However, differently from the DCC- 
CARR model, and since the RGARCH model employs return-based 
volatility, the volatilities can be directly used to measure the stand
ardised residual without adjustment, that is, zRG,i,t = ri,t/σRG,i,t , or to 
construct the diagonal volatility matrix, Dt. QMLE is employed to esti
mate the parameters of the DCC-RGARCH model.

2.3.3. The DCC-CR model
Fiszeder and Fałdziński (2019) develop the DCC-CR model, 

computing the range-based variance-covariance matrix by using range- 
based volatility and correlation directly without any adjustments. There 
is also a two-stage process for building this DCC model. In the first stage, 
the CARR model is employed to measure the volatility of individual 
assets. In the second stage, the time-varying range-based correlation 
matrix, computed by the co-range and the Parkinson range, is used to 
estimate the conditional covariance matrix. The DCC-CR model can be 
written as follows, 

HDCC
t = DCARR

t RtDCARR
t (25) 

Rt = R∘(ιι’ − Θ1 − Θ2) + A∘Φt− 1 + B∘Rt− 1 (26) 

where DCARR
t is k-by-k diagonal matrix of time-varying standard de

viations generated from the univariate volatility model, a CARR (1,1), R 
is an unconditional correlation matrix, Θ1 and Θ2 are the parameter 
matrices, and Φt is the k-by-k range-based correlation matrix. We use the 
CARR and CRCARR model to construct Φt instead of the range and co- 
range model applied by Fiszeder and Fałdziński (2019) given the 
CARR model is used to construct DCARR

t . The ijth element of Φt is given 

as, ϕij,t =
σCRCARR

ij,t
σCA,i,tσCA,j,t

.

2.3.4. The hybrid EWMA (HEWMA) model
Harris and Yilmaz (2010) develop the multivariate hybrid EWMA 

(MHEWMA) model by taking the cross product of the return-based 
correlation ( ρEW,ij,t

)
obtained from the standard EWMA for assets i, j 

and the standard deviation of the assets measured by the univariate 
hybrid EWMA (HEWMA) model. The MHEWMA model is specified as, 

σMHEWMA
ij,t = ρEW,ij,tσhE,i,tσhE,j,t (27) 

where σhE,i,t and σhE,j,t are the standard deviations of asset i and j, 
respectively, measured by the HEWMA model. The HEWMA model itself 
is specified as, 
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σ2
hE,t = 0.94σ2

hE,t− 1 +0.06σ2
hP,t− 1 (28) 

Following Harris and Yilmaz (2010), we set the smoothing factor as 
0.94. σ2

hP,t is the hybrid Parkinson range obtained by using both high-low 
price range and open-to-close squared return. The hybrid Parkinson 
range estimator is given by, 

σ2
hP,t =

1
4ln2

(
lnPH

t − lnPL
t
)2

+
(
lnPO

t − lnPC
t− 1
)2 (29) 

where lnPO
t denotes the log open price at week t, lnPC

t− 1 denotes the 
log close price at week t-1. Harris and Yilmaz (2010) also develop the 
CRHEWMA model by applying the HEWMA model to the co-range 
framework. However, they only apply this model to measure the 
covariance of currencies. In this paper, we also use the model to calcu
late the covariance of non-currency assets. The models for two non- 
currency assets and two solely currencies are specified as follows, 

σCRHEWMA
ij,t =

1
2λiλj

(
σ2

hE,pf ,t − w2
i σ2

hE,i,t − w2
j σ2

hE,j,t

)
(30) 

σCRHEWMA
ij,t

(
C1

$
,

C2

$

)

=
1
2

(

σ2
hE,t

(
C1

$

)

+ σ2
hE,t

(
C2

$

)

− σ2
hE,t

(
C1

C2

))

(31) 

3. Evaluation approach

To assess the performance of the different models, we employ a 
comprehensive array of evaluation metrics. For assessing the accuracy of 
covariance forecast we employ the root mean squared error (RMSE), the 
Diebold-Mariano test, and the regression-based test. Furthermore, 
multivariate loss functions - Euclidean (Laurent et al., 2012), Frobenius 
and quasi likelihood (QLIKE) distance, along wiht the non-parametric 
Model Confidence Set (MCS) test (Hansen et al., 2011), are applied to 
evaluate the precision of the variance-covariance matrix forecasts.

RMSE is a standard metric that quantifies the discrepancy between 
the predicted covariance from the eight competing models and the true 
covariance. It is particularly useful in assessing the ability of these 
models to forecast the covariance. RMSE is given as, 

RMSE =

[
1
T
∑T

t=1

(
σij,t − σ̂ ij,t

)2

]1/2

(32) 

where σij,t is the covariance measured by the realised covariance in 
Section 2.1, and σ̂ ij,t denotes the forecasted covariance obtained from 
the eight models.

The Diebold-Mariano test is used for the pairwise comparison of 
models. We compute the t-test of the coefficient dkl, which is the dif
ference of the loss function between models k and l, 
(

σij,t − σ̂ l
ij,t

)2
−
(

σij,t − σ̂k
ij,t

)2
= dkl,t + εt (33) 

A significantly positive mean value of dkl,t indicates that model k is 
preferred to model l, whereas a significantly negative value indicates the 
opposite.

Following Brandt and Jones (2006), we use the regression-based 
tests to evaluate each model’s capability to predict the “true” covari
ance. The test is specified as: 

σij,t = αk + βk × σ̂k
ij,t + εk,t (34) 

For an unbiased forecast result, αi = 0 and βi = 1. The regression R2 

is used to determine how effectively model k forecast the realised 
covariance (σij,t).

To provide a more comprehensive assessment of the variance- 
covariance matrix forecast, we employ three multivariate loss func
tions that provide consistent model rankings (Laurent et al., 2012). The 
Euclidean loss function computes the linear distance between forecasted 
and true values within a multi-dimensional framework, providing a 

direct measure of forecast accuracy. The Frobenius Distance measures 
the magnitude of the difference between predicted and true variance- 
covariance metrics. Meanwhile, the QLIKE distance is derived from 
the log-likelihood of multivariate models, offering insights into a 
model’s fit to the data. We also use the MCS test to determine whether a 
model significantly outperforms its competitors at a given confidence 
interval. This method offers a clear perspective on the top-performing 
model. The loss functions (i.e., Euclidean, Frobenius and QLIKE) are 
given as follows, 

LEuclidean
t = vech(Σt − Ht )́ vech(Σt − Ht) (35) 

LFrobenius
t = Tr[(Σt − Ht )́ (Σt − Ht) ] (36) 

LQLIKE
t = log|Ht | +Tr

(
H− 1

t Σt
)

(37) 

where vech(Σt − Ht) is the vector that stacks the difference of all the 
lower triangular and diagonal elements of the true and forecasted 
variance-covariance matrix (i.e., Σt and Ht , respectively) at time t and Tr 
denotes the trace of a matrix. We then use the non-parametric test sta
tistics (i.e., the MCS) to identify models that are superior to the others at 
a particular significance level (i.e., 5 %). The initial model set M contains 
all eight competing models, which are compared with one of models 
from the set by taking the difference of the loss functions. If the differ
ence is significantly different from zero, the inferior model is eliminated 
from the model set. The comparison procedure repeats until a subset of 
superior models reached. The null hypothesis is therefore set as, 

H0 : E
(
ΔLij,t

)
= 0, for all i, j ∈ M. (38) 

where E
(
ΔLij,t

)
= 1

n
∑n

t=1 ΔLij,t is the average loss difference between 
models i and j over the forecasting period. The null hypothesis is tested 

according to the semi-quadratic static, tSQ =
∑

i<j
(E(ΔLij,t))

2

v̂ ar(ΔLij,t)
where v̂ ar

(
Δ 

Lij,t
)

is the asymptotic variance of ΔLij,t . We choose 10,000 replication 
block bootstrap procedure and a block length of 2 observations 
following Laurent et al. (2012).

4. Data

We employ two data sets to compare the performance of the pro
posed models and their competitors: the most actively traded currencies 
in the Forex market (i.e., GBP/USD and EUR/USD) and widely recog
nised exchange-traded funds, S&P 500 ETF Trust (SPY) and United 
States Oil Fund (USO). We use these two types of assets to assess if the 
co-range-based models demonstrate different forecast accuracies with 
and without assets’ weights being considered. To obtain synchronous 
trading prices5 for the non-arbitrage portfolios when applying the co- 
range model, we extract 1-min open and close prices of currencies 
over the period 21 October 2002 to 30 June 2024, and ETFs from 10 
April 2006 - the inception of USO trading - to 30 June 2024, from pitr 
ading.com. These periods include significant market events that 
impact volatility, such as the global financial crisis (GFC), the European 
sovereign debt crisis, Brexit and the COVID-19 pandemic, as well as 
intervals of low volatility. This timeframe facilitates thorough evalua
tion of volatility models performance under different market conditions 
(Alves et al., 2024; Fiszeder et al., 2019; Fiszeder & Fałdziński, 2019; 
Symitsi et al., 2018).

We exclude all trading prices on days when at least one market is 
closed. The log price of the currency-based portfolio is equivalent to the 
log cross rate between the two currencies, which is obtained by taking 

5 As Bannouh et al. (2009) suggest, the high and low portfolio prices could 
not be obtained directly by taking the product of the corresponding individual 
asset prices because the time that the high and low price generated is different.
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the difference between the USD-denominated prices of GBP and EUR. 
We construct a pseudo non-arbitrage portfolio by assigning a 50 % 
weight of the S&P 500 ETF, following Bannouh et al. (2009). If an asset 
lacks a trading price in a specific interval, we substitute the most recent 
availabe price from the previous trading interval. The log close price of 
the pseudo portfolio at each minute is calculated as the weighted 
average of the log prices of S&P 500 and crude oil ETFs. We then 
calculate the 5-min intraday returns of these assets.

We employ the realised variance/covariance matrix at a weekly 
frequency based on the work of Ferland and Lalancette (2006) and Chou 
et al. (2009). However, the weekly realised variance/covariance they 
estimate using a 30-min or daily sampling frequency is potentially less 
efficient than that obtained using 5-min returns (Andersen et al., 2001; 
Bannouh et al., 2009; Barndorff-Nielsen & Shephard, 2004). Therefore, 
we use 5-min returns to measure the daily realised variance and 
covariance, which is then used to construct realised variance/covariance 
at a weekly frequency. The number of weekly observations for the cur
rencies and ETFs are 1131 and 950, respectively. Fig. 1 shows the 
weekly close price, absolute return, and range of the two individual 

currencies, two ETFs, and their corresponding pseudo portfolios. It is 
clearly shown that the prices of all the assets experienced significant 
volatility during the financial crisis over the period of 2007 to 2008 and 
during the pandemic years of 2020 and 2021. In addition, the Brexit 
referendum in 2016 had a significant impact on the GBP/USD.

Table 1 presents the summary statistics for returns, log absolute 
returns and log range of all the assets. In comparison to log returns and 
log absolute returns, the skewness of the log range is closer to zero, and 
the kurtosis is closer to three, which indicates that the log range is 
approximately normally distributed. In particular, the Jarque-Bera test 
statistic for the log range is much lower than that for log absolute 
returns.

Applying Eq. (1) and Eq. (2), we compute the realised variance/ 
covariance and realised correlation of the assets. Figs. 2 and 3 present 
the realised covariance and realised correlation over the sample period, 
showing that the covariances between GBP/USD and EUR/USD, as well 
as between the S&P 500 and crude oil are strengthened during the GFC 
and the pandemic. In addition, the covariance of the currencies peaked 
during the Brexit in 2016. It is also worth noting that the realised 

Figure 1A Currencies 

Panel 1 Close Price

Panel 2 Absolute Returns

Panel 3 Range

Fig. 1. Weekly log close prices, absolute returns and range. 
Notes: The figures represent the weekly log close prices, absolute returns and range of currencies (i.e., GBP/USD and EUR/USD) and ETFs (i.e., S&P 500 ETF Trust (SPY) and 
United States Oil Fund (USO)), along with their pseudo portfolios over the periods 21 October 2002 to 30 June 2024, and 10 April 2006 to 30 June 2024, respectively. Intraday 
high and low prices and daily close prices are used to calculate the corresponding weekly price series. The weights of the S&P 500 and oil ETFs are both set at 50 %.
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covariance between the S&P 500 and crude oil increased significantly 
towards the end of 2011, as the prices of the two assets rebounded from 
falling summer prices, partly due to the downgrade of the US credit 
rating (Afonso et al., 2014). Moreover, in Fig. 3 it is shown that the 
realised correlation between the S&P 500 and oil is more volatile than 
that of the currencies. This is in line with the higher standard deviation 
of the realised correlation between the former two assets, as shown in 
Table 2.

5. Forecast comparison

Following Chou et al. (2009), we use a rolling window of 500 ob
servations to estimate the models, with the remaining 631 and 450 
observations used to measure the forecast accuracy of the out-of-sample 
covariance for currencies and ETFs, respectively. We extend the fore
casting horizon from one week that is commonly used in the literature to 
twelve weeks. Realised covariance is employed as the proxy of the true 
covariance. The performance of the eight models (i.e., MHEWMA, DCC- 
CARR, DCC-REGARCH, DCC-RGARCH, DCC-CR, CRHEWMA, CRCARR, 

and CRREGARCH) is evaluated by using RMSE, the Diebold-Mariano 
test, the regression-based R2 test, three loss functions, and the MCS 
approach.

The RMSE values of the eight models reported in Table 3 show that 
the multivariate REGARCH models surpass the competitors. In partic
ular, the CRREGARCH model consistently delivers the lowest RMSE over 
all twelve forecasting intervals when forecasting the covariance of the 
currencies, while the DCC-REGARCH model closely follows as the sec
ond best in 9 out of 12 cases. When forecasting the covariance of S&P 
500 and crude oil ETFs, the DCC-REGARCH model outperforms the 
competitors in 6 cases. The CRREGARCH model is superior to the al
ternatives in 5 out of 12 cases, while the DCC-RGARCH model leads in 
one case.

Table 4 and Table 5 display the t-statistics of the Diebold-Mariano 
test for currencies and ETFs respectively. A t-statistic greater than 1.96 
indicates that the model in the column is significantly preferred over the 
model in the row, while a t-statistic less than − 1.96 indicate the oppo
site. Table 4 demonstrates that no competing models significantly 
outperform the multivariate REGARCH models in forecasting 

Figure 1B. ETFs

Panel 1 Close Price

Panel 2 Absolute Returns

Panel 3 Range

Fig. 1. (continued).
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currencies. Notably, the CRREGARCH model significantly outperforms 
its competitors across all twelve forecast horizons, with exceptions: the 
DCC-CR, MHEWMA, and CRHEWMA in the 1-week ahead forecast, and 
the CRCARR model in the 1- to 2-week forecast horizons. The DCC- 
REGARCH model is significantly superior to all the competitors from 
the 4-week forecast horizon onwards, except when compared to the 
CRREGARCH model.

For forecasting the S&P 500 and oil ETFs, as shown in Table 5, no 
competing model significantly outperforms the CRREGARCH and DCC- 
REGARCH models. The CRREGARCH model significantly outperforms 
the DCC-CR and CRHEWMA across all twelve forecast horizons. In 
addition, it demonstrates significant superiority over the MHEWMA 
model starting from the 2-week forecast horizon, the DCC-CARR from 
the 3-week horizon, the DCC-RGARCH from the 4-week horizon, and the 
CRCARR from the 8-week horizon onward. Meanwhile, the DCC- 
REGARCH model significantly surpasses the DCC-CARR, DCC-CR, and 
CRHEWMA models across all twelve horizons. Furthermore, it signifi
cantly outperforms the MHEWMA and DCC-CR models from the 2-week 
to the 12-week forecast horizons and surpasses the DCC-RGARCH and 
CRCARR models from the 4-week and 8-week forecast horizons onward, 
respectively.

Table 6 reports the R2 values of the forecast regressions, clearly 
demonstrating that the CRREGARCH achieves the highest R2 across all 
twelve forecast horizons when forecasting the covariance of currencies. 
It is closely followed by the DCC-REGARCH model, which ranked second 
in 11 out of the 12 cases. In the context of forecasting the S&P 500 and 
oil ETFs, the DCC-REGARCH records the highest R2 in 9 out of the 12 
cases, while the MHEWMA model, leading in 3 out of the 12 cases.

We then compare the eight models in forecasting the variance- 
covariance matrix by employing the Euclidean, Frobenius, and QLIKE 
loss functions. Following Bollerslev et al. (2018), we employ the “in
sanity filter” to ensure all the matrices are positive definite. Specifically, 

we replace the out-of-sample negative-definite covariance matrix fore
casts with the average value of the in-sample matrix estimated by the 
respective models. Table 7 demonstrates the forecast losses for the eight 
models when forecasting the covariance matrix of currencies over the 
twelve forecast horizons. The results show that the covariance matrices 
forecasted using the CRREGARCH model have the lowest forecast losses 
in all cases, with the exception of ranking second lowest under the 
QLIKE function at the 1-week forecast horizon and third lowest at the 3- 
and 7- week forecast horizons. The DCC-REGARCH generally performs 
the second best when using the Euclidean or Frobenius loss functions. 
When the QLIKE loss function is employed, the DCC-REGARCH model 
has the lowest or second-lowest forecast losses for forecast horizons 
beyond 6 weeks, whereas the CRCARR model achieves the third-lowest 
losses across almost all twelve forecast horizons.

The results of the MCS test for the three currency loss functions are 
shown in Table 8. The table reports the p-value for the null hypothesis, 
which tests whether the difference between the loss functions of the two 
models from the model set is significantly different from zero. It also 
includes the ranking of each model with a higher ranking indicates 
better forecast accuracy. Models that rank first are marked bold and 
italics. In line with the results shown in Table 7, the CRREGARCH model 
is the top-ranking model over all the twelve forecast horizons. The DCC- 
REGARCH model ranks second in the majority of cases when the 
Euclidean or Frobenius loss function is employed and is within top three 
in 6 out of 12 cases when the QLIKE loss function is employed.

The out-of-sample forecast losses and MCS results for the S&P 500 
and oil ETFs are shown in Tables 9 and 10, respectively. The CRRE
GARCH model continues to outperform the competing models, with the 
DCC-REGARCH model closely following. Notably, the CRREGARCH 
model ranks first from the 4-week forecast horizons onwards under the 
Euclidean and Forbenius loss functions, and predominantly ranks sec
ond across the twelve forecast horizons when employing the QLIKE loss 

Table 1 
Summary statistics of the weekly returns, log absolute returns and log range.

Panel A. Summary statistics of currencies.

Mean Median Maximum Minimum St. Dev. Skewness Kurtosis Jarque-Bera

Returns
GBP/USD 0.0002 − 0.0001 0.0822 − 0.0656 0.0132 0.5080 6.3813 584
EUR/USD − 0.0001 − 0.0002 0.0606 − 0.0497 0.0126 0.2900 4.5148 123
GBP/EUR 0.0003 0.0005 0.0505 − 0.0742 0.0110 − 0.0573 6.8736 703

Log absolute returns
GBP/USD − 5.0351 − 4.8031 − 2.4980 − 10.4952 1.1178 − 1.4264 6.0857 828
EUR/USD − 5.0820 − 4.8765 − 2.8033 − 10.9688 1.1024 − 1.1542 4.9815 434
GBP/EUR − 5.2784 − 5.0516 − 2.6006 − 12.3760 1.1855 − 1.4514 6.5819 997

Log range
GBP/USD − 4.0530 − 4.0816 − 1.9836 − 5.3971 0.4328 0.5601 4.6163 181
EUR/USD − 4.0783 − 4.0936 − 2.3408 − 5.4104 0.4462 0.1538 3.1372 5
GBP/EUR − 4.2425 − 4.2443 − 2.4183 − 5.5364 0.4757 0.2410 3.4309 19

Panel B. Summary statistics of ETFs

Mean Median Maximum Minimum St. Dev. Skewness Kurtosis Jarque-Bera

Returns
SPY 0.0019 0.0036 0.1142 − 0.1942 0.0250 − 0.9326 10.9353 2615
USO − 0.0020 0.0025 0.2776 − 0.4873 0.0516 − 1.3321 14.5168 5503
Portfolio − 0.0001 0.0026 0.1343 − 0.2537 0.0323 − 1.4986 12.5777 3966

Log absolute returns
SPY − 4.5687 − 4.3646 − 1.6387 − 9.7216 1.1780 − 0.9661 4.3954 223
USO − 3.8041 − 3.6211 − 0.7189 − 9.2103 1.1508 − 1.1216 5.2096 390
Portfolio − 4.3063 − 4.1111 − 1.3717 − 10.0303 1.1500 − 0.9092 4.3177 198

Log range
SPY − 3.6680 − 3.6870 − 1.3872 − 5.3341 0.5946 0.2872 3.2708 16
USO − 2.8895 − 2.9128 − 0.5894 − 4.2986 0.4912 0.3610 3.8814 51
Portfolio − 3.3629 − 3.3973 − 1.2134 − 4.9416 0.5192 0.4116 3.6883 45

Notes: The table demonstrates the summary statistics for the weekly return, log absolute return and log range for currencies (GBP/USD, EUR/USD), ETFs (S&P 500 ETF 
Trust (SPY) and the United States Oil Fund (USO)), and the corresponding pseudo portfolios. The currency data covers the period from 21 October 2002 to 30 June 
2024, while the ETF data spans 10 April 2006 to 30 June 2024. The weights of the S&P 500 and oil ETFs are both set at 50 %.
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function. The performance of the DCC-REGARCH model exhibits a 
complementary pattern: it generally ranks second under the Euclidean 
and Forbenius loss functions but ascends to first place under the QLIKE 
loss function from the 4-week to the 12-week forecast horizons.

In summary, in the empirical work so far, the multivariate REGARCH 
models demonstrate the best and most consistent performance across 
different datasets and forecast horizons. In particular, the CRREGARCH 
model achieves the lowest forecast error in the majority of cases, 
whereas the new DCC-REGARCH model consistently ranks first or sec
ond, especially when forecasting the covariance of the non-currency 
assets. The strong performance of the multivariate REGARCH models 

underscores the inherent strengths of the REGARCH model. This model 
effectively captures the stylised features of the asset volatility that the 
alternative models fail to account for. Moreover, the streamlined 
parameter estimation in the co-range model minimises estimation er
rors, further enhancing forecasting precision.

6. Minimum variance portfolios performance

Next, we construct Global Minimum Variance (GMV) portfolios 
based on the eight competing models and compare the variances and 
turnover of the out-of-sample portfolios. We choose the GMV optimal 

Figure 2A. Currencies

Figure 2B. ETFs

Fig. 2. Realised covariance of the assets. 
Notes: The figure shows the realised covariance of currencies (i.e., GBP/USD and EUR/USD) and ETFs (i.e., S&P 500 ETF Trust (SPY) and United States Oil Fund (USO)) over 
the sample period from 21 October 2002 to 30 June 2024 and from 10 April 2006 to 30 June 2024, respectively.
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method, given that we mainly compare the variance and covariance 
forecast accuracy of various models (Symitsi et al., 2018). In addition, 
the introduction of expected return would affect the accuracy of the 
performance evaluation due to its estimation error (DeMiguel et al., 
2009). We adjust the weight to minimise the portfolio variance over 
twelve different frequencies, ranging from 1 week to 3 months. In each 
period, investors aim to minimise the portfolio variance, that is, 

min wʹ
tHtwt (39) 

s.t.wʹ
tι = 1 

where wt is an N × 1 vector of GMV portfolio weights given N assets 
included, Ht is the N × N forecasted conditional variance-covariance 
matrix at time t obtained from the eight models, ι is an N × 1 vector of 
ones. The optimal weight wt is therefore given by, 

wt =
H− 1

t ι
ί H− 1

t ι (40) 

We first use the rolling window forecasting method with a sample 
size of 500 observations to forecast the variance-covariance matrix Ht, 
before finding the optimal weights for each model using Eq. (40). The 

Figure 3A. Currencies

Figure 3B. ETFs

Fig. 3. Realised correlation based on realised variance. 
Notes: The figure shows the realised correlation between GBP/USD and EUR/USD, S&P500 ETF Trust (SPY) and United States Oil Fund (USO), respectively, based on the 
realised covariance. The sample period for the currencies is from 21 October 2002 to 30 June 2024, while the sample period for ETFs is from 10 April to 30 June 2024. The 
weight of the S&P 500 is set at 50 %.

L. Yan et al.                                                                                                                                                                                                                                      International Review of Financial Analysis 100 (2025) 103983 

10 



estimated weight is then used to find the portfolio return at time t + 1 
given the assets return at the same time t + 1, that is, r(m)

pf ,t+1 =
(

w(m)
t

)ʹ
rt+1, where r(m)

pf ,t+1 is the portfolio return for model m, rt+1 is a N ×

1 vector of assets returns.
To compare the out-of-sample portfolio performance of eight models 

over twelve rebalancing periods, we employ the portfolio variance and 
average portfolio turnover. The models which generate a more accurate 
forecast of the variance-covariance matrix tend to have lower portfolio 
variance and turnover. Out-of-sample portfolio variance is given by, 

σ̂2
m =

1
T
∑T

t=1

(
r(m)

pf ,t − r(m)

pf

)2
(41) 

where T is the size of the out-of-sample returns, r(m)

pf ,t is the portfolio re

turn at time t under model m, r(m)

pf is the portfolio average return over the 
out-of-sample period. Average portfolio turnover is given by, 

Turnover =
1

T − 1
∑T− 1

t=1

∑N

j=1

( ⃒
⃒wm,j,t+1 − wm,j,t+

⃒
⃒
)

(42) 

where wm,j,t+1 is the desired portfolio weight of asset j measured by Eq. 
(40) at time t + 1 under model m; wm,j,t+ is the portfolio weight measured 
by the close price of the portfolio assets at time t before rebalancing at t+
1. Finally, following DeMiguel et al. (2009), we compare the 

Table 2 
Summary statistics of realised volatility, realised covariance and realised 
correlation.

Panel A. Currencies
̅̅̅̅̅̅̅
RV

√ ρRCV

GBP/USD EUR/USD

Mean 0.0124 0.0121 0.6125
St. Dev. 0.0054 0.0046 0.1230
Skewness 3.3190 1.4911 − 0.7053
Kurtosis 21.5514 7.1373 3.6043

Panel B. ETFs
̅̅̅̅̅̅̅
RV

√ ρRCV

SPY USO

Mean 0.0170 0.0332 0.2819
St. Dev. 0.0122 0.0175 0.2104

Skewness 3.5182 4.5342 − 0.2149
Kurtosis 21.2914 41.6360 3.0766

Notes: The table demonstrates summary statistics for the square root of realised 
variance and correlation. The sample periods of the currencies and ETFs (S&P 
500 ETF Trust (SPY) and United States Oil Fund (USO)) are from 21 October 
2002 to 30 June 2024, and from 10 April 2006 to 30 June 2024, respectively. 
The weights of S&P 500 and oil ETFs are both set at 50 %.

Table 3 
RMSE for Out-of-sample Covariance Forecast.

Panel A. Currencies (GBP and EUR)

Forecast 
Horizon

Forecasting Models

Existing Models New Models

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

1 0.7216 0.7363 0.7107 0.7821 0.7447 0.7010 0.6715 0.6939
2 0.7834 0.8063 0.7735 0.8172 0.7795 0.7525 0.7255 0.7661
3 0.8152 0.8404 0.8017 0.8316 0.8013 0.7797 0.7553 0.8021
4 0.8311 0.8569 0.8194 0.8445 0.8142 0.7912 0.7627 0.8172
5 0.8374 0.8622 0.8249 0.8463 0.8228 0.7975 0.7678 0.8196
6 0.8449 0.8680 0.8359 0.8538 0.8301 0.8021 0.7673 0.8213
7 0.8534 0.8797 0.8442 0.8678 0.8399 0.8107 0.7789 0.8288
8 0.8593 0.8846 0.8492 0.8738 0.8489 0.8180 0.7903 0.8361
9 0.8659 0.8914 0.8550 0.8886 0.8580 0.8252 0.8012 0.8429
10 0.8701 0.8949 0.8599 0.8911 0.8644 0.8285 0.8024 0.8419
11 0.8729 0.8995 0.8634 0.8979 0.8710 0.8331 0.8077 0.8419
12 0.8750 0.9049 0.8653 0.9056 0.8790 0.8362 0.8136 0.8441

Panel B. ETFs (SPY and USO)

Forecast 
Horizon

Forecasting Model

Existing Models New Models

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

1 5.7992 4.5784 6.6262 5.9820 7.3513 5.0089 5.2254 5.5260
2 6.0556 5.4036 6.6145 6.3958 7.7432 5.1339 5.2300 5.8487
3 6.1721 5.9103 6.5323 6.6889 7.9640 5.3542 5.2779 6.0330
4 6.4474 6.6770 6.5807 6.8889 8.1462 5.6806 5.6419 6.4648
5 6.4614 7.0492 6.4678 6.9879 8.2253 5.7637 5.7932 6.5452
6 6.4211 7.3208 6.3699 7.0399 8.2625 5.7868 5.8006 6.5356
7 6.3486 7.5370 6.2594 7.1075 8.3237 5.7483 5.8271 6.4746
8 6.2812 7.6788 6.1674 7.1546 8.3499 5.7232 5.7941 6.3928
9 6.2746 7.9210 6.1466 7.1878 8.3976 5.7454 5.7902 6.3820
10 6.2316 8.0750 6.0971 7.1319 8.3654 5.7317 5.7173 6.2364
11 6.1911 8.2521 6.0750 7.1341 8.3828 5.6928 5.6242 6.0849
12 6.1812 8.5172 6.0693 7.1983 8.4574 5.6705 5.5748 6.0300

Notes: The table shows the RMSE of the out-of-sample covarince forecasts for the currencies and ETFs obtained from the eight multivariate models. A rolling window 
forecast method is used, with a sample size of 500 observations. The number of forecast value is 631 for currencies and 450 for ETFs. The weight of the S&P 500 ETF is 
set at 50 %. All values are multiplied by 10,000.The model with the lowest RMSE is shown in bold and italics.
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Table 4 
Diebold-Mariano test for currencies (GBP and EUR).

Panel A. Forecast horizons 1 to 3 weeks

Forecasting 
Horizon

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

1 DCC-CARR 0 − 1.99 1.49 1.27 1.4 1.91 2.81 2.39
​ DCC-RGARCH ​ 0 2.25 1.75 1.81 2.59 3.33 3.18
​ DCC-CR ​ ​ 0 0.7 0.86 0.6 1.85 1.61
​ MHEWMA ​ ​ ​ 0 0.69 − 0.46 0.73 − 0.07
​ CRHEWMA ​ ​ ​ ​ 0 − 0.66 0.58 − 0.21
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 2.68 0.38
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 1.09
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

2 DCC-CARR 0 − 2.75 1.46 1.62 1.46 2.54 3.14 1.4
​ DCC-RGARCH ​ 0 2.85 2.53 2.28 3.34 3.8 2.8
​ DCC-CR ​ ​ 0 0.91 0.85 1.27 2.21 0.64
​ MHEWMA ​ ​ ​ 0 − 0.13 − 0.05 2.11 − 0.58
​ CRHEWMA ​ ​ ​ ​ 0 0.01 2.35 − 0.55
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 2.43 − 0.64
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 1.88
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

3 DCC-CARR 0 − 3.07 2.3 1.64 1.35 3.32 3.28 1.03
​ DCC-RGARCH ​ 0 3.49 2.65 2.29 3.8 3.9 2.75
​ DCC-CR ​ ​ 0 0.62 0.49 1.56 2.15 − 0.03
​ MHEWMA ​ ​ ​ 0 − 0.23 1.21 2.75 − 0.56
​ CRHEWMA ​ ​ ​ ​ 0 1.11 3.56 − 0.49
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 2.04 − 1.19
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 2.54
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

Panel B. Forecast horizons 4 to 6 weeks

Forecasting 
Horizon

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

4 DCC-CARR 0 − 3.01 2.53 1.13 0.81 3.93 4.2 1.15
​ DCC-RGARCH ​ 0 3.52 2.23 1.86 3.99 4.42 2.88
​ DCC-CR ​ ​ 0 0.33 0.14 2.33 3.43 0.22
​ MHEWMA ​ ​ ​ 0 − 0.52 2.16 5.55 − 0.18
​ CRHEWMA ​ ​ ​ ​ 0 1.98 6.46 − 0.01
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 2.93 − 1.45
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 3.2
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

5 DCC-CARR 0 − 3.01 2.53 1.13 0.81 3.93 4.2 1.15
​ DCC-RGARCH ​ 0 3.52 2.23 1.86 3.99 4.42 2.88
​ DCC-CR ​ ​ 0 0.33 0.14 2.33 3.43 0.22
​ MHEWMA ​ ​ ​ 0 − 0.52 2.16 5.55 − 0.18
​ CRHEWMA ​ ​ ​ ​ 0 1.98 6.46 − 0.01
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 2.93 − 1.45
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 3.2
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

6 DCC-CARR 0 − 2.87 1.82 0.83 0.18 4.47 5.32 2.64
​ DCC-RGARCH ​ 0 3.36 1.87 1.24 4 4.92 4.43
​ DCC-CR ​ ​ 0 0.17 − 0.36 3.04 5 2.44
​ MHEWMA ​ ​ ​ 0 − 1.11 3.15 6.73 0.85
​ CRHEWMA ​ ​ ​ ​ 0 2.72 6.52 1.3
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 4.44 − 1.31
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 3.57
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

Panel C. Forecast horizons 7 to 9 weeks

Forecasting 
Horizon

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

7 DCC-CARR 0 − 2.87 1.82 0.83 0.18 4.47 5.32 2.64
​ DCC-RGARCH ​ 0 3.36 1.87 1.24 4 4.92 4.43
​ DCC-CR ​ ​ 0 0.17 − 0.36 3.04 5 2.44
​ MHEWMA ​ ​ ​ 0 − 1.11 3.15 6.73 0.85
​ CRHEWMA ​ ​ ​ ​ 0 2.72 6.52 1.3
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 4.44 − 1.31
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 3.57
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

8 DCC-CARR 0 − 3.09 1.81 0.88 0.14 4.75 4.97 2.61
​ DCC-RGARCH ​ 0 3.65 2.09 1.34 4.27 4.99 4.76

(continued on next page)
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performance of the aforementioned portfolios and the 1/N (i.e., equally 
weighted) portfolio. The portfolio variance obtained from Eq. (41) is 
tested using the null hypothesis that the variance of portfolio m is 
equivalent to the variance of the benchmark (1/N) portfolio i.e., H0 :

σ̂2
m − σ̂2

1/N = 0. The robust non-parametric bootstrap method (Ledoit & 
Wolf, 2011) is employed to test the null hypothesis. The block size and 
number of bootstrap iterations are set as 10 and 10,000, respectively.

Table 11 panel A presents the out-of-sample portfolio variance for 
currencies. The portfolios derived from the multivariate REGARCH 
models dominate the competitors across the twelve rebalancing periods. 
Specifically, the CRREGARCH model generate the lowest annualised 
variance in 8 out 12 cases and ranks second lowest in 4 cases. Similarly, 
the DCC-REGARCH model performs competitively, generating the 
lowest and second lowest variance in 8 cases throughout the rebalancing 
periods. When comparing the portfolio variance of ETFs shown in 
Table 11 panel B, both multivariate REGARCH models have lower 
annualised variance than the benchmark portfolio at a 5 % significance 
level. In addition, the portfolios generated by the CRREGARCH model 

are in the top three for lowest turnover in most cases.
The results for portfolio turnover for currencies are given in Table 12

panel A. It shows that the turnover of the benchmark strategy is the 
lowest across the twelve rebalancing periods. Portfolios built using the 
CRREGARCH consistently rank among the top three for the lowest 
turnover in all cases. For ETFs, as shown in Table 12 panel B, the 
CRREGARCH model achieves the lowest turnover in 4 out of 12 cases 
and ranks as the second or third lowest in 5 additional cases. The DCC- 
RGARCH model also shows competitive performance, particularly from 
the 7-week rebalancing period onwards, recording the second or third 
lowest turnover.

7. Robustness tests

In this section, we investigate whether the performance of the 
developed multivariate REGARCH models remains consistent when we 
alter certain factors. These factors include changing the weight for S&P 
500 and crude oil ETFs, modifying the combination of individual assets, 

Table 4 (continued )

Panel C. Forecast horizons 7 to 9 weeks

Forecasting 
Horizon  

DCC 
CARR 

DCC 
RGARCH 

DCC 
CR 

MHEWMA CR 
HEWMA 

DCC 
REGARCH 

CR 
REGARCH 

CR 
CARR

​ DCC-CR ​ ​ 0 0.24 − 0.41 3.35 4.95 2.43
​ MHEWMA ​ ​ ​ 0 − 1.26 2.93 6.44 0.91
​ CRHEWMA ​ ​ ​ ​ 0 2.65 6.98 1.44
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 3.54 − 1.33
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 3.67
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

9 DCC-CARR 0 − 3.29 2.72 0.27 − 0.41 5.7 4.36 1.93
​ DCC-RGARCH ​ 0 4.14 1.81 0.94 4.76 4.84 3.92
​ DCC-CR ​ ​ 0 − 0.71 − 1.2 4.18 4.32 1.29
​ MHEWMA ​ ​ ​ 0 − 1.23 3.83 5.48 1.56
​ CRHEWMA ​ ​ ​ ​ 0 3.23 7.24 2.38
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 2.24 − 1.33
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 4.12
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

Panel D. Forecast horizons 10 to 12 weeks

Forecasting 
Horizon

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

10 DCC-CARR 0 − 3.18 2.43 − 0.32 − 0.72 6.37 4.91 2.7
​ DCC-RGARCH ​ 0 3.89 1.31 0.59 4.96 5.2 4.55
​ DCC-CR ​ ​ 0 − 1.3 − 1.5 5 5.31 2.37
​ MHEWMA ​ ​ ​ 0 − 1.12 4.14 7.05 3.05
​ CRHEWMA ​ ​ ​ ​ 0 3.36 7.49 3.31
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 2.62 − 1.15
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 4.44
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

11 DCC-CARR 0 − 3.33 2.32 − 1.96 − 0.95 6.09 4.26 3.01
​ DCC-RGARCH ​ 0 3.92 0.07 0.41 5 4.86 4.78
​ DCC-CR ​ ​ 0 − 3.03 − 1.71 5.53 4.57 2.89
​ MHEWMA ​ ​ ​ 0 0.63 5.63 6.38 4.46
​ CRHEWMA ​ ​ ​ ​ 0 3.55 7.43 3.83
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 2.34 − 0.88
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 4.04
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

12 DCC-CARR 0 − 3.48 2.68 − 0.86 − 1.17 5.61 3.74 2.98
​ DCC-RGARCH ​ 0 4.25 1.11 0.26 5 4.71 5.1
​ DCC-CR ​ ​ 0 − 1.8 − 1.82 4.98 3.65 2.54
​ MHEWMA ​ ​ ​ 0 − 1.32 4.57 6.41 4.19
​ CRHEWMA ​ ​ ​ ​ 0 3.59 7.48 3.94
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 2 − 0.84
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 3.4
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

Notes: The table shows the Diebold-Mariano statistics of the out-of-sample covariance forecast for currencies. A rolling window forecasting method is used, with a 
sample size of 500 observations and 631 forecast values. The performance of each pair of models is compared. A t-statistic > 1.96 indicates that the model in the 
column is significantly superior to the model in the row, whereas a t-statistic < − 1.96 indicates the opposite.
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Table 5 
Diebold-Mariano test for ETFs.

Panel A. Forecast horizons 1 to 3 weeks

Forecasting 
Horizon

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

1 DCC-CARR 0 5 − 1.83 − 0.3 − 2.69 2.66 1.02 0.41
​ DCC-RGARCH ​ 0 − 3.89 − 2.29 − 4.29 − 1.05 − 1.29 − 1.53
​ DCC-CR ​ ​ 0 1.07 − 1.54 2.38 2.46 2.02
​ MHEWMA ​ ​ ​ 0 − 4.19 1.46 0.94 0.53
​ CRHEWMA ​ ​ ​ ​ 0 3.31 2.8 2.36
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 − 0.3 − 0.57
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 0.72
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

2 DCC-CARR 0 2.98 − 1.85 − 0.8 − 3.5 3.17 1.84 0.31
​ DCC-RGARCH ​ 0 − 3.99 − 2.16 − 4.49 0.59 0.5 − 0.88
​ DCC-CR ​ ​ 0 0.55 − 3.19 2.68 2.99 1.37
​ MHEWMA ​ ​ ​ 0 − 4.16 2.44 2.76 0.75
​ CRHEWMA ​ ​ ​ ​ 0 3.98 4.56 2.79
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 − 0.15 − 0.78
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 1.26
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

3 DCC-CARR 0 1.16 − 1.53 − 1.29 − 3.74 3.75 2.64 0.27
​ DCC-RGARCH ​ 0 − 2.35 − 1.68 − 4.06 1.4 1.63 − 0.33
​ DCC-CR ​ ​ 0 − 0.51 − 4.16 2.76 3.32 1.09
​ MHEWMA ​ ​ ​ 0 − 4.13 2.69 4.48 1.26
​ CRHEWMA ​ ​ ​ ​ 0 4.15 5.14 3.55
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 0.2 − 1
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 1.65
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

Panel B. Forecast horizons 4 to 6 weeks

Forecasting 
Horizon

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

4 DCC-CARR 0 − 0.81 − 0.82 − 1.63 − 3.88 4.02 3.51 − 0.04
​ DCC-RGARCH ​ 0 0.43 − 0.67 − 3.82 2.17 2.86 0.76
​ DCC-CR ​ ​ 0 − 1.37 − 4.45 2.74 3.02 0.27
​ MHEWMA ​ ​ ​ 0 − 4.1 3.32 4.33 1.04
​ CRHEWMA ​ ​ ​ ​ 0 4.26 4.83 3.67
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 0.16 − 1.25
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 1.8
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

5 DCC-CARR 0 − 1.87 − 0.05 − 2.04 − 3.84 4.59 3.8 − 0.2
​ DCC-RGARCH ​ 0 2.23 0.21 − 3.21 2.81 3.34 2.04
​ DCC-CR ​ ​ 0 − 2.53 − 4.48 2.77 2.82 − 0.2
​ MHEWMA ​ ​ ​ 0 − 4.04 3.57 3.92 1.34
​ CRHEWMA ​ ​ ​ ​ 0 4.27 4.55 3.77
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 − 0.16 − 1.49
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 1.86
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

6 DCC-CARR 0 − 2.67 0.47 − 2.39 − 3.86 5.05 4.25 − 0.33
​ DCC-RGARCH ​ 0 3.44 1.13 − 2.83 3.38 3.68 3.21
​ DCC-CR ​ ​ 0 − 3.06 − 4.46 2.7 2.85 − 0.51
​ MHEWMA ​ ​ ​ 0 − 4.08 3.69 3.97 2.02
​ CRHEWMA ​ ​ ​ ​ 0 4.29 4.6 4.16
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 − 0.1 − 1.77
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 2.04
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

Panel C. Forecast horizons 7 to 9 weeks

Forecasting 
Horizon

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

7 DCC-CARR 0 − 3.15 0.92 − 2.76 − 3.88 5.58 3.88 − 0.39
​ DCC-RGARCH ​ 0 3.82 1.72 − 2.33 3.74 4.04 4.26
​ DCC-CR ​ ​ 0 − 3.65 − 4.42 2.88 2.88 − 0.71
​ MHEWMA ​ ​ ​ 0 − 4.02 3.86 3.78 2.64
​ CRHEWMA ​ ​ ​ ​ 0 4.28 4.46 4.21
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 − 0.51 − 1.83
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 1.86
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

8 DCC-CARR 0 − 3.68 1.27 − 3.05 − 3.98 6.33 3.56 − 0.43
​ DCC-RGARCH ​ 0 4.36 2.24 − 2.03 4.26 4.5 4.78

(continued on next page)
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adjusting the out-of-sample forecast period, and varying the in-sample 
size.

7.1. Different weight set for the co-range-based models

Within the co-range framework, determining the initial weight for 
individual assets is necessary for calculating the price of a pseudo 
portfolio. Following the methodology of Bannouh et al. (2009), we 
initially set the weight for the S&P 500 at 50 %. To investigate the po
tential impact of varying weight assignments on forecasting perfor
mance, we conducted additional tests by assigning weights of 30 % and 
70 % to the S&P 500, keeping other conditions constant.

The RMSE values for the eight competing models are presented in 
Table A1.1. With the S&P 500 weight set at 30 %, the DCC-REGARCH 
model outperforms the competitors in 9 out of 12 cases, followed by 
the CRREGARCH model, which is the best in 2 out of 12 cases and the 
second-best in 8 out of 12 cases. When the S&P 500 weight is set at 70 %, 
the CRREGARCH model dominates the competing models in most cases, 
followed by the DCC-REGARCH model.

Tables A1.2 and A1.3 show the Diebold-Mariano test results for the 
S&P500 weight set at 30 % and 70 %, respectively. Similar to the results 
shown in Table 5, none of the competing models significantly outper
form the two multivariate REGARCH models. The DCC-REGARCH 
model is significantly superior to all the competitors for forecast hori
zons from 4 weeks onward, under both the 30 % and 70 % S&P 500 
weightings. The CREGARCH model is significantly superior to all the 
competitors, except the DCC-REGARCH model, for forecast horizons 
starting at 6 weeks under both weightings. The R2 value of the forecast 
regressions are shown in Table A1.4. The DCC-REGARCH demonstrates 
the highest predictive power, leading in 9 out of 12 cases across both 30 
% and 70 % weightings of the S& P500.

The outcomes of the loss functions for the eight competing models, 
with the S&P 500 weight set at 30 % and 70 %, are shown in Table A1.5 
and A1.7 of the online appendix. The values observed in these tables 
closely mirror those presented in Table 9, consistently showing the su
perior performance of the multivariate REGARCH models, especially for 
forecast horizon beyond 3 weeks. Notably, the DCC-REGARCH and 
CRREGARCH models exhibit closely matched results. The Model 

Table 5 (continued )

Panel C. Forecast horizons 7 to 9 weeks

Forecasting 
Horizon  

DCC 
CARR 

DCC 
RGARCH 

DCC 
CR 

MHEWMA CR 
HEWMA 

DCC 
REGARCH 

CR 
REGARCH 

CR 
CARR

​ DCC-CR ​ ​ 0 − 3.96 − 4.49 3.04 2.73 − 0.91
​ MHEWMA ​ ​ ​ 0 − 3.97 4.09 3.82 3.2
​ CRHEWMA ​ ​ ​ ​ 0 4.4 4.49 4.26
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 − 0.47 − 2.19
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 2.03
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

9 DCC-CARR 0 − 3.97 1.49 − 3.03 − 3.9 6.13 4.4 − 0.43
​ DCC-RGARCH ​ 0 4.58 2.98 − 1.48 4.42 4.73 5.06
​ DCC-CR ​ ​ 0 − 3.85 − 4.37 2.87 3.29 − 0.99
​ MHEWMA ​ ​ ​ 0 − 3.89 4 3.99 3.63
​ CRHEWMA ​ ​ ​ ​ 0 4.29 4.44 4.25
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 − 0.37 − 2.17
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 2.14
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

Panel D. Forecast horizons 10 to 12 weeks

Forecasting 
Horizon

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

10 DCC-CARR 0 − 4.74 1.67 − 3.29 − 4.05 6.59 5.51 − 0.02
​ DCC-RGARCH ​ 0 5.34 3.69 − 0.9 5.24 5.64 5.45
​ DCC-CR ​ ​ 0 − 4.07 − 4.49 3.03 4.23 − 0.69
​ MHEWMA ​ ​ ​ 0 − 3.91 4.5 4.64 3.84
​ CRHEWMA ​ ​ ​ ​ 0 4.5 4.69 4.26
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 0.15 − 2.4
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 2.6
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

11 DCC-CARR 0 − 5.35 1.55 − 3.44 − 4.13 6.83 6.2 0.67
​ DCC-RGARCH ​ 0 5.89 4.43 − 0.42 5.84 6.25 5.86
​ DCC-CR ​ ​ 0 − 4.11 − 4.5 3.46 5.42 − 0.06
​ MHEWMA ​ ​ ​ 0 − 3.92 4.7 4.9 4.11
​ CRHEWMA ​ ​ ​ ​ 0 4.59 4.81 4.36
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 0.81 − 2.61
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 3.11
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

12 DCC-CARR 0 − 5.41 1.55 − 3.31 − 4.05 7.06 6.44 0.98
​ DCC-RGARCH ​ 0 5.88 4.98 0.19 5.83 6.19 6.06
​ DCC-CR ​ ​ 0 − 3.9 − 4.39 3.74 5.6 0.25
​ MHEWMA ​ ​ ​ 0 − 3.91 4.41 4.61 4
​ CRHEWMA ​ ​ ​ ​ 0 4.5 4.69 4.33
​ DCC-REGARCH ​ ​ ​ ​ ​ 0 1.19 − 2.36
​ CRREGARCH ​ ​ ​ ​ ​ ​ 0 − 3.16
​ CRCARR ​ ​ ​ ​ ​ ​ ​ 0

Notes: The table shows the Diebold-Mariano statistics of the out-of-sample covariance forecast for ETFs (S&P 500 ETF Trust (SPY) and United States Oil Fund (USO)). A 
rolling window forecasting method is used, with a sample size of 500 observations and 450 forecast results. The performance of each pair of models is compared. A t- 
statistic > 1.96 indicates that the model in the column is significantly superior to the model in the row, whereas a t-statistic < − 1.96 indicates the opposite. The weights 
for the S&P 500 and oil ETFs are both set at 50 %.
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Confidence Set (MCS) results, as shown in Tables A1.6 and A1.8, further 
corroborate the dominance of the CRREGARCH and DCC-REGARCH 
models. These models consistently rank first or second over forecast 
horizons from three weeks to twelve weeks. Specifically, the CRRE
GARCH model outperforms its peers in most scenarios when evaluated 
using the Euclidean and Frobenius loss functions, whereas the DCC- 
REGARCH model takes the lead in the majority of cases when assessed 
using the QLIKE loss function.

Our findings underscore the robustness of the co-range models’ 
forecasting performance, irrespective of the weight assignments to the 
assets. While the co-range framework requires the assignment of specific 
weights to assets, our empirical results indicate that forecasting accu
racy remains consistent across different weight configurations.

7.2. Different asset combination

To assess whether varying asset combinations yield similar out
comes, we consider the combination of two alternative ETFs, SPDR Gold 
Shares (GLD) and United States Oil Fund (USO). The data spans from 10 
April 2006 to 30 June 2024. In parallel with the previous covariance 
forecasting approach, we use a rolling window of 500 observations to 
forecast the variance-covariance matrix for gold and oil ETFs. Both as
sets are equally weighted at 50 %. The RMSE results for the eight 
competing models are presented in Table A2.1. Consistent with the 

forecasting results for the S&P 500 and oil ETFs shown in Table 3, the 
DCC-REGARCH model outperforms its competitors in most cases (7 out 
of 12), followed closely by the CRREGARCH model, which also dem
onstrates top or near-top performance in most instances.

The Diebold-Mariano test results, detailed in Table A2.2, indicate 
that none of the competing models significantly outperform the DCC- 
REGARCH model. There is only one instance where the CRREGARCH 
model is significantly outperformed by a competitor. Notably, the DCC- 
REGARCH model significantly dominates all competitors from the 6- 
week forecast horizon onwards. Table A2.4 presents the R2 values of 
the forecast regressions. It shows that the CRREGARCH model has the 
better predictive power from the 6-week forecast horizon onward, out
performing other models in 7 out of 12 cases.

The results of loss functions and MCS test are shown in Table A2.4 
and A2.5, revealing that the CRREGARCH is the top-performing model, 
followed by the DCC-REGARCH model. These findings suggest that the 
multivariate REGARCH models’ efficacy remains consistent despite 
changes in portfolio composition.

7.3. Different out-of-sample period

In this subsection, we investigate whether the performance of the 
models varies over different forecast periods. Maintaining the in-sample 
size at 500, we split the initial forecast period in half. For currencies, the 

Table 6 
Forecast Regression R-squared Value.

Panel A. Forecast Regression R-squared Value for Currencies

Forecast 
Horizon

Forecasting Model

Existing Models New Models

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

1 29.50 24.56 31.24 31.92 33.22 31.95 35.40 32.48
2 18.87 13.28 20.63 20.48 20.56 22.08 24.98 20.11
3 13.60 8.56 15.81 14.19 14.10 17.04 19.45 14.00
4 10.92 6.51 12.73 10.83 10.60 14.84 18.00 11.20
5 9.66 5.87 11.44 9.27 8.77 13.53 16.89 10.17
6 8.33 5.22 9.53 8.38 7.61 12.57 16.86 9.39
7 6.97 4.05 8.07 7.55 6.73 10.97 14.70 7.93
8 6.00 3.59 7.12 6.30 5.62 9.64 12.66 6.61
9 5.03 3.01 6.13 5.30 4.66 8.38 10.74 5.42
10 4.39 2.75 5.32 4.24 3.79 7.74 10.44 5.24
11 3.93 2.40 4.71 3.79 3.22 6.93 9.48 4.96
12 3.58 2.03 4.32 3.25 2.68 6.36 8.46 4.47

Panel B. Forecast Regression R-squared Value for ETFs (SPY and USO)

Forecast 
Horizon

Forecasting Model

Existing Models New Models

DCC 
CARR

DCC 
RGARCH

DCC 
CR

MHEWMA CR 
HEWMA

DCC 
REGARCH

CR 
REGARCH

CR 
CARR

1 45.73 48.12 30.46 16.07 12.64 54.40 42.14 40.48
2 24.36 25.36 13.31 7.56 5.52 33.63 24.78 22.13
3 11.62 11.75 6.00 3.16 2.36 16.70 11.61 8.42
4 5.10 4.61 2.81 1.92 1.44 7.34 5.35 3.01
5 2.79 2.49 1.53 1.07 0.89 4.12 3.03 1.69
6 1.36 1.02 0.77 0.72 0.64 1.95 1.28 0.46
7 1.02 0.72 0.65 0.53 0.50 1.44 0.74 0.30
8 0.66 0.56 0.46 0.30 0.36 0.90 0.37 0.12
9 0.27 0.26 0.19 0.29 0.31 0.32 0.04 0.01
10 0.11 0.18 0.07 0.35 0.32 0.09 0.01 0.02
11 0.04 0.16 0.01 0.47 0.38 0.03 0.00 0.06
12 0.01 0.17 0.00 0.49 0.39 0.00 0.01 0.31

Notes: The table shows the R2 value of the forecast regression results for currencies and ETFs (S&P 500 ETF Trust (SPY) and United States Oil Fund (USO)). The 
dependent variable is realised covariance - the proxy of the true covariance, while the independent variable is the forecasted covariance obtained from the eight 
competing models. A rolling window forecasting method is used, with a sample size of 500 observations. The number of forecast results is 631 for currencies and 450 
for ETFs. All results are multiplied by 100. The highest result is shown in bold and italics.
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forecast period is divided into 25 May 2012 to 01 June 2018 and 08 June 
2018 to 30 June 2024. Each sub-period covers 315 weeks. Similarly, the 
forecast period for S&P 500 and the oil ETFs is segmented into 13 
November 2015 to 28 February 2015 and 06 March 2015 to 30 June 
2024, with each sub-period spanning 225 weeks.

Table A3.1 presents the RMSE results for the two currencies (GBP/ 
USD and EUR/USD) over the two out-of-sample periods. The CRRE
GARCH dominates its competitors in both periods. The MHEWMA ranks 
second in the first period (25 May 2012 to 01 June 2018), while the 
DCC-REGARCH model has the second-best performance in the second 
period (08 June 2018 to 30 June 2024). The RMSE results for the S&P 
500 and oil ETFs are shown in Table A4.1. The CRREGARCH model leads 
in the first period (13 November 2015 to 28 February 2020), whereas 
the DCC-REGARCH model exhibits the best forecast accuracy in the 
second period (06 March 2020 to 30 June 2024), with the CRREGARCH 
consistently ranking second.

The Diebold-Mariano test results for currencies, presented in 
Table A3.2 and Table A3.3, confirm the superior performance of the 
CRREGARCH model, which significantly outperforms other models, 

including the DCC-REGARCH model in most cases. The only exceptions 
occur over the 10-, 11- and 12-week forecast horizons during the first 
period, where the CRHEWMA model excels. The DCC-REGARCH model 
performs better in the second period from (08 June 2018 to 30 June 
2024) than in the first period (25 May 2012 to 01 June 2018), where it is 
significantly outperformed by the MHEWMA and CRHEWMA models.

The Diebold-Mariano test results for the S&P 500 and oil ETFs, 
shown in Table A4.2 and Table A4.3, demonstrate that no competing 
models significantly outperform the two multivariate REGARCH models 
across the two out-of-sample periods, except in two cases where the 
DCC-REGARCH model is outperformed by the DCC-RGARCH model.

Regarding the R2 values of the forecast regressions, as shown in 
Tables A3.4 and A4.4, the DCC-REGARCH model showcases the highest 
predictive power for ETFs across both periods and for currencies in the 
first period. In contrast, the CRREGARCH model demonstrates improved 
performance in the second period for currencies.

Tables A3.5 through A3.8 and A4.5 through A4.8 present the results 
for the loss functions and MCS tests for currencies and ETFs, respec
tively. These results consistently show that the CRREGARCH model 

Table 7 
Out-of-sample forecast losses for currencies.

Panel A. Forecast horizons 1 to 4 weeks

Horizon 1 week 2 weeks 3 weeks 4 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

DCC-CARR 0.000629 0.000681 − 16.482 0.000711 0.000772 − 16.445 0.000752 0.000818 − 16.423 0.000752 0.000818 − 16.423
DCC- 

RGARCH 0.000678 0.000732 − 16.455 0.000778 0.000843 − 16.438 0.000828 0.000898 − 16.415 0.000828 0.000898 − 16.415

DCC-CR 0.000628 0.000678 − 16.509 0.000709 0.000769 − 16.496 0.000750 0.000814 − 16.450 0.000750 0.000814 − 16.450
MHEWMA 0.000780 0.000838 − 15.801 0.000802 0.000863 − 15.903 0.000812 0.000876 − 15.926 0.000812 0.000876 − 15.926
CRHEWMA 0.000783 0.000840 − 15.875 0.000804 0.000866 − 15.746 0.000815 0.000879 − 15.940 0.000815 0.000879 − 15.940
DCC- 

REGARCH
0.000609 0.000659 − 16.476 0.000667 0.000724 − 16.457 0.000702 0.000763 − 16.414 0.000702 0.000763 − 16.414

CRREGARCH 0.000605 0.000651 − 16.508 0.000663 0.000716 − 16.485 0.000699 0.000756 − 16.474 0.000699 0.000756 − 16.474
CRCARR 0.000625 0.000674 − 16.507 0.000708 0.000767 − 16.503 0.000750 0.000814 − 16.461 0.000750 0.000814 − 16.461

Panel B. Forecast horizons range from 5 to 8 weeks

Horizon 5 weeks 6 weeks 7 weeks 8 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

DCC-CARR 0.000778 0.000847 − 16.397 0.000787 0.000858 − 16.422 0.000799 0.000872 − 16.383 0.000803 0.000877 − 16.368
DCC- 

RGARCH 0.000862 0.000936 − 16.358 0.000873 0.000947 − 16.390 0.000890 0.000967 − 16.356 0.000892 0.000970 − 16.343

DCC-CR 0.000776 0.000843 − 16.422 0.000785 0.000853 − 16.420 0.000797 0.000869 − 16.404 0.000801 0.000873 − 16.362
MHEWMA 0.000821 0.000886 − 15.885 0.000824 0.000890 − 15.845 0.000849 0.000915 − 15.756 0.000809 0.000882 − 16.283
CRHEWMA 0.000823 0.000889 − 15.801 0.000827 0.000893 − 15.929 0.000851 0.000918 − 15.717 0.000811 0.000887 − 16.272
DCC- 

REGARCH
0.000722 0.000785 − 16.394 0.000733 0.000797 − 16.415 0.000744 0.000810 − 16.407 0.000751 0.000817 − 16.393

CRREGARCH 0.000718 0.000776 − 16.451 0.000728 0.000787 − 16.426 0.000739 0.000800 − 16.391 0.000746 0.000809 − 16.403
CRCARR 0.000776 0.000842 − 16.434 0.000784 0.000852 − 16.407 0.000795 0.000864 − 16.367 0.000799 0.000869 − 16.379

Panel C. Forecast horizons range from 9 to 12 weeks

Horizon 9 weeks 10 weeks 11 weeks 12 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

DCC-CARR 0.000802 0.000877 − 16.330 0.000800 0.000876 − 16.321 0.000792 0.000868 − 16.317 0.000781 0.000857 − 16.288
DCC- 

RGARCH
0.000892 0.000971 − 16.305 0.000887 0.000967 − 16.326 0.000879 0.000960 − 16.297 0.000869 0.000951 − 16.269

DCC-CR 0.000800 0.000873 − 16.350 0.000799 0.000873 − 16.341 0.000790 0.000865 − 16.311 0.000779 0.000854 − 16.308
MHEWMA 0.000846 0.000913 − 15.775 0.000852 0.000921 − 15.699 0.000852 0.000921 − 15.731 0.000832 0.000911 − 15.974
CRHEWMA 0.000847 0.000916 − 15.954 0.000852 0.000922 − 15.837 0.000853 0.000922 − 15.842 0.000835 0.000916 − 15.967
DCC- 

REGARCH 0.000752 0.000820 − 16.351 0.000751 0.000820 − 16.368 0.000745 0.000815 − 16.337 0.000743 0.000813 − 16.332

CRREGARCH 0.000748 0.000812 − 16.389 0.000747 0.000812 − 16.380 0.000741 0.000806 − 16.347 0.000740 0.000806 − 16.341
CRCARR 0.000798 0.000869 − 16.365 0.000796 0.000866 − 16.355 0.000786 0.000857 − 16.323 0.000776 0.000847 − 16.317

Notes: The table shows the out-of-sample forecast losses of the variance-covariance matrix for currencies over the forecast horizons ranging from 1 week to 12 weeks. A 
rolling window forecasting method with ta window size of 500 is used. The values of Euclidean and Frobenius loss functions are multiplied by 10,000. The model with 
the lowest value is shown in bold and italics.
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maintains robust performance, outperforming competitors in the ma
jority of cases. Similar to the results shown in Table 9 and 10, the 
CRREGARCH model ranks first under the Euclidean and Frobenius loss 
funcation, whereas the DCC-REGARCH model remains the best per
forming model when the QLIKE function is employed.

Overall, these findings highlight that the multivariate REGARCH 
models display consistent performance across varying forecast periods, 
whether the market exhibits volatile or relatively stable behaviour.

7.4. Different in-sample size

In line with Chou et al. (2009) and Harris and Yilmaz (2010), our 
comparison of the variances-covariance estimators is based on 500 ob
servations. To assess weather a change of in-sample size affects the 
forecasting performance of the eight models, we increase the rolling 
sample size to 600 for both currencies and S&P 500 and oil ETFs. 
Consistent with the findings detailed in Table 3, the RMSE results shown 

Table 8 
Model Confidence Set results for currencies.

Panel A. Forecast horizons range from 1 to 3 weeks

Horizon 1 week 2 weeks 3 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

​ p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank
DCC-CARR 0.06 5 0.06 5 0.01 4 0.06 5 0.06 5 0.01 4 0.02 5 0.02 5 0.00 6
DCC-RGARCH 0.04 6 0.03 6 0.00 6 0.04 6 0.03 6 0.00 6 0.01 7 0.01 8 0.01 4
DCC-CR 0.08 4 0.09 4 1.00 1 0.08 4 0.09 4 1.00 1 0.02 4 0.03 4 0.01 3
MHEWMA 0.01 7 0.00 7 0.00 8 0.01 7 0.00 7 0.00 8 0.01 6 0.01 6 0.00 8
CRHEWMA 0.00 8 0.00 8 0.00 7 0.00 8 0.00 8 0.00 7 0.00 8 0.01 7 0.00 7
DCC-REGARCH 0.08 2 0.09 2 0.00 5 0.08 2 0.09 2 0.00 5 0.08 2 0.08 2 0.01 5
CRREGARCH 1.00 1 1.00 1 0.97 2 1.00 1 1.00 1 0.97 2 1.00 1 1.00 1 1.00 1
CRCARR 0.08 3 0.09 3 0.97 3 0.08 3 0.09 3 0.97 3 0.02 3 0.03 3 0.01 2

Panel B. Forecast horizons range from 4 to 6 weeks

Horizon 4 weeks 5 weeks 6 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

​ p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank
DCC-CARR 0.01 5 0.01 5 0.00 5 0.01 5 0.01 5 0.97 2 0.01 5 0.01 5 0.97 2
DCC-RGARCH 0.01 8 0.01 8 0.00 6 0.01 8 0.01 8 0.06 6 0.01 8 0.01 8 0.06 6
DCC-CR 0.01 4 0.01 4 0.00 3 0.01 4 0.01 4 0.97 3 0.01 4 0.01 4 0.97 3
MHEWMA 0.01 6 0.01 6 0.00 8 0.01 6 0.01 6 0.00 7 0.01 6 0.01 6 0.00 7
CRHEWMA 0.01 7 0.01 7 0.00 7 0.01 7 0.01 7 0.00 8 0.01 7 0.01 7 0.00 8
DCC-REGARCH 0.02 2 0.02 2 0.00 4 0.01 2 0.02 2 0.97 4 0.01 2 0.02 2 0.97 4
CRREGARCH 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1
CRCARR 0.01 3 0.01 3 0.00 2 0.01 3 0.01 3 0.13 5 0.01 3 0.01 3 0.13 5

Panel C. Forecast horizons range from 7 to 9 weeks

Horizon 7 weeks 8 weeks 9 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

​ p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank
DCC-CARR 0.00 5 0.01 5 0.01 4 0.01 5 0.01 5 0.01 4 0.01 5 0.01 5 0.00 6
DCC-RGARCH 0.00 8 0.01 8 0.00 6 0.01 8 0.01 8 0.00 6 0.01 8 0.01 8 0.00 5
DCC-CR 0.00 4 0.01 4 0.88 2 0.01 4 0.01 4 0.00 5 0.01 4 0.01 4 0.00 4
MHEWMA 0.00 6 0.01 6 0.00 8 0.01 6 0.01 6 0.00 8 0.01 6 0.01 6 0.00 8
CRHEWMA 0.00 7 0.01 7 0.00 7 0.01 7 0.01 7 0.00 7 0.01 7 0.01 7 0.00 7
DCC-REGARCH 0.01 2 0.01 2 1.00 1 0.03 2 0.02 2 0.72 2 0.07 2 0.06 2 0.00 3
CRREGARCH 1.00 1 1.00 1 0.88 3 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1
CRCARR 0.00 3 0.01 3 0.01 5 0.01 3 0.01 3 0.01 3 0.01 3 0.01 3 0.00 2

Panel D. Forecast horizons range from 10 to 12 weeks

Horizon 10 weeks 11 weeks 12 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

​ p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank
DCC-CARR 0.01 5 0.01 4 0.00 6 0.01 5 0.01 4 0.09 4 0.01 5 0.01 4 0.09 4
DCC-RGARCH 0.01 8 0.01 8 0.01 5 0.01 8 0.01 8 0.03 6 0.01 8 0.01 8 0.03 6
DCC-CR 0.01 4 0.01 5 0.01 4 0.01 4 0.01 5 0.03 5 0.01 4 0.01 5 0.03 5
MHEWMA 0.01 7 0.01 7 0.00 8 0.01 7 0.01 7 0.00 8 0.01 7 0.01 7 0.00 8
CRHEWMA 0.01 6 0.01 6 0.00 7 0.01 6 0.01 6 0.00 7 0.01 6 0.01 6 0.00 7
DCC-REGARCH 0.03 2 0.03 2 0.63 2 0.05 2 0.05 2 0.83 2 0.05 2 0.05 2 0.83 2
CRREGARCH 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1
CRCARR 0.01 3 0.01 3 0.01 3 0.01 3 0.01 3 0.09 3 0.01 3 0.01 3 0.09 3

Notes: The table shows the results of Model Confidence Set (MCS) for currencies at a 5 % significance level. A rolling window forecasting method with a sample size of 
500 is used. The number of forecast values is 631. The forecast horizon ranges from one week to twelve weeks. The model with the lowest value is shown in bold and 
italics.
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in Table A5.1 demonstrates that the multivariate REGARCH models 
outperform their competitors. In currencies forecasting, the CRRE
GARCH model is the top performer, followed by the DCC-REGARCH 
model, which ranks the second in all cases. For the S&P 500 and oil 
ETFs, the DCC-REGARCH model performs the best in 7 out of 12 cases, 
followed by the CRREGARCH model leading in 4 cases and the CRCARR 
model in 1 case.

The robust performance of the multivariate REGARCH models is 
further supported by the Diebold-Mariano test results shown in 
Table A5.2 and Table A5.3. No model significantly outperforms the two 
developed models. Notably, both models significantly dominate all 
competitors for forecast horizons of 3 weeks and onwards for currencies 
and ETFs. In addition, the CREGARCH model generates the highest R2 

values when forecasting currencies, as evidenced in Table 5.4, while the 
DCC-REGARCH model exhibits the highest predictive power when 
forecasting ETFs, echoing findings in Table 6.

Table A5.5, A5.6, A5.7 and A5.8 show that the CRREGARCH model 
consistently outperforms its counterparts in forecasting the variance- 

covariance matrix for both currencies and ETFs across three loss func
tions, with the DCC-REGARCH model ranking a close second. The results 
signify that the variation in in-sample size does not impede the robust 
performance of the multivariate REGARCH models.

8. Conclusion

Various range-based covariance estimators have been developed, as 
the range is more informative than the squared/absolute return when 
measuring the volatility of financial assets. The DCC, co-range, and 
hybrid EMWA models are the three main multivariate volatility frame
works used with univariate range-based volatility models, such as the 
Parkinson range, CARR and RGARCH models, to measure and forecast 
the variance-covariance matrix.

In this paper, we develop new DCC-REGARCH and CRREGARCH (i. 
e., co-range REGARCH) models by incorporating the REGARCH model 
into DCC and co-range frameworks. To thoroughly compare the per
formance of the new multivariate range-based models, we also develop a 

Table 9 
Out-of-sample forecast losses for ETFs (SPY and USO).

Panel A. Forecast horizons range from 1 to 4 weeks

Horizon 1 week 2 weeks 3 weeks 4 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

DCC-CARR 0.2986 0.3026 − 12.833 0.3064 0.3108 − 12.690 0.3043 0.3090 − 12.565 0.3375 0.3422 − 12.454
DCC-RGARCH 0.1939 0.1966 − 13.035 0.2153 0.2193 − 12.815 0.2322 0.2374 − 12.627 0.2897 0.2958 − 12.462
DCC-CR 0.3005 0.3064 − 12.843 0.3073 0.3127 − 12.711 0.3046 0.3096 − 12.589 0.3374 0.3421 − 12.465
MHEWMA 0.1905 0.1933 − 12.731 0.2054 0.2090 − 12.583 0.2179 0.2222 − 12.473 0.2373 0.2422 − 12.374
CRHEWMA 0.2287 0.2444 − 11.236 0.2345 0.2504 − 11.008 0.2702 0.2864 − 10.642 0.2758 0.2922 − 10.327
DCC-REGARCH 0.2622 0.2655 − 12.913 0.2493 0.2524 − 12.711 0.2488 0.2520 − 12.631 0.2365 0.2399 − 12.511
CRREGARCH 0.2180 0.2212 − 13.005 0.2144 0.2167 − 12.810 0.2424 0.2451 − 12.669 0.2287 0.2318 − 12.031
CRCARR 0.2290 0.2329 − 12.958 0.2511 0.2558 − 12.784 0.2425 0.2473 − 12.639 0.2698 0.2749 − 12.246

Panel B. Forecast horizons range from 5 to 8 weeks

Horizon 5 weeks 6 weeks 7 weeks 8 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

DCC-CARR 0.3312 0.3359 − 12.389 0.3512 0.3557 − 12.310 0.3420 0.3463 − 12.270 0.3365 0.3406 − 12.223
DCC-RGARCH 0.2986 0.3051 − 12.351 0.3623 0.3693 − 12.226 0.3805 0.3877 − 12.125 0.3987 0.4061 − 12.031
DCC-CR 0.3311 0.3355 − 12.404 0.3510 0.3553 − 12.320 0.3418 0.3459 − 12.277 0.3363 0.3402 − 12.232
MHEWMA 0.2451 0.2502 − 12.255 0.2605 0.2658 − 12.232 0.2745 0.2799 − 12.170 0.2801 0.2856 − 12.098
CR-HEWMA 0.2800 0.2965 − 10.504 0.2823 0.2990 − 10.642 0.2846 0.3013 − 10.635 0.2871 0.3040 − 10.423
DCC-REGARCH 0.2243 0.2277 − 12.464 0.2338 0.2373 − 12.439 0.2291 0.2324 − 12.407 0.2236 0.2269 − 12.368
CRREGARCH 0.2205 0.2237 − 12.430 0.2136 0.2169 − 12.421 0.2022 0.2055 − 12.182 0.1990 0.2023 − 12.286
CRCARR 0.3012 0.3064 − 12.181 0.2963 0.3003 − 12.357 0.2864 0.2904 − 12.332 0.2787 0.2826 − 12.138

Panel C. Forecast horizons range from 9 to 12 weeks

Horizon 9 weeks 10 weeks 11 weeks 12 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

DCC-CARR 0.3310 0.3351 − 12.176 0.3226 0.3266 − 12.159 0.3150 0.3189 − 12.129 0.3063 0.3101 − 12.129
DCC-RGARCH 0.4151 0.4228 − 11.951 0.4288 0.4368 − 11.898 0.4423 0.4504 − 11.841 0.4542 0.4625 − 11.798
DCC-CR 0.3308 0.3346 − 12.164 0.3224 0.3262 − 12.147 0.3149 0.3186 − 12.113 0.3061 0.3098 − 12.114
MHEWMA 0.2848 0.2904 − 12.107 0.2871 0.2928 − 12.089 0.2893 0.2949 − 12.077 0.2904 0.2959 − 12.071
CRHEWMA 0.2888 0.3058 − 10.457 0.2910 0.3081 − 9.907 0.2931 0.3104 − 10.209 0.2941 0.3116 − 10.689
DCC-REGARCH 0.2209 0.2243 − 12.306 0.2158 0.2191 − 12.286 0.2117 0.2149 − 12.259 0.2071 0.2103 − 12.264
CRREGARCH 0.1996 0.2030 − 12.300 0.1965 0.1998 − 12.297 0.1937 0.1968 − 12.277 0.1909 0.1940 − 12.208
CRCARR 0.2762 0.2801 − 12.222 0.2700 0.2737 − 12.205 0.2653 0.2689 − 12.174 0.2596 0.2631 − 12.178

Notes: The table shows the out-of-sample forecast losses of the variance-covariance matrix for S&P 500 ETF Trust (SPY) and United States Oil Fund (USO) over the 
forecast horizons ranging from 1 week to 12 weeks. A rolling window forecasting method with a sample size of 500 is used. The values of Euclidean and Frobenius loss 
function are multiplied by 10,000. The model with the lowest value is shown in bold and italics. The weights for the S&P 500 and oil ETFs are both set at 50 %.
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new CRCARR model. In total, we compare the forecast accuracy of eight 
range-based multivariate volatility models, including the three newly 
developed models and five existing models (i.e., DCC-CARR, DCC- 
RGARCH, DCC-CR, MHEWMA and CRHEWMA).

We employ two data sets, currencies (i.e., GBP/USD and EUR/USD) 
and ETFs (i.e., S&P 500 and crude oil), to have a comprehensive com
parison of the eight models. In addition, we assess the performance of 
these models across twelve forecast horizons, ranging from one week to 

twelve weeks. Applying evaluation methods such as RMSE, the Diebold- 
Mariano test, the forecast regression test, the Euclidean, Frobenius and 
QILKE loss functions, and the Model Confidence Set, we find that the 
new CRREGARCH model is the best-performing model in most cases, 
followed by the DCC-REGARCH model. Moreover, we compare the 
variance and turnover of the global minimum variance portfolios con
structed using the forecasted variance-covariance matrix from the eight 
models. The portfolios generated by the CRREGARCH and DCC- 

Table 10 
Model Confidence Set results for ETFs (SPY and USO).

Panel A. Forecast horizons range from 1 to 3 weeks

Horizon 1 week 2 weeks 3 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

​ p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank
DCC-CARR 0.17 7 0.14 7 0.00 7 0.24 7 0.19 7 0.00 6 0.42 7 0.37 7 0.04 6
DCC-RGARCH 0.95 2 0.96 2 1.00 1 0.98 2 0.98 3 1.00 1 0.91 2 0.92 2 0.94 4
DCC-CR 0.12 8 0.11 8 0.00 5 0.19 8 0.16 8 0.02 5 0.35 8 0.32 8 0.49 5
MHEWMA 1.00 1 1.00 1 0.00 6 1.00 1 1.00 1 0.00 7 1.00 1 1.00 1 0.04 7
CRHEWMA 0.30 4 0.23 5 0.00 8 0.45 4 0.29 4 0.00 8 0.71 6 0.58 6 0.02 8
DCC-REGARCH 0.29 6 0.23 6 0.01 4 0.43 5 0.29 5 0.17 4 0.82 5 0.83 5 0.94 3
CRREGARCH 0.48 3 0.46 3 0.52 2 0.98 3 0.98 2 0.96 2 0.91 3 0.92 3 1.00 1
CRCARR 0.29 5 0.27 4 0.08 3 0.36 6 0.27 6 0.85 3 0.82 4 0.83 4 0.94 2

Panel B. Forecast horizons range from 4 to 6 weeks

Horizon 4 weeks 5 weeks 6 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

​ p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank
DCC-CARR 0.17 8 0.15 8 0.52 4 0.22 8 0.18 8 0.31 4 0.09 7 0.08 7 0.01 5
DCC-RGARCH 0.30 6 0.24 6 0.70 3 0.27 5 0.39 4 0.29 5 0.08 8 0.07 8 0.01 7
DCC-CR 0.20 7 0.17 7 0.70 2 0.22 7 0.18 7 0.48 3 0.09 6 0.08 6 0.02 4
MHEWMA 0.96 3 0.96 3 0.52 5 0.76 3 0.73 3 0.15 7 0.17 3 0.16 3 0.01 6
CRHEWMA 0.39 5 0.28 5 0.07 8 0.27 4 0.18 5 0.04 8 0.09 5 0.08 5 0.01 8
DCC-REGARCH 0.96 2 0.96 2 1.00 1 0.93 2 0.92 2 1.00 1 0.19 2 0.19 2 1.00 1
CRREGARCH 1.00 1 1.00 1 0.52 7 1.00 1 1.00 1 0.72 2 1.00 1 1.00 1 0.82 2
CRCARR 0.58 4 0.56 4 0.52 6 0.25 6 0.18 6 0.29 6 0.12 4 0.12 4 0.25 3

Panel C. Forecast horizons range from 7 to 9 weeks

Horizon 7 weeks 8 weeks 9 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

​ p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank
DCC-CARR 0.05 7 0.04 7 0.02 4 0.04 7 0.03 7 0.02 4 0.03 7 0.04 7 0.02 4
DCC-RGARCH 0.04 8 0.04 8 0.01 7 0.04 8 0.03 8 0.01 7 0.03 8 0.03 8 0.01 7
DCC-CR 0.05 6 0.04 6 0.02 3 0.04 6 0.03 6 0.02 3 0.03 6 0.04 6 0.01 5
MHEWMA 0.05 3 0.04 3 0.02 6 0.04 4 0.03 4 0.02 6 0.03 5 0.04 4 0.01 6
CRHEWMA 0.05 5 0.04 5 0.01 8 0.04 5 0.03 5 0.01 8 0.03 4 0.04 5 0.01 8
DCC-REGARCH 0.05 2 0.04 2 1.00 1 0.04 2 0.03 2 1.00 1 0.03 2 0.04 2 1.00 1
CRREGARCH 1.00 1 1.00 1 0.02 5 1.00 1 1.00 1 0.54 2 1.00 1 1.00 1 0.92 2
CRCARR 0.05 4 0.04 4 0.21 2 0.04 3 0.03 3 0.02 5 0.03 3 0.04 3 0.18 3

Panel D. Forecast horizons range from 10 to 12 weeks

Horizon 10 weeks 11 weeks 12 weeks

Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE Euclidean Frobenius QLIKE

​ p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank p-val Rank
DCC-CARR 0.03 7 0.03 7 0.02 4 0.03 7 0.03 6 0.04 4 0.03 7 0.02 6 0.05 4
DCC-RGARCH 0.03 8 0.03 8 0.01 7 0.03 8 0.03 8 0.01 7 0.03 8 0.02 8 0.01 7
DCC-CR 0.03 6 0.03 5 0.01 5 0.03 5 0.03 5 0.02 6 0.03 4 0.02 4 0.02 5
MHEWMA 0.03 5 0.03 4 0.01 6 0.03 4 0.03 4 0.03 5 0.03 6 0.02 5 0.02 6
CRHEWMA 0.03 4 0.03 6 0.01 8 0.03 6 0.03 7 0.01 8 0.03 5 0.02 7 0.01 8
DCC-REGARCH 0.03 2 0.03 2 0.84 2 0.03 2 0.03 2 0.72 2 0.03 2 0.02 2 1.00 1
CRREGARCH 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 0.59 2
CRCARR 0.03 3 0.03 3 0.11 3 0.03 3 0.03 3 0.10 3 0.03 3 0.02 3 0.30 3

Notes: The table shows the results of Model Confidence Set (MCS) for S&P 500 ETF Trust (SPY) and United States Oil Fund (USO) at a 5 % significance level. A rolling 
window forecasting method with a sample size of 500 is used. The number of forecast values is 450. The forecast horizon ranges from one week to twelve weeks. The 
model with the lowest value is shown in bold and italics. The weights for the S&P 500 and oil ETFs are both set at 50 %.
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Table 11 
Out-of-sample Portfolio Variance.

Panel A. Out-of-sample Portfolio Variance for Currencies

Rebalancing Period

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks 11 weeks 12 weeks

DCC-CARR 0.07240** 0.07307** 0.07294** 0.07192** 0.07190* 0.07159** 0.07096** 0.07216* 0.07256* 0.07307 0.07286 0.07286
DCC-RGARCH 0.07208** 0.07272** 0.07288** 0.07180** 0.07208* 0.07163** 0.07088** 0.07178* 0.07236* 0.07288 0.07275 0.07292
DCC-CR 0.07238** 0.07275** 0.07243** 0.07140** 0.07184** 0.07157** 0.07095** 0.07191* 0.07242* 0.07311 0.07289* 0.07283*
MHEWMA 0.07153** 0.07346 0.07127 0.07481 0.07397 0.07432 0.07548 0.07636 0.07515 0.07584 0.07537 0.07557
CRHEWMA 0.08098 0.09321 0.07561 0.08089 0.07486 0.07776 0.07461 0.08189 0.07560 0.08093 0.07967 0.07739
DCC-REGARCH 0.07186** 0.07241** 0.07228** 0.07170** 0.07157** 0.07100** 0.07076** 0.07198* 0.07225* 0.07247* 0.07211* 0.07196*
CRREGARCH 0.07167** 0.07207** 0.07196** 0.07141** 0.07113** 0.07080** 0.07083** 0.07173** 0.07210** 0.07194** 0.07175** 0.07181**
CRCARR 0.07192** 0.07260** 0.07276** 0.07212** 0.07205** 0.07171** 0.07126** 0.07208** 0.07259* 0.07278* 0.07269* 0.07269*
1/N 0.07853 0.07846 0.07852 0.07842 0.07847 0.07853 0.07812 0.07824 0.07836 0.07836 0.07848 0.07860

Panel B. Out-of-sample Portfolio Variance for ETFs

Rebalancing Period

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks 11 weeks 12 weeks

DCC-CARR 0.4938** 0.4105** 0.4504** 0.4077** 0.4220** 0.4226** 0.4058** 0.4193** 0.4205** 0.4203** 0.4183** 0.4115**
DCC-RGARCH 0.5125** 0.4664** 0.5361* 0.4073** 0.4638** 0.5461** 0.4689** 0.4119 0.4439** 0.4610** 0.4470** 0.4449**
DCC-CR 0.4982** 0.4315** 0.4449** 0.3846** 0.4036** 0.4083** 0.4014** 0.4154** 0.4090** 0.4104** 0.4097** 0.4055**
MHEWMA 0.4615** 0.5172 0.5522 0.5382* 0.5811 0.4911** 0.4188** 0.4296** 0.4135** 0.4068** 0.4009** 0.3948**
CRHEWMA 0.4672 0.5445 0.4677** 0.5950 0.4407** 0.4421** 0.4150** 0.4066** 0.4057** 0.3975** 0.3972** 0.3992**
DCC-REGARCH 0.4823** 0.4702** 0.4754** 0.4099** 0.4094** 0.4095** 0.4054** 0.4184** 0.4232** 0.4211** 0.4185** 0.4080**
CRREGARCH 0.4721** 0.4347** 0.4309** 0.4277** 0.4202** 0.4338** 0.4141** 0.4200** 0.4109** 0.4097** 0.4130** 0.4092**
CRCARR 0.4953** 0.4159** 0.5600* 0.5216 0.4380** 0.4754** 0.4408** 0.5262** 0.4295** 0.4225** 0.4281** 0.4181**
1/N 0.8652 0.8670 0.8689 0.8700 0.48617 0.8630 0.8621 0.8635 0.8520 0.48496 0.8472 0.8479

Notes: This table presents the annualised variance of the minimum variance portfolios for currencies and ETFs constructed using the eight models. The 1/N strategy is employed as the benchmark to compare the 
performance of the minimum variance portfolios. The value in bold and italics indicates that the model achieves the lowest variance portfolios. * and ** indicate that the null hypothesis that the minimum variance 
portfolios and averaged weighted (1/N) portfolio have the same variance is rejected at the 10 % and 5 % levels, respectively. All values are multiplied by 100.
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REGARCH models typically outperform their competitors (i.e., have the 
lowest variance or turnover) across most rebalancing periods.

Strikingly, our results demonstrate that integrating the REGARCH 
model within the co-range framework improves the forecast accuracy of 
the variance-covariance matrix, providing the most consistent perfor
mance across various forecast horizons and asset types. The superior 
performance of the CRREGARCH model underscores the strengths of 
both its univariate volatility estimator - the REGARCH model - and its 
multivariate counterpart - the co-range model. The REGARCH model 
effectively captures key volatility characteristics, enhancing univariate 
volatility estimation and forecasting. In addition, reducing the need for 
additional parameter estimations, the combination of the REGARCH and 
co-range model presents a reduced margin for estimation errors in 
contrast to the competing models. The strong performance of the mul
tivarite REGARCH models suggests promising applications in portfolio 
management, asset allocation, risk management and contagion studies.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.irfa.2025.103983.

Data availability

Data will be made available on request.

References

Afonso, A., Gomes, P., & Taamouti, A. (2014). Sovereign credit ratings, market volatility, 
and financial gains. Computational Statistics & Data Analysis, 76, 20–33. https://doi. 
org/10.1016/j.csda.2013.09.028

Alizadeh, S., Brandt, M. W., & Diebold, F. X. (2002). Range-based estimation of stochastic 
volatility models. The Journal of Finance, 57, 1047–1091. https://doi.org/10.1111/ 
1540-6261.00454

Alves, R. P., De Brito, D. S., Medeiros, M. C., & Ribeiro, R. M. (2024). Forecasting large 
realized covariance matrices: The benefits of factor models and shrinkage. Journal of 
Financial Econometrics, 22, 696–742. https://doi.org/10.1093/jjfinec/nbad013

Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2001). The distribution of 
realized exchange rate volatility. Journal of the American Statistical Association, 96, 
42–55. https://doi.org/10.1198/016214501750332965

Bannouh, K., van Dijk, D., & Martens, M. (2009). Range-based covariance estimation 
using high-frequency data: The realized co-range. Journal of Financial Econometrics, 
7, 341–372. https://doi.org/10.1093/jjfinec/nbp012

Barndorff-Nielsen, O. E., & Shephard, N. (2004). Econometric analysis of realized 
covariation: High frequency based covariance, regression, and correlation in 
financial economics. Econometrica, 72, 885–925. https://doi.org/10.1111/j.1468- 
0262.2004.00515.x

Bollerslev, T., Li, J., & Li, Q. (2024). Optimal nonparametric range-based volatility 
estimation. Journal of Econometrics, 238, Article 105548. https://doi.org/10.1016/j. 
jeconom.2023.105548

Bollerslev, T., Patton, A. J., & Quaedvlieg, R. (2018). Modeling and forecasting (un) 
reliable realized covariances for more reliable financial decisions. Journal of 
Econometrics, 207, 71–91. https://doi.org/10.1016/j.jeconom.2018.05.004

Brandt, M. W., & Diebold, F. X. (2006). A no-arbitrage approach to range-based 
estimation of return covariances and correlations. The Journal of Business, 79, 61–74. 
https://doi.org/10.1086/497405

Brandt, M. W., & Jones, C. S. (2006). Volatility forecasting with range-based EGARCH 
models. Journal of Business & Economic Statistics, 24, 470–486. https://doi.org/ 
10.1198/073500106000000206

Chou, R. Y. (2005). Forecasting financial volatilities with extreme values: The 
conditional autoregressive range (CARR) model. Journal of Money, Credit and 
Banking, 37, 561–582. https://doi.org/10.1353/mcb.2005.0027

Chou, R. Y., Wu, C.-C., & Liu, N. (2009). Forecasting time-varying covariance with a 
range-based dynamic conditional correlation model. Review of Quantitative Finance 
and Accounting, 33, 327–345. https://doi.org/10.1007/s11156-009-0113-3

DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A generalized approach to 
portfolio optimization: Improving performance by constraining portfolio norms. 
Management Science, 55, 798. https://doi.org/10.1287/mnsc.1080.0986

Dichtl, H., Drobetz, W., & Wambach, M. (2016). Testing rebalancing strategies for stock- 
bond portfolios across different asset allocations. Applied Economics, 48, 772–788. 
https://doi.org/10.1080/00036846.2015.1088139

Dunis, C., Laws, J., & Chauvin, S. (2003). FX volatility forecasts and the informational 
content of market data for volatility. The European Journal of Finance, 9, 242–272. 
https://doi.org/10.1080/13518470210151100

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate 
generalized autoregressive conditional heteroskedasticity models. Journal of Business 
& Economic Statistics, 20, 339–350. https://doi.org/10.1198/073500102288618487

Ferland, R., & Lalancette, S. (2006). Dynamics of realized volatilities and correlations: An 
empirical study. Journal of Banking & Finance, 30, 2109–2130. https://doi.org/ 
10.1016/j.jbankfin.2005.05.020

Table 12 
Turnover.

Panel A. Turnover of the Currencies

Rebalancing Period

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks 11 weeks 12 weeks

DCC-CARR 0.1530 0.1464 0.1416 0.1373 0.1341 0.1315 0.1286 0.1258 0.1234 0.1215 0.1196 0.1174
DCC-RGARCH 0.1531 0.1325 0.1246 0.1196 0.1163 0.1142 0.1119 0.1097 0.1079 0.1065 0.1052 0.1040
DCC-CR 0.1501 0.1454 0.1420 0.1393 0.1368 0.1348 0.1322 0.1300 0.1278 0.1260 0.1242 0.1220
MHEWMA 0.1347 0.1345 0.1351 0.1351 0.1359 0.1346 0.1356 0.1353 0.1367 0.1360 0.1358 0.1363
CRHEWMA 0.1598 0.1597 0.1593 0.1585 0.1577 0.1580 0.1585 0.1580 0.1576 0.1569 0.1574 0.1572
DCC-REGARCH 0.1437 0.1396 0.1360 0.1328 0.1299 0.1280 0.1257 0.1236 0.1216 0.1199 0.1182 0.1167
CRREGARCH 0.1362 0.1323 0.1284 0.1252 0.1220 0.1195 0.1164 0.1138 0.1114 0.1093 0.1073 0.1057
CRCARR 0.1519 0.1453 0.1398 0.1346 0.1301 0.1267 0.1232 0.1196 0.1162 0.1136 0.1110 0.1085
1/N 0.0849 0.0849 0.0849 0.0848 0.0848 0.0847 0.0847 0.0846 0.0846 0.0845 0.0844 0.0844

Panel B. Turnover of ETFs

Rebalancing Period

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks 11 weeks 12 weeks

DCC-CARR 0.0980 0.0850 0.0749 0.0672 0.0609 0.0564 0.0531 0.0504 0.0482 0.0466 0.0452 0.0438
DCC-RGARCH 0.0909 0.0871 0.0842 0.0822 0.0803 0.0791 0.0782 0.0775 0.0771 0.0770 0.0768 0.0766
DCC-CR 0.0942 0.0787 0.0680 0.0602 0.0538 0.0489 0.0453 0.0425 0.0402 0.0385 0.0369 0.0354
MHEWMA 0.0519 0.0517 0.0516 0.0514 0.0515 0.0517 0.0518 0.0518 0.0516 0.0516 0.0514 0.0514
CRHEWMA 0.1627 0.1633 0.1640 0.1642 0.1648 0.1652 0.1654 0.1657 0.1658 0.1660 0.1665 0.1669
DCC-REGARCH 0.1074 0.0918 0.0787 0.0692 0.0620 0.0569 0.0531 0.0497 0.0469 0.0448 0.0429 0.0412
CRREGARCH 0.1068 0.0871 0.0710 0.0592 0.0511 0.0459 0.0434 0.0421 0.0417 0.0426 0.0435 0.0449
CRCARR 0.1409 0.1267 0.1168 0.1176 0.1033 0.0961 0.0936 0.0915 0.0894 0.0877 0.0857 0.0835
1/N 0.1458 0.1460 0.1462 0.1464 0.1465 0.1467 0.1469 0.1470 0.1472 0.1473 0.1474 0.1476

Notes: This table presents the turnover of minimum variance portfolios for currencies and ETFs (S&P 500 ETF Trust (SPY) and United States Oil Fund (USO)), con
structed based on the eight models. The 1/N strategy is employed as the benchmark to compare the performance of the minimum variance portfolios. The value in bold 
and italics indicates that the model achieves the lowest turnover.

L. Yan et al.                                                                                                                                                                                                                                      International Review of Financial Analysis 100 (2025) 103983 

22 

https://doi.org/10.1016/j.irfa.2025.103983
https://doi.org/10.1016/j.irfa.2025.103983
https://doi.org/10.1016/j.csda.2013.09.028
https://doi.org/10.1016/j.csda.2013.09.028
https://doi.org/10.1111/1540-6261.00454
https://doi.org/10.1111/1540-6261.00454
https://doi.org/10.1093/jjfinec/nbad013
https://doi.org/10.1198/016214501750332965
https://doi.org/10.1093/jjfinec/nbp012
https://doi.org/10.1111/j.1468-0262.2004.00515.x
https://doi.org/10.1111/j.1468-0262.2004.00515.x
https://doi.org/10.1016/j.jeconom.2023.105548
https://doi.org/10.1016/j.jeconom.2023.105548
https://doi.org/10.1016/j.jeconom.2018.05.004
https://doi.org/10.1086/497405
https://doi.org/10.1198/073500106000000206
https://doi.org/10.1198/073500106000000206
https://doi.org/10.1353/mcb.2005.0027
https://doi.org/10.1007/s11156-009-0113-3
https://doi.org/10.1287/mnsc.1080.0986
https://doi.org/10.1080/00036846.2015.1088139
https://doi.org/10.1080/13518470210151100
https://doi.org/10.1198/073500102288618487
https://doi.org/10.1016/j.jbankfin.2005.05.020
https://doi.org/10.1016/j.jbankfin.2005.05.020
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Fiszeder, P., Fałdziński, M., & Molnár, P. (2019). Range-based DCC models for covariance 
and value-at-risk forecasting. Journal of Empirical Finance, 54, 58–76. https://doi. 
org/10.1016/j.jempfin.2019.08.004

Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 
79, 453–497. https://doi.org/10.3982/ecta5771

Harris, R. D. F., & Yilmaz, F. (2010). Estimation of the conditional variance–covariance 
matrix of returns using the intraday range. International Journal of Forecasting, 26, 
180–194. https://doi.org/10.1016/j.ijforecast.2009.02.009

Kim, H., Lee, S., Soh, S. B., & Kim, S. (2022). Improving portfolio investment 
performance with distance-based portfolio-combining algorithms. Journal of 
Financial Research, 45, 941–959. https://doi.org/10.1111/jfir.12303

Koutmos, D., King, T., & Zopounidis, C. (2021). Hedging uncertainty with 
cryptocurrencies: Is bitcoin your best bet? Journal of Financial Research, 44, 815–837. 
https://doi.org/10.1111/jfir.12264

Laurent, S., Rombouts, J. V. K., & Violante, F. (2012). On the forecasting accuracy of 
multivariate GARCH models. Journal of Applied Econometrics, 27, 934–955. https:// 
doi.org/10.1002/jae.1248

Laurent, S., Rombouts, J. V. K., & Violante, F. (2013). On loss functions and ranking 
forecasting performances of multivariate volatility models. Journal of Econometrics, 
173, 1–10. https://doi.org/10.1016/j.jeconom.2012.08.004

Ledoit, O., & Wolf, M. (2011). Robust performances hypothesis testing with the variance. 
Wilmott, 2011, 86–89. https://doi.org/10.1002/wilm.10036

Lehnert, T. (2023). Range-based volatility timing. JPM, 50, 160–170. https://doi.org/ 
10.3905/jpm.2023.1.569

Molnár, P. (2016). High-low range in GARCH models of stock return volatility. Applied 
Economics, 48, 4977–4991. https://doi.org/10.1080/00036846.2016.1170929

Parkinson, M. (1980). The extreme value method for estimating the variance of the rate 
of return. The Journal of Business, 53, 61–65. https://doi.org/10.1086/296071

Symitsi, E., Symeonidis, L., Kourtis, A., & Markellos, R. (2018). Covariance forecasting in 
equity markets. Journal of Banking & Finance, 96, 153–168. https://doi.org/ 
10.1016/j.jbankfin.2018.08.013

Wan, S. K. (2019). Portfolio management: The role of calibration, sharpness, and 
uncertainty. Journal of Financial Research, 42, 589–608. https://doi.org/10.1111/ 
jfir.12189

L. Yan et al.                                                                                                                                                                                                                                      International Review of Financial Analysis 100 (2025) 103983 

23 

https://doi.org/10.1016/j.jedc.2019.103736
https://doi.org/10.1016/j.jempfin.2019.08.004
https://doi.org/10.1016/j.jempfin.2019.08.004
https://doi.org/10.3982/ecta5771
https://doi.org/10.1016/j.ijforecast.2009.02.009
https://doi.org/10.1111/jfir.12303
https://doi.org/10.1111/jfir.12264
https://doi.org/10.1002/jae.1248
https://doi.org/10.1002/jae.1248
https://doi.org/10.1016/j.jeconom.2012.08.004
https://doi.org/10.1002/wilm.10036
https://doi.org/10.3905/jpm.2023.1.569
https://doi.org/10.3905/jpm.2023.1.569
https://doi.org/10.1080/00036846.2016.1170929
https://doi.org/10.1086/296071
https://doi.org/10.1016/j.jbankfin.2018.08.013
https://doi.org/10.1016/j.jbankfin.2018.08.013
https://doi.org/10.1111/jfir.12189
https://doi.org/10.1111/jfir.12189

	Multivariate range-based EGARCH models
	1 Introduction
	2 Methodology
	2.1 Realised variance and covariance
	2.2 New covariance estimators
	2.2.1 The DCC-REGARCH model
	2.2.2 The co-range REGARCH and co-range CARR model

	2.3 Existing models
	2.3.1 The DCC-CARR model
	2.3.2 The DCC-RGARCH model
	2.3.3 The DCC-CR model
	2.3.4 The hybrid EWMA (HEWMA) model


	3 Evaluation approach
	4 Data
	5 Forecast comparison
	6 Minimum variance portfolios performance
	7 Robustness tests
	7.1 Different weight set for the co-range-based models
	7.2 Different asset combination
	7.3 Different out-of-sample period
	7.4 Different in-sample size

	8 Conclusion
	Appendix A Supplementary data
	Data availability
	References


