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Abstract
Brain surgery is a widely practised and effective treatment for brain tumours, but
accurately identifying and classifying tumour boundaries is crucial to maximise
resection and avoid neurological complications. This precision in classification
is essential for guiding surgical decisions and subsequent treatment planning.
Hyperspectral (HS) imaging (HSI) is an emerging multidimensional optical
imaging method that captures detailed spectral information across multiple
wavelengths, allowing for the identification of nuanced differences in tissue
composition, with the potential to enhance intraoperative tissue classification.
However, current frameworks often require retraining models for each HSI to
extract meaningful features, resulting in long processing times and high compu-
tational costs. Additionally, most methods utilise the deep semantic features at
the end of the network for classification, ignoring the spatial details contained in
the shallow features. To overcome these challenges, we propose a novel approach
called MedDiffHSI, which combines diffusion and transformer techniques. Our
method involves training an unsupervised learning framework based on the dif-
fusion model to extract high-level and low-level spectral–spatial features from
HSI. This approach eliminates the need for retraining of spectral–spatial feature
learning model, thereby reducing time complexity. We then extract interme-
diate multistage features from different timestamps for classification using a
pretrained denoising U-Net. To fully explore and exploit the rich contextual
semantics and textual information hidden in the extracted diffusion feature, we
utilise a spectral–spatial attention module. This module not only learns mul-
tistage information about features at different depths, but also extracts and
enhances effective information from them. Finally, we employ a supervised
transformer-based classifier with weighted majority voting (WMV) to perform
the HSI classification. To validate our approach, we conduct comprehensive
experiments on in vivo brain database data sets and also extend the analysis
to include additional HSI data sets for breast cancer to evaluate the framework
performance across different types of tissue. The results demonstrate that our
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framework outperforms existing approaches by using minimal training samples
(5%) while achieving state-of-the-art performance.

KEYWORDS
bioinformatics, brain tumour, cancer surgery, deep learning, diffusion model, hyperspectral
imaging, precision medicine

1 INTRODUCTION

The global cancer burden is projected to surpass 35 mil-
lion new cases by 2050, a 77% rise from the estimated
20 million cases in 2022.1 In addition to radiotherapy
and chemotherapy, surgery is a primary treatment option
for brain tumours. However, distinguishing tumour tissue
fromnormal brain tissue during surgery is challenging due
to the infiltrative nature of brain tumours. Several image
guidance tools, such as intraoperative neuro-navigation,
intra-operative magnetic resonance imaging, and fluo-
rescent tumour markers, are used in neurosurgery to
identify and resect brain tumours. However, these tools
have limitations. Neuronavigation systems, which rely on
preoperative computed tomography (CT) orMagnetic Res-
onance Imaging (MRI) data, lose accuracy during surgery
due to brain shift. Intraoperative MRI mitigates brain shift
issues but prolongs surgery and requires specialised equip-
ment, posing challenges for patient safety andmonitoring.
Additionally, these methods may not provide sufficient
contrast for all tumour types, sometimes leading to false
positives.2,3
Hyperspectral imaging (HSI) is a promising noninvasive

and nonionising technique that enables rapid acquisi-
tion and analysis of diagnostic information across vari-
ous fields, such as remote sensing,4–6 object detection,7
environmental monitoring,8 forensics,9,10 defence and
security,11 amongmany others.HSI is an emergingmultidi-
mensional optical imagingmethod, which allows objective
identification of tissues and conveys information from
spectral bands beyond the capabilities of the human
visual system or conventional cameras. Recently, HSI has
emerged as a powerful tool for medical imaging12,13 due to
its ability to capture detailed spectral information across
numerous narrow bands. This capability is particularly
advantageous in the classification and diagnosis of can-
cer, where distinguishing between different types of tissues
is crucial. Several studies have demonstrated the efficacy
of HSI in the classification of various cancers using deep
learning (DL) techniques. These include gastric and colon
cancer,14,15 breast cancer,16,17 head and neck cancer,18 and
brain cancer.19,20
Vivo-HSI has been utilised to create a human-brain

imaging database13 for Glioblastoma (GBM) tumour

surgery. The primary objective of this database is to
develop an approach for the qualitative delineation of
tumour margins, with the goal of providing noninvasive
surgical tools capable of accurately identifying tumour
locations. Since HSI is designed to store a large amount
of information, some challenges still exist. HSI data pro-
vide a combination of spatial and spectral information,
which is crucial for accurate tissue classification. The
data contain a vast number of interconnected bands,
leading to high dimensionality, significant illumination
variance, and imbalanced class distribution. Addition-
ally, the presence of mixed materials in the background,
such as medical devices and/or other objects labelled
as one class, complicates the classification process and
reduces accuracy.
To address these challenges, various efforts have been

made, with most tumour identification models using HSI
based on traditional machine learning (ML) algorithms.
Fabelo et al.21 explored the Vivo-HSI data set, using
spatial–spectral data to differentiate between tumour
cells. They performed the classification of different tissue
samples using both supervised methods (support vector
machine (SVM) classifier, K-nearest neighbour (KNN)
filtering, and fixed reference t-distributed stochastic neigh-
bour embedding (FR-tSNE) dimensional reduction) and
unsupervised methods (hierarchical K-means clustering
algorithm). However, traditional classifiers like KNN and
SVM primarily utilise spectral information and often
disregard spatial variability. The performance of these
tumour detection methods often depends on manual fea-
ture extraction, which is time-consuming and prone to
subjective bias. Therefore, seeking efficient automatic fea-
ture extraction and classification methods is of significant
research importance. The rapid advancement of DL tech-
niques has led to improvements in the spectral and spatial
properties of HSI data. The use of a 2D convolutional neu-
ral network (CNN) and a 1D CNN model, as investigated
in Ref. [19], provided more accurate results in classify-
ing the Vivo-HSI data set compared to the traditional
SVM classifier. Additionally, a 3D-2D hybrid CNN-based
approach22 is employed, to extract spectral–spatial features
for brain tissue classification, effectively distinguishing
between tumours, normal tissue, and blood vessels in
the human brain. Compared with hand-crafted feature
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extraction methods, DL-based methods can automati-
cally extract informative features from the original images
through a series of hierarchical layers. Furthermore, a 1D-
deep neural network (DNN) model is used for deep spec-
tral HSI classification, and a 2D-CNN model is adopted
for spectral–spatial HSI classification in Ref. [20]. Deci-
sion fusion strategies, edge-preserving filtering, and a fully
convolutional network (FCN) are then employed to opti-
mise and combine classification and segmentation results
for the final classification, achieving competitive tumour
identification performance.
However, research on using DL techniques for tumour

identification with in vivo human brain HSI is very lim-
ited. Collecting labelled samples of brain tumour tissue
is either expensive or time-consuming, resulting in a lim-
ited number of training samples in the medical field.
Given the variations in the appearance of different lev-
els and types of brain tumours, effective feature extraction
is crucial for practical applications. Developing accurate
and robust feature extraction and classification methods
for tumour identification is a significant research direc-
tion. Different deep networks can extract various types
of features, such as spectral, spatial, shallow, and deep
features, each contributing differently to classification
accuracy. Leveraging the complementarity of different net-
works to utilise these diverse features fully is essential
for improving tumour recognition results. The DL have
been shown to be effective in HSI classification; however,
there are still many challenges in this field. For instance,
convolutional operations handle a local neighbourhood,23
so spatial–spectral information is not correlated across
different layers, leading to information loss. CCR-Net24
introduces a cross-channel reconstruction (CCR) module
for more effective fusion of multimodal features in remote
sensing image classification. Similarly, DC-Net25 proposes
a subpixel-level HS super-resolution (HS-SR) framework
that fuses HS and multispectral (MS) images. Although
it addresses the distribution gap between data sources,
spectral degradation remains a challenge in real-world
HS-SR applications. The HighDAN26 network proposes
a high-resolution domain adaptation approach for cross-
city semantic segmentation in multimodal remote sensing
images. The network26 effectively preserves the spatial
topology of remote sensing images through parallel high-
and low-resolution fusion, leading to improved segmen-
tation performance. The SpectralGPT27 model presents
a novel 3D generative pretrained transformer (GPT)
designed for spectral remote sensing data. Although it
effectively captures spatial–spectral couplings and pre-
serves spectral characteristics, current generalisabilitymay
be constrained by the need for a larger and more diverse
training data set.

Effectively learning rich representations and addressing
the complexities of spectral–spatial relations in high-
dimensional data are crucial for achieving optimal HSI
classification results. Recently, the denoising diffusion
probabilistic model (DDPM)28 has emerged as a ground-
breaking class of generative models, adept at modelling
complex relationships and effectively learning high-level
and low-level visual features. In our previous work,4 we
evaluated the use of HSI, specifically focusing on diffusion
models and transformer algorithms, for effective classi-
fication in remote sensing images. The diffusion model
effectively extracts both low and high-level features, aiding
in efficient HSI classification.
In this study, a diffusion-transformer-based framework,

MedDiffHSI, was developed to generate classification
maps identifying tumour, healthy, and blood vessel tis-
sues using in vivo human brain hyperspectral images.
Unlike conventional approaches that rely on traditional
classifiers, such as SVMandKNN,which often neglect spa-
tial information and require manual feature extraction,21
MedDiffHSI integrates diffusion models architectures to
extract both spectral and spatial features. We made sig-
nificant improvements to MedDiffHSI compared to our
previous model, DiffSpectralNet.4 Firstly, we eliminated
the need for retraining the diffusion model, significantly
reducing time complexity. Secondly, intermediate hierar-
chical features were extracted from different timestamps
using a pretrained denoising U-Net, enabling more effi-
cient and accurate classification. To better utilise the
timestep-wise features extracted from the diffusion model,
a spectral–spatial attention mechanism was employed.
This mechanism learns multistage information at various
depths, enhancing sensitivity to relevant features while
adaptively retaining critical information. Finally, a super-
vised transformer-based classifier was applied for HSI
classification, and postprocessing using weighted majority
voting (WMV) was introduced to further refine the classi-
fication maps, particularly improving classification maps
by leveraging spatial information.
We evaluated the effectiveness of the proposed method

on seven hyperspectral (HS) images from five patients with
brain tumours, as initially established by Ref. [13], and we
extended our evaluation beyond brain tumour classifica-
tion to include additional HSI data sets for breast cancer.
Our results clearly demonstrate that MedDiffHSI signif-
icantly improves classification results and outperforms
other advanced HSI classification methods. Moreover,
this study also opens the way for further investigations
into the potential of diffusion models in processing com-
plex, high-dimensional hyperspectral data, opening up
promising prospects for diverse applications. This frame-
work could assist neurosurgeons in the critical task of
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4 SIGGER et al.

identifying cancer tissue during brain surgery with higher
accuracy.

2 METHODS

In this section, we describe a novel method called Med-
DiffHSI, a diffusion-based feature learning framework
designed to effectively and efficiently explore multi-
stage diffusion features for comprehensively modelling
spectral–spatial relations for classification. The framework
is illustrated in Figure 1. The following section provides a
detailed introduction to the proposed MedDiffHSI model.

2.1 Diffusion-based unsupervised
spectral–spatial feature learning

In order to capture complex spectral–spatial relations
and label-agnostic information of HSI data effectively,
the first step of our proposed approach is to train a dif-
fusion model in an unsupervised manner, as shown in
Figure 1A. We introduce the detailed formulation of our
unsupervised feature learning procedure, which involves
diffusion-based forward and backward processes with the
HSI data.

∙ Forward Diffusion Process. DDPM represents a cate-
gory of models based on likelihood estimations. In the
forward process, Gaussian noise is added to the orig-
inal training data. Our proposed model aims to learn
spectral–spatial features effectively in an unsupervised
manner by training a DDPM using unlabelled patches
randomly cropped from the HSI data set. Given an unla-
belled patch 𝑥0 ∈ ℝ𝑃×𝑃×𝐵, where 𝑃 denotes the height
and width of the patch and 𝐵 represents the number of
spectral channels, Gaussian noise is gradually added to
the HSI patch according to the variance schedule {𝛽𝑡}𝑇𝑡=0
in the diffusion process, where 𝑇 is the total number of
timesteps. This follows a Markov chain28 process:

𝑥𝑡 =

√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼  (0, 𝐼), (1)

where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 represents the product of
𝛼1 to 𝛼𝑡. This formulation provides the probability
distribution of the HSI at a given time step 𝑡.

∙ Reverse Diffusion Process. In the reverse diffusion
process, a spectral–spatialU-Net29 denoising network is
employed is trained to predict the noise added on 𝑥𝑡−1,
taking noisy patch 𝑥𝑡 and timestep 𝑡 as inputs. And 𝑥𝑡−1
is calculated by subtracting the predicted noise from 𝑥𝑡.
DDPM uses aMarkov chain process to remove the noisy

sample 𝑥𝑇 to 𝑥0 step by step. Under large 𝑇 and small 𝛽𝑡,
the probability of reverse transitions is approximated as
a Gaussian distribution and is predicted by a U-Net as
follows:

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) =  (𝑥𝑡−1; 𝜇𝜃(𝑥𝑡, 𝑡), 𝜎𝜃(𝑥𝑡, 𝑡)), (2)

where the reverse process can be reparameterised by
estimating 𝜇𝜃(𝑥𝑡, 𝑡) and 𝜎𝜃(𝑥𝑡, 𝑡). 𝜎𝜃(𝑥𝑡, 𝑡) is set to 𝜎2𝑡 𝐼,
where 𝜎2𝑡 is not learned. To obtain the mean of the con-
ditional distribution 𝑝𝜃(𝑥𝑡−1|𝑥𝑡), we need to train the
network to predict the added noise.Themean of𝜇𝜃(𝑥𝑡, 𝑡)
is derived as follows:

𝜇𝜃(𝑥𝑡, 𝑡) =
1√
𝛼𝑡

(
𝑥𝑡 −

1 − 𝛼𝑡√
1 − �̄�𝑡

𝜖𝜃(𝑥𝑡, 𝑡)

)
, (3)

where 𝜖𝜃(⋅, ⋅) denote the spectral–spatial denoising net-
work whose input is the timestep 𝑡 and the noisy
hyperspectral instance 𝑥𝑡 at timestep 𝑡.
The denoising network takes in the noisy hyperspec-

tral instance along with the timestep to produce the
predicted noise. The U-Net denoising model 𝜖𝜃(𝑥𝑡, 𝑡)
is optimised by minimising the loss function of the
spectral–spatial diffusion process can be expressed as
follows:

(𝜃) = 𝔼𝑡,𝑥0,𝜖

[(
𝜖 − 𝜖𝜃

(√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝑡

))2
]
.

(4)

2.2 Feature extraction and
enhancement

After training the network using Unsupervised spectral–
spatial methods, we start extracting useful diffusion fea-
tures from the pretrained DDPM. During the feature
extraction step, we utilise the U-Net denoising network to
extract a spectral–spatial timestep-wise feature. The pre-
training of DDPM enables it to capture rich and diverting
information from the input data during the reverse pro-
cess. As a result, we extract features from the intermediate
hierarchies of DDPM at various timesteps to create robust
representations that encapsulate the salient features of
the input HSI. The parameters of the pretrained DDPM
remain constant, as shown in Figure 1B. Subsequently, 𝑥𝑡
is fed into the pretrained spectral–spatial denoisingU-Net
to derive hierarchical features from the U-Net decoder.
Diffusion features from various decoder layers are collec-
tively upsampled to 𝑃 × 𝑃 and then merged to form the
feature 𝑓𝑡 in ℝ𝑃×𝑃×𝐿 at timestep 𝑡, where 𝑃 represents the
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SIGGER et al. 5

F IGURE 1 Overview of our proposed MedDiffHSI. (A) Unsupervised Spectral–Spatial Feature Learning Network. 𝑥0 and 𝑥𝑇 represent
HSI patches of timestep 0 and timestep 𝑇. 𝑞(𝑥𝑡 ∣ 𝑥𝑡−1) and 𝑝(𝑥𝑡−1 ∣ 𝑥𝑡) represent forward and reverse spectral–spatial diffusion processes,
respectively. (B) Supervised Classification: (1) Extracting multistage features from the pretrained denoising U-Net decoder at different
timesteps 𝑡. To better utilise these features, we employ a spectral and spatial attention mechanism to adaptively retain relevant information.
(2) Using the patch-wise feature vectors to train a cross-layer transformer for HSI classification. (3) Using weighted majority voting to smooth
the local neighbourhood.

height and width of the patch and 𝐿 denotes the num-
ber of feature channel. As for each timestep, we extracted
multistage features from three different layers represent
the extracted low-level, mid-level, and high-level features,

respectively. For each feature 𝑓𝑡𝑖 ∈ ℝ𝑃×𝑃×𝐿, we retain only
the vector associated with the centre pixel, indexed as 𝐶𝑖 ∈

ℝ1×1×𝐿, which significantly reduces computational cost by
decreasing the number of parameters.
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6 SIGGER et al.

F IGURE 2 The spectral–spatial attention module in MedDiffHSI, which extracts effective and efficient information from multistage
features 𝑐𝑡𝑖 (𝑖 ∈ {1, 2, 3}) from the diffusion model, resulting in the combined feature 𝑐𝑡 .

In this work, we enhanced our previous model,
DiffSpectralNet,4 by introducing a spectral–spatial
attention module. Attention modules are effective in
improving feature extraction and enhancing relevant
information.30–32 These modules selectively focuses on
the most informative features, amplifying important
details while suppressing irrelevant data. Inspired by
the design of spectral–spatial attention modules in Ref.
[30], we employed this approach to extract and enhance
effective information from the features derived by the
diffusion model, where spectral and spatial attention were
cascaded, as shown in Figure 1B and detailed in Figure 2.
The feature weight 𝑤spe ∈ ℝ1×1×𝐿 was obtained through
the two convolutional layers with a kernel size of 1 × 1, as
shown in Equation (5).

𝑤spe = 𝜎(𝑤2 ∗ (𝛿(𝑤1 ∗ 𝑝𝑖))), (5)

where 𝜎 and 𝛿 represent the sigmoid and ReLU activation
functions, respectively. 𝑤1 and 𝑤2 are the weight param-
eters of the two convolutional layers, and ∗ denotes the
convolution operation. Finally, as shown in Figure 2, the
band weight 𝑤spe was used to recalibrate the bands in
the feature 𝑐𝑡𝑖 to highlight the useful spectral information,
using Equation (6).

𝑐𝑡𝑖 = 𝑤spe ⊗ 𝑐𝑡𝑖 , (6)

where⊗ represents element-wise multiplication.
Spatial attention aims to enhance the spatial informa-

tion for pixels belonging to the same class as the central
pixel, while suppressing pixels of other classes. Firstly,

global max pooling was applied to the input feature 𝑐𝑡𝑖
along the channel direction, as shown in Equation (7).

𝑐𝑡𝑖 ,max = max
𝑐

(𝑐𝑡𝑖 (𝑖, 𝑗)), (7)

where 𝑐𝑡𝑖 (𝑖, 𝑗) represents the value at position (𝑖, 𝑗) in the
feature 𝑐𝑡𝑖 ∈ ℝ𝑝×𝑝×𝐿, max𝑐 represents taking the maxi-
mum value along the channel direction 𝑐, and 𝑐𝑡𝑖 ,max ∈

ℝ𝑝×𝑝 is the feature map after global max pooling. This
pooled feature map is then passed through two 2D convo-
lutional layers to generate the spatial weight 𝑤spa ∈ ℝ𝑝×𝑝,
as shown in Equation (8).

𝑤spa = 𝜎(𝛿(𝑐𝑡𝑖 ,max ∗ 𝑤1) ∗ 𝑤2), (8)

where𝑤1 and𝑤2 are theweight parameters of the two con-
volutional layers, 𝜎 and 𝛿 represent the sigmoid and ReLU
activation functions, respectively, and ∗ denotes the convo-
lution operation. Finally, as shown in Figure 2, the spatial
weight𝑤spa is used to recalibrate the spatial information in
the feature 𝑐𝑡𝑖 and highlight the useful spatial information,
using Equation (9).

𝑐𝑡𝑖 = 𝑤spa ⊗ 𝑐𝑡𝑖 , (9)

where⊗ represents element-wise multiplication.
Then, the different layer features are concatenated to

get the multistage feature 𝑐𝑡 at timestep 𝑡𝑖 . Thus, the most
appropriate and relevant representation is automatically
learned and leverages the complementary information
from the different feature levels, resulting in amore robust
and informative representation.
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SIGGER et al. 7

2.3 Classification

After mapping the patch representation, we use the same
classification model from our previous work4 to predict
the classification labels. Transformer-based classifiers are
trained based on the inspiration from Ref. [33], as shown
in Figure 1B. The classification module combines CNN
and transformer structures to form an effective classi-
fier. The classifier takes positionally embedded feature
patches as inputs and employs an MLP head to predict the
final classification scores. The cross-layer skip connections
introduced in the classifier are inspired by the success of
similar mechanisms in U-Net34 and ResNet.35 This aims
to minimise the loss of valuable information during layer-
wise propagation and enhance information flow between
layers. The classifier model incorporates skip connections,
multihead attentionmechanisms, and feed-forward neural
networks for spectral–spatial feature mapping, as well as a
transformer structure for deep feature extraction, resulting
in outstanding classification performance.

2.4 Postprocessing

In our experiments, Weighted Majority Voting (WMV)36 is
applied as a postprocessing correction method following
transformer-based classification to enhance the accuracy
of the classified maps. WMV adjusts the classification of
each pixel based on the labels of its surrounding neigh-
bours, incorporating spatial context into the final clas-
sification. Unlike other postprocessing methods, such as
median filtering, which tends to oversmooth boundaries,37
or conditional random fields (CRFs), which increase com-
putational complexity,38 WMVoffers a balanced approach.
By considering the weighted votes of neighbouring pix-
els, WMV reduces noise and misclassifications, following
the principle that neighbouring pixels are likely to belong
to the same class. This decreases the likelihood of iso-
lated misclassifications and enhances the reliability of the
results. The use ofWMV significantly improves the overall
classification performance, providingmore accuratemaps.

3 EXPERIMENTS AND RESULTS

3.1 Data preprocessing

The proposed framework was evaluated on seven HS
images from five patients with GBM tumours, as initially
established by Ref. [13]. For this study, we have only cho-
sen thoseHSI(7) that contain all four labels in their ground
truth information Normal Tissue (NT), Tumour Tissue
(TT), hypervascularised tissue or blood vessels (HV), and

Background (BG).The HSI sensor employed had a spectral
range of 400× 1000 nm and utilised a pushbroomA-Series
camera (Headwall Photonics Inc., Fitchburg, MA, USA).
This camera could capture a total of 826 spectral bands
using a 150-W QTH (quartz-tungsten-halogen) lamp. As a
line scanner, it was capable of capturing a maximum of
1004 × 826 pixels, depending on the sample size. To mit-
igate the heat generated by the light bulbs, a cold light
emitterwas used to prevent any adverse effects on the brain
due to elevated temperatures.
During surgery, the neurosurgeon utilised preoperative

imaging data to distinguish normal tissue from tumour tis-
sue by placing cylindrical rubber markers. To validate the
accuracy of these markings, biopsies of the tissue within
the markers were taken to confirm the GBM tumour
type and grade. To detect tumours in deeper layers, HSI
data was collected after the commencement of tumour
resection. The Spectral Angle Mapper (SAM) algorithm
was used to label the data acquired by HSI, with each
labelling performed by the operating neurosurgeon to cre-
ate ground truth for every patient. Typically, each patient
had a set of five unique labels: unlabelled pixels, nor-
mal tissue, tumour tissue, blood vessels, and background.
Then, the raw HS images were preprocessed. This prepro-
cessing chain is based on two main steps: Selective Class
Merging and Dimensionality Reduction. The goal of each
preprocessing step is briefly explained:

∙ Selective Class Merging. The background class
includes materials or substances present in the surgical
scenario that are not relevant to the tumour resection
procedure, such as skull bone, skin, cylindrical rubber
markers, or surgical material. These background pixels
are marked as unclassified as they are not useful in the
process. From these preprocessed cubes, a specific set of
pixels comprising three different classes tumour tissue,
normal tissue, and hypervascularised tissue (blood
vessels) is obtained. This set of pixels is used to train
and test the model.

∙ Dimensionality Reduction. The original HS images
consist of 826 bands, but due to hardware limitations
and redundancy in HSI, it is not feasible to process all
bands. Therefore, a dimensionality reduction algorithm
is applied. Numerous algorithms for dimensionality
reduction have been developed in the literature.39 Prin-
cipal Component Analysis (PCA)40 is one of the most
popular linear techniques for this purpose, as it maps
the data while preserving as much variance as possible.
In the proposed brain cancer detection algorithm, PCA
is employed to obtain a preprocessed HS cube with 200
bands. No further preprocessing is applied, as diffusion-
based methods could theoretically recover the details
of dark areas better through their powerful generative
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8 SIGGER et al.

TABLE 1 Patient data before and after selective class merging
preprocessing. Summary of seven patient IDs and their pixel-wise
distribution among each class (Normal Tissue (NT), Tumour Tissue
(TT), Hypervascularised Tissue (HV), and Background (BG)).

Patient
ID

Before preprocessing
After
preprocessing

NT TT HV BG NT TT HV
8-01 2295 1221 1331 630 2295 1221 1331
8-02 2187 138 1000 7444 2187 138 1000
12-01 4516 855 8697 1685 4516 855 8697
12-02 6553 3139 6041 8731 6553 3139 6041
15-01 1251 2046 4089 696 1251 2046 4089
20-01 1842 3655 1513 2625 1842 3655 1513
25-02 977 1221 907 2503 977 1221 907

ability.41,42 A list of these patients and their pixel infor-
mation for each labelled data set is shown in Table 1 both
before and after data preprocessing.

3.2 Implementation details

We used the PyTorch framework to implement and train
the MedDiffHSI model. The training was done on a
basic hardware setup, which consists of a POWER8NVL
production-grade CPU with 128 CPU threads spread
across 2 sockets for efficient processing. Additionally, four
NVIDIA Tesla P100 GPUs were used for enhanced graph-
ical computations, each offering a memory of approxi-
mately 16 GB.
The diffusion model was optimised using the Adam

optimiser and trained for 35,000 epochs and was trained
only once on the Patient ID 12-02 data set. The learning
rate was set to 1 × 10−4, with a batch size of 64 and a
patch size of 32 × 32. For classification, we extracted fea-
tures from this trained model for other data sets as well.
The features were combined using a multistage attention
module Network. Due to hardware limitations, it is not
feasible to utilise all combined features through a multi-
stage attention module network. To evaluate the amount
of spectral information preserved, PCAwas employed. The
number of PCA components was restricted to a maximum
of 𝐷∕10 (where 𝐷 represents the diffusion features in the
data set) to align with the hardware capacity. The classifi-
cation model was also trained using the Adam optimiser,
maintaining the same learning rate of 1 × 10−4 and a batch
size of 64 for all data sets. The size of the feature patch
was empirically set to 11 × 11. The number of epochs for
the classification model was set to 750 for all data sets. For
classification, seven different samples were passed to the
proposed model, and the experiment was divided into sep-

arate Train/Test sets. Each data set was divided into 5% for
training and 95% for the test set.

3.3 Performance evaluation

The classification performance was evaluated using Recall
(10), Precision (11), Accuracy (OA) (12), Specificity (13), and
Cohen’s Kappa metrics, where TP are true positives, TN
are true negatives, FN are false negatives, and FP are false
positives. Cohen’s Kappa was calculated as in (14), where:

Recall = TP
TP + FN , (10)

Precision =
TP

TP + FP , (11)

OA =
TP + TN

TP + FP + TN + FN , (12)

Specificity = TN
TN + FP . (13)

Cohen’s Kappa (𝜅) is a statistical measure of interrater
agreement or reliability, which considers the agreement
occurring by chance. It is calculated as follows:

𝜅 =
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

, (14)

where 𝑃𝑜 is the observed agreement (overall accuracy) and
𝑃𝑒 is the expected agreement, which is calculated based on
the probabilities of each class occurring by chance.
The algorithms were tested using seven HS images

from five human patients with GBM tumour. To com-
prehensively assess the effectiveness of the proposed
method, we conducted a comparative analysis with
several state-of-the-art deep learning-based approaches.
The methods included in this comparison are the
contextual CNN (CnCNN),43 deep pyramidal residual
networks (DPResnet),44 high-resolution network +

object-contextual representations (HRnet + OCR),45,46
double-branch dual-attention mechanism network
(DBDA),47 Fusing Multiple Deep Models (FMDM),20
and baseline, DiffSpectralNet.4 These methods have
demonstrated strong performance in previous studies.
The parameters for all compared methods are consistent
with those reported in the respective literature, and we
directly used the results from FMDM.20 The classification
accuracies obtained by the different deep learning-based
methods are detailed in Table 2.
The proposed method achieved the highest overall

accuracy, precision, and recall, underscoring its effective-
ness. This is particularly significant in the context of
the three-class classification problem, where the accurate
identification of GBM tumour tissue is both crucial and
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SIGGER et al. 9

TABLE 2 Classification results obtained by various deep learning-based methods (in %). NT: Normal Tissue, TT: Tumour Tissue, HV:
Hypervascularised Tissue. The results for CnCnn, DPRsenet, HRnet+OCR, DBDA, and FMDM are taken directly from FMDM.20 The best
results are highlighted in bold.

Tissue Metrics CnCnn DPRsenet HRnet+OCR DBDA FMDM DiffSpectralNet MedDiffHSI
NT Accuracy 87.59 97.19 86.83 92.92 96.61 91.11 97.37

Precision 66.48 92.09 64.77 81.82 88.84 94.23 97.45
Recall 95.87 98.24 94.99 85.02 95.47 96.01 98.39

TT Accuracy 88.99 90.21 89.46 94.27 96.34 87.92 98.82
Precision 86.78 40.30 75.02 86.16 87.76 95.41 99.12
Recall 58.99 35.47 60.23 71.32 90.53 92.47 97.35

HV Accuracy 94.32 90.14 96.65 91.77 95.55 90.18 97.06
Precision 92.37 64.99 97.81 83.10 94.77 96.74 97.43
Recall 79.67 67.78 91.69 81.89 95.53 99.28 98.50

Overall Accuracy 90.3 92.51 90.98 92.99 96.16 89.74 98.04
Precision 91.67 65.79 79.2 83.69 90.45 95.46 97.99
Recall 81.87 67.16 82.30 79.41 93.84 93.73 98.08

TABLE 3 Performance metrics for different analyses.

Analysis 8-01 8-02 12-01 12-02 15-01 20-01 25-02
Specificity 97.13 99.84 99.28 97.50 98.94 98.42 99.01
k 91.14 99.10 98.22 96.28 96.83 98.43 98.44

challenging. Our method outperformed the other compar-
isonmethods in all threemetrics for GBM tumour identifi-
cation. The model achieved an overall accuracy of 98.04%,
which is 8% higher than the accuracy achieved with the
baseline DiffSpectralNet model. This improvement high-
lights the efficacy of the multistage attention module in
enhancing and utilising the diffusion features. Addition-
ally, the proposed model demonstrated superior accuracy
in classifying tumour tissue (98.82%) compared to healthy
tissue and blood vessels, which had accuracies of 97.37%
and 97.06%, respectively. This further validates the robust-
ness of our method in distinguishing between different
types of tissue.
Furthermore, we evaluated the model performance

using Specificity, and Kappa metrics. As shown in Table 3,
the proposed model demonstrates high specificity across
the data set, with values consistently above 97%. These
high specificity values indicate that the model is effec-
tive in distinguishing tumour tissues from nontumour
tissues. This is particularly important in a clinical set-
ting, where accurately identifying tumour boundaries can
significantly impact the success of surgical interventions.
Additionally, the Kappa coefficient indicates the model
consistency and reliability in classification tasks, showing
strong agreement with ground truth annotations. Overall,
the proposed method demonstrates state-of-the-art per-
formance in terms of specificity, and Kappa coefficient,

highlighting its potential for clinical application in tumour
identification and surgical planning.
For a comprehensive examination of the detailed set-

tings for band selection (Table S1), train/test split (Table
S2), and the performance metrics for each class across all
data sets (Table S3), readers are referred to the Supplemen-
tary Material provided.
Figure 3 shows the classification maps produced by

the proposed method. From top to bottom, the three
figures in each row represent the synthetic RGB images,
ground truth after data preprocessing, and classification
map with the proposed MedDiffHSI for the testing hyper-
spectral images with IDs 08-01, 08-02, 12-01, 12-02, 15-01,
20-01, and 25-02, respectively. Our model shows robust-
ness to varying illumination conditions. For example, in
the testing HSI with ID 08-01, some areas are dark due to
poor illumination conditions, yet the model still demon-
strates satisfactory performance due to its powerful ability
to extract both low and high-level features. This robust-
ness further underscores the model potential for reliable
application in diverse clinical environments.

4 DISCUSSION

∙ Model Stability acrossData sets. To thoroughly assess
the robustness of our proposed framework, we extended
our evaluation beyond brain tumour classification to
include additional HSI data sets for breast cancer, as
detailed in Table 4. By applying our model to these var-
ied data sets, we aimed to demonstrate its versatility
and effectiveness in handling diverse types of cancer-
ous tissues. The results from our extended evaluation,
as shown in Table 5, which are averages of three classes,
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10 SIGGER et al.

F IGURE 3 Classification maps produced by the proposed method. (A) Synthetic RGB images corresponding to test HSIs. (B) Ground
truth corresponding to test HSIs after data preprocessing, with green, red, and blue colours representing normal tissue, tumour tissue, and
hypervascularised tissue, respectively. (C) Classification maps obtained by MedDiffHSI.

indicate that our model maintains good performance
across different analyses. The cross-data set evaluation
highlights the robustness and adaptability of our pro-
posed framework, affirming its potential for application
in medical diagnostics.

∙ Effects of Data Preprocessing. The lack of dense
ground truth and the absence of clinical evaluations on
the tumour boundaries are significant constraints. Addi-
tionally, the nonuniform distribution in some cases may
lead to high background sensitivity, resulting in a loss of
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SIGGER et al. 11

F IGURE 4 Effects of different components on the MedDiffHSI model: (A) Accuracy results on the seven HSI data sets using IVS48 and
PCA for efficient band selection. (B) Comparison of performance using different accuracy metrics for the MedDiffHSI model without the
WMV component.

TABLE 4 Patient data before and after selective class merging
preprocessing. Summary of 2 patient IDs and their pixel-wise
distribution among each class.

Patient
ID

Before preprocessing
After
preprocessing

NT TT HV BG NT TT HV
21-01 3405 167 793 5330 3405 167 793
21-02 2353 31 555 2137 2353 31 555

generalisation.19 To address this, we merged the back-
ground class with unclassified pixels using a method
we call selective class merging, which we explained in
Section 3.1.
Moreover, effective band selection is crucial for HSI

classification to retain the maximum amount of infor-
mation. To achieve this, we employed two distinctmeth-

ods: the approach detailed in IVS,48 which reduces the
bands to 128, and PCA,which retains only 200 bands due
to hardware limitations. We compared these methods to
assess their efficacy in the proposedmodel,MedDiffHSI,
for preserving essential information for accurate clas-
sification. As illustrated in Figure 4, PCA resulted in
more accurate classification outcomes. On average, PCA
resulted in a 1.55% increase in classification accuracy
compared to the IVS48 method.

∙ Impact of WMV. The Figure 4B shows a compar-
ative analysis of the MedDiffHSI model performance
without WMV component. Metrics such as Specificity,
Kappa (k), Accuracy, Precision, and Recall were evalu-
ated. WMV significantly improves performance across
all metrics on average over seven HSI data sets: Speci-
ficity (+0.32%), Kappa (+1.23%), Accuracy (+1.50%),
Precision (+0.34%), and Recall (+1.53%). By correcting

TABLE 5 Performance metrics for different analyses.

Analysis Specificity (%) k Accuracy (%) Precision (%) Recall (%)
21-01 98.30 94.60 97.08 97.92 94.82
21-02 98.64 94.56 98.73 93.84 94.01
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12 SIGGER et al.

TABLE 6 Average classification performance for patient IDs
8-01, 8-02, 15-01, and 20-01 (in %). NT: Normal Tissue, TT: Tumour
Tissue, HV: Hypervascularised Tissue. The best results are
highlighted in bold.

Model NT TT HV Overall accuracy
EAGC 99.62 90.8 98.97 96.46
MedDiffHSI 98.1 98.18 98.03 98.10

pixels using neighbouring information and eliminat-
ing misclassification like noisy scattered points, WMV
enhances the overall performance.

∙ Performance Analysis. Additional performance
analysis was conducted using the available results for
Patient IDs 8-01, 8-02, 15-01, and 20-01. For comparison,
the intrapatient approach (which provided the best
results) using Xtreme Gradient Booster (XGB), as rec-
ommended by the authors, from the EAGC49 method
was utilised. Table 6 presents the comparison with
the EAGC49 model, showing the average performance
across the four (8-01, 8-02, 15-01, and 20-01) HS images.
The MedDiffHSI model outperformed the EAGC
method overall and showed consistent results across all
classes, while the EAGC method was less effective in
the tumour tissue. Additionally, it is worth mentioning
that the EAGCmethod used 70% of the data for training,
while the MedDiffHSI model used only 5%.

HSI is a noninvasive, nonionising technique already
employed for brain tumour detection.19,20 This study
presents new experiments conducted on an in vivo hyper-
spectral brain database.13 Models were trained and tested
using data from GBM patients to classify tumour, healthy,
and hypervascularised tissue. The proposed MedDiffHSI
method shows promising results, achieving superior mul-
ticlass classification performance compared to state-of-
the-art deep learning approaches. Specifically, we achieved
an accuracy of 98.82%, a precision of 99.12%, and a recall
of 97.35% for tumour tissue classification. These results
are promising for identifying brain tumour margins to
aid surgeons during resection and show improvements
over the current state-of-the-art for multiclass classifica-
tion of in vivo human-brain HS data sets. Furthermore,
the classificationmodel demonstrates very high specificity,
consistently above 97%, as shown in Table 3, averaging
across all classes for each data set. Therefore, we can
conclude that the proposed technique excels in correctly
classifying cases as disease-free, indicating high confi-
dence in ‘ruling in’ cases of disease.50 In brain cancer
resection, an intraoperative guidance system must have
very high specificity to ensure that resected areas are not
normal brain tissue, which is crucial for better patient
outcomes.

This study also has several limitations. Firstly, we
directly used results from FMDM20 for comparison with
most deep learning approaches. FMDMemploys four-class
data, while we utilised three-class HSI data. We attempted
a one-to-one comparison for each class; however, the dif-
ferences in class configurations may affect the validity of
these comparisons. This discrepancy should be considered
when interpreting the results, as it might lead to variations
in the outcomes. Another limitation is that most hyper-
parameters of the proposed method in classification are
selected empirically. Future work will focus on develop-
ing automatic hyperparameter selection techniques. We
plan to train and test the model on the entire data set
rather than using a limited subset. Future experiments
should use a much larger data set to enhance the model
generalisation. This study has several limitations. Firstly,
we used results from FMDM20 for comparison with most
deep learning approaches. FMDM utilises four-class data,
whereas we utilised three-class HSI data. We attempted
to make direct comparisons for each class; however, dif-
ferences in class configurations may affect the validity
of these comparisons. This discrepancy should be con-
sidered when interpreting the results, as it might lead
to variations in the outcomes. Additionally, most hyper-
parameters in our proposed classification method were
selected empirically. There is a need to develop automatic
hyperparameter selection techniques. It is also necessary
to train and test themodel on the entire data set rather than
a limited subset. Future experiments should incorporate a
much larger data set to enhance the model generalisation
and robustness.

5 CONCLUSION

This study introduces MedDiffHSI, a novel method for
brain tissue classification in GBM patients. Unlike tradi-
tional CNN models, our approach uses a spectral–spatial
diffusion process to model complex relationships and
extract both high-level and low-level features efficiently.
By employing the diffusionmodel, we leverage the spatial–
spectral neighbourhood structure of hyperspectral data,
extracting deep features more effectively. We also utilise
a spectral–spatial attention module and a transformer-
based model with cross-layer skip connections to prevent
information loss during propagation. Our method pro-
cesses data in patches rather than on a pixel-by-pixel
basis, improving detail capture for accurate classification.
MedDiffHSI achieved state-of-the-art results in HSI classi-
fication in our quantitative trials. Future studies will focus
on validating and enhancing this model with additional
hyperspectral data sets, includingmineralised tissues such
as teeth and bones. This approach shows great potential
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SIGGER et al. 13

for generalising HSI classification by capturing complex
inter-band relationships.
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