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Abstract—IoT sensors are made of physical materials, and
due to natural decay in materials, sensor data drifts over time.
Even though sensors are calibrated after deploying at the site,
the accumulation of errors in sensor measurements due to
sensor drifts renders the data progressively irrelevant, creating
significant issues for end applications. In this paper, we propose a
software-driven drift detection and calibration framework based
on probabilistic observation in latent space using Variational
Autoencoders (VAEs). The proposed method utilizes the latent
distribution of the generative model from sampled observational
data, which are collected during the calibration phase of the
deployed sensors. Variational inference in VAEs is employed
to approximate the true posterior distribution for detecting
sensor drifts, incorporating metrics such as Kullback-Leibler
(KL) divergence. Additionally, reconstruction loss is utilized for
calibrating the sensors. Both simulated and real-world sensor
data are used to evaluate the proposed method. Experimental
results demonstrate significant improvement over existing drift
detection and calibration techniques.

Index Terms—Sensor drift, variational autoencoder, soft cali-
bration, latent distribution, Kullback-Leibler divergence

I. INTRODUCTION

TECHNOLOGIES have become integral for managing
diverse facets of daily life, encompassing public services,

business operations, and even grocery shopping. Governments,
societies, and companies increasingly depend on these in-
terconnected technological platforms, tools, and interfaces,
as the Internet evolves rapidly toward a more decentralized
version. Looking ahead, the interconnectivity and convergence
of these digital tools are poised to deepen, particularly as
society embraces the upcoming generation of the Internet,
often referred to as Internet 3.0 [1], [2].

Amidst this technological evolution, the seamless function-
ing of these interconnected IoT systems, which depend on
sensing accurate readings and sending these data to a central
server, has become paramount. One critical challenge arises
from the accumulation of errors in data readings, particularly
due to sensor drift, posing a significant issue for end applica-
tions. Traditionally, this problem is addressed by comparing
measurements from faulty sensors with those from accurately
calibrated standard sensors. However, the calibration process
is labor-intensive and loses effectiveness when dealing with
numerous sensors that require frequent calibration [3], [4], [5].
In the context of remote and large-scale implementations of
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IoT sensors, the cost and impracticality of frequent manual
calibration for inexpensive sensors create a substantial demand
for soft calibration methods [6], [7], [8].

One simple technique for calibration involves applying a
known stimulus to the sensor network and measuring its
response [9]. Then, comparing the ground truth input to the
response will result in finding the gain and offset for the linear
drifts case [10], [5]. The calibration problem of the sensor
network was also tackled by [6] using Bayesian framework.
In their work, the researchers proposed that, once deployed,
sensor measurements would differ linearly from the actual
values by certain gains and offsets unique to each sensor,
despite initial calibration at the factory. To address this issue,
they developed a subspace matching technique for estimating
these gains and offsets using routine sensor measurements,
without the need for comparison to ground truth values. The
estimated gains and offsets were assumed to be constant for
each sensor and were used to calibrate future readings to the
true values. Although this method was effective in controlled
environments, it was less successful in the presence of noise
and other disruptions.

Over time, some sensor nodes may exhibit drift in their
readings, which, if left uncorrected, can lead to incorrect con-
clusions in downstream applications. When the unreliability
level surpasses a certain threshold, the sensor-readings become
unreliable and the applications using these data become irrel-
evant, as it is infeasible to manually re-calibrate the sensors.
Soft calibration of sensor data at the central server is the most
viable solution to address the drift issue and enable wider
adoption of the technology. This is because the data from the
same sensors will not be correlated if installed in different
environments, and the faults or drift instances are likely to be
correlated as well.

To address the computational limitations of IoT devices, our
approach centralizes the data processing and model training
on a powerful server. The IoT sensors are responsible only
for data collection and transmission, while the central server
performs the complex sensor drift detection and calibration us-
ing the Variational Autoencoder (VAE) model. Consequently,
performing soft calibration of the sensor data at some central
server and addressing their drifts separately helps to extend the
effective and useful lifetime of the sensor nodes [10], [5], [7].
Traditional sensor drift calibration methods often rely on man-
ual interventions, linear assumptions, or extensive historical
data, which can be impractical and ineffective for large-scale
IoT deployments. VAEs offer a promising alternative by lever-
aging deep learning to model complex, non-linear relationships
in sensor data. VAEs can learn latent representations that
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capture the underlying distribution of sensor measurements,
enabling the detection and calibration of drift without manual
recalibration or reliance on simplistic assumptions [8], [5].
This probabilistic framework allows for robust handling of
uncertainties and variations inherent in sensor data, making
VAEs particularly suitable for real-world applications where
sensor behavior may be unpredictable [8]. In this paper, our
main contributions are summarized as follows:

• We propose a sensor drift calibration framework based
on VAEs. Kullback-Leibler (KL) divergence is used both
in VAEs loss function and also for sensor drift detection.

• We compare the performance of our proposed methods
using both simulated and real-world datasets. The pro-
posed method calibrates sensors based on calibrated sen-
sor observations. Kalman filter and some existing tech-
niques use predicted value as ground truth for subsequent
estimations, leading to error accumulation. Experimental
results show that our proposed technique is more robust
than existing techniques as it does not accumulate errors.

The rest of this paper is organized as follows. We first
present some related work in Section II. In Section III, we
formulate the drift calibration problem. In Section IV, we de-
scribe our proposed sensor drift detection and soft calibration
algorithm. In Section V, the proposed algorithm is evaluated
and compared with both simulated and real-world datasets. We
conclude and discuss possible future work in Section VI.

II. RELATED WORK

Sensors are made of materials and usually left unattended
for long periods of time in the field, sensor data drifts are
inevitable due to natural decay in materials. Additionally,
often in defence applications hundreds to thousands of sensor
nodes deployed in nearly inaccessible locations under harsh
environment, which can eventually accelerate sensor drift. As
a result, sensor data would become inaccurate and unreliable
after a while. For such applications, it is not practical to
unmount and re-calibrate these sensors individually because
of the enormous number and their remote locations [11], [12],
[13].

When a sensor fails due to malfunctions or wear and tear,
it may transmit faulty or dirty data rather than just stopping
data transmission [14], [15]. In the uncontrolled environment
where sensors are deployed, it is difficult to assess the accuracy
of data without additional contextual information or sensor
redundancy [16].

In [16], authors mainly focused on data-centric approaches
such as rule-based or anomaly detection to identify faulty data,
but these have limitations including the potential for faulty
data to mimic non-faulty data and the high false positives and
negatives that can result from temporal and spatial dependency
[16]. Additional contextual data is required to detect anoma-
lies, but the approach is not always feasible due to the high
cost and battery requirements, particularly in deployments with
hundreds or thousands of sensors [17], [18], [19]. A sensor
redundancy approach using two sensors in each device to
validate abnormal data is presented in [20], but that is not
practical for large-scale deployments. However, this approach

is expensive and requires high battery consumption, making
it unsuitable for large-scale deployments with hundreds or
thousands of sensors.

Current research has focused on data-centric methods such
as rule-based or anomaly detection to identify faults by
analysing historical sensor data spanning from days to years
[16]. However, this does not indicate faulty data, particularly
in hyper-local air pollution contexts where variations are
high [17]. Anomaly detection relies on integrating contex-
tual information and these dependencies can introduce high
rates of false positives and negatives due to localised data
fluctuations[19], [21], [18].

Several studies have shown that sensors begin to experience
drift after a few months of deployment due to factors such as
wear and tear, ageing, and semiconductor impurity effects [22],
[23]. Periodic calibration of the sensor is a common approach
used to correct drift, where the deployed sensor is placed
alongside a high-end sensor at intervals. However, this method
is laborious, costly, and necessitates bringing the sensor back
for co-location [22]. In [24], authors have proposed blind
calibration techniques using learning algorithms to calibrate
sensors based on the assumption that nearby sensors’ data
should be highly correlated. However, these learning algo-
rithms perform poorly in cases where nearby sensors record
differing pollution levels due to diverse emission sources,
leading to hyper-local variations. Such approaches depend on
substantial historical sensor data (ranging from a few hours to
years) to model the behaviour of the sensed data.

IoT sensor data arrives continuously and tends to change
over time. Generally, a concept or sensor drift is defined as the
data distribution over a certain period when the sensor is under
calibration. In the real world, concepts in a data stream often
change with time rather than staying static due to various real-
life scenarios, such as changes in operating load conditions,
ageing, environmental conditions, and several other factors.
In data streams, the concepts of interest are often dependent
on unknown context and can change in unexpected ways, a
phenomenon referred to as concept drift in the field of machine
learning and predictive analytics. Concept drifts can have a
negative impact on the accuracy of data analysis and decision-
making systems, causing predictions to become less precise
as time goes on. A practical illustration of concept drift is in
a smart factory environment, where numerous IIoT devices
and sensors gather information on the status of machines
and factory operations [9]. These data are transmitted to a
cyber-physical system (CPS) which will then be used for
health checks and different analytical purposes. Concept drifts
can often occur in unpredictable ways, making it difficult to
identify when, where, and why the changes in concepts have
occurred.

To calibrate the sensors, traditionally a known stimulus is
triggered to the sensor and measure the response or physically
visit the site to unmount and calibrate [25]. The process of
identifying the gain and offset in cases of linear drift involves
comparing the initial input with the corresponding output. It
has been noted in research that sensors calibrated to factory
settings upon deployment will exhibit linear deviations from
the actual ground truth, characterised by specific gains and
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Fig. 1: Representation of sensor drift in temperature sensor

offsets for each sensor [26]. A method has been developed to
calculate these gains and offsets through the use of subspace
matching. While the method showed promising results in a
controlled setting, it was less effective in the presence of
noise and other interference. In literature, multiple statistical
techniques were reported to calibrate sensors data but mostly
those were designed considering a specific environmental con-
dition or network [27], [28]. These methods can struggle with
non-linear drift behaviours and are sensitive to noise, limiting
their effectiveness in complex environments. In contrast, VAEs
capture non-linearities in data by learning a probabilistic latent
distribution. By modelling the true data distribution more
accurately through this latent space, VAEs provide better
generalisation and robustness to noise. This makes VAEs a
more powerful tool for sensor drift calibration in dynamic and
uncertain environments [8], [5]. Researchers have shown that
the effective life of the network can be extended by detecting
sensors that are drifting and correcting their measurements [6],
[28]. Hence, a more generalised solution is required to adopt
dynamically for different environment and varying sensors
readings [29].

III. PRELIMINARIES

Sensor drift is the result of a change in the properties of
one or more sensor components, often due to wear and tear
or degradation. This change is gradual and can go unnoticed
for a long time. Usually, a sensor is considered to have drifted
when there is a significant difference in the data between the
deployed sensor and a reference sensor.

As shown in Figure 1, the sensor drift is monitored by a
regular comparison routine. The sensors are calibrated before
being deployed on-site. With respect to time, the actual sensor
value start to deviate gradually which might continue to trans-
mit faulty or dirty data [14]. Additional contextual information
or on-site calibration is required to assess the accuracy of the
data, as the environment in which these sensors are deployed
is uncontrolled. In some cases, there could be hundreds of
sensors need inspection for calibration which might not be
always feasible, frequent manual calibration is impractical
and cost prohibitive. Hence, there is a significant need for
soft calibration of sensors or sensor drift compensation. A
intelligent soft calibration system eventually will increase the
effective lifetime of the sensors.

In our approach, the drift detection will be handled by
“Memory” module as shown in Figure 2. The memory module
is a real-time streaming and data validation platform which
will receive data from sensors and keep track of the individual
sensor data distribution for validation purposes. To address the

computational limitations of IoT devices, we centralise the
data processing and model training on a central server where
the Memory module resides. The IoT sensors are responsible
solely for data collection and transmission, minimising their
processing burden and energy consumption. The central server
performs the complex sensor drift detection and calibration
using the VAE model. By offloading the computationally
intensive tasks to the server, our system ensures efficient
operation of IoT devices while providing accurate and timely
calibration of sensor data before any decision-making pro-
cesses. In the drift detection module, KL divergence algorithm
is utilised to ensure new streams of data from sensors follow
the expectational distribution. The expectational distribution
in the memory component will utilise incremental update of
distribution to make the system adaptive for any environment.
If the new streams of data fail to satisfy at expectational
distribution, data will be passed to third component of the
system which is error/loss estimation and drift compensation
of the sensor data [30].

Sensor data drift can be explained, given a sample instance
XϵCi which can be classified as -

p(Ci|X) =
P (ci)P (X|ci)

p(X)
(1)

To rephrase, while the input dis tribution p(c|X) undergoes
changes, p(X) stays unchanged.

Imagine an environment equipped with n sensors. For every
discrete moment t, define xt = [x1,t, x2,t, . . . , xn,t]

T as the
ideal signal that the sensors aim to measure, where xi,t

indicates the true signal value of sensor i at time t devoid of
any drift or noise. Clearly, x exists within an n-dimensional
measurement space, identified as M .

Define y as the actual reading from the sensors. Given that
each sensor is subject to unknown drifts and noise, we propose
yi,t = xi,t + di,t + νi,t, where yi,t represents the observed
measurement, xi,t the actual, albeit unknown, true value, di,t
the unknown sensor drift, and νi,t the noise in measurement.
This relationship can be succinctly expressed in vector form:

yt = xt + dt + νt. (2)

The challenge in soft drift calibration lies in deducing the
original or true values x from the drifted and noisy data y.

In equation 2, yt is the only directly measurable component,
necessitating additional constraints within the equation to
effectively estimate the drift. This process aims to estimate
and compensate for unknown sensor drift and noise in sen-
sor measurements, ultimately enhancing the accuracy of the
recorded data. It is postulated that the true signal resides within
a subspace of M , termed S, which is of lower dimensionality.
Let the dimension of S be represented by r, with r being less
than n.

In the VAE framework, the representation of sensor signals,
xt, is modelled through a latent distribution. This latent dis-
tribution is denoted as qϕ(z|xt), where z represents the latent
variables and ϕ are the parameters of the encoder network.
The encoding process, parameterised by ϕ, transforms the
input sensor signal xt into a distribution over latent variables.
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Fig. 2: Sensor drift aware soft calibration system

This provides a probabilistic representation that captures the
underlying structure and variability within the sensor signals
as shown in Figure 3.

x Encoderqϕ(z|x) z Decoderpθ(x|z) x̂

Input ReconstructionKL Divergence

Fig. 3: Illustration of the VAE model. The input x is encoded
into a latent variable z via the encoder qϕ(z|x). The decoder
pθ(x|z) reconstructs the input, while the KL divergence reg-
ularises the latent space during training.

Consider the linear source-sensor model. In a sensing en-
vironment influenced by several signal sources denoted by
s = [s1, s2, . . . , sr]

T , the signal detected at each sensor is
derived from a linear mix of these sources. Consequently,
xi =

∑r
j=1 aijsj , where aij represents the influence of source

j on sensor i. This model is redefined in vector form as
x = As, where A is an n× r matrix and the entry at the i-th
row and j-th column is aij . The true signal vector x therefore
occupies the r-dimensional column space of A, with the signal
space S being defined as S = col(A). This framework has
been applied in studies such as [31] and [32], which discuss
temperature and light sensors, respectively.

For systems with non-linear characteristics, kernel tech-
niques are useful to project the non-linear signal subspace into
a space of higher dimension.

Define S⊥ as the orthogonal complement in M of the signal
subspace S, forming a p-dimensional subspace where p =
n− r. Let {ϕ1, . . . , ϕp} be the orthonormal basis for S⊥. For
any true sensor measurement xt ∈ S,

ϕT
i xt = 0, i = 1, 2, . . . , p. (3)

Consider Φ = [ϕ1, ϕ2, . . . , ϕp]
T as a p × n matrix where

each row corresponds to a basis vector of S⊥, leading to

Φxt = Φ(yt − dt − νt) = 0. (4)

From Eq. 4, it follows that

Φyt = Φdt + vt. (5)

Here, vt = Φνt indicates that Φyt is primarily influenced
by sensor drift. The matrix Φ serves as the observation matrix,
and assuming its known values, we can observe p-dimensional
sensor drifts.

Let zt = Φyt, substituting in Eq. 5 gives:

zt = Φdt + vt. (6)

In this, Φ ∈ Rp×n (where p < n) is identified as the obser-
vation matrix, dt is the unknown sensor drift, vt represents
the random noise, and zt transforms the sensor measurement.

Hence, we convert the problem of sensor drift calibration
into two subproblems from the underdetermined linear system
represented by Eq. 6

a) Constructing the Observation Matrix Φ
To construct the observation matrix Φ that is orthogonal to

the subspace S where the sensor measurements xt reside:
1) Identify the subspace S as the column space of matrix A,

which maps the signal sources s to the sensor readings
x.

2) Compute the orthogonal complement S⊥ of S with
dimension p = n− r.

3) Use Singular Value Decomposition (SVD) of A to find
the basis vectors for S⊥ from the vectors corresponding
to zero singular values.

4) Form the matrix Φ by stacking these basis vectors as
rows, resulting in a p× n matrix.

Φ =


ϕT
1

ϕT
2
...
ϕT
p


b) Estimating the Drift Vector dt

Given the under-determined system represented by:

zt = Φdt + vt
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The steps to estimate dt are:
1) Formulate the problem as a noisy linear system.
2) Apply least squares estimation:

d̂t = (ΦTΦ)−1ΦT zt

3) If ΦTΦ is not invertible, use Tikhonov regularization:

d̂t = (ΦTΦ+ λI)−1ΦT zt

where λ is a regularisation parameter.
4) Consider iterative methods for large systems.
5) Validate the model by comparing xt = yt − d̂t against

true values or use statistical error metrics.
By solving this optimisation problem, we can estimate the

drift vector d̂t that minimises the difference between the
observed transformed sensor measurements zt and the product
of the observation matrix Φ and the drift vector dt.

A. Theoretical Foundations of the VAE-Based Approach

1) Why VAEs are Superior for Sensor Drift Calibration:
VAEs are generative models that learn a probabilistic mapping
from input data to a latent space and back to the data
space. The encoder network qϕ(z|x) maps input data x to
a latent representation z, while the decoder network pθ(x|z)
reconstructs the data from the latent variables. The VAE
optimises the evidence lower bound (ELBO), which consists
of the reconstruction loss and the KL divergence between the
approximate posterior and the prior distribution [33]:

L(θ,ϕ;x) = Eqϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x) ∥ p(z)) .
(7)

By minimising this loss, the VAE learns to estimate the
drift dt that explains the observed deviations in the sensor
measurements.

This framework allows the VAE to capture complex, non-
linear relationships in the data, making it well-suited for
modelling sensor measurements that may exhibit intricate drift
patterns. Unlike traditional methods, VAEs do not assume
linearity and can handle multi-modal data distributions. The
probabilistic nature of VAEs enables the model to quantify
uncertainty, which is crucial for reliable drift detection and
calibration [8].

2) Assumptions Underlying the VAE Approach: Our VAE-
based sensor drift calibration relies on several key assump-
tions:

• Low-Dimensional Drift Representation: The drift dt

can be effectively captured in a lower-dimensional latent
space.

• Orthogonality to True Signal Subspace: The observa-
tion matrix Φ is orthogonal to the true signal subspace
S, ensuring that Φxt = 0.

• Gaussian Noise Assumption: The measurement noise νt

is assumed to be Gaussian, aligning with common VAE
likelihood models.

• Representative Calibration Data: The data collected
during the calibration phase is representative of the nor-
mal sensor behaviour without drift.

3) Advantages Over Traditional Methods: By integrating
the sensor drift modelling with VAEs, our method offers
several advantages over traditional calibration techniques:

• Non-Linear Drift Modelling: VAEs can capture com-
plex, non-linear relationships in drift patterns that linear
methods may miss.

• Probabilistic Framework: The VAE’s probabilistic na-
ture allows for uncertainty quantification in drift estima-
tion, improving robustness.

• Latent Space Representation: The VAE learns a latent
representation of the drift, facilitating better generalisa-
tion and adaptability.

• No Need for Manual Intervention: The method operates
without requiring manual recalibration or handcrafted
features.

Once the drift dt is estimated using the VAE, we can
compensate for it in the sensor measurements:

x̂t = yt − d̂t, (8)

where d̂t is the estimated drift from the VAE. This provides
an estimate x̂t of the true sensor values and a mechanism
to estimate dt without relying on traditional least squares or
regularisation methods, offering improved handling of noise
and non-linearities.

IV. DRIFT DETECTION & CALIBRATION

A. Assumptions and Overview

As was discussed in section III, by assuming that the
ground-truths of sensor measurements are in a lower dimen-
sional signal subspace compared to the measurement space,
we convert the drift calibration problem into constructing and
solving the linear system represented by Eq. (5). The proposed
drift calibration method has three phases, learning phase, drift
detection phase and calibration phase. We assume that sensors
are calibrated before deployment, so we can infer that: a)
within a short period after sensors are deployed, the drift
should be zero or insignificant; b) within a reasonably long
period, a few (less than p) sensors are drifted. We further
assume that the signal subspace is time invariant. This assump-
tion is appropriate in many applications, although the signal
value changes a lot, the signal subspace is decided by the envi-
ronmental structure and sensors’ geographic locations, which
change very slowly over time. In the training phase, leveraging
sensor data acquired during a brief period post-deployment
with minimal drift, we employ principal component analysis
(PCA) to derive the orthonormal basis for both the signal
subspace and its orthogonal complement. Subsequently, the
VAE latent distribution is harnessed to model the underlying
distribution of sensor signals. This distribution, denoted as
qϕ(z|xt), captures the latent variables given the input sensor
signal xt.

During the calibration phase, assuming the signal space
remains temporally invariant, Eq. (5) still holds true, while
a sparse number of sensors may exhibit drift. This sparsity
property of the sensor drift vector dt is exploited. Through the
subtraction of the estimated drift from the sensor readings, a
soft calibration of sensors becomes achievable.
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B. Learning Observation Matrix

The process of transforming the input sensor signal xt into
a distribution over latent variables z involves both encoding
and sampling steps. In 9-

• qϕ(z|xt) represents the conditional distribution of the
latent variables z given the input sensor signal xt.

• ϕ represents the parameters of the encoder network,
which are learned during the training of the VAE.

• The encoder network transforms the input sensor signal
xt into a distribution over latent variables z.

1) Encoding Step: The encoder network parameterised by
ϕ produces the parameters of the distribution qϕ(z|xt), which
is typically assumed to be Gaussian. In mathematical terms,
this can be expressed as follows:

qϕ(z|xt) = N (µϕ(xt), diag(σϕ(xt))
2). (9)

where µϕ(xt) and σϕ(xt) are the mean and standard deviation
vectors computed by the encoder.

2) Reparameterisation Trick: To make the sampling pro-
cess differentiable, the reparameterisation trick is often em-
ployed. Instead of directly sampling from qϕ(z|xt), we sample
from a simpler distribution, typically a standard Gaussian,
and then transform the samples to match the parameters of
qϕ(z|xt). This is done as follows:

z = µϕ(xt) + σϕ(xt)⊙ ϵ. (10)

where ϵ is a sample from a standard Gaussian distribution and
⊙ denotes element-wise multiplication.

In summary, the encoder network transforms the input
sensor signal xt into a distribution over latent variables z
by computing the mean and standard deviation parameters
through neural network transformations and then utilising the
reparameterisation trick to sample from this distribution in a
differentiable manner [34].

C. Drift Model

Before introducing the drift estimation algorithm, let’s de-
fine the prior probabilistic model for sensor drift within the
framework of a Variational Autoencoder (VAE). We assume
that the drifts of different sensors are independent, and the
increment of each sensor’s drift at each time instant follows
an independent Gaussian distribution:

di,t = di,t−1 + δi,t, δi,t ∼ N (0, σ2). (11)

Here, di,t represents the drift value for sensor i at time instant
t, and δi,t is the increment of sensor i’s drift at time t.

As the proposed algorithm serves as a general-purpose
calibration algorithm, we make the suitable assumption that
the increment of sensors’ drifts follows a zero-mean Gaussian
distribution.

Consistent with the assumption that sensors are calibrated
before deployment, we initialise the drift values to be zero at
the beginning:

di,0 = 0

. At any time instant t, the drift values are the sum of a series
of Gaussian increments. Consequently, the accumulated drifts

remain Gaussian [33]. The expectation of sensor drift can be
expressed as:

di,t = di,t−1 + δi,t, δi,t ∼ N (0, σ2). (12)

The expectation of the sensor drift at any time instant t can
be expressed as the sum of the expectations of the increments
up to that time:

E[di,t] =
t∑

k=1

E[δi,k]. (13)

Since each δi,k follows a zero-mean Gaussian distribution
(N (0, σ2)), the expectation of each increment is zero:

E[δi,k] = 0. (14)

Therefore, the expectation of sensor drift simplifies to:

E[di,t] = 0. (15)

This result is consistent with the assumption that the in-
crements of the sensor drifts follow a zero-mean Gaussian
distribution.

The sensors’ drift vector dt at time instant t and the
corresponding diagonal covariance matrix Σt can be expressed
as follows:

dt ∼ N (0,Σt). (16)

Here, dt represents the sensors’ drift vector at time t and Σt

is a diagonal covariance matrix.
This notation indicates that the sensors’ drift vectors at time

t follow a multivariate normal (Gaussian) distribution with a
mean vector of zeros (0) and a diagonal covariance matrix Σt.
The diagonal covariance matrix Σt characterises the variances
of individual components of the sensors’ drift vector at time
t. The covariance between different components is assumed to
be zero, reflecting independence.

Σt =


σ2
1,t 0 . . . 0
0 σ2

2,t . . . 0
...

...
. . .

...
0 0 . . . σ2

n,t.

 (17)

Here, σ2
i,t is the variance of sensor-i’s drift at time instant

t.

D. Drift Detection

We leverage the VAE’s ability to learn the underlying
distribution of sensor readings in lower dimensions. The idea
is to train a VAE on a dataset representing normal sensor
operation, and then use the trained model to reconstruct sensor
readings in real-time [35]. An increase in the reconstruction
error may indicate sensor drift or anomalous behaviour.

• Train a VAE for Normal Operation Train a VAE using
data from the normal operation of the sensor. This is the
baseline model.
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Fig. 4: Positions of the sensors in the simulated environment.

Θ = argmax
Θ

N∑
i=1

Ez∼qϕ(z|x(i))

[
log pΘ(x

(i)|z)

−DKL(qϕ(z|x(i))||p(z))
]
.

(18)

where Θ represents the parameters of the VAE, x(i) is a
data point, z is a latent variable, p(z) is the prior on the
latent space, and qϕ(z|x(i)) is the approximate posterior.

• Calculate Reconstruction Loss: For each new sensor
reading xt, calculate the reconstruction loss using the
trained VAE:

Reconstruction Losst = Loss(xt,VAE Reconstructed(xt))

+ Additional Terms
(19)

The specific form of the loss function depends on the
nature of the data. For our work, Mean Squared Error is
used as performance metric.

• Define Drift Threshold: Establish a threshold for the
reconstruction loss that indicates a significant deviation
from the normal operation. This threshold (ϵ) can be
determined through analysis of the reconstruction loss
distribution on normal data.

• Detect Drift: When the reconstruction loss
(Reconstruction Losst) exceeds the threshold (ϵ), it
suggests that drift is occurring.

The decoder module on VAE output a normalised data. We
need to scale this difference by the range or standard deviation
of the normal data to get a actual measure of drift magnitude.

This approach allows us to detect sensor drift by leveraging
the VAE’s ability to learn the normal distribution of sensor
readings and identify deviations through reconstruction errors.

E. Drift Estimation

The problem is modelled using VAE for sensor drift detec-
tion. In VAE, two main components, encoder and decoder is
trained using sample observations during calibration phase of

the deployed sensors. Let’s assume sensor data is represented
as X with N samples and D dimensions (features).

1. Encoder: The encoder maps sensor data xi to a latent
variable zi with a Gaussian distribution in the latent space:

zi ∼ N (µi, σ
2
i ). (20)

where, µi and log(σ2
i ) are outputs of the encoder neural

network.
2. Reparameterisation Trick: To ensure differentiability

for backpropagation, we sample from a standard Gaussian
distribution ϵi ∼ N (0, 1) and transform it using the predicted
parameters:

zi = µi + σi · ϵi. (21)

3. Decoder: The decoder maps zi back to the data space:

x̂i = Decoder(zi). (22)

4. Loss Function: The VAE loss function consists of two
components:

• Reconstruction Loss: Measures the difference between
the original and and reconstructed data using a suitable
loss metric (L(xi, x̂i)).

• KL Divergence Loss: Measures how close the approxi-
mate posterior q(zi|xi) is to the prior p(zi) in the latent
space. The total loss is the sum of the reconstruction and
KL divergence losses.

For example, using mean squared error (MSE) for the
reconstruction loss and the KL divergence formula:

Loss(xi, x̂i, µi, σi) = L(xi, x̂i) +
1

2
D∑

j=1

(σ2
i + µ2

i − log(σ2
i )− 1).

(23)

5. Training: Train the VAE by optimising the model’s pa-
rameters to minimise the loss function using gradient descent-
based methods.

6. Sensor Drift Detection: After training, for a new sensor
reading xnew:

• Encode xnew to get µnew and σ2
new.

• Sample znew using the reparameterisation trick.
• Decode znew to get the reconstructed x̂new.
• Compute the reconstruction error L(xnew, x̂new).
• If the error exceeds a predefined threshold, classify it as

a drift as mentioned in previous drift detection section.
The relationship between the exact value and the recon-

struction loss in a VAE can be represented mathematically as
follows:

Let’s denote, x as the exact input value (data point) of
sensor measurement. xreconstructed as the output generated by the
VAE’s decoder, which is the reconstruction of x. Lreconstruction
as the reconstruction loss, calculated using mean squared error
(MSE). The mathematical equation showing the relationship
between the exact value and reconstruction loss is:

Lreconstruction = Loss(x, xreconstructed). (24)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3503616

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Greenwich. Downloaded on January 05,2025 at 13:22:56 UTC from IEEE Xplore.  Restrictions apply. 



Here, Loss represents the specific loss function used to
measure the difference between the exact value x and the
reconstructed value xreconstructed. In our case, mean squared
error (MSE) is used as the loss function, the equation 24
becomes:

Lreconstruction =
1

N

N∑
i=1

(xi − xreconstructedi)
2. (25)

N is the total number of elements in the data point x. xi and
xreconstructedi are the i-th elements of the exact value x and the
reconstructed value xreconstructed, respectively. In summary, the
reconstruction loss quantifies the difference between the exact
input value and the generated output of the VAE’s decoder
[36], [37].

As illustrated, Figure 5 shows the end-to-end system in-
tegrating the VAE model into the sensor data processing
pipeline for drift detection and calibration. By modelling the
normal behaviour of sensor data in the latent space during
training, the VAE becomes sensitive to deviations caused by
drift. The reconstruction error serves as an indicator of such
deviations. When the error surpasses a certain threshold, the
system identifies the presence of drift and calibrates the sensor
readings accordingly. This automated process enhances the
robustness and reliability of sensor networks in dynamic and
uncertain environments.

Algorithm 1 VAE-Based Sensor Drift Calibration

Require: Historical sensor data {xt}Tt=1

Ensure: Calibrated sensor readings
1: Training Phase:
2: for each epoch do
3: for each batch x do
4: Encode: z ∼ qϕ(z|x)
5: Decode: x̂ ∼ pθ(x|z)
6: Compute Loss: L = DKL(qϕ(z|x) ∥ p(z)) + Lrec
7: Update Parameters: ϕ, θ ← Optimizer(ϕ, θ, L)
8: end for
9: end for

10: Application Phase:
11: for each new data point xt do
12: Encode: zt ∼ qϕ(z|xt)
13: Decode: x̂t ∼ pθ(x|zt)
14: Compute Reconstruction Error: et = ∥xt − x̂t∥
15: if et > ϵ then
16: Calibrate sensor reading: xcalibrated

t = x̂t

17: else
18: xcalibrated

t = xt

19: end if
20: end for

V. EVALUATION

In this section, we have used the simulated data to evaluate
the performance of the proposed algorithm. Based on the
performance of the algorithm, the optimal technique is selected
to test on real-world data. We also compare the proposed drift
calibration techniques with other methods. The performance

of the algorithms is compared against recovery rate and mean
square error (MSE).

For an individual sensor with T samples, let D ∈ RT

represent the drift vector, Di denote the i-th element or the
drift of the sensor, and D̂ be the estimated sensor drift vector.
The MSE of drift estimation is given by ∥D̂−D∥2

F

∥D∥2
F

, where ∥·∥F
denotes the Frobenius norm [38] of a vector.

Before introducing the term recovery rate, we first define a
successful recovery. If the sensor is drifted, let D represent the
drifted sensor, and in the estimated sensor drift vector D̂, let D̂
denote the element with the largest l2 norm. A successful drift
recovery occurs only when D = D̂. During the simulation,
we systematically test numerous scenarios involving drifted
sensors, applying various drift estimation techniques to each
scenario. Define T as the set of experiments for a single
algorithm across different scenarios, and let T̂s = {T | D =
D̂} represent the subset of these experiments where recovery
is successful. The recovery rate is then calculated as ∥T̂s∥

∥T∥ ,
indicating the proportion of successful recoveries relative to
the total number of trials.

The proposed drift calibration method are compared with
the following techniques, including:

• Support Vector Regression and Kalman Filter (SVR-
KF-oracle): a prediction-based drift calibration algorithm
proposed in [6]

• Signal Space Projection and Kalman filter (SSP-KF-
oracle): a modified version of SSP-KF proposed in [10],
[25], where the drift detection algorithm is replaced by
some certainty and model knows which data-point is
drifted.

• Dynamic Residual Projection: a statistical technique
known for effectively detecting concept drift in IoT sce-
narios proposed in [3], which employs dynamic residual
projection for detecting and calibrating sensor drift.

• Blind Drift Calibration with Deep Learning: an ML/AI-
based approach presented in [39], utilizing deep learning
models to perform blind calibration of sensor drift with-
out prior knowledge of the drift characteristics.

• Self-Calibration (Interpolation & Autoregression): An
advanced self-healing and blind/self drift calibration tech-
nique using interpolation and autoregression for low-cost
wireless sensor networks, as discussed in [40].

• VAE-SC: Our proposed technique, a Variational Autoen-
coder based Soft Calibration (VAE-SC) technique which
uses lower dimension latent distributions of the sensors
data while in calibration phases to train and estimate the
drift quantity.

In this work, our focus is the performance of recovery
rate and MSE of the drift estimation. Even though we have
implemented KL Divergence based drift detection [41], [42]
for our solution, in this work we will focus only recovery rate
and MSE of the drift estimation.

The SVR-KF-oracle and SSP-KF-oracle are considered as
ideal scenarios, as it removes the uncertainty associated with
drift sensor detection. In this context, an oracle is a hypo-
thetical drift detector capable of consistently and accurately
identifying the subset of sensors affected by drift.
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Fig. 5: VAE model training and application for sensor drift calibration.

The experiments were conducted using Python along with
its numerical computation libraries, including SciPy [43] and
PyTorch [44].

A. Datasets

While several open sensor datasets are available, their
limitation lies in providing sensor measurements without
accompanying ground truth information. The verification of
calibration accuracy becomes challenging in the absence of a
known reference.

In our experimental approach, we initially use simulated
sensors data with diverse deployments to rigorously evalu-
ate the performance of calibration algorithms across varying
conditions. Additionally, we setup a sensor test-bed inside
our research lab. This test-bed yields a dataset characterised
by minimal drift, thereby enabling a robust validation of
calibration algorithms.

To evaluate the performance of the our algorithm, we choose
n = 8 simulated sensors data which are being transmitted to
a central cloud server from the source locations. The sensors
are randomly placed in a 6x6 radius area as shown in Figure
4. Initially, the sensors are assume to be drift free and there
are no noise in the signal. Over time, the the sensor readings
start to drift.

Each sensor’s true measurement is a linear blend of each
signal source. At any given moment t, the actual measurement

for sensor j is

xj,t =

r∑
j=1

sj,t. (26)

where sj,t is the signal value of source j at the time instant
t. We assume after initial installation the sensors are deployed
as in calibrating phase for t= Sj,ti where ti is i number of
data points at time instance t. Hence, the cloud system server
has sensors reading without any drift for ti data points which
is used to to generate latent distribution for our variational
autoencoders method [45].

Algorithm 2 Generate Random Sensor Data with Drift Sim-
ulation
Require: Number of Sensors n, Drift Magnitude d
Ensure: Sensor Measurements x

for i← 1 to n do
2: xi ← GenerateRandomValue() ▷ Generate a random

value within a range for sensor i
xi ← xi + RandNoise(d) ▷ Add random noise for

drift simulation
4: end for

B. Real-world Dataset

We have deployed eight HTS221 temperature sensors using
Arduino Nano [46] in our lab. The test-bed setup has two
controlled chambers - in one chamber, the sensors were
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Fig. 6: Demonstration of calibration results from different algorithms where sensors 3, 4, 5, and 7 are drifted. The images
represent: (a) simulated sensor drift, (b) SVR-KF-oracle, (c) SSP-KF-oracle, (d) VAE-SC, (e) Dynamic Residual Projection,
(f) Blind Drift Calibration with Deep Learning, and (g) Self-Calibration Interpolation Autoregression.

exposed to high temperature and humidity, and in another
chamber, sensors are in room temperature. We collect the
sensor readings every 30 seconds using an open-source IoT
data platform named ThingsBoard [47]. Before the installation
of the sensors, all the sensors were placed together in the same
environment to capture the differences in the readings. We
found that the difference in temperature is less than 0.7◦C,
therefore, there is no significant difference in readings. We
used the sensor data collected over six months and pushed
all the data to a central cloud server, which is running on
ThingsBoard. The calibration phase was 29 Oct, 2023 to 31
Dec, 2023 to collect the data. Then the sensors were deployed

into two separate chambers in our control environment. We
re-sample the data for both of these phases- 2000 data points
from calibration phase and 10000 data points sampled from 1
Jan, 2024 - 31 March, 2024 where we observed some data drift
in senor readings. In real world dataset, a latent distribution
of the measurements during calibration phase is derived and
use it as training data for VAE-SC.

C. Analysing Results from Simulated Experiments

In the simulated dataset, a set of m sensors is randomly
selected to emulate drift. A random walk process, simulating
the drift, is initiated starting at the time instance 2000. As a
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Fig. 7: Experimental setup for sending sensor reading to cloud

Fig. 8: Controlled chamber: sensors and data collection

Fig. 9: Offsets of HTS221 sensors varies from 0.1 °C to 0.9
°C, so measurements from HTS221 sensor without calibration
is not accurate

result, the initial 2000 samples of measurements remain drift-
free and are utilised during the learning phase to estimate the
observation matrix Φ and train the SVR model employed by
the SVR-KF method. The random walk process is generated
as follows:

di,1:2000 = 0

di,t = di,t−1 + δi,t, δi,t ∼ N (0, σ2).
(27)

In the simulation setup, the drift increment variance, denoted
by σ2, is established at 0.03, determined through trial and
error to optimally model the variability in sensor drift. This
variance level helps model the variability of sensor drift
over time. Throughout the learning phase, the threshold for
PCA (Principal Component Analysis) is fixed at 0.99, which
signifies that the PCA model retains 99% of the variance
of the data, ensuring a comprehensive capture of the data’s
characteristics. In the observation matrix Φ, sensor readings
from the calibration phase are utilised to extract the latent rep-
resentation of the signal subspace, aiding in the identification
and correction of any drift in the sensor measurements.

We let the number of drifted sensors m vary from 4 sensors.
For each drift number m, there exist 8 combinations of m
different drifted sensors and we randomly generate 8+4×(m−
1) different combinations of drifted sensors with independent

drift. For each trial, different methods are used to estimate the
sensor drift, and their performance is compared.

For our technique, we leverage VAE for drift detection,
characterised by a latent space dimension of 16. The encoder
and decoder architectures consist of LeakyReLU activations,
batch normalisation, and sequential linear layers. numerical
variables are embedded using two layers with input dimensions
8, outputting 16 dimensions. The noise term, sampled from a
normal distribution (δi,t ∼ N (0, σ2)), is a crucial component
for introducing variability in the latent space. This comprehen-
sive set of parameters forms the foundation of our VAE model
which are obtain based on lowest training loss during learning,
tailored for effective drift detection in our experimental setting.

The comparative analysis of various methods in a simulated
field is illustrated in Figure 11. In Figure 11(a), we present a
comparison of the recovery rates for VAE-SC, SVR-KF-oracle,
SSP-KF-oracle, Dynamic Residual Projection, Blind Drift DL,
and Self-Calibration. Additionally, Figure 11(b) depicts the av-
erage Mean Squared Error (MSE) for each trial conducted with
VAE-SC, SVR-KF-oracle, SSP-KF-oracle, Dynamic Residual
Projection, Blind Drift DL, and Self-Calibration.

The experimental results on the simulated dataset demon-
strate the superior performance of the proposed VAE-based
Soft Calibration (VAE-SC) method compared to existing tech-
niques. Key observations from these experiments include:
(1) Across all methods, there is a marginal increase in the
Mean Squared Error (MSE) as the number of drifted sensors
increases, accompanied by a decrease in the recovery rate.
This trend indicates that calibration becomes slightly more
challenging as more sensors experience drift. (2) The VAE-SC
method consistently achieves the highest recovery rate after
drift, averaging approximately 91%, outperforming all other
methods. (3) Both the Self-Calibration and SSP-KF-Oracle
methods exhibit strong performance, with recovery rates of
about 87% and 88% respectively after drift, but they do not
match the consistency and accuracy of VAE-SC.

Furthermore, the VAE-SC method maintains relatively low
and stable MSE values even as the number of drifted sensors
grows, showcasing its robustness and resilience to multiple
simultaneous drifts. In contrast, the SVR-KF-Oracle method
shows a significant decline in recovery rate as the number
of drifted sensors increases, dropping to around 71%, and
exhibits the highest MSE after drift at approximately 0.21.
This decline is primarily due to the accumulation of prediction
errors inherent in SVR-KF-Oracle. The Dynamic Residual
Projection and Blind Drift Deep Learning methods perform
comparably, with recovery rates around 84% and MSE after
drift around 0.15, indicating effective but slightly lower per-
formance compared to VAE-SC.

These results highlight the efficacy of the proposed VAE-
SC approach in successfully recovering sensor drift across
various scenarios. Its ability to model complex, non-linear
relationships in the sensor data through the probabilistic la-
tent space allows for better generalisation and robustness to
noise. The consistent performance of VAE-SC, regardless of
the number of drifted sensors, underscores its potential as
a powerful tool for sensor drift calibration in dynamic and
uncertain environments.
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Fig. 10: Samples of dataset for evaluation: readings from each
sensor are different.

D. Analysing Results from real-world Experiments

In this study, we assess the performance of various algo-
rithms using real world datasets. The initial 2000 samples as
mentioned in previous section, the measurements serve as the
drift learning set for estimating the observation matrix ϕ and
training the Support Vector Regression (SVR) model and VAE
model.

We conducted an experiment using eight sensors. Among
these sensors, four were subjected to extreme weather condi-
tions created by a humidifier and a heater over a period of four
weeks. We began to observe discrepancies in sensor readings
and signs of drift.

Subsequently, we apply various calibration methods in each
trial. For the calibration using VAE, we select hyperparame-
ters, number of layers are three, the size of the latent space
is 10 dimensions, the learning rate is set to 0.001 and ADAM
Optimiser for performance validation. This hyperparameters
were selected based on based on trial and error; and empirical
evidence, aiming to optimize the performance and accuracy
of the calibration process using the VAE technique [37], [34].
The resulting recovery rates and Mean Squared Errors (MSEs)
are presented in Figure 13

TABLE I: Comparison of Recovery Rate and MSE for Differ-
ent Techniques with Simulated Data

Technique RR Before RR After MSE Before MSE After

VAE-SC 1.00 0.92 0.09 0.11
SVR-KF 1.00 0.71 0.13 0.21
SSP-KF 1.00 0.88 0.13 0.20
Dynamic Residual
Projection

1.00 0.84 0.11 0.15

Blind Drift-DL 1.00 0.84 0.10 0.15
Self-Calibration 1.00 0.87 0.09 0.13

Figure 13(a) illustrates that Variational Auto-encoder based
soft calibration (VAE-SC) exhibits a superior recovery rate
compared to Kalman based filter. The real-world dataset
comprises 8 sensors organised in the controlled chambers with
each group having 4 sensors, leading to relatively low inter-
location correlation.

Figure 12 illustrates the distribution of sensor readings
before and after drift occurred in the real-world dataset. The
distribution plot of the real-world dataset reveals a notice-
able change: initially, the data exhibited a relatively uniform
distribution, with a smaller standard deviation and variance.
However, following the onset of sensor drift, the distribution

(a)

(b)

Fig. 11: Simulated data when the number of drifted sensors
varies from 1 to 8. Failed recoveries are eliminated in MSE
calculation. (a) Recovery rate of VAE-SC and other tech-
niques. (b) Mean square error of different methods.

became right-skewed, indicating significant changes in sensor
behaviour. These drifts occur gradually and at a slower pace,
making them challenging for traditional approaches to detect.

Table II presents a comparison of the Mean Squared Error
(MSE) and Recovery Rate before and after drift for different
calibration techniques using real-world data. The experimental
evaluation using real world data validates the effectiveness of
the proposed VAE-based Soft Calibration (VAE-SC) method
in practical sensor calibration scenarios. As shown in Table II,
VAE-SC achieves the lowest Mean Squared Error (MSE) after
drift (0.08) and the highest recovery rate after drift (0.98),
outperforming all other methods tested. This indicates that
VAE-SC is highly precise in correcting sensor readings and
minimizing residual errors, even in the presence of real-world
sensor noise and drift patterns.

Compared to other techniques such as Dynamic Residual
Projection and Blind Drift Deep Learning, which also demon-
strate strong performance, VAE-SC provides superior accuracy
and consistency. The minimal increase in MSE after drift for
VAE-SC showcases its robustness against drift, maintaining
reliable sensor readings over time. These findings underscore
the potential of VAE-SC for practical deployment in dynamic
environments, where reliable sensor data is critical for system
performance and decision-making.

The Mean Squared Error (MSE) of different calibration
results is presented in Figure 13. It is evident from the figure
that Support Vector Regression with Kalman Filter (SVR-KF-
oracle) and Sparse State Prediction with Kalman Filter (SSP-
KF-oracle) achieve the lowest MSE. Notably, in the real-world
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(a)

(b)

Fig. 12: Distribution plots depicting sensor readings before and
after drift in a real-world dataset, revealing significant changes
in sensor behaviour. (a) Distribution of real-world data without
drift (b) Distribution of real-world data with drift

TABLE II: Comparison of Mean Squared Error and Recovery
Rate for Different Techniques with Real-World Data

Technique MSE Before MSE After RR Before RR After

Proposed VAE-SC 0.06 0.08 1.00 0.98
SVR-KF-Oracle 0.07 0.09 1.00 0.90
SSP-KF-Oracle 0.13 0.12 1.00 0.92
Dynamic Residual
Projection 0.09 0.08 1.00 0.93
Blind Drift
Deep Learning 0.07 0.09 1.00 0.94
Self-Calibration 0.08 0.09 1.00 0.93

dataset, VAE-SC outcomes existing Kalman based techniques.
In addition, we test the generalisation ability of VAE-SC. As

we generate sensor drifts using Algorithm 2 during training,
we need to test VAE-SC performance using random data. In
addition to the random drift, we also simulate four other types
of drift: bilateral linear drift, positive linear drift, positive
square-root drift, and sine drift. To simulate these kinds of
drift, for each sensor, we first generate a random number called
the end value ei as the largest drift value it can reach. Next,
we generate the linear drift by

di,t = ei ×
t

T
(27)

(a)

(b)

Fig. 13: Recovery rate and MSE of different methods in real-
world data, regular field when the number (a) Recovery rate
of VAE-SC and existing techniques. (b) Mean square error of
different methods.

the square-root drift by

di,t = ei ×
√

t

T
(28)

and the sine drift by

di,t = ei × sin

(
riπ

t

T

)
(29)

Figure 14 shows the recovery rate of VAE-SC under
different drift levels.

Here, di,t is the drift value of sensor i at time instant t; ei is
the end value; ri is a random number sampled from U(3, 4);
and T is the total time length of the simulation.

We conducted extensive simulations to evaluate the gener-
alisation ability of the proposed VAE-based Soft Calibration
(VAE-SC) method against various types of drift, including
linear (both positive and bilateral), non-linear (sine and pos-
itive square root), and stochastic (random walk) patterns.
The recovery rates of VAE-SC under these drift types were
analysed across a range of drift magnitudes, measured by the
Root Mean Square Error (RMSE) of the drift.

As illustrated in Figure 14, the recovery rate of VAE-SC
generally increases with the magnitude of the drift across all
drift types. For small drift magnitudes (low RMSE values),
the recovery rates are initially low, indicating that minor
drifts are more challenging to detect and correct due to
their similarity to normal sensor noise. However, as the drift
magnitude increases, the recovery rates improve significantly,
often exceeding 90% for higher RMSE values.
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Fig. 14: Recovery rates of VAE-SC on different types of drift.

Specifically, for the Random Walk drift, the recovery rate
improves from near zero at low RMSE to approximately 90%
as the RMSE approaches 2.5. Similar trends are observed for
the Positive Linear and Bilateral Linear drifts, where recovery
rates exceed 85% for higher drift magnitudes. The Sine and
Positive Square Root drifts, representing non-linear patterns,
also show substantial increases in recovery rates with larger
drift magnitudes, demonstrating the capability of VAE-SC to
handle complex drift behaviours.

These results highlight that VAE-SC is effective at detecting
and correcting larger drift magnitudes across various drift
patterns. The method’s ability to model non-linearities and
capture the underlying data distribution enables it to generalise
well to different types of drift. Additionally, we tested the
noise tolerance of VAE-SC by introducing varying levels of
measurement noise. The method maintained robust perfor-
mance despite the added noise, further demonstrating its suit-
ability for real-world applications where sensor measurements
are often noisy.

Overall, the simulations confirm that VAE-SC effectively
generalises to different drift types and maintains high recovery
rates remains above 80%, for significant drift magnitudes, re-
inforcing its potential as a versatile and reliable tool for sensor
drift calibration in dynamic and uncertain environments.

E. Drift Detection & Soft Calibration

Our experimental findings indicate that when the drifted
sensors are known, techniques such as SSP-KF and SVR-
KF can achieve highly accurate drift estimation. However,
in the absence of accurate drift detection, methods like the
original SVR-KF yield inaccurate estimations, emphasizing
the substantial impact of uncertainty in drift sensor detection
on drift value estimation.

The proposed VAE-SC) method demonstrates the capability
to consistently detect and estimate drifted sensors, maintaining
high recovery rates and low Mean Squared Error (MSE) re-
gardless of the increasing number of drifted sensors. As shown

in our experiments, VAE-SC achieves an average recovery
rate of approximately 91% after drift, outperforming other
methods. Similarly, the Self-Calibration technique exhibits
strong performance in both drift detection and estimation,
with recovery rates around 87% and MSE after drift of
approximately 0.13, indicating reliable performance.

Other methods, such as Dynamic Residual Projection and
Blind Drift Deep Learning (Blind Drift-DL), also show ef-
fective drift detection capabilities, achieving recovery rates of
approximately 84% after drift. However, they tend to have
slightly higher MSE values compared to VAE-SC and Self-
Calibration, suggesting less precise calibration. These methods
perform adequately but may not match the consistency and
accuracy of VAE-SC, especially as the number of drifted
sensors increases.

An existing approach is the Compressed Sensing Kalman
Filter (CSKF) proposed in [48], but it suffers from cumulative
estimation errors caused by detection errors. Similarly, while
SSP-KF-Oracle can achieve accurate drift estimation when the
drifted sensors are known, its performance decreases when this
information is unavailable or inaccurate.

One challenge in drift detection with the proposed VAE-SC
algorithm is that drift can only be detected if its magnitude is
sufficiently large relative to the observation noise. Although
VAE-SC exhibits superior noise robustness compared to other
methods, the recovery rate suffers at low Signal-to-Noise
Ratio (SNR) or low drift-to-noise ratio in our case [49]. This
limitation is deemed acceptable, considering that sensor drift
as small as the noise level is tolerable in many applications.

Overall, the inclusion of Dynamic Residual Projection,
Blind Drift-DL, and Self-Calibration in our comparative study
highlights the strengths and weaknesses of different ap-
proaches in drift detection and calibration. While VAE-SC and
Self-Calibration maintain high recovery rates and low MSEs,
especially in scenarios with multiple drifted sensors, other
methods like SVR-KF-Oracle and SSP-KF-Oracle struggle
with accurate drift estimation due to the accumulation of pre-
diction errors and their sensitivity to the accurate identification
of drifted sensors.

Our analysis suggests that VAE-SC offers a robust solution
for drift detection and soft calibration in sensor networks,
outperforming traditional methods and recent approaches in
both simulated and real-world datasets. Its ability to model
complex, non-linear relationships in the sensor data through
the probabilistic latent space contributes to its superior perfor-
mance, making it a powerful tool for maintaining the reliability
of sensor networks in dynamic and uncertain environments.

VI. DISCUSSION, LIMITATION AND FUTURE WORK

A. Real-World Implementation and Scalability Considerations
1) Deployment Architecture: In our proposed system, the

data acquisition and processing align with standard IoT de-
ployment practices. IoT devices equipped with sensors collect
data continuously and transmit it to a central server over the
network. This transmission is typically can be achieved using
wireless communication protocols such as Wi-Fi, LoRaWAN,
or cellular networks, depending on the application’s require-
ments and infrastructure availability.
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We utilised ThingsBoard, an open-source IoT platform
deployed on a public cloud service, to facilitate data collection,
processing, and visualisation. ThingsBoard acts as middleware
that handles device connectivity, data ingestion, and routing of
data streams to the appropriate processing modules. It provides
a scalable and flexible infrastructure capable of managing
numerous devices and high data volumes.

In our architecture, IoT devices send their data to Things-
Board using lightweight protocols like Message Queuing
Telemetry Transport (MQTT) or HyperText Transfer Protocol
(HTTP). ThingsBoard then forwards the data to the central
server where the VAE-based sensor drift calibration model
resides. This setup allows for centralised processing, which is
advantageous for computational efficiency and ease of model
updates [50].

2) Computational Costs: The computationally intensive
tasks, such as training and inference of the VAE model, are
centralized on the server. This design choice offloads the
computational burden from the IoT devices, which often have
limited processing power and energy resources. By leveraging
powerful server hardware and cloud computing capabilities,
we can efficiently handle the computational demands of the
VAE model.

During real-time operation, the VAE processes incoming
data to detect and correct sensor drift. The inference process
is relatively lightweight, involving forward passes through the
neural network, which can be optimized for performance.
Techniques such as model quantisation and batching can
further enhance efficiency, enabling real-time or near-real-time
processing of data streams.

Centralising computational tasks also simplifies the de-
ployment and maintenance of the VAE model. Updates and
improvements to the model can be implemented on the server
without the need to modify software on the IoT devices,
reducing operational overhead.

3) Scalability: Scalability is a critical consideration in IoT
applications, where the number of devices and the volume of
data can grow rapidly. Our system leverages a serverless cloud
architecture to achieve dynamic scaling. Serverless platforms
automatically manage the allocation of computing resources,
scaling up or down based on the workload in real-time.

By utilising cloud services, we can handle large-scale data
volumes and a high number of devices without significant
performance degradation. The architecture supports horizontal
scaling, where additional computing instances are provisioned
to manage increased loads. This elasticity ensures that the
system maintains responsiveness and processing efficiency as
the IoT deployment expands.

Moreover, the use of ThingsBoard facilitates scalability by
providing features such as load balancing, distributed process-
ing, and device management. It allows for seamless integration
of new devices and supports multi-tenancy, which is beneficial
for applications involving multiple users or organisational
units.

B. Limitations of the VAE-Based Approach
Utilising the correlation among sensory data and leverag-

ing statistical features or prior knowledge can significantly

enhance the detection rate of sensor drifts. Even small drifts
become detectable thanks to the distinctions in statistical fea-
tures between drift and noise. Once the identification of drifted
sensors is accomplished, obtaining an accurate estimation of
the drift value becomes considerably more straightforward.

Furthermore, it’s important to note that our study did
not delve into investigating the sensitivity of the sensors or
analysing the impact of different weather conditions on sensor
readings; these aspects are beyond the scope of our research.
Instead, our primary focus was on recovering the true values
of the sensors, particularly when they exhibited drift in their
readings. While the VAE-based approach offers significant
advantages for sensor drift calibration, it is important to
acknowledge its limitations:

1) Data Requirements:
Training a VAE effectively requires a substantial amount
of high-quality calibration data that accurately represents
the normal operating conditions of the sensors. In situ-
ations where such data is scarce or expensive to obtain,
the performance of the VAE may degrade.

2) Model Sensitivity and Hyperparameter Tuning:
The performance of VAEs is sensitive to the choice of
hyperparameters, such as the size of the latent space,
learning rate, and network architecture. Selecting op-
timal hyperparameters often requires extensive experi-
mentation and domain expertise.

3) Assumption of Gaussian Noise:
The VAE model commonly assumes that the noise
in the data is Gaussian. If the sensor noise deviates
significantly from a Gaussian distribution, the model’s
assumptions may not hold, potentially affecting calibra-
tion accuracy.

4) Black-Box Nature:
Deep learning models like VAEs are often considered
black boxes due to their complex architectures, making
it difficult to interpret the learned representations and
understand the specific features contributing to drift
detection.

5) Potential for Overfitting:
Without proper regularisation and validation, VAEs can
overfit the training data, leading to poor generalisation
on new sensor measurements, especially in environments
that differ from the calibration conditions.

These limitations highlight the challenges and considera-
tions necessary for the practical deployment of our VAE-based
sensor drift calibration method.

C. Future Works

In future work, potential strategies to mitigate these limita-
tions along with exploring the sensitivity of different sensors
to environmental conditions could be a valuable area of study.

• Our model demonstrates the capability to process multi-
ple data points simultaneously and derive a compensated
output. By taking into account n number of data points
and comparing them with the distribution, our model
can effectively identify and mitigate errors, resulting in
improved accuracy and robustness.
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• Furthermore, our technique is adaptable to function with
multiple data points, enabling it to handle complex
datasets efficiently. This versatility allows for broader ap-
plications across various domains, where the processing
of multiple data points simultaneously is essential for
accurate analysis and decision-making.

• Moreover, our model is designed to be versatile and
applicable across multiple environments or locations. The
same model can be deployed in various settings, offering
a scalable solution that minimises the need for model
customisation or adaptation for different scenarios.

• In contrast, traditional methods often rely on processing
one data point at a time, limiting their efficiency and
scalability. By leveraging advanced techniques such as
parallel processing and distribution-based comparison,
our model surpasses the capabilities of traditional meth-
ods, offering superior performance and flexibility in data
analysis and compensation.

VII. CONCLUSION

Our model demonstrates a unique capability to process
multiple data points simultaneously, enabling it to derive com-
pensated outputs by comparing them with the distribution. This
feature not only enhances the accuracy and robustness of our
technique but also allows for broader applications across vari-
ous domains where processing multiple data points is essential.
While our model excels in detecting and compensating for
drift, further research is needed to improve its ability to capture
recurring errors effectively. Nevertheless, our model’s strength
lies in its versatility and scalability, as it can be deployed
across multiple environments or locations without the need
for extensive customisation. Unlike traditional methods that
process one data point at a time, our model leverages advanced
techniques such as parallel processing and distribution-based
comparison to offer superior performance and flexibility in
sensor drift detection in varying settings and environmental
conditions.
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divergence,” IEEE Transactions on Information Theory, vol. 60, no. 7,
pp. 3797–3820, 2014.

[43] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al.,
“Scipy 1.0: fundamental algorithms for scientific computing in python,”
Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[45] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[46] A. Nano, “Arduino nano,” A MOBICON Company, 2018.
[47] ThingsBoard, “ThingsBoard: Open-source IoT Platform,” https://github.

com/thingsboard/thingsboard, accessed on December 6, 2024.
[48] N. Vaswani, “Kalman filtered compressed sensing,” in 2008 15th IEEE

International Conference on Image Processing. IEEE, 2008, pp. 893–
896.

[49] Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally
correlated source vectors using sparse bayesian learning,” IEEE Journal
of Selected Topics in Signal Processing, vol. 5, no. 5, pp. 912–926, 2011.

[50] J. de Carvalho Silva, J. J. Rodrigues, A. M. Alberti, P. Solic, and A. L.
Aquino, “Lorawan—a low power wan protocol for internet of things: A
review and opportunities,” in 2017 2nd International multidisciplinary
conference on computer and energy science (SpliTech). IEEE, 2017,
pp. 1–6.

Kamal Hossain Kamal Hossain is currently working
as a Lead Data and AI Consultant in Australia
while pursuing a Ph.D. at Edith Cowan University.
Prior to his current role, he held multiple positions
across various industries and served as a Machine
Learning Researcher at Telekom Malaysia Research
& Development (TM R&D). In that capacity, Kamal
contributed to advanced machine learning projects
and collaborated with academic institutions, bridging
the gap between industry and academia. He received
his Bachelor of Electronic Engineering degree in

2012 and his Master of Engineering Science degree in 2015 from Multimedia
University in Cyberjaya, Malaysia. His research interests include IoT sensors,
sensor drift, generative Bayesian statistics and cybersecurity for IoT devices.

Iftekhar Ahmad Iftekhar Ahmad is currently work-
ing as an Associate Professor with the School of
Engineering, Edith Cowan University, Australia. He
received his PhD from Monash University, Australia,
in 2007. His research interests include green commu-
nications, integration of renewable energy, electric
vehicle charging/discharging.

Daryoush Habibi Daryoush Habibi graduated with
a Bachelor of Engineering (Electrical) with First
Class Honours from the University of Tasmania in
1989 and a PhD from the same University in 1994.
His employment history includes Telstra Research
Laboratories, Flinders University, Intelligent Pixels
Inc., and Edith Cowan University, where he is
currently a Professor and the Head of the Centre
for Green and Smart Energy Systems. His research
interests include engineering design for sustainable
development, renewable and smart energy systems,

environmental monitoring technologies, and reliability and quality of service
in engineering systems and networks. He has over 200 refereed publications
in high-impact journals, conference proceedings and book chapters. He is a
Fellow of Engineers Australia, a Fellow of the Institute of Marine Engineering,
Science and Technology, and a Senior Member of the IEEE.

Muhammad Waqas Muhammad Waqas pursued
his PhD degree with the Department of Electronic
Engineering at Tsinghua University, Beijing, China,
in 2019. From October 2019 to March 2022, he was
a Research Associate at the Faculty of Information
Technology, Beijing University of Technology, Bei-
jing, China and also affiliated with GIK Institute
of Engineering Sciences and Technology, Pakistan.
From April 2022, he had been an Assistant Professor
at the Computer Engineering Department, College
of Information Technology, University of Bahrain,

Bahrain. In the UK, he is currently a Senior Lecturer (Assistant Professor) at
the School of Computing and Mathematical Sciences, Faculty of Engineering
and Science, University of Greenwich, London, UK. He has also been an
Adjunct Senior Lecturer (Assistant Professor) at the School of Engineering,
Edith Cowan University, Australia, since November 2021.

Dr Waqas has more than 100 research publications in reputed Journals and
Conferences with more than 3200 citations, an h-index of 25 and an i10
index of 63. He is an Associate Editor and Guest editors of several reputed
journals and achieved more than 7 funded projects. He was also invited as a
distinguished/invited speaker at several reputed conferences.

His current research interests are in the areas of Wireless Communication,
vehicular networks, cybersecurity and Machine Learning. He is recognised as
a Global Talent in the area of Wireless Communications by UK Research
and Innovation and a Professional Member of Engineer Australia. He is
a senior member of IEEE, a Professional Member of ACM, an IEEE
Young Professional, a Member of the Pakistan Engineering Council and PhD
approved supervisor by the Higher Education Commission of Pakistan.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3503616

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Greenwich. Downloaded on January 05,2025 at 13:22:56 UTC from IEEE Xplore.  Restrictions apply. 


