
Parallel Lattice Boltzmann

Method for Convection in

Dendritic Solidification

Ivars Krastins

Centre for Numerical Modelling and Process Analysis,

School of Computing and Mathematical Sciences,

University of Greenwich

A thesis submitted in partial fulfilment of the requirements of the

University of Greenwich for the degree of Doctor of Philosophy

October 2018

mailto:i.krastins@gre.ac.uk
http://cnmpa.gre.ac.uk/index.html
https://www.gre.ac.uk
http://www.gre.ac.uk

DECLARATION

I certify that the work contained in this thesis, or any part of it, has

not been accepted in substance for any previous degree awarded to me,

and is not concurrently being submitted for any degree other than that

of Doctor of Philosophy being studied at the University of Greenwich.

I also declare that this work is the result of my own investigations,

except where otherwise identified by references and that the contents

are not the outcome of any form of research misconduct.

....................................
Ivars Krastins Dr. Andrew Kao
(Author) (Supervisor)

....................................
Prof. Koulis Pericleous Dr. Timothy Reis
(Supervisor) (Supervisor)

DEDICATION

I would like to dedicate this thesis to my family and friends for their

everlasting support throughout my PhD.

ABSTRACT

This work focuses on the development, validation and implementation

of a parallel lattice Boltzmann method (LBM) for resolving fluid flow

in multi-physics problems, such as alloy solidification, focusing on the

effects on microstructure evolution. The literature has shown the im-

portance of fluid flow in solidification as it affects the morphology and

evolution of the growing dendrites. Because solute flow represents the

most time-consuming part of the simulation, state-of-the-art comput-

ing allows for only a few cubic millimetres to be simulated, which is far

less than the typical size of cast metal components. A purpose-built

3D LBM code is fully coupled to an external cellular automata (CA)

solidification solver. It is run in parallel to achieve microstructure

solidification on a macroscale. The performance analysis shows that

the developed LBM flow solver is several times faster than the finite

difference method currently used within the research group. The CA-

LBM approach opens the possibility of component-scale microstruc-

tural simulations in a practical time frame. To properly model the

physical boundaries, a new 3D moment-based boundary method for

handling velocity and pressure in LBM is proposed. The capability

of the numerical model is demonstrated by replicating experimentally

observable physical phenomena during freckle formation in a casting.

iii

ACKNOWLEDGEMENTS

I would like to say thank you to Dr. Andrew Kao for always being my

first supervisor, even if not on paper, making sure that I learn from

the experience and become a better researcher.

I am grateful to my second supervisor Prof. Koulis Pericleous for

trusting in me and giving me the opportunity to conduct a PhD re-

search here in Greenwich.

I would also like to thank my third supervisor Dr. Tim Reis for

joining the team at a crucial point and contributing the missing piece

of knowledge to my work.

I would like to acknowledge Dr. Matthaios Alexandrakis for preparing

me for the PhD journey by going through it first. I was able to learn

along the way and be ready for it.

Also, I would like to acknowledge PhD candidate Mr. Teddy Gan for

brainstorming during my thesis planning stage.

Lastly, I would like to thank everyone else who made my PhD an

unforgettable experience.

iv

CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS iv

FIGURES ix

TABLES xiii

LISTINGS xv

NOMENCLATURE xvi

1 INTRODUCTION 1

1.1 Thesis overview . 3

1.2 Thesis contributions . 3

1.3 Thesis outline . 5

2 LITERATURE REVIEW 6

2.1 Introduction . 6

2.2 Convection effect on microstructure solidification 7

2.3 LBM in convection-driven solidification 18

2.4 Parallelisation and large-scale solidification modelling 21

v

CONTENTS

2.5 Conclusion . 27

3 LATTICE BOLTZMANN METHOD 28

3.1 Introduction . 28

3.2 History . 29

3.3 2D and 3D lattices . 35

3.4 From lattice Boltzmann to Navier–Stokes 38

3.5 Stability and accuracy . 43

3.5.1 Stability . 43

3.5.2 Accuracy . 45

3.6 Boundary conditions . 46

3.6.1 Kinetic style boundary schemes 47

3.6.2 Non-equilibrium bounce-back 49

3.6.3 Moment analysis of boundary conditions 55

3.6.4 Moment Method . 58

3.6.5 Moment Method for the D3Q19 model 62

3.7 Collision schemes . 88

3.7.1 Single-relaxation-time model 89

3.7.2 Two-relaxation-time model 89

3.7.3 Multiple-relaxation-time model 91

3.7.4 Central-moments-based LBM 92

3.7.5 Overview . 93

3.8 Forcing schemes . 94

3.9 Summary . 96

vi

CONTENTS

4 THE NUMERICAL METHOD 99

4.1 Introduction . 99

4.2 Structure of the LB algorithm . 99

4.2.1 LB unit scaling . 100

4.2.2 Initialisation . 103

4.2.3 Collision and streaming . 104

4.2.4 Boundary conditions . 109

4.2.5 Macroscopic variables . 118

4.2.6 Output . 118

4.3 Parallelisation . 119

4.4 Coupling between LB and other solvers 126

4.4.1 CA-LB coupling . 126

4.4.2 LB-enthalpy method coupling 127

4.5 Performance analysis . 129

4.5.1 Strong and weak scaling 132

4.5.2 Single and double precision 134

4.5.3 Serial vs. parallel LBM CUDA 136

4.5.4 Lattice Boltzmann vs. discretised Navier-Stokes 138

4.6 Summary . 142

5 MODEL VALIDATION AND RESULTS 145

5.1 Introduction . 145

5.2 2D validation of the Moment Method 146

5.2.1 Oscillatory flow around a cylinder 148

5.2.2 The 2D lid-driven cavity flow 150

vii

CONTENTS

5.3 3D validation of the Moment Method 155

5.4 Differentially heated cavity flow 159

5.5 Solidification in a DHC . 163

5.6 Undercooled crystal growth . 164

5.6.1 Single crystal growth in stagnant melt 165

5.6.2 Forced convection crystal growth 166

5.7 Large-scale results . 167

5.7.1 Free dendritic growth . 170

5.7.2 Alloy solidification in DHC 170

5.7.3 Channel formation in directional solidification 174

5.8 Summary . 176

6 CONCLUSIONS AND FUTURE WORK 178

6.1 Conclusions . 178

6.2 Future work . 181

6.2.1 Physics . 181

6.2.2 Accuracy . 182

6.2.3 Efficiency and performance 182

6.2.4 Applications . 183

A PUBLICATIONS PRODUCED BY THIS RESEARCH 185

REFERENCES 186

viii

FIGURES

2.1 The interface and primary dendrite structures in upwards and

downwards growth directions. 8

2.2 Growing dendrite complex affected by gravity. 8

2.3 Settling of an Ammonium Chloride crystal. 9

2.4 Solidification of a Ga-25wt.%In alloy. Natural and forced convection. 10

2.5 Convection effect on primary arm spacing during directional solid-

ification in 2D. 12

2.6 Evolution of the dendrite morphology showing Sn concentration

profiles and flow pattern. 13

2.7 Transient evolution of microstructure under the influence of natu-

ral convection and an external DC magnetic field. 15

2.8 Effect of the magnetic field on crystal morphology in 2D and 3D. 16

2.9 Undercooled crystal growth with convection in 2D. 16

2.10 Undercooled crystal growth with convection in 3D. 17

2.11 Competitive dendritic growth colour marked by the inclination an-

gle θ using the PF method. 24

2.12 The growth of 3D columnar dendritic microstructure. 26

ix

FIGURES

3.1 First LGCA models shown with numbered discrete velocities: HPP

and FHP models. 32

3.2 Collision process for HPP and FHP models. 32

3.3 D2Q9 lattice. 38

3.4 D3Q15, D3Q19 and D3Q27 lattices. 39

3.5 Bounce-back schemes. 48

3.6 Scheme showing the unknown distribution functions at the bound-

aries. 50

3.7 Unknown distribution functions at the west face boundary. 65

3.8 Unknown distribution functions at the south-west edge boundary. 70

3.9 Two pressure inlets. 75

3.10 Unknown distribution functions at the low-south-west corner bound-

ary. 79

4.1 Flow diagram of the LB algorithm. 101

4.2 Unknowns at the west face boundary, no rotation (0, 0, 0). 112

4.3 Unknowns at the east face boundary, rotation (π, 0, 0). 113

4.4 Diagram of domain decomposition and MPI data transfer to halo

regions. 120

4.5 GPU architecture on different levels. 122

4.6 Flow diagram of the coupled CA-LB algorithm. 127

4.7 Subroutine runtime as a percentage of the total LBM runtime for

BGK and TRT in normal and stokes regime. 131

4.8 Calculation time of each type of boundary as a percentage of the

total runtime of the moment-based boundary subroutine. 132

x

FIGURES

4.9 Strong scaling. 135

4.10 Weak scaling. 135

4.11 CPU and CUDA runtime comparison for the LBM subroutines. . 137

4.12 CUDA subroutine runtime as a percentage of the total LBM run-

time for BGK and TRT. 138

4.13 Timings for different methods used to solve a lid-driven cavity flow. 141

5.1 τ independence study for the the Moment Method and the mod-

ified bounce-back rule using SRT and TRT collision schemes in a

2D developed duct flow case. 147

5.2 Relative slip velocity dependence on the relaxation time in a 2D

Poiseuille flow case at the wall. 147

5.3 2D Poiseuille flow velocity profile showing the exact recovery of the

no-slip condition for the Moment Method and the artificial slip for

the modified bounce-back rule. 149

5.4 Grid convergence study for the the Moment Method and the mod-

ified bounce-back rule using SRT and TRT collision schemes in a

2D Poiseuille flow case. 149

5.5 Vortex street and comparison between the present results and data

from the literature. 151

5.6 Lid-driven cavity flow. Velocity field and streamlines at different

Reynolds numbers. 152

5.7 A comparison of horizontal and vertical velocity along the center-

line at Reynolds numbers Re = 100 and Re = 1000 on a 1292

grid. 153

xi

FIGURES

5.8 Grid convergence study for the the Moment Method using the TRT

and TRT-Stokes collision schemes in a 3D developed duct flow case.156

5.9 Comparison of the grid convergence for the 3D developed duct flow.158

5.10 Grid convergence study for the the Moment Method using TRT

collision scheme in a 3D lid-driven cavity flow case. 159

5.11 Schematic drawing of the differentially heated cavity flow. 160

5.12 Rayleigh–Benard convection in a periodic domain. 160

5.13 Comparison of the steady-state temperature distribution in the

differentially heated cavity between the LBM and COMSOL. . . . 161

5.14 Steady-state temperature distribution and velocity field stream-

lines in the moving lid differentially heated cavity. 163

5.15 Solidification in the DHC. 164

5.16 Thermal field of the growing crystal and time histories of the rel-

ative tip velocities in a static melt. 166

5.17 Thermal field of the growing crystal in a convectional melt with

undercooling of Tuc = −0.5 at different inlet velocities. 168

5.18 Time histories of the relative tip velocities of the growing crystal

with undercooling temperature of Tuc = −0.5. 169

5.19 Free equiaxed growth. 171

5.20 Solidification with a horizontal thermal gradient. 173

5.21 Evolution of the freckle formation in directional solidification. . . 175

xii

TABLES

3.1 Properties of velocity sets. 37

3.2 Pressure boundary description for the D3Q19 lattice. 53

3.3 Unknown moments combinations at the bottom wall of D2Q7. . . 59

3.4 Moment combinations at the west face boundary. 66

3.5 Unknown function combinations and the moments at the south-

west edge boundary. 71

3.6 Unknown function combinations and the moments at the low-

south-west edge boundary. 80

4.1 Unit conversion. 102

4.2 ZXZ Euler angles for boundaries. 113

4.3 Mappings for velocities u = 1, v = 2, w = 3. 114

4.4 Mappings for distribution functions fi. 115

4.5 Efficiency of the test runs scaled by node. 134

4.6 Timings and speed-ups of CPU and CUDA subroutines obtained

on a 1283 grid after 1000 time steps. 137

4.7 Timings for different methods used to solve a lid-driven cavity flow. 140

xiii

TABLES

4.8 Theoretical speed-ups of the coupled code with respect to the cal-

culation time percentage of the flow part, 10−90 %, and the LBM

speed-up, 1−∞. 142

5.1 Comparison of the extreme values of the stream function at Reynolds

numbers Re=100 and Re=1000 on a 1292 grid. 154

5.2 Comparison of the DHC solutions at different Rayleigh numbers. . 162

5.3 Physical properties of liquid aluminium-like material. 165

5.4 Material properties of the Ga-In alloy used in simulations. 172

xiv

LISTINGS

4.1 Unit scaling . 103

4.2 Initialisation . 104

4.3 Predefined variables . 105

4.4 BGK collision . 106

4.5 TRT collision . 107

4.6 Streaming . 108

4.7 Simple streaming . 108

4.8 Bounce-back scheme . 109

4.9 Half-way bounce-back . 110

4.10 Moment-based face boundary conditions 111

4.11 Moment-based edge boundary conditions 116

4.12 Moment-based corner boundary conditions 117

4.13 Macroscopic variables . 118

4.14 Writing to file . 118

4.15 CUDA Fortran code example . 123

4.16 CUDA Fortran main loop . 124

4.17 Example of a device query program console output 125

4.18 CUDA Fortran kernel grid dimensions 125

xv

NOMENCLATURE

Symbol Description Unit

α thermal diffusivity m2s−1

β thermal expansion coefficient K−1

βC solute expansion coefficient wt.%−1

B magnetic field T
ci discrete velocity vector -
c lattice speed -
cp specific heat capacity Jkg−1K−1

cs lattice sound speed -
C Courant number -
Ci collision operator in LGCA -
DC solute diffusivity -
∆H latent heat Jkg−1

∆t time step s/-
∆x cell size m/-
F force N
f distribution function column vector -
Fi forcing term -
fi particle distribution function -
fliq liquid fraction -
φ general variable -
g gravitational acceleration ms−2

H enthalpy J/-
I identity matrix -
i, j, k Cartesian array indices -
k thermal conductivity Wm−1K−1

κ interface curvature m−1/-
L domain length m/-
Λ magic parameter -

xvi

NOMENCLATURE

Ma Mach number -
M transformation matrix -
m distribution function in moment space -
ml liquidus slope K wt.%−1

µ dynamic viscosity Pas
ni Boolean type function -
Ni ensemble average -
Nx,Ny,Nz calculation domain dimensions -
ν kinematic viscosity m2s−1/-
Ωi collision operator -
ωi relaxation parameter -
P, p pressure Pa/-
Pe Péclet number -
Π momentum flux tensor -
Πij second order velocity moment -
Q third order velocity tensor -
Qijk third order velocity moment -
Ra Rayleigh number -
Re Reynolds number -
ρ density kgm−3/-
S relaxation matrix -
Sijkl fourth order velocity tensor -
S speed-up -
St Strouhal number -
t time s/-
T temperature K/-
T i solid-liquid interface temperature K/-
Tuc undercooling temperature K/-
τ relaxation time -
θ angle rad
U,u velocity vector ms−1/-
Ux, Uy, Uz velocity components ms−1/-
u, v, w velocity components ms−1/-
wi lattice weights -
x coordinate vector m/-
x, y, z Cartesian coordinates m/-
ξ velocity vector in phase space m
ψ velocity streamfunction m2s−1

ZXZ Euler angles

xvii

NOMENCLATURE

Acronyms

BC Boundary condition
BGK Bhatnagar-Gross-Krook
CA Cellular automata
CFD Computational fluid dynamics
CFL Courant-Friedrichs-Lewy
CPU Central processing unit
CUDA Compute unified device architecture
DC Direct current
DdQq d-dimensional q-velocity
DHC Differentially heated cavity
FD(M) Finite difference (method)
FE(M) Finite element (method)
FHP Frisch-Hasslacher-Pomeau
FLOPS Floating point operations per second
FV(M) Finite volume (method)
GPU Graphics processing unit
HPP Hardy-de Pazzis-Pomeau
HSD He-Shan-Doolen
I/O Input/output
KS Kadanoff-Swift
LBE/M Lattice Boltzmann equation/method
LGCA Lattice gas cellular automata
MPI Message-passing interface
MRT Multiple relaxation time(s)
NS(E) Navier–Stokes equation
OpenAcc Open accelerators
OpenMP Open multi-processing
PDF Particle distribution function
PF Phase-field
PISO Pressure-implicit with splitting of operators
PIV Particle image velocimetry
RAM Random access memory
RBC Rayleigh–Benard convection
SIMPLE Semi-implicit method for pressure-linked equations
SRT Single relaxation time
TESA Thermoelectric solidification algorithm
TRT Two relaxation time(s)
UDV Ultrasound Doppler velocimetry

xviii

Chapter 1

INTRODUCTION

One of the ultimate goals for a sustainable future is to create alloys with bet-

ter material properties. At a fundamental level, this is achieved by improving

the microstructure of processes such as casting and welding. Tailoring the mi-

crostructure by modifying fluid flow during solidification is a key method to these

goals. This can be achieved through the introduction of forces on the liquid, such

as stirring or electromagnetically driven forces. Understanding what effect the

modified flow has requires both experimental and numerical modelling techniques.

However, performing real-time experiments to better understand the convection-

driven solidification process is not straightforward. They require special facilities,

conditions and attention, not to mention the economic costs. Apart from the

technical difficulties of handling molten metals and monitoring the solidification

process by means of neutron or X-ray radiographic techniques, a major challenge

for in situ experiments remains capturing hydrodynamics. Excluding the invasive

flow measuring methods, the most common technique is particle image velocime-

try (PIV). Nevertheless, PIV, which is an optical visualisation method, requires

1

1. INTRODUCTION

particles to be suspended and tracked in the system, which is not always wanted

or possible. Ultrasound Doppler velocimetry (UDV) does not require X-rays or

suspended particles. It uses ultrasound that reflects off acoustic inhomogeneities

within the melt to calculate the local velocities. However, ultrasound is used

in solidification for grain refinement, which interferes with dendritic growth and

makes UDV an ‘invasive’ method, and hence unsuitable. The test samples can be

analysed post-mortem, that is, after the experiment has finished and the metal

has fully solidified, but the flow itself cannot be studied, only its consequences

on the microstructure.

An alternative that provides insight into the evolution process of the growing

dendrites and allows for a better controlled environment setup is numerical mod-

elling. With the advances in computer capabilities over recent decades, numerical

investigations have become commonplace in industrial research and research in

general. Despite minimising the costs of experiments and providing a detailed

insight in various physical processes, numerical simulations of multi-physics prob-

lems face their own constraints and challenges. A combination of, for example,

the spatial and temporal resolution, accuracy, stability and available computer

memory adds to the total solution time. The calculation domain decomposition

and massive parallelisation is a common approach to decreasing the simulation

runtime and obtaining results on a millimetre scale. Nonetheless, there is still

a gap between the achievable size of the cutting edge numerical simulations and

the industrial-size components.

2

1. INTRODUCTION

1.1 Thesis overview

This thesis reports on the development of a numerical method that is capable

of modelling fluid flow in complex and time-varying geometries and that can

be coupled to other solvers to simulate, for example, multi-physics in dynamic

multiscale systems in space and time, such as microstructure evolution during

alloy solidification. One of the main difficulties in modelling multi-physics prob-

lems at the range of time and space scales required by solidification is the cost

of simulation. In this respect, modern parallel computer architectures enable

the simulation of processes that formerly required weeks to be completed in a

few hours. The advantage is further highlighted via the use of numerical tech-

niques and discretisation schemes that take full advantage of parallel solution

approaches, for example the use of the lattice Boltzmann method (LBM) for the

solution of fluid flow as opposed to the Navier–Stokes equation (NSE) approach.

The large-scale simulations require the decomposition of the numerical domain

and the use of parallel libraries to handle the inter-processor communications,

thus part of thesis’ focus is on the parallelisation aspect of the implementation.

While developing the numerical model, considerable effort is put into improv-

ing certain aspects of the method, in particular the way the domain boundaries

are handled. By doing so, a new method for handling boundaries in 3D is pro-

posed and later tested.

1.2 Thesis contributions

There currently exists within the research group a numerical algorithm TESA or

thermoelectric solidification algorithm developed by Kao et al. [1]. TESA consists

3

1. INTRODUCTION

of 4 physics solvers, heat and mass transport, solidification, electromagnetic field

and fluid flow, of which the flow solver normally takes up most of the calculation

time, 80–90 %. The objective of this work is to replace the current flow solver

with a more efficient one, one that is the most suited to massive parallelisation.

There are numerous methods with their merits and flaws used by researchers. The

task is to choose the best one for the problems considered, in this case, handling

fluid flow in complex and dynamic geometries. Because the focus of this work

is specific, the general method can also be fine-tuned using application-specific

settings. The set objectives and tasks can be summarised as the following two

key research questions:

What is the most appropriate and efficient way to model fluid flow

during microstructure solidification on a macroscale?

Can the numerical technique be improved to produce more accurate

or stable results?

To answer these questions, the relevant literature needs to be reviewed to gain

insight into the cutting edge research methods used to model dendritic solidifica-

tion with convection in large-scale domains. After choosing the best candidate,

the method needs to be studied in detail to assess the best setup and its suitabil-

ity for the application in mind, and improved if necessary. The numerical method

in question then needs to be validated against the appropriate benchmark cases

before it can be deployed to solve complex scientific or industrial problems.

4

1. INTRODUCTION

1.3 Thesis outline

Chapter 1 covers the background knowledge that led to the formation of this

thesis. It provides the motivation of the work, and lists several research questions

that this thesis seeks to answer. This chapter also contains the structure of the

thesis.

Prior-art and state-of-the-art literature is reviewed in Chapter 2, covering

topics on the importance of convection in microstructure solidification, employed

modelling techniques and solutions to simulating large-scale multi-physics prob-

lems. Conclusions are drawn about the best practices to model convection in

microstructure solidification on a macroscale.

Chapter 3 is dedicated to the LBM, describing it in detail. This chapter is an

extension to the literature review covering the main aspects of the method and

recognising parts that will be used in building the optimal model. An important

part of the chapter is proposing a new novel 3D moment-based boundary method

for the D3Q19 model which is an extension of the 2D Moment Method [2].

Chapter 4 describes the numerical algorithm developed to handle the fluid

flow during multi-physics modelling. Both the serial and parallel implementations

are described and tested and the performance analysis is conducted comparing

different methods and different implementations of the LBM.

Chapter 5 presents the model validation results from various benchmark cases.

This chapter also contains the large-scale results from using the developed method.

Conclusions and future work are provided in Chapter 6. The answers to the

posed research questions are covered in the conclusions.

5

Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter the relevant literature on the convection effect on microstruc-

ture solidification and the different modelling techniques used to simulate it are

covered.

The macroscopic thermophysical properties of materials hugely depend on the

solidification process of the liquid melt, which, however, depends on the solute

and temperature redistribution around the evolving dendritic structures. The

ability to predict the microstructure and hence the macroscopic properties of

the solidified material is of great importance to the material processing industry

and therefore requires comprehensive research to be conducted in the field of

microstructure solidification both experimentally and numerically.

The following sections review important contributions by other investigators

relevant to the goals of this work.

6

2. LITERATURE REVIEW

2.2 Convection effect on microstructure solidi-

fication

In both natural and industrial processes, free convection plays an important role

and it cannot be neglected when creating numerical models. The effects of melt

convection on dendritic growth have been investigated both numerically and ex-

perimentally.

In directional solidification convection affects the morphological stability of

the solid-liquid interface, as numerically studied and experimentally observed by

Noel et al. [3], Jamgotchian et al. [4] and Lan and co-workers [5–7].

In single component melts or pure metals, solidifying dendrites emit latent

heat and create a thermal boundary layer around the tips. Convection can deform

this layer by extracting away the heat and assisting growth or by supporting

its build-up and preventing growth. Additionally, in multi-component systems,

such as binary or ternary alloys, the solute gets ejected into the melt causing a

shift in the phase diagram and modifying the solidification point temperature.

Dendritic growth is affected by the way this extra concentration of the solute is

dissipated. Convection is almost always present in solidification processes. One of

the most common driving forces is gravity, which through density variations leads

to natural convection. This type of flow can be introduced through thermo-solutal

buoyancy or even through density variations between the solid and liquid giving

floating or sinking grains. Buoyant forces either carry it away from the solid-

liquid interface or do not let it escape and slow down the solidification process

depending on the solute-solvent density ratio.

The first visualisation of the buoyancy effect on the dendrite spacing in di-

7

2. LITERATURE REVIEW

Figure 2.1: The interface and primary dendrite structures in upwards (left) and
downwards (right) growth directions [8].

Figure 2.2: Growing dendrite complex affected by gravity [9].

rectional solidification was observed by Burden and Hunt [8]. They noticed that

the primary dendrite spacing varies depending on growth direction with respect

to gravity, see Figure 2.1. By reversing the thermal gradient, the average spacing

coarsened from 0.5 mm to an order of magnitude higher values at 5 mm.

Glicksman and Huang [9] were able to observe the buoyancy effect on a semi-

free dendrite growth configuration by using succinonitrile, which is transparent

and has a low melting temperature, see Figure 2.2.

8

2. LITERATURE REVIEW

Figure 2.3: Settling of an Ammonium Chloride crystal by Beckermann [10].

Free growing crystals that are under the influence of gravity are difficult to

capture. They must be settling down without rotation for the preferential and

stunted growth to be observed. It was, however, achieved by Beckermann [10].

Figure 2.3 shows the settling of an Ammonium Chloride (NH4Cl) crystal with

clearly visible differences between the top and bottom sides of the falling equiaxed

dendrite.

In directional solidification, the interaction between dendrite growth and con-

vection can become quite intricate. Let us consider a binary alloy system in

a quasi-3D differentially heated cavity, where the nucleation starts at the cold

bottom wall. An experiment of such a setup has been carried out recently by

Shevchenko and co-workers [11; 12]. First, the solidification process of a Ga-

25wt.%In alloy under the influence of thermo-solutal convection in a Hele-Shaw

cell was studied using X-ray radiography. Second, forced convection was super-

imposed by the means of a rotating disk of permanent magnets, and the changes

to the dendritic structure were investigated. From their results displayed in Fig-

ure 2.4, several observations can be made. Gallium enriched plumes are being

9

2. LITERATURE REVIEW

Figure 2.4: Solidification of a Ga-25wt.%In alloy. Natural convection (top) and
introduced forced convection (bottom). The dashed line is showing the onset of
the electromagnetic force driving the flow [12].

created in the liquid melt transporting the ejected light Gallium up, while in the

interdendritic region these solute-rich plumes are creating segregation channels by

remelting the already solidified crystals. These segregation channels solidify at a

lower temperature and have a different material composition than the rest of the

sample. In material science, they are called freckles and they are viewed as defects

because they compromise the mechanical properties of materials. An example of

this is the casting of single-crystal turbine blades using Nickel-based superalloys

[13]. The introduced horizontal flow also restructures the segregation channels by

eliminating the existing ones and forming new ones [12]. Another aspect to notice

from Figure 2.4 is the change in primary dendritic arm spacing when the forced

convection is superimposed. The spacing increases approximately 5 times in this

case, but it is of course dependent on the magnitude of the external force. Ex-

periments investigating the effect of the imposed fluid flow on the dendritic arm

10

2. LITERATURE REVIEW

spacing have been conducted by Steinbach and co-workers [14–16]. Other experi-

ments studying the convection effect on the microstructure have been carried out

showing the correlation between the dendrite tip growth velocity and the solute

concentration ahead of the tip [17], convection effect on the chimney formation

[18] and describing the forced convection effect on dendritic growth pointing out

the damping of the local fluctuations of the solute concentration and once more

confirming the previous observations of the preferential growth and the primary

arm spacing [17; 19; 20].

A lot of research has been done numerically in order to develop a better

understanding of the solidification process, namely, microstructure formation,

segregation, convection, etc., in columnar [21–23] and equiaxed dendritic growth

[24–35] and the transition from one to the other [36–39].

Diepers and Steinbach [21] were the first ones to numerically study the buoy-

ancy effect on the dendritic arm spacing in directional solidification in 2D using

the phase-field (PF) method and the control volume scheme for the fluid flow.

They concluded that the primary spacing increases/decreases depending on the

convection pattern which is crucially affected by the flow direction, see Figure

2.5.

To properly capture the interdendritic flow and investigate the mechanisms

of microstructure growth phenomena under natural or forced convection, the

use of 3D numerical models is required. Because the dendrites in 2D models are

effectively plates that are blocking the solute transport, there is no flow connecting

successive interdendritic regions. This was concluded by Yuan and Lee [40] who

were the first ones to investigate a case study of columnar dendritic growth with

convection in 3D. They used the Imperial College in-house open source software

11

2. LITERATURE REVIEW

Figure 2.5: Convection effect on primary arm spacing during directional solidi-
fication in 2D. No convection (left), downward (middle) and upward buoyancy
(right) captured at times t = 27 s (bottom), t = 45 s (middle), t = 72 s (top)
[21].

12

2. LITERATURE REVIEW

Figure 2.6: Evolution of the dendrite morphology showing Sn concentration pro-
files (left) and flow pattern (right) at Rayleigh number Ra=46.9 [42].

called µMatIC [41], extending it to include convection. Using the same software,

Yuan and Lee studied the freckle initiation mechanism as a consequence of the

Rayleigh number, Ra [42], see Figure 2.6. They were able to narrow down the

region to Ra = 37.5−46.9 in which the onset of freckle formation occurs in the Pb-

Sn alloy. For different alloys the critical Rayleigh number can vary, for example,

for Ga–25wt.%In alloy Ra = 150 − 170 [43]. The results showed great promise

when compared to the experimental data. Additionally, they concluded that a

large density variation in the alloy encourages thermosolutal convection which

is directly responsible for the formation of freckles, alongside with remelting,

overgrowth and deflection of dendrites.

There is general interest in predicting and controlling the microstructure solid-

13

2. LITERATURE REVIEW

ification mechanisms that later affect the macroscopic thermophysical properties

of materials. For instance, the effect of thermoelectric magnetohydrodynamics

on microstructure evolution has been investigated numerically by Kao et al. [44].

In their work, a DC magnetic field is applied externally and it interacts with the

thermoelectric currents formed by the temperature gradients at the interface of

the growing dendrites creating an electromagnetic force which drives the interden-

dritic flow and alters the evolution of the dendrites, see Figure 2.7. It increases

the primary arm spacing and causes preferential growth of secondary arms. In

the melt, however, the solute plumes are being electromagnetically damped slow-

ing down their formation and keeping growth steady which can be valuable for

manipulating the microstructure and hence the material properties.

The magnetic field can also affect the morphology of freely growing dendrites,

see Figure 2.8. This effect has been numerically investigated by Kao using the in-

house built parallel software TESA [1]. It stands for thermoelectric solidification

algorithm and it has been successfully used for various problems in thermoelectric

magnetohydrodynamics [45–53].

Several numerical models dealing with convection during solidification have

been proposed over time, describing the effect of forced convection on the mor-

phology of a freely growing crystal. The first model was developed by Beckermann

et al. [24] who used a phase-field method with convection to model the under-

cooled crystal growth in 2D, see Figure 2.9. The change in the morphology of

the dendrite is due to the thermal boundary layer formed by the extraction of

the latent heat being reshaped by the fluid flow. A simplified conclusion can be

drawn – the thinner the layer, the faster the growth and vice versa. Other works

performed in 2D [25–29; 55] have arrived at the same conclusion.

14

2. LITERATURE REVIEW

Figure 2.7: Transient evolution of microstructure under the influence of natural
convection (top) and an external 1 tesla DC magnetic field (bottom) [44].

15

2. LITERATURE REVIEW

Figure 2.8: Effect of the magnetic field on crystal morphology. No magnetic
field (left), B = 20 T in 2D (middle) and in 3D (right) showing deflection of the
dendrite tip from preferred direction of growth [54].

Figure 2.9: Undercooled crystal growth with convection in 2D showing the pref-
erential and stunted growth. Velocity field (top) and isotherms (bottom) [24].

16

2. LITERATURE REVIEW

Figure 2.10: Undercooled crystal growth with convection in 3D. Schematic draw-
ing showing the flow pattern in 2D and 3D (left) and the complex shape of the
evolving dendrite showing streamtraces (right) [30].

The first 3D phase-field model of a freely growing crystal in fluid flow was

developed by Jeong et al. [30], followed by several other investigations in the

following years [31–35]. There is a fundamental difference between 2D and 3D

models – there is more freedom for the flow to pass around the dendrite and carry

away the extracted heat or solute boosting the growth of the crystal as shown in

Figure 2.10. This difference for constrained and unconstrained dendritic growth

has been investigated and quantified by Yuan and Lee [40]. They concluded

that the 3D models offer better representation of the solidifying microstructure

allowing the melt flow to wrap around the dendrites and not blocking it as it

often happens in 2D cases.

17

2. LITERATURE REVIEW

2.3 LBM in convection-driven solidification

Since its beginning, the LBM has seen several modifications and improvements

in terms of stability and accuracy that enable modelling of turbulent flow, flow in

porous media, multi-component, multi-phase and contaminant complex flows and

phase-change [56–58]. The simplified treatment of the boundaries in complicated

geometries is one of the main reasons why the LBM is a natural choice when it

comes to modelling melt flows during dendritic solidification. The other reason

for using the LBM, which will be discussed in the next section, is the ease with

which the method can be parallelised in comparison to the more traditional finite

difference (FD), finite volume (FV) or finite element (FE) method computational

fluid dynamics (CFD) techniques.

The first introduction of the LBM to the field of solidification was made

by Jiaung et al. [59] who used the enthalpy method to solve the phase change

problem, and by Miller and co-workers [60; 61] who used the phase-field method to

capture the liquid-solid phase transition in the Ga melting problem as well as the

anisotropic crystal growth in an undercooled melt with convection. It was already

predicted back then that the LBM might become a powerful tool for phase-change

problems with complicated boundary conditions due to the method’s simplicity,

stability and inherent parallelism [59].

Chatterjee and Chakraborty also employed the LBM in combination with the

enthalpy method to simulate a generic laser surface melting process in 3D us-

ing the D3Q19 lattice [62] and convection-diffusion transport in an undercooled

crystal growth in 2D [63] concluding that the implementation of the adapted

enthalpy-porosity scheme is much simpler compared to the phase-field-based LB

18

2. LITERATURE REVIEW

models due to their small grid spacing. That did not stop Medvedev and Kassner

to investigate an undercooled crystal growth in shear flow [64] by using a com-

posite LB-PF method which, as they pointed out, has potential of generalisation

to 3D.

Semma and co-workers studied the application of the LBM in Ga melting

problem adopting a simple piece-wise function between the solid fraction and

temperature [65; 66] again pointing out the potential of the scheme to be used in

linking micro/macro aspects in 3D.

Sun and co-workers [67] proposed a CA-LB model to simulate dendritic so-

lidification in 2D. Because the structures of both methods are very similar (LB

originated from the lattice gas cellular automata), it seems natural to couple

these methods together. They used the LBM to describe the mass and momen-

tum transport in an undercooled crystal growth. Later they included the heat

transfer to simulate single and multi-dendritic growth of binary alloys with melt

convection [68], but recently they investigated the effect of melt convection on

multi-dendritic growth without considering temperature differences in the simu-

lation domain [69].

Yin et al. [70] also used the CA-LB method to simulate solidification at the

microscale in 2D. They compared the efficiency of the CA-LB model against the

FE-CA model and concluded that the CA-LB method is much more efficient when

fluid flow is being considered.

Talati and Taghilou [71] used the LBM to model the phase-change material

solidification. They did a comparison of the different methods used in simulations

and observed that the LBM outperformed the FV method within the framework

of ANSYS Fluent 14 confirming the good efficiency of the LBM.

19

2. LITERATURE REVIEW

Rojas et al. proposed the PF-LB model to simultaneously simulate growth

and motion of a free dendrite under shear flow in 2D [72]. Their implementation

only requires a single Cartesian grid and describes the motion of the solid without

altering the shape.

Sun and co-workers continued working on the CA-LB method expanding it

to 3D to model directional solidification of binary alloys. They investigated tip-

splitting of the dendrite tips caused by high solidification rates [73] and studied

the bubble formation in dendritic growth [74]. In their studies they employed the

popular D3Q19 lattice to describe the mass and momentum transport, however

their spatial step and time interval were chosen as 0.5 µm and 0.1 µs which is

typical for the phase-field method.

Recently Liu and He developed an enthalpy-based LBM with multiple relax-

ation times (MRT) for modelling phase change in metal foams in 2D [75]. They

used the volumetric LB scheme proposed by Huang and Wu [76] to accurately

realise the no-slip velocity condition in the diffusive interface. The solidifica-

tion/melting case results obtained with their proposed model were compared to

those of the FD/FV methods showing good agreement. Further observations were

made, namely, that the use of the MRT scheme suppresses the interface oscilla-

tions that are present in the Bhatnagar-Gross-Krook (BGK) model and that the

bounce-back scheme introduces oscillations in the streamlines near the interface

while the streamlines obtained by volumetric LB scheme remain smooth.

20

2. LITERATURE REVIEW

2.4 Parallelisation and large-scale solidification

modelling

Parallelisation as an effective solution to large-scale 3D problems involving ge-

ometrical complexity has been considered for several decades, offering a way of

bringing down the computational time to a level that could be of interest to en-

gineers [77; 78]. An early attempt to parallelise multi-physics models involving

solidification was made by McManus et al. [79]. They implemented the solidi-

fication and parallel model into the software tool PHYSICA [80] which uses FV

methods on unstructured meshes. Because the parallelisation in PHYSICA is

realised using the master/slave communication model, the initial mesh parsing

as well as the input/output routines can be very time-consuming for large simu-

lations, which might be disadvantageous.

Jeong et al. [30] used a parallel adaptive finite element algorithm in 3D to

describe the fluid flow effect on dendritic growth. Their phase-field method for

the solidification and the semi-implicit approximated projection method for the

fluid flow were both parallelised using message-passing service routines that han-

dled input/output, communication between processors and other tasks. With

the parallel setup they were able to achieve a parallel efficiency of 90 % running

the code on 32 processors, meaning that the runtime was 28.8 times faster com-

pared to the serial implementation. Importantly they noted that the fluid flow

calculations consume approximately 80–90 % of the runtime, which makes it the

bottleneck of the numerical algorithm.

George and Warren used a parallel finite difference algorithm in 3D to simulate

a single dendrite growth using the phase-field method [81]. The 500× 500× 500

21

2. LITERATURE REVIEW

grid was partitioned with the help of the message passing interface (MPI). Using

the MPI-based libraries for the distributed array managing, they calculated that it

would take approximately 10 days at the time to run a simulation of 1000×1000×

1000 elements in parallel on 32 processors. The limiting factor for the simulation

is the small time step that is bounded by a stability criterion, ∆t < ∆x2/8D,

where ∆x is the spatial step and D is the diffusion coefficient for the problem.

Consequently, stable phase-field simulations are very time-consuming due to the

method’s sub-micron spatial step size.

Nestler [82] used a combination of MPI routines and OpenMP compiler di-

rectives for the parallel execution of their finite difference phase-field algorithm

in order to model dendritic growth, grain structures and alloy solidification. The

motivation for the parallelisation reportedly is the simulation time of the 3D do-

mains when, for example, it takes 48 hours to fully solidify a domain of 80×80×60

numerical cells using a serial algorithm.

Wang et al. [83] investigated the use of processor virtualisation to parallelise

the level-set method for solving solidification problems by the means of adaptive

MPI. They found that the solver performance was better when the number of vir-

tual processors (that the domain has been decomposed into) was larger than the

number of physical processors due to improved cache performance and optimised

communication and computation.

Guo et al. [84] developed a parallel multi-grid method to solve a case of

multiple solidifying dendrites using a fully coupled phase-field method involving

thermo-solutal transport. They employed OpenMP in conjunction with MPI

to provide a second level of parallelism, and concluded that the parallel hybrid

approach can efficiently utilise supercomputing resources allowing to overcome

22

2. LITERATURE REVIEW

the major drawback of the phase-field method that is the computational time.

Numerical algorithms can also be parallelised on graphical processing units

(GPUs) using computer unified device architecture (CUDA), for example. CUDA

is a parallel computing platform developed by NVIDIA that enables the utilisation

of the GPU resources in tandem with the central processing unit (CPU) for

general purpose computing. It is widely used in image and video processing,

computational sciences, finance sector, as well as for artificial intelligence [85].

The NVIDIA GPUs power 5 out of 7 of the world’s fastest supercomputers whose

performance can be measured in the order of 100 PFLOPS or 1017 floating point

operations per second. It is the chosen platform for 17 out of the world’s top 20

most energy-efficient supercomputers [86], including TSUBAME 3.0 – the latest

version of the TSUBAME supercomputer.

The first large-scale phase-field simulation of dendritic solidification was per-

formed by Shimokawabe et al. [87] who used 1156 GPUs on TSUBAME 2.0

supercomputer to model dendritic growth in binary alloy solidification with a

768× 1632× 3264 ≈ 4 billion element mesh and grid spacing ∆x = 0.75 µm. In

addition, to test the weak scaling, they fully utilised the TSUBAME 2.0 super-

computer with 4000 GPUs and 16000 CPUs by simulating 277 billion element

mesh and achieving 1 PFLOPS in performance. Unfortunately, mesh sizes like

these are essential to model microstructural multi-dendritic patterns using the

phase-field method on a macroscale.

Takaki et al. [88] also used the TSUBAME 2.0 supercomputer to model the

dendrite selection process during directional solidification of a binary alloy, see

Figure 2.11. Their phase-field model had 64 billion elements but the physical size

of only 29 mm3.

23

2. LITERATURE REVIEW

Figure 2.11: Competitive dendritic growth colour marked by the inclination angle
θ using the PF-LB method [88].

24

2. LITERATURE REVIEW

Takaki et al. accelerated the PF-LB algorithm proposed by Rojas et al. [72]

using CUDA C to enable the utilisation of the GPU resources [89]. They suc-

cessfully simulated the dendrite growth in shear flow as well as during settling

in 2D on a single GPU and predicted the possibility of simulating the settling of

dendrites in large 3D computational domains by parallelising the code for the use

of multiple GPUs.

Sakane et al. [90] performed a large-scale PF-LB simulation of a dendrite

growth in forced convection on the TSUBAME 2.5 supercomputer. They used the

popular D3Q19 lattice to model fluid flow and they observed that the inclusion

of convection increases the calculation time by a factor of 4.4, from 51 to 223

minutes. It means that the flow solver takes around 80 % of the total runtime.

While the increase in the calculation time might seem large, the total time of 223

minutes is very reasonable for a billion cell simulation. Moreover, they successfully

simulated multiple dendrites in forced convection using a 7 billion cell mesh with

the physical domain size still being relatively small – 0.0005 mm3. State-of-the-art

computing with sub-micron grid spacing that allows for the simulated physical

domains on the order of only a few cubic millimetres is still far less than the

typical size of cast metal components.

The first 3D parallel CA-LB model for dendritic solidification was proposed

by Eshraghi et al. [91] who used the D3Q15 lattice to model the mass transport

in the solute-driven single dendrite growth. Because both methods exhibit local

characteristics, they offer good computational efficiency and parallel scalability

with potential of leading to large-scale 3D simulations of microstructure evolution

on a macroscopic level. That is exactly what they achieved a couple years later by

simulating a physical domain of 1 mm3 using 36 billion grid points [92], see Figure

25

2. LITERATURE REVIEW

Figure 2.12: The growth of 3D columnar dendritic microstructure using the CA-
LB method [92].

2.12. The simulation of the growth of 3D columnar dendritic microstructure with

the mesh size of ∆x = 0.3 µm was performed on 6400 CPU cores of the Stampede

supercomputer. Millimetre-scale size was achieved by Jelinek et al. [93] who

simulated the effect of melt convection on more than 3000 nuclei, however the

simulation was in 2D.

A comprehensive study of the morphological differences introduced by the

flow, including a comparison between 2D and 3D models, has been conducted by

Eshraghi et al. [94] using the CA method for the cell capturing and the LBM for

forced convection.

Recently Alexandrakis [95] achieved a 4 cm3 domain size in directional so-

lidification with no flow. Alexandrakis used a CA method with grid spacing of

∆x = 10 µm which allowed to reach macroscopic sizes. The method is based on

the open source code µMatIC [36; 96–98].

26

2. LITERATURE REVIEW

2.5 Conclusion

The relevant literature to this thesis was reviewed in this chapter, and several

conclusions can be drawn. A lot of experimental and numerical research has

been conducted over the years describing solidification process of liquid melts.

The studies have highlighted the effect that convective heat and mass transport

has on the evolution of dendritic growth. Whether it is dendrite arm spacing, tip

velocities, preferential growth direction or re-/formation of segregation channels,

they all can have an effect on the macroscopic properties of the solidified materi-

als. Therefore, it is important to include fluid flow when modelling microstructure

solidification. Despite it being computationally expensive and requiring handling

of the complicated geometries of the evolving microstructures, with the advances

in computational technologies, it has become possible to simulate large-scale do-

mains approaching the size of entire small components. The numerical method

that shows the best promise to bridge the gap between micro- and macroscale

is the CA-LB. The CA method can handle cell sizes of O(10 µm) compared to

the sub-micron length offered by the widely used PF method. The LBM, on the

other hand, is faster and more stable than the conventional CFD methods, it can

easily handle complex geometries and because of its spatial locality property it

can be massively parallelised for large-scale simulations.

27

Chapter 3

LATTICE BOLTZMANN

METHOD

3.1 Introduction

The lattice Boltzmann method is a mesoscopic approach to continuum physics,

which has its origins in the kinetic theory. The key advantages of the LBM

over conventional CFD methods are relative ease in coupling, particle interaction

locality, linear advection term, no Poisson solver for pressure, easy handling of

complex boundaries. The locality property of the method allows for easy paral-

lelisation.

From the literature review and based on the reasons above, the lattice Boltz-

mann method has been chosen to calculate the fluid flow in physical systems

within this research. The main concepts of the method are explained in the

following sections.

28

3. LATTICE BOLTZMANN METHOD

3.2 History

The LBM has originated from the lattice gas cellular automata (LGCA), where

the fluid or gas is treated as a collection of particles. The evolution process of the

LGCA into the LBM has been recorded in detail by several authors [56; 99–101].

According to Boghosian [99], the first attempt to reproduce hydrodynamics using

a lattice gas model was made by Kadanoff and Swift (KS) in 1968 [102], before

that, lattice gases were used to model ferromagnets. In the KS 2D liquid gas

model, particles can move diagonally from site to site on a regular Cartesian grid

via advection or diffusion, without violating any conservation rules. The possible

velocities a single particle occupying a lattice site can have are expressed as

ci = c(cos(θi), sin(θi)), with θi = π

4 (2i− 1) for i = 1− 4, (3.1)

where c = δx

δt

√
2 is the lattice speed, δx is the lattice spacing, δt is the time step

and
√

2 is the diagonal distance between two lattice sites. The KS model is able

to conserve mass, momentum and energy, but due to lack of symmetry it suffers

from a strong lattice anisotropy when modelling the decay of sound waves, for

example. It has to be noted that the original idea at the time was to study the

statistical physics of fluids, and not to offer a new CFD method.

Half a decade later in 1973, Hardy, de Pazzis and Pomeau (HPP) proposed

the first cellular automata (CA) model [103], see Figure 3.1. Similar to the KS

model, the so-called HPP model also employs a 2D Cartesian square lattice, but

the allowed discrete velocities are different (3.2).

ci = c(cos(θi), sin(θi)), with θi = π

2 (i− 1) for i = 1− 4. (3.2)

29

3. LATTICE BOLTZMANN METHOD

Here c = δx

δt
, as particles were allowed to move along the gridlines. A maximum

of four particles can reside at each lattice site at any given time as long as they all

have different velocities. Mathematically, the state of a site can be represented

by a Boolean type function,

ni(x, t) =
0, absence of a particle

1, presence of a particle
, (3.3)

for a particle with velocity ci at coordinate x and time t. In the HPP model,

particles can collide with each other or stream freely in the direction of their

velocities. The collision only occurs when the incoming two particles have oppo-

site velocities, otherwise the process does not get triggered, see Figure 3.2. The

kinetic equation,

ni(x + ciδt, t+ δt) = ni(x, t) + Ci(n(x, t)), (3.4)

describes the streaming and collision dynamics. Here, Ci is the collision opera-

tor, which encodes particle anihilation, conservation or emission for the velocity

direction i, and it can be written as

Ci(ni(x, t)) =


−1, particle anihilation

0, particle conservation
1, particle emission

. (3.5)

The conservation requirements for mass and momentum can be imposed on the

collision Ci as ∑
i

Ci = 0,
∑
i

ciCi = 0. (3.6)

Normally a unit time step, δt = 1, is used when working in lattice units, so then

30

3. LATTICE BOLTZMANN METHOD

(3.4) simplifies to

ni(x + ci, t+ 1) = ni(x, t) + Ci(n(x, t)). (3.7)

Hydrodynamic variables such as mass density and momentum density can be

calculated from the ensemble average of the occupation state number defined as

Ni = 〈ni〉, where Ni ∈ [0, 1], in the following way:

ρ =
∑
i

Ni, ρu =
∑
i

ciNi. (3.8)

Through the Chapman−Enskog expansion the hydrodynamic equation can be

derived, see Section 3.4. However, the Navier–Stokes equations are not recovered

correctly. The reason being the same as that for the KS model − insufficient

symmetry of the square lattice.

The grid anisotropy problem was finally solved when the importance of sym-

metry was recognised. It was done by Frisch, Hasslacher and Pomeau [104], and

by Wolfram [105] at the same time in 1986. As it turns out, the six-fold symmet-

ric lattice in 2D allows us to recover the fourth rank viscous term tensor from

the hydrodynamic equation. The so-called FHP model, named after its authors,

employs a hexagonal lattice, see Figure 3.1 with discrete velocities defined as

ci = c(cos(θi), sin(θi)), with θi = π

3 (i− 1) for i = 1− 6. (3.9)

Just like in the HPP model, only one particle with velocity ci may occupy a

lattice site. This exclusion principle leads to Fermi−Dirac distribution for the

31

3. LATTICE BOLTZMANN METHOD

1

2

3

4

1

23

4

5 6

Figure 3.1: First LGCA models shown with numbered discrete velocities: HPP
model (left) and FHP model (right).

Figure 3.2: Collision process for HPP model (left) and FHP model (right).

mean occupation number Ni,

N eq
i (Qi) = 1

1 + exp(Qi)
, (3.10)

where Qi is a linear combination of collision invariants, and the local equilibrium

can be written as [106],

N eq
i = ρ

6

[
1 + ci · u

c2
s

+G(ρ)(cici − c2
sI) : uu
c4
s

]
, (3.11)

where cs is the lattice speed of sound, and G(ρ) is a function of the density

ρ. Chapman−Enskog analysis allows us to recover the hydrodynamic equations

in the incompressible limit, which means that the density variations are much

32

3. LATTICE BOLTZMANN METHOD

smaller than the reference density, δρ� ρ. The equations are,

∇ · u = 0,
∂u
∂t

+ g(ρ)u · ∇u = −∇P + ν(ρ)∇2u,
(3.12)

where g(ρ) = (ρ−3)/(ρ−6) and ν(ρ) is another function of density. Because the

coefficient in front of the convective term has to be equal to one, but the coefficient

in (3.12) g(ρ) 6= 1 it leads to the violation of the Galilean invariance, which

is characteristic for LGCA models with Fermi−Dirac equilibrium distribution

function [100]. One can rescale time, t→ t/g(ρ), however this fix is only valid for

small Mach numbers as the pressure depends on the velocity, which is unphysical.

Interestingly, the FHP cannot be extended into 3D in a straightforward way.

Instead one has to go to 4D to find a regular lattice that meets the symmetry

requirements, and then project down onto 3D space [106]. Such lattice is the face-

centered hypercube, and it was proposed by d’Humieres, Lallemand and Frisch

in 1986 [107]. The lattice contains 24 discrete velocities, some of which are not

the same length and some of which have a multiplicity of two because of the

projection. Having 24 velocities per site means that there are 224 ≈ 17 million

different possible states of occupancy, which is a lot more than 26 = 64 for the

FHP model in 2D. So, the collision rule can no longer be easily worked out, and

the necessity for a better way of describing collision processes arises.

Another shortcoming of LGCA is the statistical noise attributed to the Boolean

nature of the method. It was dealt with in 1988 when McNamara and Zanetti

proposed the use of a single-particle distribution function fi = 〈ni〉, which has a

real value between 0 and 1 [108]. The corresponding collision operator also loses

its Boolean type, Ωi(f) = 〈Ci(n)〉, and the governing equation for the particle

33

3. LATTICE BOLTZMANN METHOD

dynamics can be written as

fi(x + ciδt, t+ δt)− fi(x, t) = Ωi(f(x, t)), (3.13)

The first step towards a simpler collision was made by Higuera and Jimenez in

1989 when they proposed a linear approximation of the collision operator [109].

They expanded the distribution function around its local equilibrium as

fi = f eqi + fneqi , (3.14)

where fneqi is the non-equilibrium distribution function, so that the collisions

could be simplified to

Ωj(f) = ∂Ωj

∂fi
(fi − f eqi), (3.15)

where ∂Ωj/∂fi is the collision matrix.

The last simplification to the collision operator was made in the early 1990s

[110–113] when a single-relaxation-time (SRT) collision scheme was adopted from

the BGK model [114] in kinetic theory,

Ωi(f) = −1
τ

(fi − f eqi), (3.16)

where τ is the relaxation time of the particle to its local equilibrium, and the

equilibrium function can be generally written as

f eqi = wiρ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]
, (3.17)

where wi are the weights for a particular lattice. Table 3.1 lists a couple of them.

34

3. LATTICE BOLTZMANN METHOD

The final result is a method:

• with no statistical noise,

• with a linear advection term,

• with inherent parallelism due to simple local collisions,

• that is Galilean-invariant up to the second order,

• whose virtual particle velocities at equilibrium obey the Maxwell−Boltzmann

distribution at low Mach numbers,

• that leads to the macroscopic Navier−Stokes equation via multiscale anal-

ysis, see Section 3.4.

All these properties have made it a serious contender for an alternative numerical

approach to the other CFD methods.

3.3 2D and 3D lattices

As discussed in the previous section, lattices need to meet symmetry requirements

for macroscopic variables to satisfy continuum equations. In this chapter, the

lattices chosen for 2D and 3D numerical simulation in this thesis will be described.

In terms of the lattice choice, the main objective from a physical perspective

is of course to use a lattice that allows to recover the Navier−Stokes equation.

However, from the computational point of view the fewer variables to do cal-

culations on the better for the efficiency of the algorithm [115]. The symmetry

35

3. LATTICE BOLTZMANN METHOD

requirements are given for the lattice velocity set as [115–117]:

∑
i

wi = 1,∑
i

wiciα = 0,∑
i

wiciαciβ = c2
sδαβ,∑

i

wiciαciβciγ = 0,∑
i

wiciαciβciγciδ = c4
s(δαβδγδ + δαγδβδ + δαδδβγ),∑

i

wiciαciβciγciδciε = 0.

(3.18)

In the 2D HPP and FHP models all the velocity vectors ci have equal lengths

ci and weights wi. However, they will differ for Cartesian lattices with more

than four velocities such as D2Q9. Different weights are introduced for different

velocities in order to maintain the lattice isotropy. The DdQq notation is used in

this thesis to represent a d-dimensional lattice with q velocities [113]. The weights

and velocities of the most popular lattices are given in Table 3.1. In the context

of this thesis, only 2D and 3D velocity sets with a rest particle or a zero velocity

are considered here because they offer better accuracy and numerical stability

[118; 119]. The 2D and 3D velocity sets are shown in Figures 3.3 and 3.4.

The most popular model in 2D is the nine-velocity lattice D2Q9, see Fig-

ure 3.3. It is the smallest Cartesian lattice in 2D that satisfies the symmetry

requirements in (3.18) and can be used to solve Navier−Stokes type problems.

As can be seen from Table 3.1, three dimensions offer more choices in selecting

a lattice suitable for hydrodynamic problems, the most popular of them being the

D3Q19 model. It offers a good balance between efficiency and stability. While

D3Q15 is obviously the more efficient model with ∼ 20 % less variables compared

to D3Q19, the trade-off between efficiency and stability comes at a price. The

36

3. LATTICE BOLTZMANN METHOD

Table 3.1: Properties of velocity sets.

Model Lattice velocities Weights Sound speed
(0, 0) 4/9

D2Q9 (±1, 0), (0,±1) 1/9 1/
√

3
(±1,±1) 1/36
(0, 0, 0) 2/9

D3Q15 (±1, 0, 0), (0,±1, 0), (0, 0,±1) 1/9 1/
√

3
(±1,±1,±1) 1/72

(0, 0, 0) 1/3
D3Q19 (±1, 0, 0), (0,±1, 0), (0, 0,±1) 1/18 1/

√
3

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/36
(0, 0, 0) 8/27

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 2/27
D3Q27 (±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/54 1/

√
3

(±1,±1,±1) 1/216

D3Q15 model more than others might experience numerical instabilities [119],

for example the checkerboard effect [120], which is an occurrence of unphysical

regular patterns in the calculation domain. This instability is more expressed for

flows at high Reynolds numbers [121] and not for low Re flows or Stokes flows

where Re � 1. In fact, D3Q15 has been successfully used in large-scale simula-

tions of dendritic solidification capturing mass transport [91; 92] and momentum

transport [94].

On the other hand, D3Q27 offers the best stability out of the three due to its

greater lattice isotropy, but it is the least efficient one with nearly twice as many

variables as D3Q15 and half as many as D3Q19. Because of its high isotropy,

D3Q27 is best suited for turbulent flows – high Reynolds number flows, where

the non-linear effects are dominant [122].

Prioritising efficiency while maintaining good stability leads towards the choice

of the D3Q19 lattice. Also, when considering 2D physical problems, one might

37

3. LATTICE BOLTZMANN METHOD

1

2

3

4

56

7 8 x

y

Figure 3.3: D2Q9 lattice. Rest particle velocity is not shown.

carry out calculations using the D2Q9 lattice instead of D3Q19 to minimise com-

putational cost. No information is lost in the process.

3.4 From lattice Boltzmann to Navier–Stokes

The fact that the collective microscopic behaviour of the LBM leads to that on

a macroscopic scale described by the Navier–Stokes equations can be shown by

performing a multiscale analysis. One such method that has been an integral part

of all the major comprehensive literature on the topic of the LBM [100; 101; 115;

116] is the Chapman–Enskog expansion, where fi is expanded formally about a

small parameter ε as

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + . . . , (3.19)

38

3. LATTICE BOLTZMANN METHOD

D3Q15 D3Q19

D3Q27

Figure 3.4: D3Q15, D3Q19 and D3Q27 lattices. Rest particle velocity is not
shown. The D3Q19 colouring style is borrowed from [123].

39

3. LATTICE BOLTZMANN METHOD

where f (0)
i = f eqi and the ε terms contribute towards the non-equilibrium part of

the distribution function:

fi = f eqi + εfneqi . (3.20)

The time scales in the temporal derivative are separated into convection, t1, and

diffusion scale, t2, where the latter is assumed to be much slower than the former.

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
. (3.21)

The spatial derivative becomes

∂

∂x
= ε

∂

∂x1
. (3.22)

The last thing left is to expand the discrete velocity Boltzmann equation (DVBE)

(3.13). For simplicity, the BGK collision term (3.16) is used in this derivation.

After performing a second order Taylor series expansion in time and space and

neglecting the higher order terms, (3.13) becomes

[
∂

∂t
+ ci · ∇+ δt

2

(
∂

∂t
+ ci · ∇

)2]
fi = − 1

τδt
(fi − f eqi). (3.23)

Applying the expansions from (3.19), (3.21) and (3.22) to (3.23) and separating

the terms of different orders of ε leads to

ε :
(
∂

∂t1
+ ci · ∇1

)
f

(0)
i = − 1

τδt
f

(1)
i , (3.24)

ε2 : ∂

∂t2
f

(0)
i +

(
∂

∂t1
+ ci · ∇1

)(
1− 1

2τ

)
f

(1)
i = − 1

τδt
f

(2)
i . (3.25)

40

3. LATTICE BOLTZMANN METHOD

Mass continuity and Euler’s equation can be derived by multiplying (3.24) by 1

and ci and taking the zeroth order moment as

∂ρ

∂t1
+∇1 · (ρu) = 0 (3.26)

∂(ρu)
∂t1

+∇1 ·Π(0) = 0 (3.27)

where Π(0) is the zeroth order momentum flux tensor expressed as

Π(0) =
∑
i

cicif (0)
i = ρuu + ρc2

sI. (3.28)

On the other scale, the same equations are derived from (3.25) and take the

following form,
∂ρ

∂t2
= 0 (3.29)

∂(ρu)
∂t2

+
(

1− 1
2τ

)
∇1 ·Π(1) = 0, (3.30)

where Π(1) is the first order momentum flux tensor expressed as

Π(1) =
∑
i

cicif (1)
i . (3.31)

The term Π(1) is also present on the right hand side when (3.24) is multiplied by

cici,
∂Π(0)

∂t1
+∇1 ·Q(0) = − 1

τδt
Π(1), (3.32)

where

Q(0) =
∑
i

cicicif (0)
i = ρc2

s[uδ]αβγ +O(u3). (3.33)

41

3. LATTICE BOLTZMANN METHOD

where [uδ]αβγ = uαδβγ + uβδαγ + uγδαβ. After some substitutions and neglecting

the terms of order O(u3), one can find that

Π(1) = −τρc2
sδt(∇1u +∇1uT). (3.34)

Combining the conservation equations on both scales leads to the macroscopic

mass continuity and weakly compressible Navier–Stokes equations,

∂ρ

∂t
+∇ · (ρu) = 0, (3.35)

∂(ρu)
∂t

+∇ · (ρuu) = −∇p+∇ · (ρν(∇u +∇uT)), (3.36)

where the pressure p and the kinematic viscosity ν are expressed as

p = ρc2
s, (3.37)

ν = c2
s

(
τ − 1

2

)
δt. (3.38)

The term weakly compressible means that the incompressible Navier–Stokes equa-

tion is recovered in the low Mach number limit at small velocities because the

terms of order O(Ma2) and O(u3) are omitted in the process. These modelling er-

rors will be discussed in the next section. Neglecting the small density variations

due to the weak compressibility, the continuity equation and the incompressible

NSE can be obtained:

∇ · u = 0, (3.39)

∂u
∂t

+ u · ∇u = −1
ρ
∇p+ ν∇2u. (3.40)

42

3. LATTICE BOLTZMANN METHOD

3.5 Stability and accuracy

3.5.1 Stability

In CFD, a typical indicator of stability for explicit schemes is the so-called

Courant-Friedrichs-Lewy (CFL) condition, which depending on the evolution

equation of the system is

C = u∆t
∆x < 1 or C = ν∆t

∆x2 < 1. (3.41)

Here the ratios are said to be less than unity, but in reality they are kept well

below unity to ensure stability and convergence for 2D and 3D problems. The

first condition is for advection problems that can be expressed simply as

∂φ

∂t
+ u

∂φ

∂x
= 0, (3.42)

and the second one is for diffusion problems that can be expressed as

∂φ

∂t
+ ν

∂2φ

∂x2 = 0. (3.43)

Inequalities given in (3.41) simply state that the physical information cannot

propagate faster than it is supported by a given lattice with set ∆x and ∆t.

Otherwise, the information is captured incorrectly and lost leading to instabilities.

The CFL condition is typically applied to finite difference methods and hyperbolic

partial differential equations (PDEs) in particular. Similarly, the LBE is derived

from the DVBE, which is essentially a stiff hyperbolic PDE with a source term.

Luckily for the LBE, the second order derivative that describes diffusion is re-

43

3. LATTICE BOLTZMANN METHOD

placed by the relaxation of the traceless stress tensor to the local equilibrium.

This leaves one with only the advective CFL condition to satisfy. However,

because of the lattice space-time relation ∆xi = ci∆t, (3.41) is automatically

satisfied through the low Mach number limitation C = Ma� 1 [116].

Non-negativity of the equilibrium distribution function is a sufficient linear

stability condition for the BGK and TRT (two relaxation time) collision schemes

[124]. The bounds for a distribution function are generally 0 < fi < 1, but

exceeding the lower bound in particular may give rise to instabilities. Stable

numerical solutions can still be obtained with negative populations present, but

it is advised not to fully trust the result as it might be corrupted [115].

The typical value for the sound speed in lattice Boltzmann is often cs = 1√
3

,

however this value is not a universal constant. It can be determined from the

lattice weights of the particular velocity sets, see (3.18), and it has been confirmed

that the choice of cs = 1√
3

gives the most stable results [2; 121].

The range of the relaxation time τ has a strict lower limit of τ > 1
2, which

ensures that the fluid viscosity stays positive through the relation (3.38). For the

D2Q9 BGK models, the region near τ = 1
2 is restrictive for the maximum allowed

velocity. The closer τ gets to the value 1
2, the smaller the maximum velocity must

be chosen to keep the simulation stable [125]. On the other side, the combination

of BGK and the standard bounce-back scheme has an error that depends on the

value of τ − the bigger the relaxation time the larger the error on the boundaries,

see Section 3.6.1.

The TRT collision scheme, which is discussed in Section 3.7.2, has two pa-

rameters, τ+ and τ−, where τ+ is linked to the fluid viscosity and τ− is a free

parameter that can be tuned for stability and accuracy. Stability of TRT is

44

3. LATTICE BOLTZMANN METHOD

controlled by the combination of the both parameters:

Λ =
(
τ+ − 1

2

)(
τ− − 1

2

)
. (3.44)

Λ is normally called the magic parameter, and it governs the stability and ac-

curacy of the TRT model. It has been found that Λ = 1
4 provides the best

stability [124; 126], Λ = 1
6 provides the best accuracy for pure diffusion problems

[126], Λ = 1
12 provides the best accuracy for pure advection problems [126; 127],

Λ = 3
16 places the wall in the bounce-back scheme exactly in the middle between

the fluid and boundary nodes [128],

Although stable solutions can be obtained at relatively large velocities, the

maximum velocity in lattice Boltzmann is constrained by the low Mach number

limit, Ma = umax

cs
� 1, in which the Navier−Stokes equation is recovered. It

implies that the maximum velocity must be much smaller than the lattice sound

speed, umax � cs. Ideally, one would not exceed umax < 0.17 (Ma < 0.3 [101])

when selecting the maximum fluid velocity, but typically values around umax = 0.1

are chosen for convenience.

3.5.2 Accuracy

The lattice Boltzmann equation (LBE) is second order accurate in space and time.

However, the accuracy of the method can be degraded if the boundary condition

scheme is chosen poorly. An example of this is a Poiseuille channel flow calculated

using the BGK collision operator and the standard bounce-back scheme to realise

the no-slip condition on the walls. The standard bounce-back scheme is only first

order accurate [129], and it can compromise the overall accuracy of the method.

45

3. LATTICE BOLTZMANN METHOD

Most of the boundary schemes are second order accurate, the modified and half-

way bounce-back, Zou and He non-equilibrium bounce-back, the Moment Method

and others, see Section 3.6. One way to measure the accuracy of the general

method used in calculations, is by using the relative L2 error norm,

L2 =

√√√√∑i(φi − φ∗i)2∑
i φ
∗2
i

, (3.45)

where φ∗i is the exact solution at the calculation domain node i. Simple problems

normally have an analytical solution. However, if the problem does not have it,

then one can use the field values obtained on the finest grid in order to check the

convergence rate and, therefore, confirm the spatial accuracy of the method.

It was shown in Section 3.4 that the LBE leads to a weakly compressible NSE.

The weak compressibility comes from the fact that the terms of order O(u3) and

O(Ma2) are being neglected in the derivation process. Also, the equilibrium dis-

tribution function (3.17) only consists of terms up to the second order in velocity,

but that is down to the isotropy of the lattice and the type of problems being

calculated. For the physical problems discussed in this thesis, the characteristic

velocity and the Mach number are both small, which means that the compress-

ibility error O(Ma2) and the cubic O(u3) error are both negligible.

3.6 Boundary conditions

Boundary conditions (BCs) are a crucial part of finding the correct solution to a

physical problem, the other obviously being the differential equation, or a set of

them, that governs the evolution of the dynamical system of interest. Different

boundary conditions give different unique solutions to a boundary value problem.

46

3. LATTICE BOLTZMANN METHOD

One simple example of this is a flow between two parallel infinite plates. If both

plates are at rest, utop wall = 0 and ubottom wall = 0, there is no flow, and the

steady-state solution is zero everywhere, usolution = 0. Now, if the top wall is

moving at a constant speed, utop wall = (uconst, 0), the steady-state solution for

the flow changes accordingly to satisfy both boundary conditions simultaneously,

which results in a velocity gradient between the plates. So, it is important to set

the boundary conditions correctly in order to get the desired outcome.

In the following sections, different popular approaches on how to handle the

boundaries in terms of the LBM will be discussed. Starting off with simple ki-

netic schemes, such as bounce-back and modified bounce-back rules, and then

moving on to hydrodynamic schemes, like non-equilibrium bounce-back and Mo-

ment Method. Closing up the section, an extension into 3D is proposed for the

2D moment-based method. Numerical simulations are also carried out using the

newly derived 3D Moment Method, and the results showing great potential are

covered in Sections 5.2 and 5.3.

3.6.1 Kinetic style boundary schemes

Because the LBM originated from the LGCA method, initially the boundary con-

ditions were imposed on the particle distribution functions directly. Not count-

ing the periodic type boundaries, the first velocity boundary condition was im-

plemented using the so-called bounce-back scheme [105; 130]. The idea of the

method is that the incoming particle velocities on the boundary are reflected

back to the neighbouring nodes where they came from to realise the no-slip BC

for velocity, see Figure 3.5. Its simple nature suggests that it would be perfect

for flows in complex geometries.

47

3. LATTICE BOLTZMANN METHOD

Figure 3.5: Bounce-back schemes visualised for the D2Q9 lattice. α = 1/2 for
half-way bounce-back and α = 1 for the standard bounce-back

However, it was later found that the bounce-back rule suffers from a non-

physical slip velocity on the boundary due to the placement of the solid wall

[129]. For bounce-back schemes the actual position of the wall is somewhere in

between the solid and liquid nodes. It varies with the relaxation time τ , or with

the viscosity ν through the relation (3.38). Also, the standard ‘on-node’ bounce-

back scheme is only first order accurate in space [129]. The slip velocity on the

boundary for 2D Poiseuille flow is given by

uslip = 2(2τ − 1)(4τ − 3)− 6n
3n2 uc, (3.46)

where uc is the maximum velocity in the center of the channel, and n is the

number of nodes across the width of the channel. It is obvious from (3.46) that

the standard bounce-back scheme, also sometimes referred to as full-way bounce-

back, in general has a non-zero slip velocity and it is first order accurate due to

the O(n−1) term [129].

The accuracy can be improved by choosing, for example the modified bounce-

48

3. LATTICE BOLTZMANN METHOD

back scheme, where the slip velocity is given by [129]

uslip = 16τ(τ − 1)
3n2 uc. (3.47)

It is of second order accuracy in space, however the slip velocity is generally still

non-zero.

Another second order scheme to mention here is the half-way bounce-back,

where the wall is placed in the middle between the solid and fluid nodes, hence

the name half-way.

Although the position of the wall in the bounce-back case can be adjusted

by changing the relaxation time to get rid of the slip velocity, one would rather

prefer to leave the choice of the relaxation time value for stability purposes and

not error fixing.

3.6.2 Non-equilibrium bounce-back

Probably the most popular hydrodynamic scheme is the one proposed by Zou

and He [131]. It allows us to specify pressure and velocity values directly on the

boundaries, meaning that macroscopic variables, such as density and velocity are

part of the derivation of the BCs for PDFs.

ρ =
∑
i

fi, ρu =
∑
i

cifi. (3.48)

49

3. LATTICE BOLTZMANN METHOD

1

2

3

4

56

7 8

1

5

8

1

2

3

4

56

7 8

1

2 56

8

1

2

3

4

56

7 8

2 56

inlet edge wall

x

y

Figure 3.6: Scheme showing the unknown distribution functions at the inlet, edge
and wall boundaries. Rest velocity is not shown.

Expanding the equations (3.48),

ρ =
∑
i

fi = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8,

ρux =
∑
i

ficix = f1 − f3 + f5 − f7 + f8 − f6,

ρuy =
∑
i

ficiy = f2 − f4 + f5 − f7 + f6 − f8,

(3.49)

and using the assumption for bounce-back of the non-equilibrium distribution

functions at the inlet, see Figure 3.6,

f1 − f eq1 = f3 − f eq3 , f5 − f eq5 = f7 − f eq7 , f8 − f eq8 = f6 − f eq6 , (3.50)

the unknown distribution functions after streaming at the pressure inlet can be

50

3. LATTICE BOLTZMANN METHOD

derived, 

f1 = f3 + 2
3ρ0ux,

f5 = f7 −
1
2(f2 − f4) + 1

6ρ0ux,

f8 = f6 + 1
2(f2 − f4) + 1

6ρ0ux,

(3.51)

where ux is found through the consistency condition formed from (3.49):

ux = 1− 1
ρ0

(
f0 + f2 + f4 + 2(f3 + f6 + f7)

)
. (3.52)

Conditions for velocity inlet, outlet and other boundaries can be derived similarly.

Furthermore, corner nodes at the inlet and outlet need special attention. De-

pending on the corner of interest (bottom left inlet node in Figure 3.6), unknown

distribution functions can be found as


f1 = f3,

f2 = f4,

f5 = f7,

f6 = 1
2

(
ρ0 − f0 − 2(f3 + f4 + f7)

)
,

f8 = 1
2

(
ρ0 − f0 − 2(f3 + f4 + f7)

)
.

(3.53)

Needless to say that f6 and f8 are both equal here. Corner nodes should be treated

with care because ill-defined boundary conditions at the corners can easily give

rise to the numerical instabilities, such as the checkerboard effect.

51

3. LATTICE BOLTZMANN METHOD

Extension to 3D

In their paper [131], Zou and He also briefly discuss the derivation process of the

unknown PDFs on pressure boundary for the D3Q15 lattice, see Figure 3.4. Using

the bounce-back rule for the non-equilibrium part of the distribution function and

modifying the tangential momentums, as proposed in [132], they find that



f1 = f2 + 2
3ρ0ux,

f7 = f8 + 1
12ρ0ux −

1
4

(
(f3 − f4) + (f5 − f6)

)
,

f10 = f9 + 1
12ρ0ux −

1
4

(
(f3 − f4)− (f5 − f6)

)
,

f11 = f12 + 1
12ρ0ux + 1

4

(
(f3 − f4)− (f5 − f6)

)
,

f14 = f13 + 1
12ρ0ux + 1

4

(
(f3 − f4) + (f5 − f6)

)
,

(3.54)

where ux is determined from the consistency condition as

ux = 1− 1
ρ0

(
f0 + f3 + f4 + f5 + f6 + 2(f2 + f8 + f9 + f12 + f13)

)
. (3.55)

The first attempt, to the author’s knowledge, of applying the non-equilibrium

bounce-back rule to a D3Q19 lattice was made by Kutay et al. [133] who used

it to define a pressure inlet and outlet with the normal flow being unknown, see

Table 3.2.

Hecht and Harting later proposed a general way of imposing the flow bound-

ary condition for the D3Q19 lattice [134]. Allowing the tangential velocities to

be specified at the velocity boundary, in contrast to [133; 135], and using the

non-equilibrium bounce-back rule, they introduce two new unknown variables

52

3. LATTICE BOLTZMANN METHOD

Table 3.2: Pressure boundary description for the D3Q19 lattice [133].

Inlet
Known ρ, uy = 0, uz = 0,

components f0, f2, f3, f4, f5, f6, f8, f9, f11, f12, f13, f14, f16, f17
Unknowns ux, f1, f7, f10, f15, f18

Relations ux(in) = 1− f0+f3+f4+f5+f6+f11+f12+f13+f14+2(f2+f8+f9+f16+f17)
ρin

f1 = f2 + 1
3ρux

f7 = f8 − 1
4(f3 − f4) + 1

6ρux
f10 = f9 + 1

4(f3 − f4) + 1
6ρux

f15 = f16 − 1
4(f5 − f6) + 1

6ρux
f18 = f17 + 1

4(f5 − f6) + 1
6ρux

Outlet
Known ρ, uy = 0, uz = 0,

components f0, f1, f3, f4, f5, f6, f7, f10, f11, f12, f13, f14, f15, f18
Unknowns ux, f2, f8, f9, f16, f17

Relations ux(out) = 1− f0+f3+f4+f5+f6+f11+f12+f13+f14+2(f1+f7+f10+f15+f18)
ρout

f2 = f1 − 1
3ρux

f8 = f7 + 1
4(f3 − f4)− 1

6ρux
f9 = f10 − 1

4(f3 − f4)− 1
6ρux

f16 = f15 + 1
4(f5 − f6)− 1

6ρux
f17 = f18 − 1

4(f5 − f6)− 1
6ρux

that represent the transverse momentum corrections to account for any tangen-

tial flows. Setting the velocities to Ux, Uy and Uz the system of the unknown

distribution functions at the west face velocity boundary reads



f1 = f2 + 1
3ρUx,

f7 = f8 + ρ

6(Ux + Uy)−Nx
y ,

f10 = f9 + ρ

6(Ux − Uy) +Nx
y ,

f15 = f16 + ρ

6(Ux + Uz)−Nx
z ,

f18 = f17 + ρ

6(Ux − Uz) +Nx
z ,

(3.56)

53

3. LATTICE BOLTZMANN METHOD

where ux is determined from the consistency condition as

ρ = f0+f3+f4+f5+f6+f11+f12+f13+f14+2(f2+f8+f9+f16+f17)+ρUx, (3.57)

and the transverse momentum corrections Nx
y and Nx

z are expressed as


Nx
y = 1

2

(
f3 + f11 + f14 − (f4 + f12 + f13)

)
− 1

3ρUy,

Nx
z = 1

2

(
f5 + f11 + f13 − (f6 + f12 + f14)

)
− 1

3ρUz.
(3.58)

The end result is a boundary condition scheme that is explicit, local, shows

second order accuracy, does not depend on the relaxation time, and allows one to

specify exact on-site velocity values at the boundary in all directions. In addition,

if a no-slip condition for the velocity is imposed, then no numerical slip can be

observed in contrast to the standard bounce-back scheme.

Although the results from Hecht and Harting are promising, their scheme

itself for treating boundaries in 3D might seem overcomplicated:

• applying the non-equilibrium bounce-back rule and then modifying the tan-

gential distribution functions by introducing the transverse momentum cor-

rections;

• recalculating the resting particle distribution function at the pressure bound-

ary edges;

• correcting the slip along the convex edges.

While these corrections are overcomplicated, they are all a necessary part of the

scheme. Lastly, in order to judge whether the strain rate tensor Παβ is set up

54

3. LATTICE BOLTZMANN METHOD

correctly at the boundaries, they use observations from the results, which is fine,

however one would preferably choose to set conditions for the stress components

directly.

3.6.3 Moment analysis of boundary conditions

By using the moment grouping, a method introduced by Bennett [2], one can

analyse the boundary conditions from a hydrodynamic point of view. It has al-

ready been successfully applied to the bounce-back rule, diffuse [136] and specular

reflection and Zou and He velocity and pressure boundary conditions in 2D [2],

but it is yet to be used to analyse hydrodynamic schemes in 3D, namely the one

proposed by Hecht and Harting.

So far in 2D, the moment analysis has revealed that Zou and He non-equilibrium

bounce-back rule applied on the wall nodes essentially imposes conditions for both

momentums, ρUx and ρUy, and a third order moment Qxxy (or Qxyy depending on

the direction), which might seem a bit odd. Similarly, for an open boundary, the

analysis has revealed that the conditions are being imposed onto both momen-

tums, ρUx and ρUy, and a third order moment Qxyy (or Qxxy). The consistency

condition allows to set the density, ρ0, instead of the momentum at the pressure

boundary.

For the bounce-back rule, the moment analysis has shown that the conditions

at the wall are only being set for the normal momentum and both third order

moments Qxxy and Qxyy. That gives an insight on why this scheme is suffering

from having a slip velocity at the walls − there is no condition being imposed on

the tangential velocity.

For the first time, Hecht and Harting 3D boundary conditions are analysed

55

3. LATTICE BOLTZMANN METHOD

here using the moment grouping. Inserting (3.58) into (3.56) gives the resulting

system to be investigated:



f1 = f2 + 1
3ρUx,

f7 = f8 + ρ

6(Ux + Uy)−
1
2(f3 + f11 + f14 − f4 − f12 − f13) + 1

3ρUy,

f10 = f9 + ρ

6(Ux − Uy) + 1
2(f3 + f11 + f14 − f4 − f12 − f13)− 1

3ρUy,

f15 = f16 + ρ

6(Ux + Uz)−
1
2(f5 + f11 + f13 − f6 − f12 − f14) + 1

3ρUz,

f18 = f17 + ρ

6(Ux − Uz) + 1
2(f5 + f11 + f13 − f6 − f12 − f14)− 1

3ρUz.

(3.59)

These are the expressions of the incoming particle distribution functions for an

open boundary. To find out what conditions are being set for which hydrodynamic

moments, the moments are expressed in terms of the distribution functions, where

the unknowns are substituted with their respective expressions from (3.59). The

moments for the D3Q19 velocity set are defined in (3.63). This gives the following:

56

3. LATTICE BOLTZMANN METHOD



ρ

ρux

ρuy

ρuz

Πxx

Πyy

Πzz

Πxy

Πxz

Πyz

Qxxy

Qxxz

Qxyy

Qxzz

Qyyz

Qyzz

Sxxyy

Sxxzz

Syyzz



=



f0 + f3 + f4 + f5 + f6 + f11 + f12 + f13 + f14+
+2(f2 + f8 + f9 + f16 + f17) + ρUx

ρUx

ρUy

ρUz

2(f2 + f8 + f9 + f16 + f17) + ρUx

f3 + f4 + 2(f8 + f9) + f11 + f12 + f13 + f14 + 1
3ρUx

f5 + f6 + f11 + f12 + f13 + f14 + 2f16 + 2f17 + 1
3ρUx

f4 − f3 + 2(f8 − f9)− f11 + f12 + f13 − f14 + ρUy

f6 − f5 − f11 + f12 − f13 + f14 + 2(f16 − f17) + ρUz

f11 + f12 − f13 − f14

f4 − f3 − f11 + f12 + f13 − f14 + ρUy

f6 − f5 − f11 + f12 − f13 + f14 + ρUz

1
3ρUx

1
3ρUx

f11 − f12 + f13 − f14

f11 − f12 − f13 + f14

2(f8 + f9) + 1
3ρUx

2(f16 + f17) + 1
3ρUx

f11 + f12 + f13 + f14



(3.60)

Five moments that do not contain any trace of the distribution functions are the

three momentums, ρux, ρuy and ρuz, and two third order moments, Qxyy and

Qxzz. So, the conditions are being set for the momentums as ρux = ρUx, ρuy =

57

3. LATTICE BOLTZMANN METHOD

ρUy and ρuz = ρUz, and for the third order moments as Qxyy = 1
3ρUx and Qxzz =

1
3ρUx, where 1

3ρUx is an equilibrium approximation of the higher order moment

with the terms O(u3) being omitted, see (3.33). While the selection of the former

three moments makes sense, the last two conditions seem questionable because

they both state the same and do not have a simple physical interpretation. At flat

boundaries, they are not the preferred velocity moments to impose conditions on.

Unfortunately, that seems to be the common theme among the methods involving

some variation of the kinetic bounce-back rule.

The moment analysis has shown that when the boundary conditions have

kinetic origins, they lack rigidness in a physical sense on a macroscopic level.

This is avoided by the moment-based boundary method, which imposes conditions

directly onto the hydrodynamic moments. It is described in more detail in the

next section.

3.6.4 Moment Method

According to Guo and Shu [101] the first hydrodynamic scheme for velocity

boundary conditions was proposed by Noble et al. [137] who used hydrodynamic

moments, more precisely the velocity to solve for the unknown distribution func-

tions at the boundaries. Their motivation was simple and valid− the bounce-back

boundary condition has a relaxation time dependent slip, and it cannot be easily

generalised to mass inflows or moving walls. In addition, they wrote in their

paper:

Rather than developing a technique that maintains a discrete particle
momentum balance, the hydrodynamic approach seeks to maintain a
specified velocity profile on the boundaries. During each time step in

58

3. LATTICE BOLTZMANN METHOD

the LBM procedure, the particle distribution at each node is modified
by collision, forcing, and streaming. The goal of the hydrodynamic
approach is to prescribe this process in such a fashion that the desired
velocity conditions are satisfied at the end of the time step. [137]

They were employing the hexagonal D2Q7 lattice similar to the one shown

in Figure 3.1, but with a rest velocity. On the boundary, only two distributions

functions are unknown (for example, f2 and f3 on the bottom wall), so two

conditions are required to solve them. Other lattices, such as D2Q9 and D3Q19

have more unknown functions, therefore they require more independent moments.

Luckily, for the D2Q7 lattice, one needs to look no further than (3.61). As shown

in Table 3.3, there are exactly two linearly independent moments available when

considering pressure and velocities.



ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6,

ρux = f1 − f4 + 1
2(f2 − f3 + f6 − f5),

ρuy = 2√
3

(f2 + f3 − f5 − f6),

(3.61)

Table 3.3: Unknown moments combinations at the bottom wall of D2Q7.

Moments Unknown f combinations
1 ρ, ρuy f2 + f3
2 ρux f2 − f3

Depending on what conditions are being applied at the wall, the solution for

the incoming particle distribution functions at the boundary can be as simple as


f2 = ρ

(
uy√

3
+ ux

)
− f1 + f4 + f5,

f3 = ρ

(
uy√

3
− ux

)
+ f1 − f4 + f6.

(3.62)

59

3. LATTICE BOLTZMANN METHOD

Later the list of hydrodynamic moments, Table 3.3, was expanded to include the

energy [138].

The more general moment-based method for imposing hydrodynamic bound-

ary conditions was proposed recently by Bennett [2]. He used the fact that since

there is a one-to-one linear mapping from the distribution functions to its mo-

ments (m = Mf), this mapping can be inverted (f = M−1m). One can switch

between moments m and particle distribution functions f very easily and there-

fore can impose a condition on all m to find all f. At a boundary, not all the

moments are independent, but the idea is to impose conditions on linearly inde-

pendent moments only and convert this into the particle basis to find the unknown

(incoming) distribution functions. The intention is to use as far as possible the

hydrodynamic moments only because we are simulating hydrodynamics.

It has been successfully applied to various physical systems, where the exact

BCs must be employed [136; 139–142]. Furthermore, its stability and accuracy

has also been commented upon briefly [143]. Their results show that the method

is second order accurate for velocity and pressure, which matches the accuracy

of the LBM. Another important finding is that the Moment Method in com-

bination with the BGK collision operator works very well in the region of low

to moderate Reynolds numbers, but more sophisticated collision operators (e.g.,

two- or multiple-relaxation-time) are preferable for multidimensional flows at high

Reynolds numbers.

The merits of the Moment Method are listed below. The Moment Method is:

• exact – concrete hydrodynamic conditions can be exactly specified on the

boundaries, whether it is pressure, momentum or momentum flux. Because

of this, there is no relaxation time dependent numerical slip on the zero

60

3. LATTICE BOLTZMANN METHOD

velocity boundaries, for example. Other methods, such as bounce-back and

diffuse reflection do not fully possess this property [144].

• on-site – conditions are imposed directly on the boundary nodes meaning

that for example setting a no-slip condition gives precisely a zero velocity at

the wall nodes. That is contrary to the bounce-back and diffuse reflection

rule, where the wall is placed somewhere in-between the nodes.

• local – only the information from the boundary cell is used in the calcula-

tions. The method can be parallelised easily for efficient computing. This

is in contrast to the interpolation/extrapolation schemes, where the infor-

mation from the interior fluid node is required.

• second order accurate – the method does not degrade the accuracy of the

lattice Boltzmann method.

• straightforward – the idea and the implementation of the method is rela-

tively simple. The unknown distribution functions are calculated using the

hydrodynamic moments that the boundary conditions are imposed on. The

trickiest part might be finding a physical interpretation for the higher or-

der moments that may be needed at edge or corner boundaries, see Section

3.6.5. Complexity wise it is not as simple as the bounce-back rule, however

the concept is simpler and more straightforward than other methods that

involve a mixture of the bounce-back rule, hydrodynamic moments, mo-

mentum corrections and other modifications to the distribution functions.

• correct for continuum flows – setting boundary conditions directly for the

hydrodynamic moments on a macroscale seems more reasonable than de-

61

3. LATTICE BOLTZMANN METHOD

scribing virtual particle-wall interactions borrowed from the kinetic theory.

The last argument is along the lines of what Sam Bennett wrote in his thesis:

Given the analysis of the previous chapters, it is clear that kinetic
style boundaries are not appropriate for the D2Q9 system. When
dealing with the 9 moment truncated system, rather than the full set
of infinitely many moments, a key link with the continuous Boltzmann
equation has been lost. Principally, the length of the grid spacing is
much larger than the mean free path, and physical effects at a scale
smaller than the hydrodynamic scale are not recreated. Therefore,
the conditions at the boundary should be viewed as macroscopic, not
microscopic. [2]

Because the derivation process of the Moment Method for the D2Q9 lattice

is fully covered in [2] and several later works, it will be skipped here. Next, we

extend for the first time the Moment Method to three dimensions and explicitly

derive conditions from this method for the D3Q19 model.

3.6.5 Moment Method for the D3Q19 model

Similar to D2Q9 having 9 independent moments, the D3Q19 model has exactly

19 independent moments, which are all listed in (3.63). Starting from the zeroth

velocity moment, which is otherwise known as density, and going all the way to

the third and fourth order moments, whose physical interpretation are not as

clear.

62

3. LATTICE BOLTZMANN METHOD

ρ =
∑
i

fi = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9+
+ f10 + f11 + f12 + f13 + f14 + f15 + f16 + f17 + f18

ρux =
∑
i

ficix = f1 − f2 + f7 − f8 − f9 + f10 + f15 − f16 − f17 + f18

ρuy =
∑
i

ficiy = f3 − f4 + f7 − f8 + f9 − f10 + f11 − f12 − f13 + f14

ρuz =
∑
i

ficiz = f5 − f6 + f11 − f12 + f13 − f14 + f15 − f16 + f17 − f18

Πxx =
∑
i

fic
2
ix = f1 + f2 + f7 + f8 + f9 + f10 + f15 + f16 + f17 + f18

Πyy =
∑
i

fic
2
iy = f3 + f4 + f7 + f8 + f9 + f10 + f11 + f12 + f13 + f14

Πzz =
∑
i

fic
2
iz = f5 + f6 + f11 + f12 + f13 + f14 + f15 + f16 + f17 + f18

Πxy =
∑
i

ficixciy = f7 + f8 − f9 − f10

Πxz =
∑
i

ficixciz = f15 + f16 − f17 − f18

Πyz =
∑
i

ficiyciz = f11 + f12 − f13 − f14

Qxxy =
∑
i

fic
2
ixciy = f7 − f8 + f9 − f10

Qxxz =
∑
i

fic
2
ixciz = f15 − f16 + f17 − f18

Qxyy =
∑
i

ficixc
2
iy = f7 − f8 − f9 + f10

Qxzz =
∑
i

ficixc
2
iz = f15 − f16 − f17 + f18

Qyyz =
∑
i

fic
2
iyciz = f11 − f12 + f13 − f14

Qyzz =
∑
i

ficiyc
2
iz = f11 − f12 − f13 + f14

Sxxyy =
∑
i

fic
2
ixc

2
iy = f7 + f8 + f9 + f10

Sxxzz =
∑
i

fic
2
ixc

2
iz = f15 + f16 + f17 + f18

Syyzz =
∑
i

fic
2
iyc

2
iz = f11 + f12 + f13 + f14

(3.63)

These moments are used in calculating the incoming particle distribution func-

tions at the local domain boundaries. There are five unknown distribution func-

tions at every face boundary, nine unknowns at every edge boundary and twelve

unknowns at every corner boundary. It means that five, nine and twelve linearly

63

3. LATTICE BOLTZMANN METHOD

independent moments are required at every face, edge and corner, respectively, to

solve for the unknown distribution functions. However, not all of the moments in

(3.63) are linearly independent. In fact, they can be placed into groups of unique

combinations of distribution functions for any given boundary whether it is at

the face, the edge or the corner. Next, the derivation process for each of these dif-

ferent cases will be described, distinguishing between velocity and pressure type

boundaries.

Face velocity

So, from the list (3.63), five hydrodynamic moments are chosen to impose a

boundary condition on the face for velocity.

If, for example, the west boundary is chosen (see Figure 3.7), the unknown

incoming PDFs at the west face are f1, f7, f10, f15 and f18. Grouped up moments

and their corresponding combinations of PDFs are shown in Table 3.4. Moments

that are not listed in Table 3.4 do not contain the information of the unknown

functions. They are Πyz, Qyyz, Qyzz and Syyzz. By looking at their respective

expressions in (3.63) one can confirm that they do not contain the unknown

functions of interest.

The moments in a row are not linearly independent so only one moment can

be picked from each row to impose a constraint on it and to solve the system for

the unknowns at the boundary. The aim is to pick hydrodynamic moments only

and avoid selecting the higher order moments as much as possible because they

do not have a clear physical meaning.

For the velocity boundary it is logical to select the three momentums, ρux, ρuy

and ρuz. The remaining two moments are chosen to be the momentum fluxes,

64

3. LATTICE BOLTZMANN METHOD

Figure 3.7: Unknown incoming distribution functions (red) at the west face
boundary.

Πyy and Πzz due to a simpler physical interpretation compared to the higher

order moments. Now that there are five linearly independent equations for the

five unknowns, the system can finally be solved. Before solving it, the momentum

fluxes need to be defined. Using the first two terms from the Chapman−Enskog

multiscale expansion, see Section 3.4, the momentum flux is approximated as

Πyy = Πeq
yy + εΠ(1)

yy +O(ε2), Πzz = Πeq
zz + εΠ(1)

zz +O(ε2). (3.64)

Replacing the terms in the above expressions with (3.28) and (3.34) gives

Πyy = ρ

3 + ρu2
y −

2ρτ
3
∂uy
∂y

, Πzz = ρ

3 + ρu2
z −

2ρτ
3
∂uz
∂z

. (3.65)

65

3. LATTICE BOLTZMANN METHOD

Table 3.4: Moment combinations at the west face boundary.

Moments Unknown f combinations
1 ρ, ρux,Πxx f1 + f7 + f10 + f15 + f18
2 ρuy,Πxy, Qxxy f7 − f10
3 ρuz,Πxz, Qxxz f15 − f18
4 Πyy, Qxyy, Sxxyy f7 + f10
5 Πzz, Qxzz, Sxxzz f15 + f18

For simple boundaries, such as velocity inlet, slip and no-slip walls moving with

a constant velocity, the tangential velocity derivatives in (3.64) can be discarded

giving the following expressions for the momentum fluxes at the velocity face

boundary:

Πyy = ρ

3 + ρu2
y, Πzz = ρ

3 + ρu2
z. (3.66)

Setting the velocities at the face boundary to Ux, Uy and Uz, and using the

selected moment expressions from (3.63), the system of equations takes the fol-

lowing form:



f1 + f7 + f10 + f15 + f18 = ρUx − f2 + f8 + f9 + f16 + f17,

f7 − f10 = ρUy − f3 + f4 + f8 − f9 − f11 + f12 + f13 − f14,

f15 − f18 = ρUz − f5 + f6 − f11 + f12 − f13 + f14 + f16 − f17,

f7 + f10 = ρ

3 + ρU2
y − f3 − f4 − f8 − f9 − f11 − f12 − f13 − f14,

f15 + f18 = ρ

3 + ρU2
z − f5 − f6 − f11 − f12 − f13 − f14 − f16 − f17.

(3.67)

66

3. LATTICE BOLTZMANN METHOD

Solving the system (3.67) yields the unknown functions:



f1 = ρ

(
Ux − U2

y − U2
z −

2
3

)
+ f2 + f3 + f4 + f5 + f6+

+2(f8 + f9 + f11 + f12 + f13 + f14 + f16 + f17),

f7 = ρ

2

(
1
3 + Uy(Uy + 1)

)
− f3 − f9 − f11 − f14,

f10 = ρ

2

(
1
3 + Uy(Uy − 1)

)
− f4 − f8 − f12 − f13,

f15 = ρ

2

(
1
3 + Uz(Uz + 1)

)
− f5 − f11 − f13 − f17,

f18 = ρ

2

(
1
3 + Uz(Uz − 1)

)
− f6 − f12 − f14 − f16.

(3.68)

The first equation from (3.68) can be simplified by using the consistency

condition, which relates the density and momentum normal to the west face

boundary,

ρ = f0+f3+f4+f5+f6+f11+f12+f13+f14+2(f2+f8+f9+f16+f17)+ρUx, (3.69)

and substituting it into the equation for f1. The unknown functions at the west

face velocity boundary can then be expressed in the following compact form:



f1 = ρ

(
1
3 − U

2
y − U2

z

)
− f0 − f2 + f11 + f12 + f13 + f14,

f7 = ρ

2

(
1
3 + Uy(Uy + 1)

)
− f3 − f9 − f11 − f14,

f10 = ρ

2

(
1
3 + Uy(Uy − 1)

)
− f4 − f8 − f12 − f13,

f15 = ρ

2

(
1
3 + Uz(Uz + 1)

)
− f5 − f11 − f13 − f17,

f18 = ρ

2

(
1
3 + Uz(Uz − 1)

)
− f6 − f12 − f14 − f16.

(3.70)

67

3. LATTICE BOLTZMANN METHOD

Face pressure

Pressure boundary requires the density to be specified at the west face, leaving

out the normal momentum as it is now an unknown moment (see Table 3.4). So,

the only change from the velocity type boundary is the selection of the density, ρ,

in the first group. Other momentums, ρuy and ρuz, and momentum fluxes, Πyy

and Πzz, remain unchanged.

Restricting the pressure inlet boundary to normal flow, the tangential veloc-

ities are set to zero. Due to the velocities being zero and their derivatives being

zero, only the first terms in the momentum flux expressions remain from (3.65)

giving

ρuy = 0, ρuz = 0, Πyy = ρ

3 , Πzz = ρ

3 . (3.71)

Setting the pressure value at the boundary to p = ρ0c
2
s = ρ0

3 , where ρ0 is

being imposed, and solving the system,



f1 + f7 + f10 + f15 + f18 = ρ0 − f0 − f2 − f3 − f4 − f5 − f6 − f8+
−f9 − f11 − f12 − f13 − f14 − f16 − f17,

f7 − f10 = −f3 + f4 + f8 − f9 − f11 + f12 + f13 − f14,

f15 − f18 = −f5 + f6 − f11 + f12 − f13 + f14 + f16 − f17,

f7 + f10 = ρ0

3 − f3 − f4 − f8 − f9 − f11 − f12 − f13 − f14,

f15 + f18 = ρ0

3 − f5 − f6 − f11 − f12 − f13 − f14 − f16 − f17.

(3.72)

68

3. LATTICE BOLTZMANN METHOD

gives the following unknown functions for the west face boundary:



f1 = ρ0

3 − f0 − f2 + f11 + f12 + f13 + f14,

f7 = ρ0

6 − f3 − f9 − f11 − f14,

f10 = ρ0

6 − f4 − f8 − f12 − f13,

f15 = ρ0

6 − f5 − f11 − f13 − f17,

f18 = ρ0

6 − f6 − f12 − f14 − f16.

(3.73)

The normal velocity, ux, can be calculated as

ux = 1− 1
ρ0

(
f0 + f3 + f4 + f5 + f6 + f11 + f12 + f13 + f14+

+ 2(f2 + f8 + f9 + f16 + f17)
)
.

(3.74)

Edge velocity

For the edge boundary, the number of unknown PDFs is nine, and nine linearly

independent combinations are required to solve for the unknowns.

For example, for the south-west edge boundary the unknown PDFs are shown

in red in Figure 3.8. They are the same five from the west face plus five functions

from the south face. Because one function overlaps, f7 in this case, there end up

being nine unknown function: f1, f3, f7, f9, f10, f11, f14, f15 and f18. The differ-

ent combinations of the incoming distribution functions and the corresponding

moments are listed in Table 3.5. Ideally, one would like to pick the first nine

appropriate moments, however the combinations appearing to be different are

not all linearly independent. One can easily check that by looking at the rows 4,

9 and 10 in Table 3.5, for example.

69

3. LATTICE BOLTZMANN METHOD

Figure 3.8: Unknown incoming distribution functions (red) at the south-west
edge boundary.

The matrix composed from these expressions is a rank-two matrix meaning

that only two of the involved different row moments can be selected to specify a

boundary condition.

rank



4 f11 − f14 + f15 − f18 ρuz

Πxz9 f15 − f18 Qxxz

Πyz10 f11 − f14 Qyyz


= 2 (3.75)

70

3. LATTICE BOLTZMANN METHOD

Table 3.5: Unknown function combinations and the moments at the south-west
edge boundary.

Moments Unknown f combinations
1 ρ f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18
2 ρux f1 + f7 − f9 + f10 + f15 + f18
3 ρuy f3 + f7 + f9 − f10 + f11 + f14
4 ρuz f11 − f14 + f15 − f18
5 Πxx f1 + f7 + f9 + f10 + f15 + f18
6 Πyy f3 + f7 + f9 + f10 + f11 + f14
7 Πzz f11 + f14 + f15 + f18
8 Πxy f7 − f9 − f10
9 Πxz, Qxxz f15 − f18
10 Πyz, Qyyz f11 − f14
11 Qxxy f7 + f9 − f10
12 Qxyy f7 − f9 + f10
13 Qxzz, Sxxzz f15 + f18
14 Qyzz, Syyzz f11 + f14
15 Sxxyy f7 + f9 + f10

The same simply noticeable restriction applies to the rows 7, 13 and 14.

rank



7 f11 + f14 + f15 + f18 Πzz

Qxzz13 f15 + f18 Sxxzz

Qyzz14 f11 + f14 Syyzz


= 2 (3.76)

So, in a situation where there are more unknown combinations than unknowns,

the linearly independent rows have to be selected prioritising the physically in-

terpretable ones. By looking at the rank of the matrix consisting of the unknown

combinations for the south-west edge boundary, it turns out that the first seven

rows from Table 3.5 are all linearly independent. Other dependencies are less

obvious. The row 8 is a linear combination of the rows 1, 2 and 3.

71

3. LATTICE BOLTZMANN METHOD

rank


1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 ρ

2 f1 + f7 − f9 + f10 + f15 + f18 ρux

3 f3 + f7 + f9 − f10 + f11 + f14 ρuy

8 f7 − f9 − f10 Πxy

 = 3 (3.77)

The rows 9 and 10 have already been covered earlier. The rows 11 and 12 are

a linear combination of the rows 1, 3, 5 and 1, 2, 6, respectively.

rank


1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 ρ

3 f3 + f7 + f9 − f10 + f11 + f14 ρuy

5 f1 + f7 + f9 + f10 + f15 + f18 Πxx

11 f7 + f9 − f10 Qxxy

 = 3 (3.78)

rank


1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 ρ

2 f1 + f7 − f9 + f10 + f15 + f18 ρux

6 f3 + f7 + f9 + f10 + f11 + f14 Πyy

12 f7 − f9 + f10 Qxyy

 = 3 (3.79)

And finally, the row 15 is a linear combination of the rows 1, 5 and 6.

rank


1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 ρ

5 f1 + f7 + f9 + f10 + f15 + f18 Πxx

6 f3 + f7 + f9 + f10 + f11 + f14 Πyy

15 f7 + f9 + f10 Sxxyy

 = 3 (3.80)

Considering the available options from the analysis above, for the velocity

boundary at the south-west edge, the first nine appropriate moments are the

three momentums, ρux, ρuy, ρuz, the momentum fluxes and shear stresses, Πxx,

Πyy, Πzz, Πxy, Πxz or Πyz, and one higher order moment, Qxzz or Qyzz. There is

72

3. LATTICE BOLTZMANN METHOD

still some freedom in selecting the moments to complete the system, however no

matter how the nine moments are chosen, having the higher order moment in the

selection is inevitable. Basing the choice of the two moments on the symmetry of

the components, meaning that either Πxz and Qyzz or Πyz and Qxzz are selected,

the final system is written as

rank



2 f1 + f7 − f9 + f10 + f15 + f18 ρux

3 f3 + f7 + f9 − f10 + f11 + f14 ρuy

4 f11 − f14 + f15 − f18 ρuz

5 f1 + f7 + f9 + f10 + f15 + f18 Πxx

6 f3 + f7 + f9 + f10 + f11 + f14 Πyy

7 f11 + f14 + f15 + f18 Πzz

8 f7 − f9 − f10 Πxy

9 f15 − f18 Πxz

14 f11 + f14 Qyzz



= 9. (3.81)

Using the truncated approximation (3.65) for the momentum fluxes, Πxx,Πyy

and Πzz, and shear stresses, Πxy and Πxz, the higher order moment Qyzz is ap-

proximated using its equilibrium value (3.33), where the terms of order O(u3)

are neglected. This can be justified by the fact that only the equilibrium value

of Qαβγ is used in the recovery of the Navier−Stokes equation up to the second

order through the Chapman−Enskog analysis. The equilibrium approximation is

written as

Qyzz = ρ

3(uy + uzδyz + uzδyz) = ρ

3uy. (3.82)

Setting the south-west edge boundary velocities to Ux, Uy and Uz, the unknown

distribution function values are given as

73

3. LATTICE BOLTZMANN METHOD



f1 = ρ

(
2
3(2Uy − 1) + Ux − UxUy − U2

y − U2
z

)
+

+f2 + f5 + f6 + 2(f4 + f16 + f17) + 4(f8 + f12 + f13),

f3 = ρ

(
1
3(2Uy − 1) + Ux − UxUy − U2

x

)
+

+f4 + 2(f2 + f16 + f17) + 4f8,

f7 = ρ

2

(
2
3 − Ux − Uy + (Ux + Uy)2

)
+

−f2 − f4 − f12 − f13 − f16 − f17 − 3f8,

f9 = ρ

2

(
1
3 − Ux + U2

x

)
− f2 − f8 − f16 − f17,

f10 = ρ

2

(
1
3 − Uy + U2

y

)
− f4 − f8 − f12 − f13,

f11 = ρ

2

(
1
3Uy + Uz(1− Ux)

)
− 1

2(f5 − f6) + f12 + f16 − f17,

f14 = ρ

2

(
1
3Uy − Uz(1− Ux)

)
+ 1

2(f5 − f6) + f13 − f16 + f17,

f15 = ρ

2

(
1
3(1− Uy) + Uz(Uz + Ux)

)
− 1

2(f5 + f6)− f12 − f13 − f16,

f18 = ρ

2

(
1
3(1− Uy) + Uz(Uz − Ux)

)
− 1

2(f5 + f6)− f12 − f13 − f17,

(3.83)

The density in the above equations is given by the formula,

ρ = f0 + f5 + f6 + 2(f2 + f4 + f12 + f13 + f16 + f17 + 2f8)
1− Ux − Uy + UxUy

, (3.84)

which is expressed in terms of the known distribution functions and the relevant

moments at the south-west edge boundary.

74

3. LATTICE BOLTZMANN METHOD

Edge pressure

Specifying the pressure inlet at the edge is not straight forward. The conditions

there have to agree with the ones at both adjacent faces, but that cannot be

achieved due to the uncertainty of the velocity values. At the south-west edge,

the normal pointing into the domain has components on x and y axis. The

conditions for velocities on the west face read ux = unknown, uy = 0 and uz = 0,

and on the south face they are ux = 0, uy = unknown and uz = 0. Problems arise

when trying to merge these conditions. Tangential velocity is easy, uz = 0, but

how to know what value to set for the other velocities? Are they both unknown

or both zero, or maybe one is unknown while the other is zero? This is not a

common physical setup, in fact it is far from it. Rarely, if at all, two pressure

inlets are encountered being perpendicular to each other. One possible setup is

shown in Figure 3.9 where two ducts form the perpendicular pressure inlets. In

this situation there is a solid wall separating the two openings meaning that all

the velocities are zero at that point.

Figure 3.9: Two pressure inlets.

Adopting the idea for the physical conditions at the edge, the system of the

75

3. LATTICE BOLTZMANN METHOD

nine moments can now be formed. The only difference from the velocity edge

boundary is that the pressure is known. Because of this and (3.77), the shear

stress Πxy is left out of the selection leading to

rank



1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 ρ

2 f1 + f7 − f9 + f10 + f15 + f18 ρux

3 f3 + f7 + f9 − f10 + f11 + f14 ρuy

4 f11 − f14 + f15 − f18 ρuz

5 f1 + f7 + f9 + f10 + f15 + f18 Πxx

6 f3 + f7 + f9 + f10 + f11 + f14 Πyy

7 f11 + f14 + f15 + f18 Πzz

9 f15 − f18 Πxz

14 f11 + f14 Qyzz



= 9. (3.85)

Setting the pressure value at the boundary to ρ0 and solving the system formed

from (3.85) gives the following unknown function values at the south-west edge

76

3. LATTICE BOLTZMANN METHOD

boundary:



f1 = ρ0

3 − f0 − f2 + 2(f12 + f13),

f3 = 2ρ0

3 − f0 − f4 − f5 − f6 − 2(f12 + f13),

f7 = −2ρ0

3 + f0 + f2 + f4 + f5 + f6 + f8 + f12 + f13 + f16 + f17,

f9 = ρ0

6 − f2 − f8 − f16 − f17,

f10 = ρ0

6 − f4 − f8 − f12 − f13,

f11 = −1
2(f5 − f6) + f12 + f16 − f17,

f14 = 1
2(f5 − f6) + f13 − f16 + f17,

f15 = ρ0

6 −
1
2(f5 + f6)− f12 − f13 − f16,

f18 = ρ0

6 −
1
2(f5 + f6)− f12 − f13 − f17.

(3.86)

Edge pressure-velocity

In situations where the two adjacent faces have different boundary conditions

imposed on them, namely velocity and pressure, the density together with the

three momentums have to be specified simultaneously at the edge boundary. It

means that ρ, ρux, ρuy and ρuz are definitely selected from Table 3.5. Momentum

fluxes Πxx, Πyy and Πzz also get included. Only one of the shear stresses, Πxz or

Πyz, can be selected because of (3.75), and only one of the third order moments,

Qxzz or Qyzz, is a viable option due to (3.76). Following the choice made earlier

when talking about the velocity and pressure boundaries, the moments Πxz and

Qyzz are selected to complete the system. This leads to the same selection of

moments (3.85) as in the pressure-pressure edge case.

77

3. LATTICE BOLTZMANN METHOD

Setting the density to ρ0 and velocities to Ux, Uy, Uy, and solving for the

unknown distribution functions gives the following expressions for the pressure-

velocity boundary at the south-west edge:



f1 = ρ

(
1
3(1 + Uy)− U2

y − U2
z

)
− f0 − f2 + 2(f12 + f13),

f3 = ρ

(
1
3(2− Uy)− U2

x

)
− f0 − f4 − f5 − f6 − 2(f12 + f13),

f7 = ρ

2

(
− 4

3 + Ux(1 + Ux) + Uy(1 + Uy)
)

+

+f0 + f2 + f4 + f5 + f6 + f8 + f12 + f13 + f16 + f17,

f9 = ρ

2

(
1
3 − Ux + U2

x

)
− f2 − f8 − f16 − f17,

f10 = ρ

2

(
1
3 − Uy + U2

y

)
− f4 − f8 − f12 − f13,

f11 = ρ

2

(
1
3Uy + Uz(1− Ux)

)
− 1

2(f5 − f6) + f12 + f16 − f17,

f14 = ρ

2

(
1
3Uy − Uz(1− Ux)

)
+ 1

2(f5 − f6) + f13 − f16 + f17,

f15 = ρ

2

(
1
3(1− Uy) + Uz(Uz + Ux)

)
− 1

2(f5 + f6)− f12 − f13 − f16,

f18 = ρ

2

(
1
3(1− Uy) + Uz(Uz − Ux)

)
− 1

2(f5 + f6)− f12 − f13 − f17.

(3.87)

Corner velocity

For the corner boundary, the number of unknown PDFs and therefore the number

of required linearly independent equations is twelve. The low-south-west corner

node is considered here. It means that the twelve unknown functions are f1, f3,

f5, f7, f9, f10, f11, f13, f14, f15, f17 and f18 (see Figure 3.10).

Listing all the unknown combinations for the low-south-west corner boundary

gives a total of 19 different equations. They are shown in Table 3.6. Every

78

3. LATTICE BOLTZMANN METHOD

Figure 3.10: Unknown incoming distribution functions (red) at the low-south-
west corner boundary.

moment has a unique combination of the unknown distribution functions so one

is left with no choice but selecting the first twelve appropriate moments to impose

the boundary conditions on them.

The first nine rows of the moment combinations in Table 3.6 are linearly

independent. The row 10 turns out to be a linear combination of the rows 1, 2,

3, 4, 8 and 9.

79

3. LATTICE BOLTZMANN METHOD

Table 3.6: Unknown function combinations and the moments at the low-south-
west edge boundary.

Moments Unknown f combinations
1 ρ f1 + f3 + f5 + f7 + f9 + f10 + f11 + f13 + f14 + f15 + f17 + f18
2 ρux f1 + f7 − f9 + f10 + f15 − f17 + f18
3 ρuy f3 + f7 + f9 − f10 + f11 − f13 + f14
4 ρuz f5 + f11 + f13 − f14 + f15 + f17 − f18
5 Πxx f1 + f7 + f9 + f10 + f15 + f17 + f18
6 Πyy f3 + f7 + f9 + f10 + f11 + f13 + f14
7 Πzz f5 + f11 + f13 + f14 + f15 + f17 + f18
8 Πxy f7 − f9 − f10
9 Πxz f15 − f17 − f18
10 Πyz f11 − f13 − f14
11 Qxxy f7 + f9 − f10
12 Qxxz f15 + f17 − f18
13 Qxyy f7 − f9 + f10
14 Qxzz f15 − f17 + f18
15 Qyyz f11 + f13 − f14
16 Qyzz f11 − f13 + f14
17 Sxxyy f7 + f9 + f10
18 Sxxzz f15 + f17 + f18
19 Syyzz f11 + f13 + f14

rank



f1 + f3 + f5 + f7 + f9 + f10+1 +f11 + f13 + f14 + f15 + f17 + f18
ρ

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 ρux

3 f3 + f7 + f9 − f10 + f11 − f13 + f14 ρuy

4 f5 + f11 + f13 − f14 + f15 + f17 − f18 ρuz

8 f7 − f9 − f10 Πxy

9 f15 − f17 − f18 Πxz

10 f11 − f13 − f14 Πyz



= 6 (3.88)

80

3. LATTICE BOLTZMANN METHOD

The row 12 is a linear combination of the rows 2, 5, 8, 9 and 11.

rank



2 f1 + f7 − f9 + f10 + f15 − f17 + f18 ρux

5 f1 + f7 + f9 + f10 + f15 + f17 + f18 Πxx

8 f7 − f9 − f10 Πxy

9 f15 − f17 − f18 Πxz

11 f7 + f9 − f10 Qxxy

12 f15 + f17 − f18 Qxxz


= 5 (3.89)

The rows 13 and 14 cannot be expressed as a linear combinations of the

preceding rows so they both make the selection. However, the rows 15 and 16

can be expressed in terms of the rows 1, 2, 4, 6, 9, 13 and 1, 2, 3, 7, 8, 14,

respectively.

rank



f1 + f3 + f5 + f7 + f9 + f10+1 +f11 + f13 + f14 + f15 + f17 + f18
ρ

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 ρux

4 f5 + f11 + f13 − f14 + f15 + f17 − f18 ρuz

6 f3 + f7 + f9 + f10 + f11 + f13 + f14 Πyy

9 f15 − f17 − f18 Πxz

13 f7 − f9 + f10 Qxyy

15 f11 + f13 − f14 Qyyz



= 6 (3.90)

81

3. LATTICE BOLTZMANN METHOD

rank



f1 + f3 + f5 + f7 + f9 + f10+1 +f11 + f13 + f14 + f15 + f17 + f18
ρ

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 ρux

3 f3 + f7 + f9 − f10 + f11 − f13 + f14 ρuy

7 f5 + f11 + f13 + f14 + f15 + f17 + f18 Πzz

8 f7 − f9 − f10 Πxy

14 f15 − f17 + f18 Qxzz

16 f11 − f13 + f14 Qyzz



= 6 (3.91)

For the velocity boundary, the main thing is to pick the three momentums,

ρux, ρuy and ρuz, followed by the momentum fluxes and shear stresses, Πxx, Πyy,

Πzz, Πxy, Πxz and Πyz. Then ideally choosing the third order moments before

considering anything else. Therefore, the last three fourth order moments from

Table 3.6, Sxxyy, Sxxzz and Syyzz, are overlooked for now. There are enough

moments to impose a boundary condition at the corner without them.

So, not counting the density, the next ten moment combinations are linearly

independent. Together with the rows 13 and 14 they make the basic complete

system of equations ready to be solved. Again, there is still some freedom left in

choosing which moments will be included in the final system, but there is no clear

reason why one would be chosen over the other. For instance, which is better out

of the two in each case? Is it Qxxy or Qxxz, Qxyy or Qyyz, Qxzz or Qyzz? One could

probably argue that there are two mathematically explainable options. From a

symmetry point of view, either Qxxy, Qyyz and Qxzz are selected or Qxxz, Qxyy

and Qyzz. This is as far as the mathematical reasoning can take. Any further

choices are left to be made subjectively.

82

3. LATTICE BOLTZMANN METHOD

The final system of moment combinations includes the momentums, ρux, ρuy

and ρuz, the momentum fluxes and shear stresses, Πxx, Πyy, Πzz, Πxy, Πxz and

Πyz, and three higher order moments, Qxxy, Qyyz and Qxzz. Alternatively, one can

choose the other trio of the third order moments for the corner. Nevertheless, the

system for solving the twelve unknowns at the low-south-east corner boundary is

given below.

rank



2 f1 + f7 − f9 + f10 + f15 − f17 + f18 ρux

3 f3 + f7 + f9 − f10 + f11 − f13 + f14 ρuy

4 f5 + f11 + f13 − f14 + f15 + f17 − f18 ρuz

5 f1 + f7 + f9 + f10 + f15 + f17 + f18 Πxx

6 f3 + f7 + f9 + f10 + f11 + f13 + f14 Πyy

7 f5 + f11 + f13 + f14 + f15 + f17 + f18 Πzz

8 f7 − f9 − f10 Πxy

9 f15 − f17 − f18 Πxz

10 f11 − f13 − f14 Πyz

11 f7 + f9 − f10 Qxxy

14 f15 − f17 + f18 Qxzz

15 f11 + f13 − f14 Qyyz



= 12. (3.92)

Using the derived approximations for the second and third order moments at

the boundaries, (3.65) and (3.82), and setting the low-south-west corner velocities

83

3. LATTICE BOLTZMANN METHOD

to Ux, Uy and Uz, the unknown incoming function values are given as



f1 = ρ

(
1
3(2Ux + Uz − 1) + Uy(1− Ux − Uy − Uz)

)
+ f2 + 2f4 + 4f8 + 4f12,

f3 = ρ

(
1
3(2Uy + Ux − 1) + Uz(1− Ux − Uy − Uz)

)
+ f4 + 2f6 + 4f12 + 4f16,

f5 = ρ

(
1
3(2Uz + Uy − 1) + Ux(1− Ux − Uy − Uz)

)
+ f6 + 2f2 + 4f8 + 4f16,

f7 = ρ

2

(
1
3(1− Uz) + Uy

(
Ux + Uy + Uz −

2
3

))
− f4 − f8 − 2f12,

f9 = ρUy
2

(
1
3 − Ux

)
+ f8,

f10 = ρ

2

(
1
3(1− Uz) + Uy(Uy + Uz − 1)

)
− f4 − f8 − 2f12,

f11 = ρ

2

(
1
3(1− Ux) + Uz

(
Ux + Uy + Uz −

2
3

))
− f6 − f12 − 2f16,

f13 = ρUz
2

(
1
3 − Uy

)
+ f12,

f14 = ρ

2

(
1
3(1− Ux) + Uz(Ux + Uz − 1)

)
− f6 − f12 − 2f16,

f15 = ρ

2

(
1
3(1− Uy) + Ux

(
Ux + Uy + Uz −

2
3

))
− f2 − f16 − 2f8,

f17 = ρ

2

(
1
3(1− Uy) + Ux(Ux + Uy − 1)

)
− f2 − f16 − 2f8,

f18 = ρUx
2

(
1
3 − Uz

)
+ f16.

(3.93)

This is a general form including all the velocity components. It simplifies signif-

icantly when specific cases are considered. For example, all the velocity terms

disappear when the no-slip condition is imposed at the corner.

The density in the above equations (3.93) is calculated from the expression,

ρ−ρUx−ρUy−ρUz+Πxy+Πxz+Πyz = f0+2(f2+f4+f6)+4(f8+f12+f16), (3.94)

84

3. LATTICE BOLTZMANN METHOD

which links the density with the known distribution functions. Rearranging (3.94)

and substituting in the approximation values (3.66) for the moments gives the

density at the low-south-west corner boundary:

ρ = f0 + 2(f2 + f4 + f6) + 4(f8 + f12 + f16)
1− Ux(1− Uy − Uz)− Uy(1− Uz)− Uz

. (3.95)

Corner pressure-velocity

As discussed earlier when considering a physical system with multiple pressure

inlets, no-slip condition for velocity is applied at the point connecting the different

pressure inlet boundaries. Similarly for a system with mixed type boundaries,

both the density and velocity conditions have to be specified. If density is to be

included into the linearly independent moment selection (3.92) then from (3.88)

one of the moments must be left out. Velocities are set, which means that one

of the shear stresses must be discarded. There is no clear preference for which is

the odd one out as they form a closed symmetry group. A choice has to be made

so Πyz is discarded giving the following selection of moments:

85

3. LATTICE BOLTZMANN METHOD

rank



f1 + f3 + f5 + f7 + f9 + f10+1 +f11 + f13 + f14 + f15 + f17 + f18
ρ

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 ρux

3 f3 + f7 + f9 − f10 + f11 − f13 + f14 ρuy

4 f5 + f11 + f13 − f14 + f15 + f17 − f18 ρuz

5 f1 + f7 + f9 + f10 + f15 + f17 + f18 Πxx

6 f3 + f7 + f9 + f10 + f11 + f13 + f14 Πyy

7 f5 + f11 + f13 + f14 + f15 + f17 + f18 Πzz

8 f7 − f9 − f10 Πxy

9 f15 − f17 − f18 Πxz

11 f7 + f9 − f10 Qxxy

14 f15 − f17 + f18 Qxzz

15 f11 + f13 − f14 Qyyz



= 12. (3.96)

Setting the density to ρ0 and velocities to Ux, Uy and Uz, the unknown distri-

bution functions for pressure-velocity at the low-south-west corner boundary are

86

3. LATTICE BOLTZMANN METHOD

given as



f1 = ρ0

(
1
3(2− 2Uz − Ux) + UxUz − U2

y

)
− f0 − f2 − 2f6 − 4f16,

f3 = ρ0

(
1
3(2− 2Ux − Uy) + UxUy − U2

z

)
− f0 − f4 − 2f2 − 4f8,

f5 = ρ0

(
1
3(2Uz + Uy − 1) + Ux(1− Ux − Uy − Uz)

)
+

+f6 + 2f2 + 4f8 + 4f16,

f7 = ρ0

2

(
1
3(2Uz + Uy − 2) + Ux − UxUz + U2

y

)
+

+1
2f0 + f2 + f6 + f8 + 2f16,

f9 = ρ0Uy
2

(
1
3 − Ux

)
+ f8,

f10 = ρ0

2

(
1
3(2Uz − 2) + Ux − UxUy − UxUz + U2

y

)
+

+1
2f0 + f2 + f6 + f8 + 2f16,

f11 = ρ0

2

(
1
3(2Ux + Uz − 2) + Uy − UxUy + U2

z

)
+

+1
2f0 + f2 + f4 + f8 + 2f12,

f13 = ρ0

2

(
1− 2

3Uz − Uy − Ux(1− Uy − Uz)
)

+

−1
2f0 − f2 − f4 − f6 − f12 − 2f8 − 2f16,

f14 = ρ0

2

(
1
3(1− Ux) + Uz(Ux + Uz − 1)

)
− f6 − f12 − 2f16,

f15 = ρ0

2

(
1
3(1− Uy) + Ux

(
Ux + Uy + Uz −

2
3

))
− f2 − f16 − 2f8,

f17 = ρ0

2

(
1
3(1− Uy) + Ux(Ux + Uy − 1)

)
− f2 − f16 − 2f8,

f18 = ρ0Ux
2

(
1
3 − Uz

)
+ f16.

(3.97)

87

3. LATTICE BOLTZMANN METHOD

Corner pressure

To obtain the unknown distribution function values for the multiple pressure inlet

at the low-south-west corner all the velocities in the above system of equations

have to be set to zero to realise the no-slip boundary condition for velocity. The

system (3.97) simplifies to



f1 = 2ρ0

3 − f0 − f2 − 2f6 − 4f16,

f3 = 2ρ0

3 − f0 − f4 − 2f2 − 4f8,

f5 = −ρ0

3 + f6 + 2f2 + 4f8 + 4f16,

f7 = −ρ0

3 + 1
2f0 + f2 + f6 + f8 + 2f16,

f9 = f8,

f10 = −ρ0

3 + 1
2f0 + f2 + f6 + f8 + 2f16,

f11 = −ρ0

3 + 1
2f0 + f2 + f4 + f8 + 2f12,

f13 = ρ0

2 −
1
2f0 − f2 − f4 − f6 − f12 − 2f8 − 2f16,

f14 = ρ0

6 − f6 − f12 − 2f16,

f15 = ρ0

6 − f2 − f16 − 2f8,

f17 = ρ0

6 − f2 − f16 − 2f8,

f18 = f16.

(3.98)

3.7 Collision schemes

Lattice Boltzmann method comes with a range of collision schemes that vary in

complexity, but also accuracy and stability.

88

3. LATTICE BOLTZMANN METHOD

3.7.1 Single-relaxation-time model

The simplest and most popular is the single relaxation time scheme or the lattice

BGK as mentioned earlier in Section 3.2. It uses a single parameter to relax all

the populations to their equilibria in the collision step,

f ∗i = −1
τ

(fi − f eqi) + Fi (3.99)

where f ∗i is the post collision distribution function and Fi is an external source

term. The relaxation rate is directly related to the viscosity through (3.38), which

means that the accuracy and stability of the method are affected by the choice

of the fluid viscosity. For example, it has been reported that the spatial dis-

cretisation error for the BGK collision operator is proportional to 1
4

(
τ − 1

2∆t
)2

.

Depending on the type of the problem, there are certain values of τ that allow

for the removal of the spatial truncation error contributions to the solution [145],

but generally if this is to be avoided, one has to use an improved collision scheme,

such as TRT or MRT.

3.7.2 Two-relaxation-time model

As the name suggests, TRT uses two relaxation rates. One is directly linked to

the viscosity of the physical system, while the other is a free parameter that can

be fine-tuned for optimal accuracy and stability. Because the truncation errors

depend on a certain combination of the two parameters, the viscosity is no longer

directly connected to the accuracy of the system, as it is in the BGK model. This

89

3. LATTICE BOLTZMANN METHOD

combination is referred to as the magic parameter, and it is expressed as

Λ =
(1
ω+ −

1
2

)(1
ω−
− 1

2

)
, (3.100)

where ω+ is the symmetric relaxation rate that is related to viscosity, and ω− is

the antisymmetric rate that can be freely adjusted for stability purposes. Note

that the relaxation rate and time have an inverse proportionality, ω± = 1
τ±

. This

separation of the symmetric and antisymmetric elements is the main idea of the

TRT model. Because all the velocity sets are symmetric, distribution functions

can be paired up in terms of their velocities as ci = −cı̄ forming a so-called link

[146]. Any link can be decomposed into its symmetric and antisymmetric parts

as
f+
i = 1

2(fi + fı̄), f−i = 1
2(fi − fı̄),

f eq+i = 1
2(f eqi + f eqı̄), f eq−i = 1

2(f eqi − f
eq
ı̄).

(3.101)

The rest population is its own opposite so it only has a symmetric part, f+
i = fi

and f eq+i = f eqi , and a zero antisymmetric component, f−i = 0 and f eq−i = 0.

Using the introduced components, the TRT post-collision distribution function

can be written as

f ∗i = − 1
τ+ (f+

i − f
eq+
i)− 1

τ−
(f−i − f

eq−
i) + Fi. (3.102)

The relaxation time related to the viscosity is the symmetric one:

ν = c2
s

(
τ+ − 1

2

)
. (3.103)

90

3. LATTICE BOLTZMANN METHOD

As stated in [115], because the collision step is only performed for one half of the

populations, TRT is computationally as efficient as BGK, but with an improved

control over stability and accuracy. Moreover, TRT is preferred over BGK in

simulations dealing with large boundary areas, like porous media flows. Another

example of systems with large boundary areas is microstructure solidification

where the liquid flows past the growing dendrites due to convection, as discussed

in Section 2.2.

3.7.3 Multiple-relaxation-time model

Originally proposed by d’Humieres [147], MRT is the most general collision

scheme considered in this thesis. It has as many relaxation parameters as there

are distribution functions for a particular velocity set. In the MRT collision

scheme, the relaxation is performed in the moment space rather than the kinetic

space as it is in BGK and TRT. It means that the distribution functions need to

be transformed into the moment space and then transformed back to the kinetic

space to perform the streaming step. The transformation can be written down

using matrix form as

m = Mf , (3.104)

where m is the moment column vector of length q as in DdQq, M is the transfor-

mation matrix of size q × q, and f is the distribution function column vector. M

can be found using either Hermite polynomials or Gram−Schmidt orthogonali-

sation, the latter of which is a more common procedure. Sparing the derivation

91

3. LATTICE BOLTZMANN METHOD

process details here, the post-collision distribution function can be written as

f∗ = −M−1SM(f − f eq) + M−1
(
I− S

2

)
MF, (3.105)

where M−1 is the inverse of the transformation matrix, and S is the relaxation

matrix. If the Gram−Schmidt procedure is used, the relaxation matrix is a

diagonal one,

S = diag(s0, s1, . . . , sq−1), (3.106)

implying that every moment mi relaxes to its equilibrium at a corresponding rate

si. There is only a handful of physically meaningful parameters. Conserved quan-

tities have a zero relaxation rate. That applies to mass density and momentum

density when there are no source terms present. Relaxation rate for the shear

stress components is the one linked with the shear viscosity, and another one

linked to the bulk viscosity. All the rest can be tuned freely to improve stability.

I is the identity matrix, and F is the external force term column vector. Forcing

schemes will be discussed in Section 3.8.

3.7.4 Central-moments-based LBM

The cascaded or central-moments-based LBM (CLBM) was originally proposed

by Geier et al. [148] to overcome the shortcomings of the standard BGK and MRT

collision schemes and achieving better stability and higher degree of Galilean in-

variance. The underlying idea of the CLBM is to perform the collision step in

a reference frame that has been shifted by the local hydrodynamic fluid veloc-

ity. Similarly to the MRT sceme, the post-collision distribution function can be

92

3. LATTICE BOLTZMANN METHOD

written as [149]

f∗ = M−1N−1
(

(I− S)Γ + SΓeq +
(
I− S

2

)
Ξ
)
, (3.107)

where N is the shift matrix, Γ is the distribution function in central-moment

space and Ξ is the forcing source term in central-moment space. The factor

(I−S/2) in front of the forcing source term is due to removing implicitness after

the trapezoidal integration of the collision part of the LBE. The transformation

matrix M maps the distribution functions f into the raw moment space where

they are shifted by the matrix N to give central moments as Γ = NMf . The

forcing term follows the same path, Ξ = NMF. Fei and Luo [150] examined

the different forcing schemes suggested by other authors and proposed a more

consistent one with improved accuracy and isotropy. Furthermore, the CLBM

has been successfully used to simulate multiphase [151], shallow water [152] and

thermal flows [149] highlighting the stability feature at low viscosities.

3.7.5 Overview

Several lattice Boltzmann collision schemes have been described above highlight-

ing their advantages and drawbacks to choose a potential candidate to be used in

large-scale simulations of dendritic solidification. Although BGK is the simplest

collision scheme with only a single relaxation time, it fails to offer a numerical sta-

bility control not connected to the physical system. MRT and CLBM overcomes

this drawback by offering individual relaxation rates for each hydrodynamic mo-

ment and several parameters for stability control. Moreover, the CLBM offers

better numerical stability and Galilean invariance than MRT [148]. However, the

93

3. LATTICE BOLTZMANN METHOD

added stability control comes at a cost of an increased computational time [153].

A compromise of the methods described is the TRT collision scheme. It can be as

efficient as BGK, while at the same time offering a stability and accuracy control

that is a simplified version of the MRT one.

3.8 Forcing schemes

Force implementation is not straightforward in lattice Boltzmann. The continu-

ous Boltzmann equation is written as

∂f

∂t
+ ξ · ∇xf + F · ∇ξf = Ω(f), (3.108)

where f = f(x, ξ, t) and F is a body force. Discretisation of (3.108) can be

complicated with the force term present, however one can simply add a source

term to the right hand side of the lattice Boltzmann equation as

fi(x + ciδt, t+ δt)− fi(x, t) = Ωi(f(x, t)) + Fiδt, (3.109)

where the expression for Fi depends on the discretisation order and derivation

process of a particular scheme. Several forcing schemes have been proposed over

the years. The simplest one that satisfies mass and momentum conservation given

by, ∑
i

Fi = 0,
∑
i

ciFi = F, (3.110)

is the one proposed by Luo [154]:

Fi = wi
ci · F
c2
s

. (3.111)

94

3. LATTICE BOLTZMANN METHOD

Unfortunately, this simple forcing scheme has an unwanted residual of

∆res =
(
τ − 1

2

)
∇ · (uF + Fu). (3.112)

This is to do with the force contribution to the momentum flux [155; 156]. To

correct this inaccuracy, the forcing term must meet the following criteria,

∑
i

Fi = 0,∑
i

ciFi = F,∑
i

ciciFi = uF + Fu,

(3.113)

where the first criterion accounts for a mass source, the second one denotes

the momentum source (external force), and the third one prevents the spuri-

ous term (3.112) from appearing in the momentum expression when recovering

the Navier−Stokes equation.

The forcing schemes that do meet the criteria in (3.113) have been proposed

by He, Shan and Doolen [157], and Luo [158], for example.

The HSD scheme [157] (named after the authors) has the source term ex-

pressed as

Fi =
(

1− 1
2τ

) (ci − u) · F
ρc2

s

f eqi . (3.114)

It can be shown that it satisfies the constraints if the term of order O(u3) are

neglected [101]. The velocity is calculated from

ρu =
∑
i

cifi + δt
2 F, (3.115)

which is also the velocity for the equilibrium f eqi (ρ,u).

95

3. LATTICE BOLTZMANN METHOD

Luo’s forcing term [158] can be written as

Fi = wi

(
ci − u
c2
s

+ (ci · u)ci
c4
s

)
· F. (3.116)

The fluid velocity is calculated without using the half contribution of the force,

ρu =
∑
i

cifi, (3.117)

and the same velocity is used to calculate the equilibrium distribution function

f eqi (ρ,u).

3.9 Summary

In this chapter, the lattice Boltzmann method has been described. Originating

from the LGCA, it still embodies several of its great properties: the LBM has a

linear advection term, inherent parallelism, no Poisson solver for pressure, easy

handling of complex geometries. It can be shown to lead to the weakly compress-

ible NSE through the Chapman−Enskog multisacle expansion. Furthermore, by

neglecting the small density variations, the incompressible NSE can be recovered.

All these properties make it a serious contender for an alternative numerical

method.

In 3D, there are three common choices of the velocity sets, D3Q15, D3Q19 and

D3Q27. The fewer the velocities, the more computationally efficient the model.

On the other hand, the more discrete velocities, the more isotropic the lattice and

the more stable the simulations. The D3Q19 lattice is somewhere in the middle

between the two extremes so it is chosen to be used in the calculations in this

96

3. LATTICE BOLTZMANN METHOD

thesis. Moreover, it is a direct extension of the popular D2Q9 model. Because of

that, the results can be easily compared between the two models.

Stability and accuracy of the method have been described seeking the optimal

stability regimes of the flow and recognising the errors affecting the solution. The

stability of the BGK collision scheme strictly depends on the relaxation time τ ,

which is directly linked to the fluid viscosity. To avoid this unphysical setup,

the TRT scheme is considered. It has two separate relaxation times, one for the

physical viscosity and the other for controlling the stability. Although, the MRT

scheme offers more thorough control, it comes at a cost of being computationally

heavier than the BGK. Due to the TRT model offering almost the same stability

control as the MRT scheme and being as computationally efficient as the BGK

scheme, it is the optimal choice of the collision schemes considered here.

Forcing schemes have to meet certain criteria to avoid producing non-zero

residuals in the momentum equation. Both schemes described here, the HSD and

Luo’s, satisfy the conditions given in (3.113) so it is down to the user’s preference

to choose one over the other.

It is not a coincidence that the biggest part of the section is dedicated to the

boundary methods. First of all, different lattice Boltzmann boundary schemes are

described and their merits and faults are listed. The kinetic schemes are simple

and good for complex geometries both in 2D and 3D, but they are normally not

on-site and are τ -dependent. The non-equilibrium bounce-back scheme is a simple

hydrodynamic scheme in 2D, but it gets quite complicated in 3D with all the

momentum corrections and the rest particle distribution function recalculations.

In addition, the moment analysis has revealed that the boundary methods using

some variation of the bounce-back rule are imposing constraints on the third

97

3. LATTICE BOLTZMANN METHOD

order moments. For the standard bounce-back and Zou and He scheme in 2D it

has been shown in [2], and for the 3D non-equilibrium bounce-back it is shown

in Section 3.6.3. The Moment Method is a hydrodynamic scheme, in which the

constraints are set directly on the velocity moments. There is no connection to

the kinetic theory, which means that the macroscopic boundary conditions are

respected and treated properly.

Second of all, by examining the faults of the current 3D boundary schemes, a

new 3D boundary method for the D3Q19 model is proposed that is an extension of

the 2D Moment Method and that overcomes these issues. The derivation process

is fully covered including the description of the face, edge and corner boundary

conditions for both velocity and pressure.

98

Chapter 4

THE NUMERICAL METHOD

4.1 Introduction

In this chapter, the numerical algorithm will be described and the parallelisation

aspect of it will be covered. To assure compatibility with the in-house parallel

software TESA for simulating microstructure solidification, which is written in

Fortran language, the LB code is also written in Fortran. MPI libraries are

used for parallelisation on CPUs and CUDA environment is used for the code

acceleration on GPUs.

4.2 Structure of the LB algorithm

The LB algorithm can be sequentially written out using subroutines or processes.

As the flow diagram shows in Figure 4.1, the LB algorithm consists of preparatory

processes like unit scaling and initialisation, main time loop that comprises calcu-

lations of collisions, streaming, boundary conditions and macroscopic variables,

and an I/O process that periodically outputs data to a file. These subroutines are

99

4. THE NUMERICAL METHOD

discussed in more detail in the next sections providing snippets of pseudocodes

where appropriate.

4.2.1 LB unit scaling

Lattice Boltzmann uses non-dimensional units, commonly called the lattice units,

where both time and space are discretized by unit steps. Density is also assumed

to be unity, and a unit mass follows from the latter.

By knowing the physical entities such as length, velocity, viscosity, tempera-

ture, etc., one can work out the correct values for parameters and variables in LB

units. As many values in LB can be chosen freely as there are variable dimensions

being considered, that is, metre, second, kilogram, kelvin and so on. The rest can

be derived accordingly. It is normally desired to have an adjustable domain size

so node count N in LB is usually one of the chosen entities. Another one that

contains the time dimension is picked depending on the physical problem or the

occasion, whether tunable velocity or viscosity is of interest. Further reasoning

might be the constraints imposed on these two problem defining properties. For

velocity, it is the stability of the method itself, which is limited to low Mach

numbers. For viscosity, it is the positivity constraint, but also the fact that it

should be kept small to reduce any error arising from the potential use of the

bounce-back rule or simply to achieve higher Reynolds numbers on smaller grids.

That is why one might find it necessary to freely manipulate this momentum dif-

fusion parameter. The main idea here is to get time scaling because the physical

grid step size has already been worked out.

∆x = L

NLB

, ∆t = ULB
U
·∆x, ∆t = νLB

ν
·∆x2. (4.1)

100

4. THE NUMERICAL METHOD

Figure 4.1: Flow diagram of the LB algorithm.

101

4. THE NUMERICAL METHOD

Table 4.1: Unit conversion.

Physical parameters LB parameters

L = 10−2 m NLB = 102 ∆x = L
NLB

∆x = 10−4 m

ν = 10−6 m2 s−1 νLB = 10−1 ∆t = νLB

ν
·∆x2 ∆t = 10−3 s

U = 10−2 m s−1 ULB =? ULB = U · ∆t
∆x ULB = 10−1

Re = UL
ν

= 100 ?= ReLB = ULBNLB

νLB
= 100

An easy way to make sure that the scaling is done correctly is to compare a

problem specific dimensionless characteristic such as the flow Reynolds number.

It should give the same value in physical units and in lattice units. A problem with

set physical parameters is given in Table 4.1. Because only kinematic quantities,

namely, time and length, are considered, the number of grid points and the LB

viscosity are chosen as appropriate giving the time step ∆t and spatial step size

∆x. Using these discretisation parameters, the velocity value can then be derived.

The same Reynolds number is obtained in both continuum and the LB approach,

which serves as an indicator suggesting that the scaling is done correctly.

The scaling can be written in code as shown in pseudocode in Listing 4.1.

The length scale dx is calculated on line 1 assuming the longest dimension of

the uniform grid (dx=dy=dz) is L metres long. The diffusive scaling is being used

to obtain the time scale dt from the chosen LB viscosity nu and the physical

kinematic viscosity knu on line 2. Velocity and force are rescaled to lattice units

on lines 3-8, where the unit density r0=1 and the physical density rho are used

for the force rescaling. Note that repeated multiplication is used throughout the

code instead of whole powers because it is computationally less expensive.

102

4. THE NUMERICAL METHOD

LISTINGS 4.1: Unit scaling

1 dx = L/(max(xm,ym,zm)+1) !length scale

2 dt = (nu/knu)*dx*dx !time scale

3 u = u*dt/dx !x velocity

4 v = v*dt/dx !y velocity

5 w = w*dt/dx !z velocity

6 fx = fx*r0/(rho*dx)*dt*dt !x force

7 fy = fy*r0/(rho*dx)*dt*dt !y force

8 fz = fz*r0/(rho*dx)*dt*dt !z force

4.2.2 Initialisation

The equilibrium initialisation of the distribution function is used in the LB algo-

rithm. It takes into account the previous velocity and pressure fields and calcu-

lates the initial distribution functions in the domain. Listing 4.2 shows the typed

out pseudocode version of (4.2) in 3D where the fluid and lattice velocities are

broken down into the components u = {u, v, w} and ci = {cix, ciy, ciz}.

f eqi = wiρ

(
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

)
, (4.2)

The index i represents the discretisation in the velocity space whose range de-

pends on the dimension and the lattice being used, here i = 0− 18. To indicate

that (x,y,z) indices have been dropped inside some of the do loops, the bold font

is used. The density r on line 2 is included to recover the pressure field from the

previous calculations, otherwise the pressure is reset and the obstacle boundaries

might not be respected. The flag stokes on line 3 allows to neglect the nonlinear

103

4. THE NUMERICAL METHOD

terms in the equilibrium distribution function when simulating flows in Stokes

regime.

LISTINGS 4.2: Initialisation

1 do loop through x,y,z,i

2 f(i) = wt(i)*(r*(1&

3 +3*(cx(i)*u+cy(i)*v+cz(i)*w)+(1-stokes)*(0.5*&

4 ((3*(cx(i)*u+cy(i)*v+cz(i)*w))&

5 *(3*(cx(i)*u+cy(i)*v+cz(i)*w)))&

6 -1.5*(u*u+v*v+w*w)))

7 end do

4.2.3 Collision and streaming

Having originated from the LGCA, the lattice Boltzmann equation is already

given in a discretised form and can simply be written as

fi(x + ci∆t, t+ ∆t) = fi(x, t)−
1
τ

(fi(x, t)− f eqi (x, t)) + Fi. (4.3)

Time and space are both normally discretised by using unit steps so ∆t = 1 and

∆x = c∆t = 1. It must be noted that the ∆t and ∆x used within the main loop

are the non-dimensional time and length scales of the LBM. To avoid confusion,

(4.3) can be rewritten as

fi(x + ci, t+ 1) = fi(x, t)−
1
τ

(fi(x, t)− f eqi (x, t)) + Fi. (4.4)

The left side describes the streaming process and the right side describes the

collision process. If we introduce a post-collision distribution function f ∗i then

104

4. THE NUMERICAL METHOD

(4.4) can be split into two parts and rewritten as

collision: f ∗i (x, t) = fi(x, t)−
1
τ

(fi(x, t)− f eqi (x, t)) + Fi,

streaming: fi(x + ci, t+ 1) = f ∗i (x, t).
(4.5)

The collision process in (4.5) only uses a single relaxation time, however two or

more relaxation times are possible. Moreover, a forcing scheme might be consid-

ered. Listings 4.4 and 4.5 show how the collision process changes in complexity

when more advanced schemes are considered. The collision subroutines have a

built-in support for the Stokes regime flows through the flag stokes. Some of

the predefined variables used in the code are shown in Listing 4.3 including the

relaxation parameter omega that gets calculated from the viscosity nu.

LISTINGS 4.3: Predefined variables

1 omega = 1/(3*nu+0.5)

2 tau = 1/omega-0.5

3 tauJ = 1/(4*tau)!Magic parameter lambda=tau*tauJ=1/4

4 cu = cx*u+cy*v+cz*w
5 cu2 = cu*cu

6 vel = u*u+v*v+w*w
7 uf = u*fx+v*fy+w*fz
8 cf = cx*fx+cy*fy+cz*fz

In Listing 4.4, the BGK collision scheme is written down in code including two

options for the forcing term – the HSD [157] or the Luo’s forcing scheme [158].

105

4. THE NUMERICAL METHOD

LISTINGS 4.4: BGK collision

1 do loop through x,y,z,i

2 f(i) = (1-omega)*f(i)+omega

*wt(i)*r*(1+3*cu(i)+(1-stokes)*(4.5*cu(i)*cu(i)-1.5*vel))&

3 !HSD 1998 Force (Comment out if not used)

4 +(1-omega/2)*3*(cf(i)-uf)

*wt(i)*r*(1+3*cu(i)+(1-stokes)*(4.5*cu(i)*cu(i)-1.5*vel))

5 !Luo 1998 Force (Comment out if not used)

6 +(1-omega/2)*wt(i)*r*3*(cf(i)-uf+3*cu(i)*cf(i))

7 end do

Listing 4.5 shows the TRT collision scheme, see Section 3.7.2. Because it is

dealing with the symmetric and antisymmetric parts of the distribution func-

tion (line 4), it has more than double the lines compared to the BGK collision

subroutine. The interesting thing about TRT is that the calculations are only

required for half of the distribution functions, which makes TRT as computa-

tionally efficient as BGK. The chosen numbering of the lattice velocities allows

for addressing every link in a simple way (line 3). Lines 7-11 show the collision

calculation using the HSD forcing term. Luo’s forcing scheme is on lines 13-17.

Lines 18-22 is where the post collision distribution functions are derived. Listing

4.6 shows the streaming process. The propagation of information is written in

the reference frame of the post-streaming distribution functions. The loop does

not contain f(x,y,z,0) because the rest particle velocity does not get streamed.

All the if statements are in place to stay within the computer memory bounds

and not get a memory access violation. If it were not for the memory issues, the

streaming subroutine could be as simple as shown in Listing 4.7.

106

4. THE NUMERICAL METHOD

LISTINGS 4.5: TRT collision

1 do loop through x,y,z

2 fp(0) = f(0)

3 do i = 1, 18, 2

4 fp(i) = (f(i)+f(opp(i)))/2; fm(i) = (f(i)-f(opp(i)))/2

5 enddo

6 !HSD 1998 Force (Comment out if not used)

7 fpe(0) = -tau*r
((1+(1-stokes)(-1.5*vel))*uf)+r/3*(1+(1-stokes)*(-1.5*vel))

8 do i = 1, 18, 2

9 fpe(i) = -tau*3*wt(i)*r
((1+(1-stokes)(4.5*cu2(i)-1.5*vel))*uf-3*cu(i)*cf(i))

+wt(i)*r*(1+(1-stokes)*(4.5*cu2(i)-1.5*vel))

10 fme(i) = tauJ*3*wt(i)*r
((1+(1-stokes)(4.5*cu2(i)-1.5*vel))*cf(i)-3*cu(i)*uf)

+wt(i)*r*3*cu(i)

11 enddo!HSD end

12 !Luo 1998 Force (Comment out if not used)

13 fpe(0) = -tau*r*(uf)+r/3*(1+(1-stokes)*(-1.5*vel))

14 do i = 1, 18, 2

15 fpe(i) = -tau*3*wt(i)*r*(uf-3*cu(i)*cf(i))

+wt(i)*r*(1+(1-stokes)*(4.5*cu2(i)-1.5*vel))

16 fme(i) = tauJ*3*wt(i)*r*(cf(i))+wt(i)*r*3*cu(i)

17 enddo!Luo end

18 f(0) = f(0)-(fp(0)-fpe(0))/(tau+0.5)

19 do i = 1, 18, 2

20 f(i) = f(i)-(fp(i)-fpe(i))/(tau+0.5)-(fm(i)-fme(i))/(tauJ+0.5)

21 f(i+1) = f(i+1)-(fp(i)-fpe(i))/(tau+0.5)-(fm(i)-fme(i))/(tauJ+0.5)

22 enddo

23 end do

107

4. THE NUMERICAL METHOD

LISTINGS 4.6: Streaming

1 do loop through x,y,z

2 if(x.gt.0) f(x,y,z,1) = f(x-1,y,z,1)

3 if(x.lt.xm+1) f(x,y,z,2) = f(x+1,y,z,2)

4 if(y.gt.0) f(x,y,z,3) = f(x,y-1,z,3)

5 if(y.lt.ym+1) f(x,y,z,4) = f(x,y+1,z,4)

6 if(z.gt.0) f(x,y,z,5) = f(x,y,z-1,5)

7 if(z.lt.zm+1) f(x,y,z,6) = f(x,y,z+1,6)

8 if(x.gt.0.and.y.gt.0) f(x,y,z, 7) = f(x-1,y-1,z,7)

9 if(x.lt.xm+1.and.y.lt.ym+1) f(x,y,z, 8) = f(x+1,y+1,z,8)

10 if(x.lt.xm+1.and.y.gt.0) f(x,y,z, 9) = f(x+1,y-1,z,9)

11 if(x.gt.0.and.y.lt.ym+1) f(x,y,z,10) = f(x-1,y+1,z,10)

12 if(y.gt.0.and.z.gt.0) f(x,y,z,11) = f(x,y-1,z-1,11)

13 if(y.lt.ym+1.and.z.lt.zm+1) f(x,y,z,12) = f(x,y+1,z+1,12)

14 if(y.lt.ym+1.and.z.gt.0) f(x,y,z,13) = f(x,y+1,z-1,13)

15 if(y.gt.0.and.z.lt.zm+1) f(x,y,z,14) = f(x,y-1,z+1,14)

16 if(x.gt.0.and.z.gt.0) f(x,y,z,15) = f(x-1,y,z-1,15)

17 if(x.lt.xm+1.and.z.lt.zm+1) f(x,y,z,16) = f(x+1,y,z+1,16)

18 if(x.lt.xm+1.and.z.gt.0) f(x,y,z,17) = f(x+1,y,z-1,17)

19 if(x.gt.0.and.z.lt.zm+1) f(x,y,z,18) = f(x-1,y,z+1,18)

20 end do

LISTINGS 4.7: Simple streaming

1 do loop through x,y,z,i

2 f(x,y,z,i) = f(x-cx(i),y-cy(i),z-cz(i),i)

3 end do

108

4. THE NUMERICAL METHOD

4.2.4 Boundary conditions

Depending on what type of the problem the solver is going to be used for, calls

to certain subroutines that handle boundary conditions can be made.

The simplest boundary condition is the bounce-back scheme which is still very

simple and straightforward to type in code, see Listing 4.8. Because the collisions

are still carried out on the boundary nodes, the scheme used in some simulations

is actually the modified bounce-back rule.

LISTINGS 4.8: Bounce-back scheme

1 do loop through x,y,z,i

2 if (obstacle) then

3 f(x,y,z,i) = fp(x,y,z,opp(i))

4 endif

5 end do

The half-way bounce-back rule is very similar to the streaming process. The

only differences are copying the information to the opposite velocity direction of

the current node (lines 3-20) and acting on the solid boundaries (the use of the

flag obstacle on line 2), as shown in Listing 4.9. Despite being more complicated

than the standard bounce-back scheme, it is oftentimes preferred because of its

second-order accuracy.

109

4. THE NUMERICAL METHOD

LISTINGS 4.9: Half-way bounce-back

1 do loop through x,y,z

2 if (obstacle) then

3 if(x.gt.0) f(x,y,z,opp(1)) = f(x-1,y,z,1)

4 if(x.lt.xm+1) f(x,y,z,opp(2)) = f(x+1,y,z,2)

5 if(y.gt.0) f(x,y,z,opp(3)) = f(x,y-1,z,3)

6 if(y.lt.ym+1) f(x,y,z,opp(4)) = f(x,y+1,z,4)

7 if(z.gt.0) f(x,y,z,opp(5)) = f(x,y,z-1,5)

8 if(z.lt.zm+1) f(x,y,z,opp(6)) = f(x,y,z+1,6)

9 if(x.gt.0.and.y.gt.0) f(x,y,z,opp(7)) = f(x-1,y-1,z,7)

10 if(x.lt.xm+1.and.y.lt.ym+1) f(x,y,z,opp(8)) = f(x+1,y+1,z,8)

11 if(x.lt.xm+1.and.y.gt.0) f(x,y,z,opp(9)) = f(x+1,y-1,z,9)

12 if(x.gt.0.and.y.lt.ym+1) f(x,y,z,opp(10)) = f(x-1,y+1,z,10)

13 if(y.gt.0.and.z.gt.0) f(x,y,z,opp(11)) = f(x,y-1,z-1,11)

14 if(y.lt.ym+1.and.z.lt.zm+1) f(x,y,z,opp(12)) = f(x,y+1,z+1,12)

15 if(y.lt.ym+1.and.z.gt.0) f(x,y,z,opp(13)) = f(x,y+1,z-1,13)

16 if(y.gt.0.and.z.lt.zm+1) f(x,y,z,opp(14)) = f(x,y-1,z+1,14)

17 if(x.gt.0.and.z.gt.0) f(x,y,z,opp(15)) = f(x-1,y,z-1,15)

18 if(x.lt.xm+1.and.z.lt.zm+1) f(x,y,z,opp(16)) = f(x+1,y,z+1,16)

19 if(x.lt.xm+1.and.z.gt.0) f(x,y,z,opp(17)) = f(x+1,y,z-1,17)

20 if(x.gt.0.and.z.lt.zm+1) f(x,y,z,opp(18)) = f(x-1,y,z+1,18)

21 endif

22 end do

The newly derived moment-based boundary conditions in 3D are split into

three subroutines separating calls to face, edge and corner calculations. Listing

4.10 shows an example of the general face boundary calculation subroutine for

velocity and pressure type boundaries. The same expressions can be used for the

110

4. THE NUMERICAL METHOD

other faces by exploiting the symmetry property of the lattice and transform-

ing the velocities and distribution functions accordingly (lines 2 and 19). The

mappingback call on line 19 only has one argument f because velocities will be

recalculated using the obtained distribution function values.

LISTINGS 4.10: Moment-based face boundary conditions

1 do loop through x,y,z of the boundary face

2 call mapping(f,u,v,w)

3 if(face_pressure_BC) u =

1-(f(0)+f(3)+f(4)+f(5)+f(6)+f(11)+f(12)+f(13)+f(14)

+2*(f(2)+f(8)+f(9)+f(16)+f(17)))/r
4 if(face_velocity_BC) r =

(f(0)+f(3)+f(4)+f(5)+f(6)+f(11)+f(12)+f(13)+f(14)

+2*(f(2)+f(8)+f(9)+f(16)+f(17)))/(1-u)

5 f(1) = r *(1/3-v *v-w*w)-f(0)-f(2)+f(11)+f(12)+f(13)+f(14)

6 f(7) = r /2*(1/3+v*(v+1))-f(3)-f(9)-f(11)-f(14)

7 f(10) = r /2*(1/3+v*(v-1))-f(4)-f(8)-f(12)-f(13)

8 f(15) = r /2*(1/3+w*(w+1))-f(5)-f(11)-f(13)-f(17)

9 f(18) = r /2*(1/3+w*(w-1))-f(6)-f(12)-f(14)-f(16)

10 call mappingback(f)

11 end do

One can work out the mapping for the variable components using the ZXZ

Euler rotation. Choosing the west face, south-west edge and low-south-west cor-

ner as the default boundaries with Euler angles (0, 0, 0) or simply no rotation, the

correct sets of variable components can be derived. Figure 4.2 shows the default

rotation or the unknowns at the west face boundary, whereas Figure 4.3 shows the

unknowns at the east face boundary in the same positions by rotating the lattice

111

4. THE NUMERICAL METHOD

Figure 4.2: Unknowns (shown in red) at the west face boundary, no rotation
(0, 0, 0).

by π radians around Z axis. Other sets of Euler angles for the remaining faces,

edges and corners are shown in Table 4.2 using the symbols W, E, S, N, L and H

to abbreviate the directions west, east, south, north, low and high, respectively.

From Figure 4.3 we see that the unknowns 2, 8, 9, 16, 17 correspond to 1, 7,

10, 15, 18 of the default lattice configuration. These correspondences or mappings

can be written down for all the faces, edges and corners. The mappings of the ve-

locities are shown in Table 4.3. Similarly the distribution function mappings can

be derived, see Table 4.4. For example, if the unknown distributions functions at

the north face boundary need to be calculated, then all the incoming distribution

functions f(4), f(8), f(10), f(12), f(13) would be mapped onto the default

set of the unknowns f(1), f(7), f(10), f(15), f(18) using the mappings from

Table 4.4 and the rest of the populations f(i) would follow the same path. Ve-

locities would go through the same procedure where the x-velocity component u

112

4. THE NUMERICAL METHOD

Figure 4.3: Unknowns (shown in red) at the east face boundary, Euler ZXZ
rotation (π, 0, 0).

Table 4.2: ZXZ Euler angles for boundaries.

Faces
W 0 0 0
E π 0 0
S 0 −π

2 −π
2

N 0 π
2

π
2

L π
2

π
2 0

H −π
2

π
2 0

Edges
SW 0 0 0
SE −π

2 0 0
NW π

2 0 0
NE π 0 0
LW π

2
π
2 0

LE π π
2 0

HW 0 π
2 0

HE −π
2

π
2 0

LS π π
2

π
2

LN π
2

π
2

π
2

HS −π
2

π
2

π
2

HN 0 π
2

π
2

Corners
LSW 0 0 0
LSE −π

2 0 0
LNW π

2 0 0
LNE π 0 0
HSW π

2 π 0
HSE π π 0
HNW 0 π 0
HNE −π

2 π 0

113

4. THE NUMERICAL METHOD

Table 4.3: Mappings for velocities u = 1, v = 2, w = 3.

Faces
W* 1 2 3
E -1 -2 3
S 2 3 1
N -2 -3 1
L 3 1 2
H -3 -1 2

Edges
SW* 1 2 3
SE 2 -1 3
NW -2 1 3
NE -1 -2 3
LW 3 1 2
LE -1 3 2
HW 1 -3 2
HE -3 -1 2
LS 2 3 1
LN 3 -2 1
HS -3 2 1
HN -2 -3 1

Corners
LSW* 1 2 3
LSE 2 -1 3
LNW -2 1 3
LNE -1 -2 3
HSW 2 1 -3
HSE -1 2 -3
HNW 1 -2 -3
HNE -2 -1 -3

* Default rotation.

gets transformed into w, v into -u and w into -v. This substitution is meant to

minimise the redundancy of the code by exploiting the rotational symmetry of

the cubic lattice.

The subroutines for the edge and corner boundary conditions are similar to

the face one shown in Listing 4.10. Because different moments are being selected

for velocity and pressure-velocity type boundaries, see Section 3.6.5, the incom-

ing distribution functions can have different expressions, and therefore need to be

separated. For example, distribution functions f(1), f(3), f(7) have different

expressions for edge velocity (lines 5-7) and pressure-velocity (lines 9-11) type

boundaries in Listing 4.11. For the corner boundaries, the list of unique expres-

sions is longer – f(1), f(3), f(7), f(10), f(11), f(13) on lines 5-10 and 12-17

for velocity and pressure-velocity type boundaries respectively, see Listing 4.12.

114

4. THE NUMERICAL METHOD

Table 4.4: Mappings for distribution functions fi.

Faces
W* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
E 2 1 4 3 5 6 8 7 10 9 13 14 11 12 17 18 15 16
S 3 4 5 6 1 2 11 12 13 14 15 16 18 17 7 8 10 9
N 4 3 6 5 1 2 12 11 14 13 18 17 15 16 10 9 7 8
L 5 6 1 2 3 4 15 16 18 17 7 8 9 10 11 12 14 13
H 6 5 2 1 3 4 16 15 17 18 9 10 7 8 14 13 11 12

Edges
SW* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
SE 3 4 2 1 5 6 9 10 8 7 17 18 15 16 11 12 13 14
NW 4 3 1 2 5 6 10 9 7 8 15 16 17 18 13 14 11 12
NE 2 1 4 3 5 6 8 7 10 9 13 14 11 12 17 18 15 16
LW 5 6 1 2 3 4 15 16 18 17 7 8 9 10 11 12 14 13
LE 2 1 5 6 3 4 17 18 15 16 11 12 14 13 9 10 7 8
HW 1 2 6 5 3 4 18 17 16 15 14 13 11 12 7 8 9 10
HE 6 5 2 1 3 4 16 15 17 18 9 10 7 8 14 13 11 12
LS 3 4 5 6 1 2 11 12 13 14 15 16 18 17 7 8 10 9
LN 5 6 4 3 1 2 13 14 12 11 10 9 7 8 15 16 18 17
HS 6 5 3 4 1 2 14 13 11 12 7 8 10 9 18 17 15 16
HN 4 3 6 5 1 2 12 11 14 13 18 17 15 16 10 9 7 8

Corners
LSW* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
LSE 3 4 2 1 5 6 9 10 8 7 17 18 15 16 11 12 13 14
LNW 4 3 1 2 5 6 10 9 7 8 15 16 17 18 13 14 11 12
LNE 2 1 4 3 5 6 8 7 10 9 13 14 11 12 17 18 15 16
HSW 3 4 1 2 6 5 7 8 10 9 18 17 16 15 14 13 12 11
HSE 2 1 3 4 6 5 9 10 7 8 14 13 12 11 16 15 18 17
HNW 1 2 4 3 6 5 10 9 8 7 12 11 14 13 18 17 16 15
HNE 4 3 2 1 6 5 8 7 9 10 16 15 18 17 12 11 14 13

* Default rotation.

115

4. THE NUMERICAL METHOD

LISTINGS 4.11: Moment-based edge boundary conditions

1 do loop through x,y,z of the boundary edge

2 call mapping(f,u,v,w)

3 if(edge_velocity_BC) then

4 r = (f(0)+f(5)+f(6)+2*(f(2)+f(4)+f(12)+f(13)+f(16)+f(17)+2*f(8)))

/(1-(u+v-u*v))

5 f(1) = r*(-1/3+u*2/3+v*(1-u-v))+f(2)+2*(f(4)+2*f(8)+f(12)+f(13))

6 f(3) = r*(-1/3+v*2/3+u*(1-u-v))+f(4)+2*(f(2)+2*f(8)+f(16)+f(17))

7 f(7) =

r/2*(2/3-(u+v)*(1-u-v))-f(2)-f(4)-3*f(8)-f(12)-f(13)-f(16)-f(17)

8 elseif(edge_pressure-velocity_BC) then

9 f(1) = r*(2/3-u/3-v*v)-f(0)-f(2)-f(5)-f(6)-2*(f(16)+f(17))

10 f(3) = r*(2/3-v/3-u*u)-f(0)-f(4)-f(5)-f(6)-2*(f(12)+f(13))

11 f(7) = r/2*(-4/3+u*(u+1)+v*(v+1))

+f(0)+f(2)+f(4)+f(5)+f(6)+f(8)+f(12)+f(13)+f(16)+f(17)

12 endif

13 f(11) = f(13)+r/2*v*(w+1/3)

14 f(14) = f(12)-r/2*v*(w-1/3)

15 f(15) = f(17)+r/2*u*(w+1/3)

16 f(18) = f(16)-r/2*u*(w-1/3)

17 f(9) = r/2*(1/3+u*(u-1))-f(2)-f(8)-f(16)-f(17)

18 f(10) = r/2*(1/3+v*(v-1))-f(4)-f(8)-f(12)-f(13)

19 call mappingback(f)

20 end do

116

4. THE NUMERICAL METHOD

LISTINGS 4.12: Moment-based corner boundary conditions

1 do loop through x,y,z of the boundary corner

2 call mapping(f,u,v,w)

3 if(corner_velocity_BC) then

4 r=(f(0)+2*(f(2)+f(4)+f(6))+4*(f(8)+f(12)+f(16)))/(1-u*(1-v-w)-v*(1-w)-w)

5 f(1) = f(2)+r*u/3

6 f(3) = f(4)+r*v/3

7 f(7) = f(8)+r*(u+v)/6

8 f(10)=r*(1/3+v*(v-1)+u*(u-1/3)-w*(w-1/3))/4-(f(2)+f(4)-f(6))/2-f(8)

9 f(11) = f(12)+r*(v+w)/6

10 f(13)=r*(1/3+v*(v-1)+w*(w-1/3)-u*(u-1/3))/4-(f(2)+f(4)-f(6))/2-f(12)

11 elseif(corner_pressure-velocity_BC) then

12 f(1) = r*((2-2*w-u)/3+u*w-v*v)-f(0)-f(2)-2*f(6)-4*f(16)

13 f(3) = r*((2-2*u-v)/3+u*v-w*w)-f(0)-f(4)-2*f(2)-4*f(8)

14 f(7) = r/2*((2*w+v-2)/3+u-u*w+v*v)+f(0)/2+f(2)+f(6)+f(8)+2*f(16)

15 f(10) = r/2*((2*w-2)/3+u-u*v-u*w+v*v)+f(0)/2+f(2)+f(6)+f(8)+2*f(16)

16 f(11) = r/2*((2*u+w-2)/3+v-u*v+w*w)+f(0)/2+f(2)+f(4)+f(8)+2*f(12)

17 f(13) =

r/2*(1-2/3*w-v-u*(1-v-w))-f(0)/2-f(2)-f(4)-f(6)-f(12)-2*f(8)-2*f(16)

18 endif

19 f(5) = f(6)+r*w/3

20 f(9)=r*(1/3+u*(u-1)+v*(v-1/3)-w*(w-1/3))/4-(f(2)+f(4)-f(6))/2-f(8)

21 f(14)=r*(1/3+w*(w-1)+v*(v-1/3)-u*(u-1/3))/4-(f(2)+f(4)-f(6))/2-f(12)

22 f(15) = f(16)+r*(u+w)/6

23 f(17)=r*(1/3+u*(u-1)+w*(w-1/3)-v*(v-1/3))/4-(f(2)+f(4)-f(6))/2-f(16)

24 f(18)=r*(1/3+w*(w-1)+u*(u-1/3)-v*(v-1/3))/4-(f(2)+f(4)-f(6))/2-f(16)

25 call mappingback(f)

26 end do

117

4. THE NUMERICAL METHOD

4.2.5 Macroscopic variables

The fluid variables get calculated after the boundary conditions have been applied

and the unknown distribution functions have been obtained. The calculation is

as simple as the formulas listed in (3.48). Because the interest is in the low-

order hydrodynamic moments, only the fluid density and velocity are calculated

here. The expressions for the velocities generally include a half contribution of

the applied force, lines 3-5 in Listing 4.13.

LISTINGS 4.13: Macroscopic variables

1 do loop through x,y,z

2 r(x,y,z) = sum(f(x,y,z,:))

3 u(x,y,z) = sum(cx(:)*f(x,y,z,:))/r(x,y,z)+fx(x,y,z)/2

4 v(x,y,z) = sum(cy(:)*f(x,y,z,:))/r(x,y,z)+fy(x,y,z)/2

5 w(x,y,z) = sum(cz(:)*f(x,y,z,:))/r(x,y,z)+fz(x,y,z)/2

6 end do

4.2.6 Output

The solution can be periodically written to a file by calling the write-to-file sub-

routine shown in Listing 4.14.

LISTINGS 4.14: Writing to file

1 open(datafile=’output’//timestep//’.dat’)

2 do loop through x,y,z

3 write(datafile) x,y,z,r,u,v,w,fx,fy,fz,obstacle
4 end do

5 close(datafile)

118

4. THE NUMERICAL METHOD

All the necessary variables get passed in and one by one they get recorded

into a file for an intermediate analysis or just a later post-processing. For

convenience, the velocity and force magnitudes can be included on line 3 by

adding two extra variables, namely, sqrt(u*u+v*v+w*w) for the fluid velocity and

sqrt(fx*fx+fy*fy+fz*fz) for the force magnitude. Note that the variables in the

written file will be in lattice units unless they get converted to SI units before

outputting.

4.3 Parallelisation

With the ever increasing sizes of the computational domains and the availability

of large computing resources the parallelisation is inevitable and more so because

a personal computer is limited by the completion time of the simulation and the

available RAM. There are different ways of parallelising the code, whether it is

CPU-only or CPU-GPU hybrid, single workstation or a cluster, etc.

The LBM code given in parts in the previous section can be made parallel by

decomposing the calculation domain into cuboids of equal size and using the MPI-

based libraries developed by Kao in the framework of TESA for transferring data

between the interprocessor boundaries. MPI is a message-passing library interface

specification that allows the data communication between multiple concurrent

processes. The message-passing standard is portable and easy to use because it is

packed as a set of functions and subroutines, and is language independent [159].

Running the LBM algorithm on multiple processors requires a constant infor-

mation exchange between the processing units. If N is the length of the calcu-

lation domain, then the size of the communicated data arrays is proportional to

119

4. THE NUMERICAL METHOD

Figure 4.4: Domain decomposition and MPI data transfers to halo regions.

N2 because only the surface nodes need to be passed on. Currently, the whole

variable array gets passed to the MPI boundary updating subroutine where the

surface arrays get extracted and communicated to the neighbouring subdomains.

The outer layer of each cuboid is called the halo region. It is the overlapping re-

gion where the data is sent to and received at. Figure 4.4 shows a 2D schematic

drawing of the data transfer between the subdomains.

In the LBM code the MPI boundary update for velocity and pressure is called

120

4. THE NUMERICAL METHOD

every time step before the LB boundary condition calculation, and the MPI

update for the distribution functions is called after the LB boundary conditions

are handled. Passing the whole variable array to the MPI subroutine might

become an issue when the code gets parallelised on GPUs using CUDA. It would

mean that the whole variable array needs to be copied over from the device to

host every time step, and it would seriously affect the calculation time. A possible

solution is discussed in Section 6.2.

The LB algorithm can also be parallelised on GPUs in several different ways.

Depending on the amount of the programming effort that the user is willing or is

able to put in the implementation of the GPU parallelisation, one can choose ei-

ther to use a directive-based model to accelerate the code or modify the code using

OpenCL [160; 161], CUDA programming language extension. Although OpenCL

is a heterogeneous computing environment that utilises CPUs and GPUs, it has

been demonstrated that the CUDA implementation on NVIDIA devices slightly

but outperforms the OpenCL approach [162–164]. Originally OpenCL is written

in C, but it can be accessed from Fortran applications through the CLFORTRAN

interface [165]. Using parallel compiler directives, such as OpenACC [166] or

OpenMP [167] requires the least amount of programming, offers relatively rea-

sonable speed-up and allows to access either CPU or GPU resources. However,

to get the most out of the Fortran code the use of CUDA Fortran is necessary

[168]. Moreover, considering the available resources and the previous knowledge

within the research group, the GPU parallelisation of the code is executed using

the CUDA platform.

GPUs are different from CPUs in that they have several hundred or even

thousands of cores that can simultaneously execute tasks, see Figure 4.5. A GPU

121

4. THE NUMERICAL METHOD

Figure 4.5: GPU architecture on different levels: a) comparison between the
CPU and GPU build, b) a grid of thread blocks, c) CUDA program invoking
kernel grids on GPUs, d) memory hierarchy, e) an example of heterogeneous
programming [169].

122

4. THE NUMERICAL METHOD

consists of an array of streaming multiprocessors (SMs), and each SM hosts a

grid of thread blocks. A CUDA application invokes a kernel grid which allocates

available blocks for concurrent execution of tasks. There are different types of

memory spaces available on a CUDA device limited by the size, scope, lifetime and

access speed that need to be considered when optimising the code for performance.

The algorithm resides on the host where all the preparatory and I/O subroutines

are executed. Calls to the device are also made from the host. The variable

arrays are transferred between host and device using host-to-device and device-

to-host memory copy operations. In Fortran, these operations can be as simple

as a_h = a_d and a_d = a_h. To speed up the copying process, all the frequently

used variable arrays are allocated in the pinned memory on the host.

LISTINGS 4.15: CUDA Fortran code example

1 x = (blockIdx%x-1) * blockDim%x + threadIdx%x

2 y = (blockIdx%y-1) * blockDim%y + threadIdx%y

3 z = (blockIdx%z-1) * blockDim%z + threadIdx%z

4 if (x.le.xm+1 .and. y.le.ym+1 .and. z.le.zm+1) then

5 do i = 0, 18

6 f(x,y,z,i) = (1-omega)*f(x,y,z,i)+omega

*wt(i)*r(x,y,z)*(1+3*cu(i)+(1-stokes)*(4.5*cu(i)*cu(i)-1.5*vel))&

7 !HSD 1998 Force (Comment out if not used)

8 +(1-omega/2)*3*(cf(i)-uf)

*wt(i)*r(x,y,z)*(1+3*cu(i)+(1-stokes)*(4.5*cu(i)*cu(i)-1.5*vel))

9 !Luo 1998 Force (Comment out if not used)

10 +(1-omega/2)*wt(i)*r(x,y,z)*3*(cf(i)-uf+3*cu(i)*cf(i))

11 end do

12 endif

123

4. THE NUMERICAL METHOD

Listing 4.15 shows the BGK collision subroutine written using CUDA Fortran

syntax. The spatial do loops as seen in Listing 4.4 are replaced by the absolute

thread addresses on the device, lines 1-3. The if condition on line 4 is used to

stay within the bounds of memory when the domain size is not a multiple of

thread block size. The rest of the subroutine remains the same.

In the main loop, the device subroutines are called using a special triple-

chevron syntax <<<grid,tblock>>> where the grid dimensions and thread block

dimensions are specified, lines 2-6 in Listing 4.16. Because the I/O operations

are performed on the host, the calculated variable arrays need to be copied over

from the device to the host before calling the write-to-file subroutine, lines 7-8.

LISTINGS 4.16: CUDA Fortran main loop

1 do loop through t

2 call

collision<<<grid,tblock>>>(f_d,r_d,u_d,v_d,w_d,fx_d,fy_d,fz_d,omega)

3 call streaming<<<grid,tblock>>>(f_d,fp_d)

4 call bc_moment<<<grid,tblock>>>(f_d,r_d,u_d,v_d,w_d)

5 call bc_bbrule<<<grid,tblock>>>(f_d,fp_d,obstacle_d)

6 call macrovars<<<grid,tblock>>>(f_d,r_d,u_d,v_d,w_d,fx_d,fy_d,fz_d)

7 if (t=t_out) r=r_d; u=u_d; v=v_d; w=w_d

8 if (t=t_out) call writetofile(datafile,x,y,z,r,u,v,w,fx,fy,fz,obstacle)

9 end do

Both grid and tblock are three-dimensional parameters. Depending on the GPU

architecture and compute capability these 3D parameters have certain limits.

This can be checked by running a short device query program that comes with

the CUDA Fortran compiler and detects the available CUDA devices and dis-

124

4. THE NUMERICAL METHOD

plays some basic information including the compute capability, available memory

and other details, see Listing 4.17. Lines 10-11 show the maximum dimensions

of the grid and thread block. The maximum number of threads per block is

fixed at 1024 (line 12), which restricts the tblock dimensions to be tblock =

dim3(tbx,tby,tbz) where tbx*tby*tbz ≤ 1024. An example of the dimension

definitions is given in Listing 4.18. The ceiling function on lines 3-5 is used in

case the thread block dimensions are not factors of the calculation domain size.

LISTINGS 4.17: Example of a device query program console output

1 One CUDA device found

2 Device Number: 0

3 GetDeviceProperties for device 0: Passed

4 Device Name: GeForce GTX 1060 6GB

5 Compute Capability: 6.1

6 Number of Multiprocessors: 10

7 Max Threads per Multiprocessor: 2048

8 Global Memory (GB): 6.000

9 Execution Configuration Limits

10 Max Grid Dims: 2147483647 x 65535 x 65535

11 Max Block Dims: 1024 x 1024 x 64

12 Max Threads per Block: 1024

LISTINGS 4.18: CUDA Fortran kernel grid dimensions

1 integer, parameter :: gridx = 128, gridy = 128, gridz = 128

2 type(dim3), parameter :: tblock = dim3(16,16,4)

3 type(dim3), parameter :: grid = dim3(ceiling(real(gridx)/tblock%x),&

4 ceiling(real(gridy)/tblock%y),

5 ceiling(real(gridz)/tblock%z))

125

4. THE NUMERICAL METHOD

4.4 Coupling between LB and other solvers

4.4.1 CA-LB coupling

The LB code described in the previous sections can be coupled to other solvers to

model various multi-physics problems where flow is present. One such example

is dendritic solidification with convection. It involves solving for heat, mass and

momentum transport and even electromagnetics if the electromagnetic damping

or the thermoelectric effect is being considered. The in-house software TESA

is capable of solving the microstructure solidification. By coupling the LB code

to TESA, the fluid flow can be resolved during the solidification process. The

coupling of both algorithms is rather simple. The LB flow solver is interested in

the previous velocities, solid fraction and the external force. The LB subroutine

gets called with these arguments. So, for example, the effect of the thermal field

calculated in TESA gets passed to the LB solver by the means of a thermal

buoyancy force. Similarly, the effect of the concentration variations gets passed

on in the form of a solutal buoyancy force. Inside the LB subroutine the values get

scaled to lattice units, then they are used to update the velocity field via collisions

and streaming and finally the calculated new velocities get converted back before

they are returned to the external code. The external code is a black box as far as

the LB code is concerned. Only the velocity, force and solid fraction arrays get

passed to the LB flow solver which then returns the updated velocity values, see

Figure 4.6. The flow solver gets called either every time step together with the

solidification solver or every n-th step if the solid phase change is negligible. The

parallelisation side and coupling between the CA and LB methods to simulate

large-scale dendritic solidification has been described in [170] by Kao et al. In

126

4. THE NUMERICAL METHOD

Figure 4.6: Flow diagram of the coupled CA-LB algorithm.

addition to the variables mentioned above, other arguments, such as the boundary

types and values, processor number and topology, problem specific flags, as well

as the current time step and time interval are also passed to the LB flow solver.

4.4.2 LB-enthalpy method coupling

For the simple 2D benchmark cases involving crystal growth, the LBM has been

coupled to an enthalpy-based method analogous to the CA-LB coupling discussed

in the previous section. In the enthalpy method described by Voller [171], the

energy conservation equation is being solved, specifically the enthalpy, which

127

4. THE NUMERICAL METHOD

consists of the sum of sensible and latent heats given by

H = cpT + fliq∆H. (4.6)

Transport of heat is defined as

∂H

∂t
= α∇2(cpT)− u(∇H), (4.7)

where α is the thermal diffusivity and is assumed to be the same for both liquid

and solid phases. The enthalpy H is expressed as a function of the heat capacity

cp, temperature T and the latent ∆H in the liquid phase, which is described by

fliq. For a pure material depending on the fusion temperature Tf , curvature κ and

the surface tension anisotropy γ(θ) and neglecting kinetic effects, the solid-liquid

interface temperature T i can be written as

T i = Tf −
γ(θ)Tf

∆H κ. (4.8)

The local interface curvature can be captured from the liquid fraction gradients

as

κ = ∇ ·
(
∇f
|∇f |

)
=
(
f 2
y fxx − 2fxfyfxy + f 2

xfyy
)
·
(
f 2
x + f 2

y

)−3/2
, (4.9)

where fx and fxx represent, respectively, the first and the second derivative of f

with respect to the coordinate x. The interface orientation θ, which is the angle

between the interface normal and the x-axis, can be calculated by

θ = atan
(
fx
fy

)
. (4.10)

128

4. THE NUMERICAL METHOD

By introducing variable scaling, dimensionless form denoted by superscript (*)

can be obtained as

T ∗ = T − Tf
T0

, T0 = ∆H
cp

, α∗ = α

α0
, ρ∗ = ρ

ρ0
,

t∗ = t

t0
, t0 = α

∆H , x∗ = x

x0
, x0 =

√
αt0, κ∗ = κ

κ0
.

(4.11)

The fusion temperature Tf for aluminium is approximately 933 K. For convenience

α∗ and ρ∗ are both set equal to 1. With the superscripts dropped, this gives the

following dimensionless equations:

∂T

∂t
= ∇2(T)− u(∇T), (4.12)

H = T + fliq, (4.13)

T i = −κ (1− 15εcos(4θ)) . (4.14)

In the latter one (4.14), the interfacial temperature is expressed as a function

of the dimensionless curvature and Gibbs–Thomson coefficient with ε being the

anisotropy parameter.

4.5 Performance analysis

To quantify the efficiency of the LBM and the improvement that the paralleli-

sation offers in terms of the simulation time, a performance analysis has to be

carried out. First of all, the LBM is analysed by comparing the timings of each

subroutine as a percentage of the total LBM runtime. The LBM algorithm can

also be adapted for Stokes flows by activating the flag stokes which neglects the

129

4. THE NUMERICAL METHOD

nonlinear terms O(u2) in the code for low velocity flows. The benefit of it is

the reduction in the calculation time. It makes the collision scheme run 20 %

faster which makes the LBM algorithm perform 10 % faster. Figure 4.7 shows

the timings of the subroutines as a percentage of the total time for the BGK

and TRT collision schemes in normal and Stokes regime. The graphs are scaled

proportionally to the total runtime of the respective scheme. In all cases, the

main bottleneck is the collision scheme accounting for a half of the computa-

tional time on average. The present implementation of TRT is computationally

more expensive and hence more time consuming than that of BGK. Contrarily to

the reports in literature [115], the TRT scheme is observed to be 43 % more time

consuming than BGK. In the present setup, that means the increase in simula-

tion runtime by 17 %, which is not a bad trade-off for an improved accuracy and

stability. The runtime of the moment method subroutine scales as L2, where L

is the length of the domain, because it only acts on the domain boundaries. As

the moment method only handles Dirichlet type boundaries, the runtime of the

subroutine varies for different problem setups. The calculation time percentage of

the bounce-back subroutine runtime depends on the amount of solid nodes in the

domain. Collision, streaming and macroscopic variable calculation subroutines

are all bulk operations performed on every node, hence they scale as L3.

Figure 4.8 shows the individual timings for handling face, edge and corner

boundaries inside the moment method subroutine. Theoretically the ratio be-

tween the face, edge and corner boundary calculations time wise should be around

L2 : 2L : 2. For a cube with L = 32, the ratio is measured to be approximately

512 : 39 : 2 which is relatively close to the theoretical ratio 512 : 32 : 1, suggesting

that the numerical implementation of the boundary method is correct.

130

4. THE NUMERICAL METHOD

Figure 4.7: Subroutine runtime as a percentage of the total LBM runtime for
BGK (left) and TRT (right) in normal (top) and stokes (bottom) regime. The
graphs are scaled with respect to the runtime.

131

4. THE NUMERICAL METHOD

Figure 4.8: Calculation time of each type of boundary as a percentage of the total
runtime of the moment-based boundary subroutine.

4.5.1 Strong and weak scaling

The strong and weak scaling of the developed LB code has been tested on a

small cluster by running series of tests of various sizes at different processor

setups. The idea of the strong scaling is to fix the problem size and employ more

and more computer resources. Basically, distributing the work load across many

processors. Ideally one would expect a perfect scaling where the speed-up gained

by the program is equal to the assigned number of processing units. In reality

an ideal scenario like this is very unlikely due to inter-node communications but

mainly because of Amdahl’s law, which predicts the potential parallel speed-up

of the code based on the amount of the serial parts. It is, however, possible to

achieve and maintain very high efficiencies that are considered desirable and still

close to ideal.

The weak scaling tests how the performance changes when the problem size

and the work load increases along with the number of processors. If the code

132

4. THE NUMERICAL METHOD

was embarrassingly parallel, that is, if the processes were independent of each

other, the calculation time should be the same no matter how many processors

are running the program. However, because the processes are not independent,

Gustafson’s law predicts the increase in timing the bigger the serial fraction of

the code is. Furthermore, the information needs to be transferred between the

processors, which accounts for the communication time and adds to the total

runtime of the problem. When done optimally the communication process should

only take a set amount of time while the processors exchange information.

The problem chosen to test the scaling is a 3D square-duct flow with an ap-

plied external force. The cross-section area of the square duct is varied between

162, 322, 642, 1282 and 2562 while the length of the duct is linked to the pro-

cessor configuration either giving the same problem size for the strong scaling or

changing proportionally with the number of processors assigned in the case of the

weak scaling. The maximum length for the strong and weak scalings are chosen

with the time and memory constraints in mind so 18720 and 30720 are used in

the scaling calculations.

The results of the strong scaling are shown in Figure 4.9 where the speed-ups

are scaled by node. Although the nodes used in the cluster comprise 16, 20 and

24 cores, the speed-up by node is scaled using particularly the 16-core node. The

efficiency results of the test runs are gathered in Table 4.5. The efficiency is just

how close the obtained speed-up is to ideal. In this case, the high efficiency can

be attributed to the chosen configuration of the test problem. The domain is only

decomposed in one direction which is favourable to the MPI communications.

The effect of the feature called turbo boost, which increases the performance

of the processor when it is not fully utilised, is visible at low number of cores

133

4. THE NUMERICAL METHOD

Table 4.5: Efficiency of the test runs of different grid sizes scaled by node.

Cores Ideal 16 32 64 128
1 1 1.45 1.53 - -
2 1 1.41 1.47 - -
4 1 1.21 1.28 1.31 -
8 1 0.90 0.93 0.97 -
16 1 1 1 1 1
32 1 1.00 1.01 0.98 0.95
52 1 0.98 1.02 0.96 0.91
72 1 0.96 1.01 0.99 0.91
96 1 0.96 1.00 1.02 0.89
120 1 0.98 0.98 0.98 0.88

in Table 4.5. It is also apparent in the weak scaling, where it is responsible for

the relatively faster simulation runtimes when utilising sparsely populated cluster

nodes, see Figure 4.10.

The data points have been collected and averaged over several runs to min-

imise the influence of the outside factors, such as other programs running in

the background and using the CPU and memory resources. Due to the time

limitation, the larger cases have only been run once, which might explain some

deviations from the norm.

4.5.2 Single and double precision

Although using double precision in calculations theoretically gives a more accu-

rate solution, the difference between the results is often indistinguishable. Plus

using double precision is more time and memory consuming. For example, run-

ning the 3D developed duct flow on a 333 grid in double precision for 50000 time

steps takes ∼ 45% longer than using single precision, and the output file size is

twice as big. Comparing the results of both precisions reveals that there is no

134

4. THE NUMERICAL METHOD

Figure 4.9: Strong scaling by node for different grid sizes.

Figure 4.10: Weak scaling for different grid sizes.

135

4. THE NUMERICAL METHOD

significant difference in this case. The relative error norm for single and double

precision runs is respectively 8.24E-4 and 8.21E-4. Considering these findings, the

single precision is chosen over double precision due to the advantages it offers.

4.5.3 Serial vs. parallel LBM CUDA

In general, the use of CUDA Fortran should considerably speed up the calcula-

tions of large arrays. However, the amount of speed-up depends on how suitable

for parallelisation the implementation of the subroutine is. For example, a well-

structured, purely bulk operation has the potential of high speed-ups. On the

other hand, a rather complex-structured code will yield no gain or even be slower

then the serial version. This can be seen in Table 4.6 and Figure 4.11. For a

benchmark case of a 1283 grid and 1000 time steps, the parallel CUDA version

shows on average a 7.5-time speed-up. While most subroutines show obvious

speed-up, the moment-based boundary subroutine experiences hardly any speed-

up due to unoptimised CUDA implementation. Because the subroutine acts on

the domain boundaries, faces, edges and vertices, it requires a special kernel call

that is different from that of the bulk operation kernel calls. However, optimisa-

tion of the subroutine would require restructuring it, which is out of scope of this

thesis, as the main objective here is to show the potential of the use of GPUs.

The breakdown of the LBM CUDA subroutine runtimes is shown in Figure

4.12. The excessive runtime of the moment-based boundary subroutine overshad-

ows the fast execution of the remaining LBM CUDA algorithm. The time spent

in each of the boundary subroutine calls as a percentage of the total call time

is 22.4 %, 48.4 % and 29.2 % for the faces, edges and corners, respectively. The

distribution is somewhat arbitrary and far off the theoretical ratio of L2 : 2L : 2,

136

4. THE NUMERICAL METHOD

Table 4.6: Timings and speed-ups of CPU and CUDA subroutines obtained on a
1283 grid after 1000 time steps.

Subroutine CPU*, s CUDA**, s Speed-up
BGK 442 9.97 44
TRT 637 15.0 42

Streaming 72.9 6.86 11
Moment Method 76.8 71.6 1.1

Bounce-Back 17.8 1.53 12
Macrovars 48.3 7.98 5.9
Total***: 755 101 7.5

*CPU: Intel Core i7-3820 3.60GHz
**CUDA: NVIDIA GTX680 4GB

***Using an average collision value

Figure 4.11: CPU and CUDA runtime comparison for the LBM subroutines.

137

4. THE NUMERICAL METHOD

Figure 4.12: CUDA subroutine runtime as a percentage of the total LBM runtime
for BGK (left) and TRT (right).

see Figure 4.8, which means that there is a high overhead that has nothing to do

with the direct calculation of the boundary conditions themselves.

4.5.4 Lattice Boltzmann vs. discretised Navier-Stokes

One of the LBM merits is its efficiency. It can outperform conventional Navier–

Stokes solvers that use FV, FE or FD discretisation schemes when simulating

time-dependent hydrodynamics [70; 71]. In this section, the efficiency of the

LBM is tested and compared to that of several other solvers. General-purpose

commercial softwares like COMSOL [172], ANSYS Fluent [173] and PHOENICS

[174], as well as the fluid flow solver from the in-house software TESA are all

tested to see how they perform against the LBM. COMSOL is representing an

explicit FE flow solver. ANSYS Fluent and PHOENICS are both using FVM,

and TESA uses an implicit FDM to solve the flow. It is safe to say that explicit

schemes are faster than implicit schemes when talking about time-dependent

138

4. THE NUMERICAL METHOD

problems with fixed time stepping. The question is how much faster? Also, FEM

is not always the first choice when it comes to solving fluid flow so one might

expect slower performance from COMSOL compared to other solvers.

The transient benchmark test case is a simple quasi-3D lid-driven cavity flow.

The size of the square cavity is L = 0.01 m, the top wall is moving at a constant

speed ulid = 0.01 m/s, the kinematic viscosity is set as ν = 1 · 10−6 m2/s giving

Re = 100. Neumann zero condition is applied to the near and far boundaries.

The grid size varies from 8× 8× 1 to 2048× 2048× 1 going through powers of 2.

For the LBM and TESA solvers, the depth is set to 3 nodes where the two outer

ones represent the symmetry boundaries and the middle one is the interior. The

simulation is run for 1000 time steps of a fixed step size of δt = 3.125 · 10−4 s.

The results are listed in Table 4.7 and plotted in Figure 4.13. The line of

slope 2 shown in Figure 4.13 represents the theoretical trend of doubling the grid

length of a 2D domain and as a result the computational time increasing 4 times,

which corresponds to the change in the area of the computational domain. So the

trend is basically a square function. All the solvers show similar behaviour in the

linear region where the initialisation overhead is negligible. The rates range from

2 for the LBM to 2.3 for TESA. The deviation from the theoretical value might

be attributed to the other computer processes running in the background when

conducting the tests. The timing data at smaller grid sizes does not follow the

linear theoretical trend due to the initialisation and memory allocation tasks that

add a certain amount of time which is proportionally larger for smaller problems.

It is not surprising to see that COMSOL, which uses the FEM, is the most

time-consuming solver followed by ANSYS Fluent. Fluent representing a com-

mercially popular FV solver is more than 15 times faster than COMSOL when run

139

4. THE NUMERICAL METHOD

Table 4.7: Timings for different methods used to solve a lid-driven cavity flow.

1000
outputs

Times, s (1000 time steps)

LBM FEM
COMSOL

FVM
Fluent

FVM
PHOENICS

FDM
TESAGrid size

8 0.5 33 63 3.0 0.1
16 0.7 58 63 3.0 0.4
32 0.7 201 68 4.0 1.3
64 2.0 872 90 8.0 5.3
128 7.2 3667 210 23 22
256 33 15608 838 88 118
512 137 80101 5850 764 694
1024 559 - 16678* 4140 3517
2048 2323 - - 18300 17069

*Grid size of 715 was used

explicitly. Because the global time stepping cannot be used to compute unsteady

incompressible flows, the non-iterative regime of the PISO (Pressure-Implicit with

Splitting of Operators) algorithm is chosen to mimic an explicit scheme.

PHOENICS is another example of a FV solver dating back to early 1980s when

the available computational power and memory were very limited. Not being able

to select a fully explicit time stepping, the implicit algorithm’s iteration count

during one time step is set to 1 and the variable values are forced to relax straight

to those of the current time step. The results show that PHOENICS is on average

10 times faster than Fluent, closing in on the LBM, but still trailing by a factor

of 4. In contrast to Fluent, PHOENICS and TESA are structured codes, which

explains their speed advantage.

The iteration count in TESA flow solver at every time step is set to 1. Al-

though the solution might not have converged at each time step, the FDM solver

runs as fast as possible. Similarly to PHOENICS, the TESA flow solver is on

average 4 times slower than the LBM, when comparing values at the larger grids.

140

4. THE NUMERICAL METHOD

Figure 4.13: Timings for different methods used to solve a lid-driven cavity flow.

Knowing the speed-up of the LBM compared to the FDM flow solver, SLBM, and

that 80− 90 % of the total TESA simulation time is normally spent solving flow,

t%, the total speed-up of TESA, S, gained by replacing the flow solver can be

calculated as

S =
[
1 + t%

100 %

(1
SLBM

− 1
)]−1

. (4.15)

The possible outcomes are listed in Table 4.8. In the current case, using the

values t% = 80 % and SLBM = 4, the total speed-up is calculated to be S ≈ 2.5.

This speed-up value is just the lower estimate due to the reduced iteration count

in the implicit FDM flow solver and the assumption that it consumes only 80 %

of the total simulation time. However, this is just the lower estimate because

it normally takes the implicit solver more than 1 iteration for the solution to

converge at each time step, which means that the LBM speed-up can be even

higher. Also, the assumption that the flow solver consumes only 80 % and not

141

4. THE NUMERICAL METHOD

Table 4.8: Theoretical speed-ups of the coupled code with respect to the cal-
culation time percentage of the flow part, 10 − 90 %, and the LBM speed-up,
1−∞.

Speed-up
t% 1 2 3 4 5 6 7 8 9 ∞

10 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
20 1.0 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
30 1.0 1.2 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4
40 1.0 1.3 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.7
50 1.0 1.3 1.5 1.6 1.7 1.7 1.8 1.8 1.8 2.0
60 1.0 1.4 1.7 1.8 1.9 2.0 2.1 2.1 2.1 2.5
70 1.0 1.5 1.9 2.1 2.3 2.4 2.5 2.6 2.6 3.3
80 1.0 1.7 2.1 2.5 2.8 3.0 3.2 3.3 3.5 5.0
90 1.0 1.8 2.5 3.1 3.6 4.0 4.4 4.7 5.0 10

90 % of the total calculation time is used. So, possibly the total speed-up offered

by the LBM is even higher.

In addition, the LBM CUDA code is currently found to be approximately 7.5

times faster than the serial LBM, see Section 4.5.3. This means that the GPU

version of the LBM is around 30 times faster than the serial FDM flow solver.

So, the LBM CUDA code offers a potential speed-up in the range of 5.

The LB solver demonstrates a massive 500-time increase in speed compared to

COMSOL, a 30-time increase compared to Fluent and a 4-time increase compared

to both PHOENICS and the TESA flow solver proving it to be the most efficient

transient flow solver along with other merits of the LBM.

4.6 Summary

In this chapter, the algorithm side of the purpose-built LBM has been discussed.

The method can be broken down into simple subroutines each handling a separate

142

4. THE NUMERICAL METHOD

task. Because the LBM is written in a dimensionless form, the variables need to

be scaled when passed in and out. The main building blocks of the method are

the collision and streaming subroutines from which the collision is the most time-

consuming operation. The newly proposed 3D moment-based boundary method

can handle both velocity and pressure Dirichlet type boundaries. They can be

written generally for each face, edge and corner boundary with the help of the

Euler angles by exploiting the symmetry properties of the lattice. That reduces

the chance of making typing errors when maintaining the code.

The parallelisation aspect has also been covered. The LB code has been

parallelised using MPI for the CPU use. The LB code has been modified to

include the calls to the MPI libraries developed by Kao that pass the variable

information from one processor to another. The GPU version of the LB code

has also been developed. The performance of the CUDA LB code has been

tested against the serial version revealing a 7.5-time speed-up for a 1283 problem.

CUDA platform has been chosen over directive-based models because it offers a

higher yield performance-wise with a little more effort in programming. However,

currently only the MPI-enabled version of the LB code has been successfully

coupled to TESA, the next step being a complete coupling of the GPU LB code

and TESA, see Section 6.2.

The performed studies of the strong and weak scaling have revealed that the

developed LB code scales very well in both cases. It demonstrates high efficiencies

around 90 % of the ideal strong scaling value for all the grid sizes. The calculation

times in weak scaling plateau out consistently for all grid sizes at higher number

of processors used showing the expected behaviour.

Performance analysis has been conducted for different methods to see how

143

4. THE NUMERICAL METHOD

efficient the developed LBM is compared to other numerical schemes. The results

clearly show why the LBM is the best choice for solving transient large-scale

convection and diffusion problems. The most important number from the analysis

is of course the time ratio of the current flow solver used in TESA and the

developed LB code. It has been shown that the LBM outperforms the FDM flow

solver by a factor of 4, which means that by replacing the flow solvers the total

simulation time would decrease at least 2.5 times.

144

Chapter 5

MODEL VALIDATION AND

RESULTS

5.1 Introduction

In this section, the newly derived 3D Moment Method is validated on various

benchmark cases in 2D and 3D testing the conditions at the faces, edges and

corners of the domain. The 2D simulations are used to verify the developed

method, while the 3D simulations are used for the assessment of the method’s

accuracy and stability.

One of the tests in 2D is the relaxation time independence study performed

using the 2D Poiseuille flow. Moreover, it is linked to the exact recovery of the no-

slip condition for the velocity on the wall. Because the solution of the developed

2D Poiseuille flow is essentially 1D, a relatively small numerical grid of 33× 3× 3

can be used in the calculations to test for the τ dependence and the no-slip

recovery. A grid size of 129× 129× 3 is selected for the 2D lid-driven cavity flow

to match the the meshes employed by other authors [175; 176]. Velocity profiles

145

5. MODEL VALIDATION

along the centerlines as well as the extreme values of the stream functions are

compared in order to validate the method.

For the 3D convergence studies, the grid size is being varied proportionally

with the relaxation time while fixing the Reynolds number. A changing grid of

Nx×Ny×Nz up to 5132×3 is used for the 3D duct flow while fixing the velocity

at 0.1. Force is applied to the fluid domain in the z direction in both 2D and

3D calculations. A zero Neumann boundary condition for the flow variables is

applied to the redundant dimensions. A varying grid of Nx×Ny×Nz up to 2573

is used for the 3D lid-driven cavity flow while fixing the Reynolds number at Re

= 1000.

5.2 2D validation of the Moment Method

The relaxation time dependence study is performed to see if the Moment Method

is τ -independent, and the results are shown in Figure 5.1. The Moment Method

with both collision schemes shows a whole range of the relaxation time values

for which the solution does not change in general, apart from the small region

where τ approaches its asymptotic lower limit, τmin = 1/2. The lower limit, τmin,

is obtained from (3.38) and simply restricts the fluid viscosity from becoming

negative.

The carried out relaxation time dependence study confirms that the Moment

Method has no slip at the walls, and it is τ -independent, see Figure 5.2.

The velocity is kept constant during the study, Reynolds number is moderately

high for small τ , but decreases linearly as τ increases. The relative slip velocity

for the modified bounce-back increases monotonically with τ irrespective of the

146

5. MODEL VALIDATION

■

■ ■

●

●

●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

■
■ ■

●

● ●

■ BB SRT

● BB TRT

■ MM SRT

● MM TRT

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.00

0.02

0.04

0.06

0.08

Relaxation time τ

R
e
la
ti
v
e
L
2
n
o
rm

Figure 5.1: τ independence study for the the Moment Method and the modified
bounce-back rule using SRT and TRT collision schemes in a 3D developed duct
flow case.

■

■
■
■
■
■
■
■
■ ■

●

●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■● ●

■ BB SRT

● BB TRT

■ MM SRT

● MM TRT

0.6 0.8 1.0 1.2 1.4 1.6 1.8

-0.015

�0.010

�0.005

0.000

Relaxation time τ

R
e
la
ti
v
e
s
lip
v
e
lo
c
it
y

Figure 5.2: Relative slip velocity dependence on the relaxation time in a 2D
Poiseuille flow case at the wall.

147

5. MODEL VALIDATION

collision scheme used here.

The 2D Poiseuille flow is selected to test if the no-slip velocity condition

on the wall is recovered exactly, which is an issue with the bounce-back rule.

To highlight the difference between slip and no-slip, the calculations are also

performed using the modified bounce-back rule. The results are shown in Figure

5.3. The Moment Method velocity profiles show very good agreement with the

analytical solution compared to the bounce-back rule results. In fact, the LBM

together with the Moment Method can recover the simplest 2D Poiseuille flow

velocity profile exactly, see Figure 5.4. The inset in Figure 5.3 shows a zoomed in

area of the flow next to the wall. The artificial slip at the wall node is apparent

for the bounce-back rule while the no-slip condition is recovered exactly by the

Moment Method.

5.2.1 Oscillatory flow around a cylinder

To test the transient nature of the LBM algorithm and the Moment Method flow

past a cylinder is investigated. In this benchmark case at a critical Reynolds

number the flow detaches from the obstacle forming vortices in the wake zone.

The vortex shedding can be characterised by the Strouhal number, St = Lω

u∞
,

where ω is the shedding frequency and u∞ is the free stream velocity. One way

of comparing the obtained periodic solution to the results found in the literature

is by plotting the relation between the Reynolds and Strouhal numbers. Figure

5.5 shows a comparison between the present model and experimental results by

Williamson [177] and numerical results by Posdziech and Grundmann [178] at

different Reynolds numbers. The grid size for this 2D transient benchmark case

is L×H = 1200×600. Numerical results are obtained at five different Re ranging

148

5. MODEL VALIDATION

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+ + + + +

+
+
+
+

+

+

+

+

+

+

+

+

+

+×

×

×

×

×

×

×

×

×

×

×
×
×
×
× × × × ×

×
×
×
×

×

×

×

×

×

×

×

×

×

×�

�

�

�

�

�

�

�
�

	

�

�

�

�

�

+ BB SRT

× BB TRT

MM SRT

� MM TRT

Analytic

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Normalised channel width

N
o
rm
a
lis
e
d
v
e
lo
c
it
y

+×+×
-0.001 0 0.001

-0.004

-0.002

0.000

0.002

0.004

Figure 5.3: 2D Poiseuille flow velocity profile showing the exact recovery of the
no-slip condition for the Moment Method and the artificial slip for the modified
bounce-back rule.

■

■

■

■
■ ■ ■ ■

●

●

●

●
● ● ● ●■ ■ ■ ■ ■ ■ ■ ■● ● ● ● ● ● ● ●

■ BB SRT

● BB TRT

■ MM SRT

● MM TRT

5 10 50 100

0.80

0.85

0.90

0.95

1.00

Grid size

C
lo
se
ne
ss
to
ex
ac
ts
ol
ut
io
n

Figure 5.4: Grid convergence study for the the Moment Method and the modified
bounce-back rule using SRT and TRT collision schemes in a 2D Poiseuille flow
case.

149

5. MODEL VALIDATION

from 50 to 250 which is the laminar regime of the flow. The grid size and the

free stream velocity are fixed while the dimensionless viscosity varies for different

Re. Free stream velocity, u∞ = 0.1, is applied to the west, north and south

boundaries, and a pressure outlet is used at the east boundary. A cylinder of

diameter D = H/15 is placed at (H/2, H/2) with the wake zone of length 22D.

The results show a good agreement between the data. The small differences

might be attributed to the chosen mesh size and possible boundary effects. Also,

the circular cylinder is not perfectly circular because no interpolation is used to

describe the obstacle boundaries.

5.2.2 The 2D lid-driven cavity flow

The 2D lid-driven cavity flow is selected as one of the benchmark cases to test the

ability of the Moment Method to describe shear flows, see Figure 5.6. Velocity

profiles along the centerlines as well as the extreme values of the stream functions

have been compared to the data from the literature [175; 176] at Reynolds num-

bers Re = 100 and Re = 1000. The results shown in Figure 5.7 and Table 5.1 are

in very good agreement with the results obtained by Ghia et al. [175], who were

the first ones to do a comprehensive study on the lid-driven cavity flow, but more

so with the results from Botella and Peyret [176], who used a spectral method in

their work.

150

5. MODEL VALIDATION

Figure 5.5: Vortex street (top) and comparison between the present results and
data from the literature (bottom). Experimental results are from Williamson
[177] and numerical results are from Posdziech and Grundmann [178]. [170]

151

5. MODEL VALIDATION

Figure 5.6: Lid-driven cavity flow. Velocity field (top) and streamlines (bottom)
showing the nature of the flow in the square cavity at Reynolds numbers Re = 100
(left) and Re = 1000 (right).

152

5. MODEL VALIDATION

■
■■■■

■

■

■

■
■

■

■

■
■■■

■

□□□□□

□

□

□

□
□

□

□

□
□□□

□

xxxxx

x

x

x

x
x

x

x
x xxx

x

■ Ghia et al. Re=100

□ Ghia et al. Re=1000

x Botella&Peyret Re=1000

LBM Re=100

-- LBM Re=1000

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ux

y

■

■■■■

■

■
■

■

■■■
■■■■

■ □

□
□
□
□

□

□

□

□

□□
□

□□□□

□ x

x
x
x
x

x

x

x

x

xx
x

xxxx

x

■ Ghia et al. Re=100

□ Ghia et al. Re=1000

x Botella&Peyret Re=1000

LBM Re=100

-- LBM Re=1000

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

x

u
y

Figure 5.7: A comparison of horizontal (top) and vertical (bottom) velocity along
the centerline at Reynolds numbers Re = 100 and Re = 1000 on a 1292 grid.

153

5. MODEL VALIDATION

Ta
bl

e
5.

1:
C

om
pa

ris
on

of
th

e
ex

tr
em

e
va

lu
es

of
th

e
st

re
am

fu
nc

tio
n

at
R

ey
no

ld
sn

um
be

rs
R

e=
10

0
an

d
R

e=
10

00
on

a
12

92
gr

id
.

Pr
im

ar
y

vo
rt

ex
Se

co
nd

ar
y

vo
rt

ex
(B

L)
Se

co
nd

ar
y

vo
rt

ex
(B

R
)

R
ef

er
en

ce
R

e=
10

0
R

e=
10

00
R

e=
10

0
R

e=
10

00
R

e=
10

0
R

e=
10

00
Pr

es
en

t,
ψ

-0
.1

03
40

2
-0

.1
19

24
4

1.
51

76
0·

10
−

6
2.

30
15

8·
10
−

4
1.

21
73

1·
10
−

5
1.

72
76

9·
10
−

3

x
,y

0.
61

72
,0

.7
34

4
0.

53
13

,0
.5

62
5

0.
03

13
,0

.0
39

1
0.

08
59

,0
.0

78
1

0.
94

53
,0

.0
62

5
0.

85
94

,0
.1

09
4

G
hi

a
et

al
.
ψ

-0
.1

03
42

3
-0

.1
17

92
9

1.
74

87
7·

10
−

6
2.

31
12

9·
10
−

4
1.

25
37

4·
10
−

5
1.

75
10

2·
10
−

3

[1
75

]
x
,y

0.
61

72
,0

.7
34

4
0.

53
13

,0
.5

62
5

0.
03

13
,0

.0
39

1
0.

08
59

,0
.0

78
1

0.
94

53
,0

.0
62

5
0.

85
94

,0
.1

09
4

Bo
te

lla
&

ψ
-

-0
.1

18
93

7
-

2.
33

45
3·

10
−

4
-

1.
72

97
2·

10
−

3

Pe
yr

et
[1

76
]x
,y

-
0.

53
08

,0
.5

65
2

-
0.

08
33

,0
.0

78
1

-
0.

86
4,

0.
11

18

BL
-b

ot
to

m
le

ft,
BR

-b
ot

to
m

rig
ht

154

5. MODEL VALIDATION

5.3 3D validation of the Moment Method

The grid convergence studies in 3D are carried out to check if the boundary

method is not degrading the second order accuracy of the LBM. 3D cases are

chosen as the best representatives of the method’s accuracy due to all the bound-

aries being included.

Because the LBM together with the Moment Method can recover the simplest

2D Poiseuille flow velocity profile exactly, see Figure 5.4, unlike the bounce-back

rule, a 3D duct flow is chosen to test the grid convergence.

The analytical formula for the velocity in a developed 3D square duct flow

has been adopted from the theory of elasticity when talking about the deflection

surface of a membrane [179]. It has the following form:

uz = 4L2Fz
π3ρν

∞∑
i=1,3,5,...

(−1) i−1
2

i3
cos

(
iπ
x

L

)1−
cosh

(
iπ y

L

)
cosh

(
iπ 1

2

)
 . (5.1)

The expression for the velocity includes the information of the geometry of the

square duct or the width L, fluid properties or the dynamic viscosity ρν and

applied conditions or the driving force Fz. The infinite sum is used to account

for the rectangular shape of the duct. The coordinates in the velocity solution

(5.1) range from −L2 to L

2 so that the origin (0, 0) is placed in the middle of the

duct. If the zeros are substituted into (5.1) then the formula for the maximum

velocity can be obtained:

umax = 4L2Fz
π3ρν

∞∑
i=1,3,5,...

(−1) i−1
2

i3

1− 1
cosh

(
iπ 1

2

)
 . (5.2)

Analytical velocity values of the 3D duct flow are recovered beyond the ma-

155

5. MODEL VALIDATION

chine precision error accuracy and are not affecting the grid convergence test

study. Truncating the infinite series in (5.1) at i = 450 leads to a relative error

of less than 10−8 which is beyond the machine single precision, 10−7, used in this

work. To evaluate the deviation from the exact solution, the L2 relative error

norm is calculated for the velocity field,

L2 =

√√√√∑i(ui − u∗i)2∑
i u
∗2
i

, (5.3)

where u∗i is the exact solution at the calculation domain node i.

Figure 5.8: Grid convergence study for the the Moment Method using the TRT
and TRT-Stokes collision schemes in a 3D developed duct flow case.

The results of the grid convergence study are shown in Figure 5.8. The Mo-

ment Method is at least second order accurate in the region where the grid size

error is dominant. The error data points follow the line of slope 2 shown as a

long-dashed line. Moreover, neglecting the nonlinear velocity terms in low-Re

156

5. MODEL VALIDATION

case, Re = 1, yields the same accuracy as using the full expressions. However,

the accuracy of the Stokes approach quickly deteriorates beyond the first order

as the Reynolds number increases, see the dashed line in Figure 5.8.

To put the obtained Moment Method results into perspective, they are com-

pared with the results of the half-way bounce-back scheme and Hecht and Harting

[134], see Figure 5.9. Despite all the boundary methods reportedly being second

order accurate, the developed Moment Method overall shows better accuracy than

the half-way bounce-back scheme and the method proposed by Hecht and Hart-

ing. It should be noted, however, that the chosen range of the viscosity values

in this convergence study is influencing the accuracy of the half-way bounce-

back scheme. Here it shows only first order accuracy. Although the half-way

bounce-back scheme is simpler and computationally less expensive than the Mo-

ment Method, its optimal viscosity region is not as wide as that of the Moment

Method meaning that the calculation time to achieve the same accuracy is much

longer. Choosing a 10-times smaller viscosity and hence 10-times smaller time

step restores the second order accuracy of the half-way bounce-back scheme, see

the ‘pluses’ in Figure 5.9. Another comparison of the Moment Method and the

half-way bounce-back scheme can be found in a study conducted by Mohammed

et al. [142], where they find that the results of the Moment Method are in a

closer agreement to the spectral method’s than those obtained with the half-way

bounce-back scheme.

In addition to the 3D duct flow case, the grid convergence study is also per-

formed using the 3D lid-driven cavity flow. Reynolds number is fixed at Re = 1000

and the lid velocity is kept constant at ulid = 0.1 so that only the viscosity changes

proportionally with the grid size. Because the lid driven cavity flow does not have

157

5. MODEL VALIDATION

Figure 5.9: Comparison of the grid convergence for the 3D developed duct flow be-
tween the present Moment Method, half-way bounce-back scheme and the method
proposed by Hecht and Harting [134].

an analytical solution, the variable field values obtained on the finest grid of 2573

are used as a reference. Figure 5.10 shows the convergence study results gathered

from comparing the velocity field values at different grid sizes. For this purpose,

(5.3) is expanded to a 3D vector field calculation as,

L2 =

√√√√√∑i

(
(uxi − u∗xi)2 + (uyi − u∗yi)2 + (uzi − u∗zi)2

)
∑
i(u∗2xi + u∗2yi + u∗2zi)

, (5.4)

where u∗αi is the velocity field value on the finest grid, here 2573. The error data

points in Figure 5.10 show the same trend as the line of slope 2, meaning that

the Moment Method is second order accurate in 3D.

158

5. MODEL VALIDATION

●

●

●● 3D LBM Re=1000

-- slope-2

25 50 75 100 125 150
0.005

0.010

0.050

0.100

Grid size

R
el
at
iv
e
L
2
no
rm

Figure 5.10: Grid convergence study for the the Moment Method using TRT
collision scheme in a 3D lid-driven cavity flow case.

5.4 Differentially heated cavity flow

A 2D LB model has been coupled to a simple finite-difference heat transfer code

to simulate differentially heated cavity (DHC) flow. Two cases are considered

– constant temperature of TL = 0 and TH = 1 on opposing walls vertically and

horizontally. The first case models the Rayleigh–Benard convection (RBC), where

the periodic boundary condition is imposed on the side walls. The second scenario

is an enclosed cavity with a moving lid. Both setups are shown in Figure 5.11.

Temperature difference is imposed on the opposing walls, and the remaining (if

any) walls are insulated. No-slip boundary conditions for velocity are imposed

on all walls.

For the RBC, the main characteristic of the physical problem is the Rayleigh

number, which is expressed as,

Ra = gβ

να
(Ts − Tref)L3, (5.5)

159

5. MODEL VALIDATION

Figure 5.11: Schematic drawing of the differentially heated cavity flow. Rayleigh–
Benard convection (left) and moving lid cavity (right).

Figure 5.12: Rayleigh–Benard convection in a periodic domain. Single plume in
a low-Ra case (left), multiple plumes in a mid-Ra case (right).

where g, β, ν and α are gravitational acceleration, thermal expansion coefficient,

kinematic viscosity and thermal diffusivity, respectively. Ts is the surface tem-

perature and Tref is the reference or ambient temperature. L is the characteristic

length. The thermal expansion coefficient is usually taken to be inversely propor-

tional to the temperature β = 1
T

. For relatively small values of Ra, the system

is stable as seen in Figure 5.12 on the left. For medium to high Ra, the system

becomes unstable and does not converge to a steady-state solution, see Figure

5.12 on the right.

Next, the moving lid differentially heated cavity flow is described. In the

stationary case, when the lid velocity Ulid = 0, the main acting phenomenon is

160

5. MODEL VALIDATION

Figure 5.13: Comparison of the steady-state temperature distribution in the dif-
ferentially heated cavity between the LBM (dashed red lines) and COMSOL (solid
black lines). Ra = 103 (left), Ra = 104 (middle), Ra = 105 (right).

natural convection. Because of the symmetric setup of the system, the solution

of the DHC problem also possesses central symmetry. Temperature field in the

cavity at different Ra is shown in Figure 5.13. It can be seen that the distribution

of isotherms changes from vertical to horizontal in the middle of the cavity as Ra

increases, with heat transfer changing from conduction to convection dominated.

The vertical wall boundary layers become progressively thinner. The results have

been compared with the fine-mesh steady-state solution obtained with COMSOL

and they show a very good agreement. Additionally, the maximum velocity values

and their locations on the vertical and horizontal mid-lines have been listed in

Table 5.2 and compared to the benchmark solutions provided by de Vahl Davis

[180] and Markatos and Pericleous [181] also showing a very good agreement.

The velocities are normalised using a factor of L/a, where L is the cavity width

and a is the thermal diffusivity.

However, for non-zero lid velocities depending on the magnitude of the lid

velocity the forced convection is dominant and the temperature distribution in

the cavity loses its symmetry as shown in Figure 5.14.

161

5. MODEL VALIDATION

Ta
bl

e
5.

2:
C

om
pa

ris
on

of
th

e
D

H
C

so
lu

tio
ns

at
di

ffe
re

nt
R

ay
le

ig
h

nu
m

be
rs

.

R
a

=
10

3
R

a
=

10
4

R
a

=
10

5

R
ef

er
en

ce
u
m
a
x

v m
a
x

u
m
a
x

v m
a
x

u
m
a
x

v m
a
x

Pr
es

en
t,

3.
50

0
3.

50
0

16
.1

0
20

.2
9

34
.3

0
71

.4
0

x
,y

0.
5,

0.
81

5
0.

18
0,

0.
5

0.
5,

0.
81

5
0.

13
0,

0.
5

0.
5,

0.
84

5
0.

07
2,

0.
5

C
O

M
SO

L,
3.

65
6

3.
68

9
16

.2
4

19
.7

9
35

.7
1

73
.6

0
x
,y

0.
5,

0.
81

5
0.

18
0,

0.
5

0.
5,

0.
81

5
0.

12
5,

0.
5

0.
5,

0.
84

0
0.

07
5,

0.
5

M
ar

ka
to

s
&

3.
54

4
3.

59
3

16
.1

8
19

.4
4

35
.7

3
69

.0
8

Pe
ric

le
ou

s[1
81

],
x
,y

0.
5,

0.
83

2
0.

16
8,

0.
5

0.
5,

0.
83

2
0.

11
3,

0.
5

0.
5,

0.
85

7
0.

06
7,

0.
5

de
Va

hl
D

av
is

[1
80

],
3.

64
9

3.
69

7
16

.1
8

19
.6

2
34

.7
3

68
.5

9
x
,y

0.
5,

0.
81

3
0.

17
8,

0.
5

0.
5,

0.
82

3
0.

11
9,

0.
5

0.
5,

0.
85

5
0.

06
6,

0.
5

162

5. MODEL VALIDATION

Figure 5.14: Steady-state temperature distribution and velocity field streamlines
in the moving lid differentially heated cavity at Ra = 50000. Stationary lid (left)
and moving lid (right).

5.5 Solidification in a DHC

The DHC model is slightly modified to include a simple solidification process (5.6)

in the heat transfer solver. It states that the liquid fraction decreases linearly

with the temperature when the temperature is in a certain region, TL ≤ T ≤ TH ,

and reaches zero when the temperature falls below the set threshold, T < TL. The

liquid turns solid at fliq = 0.5 so that the bounce-back scheme can be employed.

The buoyancy force, Fb = ρgβ(T −Tref) · (1− fsol), acts only in the non-solidified

region.

fliq = max
(

0,min
(

1, T − TL
TH − TL

))
. (5.6)

The results are compared to those of Voller and Prakash [182] showing a good

agreement, see Figure 5.15. Ra = 104 and the Pradtl number that expresses the

balance between the energy transport through momentum diffusivity and thermal

diffusivity, Pr = ν

α
, is set to Pr = 103. The slight mismatch can be explained

by the different approaches taken to describe the flow in the mushy zone. In the

present model, the viscous boundary layer of the solidified region slows down the

163

5. MODEL VALIDATION

Figure 5.15: Solidification in the DHC. Left: temperature field showing the mushy
region and velocity vectors showing convection. Right: comparison of the mushy
region between the LBM (dashed red lines) and Voller [182] (solid black lines).

flow, while Voller and Prakash use a resistive force Fres to suppress the flow,

Fres = −C1ρU
(1− fliq)2

f 3
liq + q1

, (5.7)

where C1 = 1.6 · 105 and q1 = 10−1 are scaling and stability constants.

5.6 Undercooled crystal growth

The LBM and the enthalpy method described in Section 4.4.2 are fully cou-

pled together to simulate 2D crystal growth in an undercooled melt. Physical

properties of liquid aluminium-like material, see Table 5.3, are chosen as input

parameters for the model. The growth takes place in a low Peclet number regime,

Pe = UL

α
, where the diffusive transport is comparable or dominant over the con-

vective transport. A square mesh of 1024× 1024 is used for both solvers. At the

beginning of the calculation, the entire domain is in a metastable liquid state and

at a constant undercooled temperature with a constant bulk flow velocity. Solidi-

164

5. MODEL VALIDATION

Table 5.3: Physical properties of liquid aluminium-like material.

Liquid density, ρ (kg/m3) 2500
Viscosity, µ (Pa · s) 0.00285
Specific heat capacity, cp (J/kg ·K) 1200
Latent heat, ∆H (J/kg) 400000
Thermal conductivity, k (W/m ·K) 90
Fusion/melting temperature, Tf (K) 933

fication begins with the nucleation of a single-cell seed at solidifying temperature

in the middle of the domain. An inlet of homogeneous velocity U = (Uin, 0) and a

pressure outlet are defined on the west and east side of the domain, respectively.

The north and south walls have the free-slip condition for the velocity. For the

domain boundaries, a hydrodynamic scheme proposed by Zou and He [131] is ap-

plied. For the growing crystal interface a half-way bounce-back heuristic scheme

is used due to the complex geometry shape. For stagnant flow, zero heat flux

is applied to all the domain boundaries. In the forced convection case, the bulk

undercooled temperature is applied at the inlet. The enthalpy method is written

using a finite differencing scheme.

5.6.1 Single crystal growth in stagnant melt

From the numerical simulation of the crystal growth in a static melt, the normal

tip velocities are obtained, which are later used to scale the tip velocities in forced

convection. It can be seen from Figure 5.16 that there is no preferential growth

direction. The crystal grows equally in all four directions because of the four-

fold symmetry, see the coefficient in front of the interface orientation angle θ in

(4.14). Furthermore, the growth is suppressed in regions where the temperature is

higher, and that is at the base of the dendrite arms due to the negative curvature,

165

5. MODEL VALIDATION

Figure 5.16: Thermal field of the growing crystal (left) and time histories of the
relative tip velocities in a static melt (right) with undercooling of Tuc = −0.5,
time t ≈ 7 µs.

see (4.14). The seed grows faster at the beginning because of the beneficial low

surrounding temperature. As the crystal gets bigger and the thermal boundary

layer develops, the growth speed decreases until converging to the steady-state

growth predicted by microscopic solvability theory. The theory states that the

analytic solution for the undercooled dendritic growth can be expressed by the

means of the dendrite tip velocity Utip and its radius Rtip as

UtipRtip = C,

UtipR
2
tip = C,

(5.8)

where C is a constant. Figure 5.16 also shows the time evolution of the tip

velocities scaled by the steady-state growth speed U0.

5.6.2 Forced convection crystal growth

When flow is applied, the morphology of the growing crystal changes compared

to the case of a static melt. The incoming flow introduces a preferential growth

166

5. MODEL VALIDATION

direction by decreasing the thermal boundary layer upstream and increasing it

downstream. This, in turn, results in a greater tip velocity for the upstream arm

and stunting of the downstream arm. The applied convection also has a negative

effect on the perpendicular arm growth as for they decrease.

Figure 5.17 shows thermal fields with different magnitudes of forced convection

and how the morphology of the growing crystal is affected. The greater the inlet

velocity, the greater the difference between tip velocities and furthermore the arm

lengths. Figure 5.18 shows the time histories of the relative tip velocities, and the

aggregate results. It can clearly be seen that the upstream or west tip velocity

increases with increasing inlet velocity. Whereas, the east or downstream tip

velocity approaches zero, with greater forced convection. Both north and south

tip velocities experience the same effect. The results for the 2D undercooled

crystal growth are in a good qualitative agreement with the literature data [24–

28; 55].

5.7 Large-scale results

Having validated the LB code using various benchmark cases, the developed LB

code can be applied to model large-scale multi-physics problems. Furthermore,

the simulated microstructure results can be compared to the experimental data

obtained on a macroscale, verifying the developed model even further and en-

tering the final stage of the numerical modelling which involves using the model

to predict and investigate various physical phenomena in certain multi-physics

systems.

167

5. MODEL VALIDATION

Figure 5.17: Thermal field of the growing crystal in a convectional melt with
undercooling of Tuc = −0.5 at different inlet velocities. Top left: Uin = 0.0025,
top right: Uin = 0.005, middle left: Uin = 0.0075, middle right: Uin = 0.01,
bottom left: Uin = 0.0125, bottom right: velocity streamlines, all at time t ≈ 7 µs.

168

5. MODEL VALIDATION

Figure 5.18: Time histories of the relative tip velocities of the growing crystal
with undercooling temperature of Tuc = −0.5. (a) Uin = 0.0025, (b) Uin = 0.005,
(c) Uin = 0.0075, (d) Uin = 0.01 and (e) Uin = 0.0125. (f) Steady-state relative
tip velocities of the growing crystal.

169

5. MODEL VALIDATION

5.7.1 Free dendritic growth

As discussed earlier in Section 2.2, the morphology of a freely growing crystal in

3D differs in complexity compared to the 2D case that was covered in the previous

section. Utilising the available computing resources in the research group, a low

undercooled crystal growth in 3D using a grid of one billion elements is simulated

demonstrating the full coupling between the CA and LBM. Two cases have been

simulated, free growth with and without forced convection, and the differences

have been discussed. The material properties of the alloy are given in Table

5.4. The problem setup is as follows, a single seed is placed in the middle of the

undercooled, Tuc = 20 K, domain and solidification process begins extracting the

latent heat and the solute into the melt. Although the LB flow solver is disabled

in the stagnant flow case, the solidified symmetric equiaxed dendrite serves as a

basis for morphological comparison when simulating growth in forced convection.

An inlet velocity of 400 µm/s is applied forcing the thermal and solutal boundary

layer to skew downstream. This leads to preferential growth in the upstream

direction and stunted growth downstream. This behaviour is in accordance to

the results reported in the literature [30–35; 94]. Thanks to the large simulated

domain size, the dendritic arms can be captured in a high detail revealing ternary

and even quaternary arms as seen in Figure 5.19.

5.7.2 Alloy solidification in DHC

Another example of a successful coupling between the CA and LBM is the al-

loy solidification subject to a horizontal temperature gradient [170], an experi-

ment of which has been conducted by the HZDR (Helmholtz-Zentrum Dresden-

170

5. MODEL VALIDATION

Figure 5.19: Free equiaxed growth [170]. a) No flow, b,c) forced convection of
u = 400 µm/s in +x viewed at different angles.

171

5. MODEL VALIDATION

Table 5.4: Material properties of the Ga-In alloy used in simulations.

Density Ga, ρGa (kg/m3) 6095
Density In, ρIn (kg/m3) 7020
Kinematic viscosity, ν (m2/s) 3.28 · 10−7

Partitioning coefficient, kp 0.5
Solute diffusivity, DC (m2/s) 2 · 10−9

Liquidus slope, ml (K/wt%) 2.9
Solute expansion coefficient, βC (wt%−1) 1.66 · 10−3

Thermal expansion coefficient, β (K−1) 1.18 · 10−4

Rossendorf) research team. The microstructure solidification of Ga-25%wt.In

alloy in a DHC is simulated using a grid of 3072 × 16 × 3072 = 151 million el-

ements with a grid step size ∆x = 9.375 µm. The physical size of the model,

28.8 × 0.15 × 28.8 mm, fully matches the experimental sample size and directly

represents the physical processes occurring in the cavity. Initially, 32 seeds with

random crystallographic orientations are placed on the cold west wall. Before

the initiation of the solidification and the accompanying processes, such as the

solute ejection into the melt, the thermal buoyancy drives the fluid flow in a

counter-clockwise direction. Once the dendritic growth begins and the lighter

solute gets ejected travelling to the top of the sample, the solutal buoyancy over-

takes the thermal buoyancy in the vicinity of the advancing solid/liquid interface.

The solutal buoyancy generates a clockwise fluid flow motion competing with the

thermally induced one. The result is a stable situation with two major co-existing

circular motions that leads to a stratification of concentration as shown in Figure

5.20. The accumulated solute at the top of the sample suppresses the dendritic

growth leading to a curved shape of the solid region. All the excess solute pro-

duced in the interdendritic region is carried by the flow to the west side where

172

5. MODEL VALIDATION

Figure 5.20: Solidification with a horizontal thermal gradient [170]. a) Numerical,
b) experimental.

173

5. MODEL VALIDATION

it escapes to the top through a chimney. It is more expressed in the numerical

model than the experimental. One explanation might be that the chimney is

there but it is not visible due to the placement of the heat sinks which limit the

field of view. On the other half of the sample, the thermally driven flow delivers

the bulk concentration to the interface promoting growth.

The numerical model closely reproduces the processes occurring in the ex-

periment highlighting the capability of the coupled CA-LB system to capture

microstructure solidification on a macroscale by modelling the whole sample and

applying appropriate boundary conditions.

5.7.3 Channel formation in directional solidification

The CA-LB coupled system is applied to model the channel formation in direc-

tional solidification of Ga-25wt.%In alloy. The material properties are given in

Table 5.4. The vertical thermal gradient is 1.6 K/mm and the lateral gradient

is 0.25 K/mm, giving relatively lower temperatures in the middle of the domain

compared to the sides. The growth speed is 4 µm/s. A numerical domain of

3200 × 16 × 3200 = 164 million elements with a grid step size ∆x = 10 µm and

a time step ∆t = 5 ms has been simulated for 106 time steps. It takes around

12 hours to simulate one million time steps when running the problem on 400

processors. The physical size of 32×0.16×32 mm closely matches the size of the

experimental setup [183], in fact it is slightly larger. The no-slip condition for

velocity is used on the bottom wall and both sidewalls. A pressure outlet is used

at the top boundary. The evolution process has been captured at three stages,

as shown in Figure 5.21. The early stage after 3 · 105 time steps or 1500 seconds

shows a fairly common sight of homogeneous solidification with the grain growth

174

5. MODEL VALIDATION

Figure 5.21: Evolution of the freckle formation in directional solidification. Top
left: t = 1500 s, top right: t = 3000 s, bottom: t = 5000 s. [183]

175

5. MODEL VALIDATION

and competition and Ga plume ejection due to natural convection. The interme-

diate stage at 6 · 105 time steps or 3000 seconds shows signs of the concentration

build-up in the middle of the domain due to the presence of the lateral thermal

gradient that introduces a bias in the equilibrium concentration profile. The high

concentration causes remelting of the already solidified regions carving the way

for the less dense solute to escape. The final stage is at 106 time steps or 5000

seconds after the start of the solidification. A single channel has formed in the

middle of the domain driving the ejected Ga upwards. The material to sustain

the channel is being drawn from the interdendritic region around it. This is in

excellent agreement with the experimental results presented in [183].

5.8 Summary

The developed LBM has been validated on various simple benchmark cases in

2D and 3D testing the accuracy, stability and ability to couple the LBM to

other solvers for modelling multi-physics problems. Firstly, the grid convergence

studies have been conducted showing that the LBM together with the newly

proposed 3D moment-based boundary method is second order accurate. This is an

important result demonstrating the same order accuracy as the NSE. The stability

analysis has shown that the moment-based method is generally independent of

the relaxation time in contrast to the bounce-back rule. Moreover, the moment-

based method can exactly recover the no-slip condition for velocity, which for the

bounce-back rule is another disadvantage.

Secondly, for some physical problems, the LB code has been coupled to an

external code, which handles either the heat transfer alone or the heat transfer

176

5. MODEL VALIDATION

together with solidification to model, for example, the undercooled crystal growth.

The steady-state or the time-dependent results of the coupled systems have been

compared to the data in the literature in each case showing very good agreement.

The developed LB code has been fully coupled to the CA method and suc-

cessfully applied to model large-scale multi-physics problems on the order of 100

million to 1 billion elements. A 3D undercooled crystal growth in forced con-

vection has been modelled showing the expected behaviour of preferential and

stunted growth. The large scale of the domain allows for the ternary and quater-

nary dendritic arms of the crystal to be observed in high detail.

The numerical study of the alloy solidification in a DHC has shown that the

model closely reproduces the processes occurring in the experiment highlighting

the capability of the coupled CA-LB system to capture microstructure solidifi-

cation on a macroscale by modelling the whole sample and applying appropriate

boundary conditions. The moment-based method has been applied to the flat do-

main boundaries and the bounce-back rule has been used to describe the complex

interior boundaries.

The channel formation in directional solidification of Ga-25wt.%In alloy has

been successfully modelled using the CA-LB method. The moment-based bound-

ary method has been successfully used to describe the pressure and velocity

boundaries of the domain demonstrating its capabilities. Matching the numer-

ical domain size, conditions and material properties to those of the experiment

has enabled to directly model the physical process in its entirety over several

thousand seconds as it occurs on a macroscale.

177

Chapter 6

CONCLUSIONS AND FUTURE

WORK

6.1 Conclusions

This work seeks to find the best numerical method to model 3D large-scale

convection-driven fluid flow during microstructure solidification of metal alloys.

So, the first and main question to answer is:

What is the most appropriate and efficient way to model fluid flow

during microstructure solidification on a macroscale?

The task is not straightforward as several requirements must be met. The

flow solver is typically the most time-consuming part of the numerical algorithm.

The method should span across multiple scales capturing microscopic flow in

the inter-dendritic region as well as the macroscopic flow in the bulk melt. The

inter-dendritic region has irregular and complex structures that act as obstacles

178

6. CONCLUSIONS AND FUTURE WORK

for the melt flow. Large-scale modelling implies the use of parallelisation and

furthermore domain decomposition. The lattice Boltzmann method ticks all the

boxes. It can easily describe micro-, meso- and macroscopic flows, handle com-

plex boundaries and can be massively parallelised due to the local nature of its

algorithm. The LBM has been tested on various benchmark problems assessing

its suitability for the application. The assessment includes a performance analy-

sis where it has been compared to different Navier-Stokes solvers and the GPU

parallelisation potential has been investigated. It has been found that the LBM

outperforms the Navier-Stokes solvers considered here several times. The rea-

sons being the explicitness, structure and specification of the LBM compared to

the other more general solvers. This and the easy coupling of the LBM and the

solidification algorithm, where the effect of the temperature and solute change

gets passed down to the fluid solver as thermal and solutal buoyancy forces. The

GPU study has revealed that there is a potential of gaining additional speed-up

by parallelising the code using GPUs, which would no longer see the flow solver

as the bottleneck of the multi-physics algorithm, but the full implementation of

CUDA LBM remains as a future work.

The second research question is more algorithm orientated:

Can the numerical technique be improved to produce more accurate

or stable results?

While exploring the LBM it has been found that there is no simple and consis-

tent way of implementing both velocity and pressure boundaries in 3D. Normally

they are written using either the purely kinetic bounce-back schemes or hybrid

179

6. CONCLUSIONS AND FUTURE WORK

approach combining the hydrodynamic and bounce-back variation. However, as

shown by the moment analysis the boundary methods using some variation of

the bounce-back rule are arbitrarily setting constraints on the third order ve-

locity moments that do not have a clear physical interpretation. A new purely

hydrodynamic moment-based method for imposing boundary conditions in 3D

has been proposed as a part of this thesis. It is an extension of the current

2D Moment Method, and it imposes pressure and velocity constraints directly

onto the velocity moments. The developed LBM with the Moment Method has

been validated against simple 2D and 3D flow benchmark cases showing an ex-

cellent agreement with the analytical and other model results. Furthermore, the

proposed 3D Moment Method is shown to have second order accuracy, a larger

relaxation time stability interval than the modified bounce-back scheme and an

exact on-node recovery of the no-slip condition for velocity. Although it has been

developed for the D3Q19 lattice, it can be extended to the D3Q15 and D3Q27

models, which is a task for the future.

The state-of-the-art 3D models either look at a single or a few dendrite growth

with convection or many dendrite growth without convection. The developed

method has enabled the research group to achieve 3D large-scale convection-

driven fluid flow during microstructure solidification. The developed LBM flow

solver forming the part of the parallel CA-LB microscale numerical model has

opened the possibility to investigate defect formation in directional solidification

and reveal fundamental mechanisms and stability of large-scale freckles. The

work of this thesis has helped in gaining valuable knowledge that can further be

fed to the automotive industry to improve, for example, the casting process and

hence the durability of gas turbine blades.

180

6. CONCLUSIONS AND FUTURE WORK

6.2 Future work

The majority of time has been spent reviewing the literature, developing the LB

model, which includes the derivation of the moment-based boundary method,

coupling the model to external codes and validating it against benchmark cases.

Having done all that as the result of this thesis, has opened the door to different

possibilities that can be explored and directions that this work can be advanced.

Though the research questions might have been answered, many more questions

can be asked as the outcome of the thesis. They can be grouped in categories

depending on the subject. Currently four different paths in which the work could

be taken have been recognised: physics, accuracy, efficiency and performance and

applications. These topics are explored next.

6.2.1 Physics

At the moment the obstacles in fluid flow are assumed to be fixed in space. It

means that they cannot change their position as a consequence of a body force,

such as sinking or floating due to gravity or being carried away with the shear

flow. This is not entirely physical, but it is sufficient for most of the problems

considered. So, the developed LB code could be improved by allowing to handle

moving internal boundaries. It is not a straightforward process, but it has been

demonstrated to work within the framework of solidification and the LBM [89].

Currently only hydrodynamics are handled by the LBM, but there is no reason

why other physics cannot be introduced. In addition to the momentum equation,

the heat and mass transport could also be calculated within the LBM by intro-

ducing extra distribution functions and potentially speeding up the calculations.

181

6. CONCLUSIONS AND FUTURE WORK

6.2.2 Accuracy

The accuracy of the results of the modelled problems depends on the numerical

methods used. The LBM is second order accurate in time and space. The newly

proposed 3D moment-based method has been shown to match the accuracy of

the LBM. Although the bounce-back scheme that is used to handle the complex

internal boundaries is efficient, easy to implement and reportedly second order

accurate, it introduces some inaccuracies. The artificial slip velocity due to the

inexact position of the boundary that depends on the relaxation time is consid-

ered a drawback. But because the merits outweigh its flaws, the method is still

very popular. However, handling of the internal boundaries could be improved by

employing, for example, the volumetric lattice Boltzmann method [75; 76; 184]. It

fixes the slip velocity, is second order accurate and does not require spatial inter-

polation when dealing with arbitrarily curved stationary or moving boundaries.

It could contribute greatly to improving the handling of the internal boundaries.

6.2.3 Efficiency and performance

The same implementation on different architectures can have different results

performance-wise, as discovered in Section 4.5.3 where the parallel CUDA moment-

based boundary subroutine does not experience reasonable speed-up. Rather than

speeding up 10 or more times, the parallel GPU version is observed to be only 1.1

times faster than the serial CPU version. This problem can be fixed if addressed

properly. The restructuring of the whole moment-based method subroutine might

be required. Once that is done, the CUDA LB code can then be coupled to the CA

method to model multi-physics problems in less time or achieving larger domains.

182

6. CONCLUSIONS AND FUTURE WORK

Another improvement can be made to increase efficiency – modifying the calls

to the MPI libraries. Currently the whole 3D variable arrays are being passed

down to the boundary update call, where only the surface area values get updated.

The MPI boundary updates could be improved by extracting and passing only

the 2D surface arrays. That would considerably improve the efficiency of the

parallel code, especially the parallel GPU implementation using CUDA.

To reduce the inter-processor communications, the use of OpenMP can be

assessed. It would work in tandem with MPI, where OpenMP would be respon-

sible for distributing the tasks in each node and MPI would cover the inter-node

communications. This is a common practice in high performance computing in

the field of solidification modelling [82; 84].

Last but not least, reducing the number of the discrete velocities from D3Q19

to D3Q15 might be considered to minimise the memory usage and improve the

efficiency. It has been shown that the D3Q15 model can be successfully applied

to model dendritic growth with and without flow [91; 92; 94], but it is also known

that the D3Q15 lattice lacks isotropy compared to D3Q19. It might be interesting

to see the comparison between the two models to assess the suitability of using

the D3Q15 lattice for the physical problems considered.

6.2.4 Applications

There are many applications where the developed LBM could be applied. One

field that continues to become more popular is additive manufacturing (AM).

In AM of metals, a laser interacts and travels across a powder bed, forming a

molten, unstable melt pool. With the capabilities of the developed LBM, these

complex flow dynamics can be captured and explored. Due to the modular form

183

6. CONCLUSIONS AND FUTURE WORK

of the developed LBM algorithm it has already been adopted in the research of

AM. Other potential future applications include high undercooled growth and

macroscopic fluid dynamics problems such as fire modelling.

184

Appendix A

PUBLICATIONS PRODUCED

BY THIS RESEARCH

1. I. Krastins, A. Kao, and K. Pericleous, “Parallel GPU Lattice Boltzmann

Method for Fluid Dynamics in Microstructure Modelling,” Proceedings of

SP17 6th Dec. Int. Conf. on Solidification Processing, pp. 342–345, 2017.

2. A. Kao, I. Krastins, M. Alexandrakis, N. Shevchenko, S. Eckert and K.

Pericleous, “A Parallel Cellular Automata Lattice Boltzmann Method for

Convection-Driven Solidification,” JOM, 71 (1), pp. 48–58, 2019.

3. A. Kao, N. Shevchenko, M. Alexandrakis, I. Krastins, S. Eckert and K.

Pericleous, “Thermal dependence of large-scale freckle defect formation,”

Phil. Trans. R. Soc. A, 377 (2143), p. 20180206, 2019.

4. I. Krastins, A. Kao, K. Pericleous and T. Reis, “3D Moment Method for the

D3Q19 lattice Boltzmann equation,” International Journal for Numerical

Methods in Fluids, 2019. [SUBMITTED]

185

REFERENCES

[1] A. Kao and K. Pericleous, “A numerical model coupling thermoelectricity,

magnetohydrodynamics and dendritic growth,” Journal of Algorithms &

Computational Technology, vol. 6, no. 1, pp. 173–201, 2012.

[2] S. Bennett, A Lattice Boltzmann model for diffusion of binary gas mixtures.

PhD thesis, University of Cambridge, 2010.

[3] N. Noel, H. Jamgotchian, and B. Billia, “Influence of grain boundaries

and natural convection on microstructure formation in cellular directional

solidification of dilute succinonitrile alloys in a cylinder,” Journal of crystal

growth, vol. 187, no. 3-4, pp. 516–526, 1998.

[4] H. Jamgotchian, N. Bergeon, D. Benielli, P. Voge, B. Billia, and R. Guerin,

“Localized microstructures induced by fluid flow in directional solidifica-

tion,” Physical review letters, vol. 87, no. 16, p. 166105, 2001.

[5] C. Lan and C. Tu, “Morphological instability due to double diffusive con-

vection in directional solidification: the pit formation,” Journal of crystal

growth, vol. 220, no. 4, pp. 619–630, 2000.

[6] C. Lan, Y. Yang, H. Chen, and I. Lee, “Segregation and morphological

186

REFERENCES

instability due to double-diffusive convection in rotational directional so-

lidification,” Metallurgical and Materials Transactions A, vol. 33, no. 9,

pp. 3011–3017, 2002.

[7] C.-W. Lan, M.-H. Lee, M. Chuang, and C.-J. Shih, “Phase field modeling

of convective and morphological instability during directional solidification

of an alloy,” Journal of crystal growth, vol. 295, no. 2, pp. 202–208, 2006.

[8] M. Burden and J. Hunt, “Some observations on primary dendrite spacings,”

Metal Science, vol. 10, no. 5, pp. 156–158, 1976.

[9] M. Glicksman and S. Huang, “Convective heat transfer during dendritic

solidification,” in 16th Aerospace Sciences Meeting, p. 220, 1978.

[10] J. A. Dantzig and M. Rappaz, Solidification. EPFL press, 2009.

[11] N. Shevchenko, S. Boden, S. Eckert, and G. Gerbeth, “Observation of seg-

regation freckle formation under the influence of melt convection,” in IOP

Conference Series: Materials Science and Engineering, vol. 27, p. 012085,

IOP Publishing, 2012.

[12] N. Shevchenko, S. Eckert, S. Boden, and G. Gerbeth, “In situ X-ray moni-

toring of convection effects on segregation freckle formation,” in IOP Con-

ference Series: Materials Science and Engineering, vol. 33, p. 012035, IOP

Publishing, 2012.

[13] J. Hong, D. Ma, J. Wang, F. Wang, B. Sun, A. Dong, F. Li, and A. Bührig-

Polaczek, “Freckle defect formation near the casting interfaces of direction-

ally solidified superalloys,” Materials, vol. 9, no. 11, p. 929, 2016.

187

REFERENCES

[14] S. Steinbach and L. Ratke, “The effect of rotating magnetic fields on the mi-

crostructure of directionally solidified Al–Si–Mg alloys,” Materials Science

and Engineering: A, vol. 413, pp. 200–204, 2005.

[15] M. Hainke, S. Steinbach, J. Dagner, L. Ratke, and G. Müller, “Solidifica-

tion of AlSi alloys in the ARTEMIS and ARTEX facilities including rotat-

ing magnetic fields–A combined experimental and numerical analysis,” in

Materials Science Forum, vol. 508, pp. 199–204, Trans Tech Publ, 2006.

[16] L. Ratke, S. Steinbach, G. Müller, M. Hainke, A. Roósz, Y. Fautrelle,

M. Dupouy, G. Zimmermann, A. Weiss, H.-J. Diepers, et al., “MICAST–

Microstructure Formation in Casting of technical alloys under diffusive and

magnetically controlled convective conditions,” in Materials Science Forum,

vol. 508, pp. 131–144, Trans Tech Publ, 2006.

[17] N. Shevchenko, S. Boden, S. Eckert, D. Borin, M. Heinze, and S. Odenbach,

“Application of X-ray radioscopic methods for characterization of two-phase

phenomena and solidification processes in metallic melts,” The European

Physical Journal Special Topics, vol. 220, no. 1, pp. 63–77, 2013.

[18] N. Shevchenko, S. Boden, G. Gerbeth, and S. Eckert, “Chimney formation

in solidifying Ga-25wt pct In alloys under the influence of thermosolutal

melt convection,” Metallurgical and Materials Transactions A, vol. 44, no. 8,

pp. 3797–3808, 2013.

[19] N. Shevchenko, O. Roshchupkina, O. Sokolova, and S. Eckert, “The effect

of natural and forced melt convection on dendritic solidification in Ga–In

alloys,” Journal of Crystal Growth, vol. 417, pp. 1–8, 2015.

188

REFERENCES

[20] O. Roshchupkina, N. Shevchenko, and S. Eckert, “Observation of dendritic

growth under the influence of forced convection,” in IOP Conference Series:

Materials Science and Engineering, vol. 84, p. 012080, IOP Publishing,

2015.

[21] H.-J. Diepers and I. Steinbach, “Interaction of interdendritic convection and

dendritic primary spacing: phase-field simulation and analytical modeling,”

in Materials Science Forum, vol. 508, pp. 145–150, Trans Tech Publ, 2006.

[22] M. Zhu and D. Stefanescu, “Virtual front tracking model for the quantita-

tive modeling of dendritic growth in solidification of alloys,” Acta Materi-

alia, vol. 55, no. 5, pp. 1741–1755, 2007.

[23] G. Schmitz, B. Böttger, J. Eiken, M. Apel, A. Viardin, A. Carré, and

G. Laschet, “Phase-field based simulation of microstructure evolution in

technical alloy grades,” International Journal of Advances in Engineering

Sciences and Applied Mathematics, vol. 2, no. 4, pp. 126–139, 2010.

[24] C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma, and X. Tong, “Mod-

eling melt convection in phase-field simulations of solidification,” Journal

of Computational Physics, vol. 154, no. 2, pp. 468–496, 1999.

[25] X. Tong, C. Beckermann, A. Karma, and Q. Li, “Phase-field simulations of

dendritic crystal growth in a forced flow,” Physical Review E, vol. 63, no. 6,

p. 061601, 2001.

[26] N. Al-Rawahi and G. Tryggvason, “Numerical simulation of dendritic so-

lidification with convection: two-dimensional geometry,” Journal of Com-

putational Physics, vol. 180, no. 2, pp. 471–496, 2002.

189

REFERENCES

[27] M. Zhu, S. Lee, and C. Hong, “Modified cellular automaton model for the

prediction of dendritic growth with melt convection,” Physical Review E,

vol. 69, no. 6, p. 061610, 2004.

[28] P. Zhao, J. Heinrich, and D. Poirier, “Dendritic solidification of binary

alloys with free and forced convection,” International journal for numerical

methods in fluids, vol. 49, no. 3, pp. 233–266, 2005.

[29] M. Zhu, D. Sun, S. Pan, Q. Zhang, and D. Raabe, “Modelling of dendritic

growth during alloy solidification under natural convection,” Modelling and

Simulation in Materials Science and Engineering, vol. 22, no. 3, p. 034006,

2014.

[30] J.-H. Jeong, N. Goldenfeld, and J. A. Dantzig, “Phase field model for three-

dimensional dendritic growth with fluid flow,” Physical Review E, vol. 64,

no. 4, p. 041602, 2001.

[31] Y. Lu, C. Beckermann, and A. Karma, “Convection effects in three-

dimensional dendritic growth,” in ASME 2002 International Mechanical

Engineering Congress and Exposition, pp. 197–202, American Society of

Mechanical Engineers, 2002.

[32] N. Al-Rawahi and G. Tryggvason, “Numerical simulation of dendritic so-

lidification with convection: Three-dimensional flow,” Journal of Compu-

tational physics, vol. 194, no. 2, pp. 677–696, 2004.

[33] Y. Lu, C. Beckermann, and J. Ramirez, “Three-dimensional phase-field

simulations of the effect of convection on free dendritic growth,” Journal of

crystal growth, vol. 280, no. 1-2, pp. 320–334, 2005.

190

REFERENCES

[34] L. Tan and N. Zabaras, “A level set simulation of dendritic solidification

with combined features of front-tracking and fixed-domain methods,” Jour-

nal of Computational Physics, vol. 211, no. 1, pp. 36–63, 2006.

[35] L. Tan and N. Zabaras, “A level set simulation of dendritic solidification of

multi-component alloys,” Journal of Computational Physics, vol. 221, no. 1,

pp. 9–40, 2007.

[36] H. Dong and P. D. Lee, “Simulation of the columnar-to-equiaxed transition

in directionally solidified Al–Cu alloys,” Acta Materialia, vol. 53, no. 3,

pp. 659–668, 2005.

[37] M. Wu and A. Ludwig, “Using a three-phase deterministic model for the

columnar-to-equiaxed transition,” Metallurgical and Materials Transactions

A, vol. 38, no. 7, pp. 1465–1475, 2007.

[38] M. Wu, A. Fjeld, and A. Ludwig, “Modelling mixed columnar-equiaxed

solidification with melt convection and grain sedimentation–Part I: Model

description,” Computational Materials Science, vol. 50, no. 1, pp. 32–42,

2010.

[39] M. Wu, A. Ludwig, and A. Fjeld, “Modelling mixed columnar-equiaxed

solidification with melt convection and grain sedimentation–Part II: Illus-

trative modelling results and parameter studies,” Computational Materials

Science, vol. 50, no. 1, pp. 43–58, 2010.

[40] L. Yuan and P. D. Lee, “Dendritic solidification under natural and forced

convection in binary alloys: 2D versus 3D simulation,” Modelling and sim-

191

REFERENCES

ulation in Materials Science and Engineering, vol. 18, no. 5, p. 055008,

2010.

[41] µMatIC Microstructural Simulation Software. http://www.imperial.ac.

uk/engineering-alloys/research/software/. Accessed July 21, 2018.

[42] L. Yuan and P. D. Lee, “A new mechanism for freckle initiation based on

microstructural level simulation,” Acta Materialia, vol. 60, no. 12, pp. 4917–

4926, 2012.

[43] S. Karagadde, L. Yuan, N. Shevchenko, S. Eckert, and P. Lee, “3-D mi-

crostructural model of freckle formation validated using in situ experi-

ments,” Acta Materialia, vol. 79, pp. 168–180, 2014.

[44] A. Kao, N. Shevchenko, O. Roshchupinka, S. Eckert, and K. Pericleous,

“The effects of natural, forced and thermoelectric magnetohydrodynamic

convection during the solidification of thin sample alloys,” in IOP Confer-

ence series: Materials science and Engineering, vol. 84, p. 012018, IOP

Publishing, 2015.

[45] A. Kao, K. Pericleous, M. Patel, and V. Voller, “Effects of magnetic fields

on crystal growth,” International Journal of Cast Metals Research, vol. 22,

no. 1-4, pp. 147–150, 2009.

[46] A. Kao, G. Djambazov, K. Pericleous, and V. Voller, “Thermoelectric MHD

in dendritic solidification,” Magnetohydrodynamics, vol. 45, no. 3, pp. 305–

315, 2009.

192

http://www.imperial.ac.uk/engineering-alloys/research/software/
http://www.imperial.ac.uk/engineering-alloys/research/software/

REFERENCES

[47] A. Kao and K. Pericleous, “The effect of secondary arm growth on ther-

moelectric magnetohydrodynamics.,” Magnetohydrodynamics (0024-998X),

vol. 48, no. 2, 2012.

[48] A. Kao, P. D. Lee, and K. Pericleous, “Influence of a slow rotating magnetic

field in thermoelectric magnetohydrodynamic processing of alloys,” ISIJ

international, vol. 54, no. 6, pp. 1283–1287, 2014.

[49] A. Kao, “Analytic solutions to determine critical magnetic fields for thermo-

electric magnetohydrodynamics in alloy solidification,” Metallurgical and

Materials Transactions A, vol. 46, no. 9, pp. 4215–4233, 2015.

[50] J. Gao, M. Han, A. Kao, K. Pericleous, D. V. Alexandrov, and P. K.

Galenko, “Dendritic growth velocities in an undercooled melt of pure nickel

under static magnetic fields: a test of theory with convection,” Acta Mate-

rialia, vol. 103, pp. 184–191, 2016.

[51] A. Kao, B. Cai, P. Lee, and K. Pericleous, “The effects of Thermoelec-

tric Magnetohydrodynamics in directional solidification under a transverse

magnetic field,” Journal of Crystal Growth, vol. 457, pp. 270–274, 2017.

[52] R. Zhao, J. Gao, A. Kao, and K. Pericleous, “Measurements and modelling

of dendritic growth velocities of pure Fe with thermoelectric magnetohydro-

dynamics convection,” Journal of Crystal Growth, vol. 475, pp. 354–361,

2017.

[53] A. Kao, J. Gao, and K. Pericleous, “Thermoelectric magnetohydrodynamic

effects on the crystal growth rate of undercooled Ni dendrites,” Phil. Trans.

R. Soc. A, vol. 376, no. 2113, p. 20170206, 2018.

193

REFERENCES

[54] A. Kao, Thermoelectric magnetohydrodynamics in dendritic solidification.

PhD thesis, University of Greenwich, 2010.

[55] Y. Shin and C. Hong, “Modeling of dendritic growth with convection using

a modified cellular automaton model with a diffuse interface,” ISIJ inter-

national, vol. 42, no. 4, pp. 359–367, 2002.

[56] S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,”

Annual review of fluid mechanics, vol. 30, no. 1, pp. 329–364, 1998.

[57] C. K. Aidun and J. R. Clausen, “Lattice-Boltzmann method for complex

flows,” Annual review of fluid mechanics, vol. 42, pp. 439–472, 2010.

[58] Q. Li, K. H. Luo, Q. Kang, Y. He, Q. Chen, and Q. Liu, “Lattice Boltzmann

methods for multiphase flow and phase-change heat transfer,” Progress in

Energy and Combustion Science, vol. 52, pp. 62–105, 2016.

[59] W.-S. Jiaung, J.-R. Ho, and C.-P. Kuo, “Lattice Boltzmann method for the

heat conduction problem with phase change,” Numerical Heat Transfer:

Part B: Fundamentals, vol. 39, no. 2, pp. 167–187, 2001.

[60] W. Miller, S. Succi, and D. Mansutti, “Lattice Boltzmann model for

anisotropic liquid-solid phase transition,” Physical review letters, vol. 86,

no. 16, p. 3578, 2001.

[61] W. Miller and S. Succi, “A lattice Boltzmann model for anisotropic crystal

growth from melt,” Journal of Statistical Physics, vol. 107, no. 1-2, pp. 173–

186, 2002.

194

REFERENCES

[62] D. Chatterjee and S. Chakraborty, “An enthalpy-based lattice Boltzmann

model for diffusion dominated solid–liquid phase transformation,” Physics

Letters A, vol. 341, no. 1-4, pp. 320–330, 2005.

[63] D. Chatterjee and S. Chakraborty, “A hybrid lattice Boltzmann model for

solid–liquid phase transition in presence of fluid flow,” Physics Letters A,

vol. 351, no. 4-5, pp. 359–367, 2006.

[64] D. Medvedev and K. Kassner, “Lattice Boltzmann scheme for crystal

growth in external flows,” Physical Review E, vol. 72, no. 5, p. 056703,

2005.

[65] M. El Ganaoui, R. Bennacer, et al., “Lattice Boltzmann method for melt-

ing/solidification problems,” Comptes Rendus Mécanique, vol. 335, no. 5-6,

pp. 295–303, 2007.

[66] E. Semma, M. El Ganaoui, R. Bennacer, and A. Mohamad, “Investigation of

flows in solidification by using the lattice Boltzmann method,” International

Journal of Thermal Sciences, vol. 47, no. 3, pp. 201–208, 2008.

[67] D. Sun, M. Zhu, S. Pan, and D. Raabe, “Lattice Boltzmann modeling of

dendritic growth in a forced melt convection,” Acta Materialia, vol. 57,

no. 6, pp. 1755–1767, 2009.

[68] D. Sun, M. Zhu, S. Pan, C. Yang, and D. Raabe, “Lattice Boltzmann

modeling of dendritic growth in forced and natural convection,” Computers

& Mathematics with Applications, vol. 61, no. 12, pp. 3585–3592, 2011.

[69] D. Sun, Y. Wang, H. Yu, and Q. Han, “A lattice Boltzmann study on

195

REFERENCES

dendritic growth of a binary alloy in the presence of melt convection,”

International Journal of Heat and Mass Transfer, vol. 123, pp. 213–226,

2018.

[70] H. Yin, S. Felicelli, and L. Wang, “Simulation of a dendritic microstruc-

ture with the lattice Boltzmann and cellular automaton methods,” Acta

Materialia, vol. 59, no. 8, pp. 3124–3136, 2011.

[71] F. Talati and M. Taghilou, “Lattice Boltzmann application on the PCM

solidification within a rectangular finned container,” Applied Thermal En-

gineering, vol. 83, pp. 108–120, 2015.

[72] R. Rojas, T. Takaki, and M. Ohno, “A phase-field-lattice Boltzmann

method for modeling motion and growth of a dendrite for binary alloy so-

lidification in the presence of melt convection,” Journal of Computational

Physics, vol. 298, pp. 29–40, 2015.

[73] D. Sun, M. Zhu, J. Wang, and B. Sun, “Lattice Boltzmann modeling of

bubble formation and dendritic growth in solidification of binary alloys,”

International Journal of Heat and Mass Transfer, vol. 94, pp. 474–487,

2016.

[74] D. Sun, S. Pan, Q. Han, and B. Sun, “Numerical simulation of dendritic

growth in directional solidification of binary alloys using a lattice Boltz-

mann scheme,” International Journal of Heat and Mass Transfer, vol. 103,

pp. 821–831, 2016.

[75] Q. Liu, Y.-L. He, and Q. Li, “Enthalpy-based multiple-relaxation-time lat-

196

REFERENCES

tice Boltzmann method for solid-liquid phase-change heat transfer in metal

foams,” Physical Review E, vol. 96, no. 2, p. 023303, 2017.

[76] R. Huang and H. Wu, “Total enthalpy-based lattice Boltzmann method

with adaptive mesh refinement for solid-liquid phase change,” Journal of

Computational Physics, vol. 315, pp. 65–83, 2016.

[77] M. Cross, S. Johnson, and P. Chow, “Mapping enthalpy-based solidification

algorithms onto vector and parallel architectures,” Applied mathematical

modelling, vol. 13, no. 12, pp. 702–709, 1989.

[78] P. Chow, Control volume unstructured mesh procedure for convection-

diffusion solidification processes. PhD thesis, PhD Thesis, University of

Greenwich, 1993.

[79] K. McManus, A. Williams, M. Cross, N. Croft, and C. Walshaw, “Assessing

the scalability of multiphysics tools for modeling solidification and melting

processes on parallel clusters,” The International Journal of High Perfor-

mance Computing Applications, vol. 19, no. 1, pp. 1–27, 2005.

[80] M. Cross, P. Chow, C. Bailey, N. Croft, J. Ewer, P. Leggett, K. McManus,

K. Pericleous, and M. Patel, “PHYSICA-a software environment for the

modelling of multi-physics phenomena,” ZAMM-Zeitschrift fur Angewandte

Mathematik und Mechanik, vol. 76, no. 4, pp. 105–108, 1996.

[81] W. L. George and J. A. Warren, “A parallel 3D dendritic growth simulator

using the phase-field method,” Journal of Computational Physics, vol. 177,

no. 2, pp. 264–283, 2002.

197

REFERENCES

[82] B. Nestler, “A 3D parallel simulator for crystal growth and solidification

in complex alloy systems,” Journal of Crystal Growth, vol. 275, no. 1-2,

pp. e273–e278, 2005.

[83] K. Wang, A. Chang, L. V. Kale, and J. A. Dantzig, “Parallelization of a

level set method for simulating dendritic growth,” Journal of Parallel and

Distributed Computing, vol. 66, no. 11, pp. 1379–1386, 2006.

[84] Z. Guo, J. Mi, and P. Grant, “An implicit parallel multigrid computing

scheme to solve coupled thermal-solute phase-field equations for dendrite

evolution,” Journal of Computational Physics, vol. 231, no. 4, pp. 1781–

1796, 2012.

[85] NVIDIA CUDA Parallel Computing. https://www.nvidia.co.uk/

object/cuda-parallel-computing-uk.html. Accessed August 26, 2018.

[86] TOP 500 The List. https://www.top500.org. Accessed August 26, 2018.

[87] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka,

N. Maruyama, A. Nukada, and S. Matsuoka, “Peta-scale phase-field simu-

lation for dendritic solidification on the TSUBAME 2.0 supercomputer,” in

Proceedings of 2011 International Conference for High Performance Com-

puting, Networking, Storage and Analysis, p. 3, ACM, 2011.

[88] T. Takaki, T. Shimokawabe, M. Ohno, A. Yamanaka, and T. Aoki, “Un-

expected selection of growing dendrites by very-large-scale phase-field sim-

ulation,” Journal of Crystal Growth, vol. 382, pp. 21–25, 2013.

198

https://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
https://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
https://www.top500.org

REFERENCES

[89] T. Takaki, R. Rojas, M. Ohno, T. Shimokawabe, and T. Aoki, “GPU phase-

field lattice Boltzmann simulations of growth and motion of a binary alloy

dendrite,” in IOP Conference Series: Materials Science and Engineering,

vol. 84, p. 012066, IOP Publishing, 2015.

[90] S. Sakane, T. Takaki, R. Rojas, M. Ohno, Y. Shibuta, T. Shimokawabe, and

T. Aoki, “Multi-GPUs parallel computation of dendrite growth in forced

convection using the phase-field-lattice Boltzmann model,” Journal of Crys-

tal Growth, vol. 474, pp. 154–159, 2017.

[91] M. Eshraghi, S. D. Felicelli, and B. Jelinek, “Three dimensional simulation

of solutal dendrite growth using lattice Boltzmann and cellular automaton

methods,” Journal of Crystal growth, vol. 354, no. 1, pp. 129–134, 2012.

[92] M. Eshraghi, B. Jelinek, and S. D. Felicelli, “Large-scale three-dimensional

simulation of dendritic solidification using lattice Boltzmann method,”

JOM, vol. 67, no. 8, pp. 1786–1792, 2015.

[93] B. Jelinek, M. Eshraghi, S. Felicelli, and J. F. Peters, “Large-scale parallel

lattice Boltzmann–cellular automaton model of two-dimensional dendritic

growth,” Computer Physics Communications, vol. 185, no. 3, pp. 939–947,

2014.

[94] M. Eshraghi, M. Hashemi, B. Jelinek, and S. D. Felicelli, “Three-

dimensional lattice Boltzmann modeling of dendritic solidification under

forced and natural convection,” Metals, vol. 7, no. 11, p. 474, 2017.

[95] M. Alexandrakis, Parallelised Micro-Macroscale Modelling of Convection

199

REFERENCES

Driven Freckles in Binary Alloys. PhD thesis, University of Greenwich,

2017.

[96] P. Lee, R. Atwood, R. Dashwood, and H. Nagaumi, “Modeling of poros-

ity formation in direct chill cast aluminum–magnesium alloys,” Materials

Science and Engineering: A, vol. 328, no. 1-2, pp. 213–222, 2002.

[97] P. D. Lee, A. Chirazi, R. Atwood, and W. Wang, “Multiscale modelling of

solidification microstructures, including microsegregation and microporos-

ity, in an Al–Si–Cu alloy,” Materials Science and Engineering: A, vol. 365,

no. 1-2, pp. 57–65, 2004.

[98] W. Wang, P. D. Lee, and M. Mclean, “A model of solidification microstruc-

tures in nickel-based superalloys: predicting primary dendrite spacing se-

lection,” Acta materialia, vol. 51, no. 10, pp. 2971–2987, 2003.

[99] B. M. Boghosian, “Lattice gases and cellular automata,” Future Generation

Computer Systems, vol. 16, no. 2-3, pp. 171–185, 1999.

[100] D. A. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann

models: an introduction. Springer, 2004.

[101] Z. Guo and C. Shu, Lattice Boltzmann method and its applications in en-

gineering, vol. 3. World Scientific, 2013.

[102] L. P. Kadanoff and J. Swift, “Transport coefficients near the liquid-gas

critical point,” Physical Review, vol. 166, no. 1, p. 89, 1968.

[103] J. Hardy, Y. Pomeau, and O. De Pazzis, “Time evolution of a two-

dimensional model system. I. Invariant states and time correlation func-

200

REFERENCES

tions,” Journal of Mathematical Physics, vol. 14, no. 12, pp. 1746–1759,

1973.

[104] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the

Navier-Stokes equation,” Physical review letters, vol. 56, no. 14, p. 1505,

1986.

[105] S. Wolfram, “Cellular automaton fluids 1: Basic theory,” Journal of statis-

tical physics, vol. 45, no. 3-4, pp. 471–526, 1986.

[106] U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and

J.-P. Rivet, “Lattice gas hydrodynamics in two and three dimensions,”

tech. rep., Los Alamos National Lab., NM (USA); Observatoire de Nice,

06 (France); Ecole Normale Superieure, 75-Paris (France), 1986.

[107] D. d’Humieres, P. Lallemand, and U. Frisch, “Lattice gas models for 3D

hydrodynamics,” EPL (Europhysics Letters), vol. 2, no. 4, p. 291, 1986.

[108] G. R. McNamara and G. Zanetti, “Use of the Boltzmann equation to simu-

late lattice-gas automata,” Physical review letters, vol. 61, no. 20, p. 2332,

1988.

[109] F. J. Higuera and J. Jimenez, “Boltzmann approach to lattice gas simula-

tions,” EPL (Europhysics Letters), vol. 9, no. 7, p. 663, 1989.

[110] Y. H. Qian, “Lattice gas and lattice kinetic theory applied to the Navier-

Stokes equations,” Doktorarbeit, Universite Pierre et Marie Curie, Paris,

1990.

201

REFERENCES

[111] S. Chen, H. Chen, D. Martnez, and W. Matthaeus, “Lattice Boltzmann

model for simulation of magnetohydrodynamics,” Physical Review Letters,

vol. 67, no. 27, p. 3776, 1991.

[112] J. Koelman, “A simple lattice Boltzmann scheme for Navier-Stokes fluid

flow,” EPL (Europhysics Letters), vol. 15, no. 6, p. 603, 1991.

[113] Y. Qian, D. d’Humières, and P. Lallemand, “Lattice BGK models for

Navier-Stokes equation,” EPL (Europhysics Letters), vol. 17, no. 6, p. 479,

1992.

[114] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes

in gases. I. Small amplitude processes in charged and neutral one-component

systems,” Physical review, vol. 94, no. 3, p. 511, 1954.

[115] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M.

Viggen, “The lattice Boltzmann method,” Springer International Publish-

ing, vol. 10, pp. 978–3, 2017.

[116] S. Succi, The lattice Boltzmann equation: for fluid dynamics and beyond.

Oxford university press, 2001.

[117] J. Latt, Hydrodynamic limit of lattice Boltzmann equations. PhD thesis,

University of Geneva, 2007.

[118] W. Miller, “Flow in the driven cavity calculated by the lattice Boltzmann

method,” Physical Review E, vol. 51, no. 4, p. 3659, 1995.

[119] R. Mei, W. Shyy, D. Yu, and L.-S. Luo, “Lattice Boltzmann method for 3-D

202

REFERENCES

flows with curved boundary,” Journal of Computational Physics, vol. 161,

no. 2, pp. 680–699, 2000.

[120] D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, and

P. Sloot, “Implementation aspects of 3D lattice-BGK: boundaries, accu-

racy, and a new fast relaxation method,” Journal of Computational Physics,

vol. 150, no. 2, pp. 482–501, 1999.

[121] P. Lallemand and L.-S. Luo, “Theory of the lattice Boltzmann method: Dis-

persion, dissipation, isotropy, Galilean invariance, and stability,” Physical

Review E, vol. 61, no. 6, p. 6546, 2000.

[122] K. Suga, Y. Kuwata, K. Takashima, and R. Chikasue, “A D3Q27 multiple-

relaxation-time lattice Boltzmann method for turbulent flows,” Computers

& Mathematics with Applications, vol. 69, no. 6, pp. 518–529, 2015.

[123] J. G. Zhou, “Rectangular lattice Boltzmann method,” Physical Review E,

vol. 81, no. 2, p. 026705, 2010.

[124] I. Ginzburg, D. dâĂŹHumières, and A. Kuzmin, “Optimal stability of

advection-diffusion lattice Boltzmann models with two relaxation times

for positive/negative equilibrium,” Journal of Statistical Physics, vol. 139,

no. 6, pp. 1090–1143, 2010.

[125] X. Niu, C. Shu, Y. Chew, and T. Wang, “Investigation of stability and

hydrodynamics of different lattice Boltzmann models,” Journal of statistical

physics, vol. 117, no. 3-4, pp. 665–680, 2004.

[126] I. Ginzburg, “Truncation errors, exact and heuristic stability analysis of

203

REFERENCES

two-relaxation-times lattice Boltzmann schemes for anisotropic advection-

diffusion equation,” Communications in Computational Physics, vol. 11,

no. 5, pp. 1439–1502, 2012.

[127] G. Silva and V. Semiao, “Truncation errors and the rotational invariance of

three-dimensional lattice models in the lattice Boltzmann method,” Journal

of Computational Physics, vol. 269, pp. 259–279, 2014.

[128] I. Ginzburg, F. Verhaeghe, and D. d’Humieres, “Two-relaxation-time lattice

Boltzmann scheme: About parametrization, velocity, pressure and mixed

boundary conditions,” Communications in computational physics, vol. 3,

no. 2, pp. 427–478, 2008.

[129] X. He, Q. Zou, L.-S. Luo, and M. Dembo, “Analytic solutions of simple flows

and analysis of nonslip boundary conditions for the lattice Boltzmann BGK

model,” Journal of Statistical Physics, vol. 87, no. 1-2, pp. 115–136, 1997.

[130] P. Lavallee, J. P. Boon, and A. Noullez, “Boundaries in lattice gas flows,”

Physica D: Nonlinear Phenomena, vol. 47, no. 1-2, pp. 233–240, 1991.

[131] Q. Zou and X. He, “On pressure and velocity boundary conditions for the

lattice Boltzmann BGK model,” Physics of fluids, vol. 9, no. 6, pp. 1591–

1598, 1997.

[132] R. S. Maier, R. S. Bernard, and D. W. Grunau, “Boundary conditions for

the lattice Boltzmann method,” Physics of Fluids, vol. 8, no. 7, pp. 1788–

1801, 1996.

204

REFERENCES

[133] M. E. Kutay, A. H. Aydilek, and E. Masad, “Laboratory validation of lat-

tice Boltzmann method for modeling pore-scale flow in granular materials,”

Computers and Geotechnics, vol. 33, no. 8, pp. 381–395, 2006.

[134] M. Hecht and J. Harting, “Implementation of on-site velocity boundary

conditions for D3Q19 lattice Boltzmann simulations,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2010, no. 01, p. P01018, 2010.

[135] K. Mattila, J. Hyväluoma, and T. Rossi, “Mass-flux-based outlet bound-

ary conditions for the lattice Boltzmann method,” Journal of Statistical

Mechanics: theory and experiment, vol. 2009, no. 06, p. P06015, 2009.

[136] T. Reis and P. J. Dellar, “Lattice Boltzmann simulations of pressure-driven

flows in microchannels using Navier–Maxwell slip boundary conditions,”

Physics of Fluids, vol. 24, no. 11, p. 112001, 2012.

[137] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, “A consis-

tent hydrodynamic boundary condition for the lattice Boltzmann method,”

Physics of Fluids, vol. 7, no. 1, pp. 203–209, 1995.

[138] D. R. Noble, J. G. Georgiadis, and R. O. Buckius, “Comparison of accuracy

and performance for lattice Boltzmann and finite difference simulations

of steady viscous flow,” International Journal for Numerical Methods in

Fluids, vol. 23, no. 1, pp. 1–18, 1996.

[139] S. Bennett, P. Asinari, and P. J. Dellar, “A lattice Boltzmann model for

diffusion of binary gas mixtures that includes diffusion slip,” International

journal for numerical methods in fluids, vol. 69, no. 1, pp. 171–189, 2012.

205

REFERENCES

[140] A. Hantsch, T. Reis, and U. Gross, “Moment method boundary conditions

for multiphase lattice Boltzmann simulations with partially-wetted walls,”

The Journal of Computational Multiphase Flows, vol. 7, no. 1, pp. 1–14,

2015.

[141] R. Allen and T. Reis, “Moment-based boundary conditions for lattice Boltz-

mann simulations of natural convection in cavities,” Progress in Computa-

tional Fluid Dynamics, An International Journal (PFCD), vol. 16, no. 4,

p. 216, 2016.

[142] S. Mohammed, D. Graham, and T. Reis, “Assessing moment-based bound-

ary conditions for the lattice Boltzmann equation: A study of dipole-wall

collisions,” Computers & Fluids, vol. 176, pp. 79–96, 2018.

[143] S. Mohammed and T. Reis, “Using the lid-driven cavity flow to validate

moment-based boundary conditions for the Lattice Boltzmann Equation,”

Archive of Mechanical Engineering, vol. 64, no. 1, pp. 57–74, 2017.

[144] F. Verhaeghe, L.-S. Luo, and B. Blanpain, “Lattice Boltzmann modeling of

microchannel flow in slip flow regime,” Journal of Computational Physics,

vol. 228, no. 1, pp. 147–157, 2009.

[145] D. J. Holdych, D. R. Noble, J. G. Georgiadis, and R. O. Buckius, “Trun-

cation error analysis of lattice Boltzmann methods,” Journal of Computa-

tional Physics, vol. 193, no. 2, pp. 595–619, 2004.

[146] I. Ginzburg, “Lattice Boltzmann modeling with discontinuous collision com-

ponents: Hydrodynamic and advection-diffusion equations,” Journal of Sta-

tistical Physics, vol. 126, no. 1, pp. 157–206, 2007.

206

REFERENCES

[147] D. d’Humieres, “Generalized lattice-Boltzmann equations,” Rarefied gas dy-

namics, 1992.

[148] M. Geier, A. Greiner, and J. G. Korvink, “Cascaded digital lattice Boltz-

mann automata for high Reynolds number flow,” Physical Review E, vol. 73,

no. 6, p. 066705, 2006.

[149] L. Fei, K. H. Luo, C. Lin, and Q. Li, “Modeling incompressible thermal flows

using a central-moments-based lattice Boltzmann method,” International

Journal of Heat and Mass Transfer, vol. 120, pp. 624–634, 2018.

[150] L. Fei and K. H. Luo, “Consistent forcing scheme in the cascaded lattice

Boltzmann method,” Physical Review E, vol. 96, no. 5, p. 053307, 2017.

[151] D. Lycett-Brown, K. H. Luo, R. Liu, and P. Lv, “Binary droplet collision

simulations by a multiphase cascaded lattice Boltzmann method,” Physics

of Fluids, vol. 26, no. 2, p. 023303, 2014.

[152] A. De Rosis, “A central moments-based lattice Boltzmann scheme for shal-

low water equations,” Computer Methods in Applied Mechanics and Engi-

neering, vol. 319, pp. 379–392, 2017.

[153] D. d’Humières, “Multiple–relaxation–time lattice Boltzmann models in

three dimensions,” Philosophical Transactions of the Royal Society of Lon-

don A: Mathematical, Physical and Engineering Sciences, vol. 360, no. 1792,

pp. 437–451, 2002.

[154] L.-S. Luo, “Analytic solutions of linearized lattice Boltzmann equation for

207

REFERENCES

simple flows,” Journal of statistical physics, vol. 88, no. 3-4, pp. 913–926,

1997.

[155] L.-S. Luo, “Theory of the lattice Boltzmann method: Lattice Boltzmann

models for nonideal gases,” Physical Review E, vol. 62, no. 4, p. 4982, 2000.

[156] Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing term in

the lattice Boltzmann method,” Physical Review E, vol. 65, no. 4, p. 046308,

2002.

[157] X. He, X. Shan, and G. D. Doolen, “Discrete Boltzmann equation model

for nonideal gases,” Physical Review E, vol. 57, no. 1, p. R13, 1998.

[158] L.-S. Luo, “Unified theory of lattice Boltzmann models for nonideal gases,”

Physical review letters, vol. 81, no. 8, p. 1618, 1998.

[159] MPI. https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

Accessed August 25, 2018.

[160] OpenCL: The open standard for parallel programming of heterogeneous

systems. https://www.khronos.org/opencl/. Accessed January 13, 2019.

[161] OpenCL: NVIDIA ACCELERATED COMPUTING. https:

//developer.nvidia.com/opencl. Accessed January 18, 2019.

[162] K. Karimi, N. G. Dickson, and F. Hamze, “A performance comparison of

CUDA and OpenCL,” arXiv preprint arXiv:1005.2581, 2010.

[163] J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance

comparison of CUDA and OpenCL,” in Parallel Processing (ICPP), 2011

International Conference on, pp. 216–225, IEEE, 2011.

208

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.khronos.org/opencl/
https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl

REFERENCES

[164] D. Demidov, K. Ahnert, K. Rupp, and P. Gottschling, “Programming

CUDA and OpenCL: A case study using modern C++ libraries,” SIAM

Journal on Scientific Computing, vol. 35, no. 5, pp. C453–C472, 2013.

[165] Fortran Interface to OpenCL. http://www.cass-hpc.com/solutions/

libraries/clfortran-pure-fortran-interface-to-opencl/. Accessed

January 18, 2019.

[166] OpenACC: More Science Less Programming. https://developer.

nvidia.com/openacc/. Accessed August 26, 2018.

[167] The OpenMP API specification for parallel programming. https://www.

openmp.org/. Accessed August 26, 2018.

[168] G. Ruetsch and M. Fatica, CUDA Fortran for scientists and engineers: best

practices for efficient CUDA Fortran programming. Elsevier, 2013.

[169] CUDA C PROGRAMMING GUIDE, August 2018. https://docs.

nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. Accessed Au-

gust 27, 2018.

[170] A. Kao, I. Krastins, M. Alexandrakis, N. Shevchenko, S. Eckert, and

K. Pericleous, “A parallel cellular automata lattice Boltzmann method for

convection-driven solidification,” JOM, vol. 71, no. 1, pp. 48–58, 2019.

[171] V. Voller, “An enthalpy method for modeling dendritic growth in a binary

alloy,” International Journal of Heat and Mass Transfer, vol. 51, no. 3-4,

pp. 823–834, 2008.

209

http://www.cass-hpc.com/solutions/libraries/clfortran-pure-fortran-interface-to-opencl/
http://www.cass-hpc.com/solutions/libraries/clfortran-pure-fortran-interface-to-opencl/
https://developer.nvidia.com/openacc/
https://developer.nvidia.com/openacc/
https://www.openmp.org/
https://www.openmp.org/
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

REFERENCES

[172] COMSOL Multiphysics. https://www.comsol.com/products. Accessed

October 18, 2018.

[173] ANSYS Fluent Software. https://www.ansys.com/products/fluids/

ansys-fluent. Accessed October 18, 2018.

[174] PHOENICS. http://www.cham.co.uk/phoenics.php. Accessed October

18, 2018.

[175] U. Ghia, K. N. Ghia, and C. Shin, “High-Re solutions for incompressible

flow using the Navier-Stokes equations and a multigrid method,” Journal

of computational physics, vol. 48, no. 3, pp. 387–411, 1982.

[176] O. Botella and R. Peyret, “Benchmark spectral results on the lid-driven

cavity flow,” Computers & Fluids, vol. 27, no. 4, pp. 421–433, 1998.

[177] C. H. Williamson, “Oblique and parallel modes of vortex shedding in the

wake of a circular cylinder at low Reynolds numbers,” Journal of Fluid

Mechanics, vol. 206, pp. 579–627, 1989.

[178] O. Posdziech and R. Grundmann, “A systematic approach to the numerical

calculation of fundamental quantities of the two-dimensional flow over a

circular cylinder,” Journal of Fluids and Structures, vol. 23, no. 3, pp. 479–

499, 2007.

[179] S. Timoshenko, Theory of elasticity . New York ; London : McGraw-Hill

book company, inc, 1st ed., 1934.

[180] G. de Vahl Davis, “Natural convection of air in a square cavity: a bench

210

https://www.comsol.com/products
https://www.ansys.com/products/fluids/ansys-fluent
https://www.ansys.com/products/fluids/ansys-fluent
http://www.cham.co.uk/phoenics.php

REFERENCES

mark numerical solution,” International Journal for numerical methods in

fluids, vol. 3, no. 3, pp. 249–264, 1983.

[181] N. C. Markatos and K. Pericleous, “Laminar and turbulent natural con-

vection in an enclosed cavity,” International Journal of Heat and Mass

Transfer, vol. 27, no. 5, pp. 755–772, 1984.

[182] V. R. Voller and C. Prakash, “A fixed grid numerical modelling methodol-

ogy for convection-diffusion mushy region phase-change problems,” Inter-

national Journal of Heat and Mass Transfer, vol. 30, no. 8, pp. 1709–1719,

1987.

[183] A. Kao, N. Shevchenko, M. Alexandrakis, I. Krastins, S. Eckert, and K. Per-

icleous, “Thermal dependence of large-scale freckle defect formation,” Phil.

Trans. R. Soc. A, vol. 377, no. 2143, p. 20180206, 2019.

[184] Z. Wang, Y. Zhao, A. P. Sawchuck, M. C. Dalsing, and H. W. Yu, “GPU

acceleration of volumetric lattice Boltzmann method for patient-specific

computational hemodynamics,” Computers & Fluids, vol. 115, pp. 192–200,

2015.

211

	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	FIGURES
	TABLES
	LISTINGS
	NOMENCLATURE
	1 INTRODUCTION
	1.1 Thesis overview
	1.2 Thesis contributions
	1.3 Thesis outline

	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Convection effect on microstructure solidification
	2.3 LBM in convection-driven solidification
	2.4 Parallelisation and large-scale solidification modelling
	2.5 Conclusion

	3 LATTICE BOLTZMANN METHOD
	3.1 Introduction
	3.2 History
	3.3 2D and 3D lattices
	3.4 From lattice Boltzmann to Navier–Stokes
	3.5 Stability and accuracy
	3.5.1 Stability
	3.5.2 Accuracy

	3.6 Boundary conditions
	3.6.1 Kinetic style boundary schemes
	3.6.2 Non-equilibrium bounce-back
	3.6.3 Moment analysis of boundary conditions
	3.6.4 Moment Method
	3.6.5 Moment Method for the D3Q19 model

	3.7 Collision schemes
	3.7.1 Single-relaxation-time model
	3.7.2 Two-relaxation-time model
	3.7.3 Multiple-relaxation-time model
	3.7.4 Central-moments-based LBM
	3.7.5 Overview

	3.8 Forcing schemes
	3.9 Summary

	4 THE NUMERICAL METHOD
	4.1 Introduction
	4.2 Structure of the LB algorithm
	4.2.1 LB unit scaling
	4.2.2 Initialisation
	4.2.3 Collision and streaming
	4.2.4 Boundary conditions
	4.2.5 Macroscopic variables
	4.2.6 Output

	4.3 Parallelisation
	4.4 Coupling between LB and other solvers
	4.4.1 CA-LB coupling
	4.4.2 LB-enthalpy method coupling

	4.5 Performance analysis
	4.5.1 Strong and weak scaling
	4.5.2 Single and double precision
	4.5.3 Serial vs. parallel LBM CUDA
	4.5.4 Lattice Boltzmann vs. discretised Navier-Stokes

	4.6 Summary

	5 MODEL VALIDATION AND RESULTS
	5.1 Introduction
	5.2 2D validation of the Moment Method
	5.2.1 Oscillatory flow around a cylinder
	5.2.2 The 2D lid-driven cavity flow

	5.3 3D validation of the Moment Method
	5.4 Differentially heated cavity flow
	5.5 Solidification in a DHC
	5.6 Undercooled crystal growth
	5.6.1 Single crystal growth in stagnant melt
	5.6.2 Forced convection crystal growth

	5.7 Large-scale results
	5.7.1 Free dendritic growth
	5.7.2 Alloy solidification in DHC
	5.7.3 Channel formation in directional solidification

	5.8 Summary

	6 CONCLUSIONS AND FUTURE WORK
	6.1 Conclusions
	6.2 Future work
	6.2.1 Physics
	6.2.2 Accuracy
	6.2.3 Efficiency and performance
	6.2.4 Applications

	A PUBLICATIONS PRODUCED BY THIS RESEARCH
	REFERENCES

