
 

Stable data-driven manufacturing decision making 
by introducing causal relationships for high 

dimensional data 
 

Abstract—In digital manufacturing, data-driven methods are 
promising to revolutionize various decision-making processes. 
However, the relationships between variables in high-
dimensional data of data-driven decision-making methods are 
only correlations. Important causal relationships and knowledge 
between process variables are not considered. Therefore, existing 
data-driven systems are instable, which could result in unreliable 
and dangerous decisions. To establish a stable decision-making 
model for complex processes with high-dimensional data, a 
causal-based decision-making framework combined causal 
relationships and knowledge between key manufacturing 
variables was proposed. The causal relationships between State, 
Decision and Objective data was established in form of direct 
acyclic graph forming by breaking an unexcepted loop between 
variables using a Shadow Objective variable. Then, causal 
knowledge of high-dimensional state was introduced to the 
neural network, forming a stable decision-making model. 
Compared with data-driven methods used in robotics and 
manufacturing scenarios, the proposed framework provided 
better and stable decisions particularly in noised environments.  

 
Index Terms—Manufacturing decision-making, Data-driven, 

Causal relationship, Causal loop. 

I. INTRODUCTION 
n intelligent manufacturing, decision making systems 
strive to leverage data gathered throughout the product 
lifecycle for making optimized decisions quickly in 

complex environments [1], leading to cost reduction and 
improved product quality [2]. These systems make decisions 
based on specific requirements in particular situations, e.g., a 
state of manufacturing at certain moment, which can be 
reflected by captured data including images, sounds and other 
forms of signals from environment. The complexity of modern 

manufacturing scenarios, characterized by high-dimensional 
and noisy data, poses stability challenges. Decision making 
with respect to states is still a challenging research area [3]. 

Manufacturing decision making depends on the deep 
understanding of manufacturing systems including 
capabilities, mechanisms, knowledge and human experience. 
Existing decision making methods can be broadly classified 
into three categories (as summarized in Table 1), i.e., (i) 
Knowledge based approach, relying on expert knowledge 
including production rules extracted by human or algorithms, 
like fuzzy logic algorithms [4], [5], [6]; (ii) Mechanism Model 
based approach, relying on the modelling of physical systems 
and integrated optimization, like genetic algorithms [7], 
Monte-Carlo simulation [8] and ant colony optimization [9]; 
and (iii) Data-driven approach, relying on data mining 
technologies [10], extracting knowledge using machine 
learning algorithms [11]. In practice, both the knowledge and 
mechanism model based decision making methods were 
inefficient and ineffective in ensuring decision quality and 
stability particularly when dealing with complex 
manufacturing scenarios with high-dimensional data [12]. 

In the Industry 4.0 era, data-driven methods and deep 
learning techniques have emerged as powerful tools to 
revolutionize intelligent manufacturing by utilizing rich data 
for optimized solutions [13], [14]. Data-driven decision-
making methods have mainly two types, i.e., reinforcement 
learning [15] and supervised learning [16]. Reinforcement 
learning focuses on learning optimal decisions to maximize 
rewards by experience accumulated from interactions with the 
environment, e.g., the multi-actor networks for decision 
making in changing environment proposed by Liu et.al [17]. 
Reinforcement learning has limitations in designing reward 
function and the efficiency in interactions with environment. 

Category of existing methods References Comments 

Knowledge-based [4,5,6] 
Relied on expert knowledge and production rules to make 
decisions. Provided a foundation for rule-based decision-
making systems. 

Mechanism Model-based [7,8,9] 
Used physical system modeling and integrated optimization 
methods.  Enhanced the understanding of optimization 
processes. 

Data-driven: Reinforcement 
Learning [15,17] 

Learned optimal decisions by maximizing rewards through 
interactions with the environment. Suitable for dynamic and 
complex decision-making scenarios. 

Supervised 
Learning 

No causal  [11,16,19,20] Learned mappings between input data and output decisions, 
and avoided non-stationary learning process complexity. 

Causal  This paper 
Developed robust causal supervised learning models that 
account for environmental noise and changes, enhancing 
decision accuracy. 

I 

TABLE 1 
PEARSON COEFFICIENTS OF EACH PAIRS OF ACTION ERRORS 



 

Supervised learning is a deep learning framework for decision 
making [18], e.g., the supervised learning approach for 
decision making developed by Jurgen [19] and Rupesh et al. 
[20]. Supervised learning includes agents which learn the 
mapping between the input data and the corresponding output 
decision labels, so that optimized decisions can be made on 
new, unseen data. Unlike reinforcement learning, supervised 
learning avoids the complexity of non-stationary learning 
process and offers greater interpretability. 

Existing data-driven decision-making methods, only 
extract the correlations [21], which are statistics relationships 
among variables on the training data. However, when the data 
distribution is altered by environmental noises or changes, 
models based on statistical relationships are prone to failure, 
leading to erroneous decisions. This theoretical problem 
imposed a challenge for deploying data-driven systems in 
practical decision making [22], e.g., when noised data in 
images and sensor signals was used for planning robot tasks, it 
can lead to incorrect decisions on robot movements. 

This research investigated the above limitations in current 
data-driven decision-making methods and identified a crucial 
factor that affected their accuracy and stability: the 
underutilization of causal relationships between variables. 
Causal relationships are becoming increasingly vital for 
models in industrial environments. In the prediction aspect, Li 
et al. [23] proposed a causal consistency network to learn 
unchanging causal relationships across different datasets to 
improve the generalization of bearing fault diagnosis models. 
In decision making aspect, the causal relationships between 
variables are the knowledge that humans relying on, e.g., a 
motion instruction (decision) is determined (caused) by the 
target position (objective) that a robot end effector needs to 
reach the current position (state). This essential knowledge is 
often absent or not considered in current data-driven 
manufacturing decision-making methods. 

To address this problem, a causal based data-driven 
decision making framework was proposed and developed in 
this research, in which underlying causal relationships 
between key manufacturing variables are modelled with 
associated knowledge. The accuracy and stability of the 
method in the proposed framework was tested and compared 
with typical data-driven methods without causal knowledge in 
two case studies: one for robotics reach task (using 
simulation), and the other for manufacturing deformation 
control task (using simulation and real experiment) under 
various noises from the environments. The results indicated 
that, in both tasks, the decision making models incorporating 
causal knowledge demonstrated higher accuracy and stability 
(measures of accuracy and stability are explained and 
demonstrated in the case study Section). The main 
contributions of this research include the following: 

1) A causal-based data-driven decision making method 
was proposed, in which the decision making problem 
in manufacturing is defined from causal perspectives. 
A shadow objective variable, replacing the objective 
variable, is introduced to break the loop among 
variables in causal graph, in which the loop would 

cause unstable model. From the reported research, this 
was the first attempt to tackle the loop influence on 
decision making causal graphs. 

2) The causal knowledge and intervention are formulated 
in the neural network of decision making framework 
by an  adjacency matrix and a mask mechanism. It 
helps decouple the input high-dimensional data and 
achieve stable decision making in noisy environments. 

3) The proposed causal based decision making method 
was applied to the two case studies (the robotics 
motion and deformation control tasks) in noisy 
manufacturing environments. The effective 
information [24], [25] (i.e., the extent of the causal 
influence of the input on the output) was introduced to 
evaluate the causal learning ability of the neural 
networks. The results showed that there was a 
relationship between effective information, causal 
strength and generalization ability. 

II. PROBLEM DEFINITION AND ANALYSIS 
This Section will analyze data-driven decision making 

modeling problems from causal perspective. 

A. Overview of the caused-based decision making framework 
Existing decision-making systems in intelligent 

manufacturing leverage data gathered throughout the product 
lifecycle to optimize decisions. The primary challenges lies in 
the instability of existing data-driven methods which are often 
based solely on statistical correlations between variables. Such 
correlations can be disrupted by environmental noise, leading 
to unreliable and potentially unsafe decisions. However, in 
controlled and relatively stable manufacturing environments, 
there generally exist stable causal relationships among 
variables from manufacturing system. Our proposed 
framework integrates these stable causal relationships, 
extracted from the manufacturing environment, into data-
driven decision models, ensuring the stability and reliability of 
decision-making processes. This section introduces the 
comprehensive framework utilized in this study. Fig. 1 
provides an overview of the proposed causal based decision 
making framework. 

 

 
Fig. 1 Overview of the proposed causal based decision making 
framework 

B. Decision making problem definition 
Individual decision making aims to make reasonable 



 

Decision 𝑫 based on current State 𝑺 and Objective	𝑶. For a 
data-driven decision making model, Decision 𝑫 is modelled as 
a variable. For the same state and objective, models at 
different stages of learning may make different decisions, 
making the decision process appear stochastic. The goal of the 
data-driven decision model is to reduce this uncertainty to 
learn how to make optimal decisions. Thus, the learning 
objective could be seen as the likelihood function for the 
decision making model, using the Maximum Likelihood 
Estimation [26], can be formulated as, 

 𝜽∗ = 𝑎𝑟𝑔𝑚𝑎𝑥[ 𝑝(𝑫|𝑶, 𝑺; 𝜽)] (1) 

where 𝑫 ∈ 𝑹"  denotes the Decision variables (decided 
solution), 𝑺 ∈ 𝑹#  denotes the State variables, which is 
normally high dimensional. 𝑶 ∈ 𝑹$  denotes the Objective 
variables. Parameter 𝜽 is the parameter of data-driven model 
aiming to optimize to get 𝜽∗. It is the weight and bias of the 
neural network in this paper, which is trained to maximize the 
likelihood of the observed data given the model. This equation 
defines a function parameterized by 𝜽  that estimates the 
Decision variables 𝑫 , based on the State variables 𝑺  and 
Objective variables 𝑶, as illustrated in Fig. 2.  

 
Fig. 2 The relationships between decision making variables. 

Maximizing the likelihood function allows the model to 
produce the most probable output, considering the observed 
input States and Objectives	 in training data. It is well known 
that relying on data posterior to capture causal relations can 
lead to spurious conclusions. For example, considering the 
relationship between ice cream sales and swimming drowning 
accidents, while data analysis might reveal a positive 
correlation, controlling ice cream sales cannot reduce 
drowning accidents. Therefore, although current data-driven 
methods demonstrated ability in capturing the relationships 
between State variables, Objective variables, and Decision 
variables, they can only capture the statistics correlations, 
which is not stable in changing environments, i.e., the 
correlations are not consistently maintained. 

In addition, State variables are typically high dimensional 
data including a mix of features related and unrelated to 
Decision making. For the image-driven robot task example, 
the State variable is made up of numerous pixels, involving 
Decision-related features (robot's arm and end effector), and 
features not related to Decision (background noises which 
disturb decision making). Among all the features in State 𝑺, 
Decision-related features are the critical features as they 
contain information about how the Decision impacts on the 
relevant features and on the Objective. Because these features 
are mixed with other features in pixels, the extraction is very 
difficult. Learning directly from this kind of incorrect inputs 
data would lead to poor model stability, especially in changing 

environments with noises. Therefore, it is crucial to clearly 
distinguish the Decision-related features from the high-
dimensional data for achieving optimized decision making. 

B. Causal based decision making problem definition 
From a causal perspective, the decision making problem 

can be defined as a causal inference problem, with the goal of 
making optimized Decisions that align with the Objectives 
using causal knowledge. The process involves identifying 
potential causes of objectives, estimating the causal effects of 
these potential causes on the objectives through statistical 
models, and subsequently making decisions based on these 
estimated causal relationships. 

Let 𝐺 = {𝑽, 𝑬)}	be a direct graph with a node set 𝑽 =
[𝑣%, … 𝑣&] and edge set 𝑬 = [𝑒%, … , 𝑒']. This graph serves as a 
model for depicting the causal relationships among a set of 
variables. Let 𝑷𝒂&! denote the parents of 𝑣(, where parents are 
the nodes that exert an influence on the child node 𝑣( . The 
probability of 𝑣( depends on all its parents. If an intervention 
is acted on node 𝑣( , denoted as 𝑑𝑜(𝑣( = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	𝑣) , it 
would force a change in the value 𝑣(  to constant 𝑣 . This 
intervention also leads to removal of all edges from 𝑷𝒂&!  to 
𝑣(, because the constant value of 𝑣( is no longer influenced by 
any other nodes. Consequently, the intervention changes both 
the graph structure and its probability distribution. 

From the causal perspective, the observable data, i.e., the 
data that can be collected directly from the environment, can 
be denoted as {𝑶,𝑫, 𝑺%, 𝑺), 𝑨} in data-driven decision making, 
where 𝑨  is an adjacency matrix, representing the causal 
relationship of features in high-dimensional State data 𝑺. 

For decision making in supervised learning, because the 
Decision 𝑫 variables are determined by current State 𝑺%  and 
Objective 𝑶 , in terms of causal relationship, the causes of 
Decision 𝑫  are the current State 𝑺%  and Objective 𝑶 , i.e., 
𝑷𝒂𝑫 = {𝑶, 𝑺%}. In this paper, it is assumed that Decision 𝑫 
made by current State 𝑺%can only affect the next state 𝑺) , 
which is the basis of Objective 𝑶, i.e., 𝑷𝒂𝑺" = {𝑫, 𝑺%} and 
𝑷𝒂𝑶 = {𝑺)}. Thus, the causal relationships can be represented 
as a directed graph as shown in Fig. 3 (a). 

  
Fig. 3 Causal relationship graph of variables in decision 
making. (a) a cyclic graph. (b) cyclic loop is broken by 
introducing a shadow objective variable. 

It can be noticed in Fig. 2 (a) that there is a cyclic loop 
among 𝑶, 𝑫 and 𝑺), where Decision 𝑫	affects State 𝑺), State 
𝑺)  affects Objective 𝑶, and Objective 𝑶 affects Decision 𝑫. 
This cyclic relationship is reflected in the joint probability 
distribution of the variables is 

𝑝(𝐶𝑦𝑐𝑙𝑖𝑐) = 𝑝(𝑫|𝑺%, 𝑶)𝑝(𝑺)|𝑺%, 𝑫)𝑝(𝑶|𝑺))𝑝(𝑺%) 



 

																															= 𝑝(𝑶,𝑫, 𝑺%, 𝑺)|𝑺)).  (2) 

Equation (2) highlights that the existence of a cyclic loop 
results in State variable 𝑺)  appearing both in the conditions 
and results of the probability 𝑝(𝑶,𝑫, 𝑺%, 𝑺)|𝑺)). It leads to the 
presence of non-unique solutions and instability in probability 
distribution modeling. Therefore, the presence of cyclic loop 
in causal graph makes it difficult to solve causal models. 

Previous researchers have employed several methods to 
address loops in causal modeling. One type of methods 
unfolds variables in time-series, where variables are sampled 
and modeled assuming a balanced distribution, as variable 
relationships remain stable under such conditions. Karl et al. 
[27] introduced a common result variable to unfold the causal 
graph in recommendation systems. For cases where variables 
can be unfolded in a time sequence but lack a balanced 
distribution, methods such as Granger causality and cross-
mapping [28] can analyze causal relationships between 
variables, but cannot model causal effects [27]. However, the 
causal relationship graph in Fig. 2(a) is a directed cyclic 
graph, making it difficult to unfold it based on time sequence 
and establish a balanced distribution. As a result, causal 
modeling in decision models continues to be a challenging 
problem. 

To solve the above problem, this research proposed a 
method for breaking the loop by introducing an intermediate 
variable	𝑪, named Shadow Objective variable, to replace the 
Objective variable 𝑶 as the reference for decision making. The 
Shadow Objective variable equivalently represents the 
influence of Objective variable on Decision variable 𝑫 . 
Because the Shadow Objective variable is an intermediate 
variable, there is an edge from 𝑶 to 𝑪. By intervening on 𝑪, 
the loop is broken, and a directed acyclic graph (DAG) is 
formed, as illustrated in Fig. 3 (b). 

Implementation of an intervention on the Shadow 
Objective variable, i.e., removing the edges directed toward it, 
rendering the Shadow Objective variable and Objective 
variable independent. Therefore, the decision making 
modelling problem transforms into a causal modeling problem 
with an intervened Shadow Objective variable 𝑑𝑜(𝑪), as 

𝑝(𝐴𝑐𝑦𝑐𝑙𝑖𝑐)
= 𝑝M𝑫N𝑺%, 𝑑𝑜(𝑪)O𝑝(𝑺)|𝑺%, 𝑫)𝑝(𝑶|𝑺))𝑝(𝑺%)𝑝M𝑑𝑜(𝑪)O 
= 𝑝M𝑶,𝑫, 𝑺), 𝑺%, 𝑑𝑜(𝑪)O                                                    

 (3) 

where 𝑑𝑜	 is the intervention operator. The probability 
distribution calculation with intervened variable is generally 
estimated by observable variable data distribution. Following 
the two invariance equations for causal effect calculation, 
which are marginal probability invariance equation and the 
conditional probability invariance equation, the conditional 
probability can be expressed as 𝑝M𝑫N𝑺%, 𝑑𝑜(𝑪)O =
𝑝(𝑫|𝑺%, 𝑪). Thus, the causal graph model can be reformulated 
as, 

 𝑝M𝑶,𝑫, 𝑺), 𝑺%, 𝑑𝑜(𝑪)O = 𝑝(𝑶,𝑫, 𝑺), 𝑺%, 𝑪). (4) 

Equation (4) shows that the introducing of a Shadow 
Objective variable, along with intervening, resulting in a 
directed acyclic causal graph. Thus, a causal based decision 
making model can be established by solving the probability. 

In causal based decision-making, apart from optimizing the 
objective as in (1), another crucial objective is to ensure that 
the chosen solution leads to the state corresponding to 
Objective O. Hence, the solving objective is as follows: 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥[𝑝(𝑫|𝑪, 𝑺%) 𝑝(𝑶|𝑺); 𝜃)𝑝(𝑺)|𝑺%, 𝑫; 𝜃, 𝑨)	 (5)	

where 𝑨 is prior known causal relationships between features 
of State	𝑺, which is represented by adjacency matrix. 

In summary, the causal perspective emphasizes the 
importance of understanding the causal relationships between 
variables and decisions, which provides a basis for decision 
making model that can lead to optimal decisions. 

III. CAUSAL BASED DECISION MAKING FRAMEWORK 
This Section will describe the framework developed on the 

DAG, to address the studied problem. The framework contains 
three components: (i) decoupling representation learning 
achieved by introducing causal relationship of high-
dimensional data in neural network, (ii) causal inference 
modeling and (iii) decision intervention modeling. 

A. Decoupling representation learning via causal 
relationships 

In manufacturing processes, State variable 𝑺 is mainly high 
dimensional micro data (such as the pixels in image with 
robotics), but also contains macro features (such as the robot 
body made up of pixels), which are more relevant to the 
applications of the proposed method. Among those macro 
features, there often exist prior causal relationships. However, 
these features are mixed within microdata, making extraction 
challenging and impeding application of causal relationships. 

To address this issue, the latent variable and an adjacency 
matrix were used in this research to represent the macro 
features and the causal relationships among them. Because the 
latent variable is a kind of abstract feature of State variable 𝑺, 
requiring extraction from 𝑺 . Therefore, an encoder module 
was used to extract features from State variable 𝑺 to encode it 
in a latent space by latent variables 𝒁,  which was the 
representation of State variable 𝑺. While, a decoder module 
was used to recover State variable 𝑺 from latent space. Thus, 
the calculation process between 𝑺 and 𝒁 was established by 
the encoder and decoder modules, respectively. 

 𝒁 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑺). (4) 
 𝑺 = 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝒁). (5) 

The causal relationships between latent variables 𝒁 ∈ 𝑹-,  
are formulated by adjacency matrix 𝑨 ∈ 𝑹-×- , where 𝑨(/ 
represents the presence of the edge from variable 𝑧( to 𝑧/ with 
value 1 (if there is no edge, the value is 0). 



 

B. Causal inference modeling in neural networks 
In the causal inference component of the framework, the 

transmission of latent variables is modeled. Let structure 
function 𝒈 = {𝑔%, 𝑔), … , 𝑔-}, which describes the transmission 
process from the parent variables to child variables. The 
transmission process of latent variables can be represented as, 

 𝑧( = 𝑔((𝑨𝒊 ∘ 𝒁𝒊) (6) 

where 𝑨(  is the 𝑖12  row of 𝑨 , ∘  is the element-wise 
multiplication, 𝑔(  is the function that maps the parent node 
variables 𝑷𝒂𝒛𝒊to node 𝑧(. It encodes the causal effect from the 
parent node to node 𝑧(. 𝑔( is achieved by neural network. 

C. Decision intervention modeling in neural networks 
In the causal-based decision making framework, the 

Decision variable was treated as an intervention on State 
features represented by latent variable 𝒁. To accomplish this 
in neural network, the masking mechanism [29] was 
introduced to perform interventions using different masks. 
Because the latent variable 𝒁 can be divided into two types of 
variables, i.e., Decision-related variables 𝑠4 and variables 𝑠¬4 
unrelated to Decision.  The decision intervention only works 
on Decision related variables 𝑠4 . The implementation of 
decision intervention is as follows, 

𝒁"$ =	𝒁𝑻𝒅𝒐 + 𝑽"$, 𝒅𝒐 = {𝑚7, … ,𝑚-}, 𝑽"$ = {𝑣%, … , 𝑣-} (7) 

 𝑚( = Y1, 𝑧( ∈ 	 𝑠
¬4

0, 𝑧( ∈ 𝑠4
  (8) 

 𝑣𝒊 = Y𝑓"$
(𝑑(), 𝑧( ∈ 𝑠4

0, 𝑧( ∈ 	 𝑠¬4
  (9) 

where 𝒅𝒐 is a mask vector composed of a set of binary masks 
𝑚(, where each mask determines whether the latent variable 𝑧( 
is intervened.  𝑽"$ is the intervention value of the intervened 
variable, which can be calculated using the Decision variable 
𝑑( . These equations are suitable for discrete or continuous 
Decision variables. The function 𝑓"$  can be established 
through a neural network. 

D. The proposed framework architecture 
The proposed causal based data-driven decision making 

framework is illustrated in Fig. 4.  

 
Fig. 4 The proposed causal based decision making framework. 

The framework has three components including decoupling 
representation learning, causal inference, and decision 
intervention. There are five neural network modules shown in 
different colours, including encoder, decision making, 
decision intervention, decoder and prediction modules. 

The first module is an encoder which extracts macro 
features, i.e., Latent variable 𝒁𝒕, from State variable 𝑺𝒕, and 
takes 𝑺𝒕 as input and outputs 𝒁𝒕 of the State. The second one is 
a decision making module which makes decision based on 
Latent variable 𝒁𝒕 and Shadow Objective variable 𝑪, and takes 
𝒁𝒕 and 𝑪 as input and outputs Decision variable 𝑫. The third 
one is a decision intervention module which is used to realize 
causal inference, and takes Latent variable 𝒁𝒕  and Decision 
variables as input and produces Latent variables 𝒁𝒕9𝟏  as 
output, it is generated after the decision is executed. Each 
causal variable has a function estimated by the neural network 
that establishes the relationship between parents and child 
nodes. The fourth module is a decoder which recoveries the 
next State variable 𝑺𝒕9𝟏 from Latent variable 𝒁𝒕9𝟏, and takes 
𝒁𝒕9𝟏  as input and reconstructs 𝑺𝒕9𝟏 . The fifth one is a 
prediction module which takes State variable 𝑺𝒕9𝟏 as input and 
outputs Objective variable 𝑶. 

The learning objective of the decision making model is to 
maximize the likelihood function of 𝑶, 𝑺𝒕9𝟏, 𝑫 , given 
conditions 𝑪	and 𝑺𝒕, summarized as: 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑙𝑜𝑔𝑝(𝑶, 𝑺𝒕9𝟏, 𝑫|𝑪, 𝑺𝒕). (10) 

Based on the variational inference method, the likelihood 
lower bound of the Objective function could be obtained, 

	𝑙𝑜𝑔𝑝(𝑶, 𝑺19%, 𝑫|𝑪, 𝑺1) ≥ 𝐿;<=> 
= 	𝐸?(𝒁$|𝑺$)?(𝒁%&|𝒁$,𝑫)[𝑙𝑜𝑔𝑝(𝑺19%|𝒁

"$) + 𝑙𝑜𝑔𝑝(𝑶|𝒁"$) +
					𝑙𝑜𝑔𝑝(𝑫|𝒁1 , 𝑪)] − 𝐾𝐿M𝑞(𝒁"$|𝒁1 , 𝑫)N𝑝(𝒁"$|𝒁1 , 𝑫)O −
					𝐾𝐿(𝑞(𝒁1|𝑺1)|𝑝(𝒁1|𝑺1))  (11) 

where 𝐾𝐿 is the Kullback-Leibler divergence. In (11), the first 
3 terms are the log-likelihood terms and the last two terms are 
the 𝐾𝐿  divergence terms. To maximize 𝐿;<=>  means 
maximizing the log-likelihood terms, which can be seen as 
regularization terms for the model, and minimizing 𝐾𝐿 
divergence terms, which means making the prior distribution 
as close as possible to the posterior distribution. 

IV. CASE STUDIES 

A. Decision making for robot movement tasks 
1) Problem description 

The first case was robot movement simulation using 
OpenAI-Gym, which is an Open-Source physics platform for 
training and testing algorithms. This task required continuous 
manipulating of the robot end effector to reach a Objective 
position 𝑶  with coordinates (𝑥, 𝑦, 𝑧) . The State variable 𝑺 , 
including the position of the robot end effector and poster of 
the robot arm, include measured images at corresponding 
times. Thus, the decision model makes Decision variable 𝑫 =
(𝐷%, 𝐷), 𝐷E), i.e., action or movements of the end effector in 
three directions, based on current State variable 𝑺𝒕 represented 
by current image 𝑿𝒕, until it reaches its destination 𝑶. 

The Shadow Objective variable selected the difference in 
distance 𝑪 = (𝛿𝑥, 𝛿𝑦, 𝛿𝑧) between Objective coordinates and 
the current coordinates. Every time an action was made based 
on current 𝑿𝒕 and 𝑪, the resulting image of the State after the 



 

action was 𝑿𝒕9𝟏. The position of the corresponding robot end 
effector in State image 𝑿𝒕9𝟏 was 𝑶′, i.e., the robot end effector 
moved to 𝑶′	after executing 𝑫𝒕.  

The robot was composed of seven elements 𝑉1% to 𝑉1F. Due 
to the difficulty in obtaining its polar coordinates, this research 
analyzed its motion law based on the Euler coordinate system. 
Based on the law of image data generated law, the relationship 
between the coordinates of end effector (𝑒1%, 𝑒1), 𝑒1E) and the 
seven elements of the robot can be represented in the graph 
shown in Error! Reference source not found. (a). 𝐵1 is the 
background feature, which is independent to other features and 
Objectives. 

 
Fig. 5 Causal relationships and adjacent matrix of macro 
features in planning robot movement tasks. 

2) Experiment setting 
The proposed causal based decision making method (with 

no loop in its causal graph) (CDM-NL) was compared with 
two other methods: (i) a causal based decision making method 
with the loop in its causal graph (CDM-L), (ii) a pure data-
driven decision making method without causal relationships 
(DM-NC). These methods were tested on four datasets, in 
which the input image 𝑿𝒕 was added with Gaussian noise of 0, 
0.1, 0.2, and 0.3, respectively. 

The CDM-L only differs from the proposed method CDM-
NL in that CDM-L had input from 𝑶, whilst CAM-NL had 
input from 𝑪, and the rest of the causal relation graph is the 
same. The DM-NC lacks a decision intervention module, the 
rest of the neural network structure is the same as the CDM-
NL. The quality of decision making is evaluated by the mean 
squared error between Decisions 𝑫GH'	made by model and the 
true Decision 𝑫IJKI', as defined, 

 𝐸𝑟𝑟𝑜𝑟 = iN𝑫IJKI' −𝑫GH'N
)	𝑫 ∈ 𝑅E. (12) 

3) Analysis of experiment results 
Fig. 6 illustrates the errors of the compared methods. It 

revealed that the method proposed in this research can 
maintain stable decision outputs despite the noises, whereas 
the decision making performance of the other methods had 
significant errors with increased noises. 

 
Fig. 6 Experiment results on different datasets of robot motion 
control task. 

Furthermore, the errors of decision 𝑫GH'	on a validation set 
with 0.3 Gaussian noises is analyzed. The error densities of 
three actions 𝐷%, 𝐷), 𝐷E in decision 𝑫GH' is illustrated in Fig. 7 
(a-c). It shows that the error distributions that the decision 
action errors of CDM-NL are concentrated within	[−0.2,0.2]. 
In contrast, the error distributions of CDM-L and DM-NC 
have a wider range. It indicates that the proposed method has a 
stable decision-making in noised environments.  

Then, the effectiveness of introducing causal relationship is 
confirmed by assessing the independence of decision errors. 
Based on the relationship between the three positions of the 
robot and the three positions of the Objective in Error! 
Reference source not found., the decision errors of 𝐷%, 𝐷), 𝐷E 
should be independent of each other. To evaluate this, the 
Pearson Coefficients of errors between each pair of actions 
(𝐷%, 𝐷), 𝐷E) of the three methods are calculated, and listed in 
Error! Reference source not found.. It reveals that the 
Pearson Coefficients of errors of CDM-NL are all below 0.1, 
indicating independence among action errors. In contrast, the 
Pearson Coefficients of CDM-NL and DM-NC are relatively 
large, implying dependencies (links) between decided actions. 

 
Fig. 7 Error densities of actions 𝐷%, 𝐷), 𝐷E of decision 𝐷GH'. 

These results show that the proposed method achieved 
effective decoupling, which is key factor contributing to its 
stability and accuracy in decision making. It is also suggested 
that poor decoupling of learning data is a significant factor in 
less stable decision making (with bigger errors). 

TABLE 2 
PEARSON COEFFICIENTS OF EACH PAIRS OF ACTIONS ERRORS 
Pearson 
Coefficient 𝐷%, 𝐷) 𝐷), 𝐷E 𝐷%, 𝐷E 

CDM-NL 0.08 0.05 0.04 
CDM-L 0.07 0.18 0.33 
DM-NC 0.24 0.18 0.35 

To further validate the benefits of employing causal 
relationships, the effective information (EI) from the output of 



 

Decision to the predicted Objective coordinates was 
calculated. EI is a measure of causal effectiveness, and higher 
value indicate that the neural network can offer more causal 
information, as illustrated in (14). 

 𝐸𝐼 = 𝑀𝐼(𝑶,𝑫1|𝑑𝑜(𝑫1 = 𝐻LJM		)) (13) 

where 𝑀𝐼  is the mutual information, 𝐻LJM  is the maximum 
entropy distribution of 𝑫1. 

The EI of the three methods during the training process is 

shown in  

Fig. 8 Effective information of models in training process., it 
reveals that the methods incorporating causal relationships 
experienced a notable increase in EI, while the DM-NC 
basically remained around zero (not increased). In addition, 
CDM-NL shows a higher growth rate and final EI value 
compared with CDM-L, suggesting that models breaking loop 
can acquire more EI.  

 
Fig. 8 Effective information of models in training process. 

4) Comparison with reinforcement learning methods 
Furthermore, the proposed method was compared with 

existing offline reinforcement learning algorithms, including 
Conservative Q-Learning (CQL) and Decision Transformer 
(DT) using the d3rlpy library [30] in noisy environments. The 
evaluation metric employed was the normalized cumulative 
reward over 50 test runs, where the reward at each time step 
was the negative Euclidean distance of the actuator from the 
target position, as shown below: 
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑟𝑒𝑤𝑎𝑟𝑑 = 100%× H'NJH"OH'NJH"'

H'NJH"()*$OH'NJH"'
 (14) 

where 𝑟𝑒𝑤𝑎𝑟𝑑H  is the reward of random action strategy, 
𝑟𝑒𝑤𝑎𝑟𝑑K'#1  is the best reward in the three methods. The 
results are shown in TABLE 3. 

TABLE 3 
 NORMALIZED REWARD OF THE METHODS 

Method No noise 0.1 Noise 0.2 Noise 0.3 Noise 
CDM-NL 100 91.7 77.0 78.1 
CQL 12.7 10.4 8.9 7.6 
DT 12.1 7.3 6.3 12.0 

It can be seen from TABLE 3, compared to CQL and DT, 
the proposed method not only achieved higher reward values 

but also maintained robust decision-making performance in 
noisy environments. 

B. Decision making for component deformation control 
during manufacturing 

1) Problem description 
In aircraft structural components manufacturing, it is 

important to minimize machining deformation, which is a 
critical industrial objective 𝑶. The Decisions are made based 
on the current machining State variable 𝑺𝒕 of the components, 
which including data of deformation causes, including residual 
stress field 𝝈𝒕  and geometric 𝑮𝒕 . In this experiment, the 
deformation control Decision selected was the machining of 8 
process-ribs ( 𝑟%  – 𝑟P ), as shown in Fig. 8. The Decision 
variable is represented as𝑫 = (𝐷%, … , 𝐷P) , which indicates 
whether these ribs are to be machined (𝐷( = 0) or reserved 
(𝐷( = 1) to manage residual stress. The Objectives variable 𝑶 
was to minimize deformation (𝑂%, 𝑂), 𝑂E, 𝑂Q) at four corners. 

The Shadow Objective was the difference in deformation 
between current deformation and final deformation at the 4 
corners, 𝑪 = (𝛿𝑐%, 𝛿𝑐), 𝛿𝑐E, 𝛿𝑐Q), where 𝛿𝑐(  is deformation at 
corner 𝑖  in Z direction. Following the Decision 𝑫 made for 
machining process-ribs, the subsequent State 𝑺𝒕9𝟏 emerges.  

Geometric data 𝑮 parameterized by a matrix, contains a 
significant amount of microscopic geometric elements. These 
elements are mixed with macroscopic geometric features with 
physical characteristics, such as process-ribs 𝒓1, and web 𝒘1. 
and stiffness 𝑩1 . Those features are expressed by latent 
variable 𝒁𝒕. Based on the physical laws of deformation, there 
exist causal relationships among the macro features and 
physical characteristics, as illustrated in Error! Reference 
source not found.. 

 
Fig. 9 Aircraft structural component with 8 process-ribs and 4 
deformation detection points. 

2) Experiment setting 
The proposed method CDM-NL was compared with CDM-

L and DM-NC in simulation environment. In the simulation 
environment, various components with different initial 
residual stress field 𝝈  were simulated under different 
machining operations (Decisions 𝑫  for machining process-
ribs). The resulting machining deformation was considered as 
the Objective 𝑶 . Initially, CDM-NL, CDM-L and DM-NC 
were trained on a dataset with no residual stress noise. Then, 
to compare the stability, the three models were validated on 
datasets, where the residual stress with 0, 1MPa, 5MPa, and 
10MPa noises, respectively. The quality of decision making 
was compared by the mean squared errors between the made 
Decisions 𝑫GH' and labeled process data 𝑫IJKI': 

 𝐸𝑟𝑟𝑜𝑟 = iN𝑫IJKI' −𝑫GH'N
)	𝑫 ∈ 𝑅P. (15) 

3) Simulation experiment results 



 

The Decisions errors of the three decision making methods 
are shown in Fig. 10. It can be seen from that the proposed 
method consistently demonstrates stability and accuracy 
across the 4 dataset. It should be noted here that Decision 
process 𝑫 is a binary array, which theoretically has an error of 
0.5 when it is uniformly random sampled, as shown by the red 
line in Fig. 10. Notably, all methods, except for the proposed 
one, are either close to or worse than random decision-making. 

  
Fig. 10 Simulation results of the methods on 4 datasets. 

Further analysis was conducted to determine whether latent 
variables 𝒁  learned the corresponding macro geometric 
features, i.e., decoupling ability. A comparison was made 
between the CDM-NL method and CDM-L method. The 
random manufacturing plans (Decision 𝑫) was applied in four 
cases, and the subsequent geometric data 𝑮𝒕9𝟏  reconstructed 
from the Decision-intervened macro geometry features 𝒁𝒕"$ 
was shown in Fig. 11.  

  
Fig. 11 Reconstructed geometry State 𝑮19%  by random 
intervention on macro geometry variables.  

Fig. 11 shows that by intervening in different latent 
variables, the proposed method can effectively remove the 
corresponding process-ribs in reconstructed geometry images. 
It proves that the proposed method decoupled macro variables 
of process-ribs from the high dimensional geometric data. It 
also enhances the interpretability of the model incorporating 
with causal knowledge, because it can provide a clearer causal 
relationship between different variables, leading to more 
explainable decisions. For example, in the CDM-NL method, 
it can explain why a particular decision was made, that is, the 
optimized deformation was achieved by changing the 
corresponding process-rib. It helps users better understand and 
trust the decision. However, the CDM-L method could not 
capture the macro geometry features, indicating that even if 
causal knowledge were introduced, it still would not be able to 
accurately learn the causal effect between variables with the 
existence of a loop structure in its causal graph. 

To further validate the effectiveness of the introduced 
causal relationships in component deformation control, the EI 
of the model from Decision 𝑫	 (process plan for machining 
process-rib) to Objective 𝑶 (deformation) was calculated. The 
EI changes of the three methods during the training process 

are shown in Fig. 12. Similar to the robot movement task, the 
EI value of the methods considering causal relationships is 
higher than the method without considering causal 
relationships. Furthermore the EI value of the proposed 
method CDM-NL is larger than CDM-L. It indicated that the 
proposed method was more effective. 

  
Fig. 12 Effective information of the three decision making 
methods in component deformation control. 

4) Actual experiment results 
To compare the different methods, the machined 

components should have same residua stress field, while the 
residual stress fields of components are different from each 
other, leading to comparison difficulty in actual machining 
environment. Therefore, this experiment was only used to 
further validate the effectiveness and stability of the proposed 
method. The decision making model of the proposed method 
trained on the simulation data (described in Section 4.2.3) was 
tested in the actual environment. Two aluminum alloy aircraft 
structural components with the same geometry but different 
residual stress distributions were used for the experiment. The 
size of the components is 636𝑚𝑚 × 180𝑚𝑚 × 26𝑚𝑚, and 
the material is 7075 aluminum alloy. 

 
Fig. 13 Causal relationship and adjacent matrix of macro 
features from machining process decision-making task. 

As illustrated in Fig. 14 (a), the two components were 
machined in the worktable with fixtures installed with sensors, 
which were used to measure forces and inference residual 
stress fields. The X-Y plane of each component was divided 
into 4 areas with residua stress along the Z direction. As 
shown in Fig. 14 (b), the residual stresses of each area is not 
smooth or even and its distribution was more complex than the 
simulation environment. For the two structural components, 
the process plans (Decision 𝑫 ) for machining process-ribs 
were 𝑫% = [0, 1, 0, 1, 0,1,1,1], and 𝑫) = [0, 0, 0, 0, 1, 0, 0, 1]. 



 

 
Fig. 14 Actual machining experiment. (a) Machining 
environment. (b) Residual stress fields of the two components. 

To validate the applicability of the model trained in the 
simulation environment to the actual environment, the 
deformation prediction and control effectiveness of the 
proposed method were analyzed. The method's deformation 
prediction module was used to predict the machining 
deformation of the components after executing the machining 
process plans (Decision D) and compared it with the 
benchmark deformation (calculated using finite element 
analysis), as illustrated in Error! Reference source not 
found..  

 
Fig. 15 Experiment results in the actual environment. 
The root mean squared error was 0.006mm, which is close to 
the finite element model. It indicates that the proposed method 
was capable of making stable decisions in complex scenarios. 
The results were evaluated by experienced engineers from 
aerospace industry, and they compared with their existing 
machining practice and commented that the machining 
deformation of structural components was effectively 
controlled by the proposed method, and the average machining 
deformation reduction was around 0.34mm compared with 
current industrial machining capability. 

V. CONCLUSIONS AND FURTHER WORK 
Inefficient, unstable, and erroneous decision making are 

crucial challenge for application of data-driven methods in 
manufacturing environments with noises and changes, due to 
the learned correlations between State variables and Decision 
variables. This paper reported a causal-based decision making 
framework and tested on both simulation and actual cases. It 
was demonstrated that the causal-based decision making 
method maintained better stability for both continuous and 
discrete decision variables in complex and changing scenarios, 
compared with other data-driven methods. Compared with 
non-causal methods, the proposed methods with causal 
knowledge achieved 74% and 70% improvements on decision 
making accuracy in noisy robot movement and deformation 

control task. In addition, in the actual deformation control 
experiments, the proposed method reduced deformation by 
0.34mm compared with traditional methods. 

Potential industrial applications include supply chain 
management, production planning, and equipment 
maintenance.  These applications can lead to significantly 
reduced operational costs and improved product quality, 
highlighting the practical benefits and applicability of our 
research. 

Future research aims to extract causal relationships 
autonomously using algorithms like causal discovery and 
causal emergence, to reduce the reliance on human 
knowledge. This opens the potential for collaborative 
decision-making between humans and machines, which could 
be more accurate and stable than decisions made by either 
party alone. 
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