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Humans can extract statistical regularities of the environment to predict upcoming events. 

Previous research recognized that implicitly acquired statistical knowledge remained 

persistent and continued to influence behavior even when the regularities were no longer 

present in the environment. Here, in an fMRI experiment, we investigated how the persistence 
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of statistical knowledge is represented in the brain. Participants (N = 32) completed a visual 

four-choice reaction time task consisting of statistical regularities. Two types of blocks 

constantly alternated with one another throughout the task: Predictable statistical regularities 

in one block type and unpredictable ones in the other. Participants were unaware of the 

statistical regularities and their changing distribution across the blocks. Yet, they acquired the 

statistical regularities and showed significant statistical knowledge at the behavioral level not 

only in the predictable blocks but also in the unpredictable ones, albeit to a smaller extent. 

Brain activity in a range of cortical and subcortical areas, including the early visual cortex, the 

insula, the right inferior frontal gyrus, and the right globus pallidus/putamen contributed to the 

acquisition of statistical regularities. The right insula, inferior frontal gyrus, and hippocampus 

as well as the bilateral angular gyrus seemed to play a role in maintaining this statistical 

knowledge. The results altogether suggest that statistical knowledge could be exploited in a 

relevant, predictable context as well as transmitted to and retrieved in an irrelevant context 

without a predictable structure.  

  

Keywords: early visual cortex, globus pallidus, hippocampus, implicit statistical learning,  

 insula, predictive processes    

Introduction  

The extraction and acquisition of statistical regularities underlying the sensory input enables 

us to make predictions in noisy environments (Bubic, Von Cramon, & Schubotz, 2010). By 

repeatedly sampling this input, statistical regularities are usually acquired implicitly and 

without intention (Aslin, 2017; Conway, 2020; Frost, Armstrong, & Christiansen, 2019; 

Vékony, Ambrus, Janacsek, & Nemeth, 2022). However, if the regularities of the sensory 

input change, predictions built upon the former statistical knowledge are challenged (Bar, 

2007; Qian, Jaeger, & Aslin, 2012). Interestingly, acquired statistical knowledge seems to be 

persistent, with people relying on that knowledge even when it is no longer relevant  

(Bulgarelli & Weiss, 2016; Horváth, Nemeth, & Janacsek, 2022; Karuza et al., 2016; Kóbor, 

Janacsek, Takács, & Nemeth, 2017; Szegedi-Hallgató et al., 2017). For example, in our 

previous behavioral work (Kóbor, Horváth, Kardos, Nemeth, & Janacsek, 2020), participants 
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first encountered a predictable statistical structure consisting of biased probabilities, followed 

by unpredictable stimuli consisting of equal probabilities. Not only did they acquire the 

predictable probabilities but also showed a similar learning effect for the unpredictable 

stimuli. While persistent statistical knowledge has been shown behaviorally, it is not yet fully 

understood how this persistence is represented in the brain. Therefore, in the present 

functional magnetic resonance imaging (fMRI) experiment, we investigated brain activity 

underlying the persistence of implicit statistical knowledge in a context where this knowledge 

is irrelevant.  

The neural background of acquiring statistical regularities has been investigated in 

both the auditory and the visual domains extensively (for reviews, see Batterink, Paller, &  

Reber, 2019; Conway, 2020; Hardwick, Rottschy, Miall, & Eickhoff, 2013; Janacsek et al., 

2020; Reber, 2013). Based on the evidence accumulated so far, this acquisition mechanism 

has been found to rely on a network of cortical and subcortical areas, including the medial 

temporal lobe, the basal ganglia, and the cerebellum (e.g., Albouy, King, Maquet, & Doyon, 

2013; Bischoff-Grethe, Martin, Mao, & Berns, 2001; Doyon et al., 2009; Janacsek et al.,  

2022; Karlaftis et al., 2019; Ma et al., 2021; Magon et al., 2020; Park, Janacsek, Nemeth, &  

Jeon, 2022; Rieckmann, Fischer, & Backman, 2010; Schendan, Searl, Melrose, & Stern,  

2003; Turk-Browne, Scholl, Chun, & Johnson, 2009; Turk-Browne, Scholl, Johnson, & Chun, 

2010; Willingham, Salidis, & Gabrieli, 2002). While the acquisition of statistical regularities 

in the brain has been widely explored, the neural underpinnings responsible for the persistence 

of the acquired statistical knowledge remain less clear.  

Considering the applied paradigms and designs, neuroimaging studies on the 

acquisition of visuomotor statistical regularities have typically contrasted blocks of sequenced 

and random stimuli alternating throughout the task (e.g., Dennis & Cabeza, 2011; Poldrack et 

al., 2005; Rieckmann et al., 2010; Schendan et al., 2003). In these studies, the typical analysis 

of the Sequenced > Random contrast revealed which brain regions were involved in the 

acquisition of statistical regularities and in the use of this knowledge when relevant, i.e., when 

statistical regularities were indeed predictable. The present fMRI study, using a visuomotor 
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four-choice serial reaction time (SRT) task, goes beyond the existing ones in the following 

way. Here, the distribution of statistical regularities is either predictable (biased probabilities) 

or unpredictable (equal probabilities) in two different, quickly alternating blocks. Hence, 

statistical knowledge obtained in the predictable blocks becomes irrelevant in the other, 

unpredictable blocks. Regarding the modulation of relevance, unpredictable blocks help us to 

probe the persistence of the obtained statistical knowledge. Therefore, in addition to 

contrasting predictable and unpredictable blocks, we also analyze the brain activity associated 

with the behavioral score of statistical knowledge observed separately in the two block types.  

For this experiment, we assumed that the brain regions supporting the acquisition of 

biased statistical regularities would show increased Predictable > Unpredictable activity 

associated with higher statistical knowledge score in the predictable blocks. Based on our 

earlier behavioral study, it was expected that statistical knowledge acquired in the predictable 

blocks would be further applied in the unpredictable blocks (Kóbor et al., 2020). This would 

be evidenced by a significant statistical knowledge score at the behavioral level, not only in 

the predictable blocks but also in the unpredictable ones. Importantly, since there were no 

learnable (biased) statistical regularities in the unpredictable blocks, statistical knowledge 

observed in these blocks would be acquired in and transmitted from only the predictable 

blocks. Because the different types of blocks alternated rapidly, the acquisition, 

generalization, retrieval, and application of statistical knowledge might not have been 

dissociable processes; instead, it is likely that they continuously built upon each other during 

task performance. Following this logic, we investigated the persistence of statistical 

knowledge from predictable to unpredictable blocks using various measures of the 

brainbehavior relationship.  

First, we assumed that brain regions where increased Predictable > Unpredictable 

activity is associated with higher statistical knowledge score in the unpredictable blocks 

would support the continuous transmission of statistical knowledge from predictable to 

unpredictable blocks. Second, brain regions where increased Unpredictable > Predictable 

activity is associated with higher statistical knowledge score in the unpredictable blocks 
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would contribute uniquely and specifically to the persistence of statistical knowledge in the 

unpredictable blocks. Third, brain regions where increased brain activity separately in the 

unpredictable blocks is associated with higher statistical knowledge score in the same blocks 

would support the implicit retrieval and application of the generalized statistical knowledge. 

We focused on these contrasts to reveal the different elements of generalization and 

persistence.  

In terms of the hypotheses regarding the specific brain regions, we expected that 

greater basal ganglia activation would be coupled with increased statistical knowledge in the 

predictable blocks. This hypothesis was based on a recent Activation Likelihood Estimation 

(ALE) meta-analysis (Janacsek et al., 2020), showing a strong link between basal ganglia and 

learning in visuomotor SRT tasks. We also expected increased hippocampal activity 

associated with increased statistical knowledge in the predictable blocks. The hippocampus 

has been shown to be active when learning statistical regularities and anticipating predictive 

sequences (e.g., Fletcher et al., 2005; Forest, Schlichting, Duncan, & Finn, 2023; Rieckmann 

et al., 2010; Rose, Haider, Salari, & Büchel, 2011; Schapiro, Gregory, Landau, McCloskey, & 

Turk-Browne, 2014; Schapiro, Kustner, & Turk-Browne, 2012; Schapiro, Turk-Browne,  

Botvinick, & Norman, 2017; Schendan et al., 2003; Sherman & Turk-Browne, 2020; 

TurkBrowne et al., 2010), as well as when consolidating, retrieving, and applying the learned 

statistical knowledge (Albouy et al., 2015; Albouy et al., 2013; Albouy et al., 2008; Ross, 

Brown, & Stern, 2009).   

Next, we hypothesized that if statistical knowledge were transmitted across the block 

types, increased hippocampal activity in the predictable blocks would be coupled with greater 

statistical knowledge in the unpredictable blocks. The hippocampus has been found to play a 

role in integrating recurring information across multiple types of experiences to form 

generalized representations, guiding decisions in novel situations (Henke, 2010; Keresztes,  

Ngo, Lindenberger, Werkle-Bergner, & Newcombe, 2018; Sherman, Turk-Browne, & 

Goldfarb, 2024; Zeithamova & Bowman, 2020). For instance, when humans learned 

overlapping associations between different stimuli, the activity of the hippocampus during 



6  

encoding predicted behavioral generalization performance during retrieval, even without 

explicit awareness of the relationships between stimuli (Shohamy & Wagner, 2008). Based on 

these findings, we assumed that similar hippocampal mechanisms would support the 

generalization of statistical knowledge across stimuli that were perceptually comparable. 

Meanwhile, we did not form a priori hypotheses on which brain regions would support the 

persistence and implicit retrieval of statistical knowledge specifically in the unpredictable 

blocks. Altogether, the present fMRI study examined the brain regions involved in acquiring 

and maintaining implicit statistical knowledge.  

  

Materials & Methods  

Participants  

Forty healthy young adults took part in the study. They were recruited from university courses 

and via social media ads of our laboratory. Altogether eight participants were excluded after 

the fMRI experiment because of the following reasons: technical problems during data 

acquisition yielding incomplete data (n = 2), not meeting the recruitment criteria, which, 

accidentally, was revealed only at the time of the fMRI experiment (n = 2), neurological 

malformations (e.g., cystic lesions) revealed during the scanning (n = 3), and very poor task 

performance with an accuracy below 50% (n = 1). Therefore, the final sample consisted of 32 

participants (22 females) between the ages of 19 and 29 years (M = 22.2, SD = 2.9).   

The sample size was determined based on three considerations. At the time of planning 

the present fMRI study, only behavioral data were available with experimental designs similar 

to this one. Therefore, we focused on reproducing the critical behavioral effects. First, we 

based the sample size on a separate behavioral pilot experiment that applied alternating 

predictable and unpredictable blocks. The length, structure, and timing of the pilot experiment 

were the same as that of the present fMRI experiment, except for minor modifications. It was 

conducted under standard laboratory conditions with the participation of 23 healthy young 

adults. Reaction time (RT) results showed that statistical knowledge was significantly larger in 
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the predictable than unpredictable blocks, which interaction effect was considered as the 

contrast of interest.  

 Second, our earlier behavioral work (Kóbor et al., 2020) indirectly influenced our 

decision about the sample size. In that more complex design, the predictability of task blocks 

changed only once, in the middle of the task, instead of alternating from block to block. The 

group completing the predictable blocks first showed similar statistical knowledge in both the 

predictable and unpredictable blocks. The group completing the unpredictable blocks first 

showed no statistical knowledge in the unpredictable blocks and significant knowledge in the 

predictable blocks. This interaction effect was significant with a sample size of 25 in each 

group, which guided our decision.   

Third, we used a stopping rule of 30 participants to counterbalance the use of the 

underlying probabilistic sequences (for details, see the Experimental task section). We 

continuously monitored the sample in terms of data quality (i.e., overall accuracy and motion 

artifacts) and counterbalancing. If a participant had to be excluded during fMRI data 

acquisition or after checking the data quality, we recruited another participant to replace them 

by paying attention to counterbalancing. Eventually, we kept data of two more participants 

than originally planned (see the fMRI data analysis section), leading to a final sample of 32 

participants. Based on the critical behavioral effects found earlier, the sample size of 32 was 

regarded as sufficient to detect the significant change of statistical knowledge as a function of 

block predictability.  

Participants were undergraduate and graduate students (years of education: M = 15.2,  

SD = 2.3) from various universities. Handedness was assessed with the Edinburgh  

Handedness Inventory revised version (Dragovic, 2004a, 2004b; Oldfield, 1971), according to 

which the mean Laterality Quotient was 62.7 (SD = 67.7; –100 means complete 

lefthandedness, 100 means complete right-handedness). According to the predefined inclusion 

criteria, participants had normal or corrected-to-normal vision, none of them reported any 

history of neurological, psychiatric, or other chronic medical conditions, none of them was 

taking any psychoactive medication or reported any other circumstances preventing MRI 
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scanning. As a part of the usual participant screening procedure of our laboratory, standard 

neuropsychological tests were administered prior to the fMRI experiment in a separate 

session. Participants performed in the normal range on these tests (Wisconsin Card Sorting 

Task [perseverative error percentage]: M = 10.88, SD = 2.91; Digit span task [mean shortterm 

memory span; possible range: 3–9]: M = 6.19, SD = 1.38; Counting span task [mean working 

memory span; possible range: 2–6]: M = 3.41, SD = 0.76; Go/No-Go task  

[discriminability index: hit rate minus false alarm rate]: M = 0.71, SD = 0.18; these results are 

not published elsewhere). All participants provided written informed consent before 

enrollment and received course credits or vouchers (equivalent to a payment of ca. 15 euros) 

in exchange for taking part in the study. The study was approved by the Ethical Board of the 

Medical Research Council, Hungary (approval No. OGYÉI/10767/2017) and was conducted 

in accordance with the Declaration of Helsinki.  

  

Experimental task  

Implicit acquisition of statistical regularities was measured by a modified version of the  

Alternating Serial Reaction Time (ASRT) task (Howard & Howard, 1997; Kóbor et al., 2020; 

Nemeth et al., 2010). In this task, four empty circles (d = 1°; black outline) were presented 

horizontally on a uniform mid-grey background with 2° between their centers. In each trial, 

one of the circles was filled in red (see Fig. 1a). In brief, participants were instructed to 

indicate the position of the red stimulus by pressing one of the four spatially corresponding 

response keys on the ResponseGrip (NordicNeuroLab, Bergen, Norway) as quickly and 

accurately as possible (leftmost position – left index finger, second position from left to right 

– left thumb, third position from left to right – right thumb, rightmost position – right index 

finger). More details on the instructions are presented in the Procedure section.  

The timing of the experimental trials was the same as in the study of Kóbor et al. 

(2020). It started with the presentation of the red stimulus at one of the four positions for 500 

msec. After stimulus offset, the four empty circles were presented for 200 msec (see Fig. 1a) 

followed by the next red stimulus, yielding a 700-msec-long intertrial interval (ITI). The 
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behavioral response was expected from stimulus onset until the end of the trial (i.e., for 700 

msec). Importantly, the length of the trial was fixed, irrespective of whether participants 

provided correct, incorrect, or missing response(s), and no trial-wise feedback was presented 

as a function of response correctness. These characteristics ensured that each trial and each 

block (see below) had the same length, respectively. Although the experimental trials 

remained unchanged at the surface level throughout the task, the underlying regularity 

determining the positions of the red stimuli differed across the predictable and unpredictable 

blocks (see Fig. 1b). As described below, block types were labeled as either predictable or 

unpredictable based on the actual predictability of the statistical regularities that they 

consisted of.  

  

  

Figure 1. Design of the experiment. (a) One of the four horizontally arranged empty circles presented on the 

screen was filled in red in every 700 msec. Participants had to indicate the position of the red stimulus with one 

of the four response keys. (b) In the main task, 48 predictable (Pr) and 48 unpredictable (Un) blocks alternated 

with one another. It was completed in eight runs organized into two scanning sessions that were divided by a 

15min-long break. Each run consisted of 12 blocks (six predictable, six unpredictable), as denoted by the light 

gray shading. (c) In the predictable blocks, the presentation of the red stimuli followed an eight-element-long 

sequence, within which pattern (P) and random (r) elements alternated with one another. Numbers denote the 
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four different stimulus positions on the screen. Pattern elements are indicated by one number as their positions 

were fixed, whereas random elements are indicated by four numbers as their positions were chosen randomly 

from the four possible ones. The alternating sequence makes some runs of three consecutive trials (triplets) more 

probable than others. This probability refers to the third trial of each triplet. However, note that triplet probability 

was determined for all trials in a sliding window manner, i.e., the third trial of a triplet was also the second and 

first trial of the following triplets. High-probability triplets are denoted with blue shading and low-probability 

triplets are denoted with coral shading. This coloring indicates some examples of low- and high probability 

triplets that can be observed given the 2 – r – 1 – r – 3 – r – 4 – r alternating sequence. (d) In the unpredictable 

blocks, the alternating sequence was absent, but the same unique triplets as in the predictable blocks appeared 

with equal probability. Although the probability of triplets was biased only in the predictable blocks and equal in 

the unpredictable blocks, triplets in the unpredictable blocks are still labeled as either high- or low-probability 

according to their actual probability in the predictable blocks. Blue shading (upper row) and capital letter “H” 

(lower row) denote the third element of high-probability triplets, coral shading and “L” denote the third element 

of low-probability triplets. For each participant, at the level of unique triplets, the identified high- and 

lowprobability triplets were the same in the unpredictable as in the predictable blocks.  

  

Predictable blocks. In the predictable blocks, unbeknownst to the participants, the 

order of positions where the red stimuli appeared (i.e., trial order) followed an eight-

elementlong probabilistic sequence. In this sequence, predetermined/pattern (P) and random 

(r) elements alternated with one another (see Fig. 1c). For instance, 2 – r – 1 – r – 3 – r – 4 – r 

was one of the sequences, where numbers denoted the positions on the screen from left to 

right and rs denoted randomly chosen positions. There were six unique permutations of the 

four positions, which served as the probabilistic sequences: 1 – r – 2 – r – 3 – r – 4 – r, 1 – r – 

2 – r – 4 – r – 3 – r, 1 – r – 3 – r – 2 – r – 4 – r, 1 – r – 3 – r – 4 – r – 2 – r, 1 – r – 4 – r – 2 – r – 

3 – r, and 1 – r – 4 – r – 3 – r – 2 – r. Importantly, only one sequence per participant was used 

throughout the predictable blocks to determine trial order. The given sequence was selected 

for each participant in a pseudorandom manner.   

One predictable block contained 42 trials, and altogether, 48 predictable blocks were 

completed (2016 trials in total). The eight-element-long alternating sequence repeated five 

times in each block. The trials of each block were categorized as chunks of three successive 
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trials, henceforth referred to as triplets. Particularly, each trial was categorized as the third trial 

of a triplet that was also the second trial of the following triplet, e.g., 2 – 3 – 1, 3 – 1 – 2 

(Kóbor et al., 2021; Szegedi-Hallgató et al., 2017). The first two trials of the block were not 

categorized as triplets; therefore, 40 triplets were constructed in each block. However, not all 

of them were used in the analysis (see Behavioral data analysis section).  

The alternating sequence yields a hidden probability structure in which the distribution 

of triplets is biased (see Fig. 1c). In the case of the 2 – r – 1 – r – 3 – r – 4 – r sequence, 2 – X 

– 1, 1 – X – 3, 3 – X – 4, and 4 – X – 2 are high-probability triplets (X denotes the middle trial 

of the triplet) since these triplets could have both P – r – P and r – P – r structure and thereby 

occur more frequently during the task. However, for instance, 3 – X – 2 and 4 – X – 3 are low-

probability triplets since these could only have a r – P – r structure and thereby occur less 

frequently (e.g., Nemeth & Janacsek, 2011; Nemeth, Janacsek, Polner, & Kovacs, 2013). In 

other words, random trials appear either with high or low probability, while pattern trials 

always appear with high probability.  

When the triplet-level structure is considered in the task, the distributional and 

transitional probability characteristics of triplets completely overlap (Kóbor et al., 2018; 

Szegedi-Hallgató, Janacsek, & Nemeth, 2019; Szegedi-Hallgató et al., 2017). This means that 

the above-described frequency or occurrence probability of the triplets is the same as the 

probability to which the third trials of the triplets are predictable (second-order non-adjacent 

dependency). Particularly, while the third trials of high-probability triplets are predictable 

continuations for the first trials, the third trials of low-probability triplets are less predictable 

continuations for the first trials. In the case of the above-mentioned sequence, if the first trial 

of a triplet is position 3, it is more likely (with 62.5% probability) to be followed by position 4 

as the third trial than either position 1, 2, or 3 (with 12.5% probability each). There are 64 

possible unique triplets in the task: 16 of them are high-probability triplets and 48 are 

lowprobability ones. With respect to the unique triplets, the third trials of high-probability 

triplets are five times more predictable based on the first trials than those of the low-

probability triplets.  
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Unpredictable blocks. In the unpredictable blocks, unbeknownst to the participants, 

the alternating sequence was absent, but trial order was still determined by the repetitions of 

the 64 unique triplets. Since each unique triplet occurred with equal probability (each 30 

times) in these blocks, they were unpredictable (see Fig. 1d). In terms of transitional 

probabilities, this meant that each position (1, 2, 3, or 4) as the third trial of a unique triplet 

could be expected based on the first trial with the same probability (25%). The unpredictable 

blocks altogether contained the same number of trials and triplets as the predictable blocks. 

Because of the equal probability structure, the order of trials differed between unpredictable 

and predictable blocks. To sum up, there were 64 possible unique triplets in both the 

predictable and unpredictable blocks. However, in predictable blocks, 16 of them were 

highprobability and 48 were low-probability triplets, whereas in unpredictable blocks, the 64 

triplets were equally distributed.  

Several trial sets were generated and then selected to determine trial order in the 

unpredictable blocks. The details of this procedure and other constraints on the trial sets (e.g., 

immediate repetition of a trial, the distribution of triplets) are described in Kóbor et al. (2020). 

Trials of the final trial sets were categorized as triplets following either of the six probabilistic 

sequences described above. For instance, in the case of a participant having the 2 – r – 1 – r – 

3 – r – 4 – r sequence in the predictable blocks, the 3 – X – 4 triplet was categorized as a 

highprobability triplet in both the predictable and unpredictable blocks (see Fig. 1d). 

Therefore, the analyzed high- and low-probability triplets were the same in the unpredictable 

and predictable blocks for each participant at the level of unique triplets. As can be seen in 

Fig. 1c–d, the 3 – 1 – 4 triplets appeared in both block types but had high probability only in 

the predictable blocks. Still, for the sake of consistency, triplets in the unpredictable blocks are 

referred to as either high- or low-probability according to their actual probability in the 

predictable blocks.  

Considering the distribution of the six unique alternating sequences, in the final sample 

(N = 32), each of the 1 – r – 2 – r – 4 – r – 3 – r and the 1 – r – 4 – r – 2 – r – 3 – r sequences 
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were used six times, and the other four sequences were used five times. The distribution of 

high- and low-probability triplets did not differ across the four stimulus positions either in the 

predictable blocks (χ2(3) = 3.03, p = .387) or in the unpredictable blocks (χ2(3) = 0.01, p = 

.999), and these associations between triplet distribution and stimulus position did not differ 

across the block types (Wald χ2(3) = 1.48, p = .687). Irrespective of triplets, the distribution of 

stimulus positions did not differ between the block types (χ2(3) = 0.57, p = .903).  

  

Procedure  

In the main task, the predictable and unpredictable blocks alternated with one another for 

altogether 96 task blocks, starting with a predictable block for every participant. Each block 

was 30.4 sec long. After completing a block, participants received feedback (lasting for 4 sec) 

about their mean reaction time (RT) and accuracy. The feedback screen was followed by a rest 

period with a fixation cross present for a randomized length of 10, 12, or 14 sec (mean = 12 

sec). The main task was completed in eight separate runs, each composed of 12 blocks (six 

predictable and six unpredictable blocks, see Fig. 1b).  

Two practice sessions were administered before starting the main task. In the first 

session, participants practiced the stimulus-response mappings outside the scanner with six 

mini-blocks of random trials (15 trials each) that were self-paced with a 120-msec-long 

response-to-stimulus interval. Participants performed the second session in the scanner, which 

consisted of six mini-blocks of random trials (15 trials each) with the same fixed-paced fast  

ITI and block-wise feedback as in the main task.   

Because of the protracted nature of the experiment, it was conducted in two scanning 

sessions separated by a 15-min-long break that participants spent outside the scanner (see Fig. 

1b). After finishing the second practice session, the first scanning session started with a 

10min-long run for acquiring resting-state functional data (data are not analyzed here). Next, 

four runs of the task were administered. After the break, the second scanning session started 

with a structural run (6 min 24 sec), followed by the remaining four runs of the task. A central 

fixation cross was presented during the acquisition of the resting-state and structural data. 
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Each task run lasted 10 min 16 sec, which also involved a 30-sec-long presentation of a 

fixation cross centered on a blank screen at the beginning and end of the runs. Breaks between 

each run lasted approx. one minute. Altogether, the first session was approx. 55 minutes long, 

the second session was approx. 51 minutes long.  

Participants received detailed verbal instructions about the task and the fMRI 

experimental procedures. The structural and timing characteristics were made transparent to 

them (i.e., number of runs, length of the runs, length of the break between the scanning 

sessions, number and length of the task blocks, and the length of the structural and restingstate 

scans). Participants were also informed about the content of the feedback presented between 

the blocks, such as mean RT and accuracy achieved in the given block and a textual request to 

“try to be faster”, “try to be more accurate”, or “keep doing in the same way” (these options 

were based on the actual performance). Brief written instructions overlapping with the verbal 

ones appeared at the beginning of each run. Importantly, participants were not informed about 

the hidden structure (predictability) of the task blocks and the statistical regularities at all. 

They were told that they were going to perform a task measuring sustained attention.  

Participants had to “follow the movement of the red circle” with the response keys.  

The mapping between the stimulus positions and response keys was explained in the 

instructions, showed in person, and practiced before the main task. The experimenter 

emphasized that they should respond as soon as the stimulus appeared to not to miss it, 

because of the fast presentation rate. Participants were also told that if they responded too 

slowly to the given stimulus, their response could be registered as a very fast (and possibly 

incorrect) response to the next stimulus. Furthermore, the experimenter asked them not to 

correct their incorrect responses but to proceed with the trial to not to miss the next response. 

They were also told that the stimulus could appear multiple times successively at the same 

location. They were required not to talk or move at all in the scanner, only communicate with 

the response keys if needed to answer any questions of the experimenter. The panic button 

was placed at the left side of the body, near the left hand. Participants were asked to fixate 

when the fixation cross appeared on the screen; otherwise, no instruction about eye 
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movements or fixation were given. Thus, they could freely move their gaze across the 

horizontally arranged circle positions.  

After finishing fMRI data acquisition, a questionnaire was administered. Two 

questions assessed whether participants gained any consciously accessible knowledge about 

the structure of the task and the statistical regularities. Participants were asked (1) whether 

they noticed anything special regarding the task; (2) and whether they noticed any regularity 

in the trial sequence (Kóbor et al., 2020; Kóbor et al., 2017; Song, Howard, & Howard, 2007). 

None of the participants reported noticing the alternating sequence, the presence of triplets, or 

any change in the sequence or in the regularities during the task. The full fMRI experimental 

procedure lasted about 3 hours, including administration, pre- and post-task questionnaires, 

and debriefing beyond the two practice sessions and fMRI data acquisition.  

The experimental software was written in and controlled via MATLAB 2015a (The 

MathWorks Inc., Natick, 224 MA, USA) using the Psychophysics Toolbox Version 3.0.14 

extensions (Brainard, 1997; Pelli, 1997). Stimuli were displayed on an MRI-compatible LCD 

screen (32’ NNL LCD Monitor, NordicNeuroLab, Bergen, Norway; 60 Hz refresh rate), 

placed at 142 cm from the participant and were viewed via a mirror attached to the top of the 

head coil. Neuropsychological tests were administered a few days before the fMRI scanning 

during a one-hour-long session.   

  

Imaging parameters  

A 3T MRI scanner (MAGNETOM Prisma, Siemens Healthcare GmbH, Erlangen, Germany) 

was used with a 20-channel head-neck receiver coil to acquire brain imaging data. To obtain 

functional scans, images were continuously acquired using a T2*-weighted gradient-echo 

echo-planar-imaging (EPI) sequence with twofold in-plane GRAPPA acceleration (Griswold 

et al., 2002; TR = 2000 ms; TE = 30 ms; flip angle = 83°; 210 × 210 mm field-of-view 

(FOV); 70 × 70 in-plane matrix size; 3 × 3 mm in-plane resolution, 3 mm slice thickness, 36 

slices, 25% slice gap). To obtain 3D structural scans, sagittal T1-weighted images were 

acquired using a magnetization-prepared fast gradient echo sequence (MP-RAGE, Mugler III 
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& Brookeman, 1990; TR = 2300 ms; TE = 3.03 ms; FOV = 256 × 256 mm; 1 mm isotropic 

voxel size).  

  

Behavioral data analysis  

The original trial set was filtered before further analyses. First, trials with RTs below 100 

msec were excluded for two reasons: (1) to eliminate longer responses (“slips”) initiated as 

responses to the previous trials but recorded at the present trials, and (2) to eliminate rapid, 

impulsive responses to the given trials. Second, only those correctly responded trials were 

included in the analyses that also followed correct responses on the previous trials (cf. Kóbor 

et al., 2021) to avoid the RT-changing effect of errors on the subsequent trials (Dutilh et al., 

2012; Horváth et al., 2021). We eliminated 27% of the trials due to filtering; however, the 

critical behavioral effects remained similar even with a less strict filtering. Apart from the first 

two trials, each trial was categorized as the third trial of a triplet. Since every trial is part of a 

triplet, the terms “trial” and “triplet” are interchangeable. Hence, the exclusion of, for 

instance, one triplet means the exclusion of one trial.  

To track the temporal trajectory of acquiring statistical regularities, behavioral data 

were analyzed in a run-wise manner. Thus, six-block-long bins of the data were grouped into 

larger time bins, yielding eight runs of predictable blocks and eight runs of unpredictable 

blocks. To be consistent with the block-wise analysis of the fMRI data, it was crucial to 

compare the block types to one another without considering the triplet type. Therefore, first, 

behavioral data were considered only at the level of block types. For each participant and run, 

median RTs were calculated from the filtered triplet set separately for the predictable and 

unpredictable blocks. Second, behavioral data were considered at the level of triplets within 

each block type to quantify triplet learning. For each participant and run, median RTs were 

calculated separately for the high- and low-probability triplets of the predictable and 

unpredictable blocks.  

RTs at the level of block types were analyzed with a two-way repeated measures 

analysis of variance (ANOVA) with Block type (predictable vs. unpredictable) and Run (1–8) 
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as within-subjects factors. RTs at the level of triplet types were analyzed with a three-way 

repeated measures ANOVA with Block type (predictable vs. unpredictable), Triplet (high- vs. 

low-probability), and Run (1–8) as within-subjects factors. In all ANOVAs performed on the 

behavioral data, the Greenhouse-Geisser epsilon (ε) correction (Greenhouse & Geisser, 1959) 

was used if sphericity was violated, as indicated by the significance of the Mauchly’s 

sphericity test. Original df values and corrected p values (if applicable) are reported together 

with partial eta-squared (ηp
2) as the measure of effect size. LSD (Least Significant Difference) 

tests for pair-wise comparisons were used to control for Type I error. These statistical  

analyses were carried out with the Statistical Package for the Social Sciences Version 22 (IBM 

SPSS Statistics).   

To connect the levels of behavioral measures and brain activity, first, run-wise 

performance scores were calculated as the RT difference between the block types (RTs in 

unpredictable blocks minus RTs in predictable blocks) in each run. An overall performance 

score was also determined as the mean of the run-wise performance scores. Second, run-wise 

statistical knowledge scores were calculated for each block type as the RT difference between 

the triplet types (RTs to low-probability minus RTs to high-probability triplets) in each run. 

Overall statistical knowledge scores were determined for the predictable and unpredictable 

blocks, respectively, as the mean of the run-wise statistical knowledge scores. The overall 

performance score can be considered as a noisy performance indicator likely involving some 

statistical knowledge as well as non-specific processes that support task solving in the 

structurally different block types. Meanwhile, statistical knowledge scores directly indicate 

statistical knowledge. Hence, the overall performance score and the overall statistical 

knowledge scores of each block type were used in the fMRI analyses (see the multiple 

regressions below).  

We also analyzed the accuracy of responses similarly to RTs. However, in this case, the 

trial set was not filtered based on RT or response correctness. Accuracy was first calculated as 

the mean ratio of correct responses for each participant, run, and block type. Second, it was 

determined also for high- and low-probability triplets separately within each run and block 
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type. Beyond examining the acquisition of statistical regularities, the analysis of accuracy was 

also important to rule out fatigue effects and to unveil whether participants stayed focused 

until the end of the task. Accuracy (see Appendix) and RT findings (see the Results section) 

altogether suggest that the protracted nature of the experiment did not deteriorate but 

improved performance. Note that the fMRI analyses were connected only to  

the RTs and the behavioral effects discussed are also RT-related, since the analysis of accuracy 

was not the focus of the study.  

  

fMRI data analysis  

Preprocessing and first-level (single-subject) analysis. fMRI data preprocessing and 

analysis were performed using SPM12 (Wellcome Trust Centre for Neuroimaging, Institute of 

Neurology, University College London, UK) running under MATLAB 2015a. Preprocessing 

included the following steps. First, to correct for head movements, the functional images were 

realigned to spatially match the mean image created after a realignment to the first scan (i.e., 

the first scan from each run was aligned to the first scan of the first run, then, images within 

each run were aligned to the first image of the run). Second, the structural images were 

coregistered to the mean functional images. Third, the structural images were normalized to 

the Montreal Neurological Institute (MNI) template brain image (ICBM152). The deformation 

field parameters obtained during this step were applied to spatially normalize the realigned 

functional images to MNI space. Fourth, the normalized functional images were spatially 

smoothed with an 8-mm full-width at half-maximum (FWHM) isotropic Gaussian kernel.   

Finally, for further denoising, the preprocessed functional images were examined using 

the functional_art (Artifact Detection Tools, http://web.mit.edu/swg/art/art.pdf) modular 

function of the CONN toolbox (www.nitrc.org/projects/conn/, Power et al., 2014; 

WhitfieldGabrieli & Nieto-Castanon, 2012). For each participant, outlier scans across all runs 

were identified by assessing scan-to-scan differences in the global BOLD signal (normalized 

to zscores, threshold: 5) and in composite motion (movement threshold: 0.9 mm). Outlier 

scans were omitted by defining a single regressor for each of them (one for the to-be-removed 
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scans, zeros elsewhere) in the individual first-level analysis described next. The mean 

percentage of such outlier scans was 1.99% (SD = 1.87, range: 0.08–6.90).  

Preprocessed data were analyzed using a general linear model (GLM) during the 

individual first-level statistical analysis. Predictable and unpredictable blocks were defined as 

separate regressors. The regressor was a boxcar function starting at block onset and lasting for 

the duration of the block (30.4 sec), convolved with the canonical hemodynamic response 

function of SPM12. The default high-pass filter with 128-sec cutoff was used to eliminate 

low-frequency components and temporal autocorrelations were accounted for by the default 

autoregressive AR(1) model. Motion-related variance was accounted for by including the 

Friston24 regressors (polynomial and temporal expansions of the six realignment parameters 

resulting from the realignment procedure, see Friston, Williams, Howard, Frackowiak, &  

Turner, 1996) and the regressors for outlier scans as covariates in the GLM.  

  

Second-level (multi-subject) analyses. First, the first-level contrast images of the 

parameter estimates (β values) for the predictable and unpredictable blocks (Predictable > 

Unpredictable and Unpredictable > Predictable) were entered into the second-level 

wholebrain random-effects statistical analysis. Significance testing of the second-level t-map 

was performed using voxel-level False Discovery Rate (FDR) at q = 0.05 as correction for 

multiple comparisons within the gray matter mask and with a minimum cluster extent of five 

voxels (see the last paragraph of this section for the explanation of this extent threshold). 

Second, associations between behavioral measures and brain activity were tested.  

Whole-brain random-effects multiple regression analyses were performed using the individual 

Predictable > Unpredictable, Unpredictable > Predictable, and Unpredictable > Rest contrast 

images. The overall performance score (RT difference of predictable vs. unpredictable blocks) 

was entered as a second-level covariate of interest into a regression where the Predictable > 

Unpredictable contrast was used. This regression could reveal which brain areas show larger 

activity in the predictable than unpredictable blocks as a function of increased overall 

performance. The overall statistical knowledge score (RT difference of high- vs. 
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lowprobability triplets) determined for the predictable blocks was entered into a next 

regression where, again, the Predictable > Unpredictable contrast was used. This regression 

could reflect which brain areas support the acquisition of statistical knowledge.   

The overall statistical knowledge score determined for the unpredictable blocks was 

entered into a separate group of regression analyses. This included three regressions focusing 

on different aspects of the generalization and persistence of acquired statistical knowledge. 

First, the Predictable > Unpredictable contrast, indicating brain activity specific to the 

predictable blocks, was used to test which brain areas support the continuous transmission of 

statistical knowledge across the different block types. Second, the Unpredictable >  

Predictable contrast, indicating brain activity specific to the unpredictable blocks, was used to 

examine which brain areas contribute uniquely to the persistence of statistical knowledge. 

Third, the Unpredictable > Rest contrast, indicating brain activity in the unpredictable blocks 

during task performance, was used to unveil which brain areas contribute to the retrieval and 

application of the generalized statistical knowledge. In all regressions described above, the 

behavioral scores were mean centered.   

In the regressions, in order not to overlook any potential activations, the significance 

testing of associations was performed with a liberal threshold of p uncorrected = .001 at voxel 

level and with a minimum cluster extent of five voxels. We deliberately chose a small cluster 

extent to capture activity in the subcortical/deep brain structures where we expected 

significant activations. However, the standard fMRI data acquisition and analysis techniques 

could easily lead to cortical biases, which hinder the exploration of activity in the 

subcortical/deep brain structures (Ances et al., 2008; de Hollander, Keuken, & Forstmann, 

2015; Janacsek et al., 2022; Lewis, Setsompop, Rosen, & Polimeni, 2018). Most importantly, 

only a few voxels cover these structures and even within these voxels, the functional 

heterogeneity (specificity) is greater than in the cortical structures (Haak & Beckmann, 2020).  

The small number of voxels might not survive the usual corrections based on cluster extent. 

Thus, lowering the analysis thresholds has been a common practice in earlier studies probing 

statistical-sequence learning, especially when focusing on activations in the basal ganglia 
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and/or the hippocampus. For instance, even five voxels (Daselaar, Rombouts, Veltman, 

Raaijmakers, & Jonker, 2003; Turk-Browne et al., 2009; Turk-Browne et al., 2010) and six 

voxels (Purdon, Waldie, Woodward, Wilman, & Tibbo, 2011) as minimum cluster extent 

thresholds appeared in the relevant literature in regard to whole-brain or region of interest 

(ROI) analyses. The number of activated voxels in the hippocampus has also been around 10 

at an uncorrected threshold of p = .001 without extent threshold (Albouy et al., 2015). We 

decided not to perform ROI-analyses in relation to the subcortical/deep brain structures. First, 

anatomically defined masks might not have been sufficiently specific to find significant 

activations related to our research questions. Second, although multiple activation clusters 

reported in the literature could be used for defining the ROIs, these were found examining 

structurally different paradigms. Altogether, we used the less stringent criteria in significance 

testing described above, to explore subcortical/deep brain structures that potentially support 

the acquisition and generalization of statistical regularities at the behavioral level.  

  

Results  

Behavioral results  

Overall performance at the level of block types. The Block type by Run ANOVA on 

the RTs revealed significant main effects of Block type, F(1, 31) = 99.87, p < .001, ηp
2 = .763, 

and Run, F(7, 217) = 21.02, ε = .564, p < .001, ηp
2 = .404, while their interaction was non-

significant, F(7, 217) = 1.63, ε = .675, p = .159, ηp
2 = .050. The significant main effects 

indicate faster RTs in the predictable than in the unpredictable blocks (M = 375.1 msec, SD =  

41.3 vs. M = 381.8 msec, SD = 41.6) and faster RTs as the task progresses. Since participants 

responded to unpredictable stimuli more slowly, it is likely that they became sensitive to the 

changes of stimulus predictability. The next analysis investigates whether sensitivity to the 

biased triplet probabilities has also emerged, which eventually results in the participants’ 

discrimination of block types.  

  

Triplet learning. In line with the results of the previous ANOVA, the Block type by  
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Triplet by Run ANOVA on the RTs revealed significant main effects of Block type, F(1, 31) = 

39.78, p < .001, ηp
2 = .562, and Run, F(7, 217) = 21.31, ε = .593, p < .001, ηp

2 = .407. RTs 

were faster in the predictable than in the unpredictable blocks, and, in terms of the trajectory, 

they generally became faster due to practice until Run5 (ps ≤ .047) and did not change across 

Runs6-8 (ps ≥ .403, cf. Fig. 2a–b). The change of RTs throughout the task did not differ 

significantly between the predictable and unpredictable blocks (Block type * Run interaction, 

F(7, 217) = 1.25, ε = .672, p = .291, ηp
2 = .039).  

More importantly, this ANOVA revealed a significant main effect of Triplet, F(1, 31) = 

38.27, p < .001, ηp
2 = .552, indicating faster RTs to high-probability than to low-probability 

triplets (M = 375.5 msec, SD = 40.3 vs. M = 381.8 msec, SD = 42.1; cf. Fig. 2a–b). This 

means that participants acquired statistical knowledge by triplet learning. However, the 

significant Block type * Triplet interaction, F(1, 31) = 16.98, p < .001, ηp
2 = .354, revealed 

that the overall statistical knowledge score (i.e., the difference of low- vs. high-probability 

triplets) was higher in the predictable than in the unpredictable blocks. In particular, triplet 

learning based on the effect size measures was almost 2.5 times larger in the predictable (M = 

8.4 msec, SD = 5.8, t(31) = 8.24, p < .001, d = 1.46) than in the unpredictable blocks (M = 4.1 

msec, SD = 7.1, t(31) = 3.31, p = .002, d = 0.59, see Fig. 2c). Although RTs to both high- and 

low-probability triplets were significantly slower in the unpredictable than in the predictable 

blocks (ps ≤ .003), this slowing was more pronounced for the high-probability (6.3 msec) than 

for the low-probability triplets (2.0 msec, see Fig. 2d). This way, RTs to high- and 

lowprobability triplets became more similar in the unpredictable blocks, decreasing the 

overall statistical knowledge score.   

The Triplet * Run interaction was also significant, F(7, 217) = 2.19, p = .036, ηp
2 = 

.066, indicating that the statistical knowledge score increased throughout the task (from 3.4 

msec in Run1 to its maximum, 9.2 msec in Run7, p = .020). The Block type * Triplet * Run 

interaction was non-significant, F(7, 217) = 0.58, p = .772, ηp
2 = .018, suggesting that the 

learning trajectory across the runs was similar in the two block types. However, we analyzed 

larger temporal chunks, the first (Runs1-4) and second (Runs5-8) halves of the task in each 
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block type. We performed this analysis for the following reasons. First, visual inspection of 

the behavioral data suggested that statistical learning occurred in the unpredictable blocks in 

the second half of the task (see Figure 2), which we wanted to verify statistically. Second, the 

15-min-long break necessary between the scanning sessions might have influenced the results 

by helping the dissipation of fatigue or reducing reactive inhibition (Kóbor et al., 2019; Pan & 

Rickard, 2015; Török, Janacsek, Nagy, Orbán, & Nemeth, 2017). Third, the 15-min-long 

break can be considered as an offline learning period, which could support the stabilization 

and long-term retention of memories (Krakauer & Shadmehr, 2006; Robertson, PascualLeone, 

& Miall, 2004; Tóth-Fáber, Nemeth, & Janacsek, 2023), even if it was short (Bönstrup et al., 

2019; Du, Prashad, Schoenbrun, & Clark, 2016; Szücs-Bencze et al., 2023).  

As per the result, the statistical knowledge score across the two task halves increased 

significantly in both block types: from 6.6 msec to 10.3 msec in the predictable blocks, t(31)  

= 2.42, p = .021, and from 1.9 msec to 6.4 msec in the unpredictable blocks, t(31) = 2.72, p = 

.011. However, the level of triplet learning was different in the two block types: In the 

predictable blocks, triplet learning was significantly above zero in both the first, t(31) = 5.48, 

p < .001, and second task halves, t(31) = 7.67, p < .001. In contrast, in the unpredictable 

blocks, triplet learning was significantly above zero only in the second task half, t(31) = 5.09, 

p < .001, and non-significant in the first task half, t(31) = 1.10, p = .281.  

These results altogether suggest that the equally distributed triplets in the unpredictable 

blocks were responded according to the statistical knowledge acquired in the predictable 

blocks. It is conceivable that statistical knowledge emerged gradually in the predictable blocks 

where it was relevant; and, after some time, it was generalized to and applied in the 

unpredictable blocks where it was otherwise irrelevant. This is supported by the finding that 

statistical knowledge in the unpredictable blocks became significant only in the second half of 

the task.   
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Figure 2. Behavioral results. RTs of correctly responded triplets split by run (1–8) and triplet type 

(highprobability [blue] vs. low-probability [coral] triplets according to their actual probability in the predictable 

blocks) are presented in the predictable (a) and unpredictable (b) blocks. Triangles denote the group mean of 

each condition combination (run and triplet), circles denote individual data points jittered to prevent overlap, and 

error bars denote standard error of mean in all figure parts. Figure part (c) shows the overall statistical knowledge 

scores (RTs to low- minus RTs to high-probability triplets, averaged across runs) separately in the predictable and 

unpredictable blocks. Figure part (d) shows the RTs to high- and low-probability triplets averaged across runs 

separately in each block type.  

  

  

fMRI results  

For all fMRI results, the test statistics, p-values, and characteristics of the activation clusters 

are presented in the tables (Tables 1–4).  
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Whole-brain analysis of block predictability. The results of the whole brain analysis 

showed significantly larger fMRI responses to the predictable than to the unpredictable blocks 

bilaterally in the superior and middle occipital gyrus extending to the right and left lingual 

gyrus around the calcarine fissure. In addition, significantly larger fMRI responses were found 

in the anterior lobe of the right cerebellum, in the left posterior vermis, and in the left 

somatosensory cortex (postcentral gyrus), albeit these activation clusters were much less 

extensive. For the unpredictable than predictable blocks, significantly larger activity was 

found bilaterally in the precuneus. Furthermore, smaller activation clusters were significant in 

the right middle and left superior temporal gyrus (see Table 1 and Figure 3; the images in  

Figure 3 are displayed with a cluster extent of ≥ 20).  

    

Table 1. Brain regions showing fMRI responses to the Predictable vs. Unpredictable blocks.  

 
 Cluster-level Voxel-level MNI coordinates (mm) Region  

   Cluster size  p(FDR)  t-value  x  y  z  

Predictable > Unpredictable  

Superior occipital gyrus/Calcarine/Cuneus  

Superior/Middle occipital gyrus/Cuneus  

  

R  

L  

  

611  

276  

  

.004  

.008  

  

6.71  

5.49  

  

14  

-16  

  

-96  

-96  

  

18  

18  

Postcentral gyrus/Inferior parietal gyrus  L  16  .016  4.81  -54  -18  52  

Cuneus/Superior occipital gyrus  L  10  .036  4.15  -12  -88  36  

Cerebellum, lobule IV, V  R  20  .036  4.15  24  -48  -24  

Cerebellum, lobule VI, vermis  L  5  .043  4.00  -4  -64  -24  

Middle occipital gyrus  R  5  .043  3.99  34  -92  8  

Calcarine  L  8  .043  3.97  -2  -74  12  

Unpredictable > Predictable  

White matter/Midde temporal gyrus  

  

R  

  

36  

  

.045  

  

5.62  

  

42  

  

-52  

  

8  

Precuneus  L  65  .045  5.18  -6  -60  52  

Precuneus  R  74  .045  5.07  8  -58  56  

Superior temporal gyrus  L  5  .045  4.91  -46  -44  18  
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Note. The peak MNI coordinates are reported. Anatomical labels were assigned from the AAL3 atlas (Rolls, 

Huang, Lin, Feng, & Joliot, 2020) using the xjView 10.0 toolbox (https://www.alivelearn.net/xjview). L = left 

hemisphere, R = right hemisphere.  

  

Figure 3. Results of the whole-brain random-effects analysis of block predictability. Upper row: Activation 

clusters are presented for the Predictable > Unpredictable contrast (bilateral cuneus/superior occipital gyrus [z = 

18], right lingual gyrus [z = -2], and right anterior cerebellum [z = -24]). Lower row: Activation clusters are 

presented for the Unpredictable > Predictable contrast (bilateral precuneus [x = -6, x = 8, y = -56] and right 

middle temporal gyrus [y = -56]). Statistical maps displayed on axial, sagittal, and coronal slices of the mean 

normalized structural image of all participants are FDR-corrected at voxel level (p < .050) with a cluster extent 

of ≥ 20. The color bar represents t-values. MNI coordinates in mm are indicated below each slice.  

  

Regression analyses. Overall performance. This whole-brain multiple regression 

analysis examined which brain regions showed positive associations between fMRI responses 

in the predictable blocks (Predictable > Unpredictable) and overall performance score. It 

showed that larger activity in the predictable than in the unpredictable blocks mostly in the (1) 

bilateral insula extending to the Rolandic operculum and the superior temporal gyrus, in the 

(2) left superior/middle temporal gyrus, in the (3) right supramarginal gyrus, and in the (4) 

right inferior frontal gyrus was related to a higher overall performance score at the behavioral 
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level (see Table 2 and Figure 4 for these and further clusters; the images in Figure 4 are 

displayed with a cluster extent of ≥ 20).  

  

Table 2. Brain regions showing positive associations between fMRI responses to Predictable 

> Unpredictable blocks and overall performance score.  

 
    Cluster-level  Voxel-level  MNI coordinates (mm)  

Region  

    Cluster size  p(uncorrected)  t-value  x  y  z  

Insula/Rolandic operculum  L  158  < .001  5.10  -40  -8  6  

Insula  L  98  < .001  4.58  -30  12  8  

Insula/Rolandic operculum  R  288  < .001  4.55  38  -12  8  

Superior temporal gyrus/Rolandic operculum  L  97  < .001  4.49  -60  0  -4  

Rolandic operculum  R  23  < .001  4.03  64  -2  8  

Superior/Middle temporal gyrus  L  25  < .001  4.00  -58  -34  10  

Supramarginal gyrus  R  62  < .001  3.92  50  -34  24  

Inferior temporal gyrus  R  6  < .001  3.78  54  -20  -24  

Inferior frontal gyrus, triangular part/Insula  R  29  < .001  3.74  36  24  10  

Supramarginal gyrus/Postcentral gyrus  R  8  < .001  3.68  52  -30  44  

Postcentral gyrus  R  9  < .001  3.65  42  -30  64  

Superior parietal gyrus  R  9  .001  3.63  30  -48  48  

Postcentral gyrus  R  7  .001  3.61  58  -20  32  

Superior temporal gyrus  L  6  .001  3.56  -60  -20  10  

Superior temporal gyrus  R  5  .001  3.52  46  -36  12  

Inferior frontal gyrus, triangular part  R  8  .001  3.51  38  32  10  

Note. The peak MNI coordinates are reported. Anatomical labels were assigned from the AAL3 atlas (Rolls et al., 

2020) using the xjView 10.0 toolbox (https://www.alivelearn.net/xjview). L = left hemisphere, R = right 

hemisphere.  
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Figure 4. Results of the whole-brain random-effects multiple regression analyses: overall performance 

score. Activation clusters showing positive associations between the Predictable > Unpredictable contrast and 

overall performance score are presented (bilateral insular activity [x = -40, x = 40] extending to the superior 

temporal gyrus and right inferior frontal gyrus [z = 6, z = 10], right supramarginal gyrus and left superior 

temporal gyrus [y = -34]). Statistical maps displayed on axial, sagittal, and coronal slices of the mean normalized 

structural image of all participants are uncorrected at voxel level (p ≤ .001) with a cluster extent of ≥ 20. The 

color bar represents t-values. MNI coordinates in mm are indicated below each slice.  

  

Statistical knowledge in the predictable blocks. This regression examined which brain 

regions showed positive associations between fMRI responses in the predictable blocks 

(Predictable > Unpredictable) and overall statistical knowledge score of the same blocks. It 

showed that larger activity in the predictable than in the unpredictable blocks in the (1) insula 

extending to the Rolandic operculum, in the (2) inferior parietal gyrus, in the (3) globus 

pallidus/putamen, in the (4) supramarginal gyrus, and in the (5) inferior frontal gyrus was 

related to higher statistical knowledge score in the predictable blocks (see Table 3 and Figure 
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5). These brain activations appeared only in the right hemisphere. Thus, larger activity in these 

regions in the predictable blocks was associated with better triplet learning at the behavioral 

level, when triplet probabilities were indeed biased.  

  

Table 3. Brain regions showing positive associations between fMRI responses to Predictable 

> Unpredictable blocks and statistical knowledge score of the predictable blocks.  

 
    Cluster-level  Voxel-level  MNI coordinates (mm)  

Region  

    Cluster size  p(uncorrected)  t-value  x  y  z  

Insula/Rolandic operculum  R  123  < .001  4.04  40  -12  10  

Inferior parietal gyrus  R  13  < .001  3.96  52  -38  56  

Pallidum/Putamen  R  11  < .001  3.74  18  6  0  

Supramarginal gyrus  R  14  < .001  3.69  60  -28  46  

Inferior/Middle frontal gyrus, triangular part  R  13  .001  3.63  40  36  6  

Note. The peak MNI coordinates are reported. Anatomical labels were assigned from the AAL3 atlas (Rolls et al., 

2020) using the xjView 10.0 toolbox (https://www.alivelearn.net/xjview). L = left hemisphere, R = right 

hemisphere.  

  

  
Figure 5. Results of the whole-brain random-effects multiple regression analyses: statistical knowledge in the 

predictable blocks. Activation clusters showing positive associations between the Predictable >  

Unpredictable contrast and statistical knowledge score of the predictable blocks are presented (right insula and 

inferior frontal gyrus [z = 6, x = 40], right globus pallidus/putamen [y = 6]). Statistical maps displayed on axial, 

sagittal, and coronal slices of the mean normalized structural image of all participants are uncorrected at voxel 
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level (p ≤ .001) with a cluster extent of ≥ 5. The color bar represents t-values. MNI coordinates in mm are 

indicated below each slice.  

  

Statistical knowledge in the unpredictable blocks. As described in the Behavioral 

results section, unpredictable triplets were processed similarly to the predictable ones, albeit 

the statistical knowledge score was attenuated. In support of this finding, statistical knowledge 

scores of the two block types were moderately correlated, r = .595, p = .001. Therefore, this 

group of regressions examined the generalization and persistence of the acquired statistical 

knowledge across the block types. First, positive associations between the Predictable > 

Unpredictable contrast and overall statistical knowledge score of the unpredictable blocks 

were tested. Larger activity in the predictable than in the unpredictable blocks in the (1) right 

middle/inferior frontal gyrus, in the (2) right hippocampus, in the (3) right superior parietal 

gyrus, as well as in the (4) bilateral insula was related to higher statistical knowledge score in 

the unpredictable blocks (see Table 4 and Figure 6). Thus, larger activity in these regions in 

the predictable blocks was associated with better triplet learning at the behavioral level, when 

triplet probabilities were in fact equal. Second, the regression analysis involving the opposite 

fMRI contrast (Unpredictable > Predictable) yielded a small cluster of activation in an 

undefined right temporal area within the white matter (see Table 4). This result suggests that 

brain activity specific to the unpredictable blocks was not related to the magnitude of the 

statistical knowledge score at the behavioral level in the same blocks. Third, the regression 

analysis involving the Unpredictable > Rest contrast showed that larger activity in the 

unpredictable blocks in the (1) bilateral angular gyrus and in the (2) left superior/middle 

frontal gyrus was related to higher statistical knowledge score in the same blocks (see Table 4 

and Figure 6).  

  

Table 4. Brain regions showing positive associations between fMRI responses and statistical 

knowledge score of the unpredictable blocks.  

 
  Cluster-level  Voxel-level  MNI coordinates (mm) Region  
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    Cluster size  p(uncorrected)  t-value  x  y  z  

Predictable > Unpredictable  

Middle/Inferior frontal gyrus, triangular part  
R  32  < .001  4.26  38  40  4  

Hippocampus  R  6  < .001  3.87  32  -22  -8  

Superior parietal gyrus/Postcentral gyrus/Precuneus  R  12  < .001  3.82  16  -54  72  

Insula  L  10  < .001  3.73  -32  24  6  

Insula  R  11  < .001  3.69  48  -2  2  

Unpredictable > Predictable  

Undefined/White matter  
R  7  .001  3.55  26  -54  16  

Unpredictable > Rest  

Angular gyrus  

  

L  

  

32  

  

< .001  

  

4.16  

  

-36  

  

-66  

  

38  

Superior/Middle frontal gyrus  L  13  < .001  3.88  -22  28  58  

Angular gyrus  R  13  < .001  3.88  42  -72  38  

Note. The peak MNI coordinates are reported. Anatomical labels were assigned from the AAL3 atlas (Rolls et al., 

2020) using the xjView 10.0 toolbox (https://www.alivelearn.net/xjview). L = left hemisphere, R = right 

hemisphere.  
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Figure 6. Results of the whole-brain random-effects multiple regression analyses: statistical knowledge in 

the unpredictable blocks. Upper row: Activation clusters showing positive associations between the Predictable 

> Unpredictable contrast and statistical knowledge score of the unpredictable blocks are presented (bilateral 

insula and right inferior frontal gyrus [z = 4, x = 38], right hippocampus [y = -22]). Lower row: Activation 

clusters showing positive associations between the Unpredictable > Rest contrast and statistical knowledge score 

of the unpredictable blocks are presented (bilateral angular gyrus [z = 38], left superior/middle frontal gyrus [x = 

-22]). Statistical maps displayed on axial, sagittal, and coronal slices of the mean normalized structural image of 

all participants are uncorrected at voxel level (p ≤ .001) with a cluster extent of ≥ 5. The color bar represents 

tvalues. MNI coordinates in mm are indicated below each slice.  

  

In sum, brain activity specific to the predictable blocks supported not only the 

acquisition of statistical knowledge but also the transmission of this knowledge from the 

predictable to the unpredictable blocks, albeit relying on partly different brain regions. Larger 

activities of the right/bilateral insula and the right inferior frontal gyrus were related to 

increased statistical knowledge in both block types. However, distinct associations were also 
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revealed: While activity of the right globus pallidus/putamen was associated with increased 

statistical knowledge in the predictable blocks, activity of the right hippocampus was 

associated with that of the unpredictable blocks. Since brain activity sdifferpecific to the 

unpredictable blocks was not related to statistical knowledge score in the same blocks, we 

could not identify brain regions uniquely contributing to the persistence of statistical 

knowledge in the unpredictable blocks. Yet, when neurocognitive processes related to task 

performance during the unpredictable blocks were considered (as opposed to the rest periods), 

activity of the bilateral angular gyrus and that of the left superior/middle frontal gyrus were 

associated with increased statistical knowledge in the unpredictable blocks.  

  

Discussion  

Summary of results  

We examined the neural correlates of the implicit acquisition of statistical regularities as well 

as the persistence of the acquired representations using fMRI. We found significant learning 

of statistical regularities in the predictable blocks. Moreover, during the second half of the 

task, stimuli appearing with equal probability in the unpredictable blocks were also responded 

to according to the statistical knowledge acquired and established in the predictable blocks. 

However, the extent of statistical knowledge was greater when the distribution of statistical 

regularities was indeed biased. These behavioral results imply that knowledge of the biased 

probability structure is generalized to subsequent unpredictable stimuli; however, this 

knowledge is also influenced by the block-wise changes in stimulus predictability.  

The larger brain activity for predictable than unpredictable blocks appeared to be the 

most widespread in the early visual cortex bilaterally. Meanwhile, when examining the 

associations between predictability-dependent brain activity (predictable vs. unpredictable 

blocks) and behavioral measures, larger activities of the bilateral insula and the right inferior 

frontal gyrus were related to better overall performance and increased statistical knowledge in 

both block types. Different associations between brain activity specific to the predictable 

blocks and statistical knowledge in the predictable and unpredictable blocks were also found. 
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In addition to the other brain areas, these indicate the role of the right globus pallidus/putamen 

in the emergence of statistical knowledge and the role of the right hippocampus in the 

transmission of this knowledge from predictable to unpredictable blocks. However, brain 

areas uniquely contributing to the persistence of statistical knowledge were not identified 

since brain activity specific to the unpredictable blocks was unrelated to statistical knowledge 

in the same blocks. Still, the persistence of statistical knowledge was evidenced by activities 

of the bilateral angular gyrus and the left superior/middle frontal gyrus emerging during task 

performance in the unpredictable blocks.  

  

Interpretation of behavioral results  

Overall, the responses were slower and less accurate in the unpredictable than in the 

predictable blocks, indicating sensitivity and adaptation to the changes in stimulus 

predictability. Statistical regularities were acquired in the predictable blocks and this 

knowledge was further applied in the unpredictable blocks. These behavioral results are 

consistent with our previous study and extend beyond it. In the earlier study, the predictability 

of task blocks changed only once, in the middle of the paradigm (Kóbor et al., 2020). Here, 

participants were not exposed to the predictable blocks for an extended period since the 

underlying regularity determining stimulus presentation changed in every minute. Under these 

circumstances, acquisition of statistical regularities was still observed, irrespective of their 

actual probability. Although persistent implicit knowledge of statistical regularities has been 

evidenced in similar tasks at the behavioral level (Bulgarelli & Weiss, 2016; Gebhart, Aslin, & 

Newport, 2009; Kóbor et al., 2017; Nemeth & Janacsek, 2011; Romano, Howard, & Howard, 

2010), our results suggest persistence even if statistical regularities dynamically change and 

become unpredictable multiple times over the paradigm.  

  The magnitude of the statistical knowledge score in this study was comparable to that of 

Kóbor et al. (2020). In both studies, the temporal characteristics of the task were the same and 

the sample characteristics were similar, which probably contributed to the observed effects. In 

fact, there are several factors modulating the magnitude of the statistical knowledge score. For 
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instance, the temporal characteristics of stimulus presentation, the acquisition of statistical 

regularities (incidental or intentional), the type of the underlying sequence (deterministic or 

probabilistic), and the characteristics of the sample (e.g., age and clinical status of 

participants). These factors are detailed next.   

First, in self-paced ASRT tasks with fast stimulus presentation rate, higher statistical 

knowledge scores (ca. 10-15 msec) have been observed (Kóbor et al., 2017; Nemeth et al.,  

2010; Stark-Inbar, Raza, Taylor, & Ivry, 2017). In fixed-paced tasks (Kóbor et al., 2020; 

Kóbor et al., 2021; Tóth et al., 2017), such as the present one, and in those with slow stimulus 

presentation rate (Kiss, Nemeth, & Janacsek, 2022; Kóbor et al., 2019; Kóbor et al., 2021), 

reduced statistical knowledge scores (ca. 5-10 msec) have been found. However, these were 

still robust and characterized by large effect sizes. Considering the time-on-task effects, 

statistical knowledge scores usually increased as the task progressed, irrespective of the 

temporal characteristics of the task. Second, statistical knowledge score could be lower if 

acquisition is incidental, such as in the present study, and higher if acquisition is intentional 

due to experimental manipulation (Nemeth, Janacsek, & Fiser, 2013). Third, the acquisition of 

probabilistic sequences as opposed to deterministic ones is expected to reduce the statistical 

knowledge score. In deterministic sequences, the consecutive sequence elements can be 

predicted from the previous ones with 100% certainty. Meanwhile, in probabilistic sequences, 

the predictability of a given element is less than 100%, leading to uncertain, more difficult 

predictions (Conway, 2020; Howard & Howard, 1997; Janacsek & Nemeth, 2012; Maheu, 

Meyniel, & Dehaene, 2022). This uncertainty can be coupled with reduced statistical 

knowledge. Finally, our young adult participants responded quickly from the outset of the 

task. They became faster until the second half of the task; however, their response speed no 

longer changed thereafter (see the Behavioral results section). Hence, it is possible that less 

room remained for further RT improvements throughout the task, resulting in an inherently 

attenuated statistical knowledge score that is also related to RT differences (to high- vs. 

lowprobability triplets).  
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In sum, these four factors (fixed-paced design, probabilistic sequence, implicit and 

incidental acquisition, and young adult participants with fast RTs) might have jointly reduced 

the magnitude of statistical knowledge, or at least its momentary expression reflected by the 

statistical knowledge score (see Kiss et al., 2022). Nevertheless, in the current study, the 

statistical knowledge score of the predictable blocks coupled with the triplet main effect (i.e., 

faster RTs to high- than to low-probability triplets) characterized by a large effect size can be 

interpreted as reflecting robust statistical knowledge that was generalized to the unpredictable 

blocks. We should also consider the ecological value of these behavioral findings and their 

relevance to real-world settings such as skill acquisition or language learning. It is important 

to bear in mind that these real-world acquisition processes involve extended periods of 

practice and refinement within a continuous cycle of regularity extraction, consolidation, and 

rewiring. Even implicit statistical learning itself is a slow, gradual process, with peak 

performance only attained after extended practice (Cleeremans, Destrebecqz, & Boyer, 1998; 

Conway, 2020; Henke, 2010). Our experiment cannot fully capture the complexity and 

emergence of real-world acquisition processes; however, it can provide insight into how these 

processes evolve. As such, even small differences in magnitude can be amplified into much 

more pronounced effects in the long run and can potentially be consequential and interpretable 

over time (Funder & Ozer, 2019; Götz, Gosling, & Rentfrow, 2022). Therefore, the findings 

regarding statistical knowledge, although small in absolute terms, can help us understand how 

environmental regularities are extracted and acquired.  

It is conceivable that task characteristics contributed to the persistence of this 

statistical knowledge that was not consciously accessible based on the post-task questionnaire 

(cf. Vékony et al., 2022). Particularly, the acquisition of statistical information occurred in an 

implicit and incidental manner in a perceptually stable learning environment where 

participants were not instructed to monitor changes in the task structure (Kóbor et al., 2020). 

Thus, in the unpredictable blocks, participants probably followed the already established 

implicit representations of the triplet-level structure when processing the forthcoming stimuli, 

irrespective of their actual predictability. The slowing of responses in the unpredictable blocks 
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as compared with the predictable ones might not have been a noticeable block-to-block 

performance drop from the participants’ viewpoint. Indeed, participants became faster and 

more accurate over the task, irrespective of block type. Consequently, response slowing in the 

unpredictable blocks can be regarded as a reasonable and economic strategy for adapting to 

the changed predictability of statistical regularities.  

Importantly, however, statistical knowledge influenced the responses to a lesser extent 

in the unpredictable blocks. In terms of effect size measures, statistical knowledge in the 

unpredictable blocks was only 40% of that of the predictable blocks. Crucially, the difference 

in statistical knowledge between the block types was significant and appeared with a large 

effect size. This might suggest that although knowledge of the predictable structure influenced 

responding to unpredictable stimuli, this knowledge was not generalized and used 

unconditionally throughout the task. Previously, the presentation of different predictable 

statistical structures in smaller alternating blocks and the inhibition of overlearning the 

primary structure facilitated the simultaneous learning of the new structure (Bulgarelli & 

Weiss, 2016; Zinszer & Weiss, 2013). Although we investigated transitions between biased 

and equal probabilities instead of transitions between different statistical structures, the 

rapidly varying presentation of predictable and unpredictable blocks still attenuated the 

influence of biased probabilities (cf. Rey et al., 2020). As described in the next section, the 

fMRI results, at least in part, suggest the detection of change in stimulus predictability beyond 

the overarching effect of biased triplet probabilities.  

  

Interpretation of fMRI results  

Early visual cortex. The brain activity difference in the early visual cortex supported 

the differential stimulus processing in the predictable and unpredictable blocks. This activity 

is consistent with the findings of two previous studies (Rosenthal, Andrews, Antoniades, 

Kennard, & Soto, 2016; Rosenthal, Mallik, Caballero-Gaudes, Sereno, & Soto, 2018). The 

primary visual cortex as part of a larger processing network involving the hippocampus and 

the basal ganglia (Rosenthal et al., 2016) or the precuneus (Rosenthal et al., 2018) was found 



38  

to support the implicit acquisition of deterministic sequences. In the present study, the larger 

activity for the predictable than the unpredictable blocks in the early visual cortex might 

imply that the actual predictability of statistical regularities was encoded. This suggests that 

not only feedforward input but also high-level abstract information could be represented in 

this brain area (Chong, Familiar, & Shim, 2016; Petro & Muckli, 2016; Smith & Muckli, 

2010; Vetter et al., 2020; Vetter, Smith, & Muckli, 2014). Our results together with the 

previous findings (Rosenthal et al., 2016; Rosenthal et al., 2018) show that the implicit 

acquisition of statistical regularities can be detected already at the early stages of visual 

cortical processing. Since participants could freely move their gaze during task solving, it is 

also plausible that anticipatory eye-movements contributed to predictability-dependent brain 

activity differences in the early visual cortex. Learning-dependent anticipations have been 

found to be sensitive indicators of statistical learning (Vakil, Bloch, & Cohen, 2017; Vakil, 

Schwizer Ashkenazi, Nevet-Perez, & Hassin-Baer, 2021; Zolnai et al., 2022), which can be 

examined in future studies combining fMRI and eye-tracking.  

  

Cerebellum. Predictability-dependent activation difference was also found in the right 

anterior cerebellum (lobules IV-V). The cerebellum has been implicated in the acquisition, 

prediction, and anticipation of temporally and/or spatially structured sequences of movements 

and various events (Breska & Ivry, 2020; Hikosaka, Nakamura, Sakai, & Nakahara, 2002; Ito, 

2008; Ivry & Keele, 1989; Leggio & Molinari, 2015; Ma et al., 2021; Van Overwalle et al., 

2020). However, lobules IV-V are parts of the anterior cerebellum, which is involved mostly 

in sensorimotor processing according to neuroimaging, clinical, and neuroanatomical 

evidence (e.g., Bernard & Seidler, 2013; Stoodley & Schmahmann, 2009; Stoodley &  

Schmahmann, 2018). In particular, hand movements are represented in lobules IV-V (Stoodley 

& Schmahmann, 2016), which were essential in solving the present task. Thus, the activity we 

observed in the right anterior cerebellum most likely reflects the better detection and 

sensorimotor processing of predictable stimuli (cf. the activation cluster in the postcentral 

gyrus), which aids in the acquisition of statistical regularities per se. In line with this 
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reasoning, right anterior cerebellar activity was found in the initial learning phase of an SRT 

task (Magon et al., 2020), where the perceptuomotor task demands could have been more 

challenging than in the later phases. Furthermore, a specific part of the anterior cerebellum, 

the vermis region of lobule V, emerged in association with implicit sequence learning in an  

ALE meta-analysis (Bernard & Seidler, 2013). However, it seems that activity in the  

posterior, “cognitive” regions of the cerebellum during the SRT task should be interpreted as 

executive or attention-related functions contributing to sequence learning (Janacsek et al., 

2020; Magon et al., 2020). The implicit nature of our task and the incidental acquisition of 

statistical regularities may explain why we found only limited posterior cerebellar activation 

in the vermis region of lobule VI.  

  

Precuneus. The activity was larger for the unpredictable than predictable blocks in the 

bilateral precuneus. The precuneus has been considered as an anatomically and functionally 

heterogeneous multimodal hub region that connects to other parietal and prefrontal areas as 

well as to the superior temporal sulcus and subcortical structures; therefore, it is part of 

multiple functional networks and involved in high-level cognitive processes (Cavanna & 

Trimble, 2006; Margulies et al., 2009; van den Heuvel & Sporns, 2013). In SRT-like tasks, 

activity in the left posterior parietal cortex including the precuneus increased with decreasing 

stimulus predictability, i.e., when stimuli were presented in a random order after following a 

deterministic or a probabilistic regularity (Bischoff-Grethe et al., 2001). Similarly, the 

processing of random vs. predictable stimuli was related to larger precuneus activity either in 

the initial and final learning phases (Magon et al., 2020) or during the full length of learning 

(Landau & D'Esposito, 2006; Rosenthal et al., 2018). In line with these studies, we also found 

increased activity for the unpredictable blocks in the left and right precuneus.  

This precuneus activity might reflect an error signal such that the equal probability 

structure of the unpredictable blocks deviated from the biased statistical regularities of the 

predictable blocks. In a previous study using linguistic stimuli, the posterior division of the 

precuneus, together with the posterior cingulate cortex, were sensitive to an unsignaled 
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transition from one statistical structure to another structure (Karuza et al., 2016). Lower 

activity in these areas during the processing of the first structure resulted in less sensitivity to 

the change in structure and lower performance on the second structure. In the present study, it 

is conceivable that the change in stimulus predictability was implicitly detected. This might 

have led to the incomplete generalization of statistical knowledge at the behavioral level. At 

the same time, this brain activity modulation might have supported only the limited update of 

the same statistical knowledge.  

  

Insula. Regression analyses using the Predictable > Unpredictable contrast showed 

that activation of the bilateral insula was associated with increased overall performance, and 

specifically with increased statistical knowledge in the predictable and unpredictable blocks, 

as well, with more localized or unilateral (right-sided) activation in the latter cases. Previous 

literature reported inconclusive results in terms of insular activity. Better extraction of 

statistical regularities was related to increased insular activity in the SRT task (Grafton, 

Hazeltine, & Ivry, 1995; Hung et al., 2019; Rieckmann et al., 2010). However, decreased 

activation of the bilateral insula was also observed for sequenced stimuli as compared with 

random ones, which was explained as a type of a repetition suppression effect (Thomas et al., 

2004). Furthermore, the insula was activated when artificial grammar sequences were 

acquired both implicitly and explicitly (Yang & Li, 2012). Altogether, there are numerous 

examples of insular activation in similar tasks, but its specific functional role in the current 

experiment requires further explanation and is described below.  

In general, the mid-posterior portion of the insula can be functionally related to 

sensorimotor processing whereas the dorsal anterior portion can be related to cognitive 

processing (Kurth, Zilles, Fox, Laird, & Eickhoff, 2010). This division is supported by the 

connections of the mid-posterior portion with other brain regions for sensorimotor processing 

and that of the dorsal anterior portion with frontal, anterior cingulate, and parietal regions  

(Uddin, Nomi, Hébert-Seropian, Ghaziri, & Boucher, 2017). In the present study, activation 

clusters covered both the mid-posterior and the dorsal anterior portions of the insula. Our 
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regressions further revealed increased activations in the inferior/middle frontal gyrus, 

postcentral gyrus, supramarginal gyrus, superior/inferior parietal gyrus, and superior temporal 

gyrus coupled with increased overall performance and statistical knowledge. Activity in these 

areas might have been connected to the observed insular activity. However, this hypothesis 

should be tested with additional connectivity analyses. Finding actual connections between 

these areas would indicate that the insula contributes to both sensorimotor and cognitive 

processing in the present task.   

Information from the different functional domains of the insula seems to be integrated 

in its dorsal anterior portion to maintain task performance (Kurth et al., 2010). This functional 

integration would be critical in our rapid visuomotor task with hidden and changing 

probability structure to ensure efficient task solving. Similarly, salience processing and 

novelty detection have also been recognized as key functions of the (dorsal anterior) insula 

(Uddin, 2015; Uddin et al., 2017). Statistical knowledge is based on the differentiation of 

high- vs. low-probability triplets, which manifests mainly in the speeding up of RTs to 

highprobability triplets. Although high-probability triplets are frequent by their very nature in 

the predictable blocks, their relevance in acquiring the hidden probability structure to achieve 

high task performance would still make them “salient”. The enhanced insular activation, 

therefore, can be explained as reflecting salience processing in terms of the predictable 

statistical regularities. Due to the transmission of statistical knowledge across the block types, 

this could also apply to the high-probability triplets of the unpredictable blocks where they are 

no longer frequent.  

  

Inferior frontal gyrus. Regression analyses using the Predictable > Unpredictable 

contrast also revealed that activity of the right inferior frontal gyrus was associated with better 

overall performance and increased statistical knowledge in both block types. Overlapping 

activity between the two block types was found in the triangular part of the right inferior 

frontal gyrus. Previous studies showed that the left inferior frontal gyrus has been involved in 

the processing of statistical and sequential information in different modalities (Batterink et al., 
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2019; Frost, Armstrong, Siegelman, & Christiansen, 2015). In an EEG study using a source 

localization method, the right inferior frontal gyrus was specifically implicated in the 

acquisition of visual statistical regularities embedded in a variant of the ASRT task (Takács et 

al., 2021). This aligns with those results showing that the right inferior frontal gyrus is not 

specific to inhibitory control functions but supports the detection of novelty and frequency 

information (Erika-Florence, Leech, & Hampshire, 2014). In our study, this role of the right 

inferior frontal gyrus could be reflected by the increased overall performance and the 

increased statistical knowledge in the predictable blocks. Although behavioral responses in the 

unpredictable blocks were adjusted to the biased probabilities of the predictable blocks, the 

right inferior frontal gyrus activity specific to the predictable blocks could also mirror the 

changed frequency of these probabilities. However, the latter assumption should be tested in 

further studies. Altogether, the observed activity of the right inferior frontal gyrus not only 

corroborates previous research but also indicates the sensitivity of this area to the presence of 

statistical regularities, even if their true distribution changes.  

  

Globus pallidus/putamen vs. hippocampus. Beyond the common regions, regression 

analyses using the Predictable > Unpredictable contrast revealed unique associations between 

brain activity in the predictable blocks and statistical knowledge in the predictable vs. 

unpredictable blocks. The right globus pallidus/putamen activity was related to statistical 

knowledge in the predictable blocks. In contrast, the right hippocampal activity was related to 

statistical knowledge in the unpredictable blocks. Activity of the right globus 

pallidus/putamen supports the basal ganglia-based processing of the predictable structure, in 

line with several studies using the SRT task and other paradigms measuring implicit sequence 

or statistical learning (Batterink et al., 2019; Conway, 2020; Janacsek et al., 2020). The insular 

activity appearing in relation to overall performance (see Table 2) also extended to the right 

putamen to a small extent. These converging findings might imply that the differentiation of 

predictable and unpredictable blocks is rooted in the processing of biased triplet probabilities, 

supported by the right globus pallidus/putamen.   
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Increased (right) hippocampal activity in the predictable blocks was related to 

increased statistical knowledge only in the unpredictable blocks and not in the predictable 

ones, contrary to our expectations. Importantly, the hippocampus was not generally sensitive 

to the predictability of statistical regularities (i.e., the differentiation of block types), its 

activity emerged only in association with statistical knowledge measured at the behavioral 

level. These findings suggest that the hippocampus might not support the mere acquisition of 

statistical regularities but the transmission of statistical knowledge across the perceptually 

similar blocks (Albouy et al., 2013; Ross et al., 2009; Shohamy & Wagner, 2008; Zeithamova 

& Bowman, 2020).   

It seems that applying one kind of statistical knowledge throughout the task was an 

effective strategy (see the Interpretation of behavioral results section above). When statistical 

knowledge acquired in the predictable blocks was relevant, the globus pallidus/putamen 

activity supported the exploitation of this knowledge (Albouy et al., 2013). Since no learnable 

stimulus dependencies were present in the unpredictable blocks, it is possible that participants 

stuck to the more viable representations of biased probabilities. The hippocampus might have 

supported this strategy by maintaining the representations of biased statistical regularities 

even when the statistical knowledge was irrelevant due to the equal probability structure.  

These specific, statistical learning-dependent activations appeared primarily in the 

right hemisphere. The prominent role of the right hemisphere in statistical learning has been 

shown in meta-analyses involving similar visuomotor SRT tasks (Hardwick et al., 2013;  

Janacsek et al., 2020), in studies using non-invasive brain stimulation (Galea, Albert, Ditye, & 

Miall, 2010; Janacsek, Ambrus, Paulus, Antal, & Nemeth, 2015), as well as in the case of 

split-brain, frontal lobe-lesioned (Roser, Fiser, Aslin, & Gazzaniga, 2011; Wolford, Miller, & 

Gazzaniga, 2000), and right-brain-damaged patients (Danckert, Stöttinger, Quehl, & 

Anderson, 2012). However, in auditory statistical learning tasks, increased activity in higher 

level auditory regions, such as the left superior temporal gyrus and the left inferior frontal 

gyrus, was found (for reviews, see Batterink et al., 2019; Frost et al., 2015). Therefore, 
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hemispheric differences could be specific to the content and modality of the task used for 

measuring statistical learning.  

  

Angular gyrus. Regression analysis using the Unpredictable > Rest contrast showed 

that larger activity of the bilateral angular gyrus during task performance in the unpredictable 

blocks was related to increased statistical knowledge in the same blocks. This can be 

considered as further evidence for the generalization of statistical knowledge. The angular 

gyrus has been regarded as a multisensory, cross-modal association and integration area that 

plays a role in a wide range of cognitive operations (Seghier, 2013). For instance, it has been 

suggested that the angular gyrus extracts the spatiotemporally extended sequential structure of 

events through experience. This contributes to episodic retrieval and enables the integration of 

episodic and semantic memories (Humphreys, Lambon Ralph, & Simons, 2021).  

Furthermore, representations of rule-based associations and low-level visual features related 

to consolidated schema memories converged within the left angular gyrus during retrieval 

(Wagner et al., 2015). The left angular gyrus also supported the recognition of acquired 

statistical regularities after being exposed to them in an auditory statistical learning task 

(Ordin, Polyanskaya, & Soto, 2020). Based on these results, it is conceivable that the 

predominantly left-sided activity of the angular gyrus we found here is also related to the 

retrieval of statistical knowledge. However, the present task did not reveal any consciously 

accessible statistical knowledge, and the binding of different pieces of information was not 

critical, in contrast to the referred studies. Therefore, any speculation regarding the retrieval of 

statistical knowledge in this case should be approached with caution.  

Meanwhile, this finding may be related to a recent study that showed consistent 

modulation of the left angular gyrus and its functional connections through implicit statistical 

learning (Park et al., 2022). The regression performed here also revealed activity of the left 

superior/middle frontal gyrus that is structurally connected to the angular gyrus (Seghier, 

2013). Again, in the study of Park et al. (2022), during statistical learning, the left superior 

frontal gyrus had strong negative functional connections with the salience, language, and 
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dorsal attention networks, similarly to the left angular gyrus. Our study did not examine the 

connectivity between these areas and other brain regions or networks, and we found these 

activities only during performance in the unpredictable blocks. However, despite any 

reservations, it appears that both the left angular and superior frontal gyri may be involved not 

only in the acquisition, but also in the retrieval and application of implicit statistical 

knowledge.  

Rest periods were used as the baseline in the Unpredictable > Rest contrast, which can 

introduce the problem of individual variability (Ordin et al., 2020). In particular, rest periods 

are characterized by different cognitive processes involving various brain networks 

(Gonzalez-Castillo et al., 2019). These cognitive processes can vary significantly across 

individuals, contributing differently to brain activity during rest. Furthermore, the fMRI 

responses, as well as motion and arousal, can also vary individually and may not be typical for 

the given experimental condition (i.e., unpredictable blocks) unless compared to another 

active condition. Therefore, although the results of the regression using the Unpredictable > 

Rest contrast appear reasonable and unbiased, it is important to acknowledge the related 

methodological limitations.  

  

The generalization and persistence of statistical knowledge. At the behavioral level, 

the difference in statistical knowledge between predictable and unpredictable blocks suggests 

incomplete generalization or partial updating due to exposure to the equal probability 

structure. The fMRI results imply the clear differentiation of predictable and unpredictable 

blocks. However, according to the regression analyses, there are multiple pieces of evidence 

that indicate generalization at the brain level. Regarding brain activity specific to the 

predictable blocks, it is likely that the right insula, inferior frontal gyrus, and hippocampus 

support the transmission and preservation of statistical knowledge. During task performance 

in the unpredictable blocks, activity in the bilateral angular gyrus and the left superior/middle 

frontal gyrus might underpin the retrieval and application of statistical knowledge. The lack of 

associations between brain activity specific to the unpredictable blocks and statistical 
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knowledge might be considered as evidence against the generalization and persistence of 

statistical knowledge. Nevertheless, the findings altogether more strongly suggest that 

statistical knowledge was generalized to and implicitly retrieved in an irrelevant context 

without a predictable structure.  

  

Conclusions   

Behavioral and fMRI results jointly indicate that even if the stimulus structure rapidly 

changes, humans build persistent representations of the predictable patterns. More 

importantly, when the actual predictable patterns are lacking, unpredictable stimuli are still 

processed according to these representations. The emergence of these representations partly 

depends on the right globus pallidus/putamen. The representations appear to be strengthened 

by the hippocampus, insula, and inferior frontal gyrus in the right hemisphere, as well as by 

the bilateral angular gyrus. Although the influence of the predictable patterns is attenuated in 

the unpredictable context, the update of the representations appears to be only partial. 

Altogether, during the implicit acquisition of predictable patterns, robust habit-like 

performance develops.  
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Appendix  

Analysis of accuracy data  

Overall performance at the level of block types. The Block type by Run ANOVA on 

the accuracy data revealed significant main effects of Block type, F(1, 31) = 27.30, p < .001, 

ηp
2 = .468, and Run, F(7, 217) = 8.72, ε = .559, p < .001, ηp

2 = .220, while their interaction 

was non-significant, F(7, 217) = 0.66, ε = .675, p = .646, ηp
2 = .021. The significant main 

effects indicate more accurate responding in the predictable than in the unpredictable blocks 

(M = 85.4%, SD = 8.1 vs. M = 84.2%, SD = 8.6) and an increase in response accuracy as the 

task progresses (from Run1 = 82.0% to Run8 = 87.3%). As unpredictable stimuli deteriorated 

accurate responding, participants probably became sensitive to the changes of stimulus 

predictability. The next analysis investigates whether sensitivity to the biased triplet 

probabilities has emerged also at the level of accuracy.  

  

Triplet learning. The Block type by Triplet by Run ANOVA revealed significant main 

effects of Block type, F(1, 31) = 8.99, p = .005, ηp
2 = .225, Triplet, F(1, 31) = 26.68, p < .001, 

ηp
2 = .463, and Run, F(7, 217) = 8.15, ε = .543, p < .001, ηp

2 = .208. The two-way and three-

way interactions of these factors were non-significant (Block type * Triplet, F(1, 31) = 0.45, p 

= .506, ηp
2 = .014; Block type * Run, F(7, 217) = 0.53, ε = .671, p = .742, ηp

2 = .017;  

Triplet * Run, F(7, 217) = 0.75, ε = .725, p = .590, ηp
2 = .024; Block type * Triplet * Run,  

F(7, 217) = 0.68, p = .686, ηp
2 = .022). As in the earlier analysis, the significant main effect of 

Block type revealed higher accuracy in the predictable than in the unpredictable blocks. Based 

on the pair-wise comparisons related to the significant main effect of Run, accuracy was the 
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highest in the last run (Run8, 88.0%), differing significantly from all previous runs (ps ≤ .008). 

Indeed, from Run3, accuracy increased gradually until the end of the task, albeit not all pair-

wise differences were significant.   

The significant Triplet main effect indicated higher accuracy to high-probability than 

to low-probability triplets (M = 85.6%, SD = 8.4 vs. M = 84.1%, SD = 8.3), irrespective of 

their actual predictability (i.e., considering block type). Thus, in line with the RT findings, 

participants responded according to their statistical knowledge emerging over the predictable 

blocks even when the biased distribution of triplets was absent in the unpredictable blocks. 

For the sake of completeness, response accuracy split by triplet type and block type in each 

run, averaged for the entire task as well as for the first (Runs1-4) and second (Runs5-8) scanning 

sessions, respectively, are provided in Table A1. For each triplet type, mean accuracy 

increased significantly from the first to the second session (ps ≤ .003).  

  

Table A1. Mean percentage (%) and standard deviation of response accuracy split by triplet 

type and block type.  

  

  

   

High-probability triplets  Low-probability triplets  

M (SD)   M (SD)   

Predictable  Unpredictable  Predictable  Unpredictable  

Run1  82.7 (9.5)  82.3 (13.7)  81.9 (9.7)  81.9 (10.2)  

Run2  85.9 (9.0)  85.0 (9.6)  83.6 (10.4)  82.9 (9.3)  

Run3  84.1 (10.3)  83.7 (12.2)  83.6 (10.2)  81.6 (10.3)  

Run4  85.8 (8.5)  83.5 (11.3)  83.3 (10.4)  83.1 (10.0)  

Run5  86.1 (8.8)  85.8 (10.3)  83.5 (9.0)  84.0 (9.0)  

Run6  86.5 (9.8)  86.6 (9.0)  84.7 (11.0)  84.8 (8.8)  

Run7  87.7 (7.1)  86.5 (8.3)  86.2 (7.0)  85.5 (9.0)  

Run8  88.8 (7.9)  88.0 (6.6)  88.0 (7.9)  87.1 (8.8)  

Overall  85.9 (8.1)  85.2 (8.7)  84.3 (8.2)  83.9 (8.6)  

Session 1  84.6 (8.7)  83.6 (10.2)  83.1 (9.0)  82.4 (9.2)  

Session 2  87.3 (7.9)  86.7 (7.8)  85.6 (7.9)  85.3 (8.5)  
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