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Abstract: Innovative Industrial Clusters (IIC), characterized by geographical aggregation and tech‑
nological collaboration among technology enterprises and institutions, serve as pivotal drivers of
regional economic competitiveness and technological advancements. Prior research on cluster iden‑
tification, crucial for IIC analysis, has predominantly emphasized geographical dimensions while
overlooking technological proximity. Addressing these limitations, this study introduces a compre‑
hensive framework incorporating multiple indices and methods for accurately identifying IIC using
patent data. To unearth latent technological insights within patent documents, Latent Dirichlet Al‑
location (LDA) is employed to generate topics from a collection of terms. Utilizing the applicants’
names and addresses recorded in patents, anApplication Programming Interface (API)map systems
facilitates the extraction of geographic locations. Subsequently, aMultivariate Density‑Based Spatial
Clustering of Applications with Noise (MDBSCAN) algorithm, which accounts for both technolog‑
ical and spatial distances, is deployed to delineate IIC. Moreover, a bipartite network model based
on patent geographic information collected from the patent is constructed to analyze the technolog‑
ical distribution on the geography and development mode of IIC. The utilization of the model and
methodologies is demonstrated through a case study on the China flexible electronics industry (FEI).
The findings reveal that the clusters identified via this novel approach are significantly correlated
with both technological innovation and geographical factors. Moreover, the MDBSCAN algorithm
demonstrates notable superiority over other algorithms in terms of computational precision and ef‑
ficiency, as evidenced by the case analysis.

Keywords: bipartite network; density‑based spatial clustering; innovative industrial clusters; latent
Dirichlet allocation; patent analysis

1. Introduction
Industrial clusters are pivotal in enabling regions to garner, establish, and maintain

competitive advantages, acting as catalysts for economic dynamism and innovation [1].
The concept of industrial clusters was first introduced by Marshall [2] to describe the phe‑
nomenon of geographic aggregation among interrelated enterprises, suppliers, and insti‑
tutions within a specific industry. Through industrial clusters, enterprises gain enormous
benefits by minimizing the transportation time and production cost [3], sharing resources,
and constantly collaborating [4]. In China, more than 70% of the entire supply chain prod‑
ucts can be producedwithin a cluster with a 50–200 km radius, which reduces logistic costs
by more than 30% [5]. In addition, Japanese research in 2001 reported that enterprises
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within clusters clearly outperform enterprises outside the clusters in terms of intensity,
cooperation, and the number of achievements in Research and Development (R&D) [6].

In recent years, with the rapid development of new technologies such as integrated
circuits, artificial intelligence, and biological sciences, technology and those resources are
simultaneously concentrated, forming a new form of industrial cluster, which is defined
as IIC. Unlike traditional industrial clusters, which depend on natural resources and hu‑
man resources, IIC have created significantly higher profits since they increase the inno‑
vative ability and the application of intelligent resources of the enterprise. The most well‑
known example is Silicon Valley in California and the chemical engineering industry clus‑
ters in Boston [7,8]. The recent success of technological development in China followed
a similar path, such as Beijing Zhongguancun Mobile, Zhejiang Shaoxing Textile Machin‑
ery, and Fujian Jinjiang Sports [9,10]. Therefore, they have been implementing support‑
ive policies to continuously encourage the development of IIC. For instance, the “Guiding
Opinions on Further Promoting the Development of Industrial Clusters Strategy in 2015”
and the “Interim Measures for Promoting the Development of Characteristic Industrial
Clusters of Small and Medium‑sized Enterprises (SMEs) Strategy in 2022” aim to identify
around 200 local IIC across China and assist them in becoming larger IIC from the province‑
level [11–13].

The competition for technological resources between countries has shifted from single‑
technology competition to competition for IIC. Identifying technology clusters from the
perspective of patented technologies helps enterprises and R&D personnel to understand
the technology structure and explore technology opportunities so as to gain advantages in
technologyR&Dand competition. It is of great significance to promote the specialized divi‑
sion of labor and collaboration among enterprises, effectively allocate production factors,
reduce the cost of innovation and entrepreneurship, save social resources, and promote
regional economic and social development [14].

Therefore, the key to technological development and policy effectiveness depends on
the accurate identification of IIC. On the one hand, the accurate identification of IIC can
provide systematic suggestions for effective and efficient collaboration and coordination
among different regions within the same industry by avoiding intra‑cluster competition.
On the one hand, effective policymaking for regional industrial development from both
spatial and technological perspectives relies on the accurate identification of IIC. Govern‑
ment policies on clusters aim to create an ecological environment conducive to improving
the efficiency and reducing the cost of collaboration for firmswithin clusters. However, the
formulation of such policies faces great risks, because how clusters are classified affects the
policy subsidies of a large number of enterprises. Traditional cluster identification meth‑
ods often rely on the administrative region, ignoring the industrial cooperation between
different regions and the technical relevance of the cluster. In this paper, the cluster identi‑
fication method based on patent big data can provide an objective and reasonable tool for
the designation of cluster policy. However, the task of precisely identifying IIC has proven
to be challenging for policymakers worldwide, including those in China, the US, and EU
countries, as innovative industries and enterprises are embedded in every sector of the na‑
tional economy, both technologically and geographically [3]. In practice, the identification
of IIC needs to meet Objectivity–Accuracy–Width–Universality (OAWU) indicators: objec‑
tivity (i.e., to avoid the influence of subjective factor), accuracy (i.e., to avoid the omission
of related areas or the inclusion of irrelevant areas in the cluster), width (i.e., to ensure the
data comprehensiveness), and universality (i.e., to ensure the method can be applied to
multiple fields) [15].

Currently, both survey methods and data‑based methods are widely used among
scholars to satisfy the OAWU criteria. Although common survey methods include ques‑
tionnaire surveys and personal interviews, which have strong versatility and professional‑
ism, they have some challenges [16,17]. On the one hand, the data collected from question‑
naire surveys are likely limited due to cost and time restrictions. On the other hand, expert
interviews have strong professionalism, simple operation, and high universality, but they
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depend on interviewees’ expertise and can be significantly influenced by personal sub‑
jectivity. By contrast, data‑based methods using data‑mining technology based on huge
market information have become the mainstream, and they integrate traditional statisti‑
cal analysis tools with machine learning methods. By obtaining a large amount of related
data, data‑mining technology identify and cluster spatially distributed objects, including
enterprises, scientific research institutions, and even individuals [18,19]. Hence, with this
method, researchers can provide a more comprehensive understanding of the actual situ‑
ation of IIC with minimized influences from investigators.

Previous research on IIC identification through big data mainly focuses on geograph‑
ical information and largely ignores the influence of specific technological factors involved
in the industry, which leads to inaccurate identification results on IIC. For instance, rather
than considering the overall technological performance of the cluster from a system per‑
spective, the Moran index model, which is commonly used, can only identify clusters
formed by several neighboring units with indicators above the average [20]. In addition,
the data used in existing research often refer to the open resources of social and economic
data, which can satisfy the requirements of high volume, velocity, variety, veracity, and
value (5V). Still, they are less relevant to the technology involved in the industry, which is
not likely to meet the identification expectations of IIC.

In summary, this research proposes an improved algorithmof IIC identification, which
is characterized by a big‑data‑driven method and allows for a thorough exploration of all
aspects and attributes related to IIC, thereby mitigating the limitations of data scarcity.
Furthermore, this research integrates a wide range of machine learning methods, includ‑
ing unsupervised learning such as text mining and complex networks, providing a more
fine‑grained, convenient, accurate, and universal identification method for IIC from the
perspective of multi‑technologies. The paper is structured as follows: Section 2 provides a
summary of the relevant literature. Section 3 presents the research framework and meth‑
ods, followed by a research example in Section 4. Section 5 offers an analysis of the results,
and Section 6 presents the conclusion.

2. Literature Review
This paper aims to propose an unsupervised IIC recognition method combining big

datamining and amachine learning algorithm. This section discusses the research reviews
of the IIC definition, data sources, and identification algorithms.

2.1. The Definition of IIC
The definition of IIC is yet to be universally agreed upon. Voyer [21] defined IIC as

“a knowledge‑based industrial cluster, which means that enterprises including manufac‑
turers, suppliers and service providers form regional or urban clusters across multiple in‑
dustries” [22]. Affected by the supply chain, the cooperation intensity of enterprises in the
cluster is higher than that outside of the cluster. Innovation clusters have been identified
as ameans of efficiently satisfyingmarket requirements and encouraging the development
of innovative technologies, allowing knowledge‑based economies to access knowledge re‑
sources more easily [23,24]. Moreover, IIC has played a crucial role in supporting high‑
tech enterprises in the incubation environment [25]. Knowledge acquisition is affected by
spatial distance, which means that enterprises within IIC can assimilate knowledge more
easily than enterprises outside, giving them a better chance to use innovative knowledge
resources to develop and obtain new market share [26,27]. Meanwhile, IIC can gather a
large number of technological talents, which can significantly improve the efficiency of
R&D within the cluster [28]. Especially, adopting IIC is a strategy for SMEs enhancing
market competitiveness by reducing the investment related to logistics and electricity [29].
For SMEs, these expenses constitute a larger proportion of their overall costs than larger
enterprises. However, it should be noted that most IIC are just one chain of multiple tech‑
nologies, which means the absence of certain technologies can lead to the incompleteness
and inefficiency of an industry’s operation. Thus, Xu et al. [30] further define IIC as “a
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complex and sophisticated form of cooperative innovation, which is embedded in every
step of the industrial chain”, thus forming an innovation system of technology integration
and expansion.

Besides academic definitions, governments and authorities have also proposed differ‑
ent definitions of IIC. For example, the United States National Research Council [31] de‑
fines regional IIC as “the agglomeration of enterprises providing innovative products and
services, as well as suppliers and research institutions”. In IIC, members have gathered
a large number of knowledge‑ and skill‑related resources and benefit from cooperative
exchange. More than this, China Ministry of Science and Technology [11] defines IIC as
“the enterprises in the industrial chain. R&D and service institutions gather in the region
and form a competitive cross‑industry and cross‑regional industrial organization system
through divisional works and collaborative innovation”.

The differentiation of IIC from science parks and traditional industrial clusters is ev‑
ident in current definitions. First, IIC focus on specific industries, and its spatial distance
could be far greater than that of traditional science and technological parks [32]. Mean‑
while, the development of IIC depends on the knowledge and technological resources
within the cluster, and this emphasizes the importance of the coordination and collabo‑
ration of diverse technologies within the industry. This aligns with the characteristics of
the existing science and technology industry, which is characterized by many enterprises,
knowledge centralization, and technological diversification. In contrast, traditional indus‑
trial clusters rarely involve the level of industrial technology and primarily focus on the
economic or social yield [33].

2.2. Data Source of Industrial Clusters Research
The data source is the key to the accurate data‑driven industrial clusters identification

process. Based on the data access channels, current research on the cluster identification
field mainly discusses economic, social, and scientific data. The collection of data is typ‑
ically sourced from government‑published yearbooks. Such data are authoritative and
offer comprehensive coverage of the performance of specific industries or regions, albeit
at a macro‑level, which limits its ability to facilitate the detailed analysis of individual in‑
dustries. Moreover, the dataset frequently pertains to a restricted number of industries,
without including the cluster status of most industries.

Social data mainly include social data [34], logistics data [35] and Internet of Things
data [36]. Similar to economic data, social data are also often collected from governmen‑
tal reports from the internet enterprise sector from a general level. Hence, some scholars
also use questionnaire survey data to compensate for the disadvantages. Nonetheless, the
data collection cost is considerable, but the data size may be comparatively insignificant,
thereby rendering it improbable to comprehensively reflect the conditions of the entire in‑
dustry. In contrast, scientific data mainly include patent data [37] and science data [38].
Current research on scientific data tend to rely on statistical analyses of the quantity of
such data within a region or industry as the basis for assessing the innovative or creative
potential of the cluster. As patent data are a crucial instrument for protecting and recoding
the technological development of various industries, scientific data offer a more precise
depiction of the level of technological development, particularly in high‑tech industries,
when compared to economic or social data [39]. However, current research places greater
emphasis on the abundance of literary data, rather than the content of the literature itself.
Therefore, a more detailed examination of the subjects encompassed within technology is
conducted to achieve accurate identification.

As is well known, unlike other industries, the high‑tech industry relies on patent pro‑
tection [40]. Therefore, the development of IIC is often accompanied by the emergence of
a large number of patents [41]. In this context, this article uses patent big data to conduct
research on the identification of IIC.

In response to the significant challenges in less‑documented technological areas or
countries, we are concerned that theWorld Intellectual Property Organization (WIPO) has
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so far had a total of 193 member countries, all of which have established patent systems,
including major innovative countries, which are most likely to have IIC. As for countries
in which a patent system is not well constructed, they are reasonably likely to have a lack
of IIC and are thus out of the scope of our study. In addition, the patent literature covers
almost all technical areas of human production activities. For example, the technologies
covered by patents have a unified international patent classification, which are divided
into 8 divisions, 20 sub‑divisions, 118 categories, 620 sub‑categories, 6871 main groups
and 57,320 sub‑groups, showing us a very wide range of technical areas.

2.3. Identification Algorithms
The process of identifying industrial clusters involves collecting data and clustering

them according to geographical or technological factors. Such data are typically character‑
ized by a large volume, multiple dimensions, and a low density, requiring accurate and
reliable algorithms to effectively classify it. According to the indicators considered, the
current commonly used clustering algorithms mainly include Local Moran’s I (LMI) [42],
K‑Means (KM) [43], Spectral Cluster (SC) [44], Hierarchical Cluster (HC) [45] and Density‑
Based Spatial Clustering of Applications with Noise (DBSCAN) [46].

The LMI algorithm is utilized to determine the existence of industrial clusters by ex‑
amining the performance of indicators in a specific target area and its geographical adja‑
cent areas. This algorithm assesses whether these indicators surpass the overall average
value and subsequently verifies the forecasted resultswith a p‑value andZ‑score. LMI com‑
prises two subgroups: bivariate [47] and multivariable local Moran index [48]. These two
subgroups calculate the performance of two or more indicators within a region. By using
this method, it is possible to geographically analyze the agglomeration of high or low in‑
dicators simultaneously. However, fundamentally, this approach involves separately cal‑
culating the values of the elements within the cluster and gathering individuals who meet
all the conditions at the same time. Hence, this method cuts off the relationship between
different elements and fails to comprehensively analyze the overall indicator performance
of the cluster from a macro perspective [49]. Other methods that share similar limitations
include the location entropy method [50] and principal component analysis method [51],
both of which will not be included in this research.

The KM algorithm is an iterative and unsupervised clustering analysis algorithm and
begins by randomly selecting k cluster centers and calculating the distance between the
sample data nodes and each cluster center. A threshold value for cluster classification is
then applied, and the algorithm proceeds to calculate the average value of each cluster
datum to obtain a new cluster center. The process is repeated through several iterations
to guide the cluster towards convergence and complete the clustering analysis. The KM
algorithm has strong readability and quick iteration. However, there are several concerns
regarding its application in industrial clusters identification. First, the number of clusters
and threshold must be predetermined, which is challenging, as it is difficult to accurately
determine the required number of groups in advance. Second, the KMalgorithmprimarily
focuses on the spatial distance for clustering nodes in the research of industrial clusters
and often neglects the clustering of industrial aspects. Lastly, the KM algorithm can only
be used for cluster samples with regular shapes. In industrial clusters, clustering may
encompass multiple regions and irregular shapes. Thus, the KM algorithm is unable to
meet all requirements.

The SC algorithm is a node clustering method based on graphic information. It needs
to preset the number of clusters to be divided, construct the adjacency matrix of different
nodes, use the distance algorithm to calculate the connection strength of different nodes,
and cut the graph to form multiple subgraphs. The cutting standard is that the distance
between nodes in the subgraph is the smallest and the distance between nodes in the sub‑
graph is the largest. Although the SC algorithm can process and obtain clusters of different
shapes, it can be learned from the clustering principle that the SC algorithm and the KM
algorithm both need to be presented with the number of clusters in advance and set the
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minimum number of clusters, which obviously cannot meet the requirements of the actual
spatial cluster clustering [52].

The HC algorithm is divided into top‑down and bottom‑up according to the cluster‑
ing method. Bottom‑up is to first classify the original data nodes, calculate the clusters of
different categories of data nodes and select the nearest category to merge, and then form
a new classification layer and form the lowest number of categories by clustering layer by
layer. The top‑down approach is to first merge all nodes into one category and then gradu‑
ally divide them into different categories until the clustering effect is below a pre‑required
threshold. Like other algorithms, the HC algorithm is also based on similarity, but this
multilayer clustering approach is computationally complex and susceptible to individual
singular values, which is clearly not sufficient for the study of industrial clusters driven by
big data [53].

The DBSCAN algorithm is a conventional density‑based unsupervised node cluster‑
ing technique. Its methodology involves the progressive formation of new clusters by eval‑
uating connectable samples while also considering the density of samples as a constraint.
Compared to the KM algorithm, the DBSCAN algorithm eliminates the need for the man‑
ual determination of cluster quantity and can identify irregularly shaped clusters [54]. In‑
dustrial cluster research aims to cluster spatially dispersed nodes to identify clusters with
improved indicators. The DBSCAN algorithm surpasses other algorithms in terms of al‑
gorithm principles, ease of use, and ability to visualize clustering effects. However, the
research of the DBSCAN algorithm in industrial clusters often only considers the spatial
distance and the number of single nodes. This limited approach fails to consider other
important indicators of overall performance, which is insufficient for identifying multi‑
technology industrial clusters. While some scholars have proposed using the HDBSCAN
algorithm to address the consistency of different cluster densities, this algorithm still lacks
the ability to implement the multivariate input function [55].

3. Research Framework and Methodology
This research contains four phases, and the research framework is shown in Figure 1.

The first phase involves processing industry patent information, which includes searching
for the patent and downloading technological and geographical information, such as titles,
abstracts, applicants, and addresses. The next phase involves mining technological infor‑
mation, which includes topic acquirement based on the LDA algorithm and technology‑
applicant association based on co‑occurrence analysis. The following phase is about the
identification and evaluation of the IIC cluster from the perspectives of technology and
geography. And the final phase is visualizing and analyzing the result of the clusters with
a complex network.

3.1. Patent Geographic Information Mining Based on Applicants and API Map
In Phase 1, the patents search string is formulated based on the customers’ require‑

ments and industrial characteristics. Those keywords include patent application regions,
keywords, classification numbers, and the starting and ending date of the patent applica‑
tion. After collecting patents, we employed a process of consolidating duplicate or repeat‑
edly submitted patents to ensure that they are not counted multiple times. For example,
there will be a new patent filed for both the invention and its utility model in China. Mean‑
while, there will also be authorized patents for inventions and open patents for inventions.
In this case, there would be separate patents in examination and publication, even though
both of these patents refer to the same technological solution. Herein, we then proceed to
acquire the patent in detail: information regarding the applicant, address, abstract, claims,
and other relevant textual data.

The patent contains both the name and address of the applicant. Due to name similar‑
ity and multi‑location application issues of patent applicants, as well as the applicant’s ad‑
dress showing only the approximate location, it is impossible to determine the geographic
location solely on patent application information accurately. With the existing open online



Systems 2024, 12, 321 7 of 28

API map system, the geographic distribution of applicants can be accurately estimated by
combining both applicants’ names and addresses. By adopting this approach, we can over‑
come the limitations of the existing system and accurately obtain the longitude and latitude
information of the applicant.
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To further improve the accuracy of obtained information of subsequent technological
subject extraction, we conducted a manual review of all the patents’ abstracts and claims.
This allowed us to create a stop word list and dictionary by eliminating common or in‑
significant words, symbols, and numbers while replacing certain synonyms.

3.2. Patent Technological Subject Acquisition Based on the LDA Model
In order to extract technological topics from a vast amount of patent text data, the

classification of all patents’ technological texts is performed by utilizing the LDA topic
analysis algorithm. The LDA algorithm is a text topic generation model and an unsuper‑
vised machine learning algorithm [56]. It adopts a multilayer probabilistic model with a
three‑layer structure comprising words, documents, and topics. LDA assumes that words
are generated from a mixture of topics, and each topic is generated by a polynomial distri‑
bution over a fixed word list. These topics are shared across all documents in the dataset.
The generation process of the LDA topic model is depicted in Figure 2.
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Suppose a collection of patent documents,D = {d1, d2, …, dM},Nm represents the num‑
ber of words in the mth document, t denotes the number of topics, Tm,n is the nth topic in
the mth patent document, and wm,n is the nth word in the mth document. Here, φk is a pa‑
rameter obeying a Dirichlet distribution with β, and θm is a parameter obeying a Dirichlet
distribution with α. Given a set of one document, wm,n are the observed known variables,
β and α are the a priori parameters given based on manual experience, and Tm,n, φk, and
θm are unknown implicit variables. Two main parameter inference methods, variational
Bayesian inference and Gibbs sampling, are used for the subject model [57]. The algorithm
of variational Bayesian inference is characterized by its myopic nature, as it approximates
the expressions of posterior probabilities for model parameters using a straightforward
variational distribution. Through the iterative application of the EM algorithm, it aims
to maximize the variational lower bound to estimate the parameters. On the other hand,
Gibbs sampling is a stochastic algorithm that relies on samples drawn fromaMarkov chain.
In comparison to variational Bayesian inference, the Gibbs sampling algorithm is consid‑
ered simpler and more user‑friendly. As a result, LDA topic models often favor the adop‑
tion of Gibbs sampling.

It should be noted that the superiority of the LDA topic representation results is signif‑
icantly influenced by the number of different topics, which must be predetermined using
the LDA algorithm [58]. Currently, various metrics exist to determine the number of top‑
ics, including coherence and perplexity. Coherence has high computational complexity
and is suitable on large‑scale datasets. By contrast, perplexity has a higher recall rate and
efficiency, which is more prominent in long texts such as patent technology texts and is a
common determination index [59]. Therefore, the perplexity index is introduced to mea‑
sure the superiority of the subject modeling results, enabling the assessment of themodel’s
predictive ability for uncertain data. The formula for calculating perplexity is as follows:

Perplexity(D) = exp

−

M
∑

m=1
log p(wm)

M
∑

m=1
Nm

 (1)

where D denotes the test set in the corpus, ∑M
m−1 Nm denotes the number of words in the

entire test dataset, and p(wm) refers to the probability of occurrence of word wm in the
test set. It can be seen that the confusion formula is primarily based on the information
entropy, and the entropy obtained from the number of topics is evaluated by calculating
the probability of word occurrence across different topics. A lower perplexity indicates a
more effective outcome in terms of topic clustering.

While LDA can provide a substantial number of technological topics, there are often
duplicates among these topics [59]. To address this, manual detection is employed to iden‑
tify and merge similar topics, followed by the individual marking of technological classi‑
fications for each patent. Since the number of topics is usually not extensive, the manual
approach requires less time and yields more accurate results.

3.3. Accurate Identification of Industrial Clusters Based on MDBSCAN
Patents involve the latest andmost active technical information in almost all related tech‑

nical fields. Effectively analyzing and utilizing the complex correlations between patents can
not only provide direction for future research but also help organizations such as enter‑
prises and institutions to identify the best partners. At present, academics generally be‑
lieve that the relationship between patents is mainly divided into four kinds: competing,
blocking, complementary, and unrelated [60]. Among them, the first two relationships
mainly reflect the similarity between patents when conducting patent relevance analy‑
sis. The research on patent technology complementarity appears relatively weak, and few
studies at home and abroad have synthesized the theory, method, and application related
to patent technology complementarity. In fact, major technological innovation generally
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relies on the introduction of complementary technologies, and through technological coop‑
eration between enterprises or organizationswith complementary patents, they can absorb
each other’s advantageous technologies to make up for their own technological deficien‑
cies while maintaining their own core technological strengths so as to improve the success
rate of innovation, reduce the costs and risks of technological innovation, and obtain a
more desirable investment value. In order to determine the complementarity between ap‑
plicants within a cluster, we propose the following definition of technical distance: when
two patents belong to two different subfields in the same technical field, it means that they
belong to the same field in terms of technical content and can realize complementary ad‑
vantages through their differences.

Scholars have emphasized that spatial concentration is a key feature of industrial clus‑
ters [61,62]. In essence, clusters reflect proximity, i.e., the spatial concentration of firms
from a micro‑geographic perspective. In order to identify the clusters, it is necessary to
consider both spatial and technological distances based on the calculation needs of the
applicant. An algorithm compatible with both distances needs to be introduced due to
the variations in how different distances are represented. One such similarity calculation
method is the Euclidean distance, which calculates similarity by cumulatively calculating
the difference between different variables of the nodes [63]. Compared with similarity cal‑
culation methods such as cosine similarity and Jaccard similarity, the Euclidean distance
is well suited for numerical similarity calculation. It imposes no constraints on the value
range, with larger values indicating greater distances. Moreover, it provides an absolute
distancemeasure that effectively captures the differences between different variables of the
nodes, making it suitable for both spatial and technological distance calculations. If there
exists a set of variables x = {x1, x2, …, xn} and y = {y1, y2, …, yn}, the Euclidean distance of
the two variables is computed as follows:

dij =

√√√√ N

∑
n=1

(xin − xjn)
2 (2)

The calculation of the distance between various applicants can establish a geographi‑
cal foundation for subsequent cluster identification. Currently, the methods of calculating
spatial distance are divided into linear distance and spherical distance [64].

sdij = ds ×
√(

lni − lnj
)2

+
(
lai − laj

)2 (3)

where ds refers to the plane distance of the unit longitude and latitude and is determined
uniformly based on the node’s location. The spatial distance increases as the difference
between the longitude and latitude of different nodes becomes greater, as indicated by
Formula (3). This relationship aligns with real‑world geographical scenarios.

To calculate the technological distance between different applicants who are involved
in multiple technologies simultaneously, a combination of the Euclidean distance method
and the bipartite network algorithm can be employed. The technological distance is com‑
puted as follows:

tdij =

√√√√ T

∑
t=1

(eit − ejt)
2 (4)

where tdij represents the technological distance between the applicant nodes ei and ej, and
t represents the presence or absence of technology in the same field identified by the LDA
method, with applicants having two or more patents in technology t recorded as 1 and
those with none recorded as 0.

The process of identifying industrial clusters involves clustering and evaluating clusters,
and it directly impacts relevant industrial policies and the economic interests of those clusters.
To minimize artificial intervention, this paper utilizes an unsupervised identification method
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based on machine learning. The DBSCAN algorithm, a classical density‑based clustering
algorithm, is employed. Unlike theKMalgorithm, DBSCANhas the advantage of automat‑
ically determining the number of clusters and identifying clusters with arbitrary shapes.
This characteristic makes it well suited for clustering nodes located at various positions
within a spatial network [65]. In addition tomassive data, DBSCAN can find outliers while
clustering and is insensitive to outliers in the dataset. However, the traditional DBSCADN
only considers the maximum distance sdmin between nodes within a cluster and the min‑
imum number of nodes xmin as clustering constraints, i.e., it requires the need to satisfy
((td ≤ tdmin)∩(x ≤ xmin)) among cluster members, without considering the complementar‑
ity or dissimilarity between technologies within a cluster. Consequently, this limitation
fails to meet the requirements of actual industrial clusters.

To address this issue, we propose an enhancement to the existingDBSCANalgorithm,
with the nameMDBSCAN by adding theminimum technology distance variate tdmin. This
enhancement ensures that during the clustering process, cluster members must satisfy the
condition ((td≤ tdmin)∩(x≤ xmin)∩(sd≤ sdmin)). In this regard, theMDBSCANalgorithm is
employed in this study to facilitate the fusion of multiple variables. By doing so, it enables
the identification of clusters with both a high spatial density and significant technological
complementarity. The flow algorithm of the whole algorithm and its pseudo‑code can be
found in Appendix A. It is worth stating that various studies have employed KM, HC, and
SC methods to combine multiple variables during the clustering process. However, the
underlying principle primarily involves computing the Euclidean distances of multiple
variables concurrently during the initial clustering stage; these distances are then consol‑
idated into a unified distance value using weights. Subsequently, different elements are
clustered based on a distance threshold [66–68]. Since different weights can have a sig‑
nificant impact on the final clustering effect, the determination of the weights often relies
on manual assignment, making such algorithms susceptible to subjective experiences. In
contrast, MDBSCAN uses technological distance and spatial distance to filter and classify
elements separately, thereby avoiding these issues.

Industrial clusters are formed by utilizing big data and require the evaluation of their
effectiveness with different combinations of input variables. The evaluation methods for
clusters can bemainly classified into internal and external evaluation techniques [69]. Inter‑
nal evaluation involves calculating metrics that measure the intra‑cluster and inter‑cluster
elements, supplying an assessment of clustering effectiveness without the use of real la‑
bels. This method is applicable for evaluating clusters without real labels. On the other
hand, external evaluation is conducted using real labels, where the clustering results are
compared against the actual labels to determine the evaluation outcome. In the process
of industrial clusters evaluation, true labels are not usually available; thus, the internal
evaluation methods are generally adopted.

There are three commonly used internal evaluation methods, namely, the Silhouette
Coefficient Index (SCI) [70], Calinski–Harbasz Score (CHS) [71], and Davies–Bouldin In‑
dex (DBI) [72]. The SCI algorithm yields evaluation scores ranging from−1 to 1. The CHS
provides the fastest clustering evaluation but is primarily applicable to the evaluation of
clusters of spherical data. However, it is less accurate compared to SC and DBI when
evaluating the clustering results obtained based on the density algorithm [73]. The DBI
integrates the intra‑class sample similarity and inter‑class sample difference, resulting in
superior efficiency and accuracy. The evaluation score for the DBI value is unbounded and
can range from zero to any positive number. A higher DBI value indicates a better cluster‑
ing effect, and it is also suitable for joint evaluation of multiple indicators. The following
formula stands for the DBI, assuming that the applicant datasetA is divided into k clusters:

DBI =
1
C

C

∑
i=1

max
i ̸=j

(
Si + Sj∣∣∣∣wi − wj

∣∣∣∣
2

) (5)
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where Si represents the average distance from all internal elements of the ith cluster to the
center of the cluster, which also indicates the degree of dispersion of sample data within
the cluster.

∣∣∣∣wi − wj
∣∣∣∣

2 represents the cluster center distance from the ith to jth clusters.
The formula shows that the smaller the DBI index is, the smaller the distance within the
cluster, the larger the inter‑cluster clustering, and the better the clustering effect.

In order to calculate the applicant’s final clustering index, it is essential to consider
both spatial and technological distances with two DBI indices, namely, the spatial dis‑
tance clustering index DBIsd and technological distance clustering index DBItd. Normal‑
ization is required to mitigate the impact of varying ranges of values on joint settlement
results and prevent substantial differences between values. To achieve this, the chosen
approach involves the utilization of a logarithmic function conversion method. Conse‑
quently, the overall calculation process for the complete Dissimilarity‑Based Index can be
outlined as follows:

DBI =
1
2
{log[DBItd] + log[DBIsd]} (6)

3.4. Analysis of Cluster Identification Results with Bipartite Network
Various clusters are obtained through MDBSCAN and DBI. To further analyze the

relationship between clusters and technological topics, a bipartite network is introduced
to represent their relationship. Unlike an ordinary network, a bipartite network can be
compatible with nodes of both natures, while there is no association between nodes of the
same type. Moreover, a bipartite network exhibits interconnected edges solely between
nodes of distinct types, where the strength of the association between a pair of nodes is
denoted by the weight of the connected edge [74]. The characteristic form of a bipartite
network is shown in Figure 3.
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The existence of a weighted technology‑applicant bipartite network G = (C, T, E) is
assumed, where C = {c1, c2, …, cC} represents the cluster set, T = {t1, t2, …, tT} represents
the technology topics set, and E ∈ (C × T) is the edge set of G. The weights are calculated
as follows:

eij =

{
pnij

0
, e ∈ (ci × tj)
, e /∈ (ci × tj)

(7)

where pnij denotes the number of patents involving both the cluster ci and technology tj.
The clustering capabilities of MDPSCAN encompass both geographical and technolog‑

ical aspects; however, the resulting clusters can only be represented on a two‑dimensional
map, leaving the relationship between clusters and different technologies undisclosed. In
order to improve the visualization of the cluster and technology network model, a net‑
work layout configuration is required. Specifically, a force‑guided layout approach is em‑
ployed for the cluster–technology relationship network, wherein the merging of nodes
within clusters aims to reduce the total number of network nodes. This layout method
employs the concept of spring force to calculate pairwise forces between nodes, thus cen‑
tering the important nodes within the network. Consequently, this arrangement allows
for a more visually coherent display of the significant clusters [75]. Based on this, different
clusters are divided with Core–Periphery Network (CPN) structure facilitation. Within
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the CPN framework, the core denotes a set of nodes located in the center and tightly intri‑
cately connected, whereas the periphery refers to a set of nodes encircling the center and
loosely connected to the core. With regard to the IIC, the utilization of CPN enables the
precise analysis of the technology distribution of the target cluster and its position within
the overall cluster.

In addition to the technology distribution, the cluster development model can also be
analyzed. According to Markuse [76], the current cluster development models encompass
fourmain types, namely, Italian‑style industrial clusters, satellite‑based industrial clusters,
axle‑wheel industrial clusters, and national power‑dependent industrial clusters. Italian‑
style clusters are dominated by SMEs, exhibiting strong specialization without leading en‑
terprises. Satellite clusters are also dominated by SMEs; however, their existence relies
mainly on enterprises affiliated with other clusters. Axis‑wheel‑type clusters are mostly
dominated by both large‑scale local enterprises and SMEs, exhibiting a distinct hierarchical
structure. State power‑dependent industrial clusters, also referred to as government‑led
industrial clusters, materialize as a result of the state’s support via industrial policies.

Based on the definitions of the four patterns, this paper utilizes a patent analysis
method to identify cluster patterns. The patent applicants encompass various entities,
including enterprises, universities, and research institutes. Notably, universities and re‑
search institutes often serve as state‑owned institutions in numerous countries, such as
China. At the same time, the number of patents contained in different institutions within a
cluster exhibits considerable variation, thereby facilitating the identification of Italian‑style
industrial clusters and axle‑wheel‑style industrial clusters. In addition, there are differ‑
ences in the spatial distance of different clusters; for example, a few clusters are close to
large clusters and belong to the typical satellite development pattern.

4. Empirical Research
4.1. Data Collection

Flexible electronics (FE), also known as flex circuits, is technology for assembling elec‑
tronic circuits by mounting electronic devices on flexible substrates. FE can replace mul‑
tiple rigid boards or connectors and is ideal for dynamic or high‑flex applications, and it
has attracted thousands of enterprises and institutions, forming a complete industry, FEI,
in China. More than this, FEI is a typical high‑tech industry, which possesses the charac‑
teristics of many participating enterprises, many patents, and complex industrial chains.
Taking this industry as the research case, it can provide effective methods and tools for
identifying other high‑tech industry clusters.

Therefore, we analyze from the perspective of the flexible electronics industry applied
in China since 2000 so as to better grasp the pattern of technological innovation in the
IC industry. The search terms utilized in this study are as follows: TA_ALL: (“Flexible
Electronic” OR “Flexible Printed Circuit” OR “flex circuits” OR “Flexible Hybrid Electron‑
ics” OR “flexible displays” OR “Flexible Printed Sensor” OR “stretchable electronic”) OR
CPC: G09F9/301 ORH01L51/0097 ORG06F1/1652 ORH01L2251/5338 ORH04M1/0268 OR
G09G2380/02 OR G05B2219/25321 OR G05B2219/25439 OR H01H2229/038 OR H01R12/59
OR H01R12/61 OR H01R12/77 OR H01R12/78 OR H05K1/028 OR H05K1/118 OR H05K1/
147 OR H05K3/361 OR H05K2201/2009 OR H05K2201/046 OR H05K2201/2027 OR H05K3/
4635ORH05K2201/09445ORG09G3/035ORG02F1/133305ORG06F2203/04102ORG06F1/
1616 OR H01F2017/006 OR H01H2001/5816 OR H01H2001/5827 OR H01G9/2095 OR H01
L23/4985 OR G05B2219/23358 OR H05K2201/05 OR H05K1/148) AND APD:[20000101 TO
20201231]. A total of 860,701 Chinese patents were obtained, and the specific information
is shown in Table 1. The provided information includes various elements, such as the title,
application number, filing date, applicant, applicant’s address, and abstract of the patents.
For some of the patents jointly applied by different applicants, the patents are divided into
two distinct applications. Additionally, irrelevant terms within the abstract are eliminated
using the HIT stop word list to enhance the effectiveness of patent subject extraction.



Systems 2024, 12, 321 13 of 28

Table 1. Information of patent applicants.

Application No. Patent Title Applicant Applicant Address Longitude
and Latitude

CN202011550473.0 A method of making a
conductive circuit board

Shenzhen Bairou New
Material Technology Co.

No.8 Baoqing Road,
Baolong Community,

Baolong Street,
Longgang District,

Shenzhen, Guangdong

118.09644, 24.48541

CN202010943557.4

The production method
of circuit board with

embedded
conductive lines

Pengding Holdings
(Shenzhen) Co.

Building A1 to
Building A3, Peng

Ding Park, Song Luo
Road, Yan Luo

Community, Yan Luo
Street, Baoan District,

Shenzhen City,
Guangdong

113.86367, 22.79640

CN202010195388.0 A circuit board and its
manufacturing method Yancheng Wixin Co.

No.999, Yandu Road,
Yandu District,

Yancheng City, Jiangsu
120.18987, 33.34369

… … … …

CN201410149990.5

Preparation of
copper‑zinc‑tin‑sulfur

films on flexible
substrates using

magnetron sputtering

Guangdong University
of Technology

No.100 Waihuan West
Road, Guangzhou

University City, Panyu
District, Guangzhou
City, Guangdong

113.39960, 23.04570

To ensure the accuracy of the analysis results and mitigate the influence of individual
applicants who filed only one patent, a criterion is set to analyze applicants with two or
more applications. Consequently, a total of 5610 applicants who had submitted multiple
patents in the field of flexible electronics were selected for the analysis. This was combined
with Baidu map API (https://lbsyun.baidu.com/, accessed on 23 October 2022) to obtain
the latitude and longitude information of the applicants. Simultaneously, the correlation
information between the applicants and technologies was constructed, as shown in Table 1.

4.2. Obtaining Technology Topic and Keywords
The application of LDA enables the extraction of topics from patent abstracts, refer‑

ring to the related literature [58,77,78]. Additionally, the number of iterations for Gibbs
sampling is set to 1000, with K representing the number of topics present in the corpus.
Based on Formula (1), we calculate the perplexity values for all numbers of topics from the
range (0.149) and found that the lowest value is 194.8483 when the number of topics is 94,
as shown in Figure 4.

A set of 20 technological topic keywords is established, with the top‑weighted key‑
words being selected as the display objects. At the same time, experts’ experience is uti‑
lized to interpret and filter various combinations of technological keywords, resulting in
the merging of duplicate topics. Finally, the process resulted in 95 topics in total, as shown
in Appendix B.

https://lbsyun.baidu.com/
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4.3. FEI Clusters
Referring to the criteria for the identification of industrial clusters of SMEs in China [13]

and existing literature [79–81], the range of the distance for the applicants is set between
25 km and 250 km, with 25 km being one unit of measurement, and the range for the
number of patent application enterprises is set between 10 and 100, with 5 as a measure‑
ment unit; the range of technological distance is set between 20 and 1200, with 20 as a
measurement unit. Through the partial DBI results, the index floor of the joint DBI is set
to 10. By employing the python program to develop the MDBSCAN algorithm and incor‑
porating a matplotlib plug‑in to display the algorithm results, the calculation results are
shown in Figure 5. In this figure, the darker color of the ball signifies a lower DBI value,
indicating a superior clustering effect, whereas a lighter color corresponds to a higher DBI
value. Through the joint analysis of the three input indicators, it can be found that some
of the indicators within the value range are significantly better than those in other regions.
For the number of patent application enterprises, when the number of applicants within
xmin = (5, 10), the DBI index will be significantly lower than the indexes in other intervals.
In terms of spatial distance, the DBI indicator is significantly lower than that in the other
zones when the spatial distance is equal to 25, 200, and 225 values. For example, when the
number of applicants is less than 20 and the spatial distance is equal to 25 and 225, an inter‑
esting observation emerges: as the technological distance tends to approach 1200, the DBI
decreases. Conversely, in other indicators, there seems to be no significant disparity in the
technological distance; in fact, larger distances correspond to larger indicators. This exam‑
ple underscores the notable influence of the technological distance, spatial distance, and
number of participating enterprises on the cluster evaluation effect yielded by the MDB‑
SCAN algorithm. If only the number of participating enterprises and spatial distance are
employed as constraints, it becomes apparent that the approach does not align with the
actual situation.

The selection of clusters considered the number of clusters in the evaluation of DBI.
To further obtain the optimal parameters in this case, considering the range of the ob‑
tained DBI values (0.397533376, 1.222981034) and the number of distributions, combina‑
tions lower than 0.45 are selected as secondary screening objects, and a total of 13 groups
are obtained, as shown in Table 2. In this table, the ranks of 1, 2, and 3 variable combina‑
tions have low DBI values, but the numbers of clusters are all small, making the granu‑
larity of cluster division too large, resulting in too many participating enterprises within
the cluster, which is not conducive to the implementation of cluster policy. sdmin = 25,
tdmin = 350, and xmin = 10 are selected as cluster identification indicators, and a total of
44 clusters are obtained.
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The application of theMDBSCAN algorithm under specific constraints of a minimum
technological distance, spatial distance, and number of nodes results in the identification
of a total of 44 clusters. These clusters are then assigned numerical labels based on their
cluster sizes, as illustrated in Figure 6. The dominant clusters in China’s flexible electron‑
ics industry are primarily concentrated in three key regions: the Yangtze River Delta (c1),
the Pearl River Delta (c2), and Beijing (c3). These clusters not only have the characteristics
of many participating enterprises but also tend to span multiple administrative regions.
For example, the flexible electronics industry cluster in Shenzhen extends to the adjacent
Guangzhou and Dongguan, and the industry cluster in Shanghai extends to its adjacent
Suzhou. In order to validate the presence of cross‑regional industry clustering and fa‑
cilitate the effective enhancement of overall cluster competitiveness, it is imperative for
multiple administrative units to collaborate during the implementation of industry clus‑
ter support. Moreover, these clusters demonstrate the occurrence of cross‑regional clus‑
tering, alongside irregular shapes. For example, the Yangtze River Delta shows a V‑type
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cluster, which extends to two adjacent provinces through Shanghai. The Pearl River Delta,
on the other hand, is a △‑type cluster, with several cities developing in parallel. Beijing
represents a cluster of the ∗‑type, characterized by a radial shape that extends to various
regions within the city, primarily due to its central location. The accurate delineation of
these clusters proves challenging when employing traditional clustering models based on
an administrative area division or KM algorithm.

Table 2. List of combinations with DBI values below 0.45 and their calculation results.

Rank sdmin tdmin xmin Number of IIC DBI

1 225 100 5 13 0.442539712
2 225 300 5 7 0.435385726
3 225 50 5 23 0.42753337
4 200 50 5 25 0.412094281
5 25 350 10 44 0.40390312
6 25 400 10 44 0.40390312
7 25 450 10 44 0.40390312
8 25 500 10 44 0.40390312
9 25 550 10 44 0.40390312
10 25 600 10 44 0.40390312
11 25 650 10 44 0.40390312
12 25 700 10 44 0.40390312
13 25 750 10 44 0.40390312
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4.4. Clusters Identification Results Analysis
In Figure 7, the technology distribution of the clusters was further analyzed based

on the correlation between the clusters labeled with blue nodes and technology labeled
with green nodes. It can be seen that the distribution of different clusters shows a core‑
periphery network structure. The center is the Yangtze River Delta cluster of c1, the Pearl
River Delta cluster of c2, and the Beijing‑Tianjin‑Hebei cluster of c3. The technology clus‑
ters between the abovementioned locations are relatively close to each other, with stronger
technological complementarity. In contrast, other clusters tend to be in the peripheral
structure and only involve individual technology nodes, mainly because of the smaller
technological distance and higher technological overlap among the enterprises within the
cluster. For example, the Wuhan cluster, located in central China and designated as Clus‑
ter No. 6, primarily revolves around two technologies: organic display (T80) and display
(T72). These technologies are characterized as flexible display technologies, suggesting
that the cluster predominantly focuses on a single technology and lacks significant indus‑
trial competitiveness. By considering the core–periphery network structure, it becomes
evident that the MDBSCAN‑based algorithm can effectively identify clusters that exhibit
greater technological complementarity, a capability that is not achievable with the current
DBSCAN algorithm.
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The identification of development patterns in the target clusters can be facilitated by
the examination of patent texts alongside econometric data, as demonstrated in Figure 8.
By distinguishing the number of patents associated with various applicant nodes within
the cluster, it becomes apparent that the Pearl River Delta cluster conforms to the typical
Marshall‑type industrial cluster model. This model is characterized by a predominance of
SMEs, a pronounced specialization in specific fields, a significant complementarity of tech‑
nological capabilities among enterprises, and a notable level of industrial competitiveness.
On the other hand, the Yangtze River Delta cluster exhibits a combination of a government‑
led industrial cluster model and Marshall‑type industrial clusters. This hybrid configura‑
tion involves a greater presence of institutions, which are represented by red dots, along‑
side a higher proportion of SMEs. The Beijing–Tianjin–Hebei cluster is mainly amixture of



Systems 2024, 12, 321 18 of 28

the hub‑and‑spoke industry cluster model and the government‑led industry cluster model.
Apart from the large number of universities and research institutes in the cluster, there is
a clear distinction in the hierarchy due to significant differences in technological expertise
among applicants, where the node diameter represents the number of patent applications
by the applicants. As typical satellite platform‑type industrial clusters (shown in Figure 8),
c27, c28, c35, and c42 are established in areas at a certain distance from large clusters, and
the spatial distance can ensure the realization of resource sharing while reducing the oper‑
ating costs. It is also another advantage of industrial cluster identification based on patent
big data.
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5. Discussion
5.1. Comparison with the Previous Approaches

To further verify the accuracy of the proposed algorithm, a comparison is conducted
with four commonly used spatial clustering algorithms to account for the variations in clus‑
tering effects across different algorithms and clusters. The joint DBI is utilized for this pur‑
pose, and the comparative results are presented in Figure 9. Notably, when the minimum
number of applicants is set to 10, DBSCAN exhibits the highest DBI index. The results
demonstrate that the MDBSCAN algorithm surpasses the HC and SC algorithms when
the number of clusters exceeds 15 and outperforms the KM algorithm when the number
of clusters exceeds 19, except for cases where the number of clusters is missing.
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Figure 9. Comparison of clustering effects of different algorithms.

The DBSCAN algorithm has the disadvantage of a long running time when dealing
with large amounts of data, and this needs to be considered when adding computational
variables. In relation to this matter, the running times of the MDBSCAN and DBSCAN
algorithms are computed individually for varying proprietary data volumes and subse‑
quently compared, as depicted in Figure 10. It is evident that for a data volume of 250,000,
the run times of both algorithms are roughly equivalent. However, when the data volume
reaches 500,000, there is a notable disparity of 264 s in the running time between the two
algorithms. Given that MDBSCAN has 96 additional variables compared to DBSCAN in
this specific scenario, the disparity in execution time is comparatively reduced. Further‑
more, the investigation of clusters is inherently interconnected with the advancement of
the entire industry, emphasizing the primacy of accuracy over computation time. There‑
fore, when comparing the results of the two metrics, the small amount of time added to
the computation process based on the MDBSCAN algorithm is acceptable.
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5.2. Impact on Industry Cluster Research
The proposed method leverages patent data and their associated benefits to facilitate

the accurate identification of IIC in terms of technological and spatial dimensions. It oper‑
ates in an unsupervisedmanner and effectively determines the boundaries of regional clus‑
ters while also providing a systematic analysis of their technological status and patterns.
This research serves as a foundation for the subsequentmeasurement of regional industrial
clusters and the formulation of relevant policies by scholars and government authorities.

Government agencies and researchers can use this method to precisely understand
the distribution of industrial clusters in various technology industries. Since a patent is
the important vehicle for existing enterprises seeking to protect their technology and an in‑
dispensable tool for technology enterprises in various industries seeking to achievemarket
competitiveness, it can be applied to most technology industries with the help of patent
big data. Analyzing the development of the industry with the help of patents is the main‑
stream method of existing technology management. At the same time, with the help of
patent applicants and address texts, the identification of clusters can be narrowed down
from a national level to a certain region, such as the one shown in Figure 8, and can be
focused on the city level or county level, or even smaller, through the map API that can
accurately obtain the longitude and latitude positioning of enterprises. This is unmatched
by other available data. It should be added that some scholars have also used patent classi‑
fication numbers to classify technologies [82]. However, formost industries, the technolog‑
ical content that patent classification numbers can provide is still too broad, while lacking
annotation for many technologies, such as manufacturing processes and materials in the
flexible electronics industry, which do not have corresponding classification numbers and
obviously cannot meet the needs of industrial technology mining [83].

From an algorithmic standpoint, the present paper introduces the MDBSCAN algo‑
rithm,which effectively clusters spatial groups by incorporating additional indicators. The
implemented code demonstrates the algorithm’s capability to accommodate multiple indi‑
cators for clustering purposes. While the computation time of MDBSCAN may be higher
than that of alternative algorithms, it not only preserves the original algorithm’s ability
to identify intricate contours but also addresses the limitations of indicator scarcity. Fur‑
thermore, the algorithm exhibits superior accuracy compared to other approaches, thus
offering substantial advantages that outweigh any drawbacks. Consequently, this algo‑
rithm represents a valuable contribution, furnishing novel analytical tools and conceptual
insights for cluster analysis research. Not only that, this paper also choosesChinese flexible
electronics patents as the research object. On the one hand, it is because BaiduAPI can auto‑
matically obtain the latitude and longitude based on the detailed address information pro‑
vided by Chinese patents, and on the other hand, flexible electronics have been highly val‑
ued byChinese governments at all levels in recent years. More than this, the Baidu news in‑
dex (https://index.baidu.com/v2/main/index.html#/crowd/oled?words=oled, accessed on
31 December 2022) shows that Beijing, Yangtze River Delta, Pearl River Delta, and Sichuan
(cluster number c4) are currently hot regions of FEI in China, as depicted in Figure 11,
in which the blue shading represents the exploratory result. Therefore, this also further
proves the effectiveness of the method proposed in this article. Of course, the method is
also applicable to the analysis of patents and their industrial clusters in other countries, if
the API platform supports it.

https://index.baidu.com/v2/main/index.html#/crowd/oled?words=oled
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6. Conclusions and Limitations
Since Marshall proposed industrial clusters, the accurate identification of those clus‑

ters has been a great concern of academics. The solution to this problem requires not only
sufficient data but also a scientific approach. Although the existing methods can cluster
individuals to be considered as industrial clusters, they lack the overall perspective of clus‑
ter screening. The main concerns include that the indicators of clustering are over simpli‑
fied or ignore the technology factors, so they cannot be applied to the identification of IIC
with multiple technologies. We propose a new algorithm using patent big data, combined
with a text theme mining algorithm, a complex network, and MDBSCAN, for studying
the clustering of the whole industry. The method adopts an unsupervised approach in
both multi‑technology theme mining and industry cluster identification to avoid the in‑
terference of human subjective factors, which can provide a more accurate, objective, and
comprehensive analysis for the overall macroeconomic development.

Certainly, this paper also has some limitations, which can be seen as future research
opportunities. First, the identification of industrial clusters is a complex problem that
requires the consideration of various factors, such as economic, political, and even envi‑
ronmental factors. Relying on patent data alone can only provide a perspective from the
technological perspective. Hence, future studies can aim to conduct a comprehensive anal‑
ysis by integrating more data sources. Moreover, compared with the KM and DBSCAN
algorithms, the processing time of the MDBSCAN‑based algorithm is longer due to the
integration of more indicators. Thus, future research should improve the efficiency of this
algorithm. Lastly, the dynamic change and prediction of clusters have also been the focus
of research in recent years, but the patents used in this paper do not consider the potential
influences of the timeframe, so follow‑up research can consider time series and analyses
of the evolution of industrial clusters from a dynamic perspective.
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Appendix A. The Pseudo Code for MDBSCAN Preprocessing

Algorithm A1: MDBSCAN

1. Input: Patent data DB
2. Output: A set of clusters.
3. /*Step 1: Extraction of space data and technological data*/
4. Data_space = data[‘space’]
5. Data_technological = data[‘lda_topic’]
6. /*Step 2: Calculation of space distance and technological distance*/
7. Import Euclidean_Distance algoritham
8. sd = Euclidean_Distance(Data_space)
9. td = Euclidean_Distance(Data_technological)
10. /* Step 3: Run MDBSCAN algorithm*/
11. for sdmin in range(sd):
12.   for tdmin in range(td):
13.     for xmin in range(x):
14.       if((sd ≤ sdmin)&(td ≤ tdmin)):
15.         C = 0;
16.         for each point P in database DB:
17.           if label(P) != undefined
18.             continue
19.           Neighbors N = RangeQuery(DB, p, sdmin, tdmin)
20.           if |N| < xmin: /* if number of neighbors less than xmin, P is set as noise*/
21.             label(P) = Noise
22.             continue
23.           C = C + 1
24.           label(P) = C /*Initiation of clusters label*/
25.           Seed set S = N \{P}
26.           for each point Q in S{
27.             if label(Q) = Noise:
28.               label(Q) = C
29.             if label(Q) != undefined:
30.               continue
31.             label(Q) = C
32.             Neighbors N = RangeQuery(DB, p, sdmin, tdmin)
33.             if N ≥ xmin:
34.               S = S.append(N) /* neighbors set N are append in seed set S */
35.           end
36.         end
37.       end
38.     end
39.   end
40. end

Appendix B. LDA Topic Classification Results

No. Topic Keywords

T1 Polyacrylate Tubular furnace, bottom plate layer, coating layer, polyacrylate, RNN
T2 Metal nanotubes Driving electrode, dielectric layer, gold nanorod, cladding layer, cathode body
T3 Hydrogel Preparation, conductivity, sintered product, support matrix, polyacrylamide
T4 Conductive polymer Polymer materials, conductivity, polymeric materials, polymers
T5 polyurethane Polyurethane, adhesive, insulation pad, curing adhesive, PU
T6 Polyethylene terephthalate Polyethylene terephthalate, fiber layer, PET, device

T7 Organic materials Thiophene polymer, protein film, fiber bundle, nano carbon coating, naphthalene
tetramethylene diamine

T8 Conductive adhesive Bonding, conductive adhesive, epoxy resin, corrosion resistance, flexibility
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No. Topic Keywords

T9 Carbon based materials Carbon nano, tube‑based, foam layer, graphene, polydimethylsiloxane

T10 Carbon nanomaterials Film remover, carbon nanofiber membrane, carbon nanotube, organic transistor,
hydrogen film

T11 Inorganic materials Inorganic materials, silk fibroin, indium antimonide, perovskite,
inorganic nanometer

T12 Metal foil Foil, copper foil, emitter, flexible circuit, embedded

T13 Copper indium gallium selenium
Silicon‑based substrate, copper indium gallium sulfide selenium sensitized layer,
copper indium gallium sulfide selenium sensitized semiconductor, hydrogen ion,
solar cell

T14 III‑V family III‑V family, gallium arsenide, indium phosphide, gallium nitride, coated surface

T15 Metal nanowires Conductive film, preparation, silver paste circuit layer, platinum‑based
bimetallic, platinum‑based bimetallic nanowires

T16 Dimethyl siloxane Dimethyl siloxane, thermal permeation method, wet chemical method, dipole
moment, isolation layer

T17 biodegradable Green, fiber bundle, natural, biological, protein film
T18 liquid metal Microflow pipeline, melting point, temperature, solidification, robustness
T19 Structured conductive polymer Structural type, conductivity, conductivity, polyacetylene, carbon nanomaterials

T20 Magnetron sputtering Compensation meter, mask diagram, touch panel, Magnetron sputtering
metal‑plated electrode, hardening film

T21 Stretchable Dense circuit, stretch type, bow tie type, aluminum silver alloy, non‑device area

T22 Graphene Graphene conductive electrode, high membrane‑based bonding strength, data
cable, amorphous silicon film, output terminal

T23 Cu2SnS3 Single membrane, Cu2SnS3, hydrophilicity, fuel cell, silicon‑coated
carbon particles

T24 Flexible Digital signals, protective devices, plasma elements, organic material layers,
bending resistance properties

T25 Co‑polyester Micro nano particles, fiber optic communication, Z‑resin, transparency,
Co‑polyester

T26 developable Circuit layer, flexibility, folding, electrolyte, size
T27 Nanoparticles Polymer, conductivity, Magnetron sputtering coater, metal, UV laser

T28 Semiconductor type carbon
nanotubes

Generation tube, charge, titanium nitride film layer, carbon nanotube
optoelectronic device, enrichment method

T29 Flexible polymer Elasticity, structural layer, dimethyl carbonate, substrate, printed circuit board

T30 Memory attribute Photosensitive sensors, gold nanoparticles, nanoimprinting technology, memory
alloys, Bragg gratings

T31 Polyimide PI Tin‑based nanocrystals, gallium‑based indium tin, silver paste circuit layer,
etching solution, polyimide‑based

T32 Resistive type Signal processing circuit, flow meter, pressure, piezoresistive stress sensor,
corresponding stress

T33 Lift off process Graphene glass carbon sheet, ultrasonic induction layer, linear movement,
deposited thin film material, organic adhesive film

T34 Photon welding Zinc oxide nanotubes, nano photons, resin‑like vacuum deposition, peripheral
circuit, UV curing

T35 Low‑temperature soldering Non‑contact circuit, high temperature resistance, solder paste, welding, polymer
material fiber mesh

T36 Evaporative deposition Plasma chemical vapor deposition machine, thin film resistor, tin sol, deposition
machine, induction board

T37 Soft etching Single‑material film, fuel cell, corrosion resistance, crystal drying,
photolithography and etching, prefabricated film

T38 reactive sputtering Pre sputtering chamber, buried resistance material layer, impedance tester, flap
valve, Magnetron sputtering deposition chamber

T39 Sputter deposition Magnetron magnetic plating, Magnetron sputtering coating source, deposition
particles, roll‑to‑roll vacuum deposition machine, deposition coating

T40 Atmospheric chemical
vapor deposition

Ion chemical vapor deposition, optoelectronics, atmospheric pressure chemical
vapor deposition devices, micro/nano optics, conductive sheets
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No. Topic Keywords

T41 Arc evaporation Super hydrophobicity, zinc oxide nanowires, arc ion plating, arc ion plating, DC
arc spraying method

T42 Plasma enhanced chemical
deposition

Silicon oxide micro ring core cavity, chemical vapor deposition cavity, deposition
insulation layer, pulse power supply, chemical vapor deposition
reaction chamber

T43 screen printing Substrate film, ink, pattern, semiconductor tube, scraper
T44 Additive manufacturing 3D printing, gel electrolyte, main arc power supply, UV curing, lamination

T45 Electron beam evaporation Zinc oxide nanocrystals, polymer‑based composites, passivation alloys,
near‑infrared reflectance, electron beam current,

T46 RF sputtering Vacuum conditions, thin films, direct current, power, temperature
T47 Laser pulse evaporation Dielectric layer, nano plating, laser pen, pulsed light, alkaline solution

T48 Piezoelectric method Ultrasonic motor, integrated module, piezoelectric coefficient, electromechanical
resonator, consistency

T49 Inkjet printing Hydrogen film, substrate, carbon ink, organic liquid source,
polymethyl methacrylate,

T50 Transfer Integration Integrated variable torque sensor, seal, substrate, heating element, circuit board
heat transfer printing

T51 Nanoimprinting Electron beam, template, transparent strip, flexible circuit strip, nano
imprinted substrate

T52 Dry preparation Surface nanostructure, photoresist, semiconductor device, dry
etching, roughness

T53 Wet preparation Electromagnetic shielding film, wet etching machine, drilling, high‑frequency
mixed pressure, electroplating

T54 Low pressure chemical
vapor deposition

Plasma chemical vapor deposition machine, atomic flow, thin film,
temperature, pressure

T55 Photolithography Corrosion resistance, laser, photolithography, concentric ring, grating
T56 Capacitive type Sensors, capacitors, nanowires, pressure, conductivity

T57 Hot bubble method Heat dissipation, metal nano ink, high‑temperature sintering, particle‑free
copper ink, thermoplastic ink powder

T58 Roll to roll preparation Thermal conductive layer, deposited particles, roll‑to‑roll vacuum deposition
machine, array, carbon nanotubes

T59 DC sputtering Nanoimprint adhesive, deposition layer, metal frame, DC sputtering, current

T60 Resistive evaporation Passive resistance film, coating machine, thin film, hole lithography,
inflatable pump

T61 Chemical vapor deposition Chemical vapor deposition, photonic crystal period, cathode to ground, source
plate, preparation method

T61 Porous deposition Porous, thin film, deposition system, agglomeration device, ion beam

T63 Sol gel method Bare electrode, sol gel method, synthetic rubber, magnetic absorber,
silicon substrate

T64 Inorganic display Inorganic electroluminescence, substrate, luminescent material, display
screen, coating

T65 Blood oxygen Blood oxygen signal, sensor, health, parameters, measuring instrument
T66 Mechanical energy generation Power generation film, generator, motor, energy, mechanism
T67 Electroencephalogram Sensitivity, recognition, intention, EEG signals, head‑mounted
T68 Piezoelectric type Thermoelectric materials, pressure sensors, arrays, touch, sensitivity

T69 temperature Integrated sensing, ambient temperature, variable shape, sensor,
thermal interface

T70 Organic semiconductor Micro lens, electrode block, organic insulation layer, electroplated nickel,
crystalline silicon solar energy

T71 pressure Adhesive, artificial intelligence, pressure sensing, direct current method,
die‑casting mold

T72 display Organic field‑effect transistor, large amplitude, bipolar plate, display screen,
curved screen

T73 chronic disease Chronic diseases, physiological monitoring sensors, deposition rate, powder
cavity, nanoliposomes
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No. Topic Keywords

T74 Silicon thin film battery Silicon film, nanoribbons, solar energy, insulation board, sic

T75 humidity Flow generation, conductive mesh, temperature and humidity, water
treatment, dampers

T76 Dye sensitized battery Photosensitive materials, solar cells, gate metal electrodes,
sensitivity, transformers

T77 Communication device NFC Magnetron sputtering metal plating electrode fixture, real‑time communication,
auxiliary substrate, isolator, digital signal transmission

T78 Perovskite battery Solar cells, transparent electrodes, formamidine perovskite, nano copper
aerosols, zirconium targets

T79 Optoelectronics Copper wire layer, insulation layer, light trough, photodetector, conductive
silicone adhesive layer

T80 Organic display Registers, organic luminescent material films, prepackaging, prepackaging
layers, wire racks

T81 Thin film solar cells Electrode block, organic insulating layer, electroplated nickel, crystalline silicon
solar energy, flexible circuit board

T82 ultra‑thin glass Float glass, high vitrification, chemical vapor deposition chamber, deposition
insulation layer, pulse power supply

T83 strain Regulator, strain gauge, torsion wheel, torque sensor, display end

T84 Inorganic semiconductor Silicon dioxide layer, titanium dioxide photocatalytic network, target base,
Raman spectroscopy, semiconductor materials

T85 clothing Medical clothing, work clothes, flexible sensors, intelligence, functionality
T86 automobile Film‑forming agent, humanized automotive parts, electrode part, flexible roll

T87 Energy storage Flexible lithium‑ion batteries, flexible electrolytes, carbon nanotubes, porous
carbon nanofiber films, electrolytes

T88 fingerprint Sensors, sensing circuits, signals, fingerprint modules, bonding effects
T89 packing RFID, high mechanical strength, accommodating parts, labels, circuits
T90 Energy collection Battery, energy, electrode, preparation method, positive electrode
T91 Industry 4.0 Industry 4.0, intelligent online, wireless, sensor, portable
T92 fault diagnosis Pressure, capacitive, sensor, load, equipment failure
T93 Wearable Intelligent device, flexible display screen, bracelet, touch signal, cover glass
T94 medical care Flexible paddles, polypropylene, substrate holder, healthcare, water absorption
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