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A B S T R A C T   

Arsenic (As) is a versatile heavy metalloid trace element extensively used in industrial applications. As is 
carcinogen, poses health risks through both inhalation and ingestion, and is associated with an increased risk of 
liver, kidney, lung, and bladder tumors. In the agricultural context, the repeated application of arsenical products 
leads to elevated soil concentrations, which are also affected by environmental and management variables. Since 
exposure to As poses risks, effective assessment tools to support environmental and health policies are needed. 
However, the most comprehensive soil As data available, the Land Use/Cover Area frame statistical Survey 
(LUCAS) database, contains severe limitations due to high detection limits. Although within International Or
ganization for Standardization standards, the detection limits preclude the adoption of standard methodologies 
for data analysis. The present work focused on developing a new method to model As contamination in European 
soils using LUCAS soil samples. We introduce the GAMLSS-RF model, a novel approach that couples Random 
Forests with Generalized Additive Models for Location, Scale, and Shape. The semiparametric model can capture 
non-linear interactions among input variables while accommodating censored and non-censored observations 
and can be calibrated to include information from other campaign databases. After fitting and validating a spatial 
model, we produced European-scale As concentration maps at a 250 m spatial resolution and evaluated the 
patterns against reference values (i.e., two action levels and a background concentration). We found a significant 
variability of As concentration across the continent, with lower concentrations in Northern countries and higher 
concentrations in Portugal, Spain, Austria, France and Belgium. By overcoming limitations in existing databases 
and methodologies, the present approach provides an alternative way to handle highly censored data. The model 
also consists of a valuable probabilistic tool for assessing As contamination risks in soils, contributing to informed 
policy-making for environmental and health protection.   

1. Introduction 

Arsenic (As) is a versatile heavy metalloid trace element used in the 
production of semiconductors, batteries, paints, wood preservatives 
(Flora, 2015), plant defoliants, agricultural pesticides, and herbicides 
(Adriano, 1986), among others. As is the 53rd most abundant element 
among the 92 that occur naturally in the Earth’s crust (Reimann et al., 
2009), with a median global total concentration in soils estimated to be 
5 mg kg− 1 (Reimann and De Caritat, 1998), and an average of 7.2 mg 
kg− 1 (Adriano, 1986). Despite being a non-essential element for humans 

(Medunić et al., 2019), the medical use of As dates back to the time of 
Hippocrates (Klaassen, 2013), and its use as a poison is reported to have 
happened in Roman times (Reimann et al., 2009). For its toxicity, As was 
one of the first chemical elements identified as a cause of cancer in the 
19th century (Smith et al., 2002). As is the only known carcinogen that 
presents risks to humans by both inhalation and ingestion (McLaren 
et al., 2006), and currently, it is understood that exposure to As relates to 
the development of vascular diseases and to increased risk of liver, 
kidney, lungs, and bladder tumors (Palma-Lara et al., 2020). Human 
exposure to As can be detected through blood, hair, and urine samples. 
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While concentrations of 0.1 to 0.5 mg kg− 1 in hair samples may indicate 
chronic As poisoning, the acute ingestion of 100 to 300 mg can be fatal 
after one to four days (Ratnaike, 2006). Worldwide, It is estimated that 
226 million people are exposed to As contamination from drinking- 
water or food. Asia, with 174.1 million people at risk, accounts for 
most of this global exposure (Murcott, 2012). 

In agricultural areas with repeated application of organic or inor
ganic arsenical products, very high concentrations of As can be detected 
due to the continuous accumulation of their residuals (Adriano, 1986). 
Examples of such products include As detected in manure (Adamse et al., 
2017), herbicides based on dimethylarsinic acid and pesticides based on 
sodium arsenite (Saxe et al., 1964). Once in the soil environment, As 
molecules can react and become sorbed onto the solid phase of the soil, 
be uptaken by plants, be volatilized back into the atmosphere, or leach 
(McLaren et al., 2006). Experiments after the continuous application of 
As pesticides in the United States showed that As did not leach below the 
20 cm depth (Veneman et al., 1983), but field studies in Denmark found 
traces of As contamination in up to 2.5-meter depth (Lund and Fobian, 
1991), indicating a different behavior. The mobility and availability of 
As in soils are affected by environmental factors - such as pH, soil 
texture, clay minerals, metal (hydr)oxides, and redox potential -, and by 
management practices, such as the application of phosphorus products, 
the use of plowing, and the adoption of cover crops (Adriano, 1986). 
Other than the application of agricultural products, As accumulation in 
the soil can also result from the redeposition of atmospheric As particles, 
the contamination of surrounding areas by mining and smelting activ
ities, the deposition of ashes after coal combustion, the disposal of urban 
and industrial wastes, or the spread by irrigation (McLaren et al., 2006). 

Apart from the exposure to high doses, contact with As can also be a 
problem at lower concentrations. In the case of soil contamination, some 
potentially harmful activities include direct contact with the skin and 
hand-to-mouth ingestion through recreation, landscaping, and 
gardening (Klaassen, 2013; Venteris et al., 2014). According to the In
tegrated Risk Information System of the United States Environmental 
Protection Agency, the estimated increased cancer risk due to oral 
exposure to inorganic As equals 1.5 per mg kg− 1 day− 1, being higher 
than that of insecticide toxaphene, 1.1 per mg kg− 1 day− 1, and similar to 
the fungicide hexachlorobenzene, 1.6 per mg kg− 1 day− 1 (USEPA, 
2023a). Consequently, the generic screening level for total inorganic As 
in residential soils is recommended to be as low as 0.68 mg kg− 1, indi
cating that sites exceeding such threshold may require further investi
gation of their carcinogenic potential (USEPA, 2023b). 

Due to the high toxicity of As and its low generic threshold, an in
formation tool to assist the development of environmental, health and 
soil policies must be able to estimate the risk of contamination for 
multiple reference threshold values. However, implementing this idea 
can face further complications. For instance, the Land Use/Cover Area 
frame statistical Survey (LUCAS) topsoil database, the largest and most 
comprehensive soil sampling campaign across the European Union (EU), 
collected information on As concentrations at more than 20,000 loca
tions (Orgiazzi et al., 2018). However, the analytical procedures adop
ted do not allow a proper quantification of the values below the Limit of 
Quantification (LOQ) of 2.84 mg kg− 1 (Tóth et al., 2016). With such a 
high LOQ, the LUCAS samples can be divided into two groups: i) the non- 
censored observations, for which we know the exact measured As con
centration, and ii) the censored observations, for which we can only 
know that the measurement is inferior to 2.84 mg kg− 1 (i.e., the interval 
where the measurement belongs). One way to potentially overcome this 
issue could be by incorporating soil samples from other campaigns, such 
as the Forum of European Geological Surveys (FOREGS) database (Sal
minen et al., 2005), the Geochemical Mapping of Agricultural Soils 
(GEMAS) database (Fabian et al., 2014), or national soil monitoring 
systems, such as the Réseau de Mesures de la Qualité des Sols from 
France (Marchant et al., 2017). However, because these observations 
were made on different dates, often years apart, using different and non- 
harmonized sampling and analytical procedures, combining databases 

would demand strong assumptions and a very extensive harmonization 
step. 

Another potential way to take advantage of the large number of 
observations in the LUCAS database without the need for strong pre
processing assumptions is by developing methods to handle the partic
ular data characteristics. For instance, the method used by Tóth et al. 
(2016) to generate European As maps does not mention how the 
censored observations were handled, which raises concern about the 
reliability of the spatial patterns obtained. Additionally, the method 
assumes a linear dependence of the As concentration on the spatial 
covariates, while more modern approaches suggest that the relation
ships among variables may contain complex high-order interactions 
(Van Eynde et al., 2023; Helfenstein et al., 2022; Ballabio et al., 2021). 
Ideally, a proper method for the LUCAS As data would take both limi
tations into account while preserving the strengths of the original 
dataset, such as the applicability at a continental scale. 

In the present work, we generate maps of As concentration at the 
European scale based on the LUCAS 2009 database using a novel 
approach. We do so by presenting a new model in Section 2.3, which 
consists of coupling Random Forests (RF) to the Generalized Additive 
Models for Location, Scale and Shape (GAMLSS) framework. The model 
is named GAMLSS-RF after its components. The proposed semi
parametric approach models the censored and non-censored parts in a 
coupled manner, allowing the reconstruction of missing information by 
borrowing information from the other observations. The model selection 
process is presented in Section 2.4, and the resulting chosen model is 
given in Section 3.2. After thorough model calibration and validation 
procedures (see Section 2.5), we produce maps of As concentration 
across most EU member states at a 250 m spatial resolution and evaluate 
the exceedance probabilities concerning two limits of action and a 
threshold selected as representative of the background concentrations 
(see Section 3.3). Then, we discuss in Section 4 the policy implications of 
the results obtained. Conclusions are given in Section 5. A list of the 
abbreviations used in this work is provided in SM13. 

2. Materials and methods 

2.1. Soil samples and LUCAS topsoil survey 

The As observations used in the present study come from the LUCAS 
topsoil survey, the largest periodic survey to collect topsoil information 
across Europe (Orgiazzi et al., 2018). The LUCAS database contains over 
20,000 topsoil samples taken in European countries (SM7) and discloses 
information about soils’ physical, chemical, and biological properties for 
different land use types in the years 2009 (plus 2012 for Bulgaria and 
Romania), 2015, 2018, and 2022 (EC, 2023a). Beyond the general 
topsoil information, the 21,682 soil samples of the LUCAS 2009/2012 
survey were also analyzed for heavy metals and metalloids quantifica
tion and other elements, including Sb, As, Cd, Co, Cr, Cu, Fe, Pb, Hg, Mg, 
Mn, Ni, V, Zn. 

Pseudototal concentration of metals and metalloids in LUCAS 2009/ 
2012 soil samples were firstly obtained by using the aqua regia 
extractable fraction (HNO3/HCl 1.5/4.5 v/v) and microwave-assisted 
digestion (140 ◦C, 35 min, 20 bar) (prEN16174) (Carmen-Ileana et al., 
2014; Cristache et al., 2014), and then quantified by using inductively 
coupled plasma-optical emission spectrometry (ICP-OES). This analyt
ical procedure differs from that used by the GEMAS topsoil database 
where a modified aqua regia extractable fraction (HNO3/HCl/H2O 1/1/ 
1 v/v/v) and open digestion (95 ◦C, 60 min) was used for metals 
extraction and quantification was then carried out by using Inductively 
coupled Plasma quadrupole mass spectrometer (ICP-QMS). Due to these 
methodological differences, the limit of quantification (LOQ) of arsenic 
in the LUCAS soil samples (2.84 mg kg− 1) is significantly higher than 
that of the GEMAS database (0.05 mg kg− 1) (Tarvainen et al., 2013). 
However, the LOQ of arsenic from LUCAS database is similar to that 
obtained by testing wavelength dispersive X-ray fluorescence 
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spectrometry (XFS) on the GEMAS samples (i.e., 3.0 mg kg− 1), which led 
to a fraction of 25 % of the XFS observations below the detection limit on 
that database (Tarvainen et al., 2013). 

2.2. Spatial covariates 

Since the As observations of the LUCAS database are spatially 
explicit, our model covariates correspond to point attributes extracted 
from digital maps. The set of 17 variables used in the current work 
covers:  

• 8 soil properties related to the As chemistry on soils based on LUCAS 
topsoil data published by Ballabio et al. (2016): pH, soil organic 
carbon content (SOC), cation exchange capacity (CEC), concentra
tions of phosphorus and calcium carbonate (CaCO3), fractions of 
clay, sand and silt;  

• 1 variable representing land cover, namely the normalized difference 
vegetation index (NDVI) (USGS, 2022);  

• 2 landscape features namely terrain slope and elevation (DEM) (EEA, 
2016);  

• 2 climatic variables: annual average temperature and precipitation 
(Noce et al., 2020);  

• and 4 indicators of anthropogenic activity: distance to mines (Lopes 
et al., 2018), distance to roads (OpenStreetMap, 2018), lights at 
night (Elvidge et al., 2017), and distance to coal, oil and gas (COG) 
industries (ResourceWatch, 2019). 

Prior to any processing, all the distance variables were converted to 
the log-scale, and the datasets were spatially resampled to the target 
model spatial resolution of 250 m x 250 m. 

2.3. Exploratory analysis and modeling 

The LUCAS 2009/2012 database contains 21,682 samples, of which 
329 do not have As data available. In the remaining 21,353 observa
tions, 9,784 (i.e., 45.82 %) are below the LOQ of 2.84 mg kg− 1. Such a 
censored nature of these As observations has several implications to the 
exploratory analysis and modeling procedures. For instance, the 
commonly used distribution moments, such as the mean and variance, 
can not be calculated to characterize the data, and quantiles have to be 
used as an alternative. In that case, the only quantiles that can be ob
tained are those that exceed the fraction of observations below the 
detection limit for a given subset of the data. To deal with such re
striction, the exploratory analysis in this work consisted of reporting the 
empirical cumulative function for the As concentration. The data was 
split into two different selections for exploratory purposes: by European 
country and by land use type. 

Another implication of having a high proportion of censored As data 
is that the adoption of common simplifications found in the literature for 
similar cases, which include removing censored observations or 
replacing them with a fixed value within the interval they represent 
(Ballabio et al., 2019; Helsel, 1990), would have huge impacts on the 
results and can not be used without major drawbacks (i.e. losing 
important information) and biases. Such techniques are only less prob
lematic when the fraction of censored observations is at most 10 % 
(Williams et al., 2020). These properties also mean that most methods 
that successfully handle similar problems do not support the use of left- 
censored data and, therefore, can not be used for the LUCAS As data. 
These approaches include quantile RFs for the spatial distribution of Zn 
in topsoils (Van Eynde et al., 2023) or soil pH (Helfenstein et al., 2022), 
regression-kriging for heavy metals (Rodríguez-Lado et al., 2008), deep 
neural networks for the Hg content in the topsoil (Ballabio et al., 2021), 
Gaussian process regression for chemical properties, such as N, P and the 
C/N ratio (Ballabio et al., 2019), among others. In this sense, a proper 
method for our data would allow the use of left-censored positive data 
while still capturing the high-dimensional interactions between vari
ables that proved successful in similar contexts. 

To address these issues, the proposed GAMLSS-RF model couples a 
RF model (Breiman, 2001) to the semiparametric regression GAMLSS 
framework (Stasinopoulos et al., 2018; Rigby and Stasinopoulos, 2005). 
In GAMLSS, the response variable can be assumed to have any para
metric distribution, and all distribution parameters (i.e., location [e.g., 
mean], scale, and shape) can vary according to parametric or 
nonparametric functions of the explanatory variables. Because GAMLSS 
do not have the same distributional limitations as other statistical 
frameworks, e.g., Linear Models or Generalized Linear Models, standard 
distributions can be properly modified to capture relevant properties of 
the data, such as skewness, heavy tails, bimodality, truncation, and (left- 
, right- or interval-)censoring. Parameter estimation in GAMLSS is ach
ieved through iterative procedures to maximize the (penalized) log- 
likelihood. These procedures contain a backfitting component, which 
allows the incorporation of several nonparametric techniques, such as 
neural networks, Multivariate Adaptive Regression Splines, and RFs 
(Stasinopoulos et al., 2017). 

Fig. 1. Sample cumulative distribution of Arsenic stratified per land use 
(top) or country (bottom). The numbers in the top plot correspond to each 
land use class, while in the bottom plot correspond to the 4 top and bottom 
country classes. 
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The second component of the GAMLSS-RF is the nonparametric RF 
model. Standard RFs consist of a learning method combining many tree- 
based models (Breiman, 2001), which can capture high-order in
teractions in the data by partitioning the feature space into disjoint re
gions (Hastie et al., 2009). The method contains two sources of 
randomness. The first consists of the different samples with replacement 
taken and used to construct each tree, and the second is the random 
subset of the explanatory variables from which a variable is chosen to 
partition the feature space in each step (Fawagrehet al., 2014), with 
both procedures aiming at increasing robustness to noise and reducing 
overfitting and the variance of predictions (Hastie et al., 2009). The 
main advantages of RFs compared to standard parametric smoothers are 
their higher predictive performance and ability to capture complex 
multidimensional relationships, although at the cost of having harder 
interpretability or explainability (Aria et al., 2021; 2023). 

2.4. Model selection 

In GAMLSS-RF, RFs can be used as nonparametric learners for one or 

more of the distribution parameters, so we searched for the best possible 
model with several steps:  

1) First, we divided the dataset of 21,353 observations into training and 
validation datasets with 12,811 and 8,542 entries (i.e., approx. 60 %, 
40 %), respectively. Then, we expanded the set of 23 statistical dis
tributions for positive continuous values available in the gamlss R 
implementation to include 31 distributions for real continuous data 
that were exponentially-transformed to modify its range to the pos
itive continuous line (Rigby et al., 2019). Then, we modified the 
probability density functions of the resulting set of 54 distributions to 
handle censored variables (Stasinopoulos et al., 2017).  

2) Next, we selected the best marginal statistical distribution among the 
54 options by comparing quantitatively and qualitatively their re
sults when fitted to the training data without any predictors. Several 
distributions failed to converge to a solution. For the successful ones, 
the quantitative and qualitative criteria used were their deviance (i. 
e., minus two times the log-likelihood) and a visual residual analysis, 
respectively. 

Fig. 2. The marginal effect of the μ (top left), σ (top right), ν (bottom left), and τ (bottom right) parameter on the probability distribution function of the 
log-transformed sinh-arcsinh (logSHASHo) distribution. The parameter μ varied from − 1 to 1, σ from 0.1 to 0.7, ν from 1.5 to 5, and τ from 0.5 to 10, and a 
gradient from gray to black indicates an increase in the parameter. 
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3) For the best marginal distribution selected in (2), a standard RF with 
default hyperparameters and 200 trees was added as a potential 
predictor for each distribution parameter (i.e., µ, σ, ν and τ - see 
Section 3.2) and their possible combinations. The results were also 
evaluated quantitatively and qualitatively using the training dataset. 
After finding the best model structure, the resulting GAMLSS-RF 
model was used to fine-tune two RF hyperparameters: the number 
of trees (num.trees) and the number of variables considered in each 
split (mtry). The first hyperparameter was allowed to vary from 10 to 
250 in steps of 10, and the second, from 1 to 17 in steps of 2. 

4) Since the results of (3) selected a RF learner only for the first dis
tribution parameter µ, a linear model was tested for the remaining 
parameters. To do so, we first reassessed the choice marginal dis
tribution of (1) and then used a stepwise strategy by adding linear 
terms to the distribution parameter σ in a forward manner. A limit of 
three variables was defined and the Bayesian Information Criterion 
(BIC) was used to compare models in every step.  

5) The result of (4) did not provide an adequate fit to the training 
dataset. In particular, the multiple worm plot of the residuals against 
the distance to mines was inadequate. To mitigate this issue, the last 
step consisted of manually fine-tuning the GAMLSS model and two 
RF hyperparameters. For the GAMLSS model, a linear term for the 
distance to mines variable was added to ν and τ to improve the dis
tance to mines multiple worm plot diagnostics (see Section 2.5). For 
the RF, the fraction of observations used to grow each tree (sample. 
fraction) and the fraction of the samples used to select tree splits 
(honesty.fraction) were manually fine-tuned by iteratively subtract
ing 0.05 from the default values and visually assessing the impact on 
the residuals calculated using the training dataset. 

2.5. Residual diagnostics and predictive assessment 

The model diagnostics were made through residual analysis. The 
standard raw residuals (i.e., defined by the difference between model 
predictions and observations) could not be used since they are not well- 
defined for censored observations and do not generalize to other dis
tributions than the Gaussian. A possible alternative in this case is the 
normalized randomized quantile residuals (NRQR). NRQRs result from a 
probability integral transform of the As values given their fitted distri
bution, with an additional randomization procedure for the censored 
observations. Consequently, if a GAMLSS model is adequate for the 

response variable being analyzed, then its NRQRs have an approximate 
standard normal distribution, which can be assessed using, for example, 
detrended quantile–quantile plots (also called worm plots) (Stasino
poulos et al., 2017). Worm plots can be used to evaluate the overall 
model accuracy (i.e., single worm plot) or the model accuracy for 
different ranges of the explanatory variables (i.e., multiple worm plots). 

In the residual analysis, we evaluated model adequacy visually by 
plotting the single and multiple worm plots of the NRQRs from the fitted 
model using the training and validation datasets, with approximate 95 % 
intervals. While the single worm plot allowed us to evaluate the overall 
model performance, the multiple worm plots enabled the investigation 
of possible systematic prediction biases. The NRQRs of the training 
dataset were also used for a spatial autocorrelation analysis, where a 
variogram was constructed based on three different models (i.e., Matern, 
Spherical and Gaussian), and the nugget-to-sill ratio was calculated. The 
NRQRs and the worm plots of the validation dataset allowed us to check 
the model’s adequacy for extrapolation. Since NRQRs contain a random 
component due to the censored observations, we did 250 repetitions in 
each case and calculated summary statistics. 

Besides, to improve our understanding of the model’s internal 
behavior, we calculated each explanatory variable’s importance in three 
ways. The first method corresponds to the change in deviance that 
resulted from randomly permuting the values of each covariate. A total 
of 250 repetitions per variable were performed. Such a method was 
adopted for its popularity, but the model extrapolation that it tends to 
induce likely limits its power (Hooker et al., 2021). For this reason, the 
second importance measure was calculated for each variable by the 
change in deviance resulting from refitting the chosen GAMLSS-RF 
model after removing them from the set of explanatory variables. In 
this case, 250 pseudorandom number generators were used, resulting in 
different fitted RF models. The third importance measure was calculated 
by generating the isolated effect of each variable (i.e., the Accumulated 
Local Effects (ALE) plot (Apley and Zhu, 2020), and using the range used 
as a measure of practical importance. The permutation and leave-one- 
out methods evaluate each variable’s statistical importance, while the 
ALE plot range evaluates their practical importance. For improved com
parison, the results were divided by the maximum absolute effect, which 
constrained the absolute values to the (0, 1) interval. 

Fig. 3. Worm plot of the normalized randomized quantile residuals for the training dataset (left) and the validation dataset (right).  
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2.6. Development of European maps of arsenic concentrations 

As mentioned in Section 2.4, a new statistical distribution was 
generated by modifying the probability density function (PDF) of the best 
distribution found to account for the censoring on the interval (0, 2.84]. 
Such a modification solely affects the values within the two extremes of 
the censoring interval, where the continuous PDF from the original dis
tribution is replaced by a mass point equal to the integral over the interval, 
while the other parts of the distribution do not change. The definite in
tegral is not invertible, which, in practice, means that we don’t have 
enough information to reconstruct the distribution of the lower As values 
with certainty. Despite this limitation, we adopted the additional 
assumption that the best reconstruction for the left tail of the censored PDF 
is the original PDF itself. Such an assumption is notably strong, but natural 
since the adopted approach couples all parts of the distribution, meaning 
that modifications made to its right tail also affect its left tail, and vice- 
versa. Therefore, we assumed that a properly fitted model, which should 

be necessarily well-adjusted to the 11,569 non-censored observations and 
the 9,784 censored observations simultaneously, should contain enough 
information to extrapolate on the missing range of values. 

With the additional assumption for the reconstruction of the left tail, 
we generated maps describing the estimated median of As and evaluated 
the spatial patterns across European countries and against two action 
levels and one background concentration. The action levels taken were 
those reported by Tarvainen et al. (2013): the limit of good soil status of 
20 mg kg− 1 in Norway, which is also the maximum tolerable concen
tration in agricultural soils of Germany (Reimann and De Caritat, 1998), 
and the threshold of 45 mg kg− 1 defined on Belgium’s 1995 Soil 
Remediation Act (bottom). The background concentration adopted was 
that estimated by Taylor and McLennan (1995) in the upper continental 
crust: 1.5 mg kg− 1. The adequacy of these limits is discussed in the 
discussion section. Per-country average values were calculated by 
sampling from their pixels’ predicted distribution. This procedure was 
repeated 500 times, and the average and standard deviation were 

Fig. 4. Scaled importance measures: statistical measures based on the deviance variation (left) and a practical measure based on the Accumulated Local 
Effects (ALE) range (right). In the left plot, the feature permutation measure is shown in light gray and the leave-one-out measure, in dark gray. The uncertainty 
bars refer to the standard deviation of 250 repetitions of the method. 
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calculated. Cyprus and Malta are not included in the model results due to 
the lack of observations. 

Due to systematic database differences, the model obtained in Sec
tion 2.4 (i.e., the ‘fitted LUCAS model’) naturally does not perform well 
against the GEMAS dataset (SM9). However, since GEMAS is a valuable 
source of information for As in soils, we generated an alternative model 
version called the ‘calibrated GEMAS model’. The calibrated GEMAS 
model was obtained by first filtering the GEMAS dataset to keep only the 
observations in cropland areas, whose samples were taken in the 20 cm 
of the topsoil (Tarvainen et al., 2013). This step attempted to reduce the 
divergences between GEMAS and LUCAS data. Next, the NRQRs of the 
GEMAS observations were extracted using the fitted LUCAS model, and 
a best distribution (i.e., the generalized t distribution, according to the 
log-likelihood criterion) was fitted to them. Following the derivation in 
Stasinopoulos et al., (2017, p.441–442), this information can be com
bined with the fitted LUCAS model to derive a new, calibrated, fitted 
model consistent with the GEMAS observations. All results presented in 
the current work refer to the ‘fitted LUCAS model’, unless mentioned 
otherwise. Calculations for the calibrated GEMAS model were made in a 
lower spatial resolution (i.e., 1000 m) for computational speed. The 
GAMLSS-RF model was implemented using the gamlss R package (Rigby 
and Stasinopoulos, 2005) and the grf package (Tibshirani et al., 2023). 

3. Results 

3.1. Exploratory analysis 

Fig. 1 (top) presents the empirical cumulative distribution function for 
the As concentrations separated by land-use class. It shows that wetlands 
and the group of forests and semi-natural areas contain the largest shares 

of observations smaller than 2.84 mg kg− 1, 69 % and 63 %, respectively, 
while non-irrigated croplands, artificial areas, pasturelands, and other 
croplands follow a gradient from the higher to the lower shares. Grasslands 
and permanently irrigated croplands present the lowest shares among all 
uses, at 27 % and 23 %, respectively. With a few changes in the ordering 
between uses, 91 % to 98 % of the observations in each class are lower 
than 20 mg kg− 1. In all cases, 97 % to 99 % of the observations are lower 
than 40 mg kg− 1. The stratification per country of Fig. 1 (bottom) shows a 
large variability. While in Estonia, Latvia, and Sweden, the shares of 
censored observations are 91 %, 86 %, and 82 %, respectively, these values 
equal 22 % for Austria and 17 % for both Italy and France, indicating a 
strong geographical trend of As concentration in the EU. The same three 
countries contain 6 %, 9 %, and 12 % of the observed As exceeding 20 mg 
kg− 1 (in Italy, Austria, and France, respectively). 

3.2. GAMLSS-RF modeling 

The procedure to select the GAMLSS distribution yielded better results 
with the log-transformed sinh-arcsinh distribution (Jones and Pewsey, 
2009), denoted logSHASH, after step (2) and its original parameterization 
(hereinafter referred to as logSHASHo) after step (4). This distribution is 
described by four parameters: μ, σ, ν, and τ. These parameters marginally 
control the location, shape, and scale of (non-censored) logSHASHo ac
cording to the patterns displayed in Fig. 2. Depending on the combination 
of parameters, the logSHASHo distribution can become more or less 
heavy-tailed and be uni or bimodal, indicating that a high degree of 
flexibility can be achieved. For some combinations of parameters, its mean 
(or expected value) is properly defined, but for others, the integral may 
diverge, while the median is always properly defined. 

The model selected as the best presented the following structure: 

Fig. 5. Accumulated Local Effects (ALE) on the µ parameter (i.e. the log of the median As concentration) for the 5 explanatory variables of higher practical 
importance (top) and the other variables (bottom). The distance variables are displayed in their original scale, not log-transformed. 
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Fig. 6. Median arsenic concentrations in Europe: model predictions, along with three example points (top), and ratio between results using the GEMAS 
and the LUCAS database (bottom). In the top right plot, the continuous line is the probability density function for the censored logSHASHo distribution, while the 
dashed line shows the reconstructed left tail. The points on the vertical line show the corresponding fitted probabilities of being below the censor value 2.84 mg kg− 1. 
The bottom plot shows the ratio of predictions by the calibrated GEMAS model over the fitted LUCAS model. 

y ∼ logSHASHoc (μ, σ, ν, τ)
μ = RF(X)

σ = exp[ − 0.613 − 0.473⋅pH − 0.286⋅Phosphorus − 1.466⋅dist(mines) ]

ν = 0.467 − 1.002⋅dist(mines)

τ = exp[0.259 − 1.049⋅dist(mines) ]
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with y denoting the As concentration in mg kg-1; logSHASHoc being the 
censored version of the four-parameter logSHASHo distribution; RF(X)

denoting a RF learner including all explanatory variables, and selected 
parameters num.trees = 160, mtry = 17, sample.fraction = 0.35, and 
honest.fraction = 0.35; and pH, Phosphorus referring to the variables with 
the corresponding names, and dist(mines) referring to the log- 
transformed distance to mines variable, as detailed in Section 2.2. 

The residual diagnostics displayed in Fig. 3 (left) indicate an 
adequate model for the training dataset, with most points falling within 
the approximate 95 % intervals. As a consequence of the number of 
censored observations, the left tail presents variability due to the 250 
repetitions of the NRQRs (see Section 2.5), but no variability in the right 
tail. The assessment of spatial correlation with the nugget-to-sill ratio of 
the NRQRs for the Gaussian, Matern, and Spherical covariance functions 
presented median values of 0.70, 0.76 and 0.81, respectively, and av
erages (± standard deviation) of 0.62 ± 0.23, 0.66 ± 0.24, and 0.76 ±
0.24, respectively, indicating low residual spatial correlation. The model 
was also found to be adequate according to the validation dataset (Fig. 3, 
right), as found by the small percentage of points outside the 95 % in
tervals. Such a result points to the adequacy of the model to predict 
outside the training dataset. The multiple worm plots split by the pre
dicted median (SM10) points in the same direction overall, indicating a 
reasonable fit through most of the range of predicted values despite 
some deviations in the class of higher values. 

The statistical importance measures of variables in Fig. 4 (left plot) 
indicate a strong influence of air temperature, distance to mines, terrain 
elevation and clay content. Fig. 4 (right plot) shows the practical 

importance measure of variables (i.e. the range of the ALE plot), indi
cating a strong influence of air temperature, clay content, phosphorus 
content, distance to roads and terrain elevation. The worm plot of the 
residuals from the validation dataset against each of these variables 
(SM1-5) indicates an overall good fit within the ranges of the explana
tory variables, with the most serious violation happening for high 
Phosphorus content values (S2, top right). SM6 indicates that the linear 
dist(mines) terms were able to fix violations in the distance to mines 
multiple worm plots. Furthermore, Fig. 4 (left) shows that other vari
ables had an ambiguous statistical impact in the model, varying ac
cording to the criteria used. This pattern indicates their lower statistical 
influence on the As model. 

The ALE plots (Fig. 5, top) for the explanatory variables show an 
increasing relationship for temperature, terrain elevation, clay content, 
and phosphorus content, indicating that warmer and higher areas with 
clayey and phosphorus-rich soils tend to have higher As concentrations. 
Fig. 5 (top and bottom) also shows a decreasing relationship for the 
distance variables (i.e., from roads, mines and COG industries) indi
cating that As concentrations tend to be higher around areas of more 
intense human influence. A visualization of how the curves of Fig. 5 vary 
in space can be found in SM11 and SM12. 

3.3. Arsenic in European soils 

Fig. 6 (top) shows the median As concentrations calculated with the 
fitted LUCAS model at the 250 m spatial resolution for Europe. The 
values range from 1.1 to 64.6 mg kg− 1, with arithmetic and geometric 
means of 4.1 and 3.5 mg kg− 1, respectively. The map also contains three 

Fig. 7. Average modeled arsenic concentrations per European country. The uncertainty lines represent confidence intervals and are equal to two times the 
standard deviation of the 500 repetitions used to calculate the average. 
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points, (a), (b), and (c), in Spain, Sweden and Bulgaria, respectively. The 
corresponding estimated probability density function for these points 
have different shapes and reconstructed left tails. In the three cases, the 
logSHASHo distributions show a heavy right-tail. In Fig. 6, bottom, the 
ratio between the predictions from the calibrated GEMAS model over 
the fitted LUCAS model are presented. In all pixels, the calibrated 
GEMAS model (see SM8), predicts higher values than the fitted LUCAS 
model, with the ratio ranging from 131 to 254 %. Such a difference is 
more evident in Sweden and Finland, where the fitted LUCAS model 
calculates generally low values, but also happens in Austria and north- 
west Spain, where the fitted LUCAS model calculated high As concen
trations. Per land use, average median predictions of 4.32, 4.94, 5.02 
and 5.35 mg kg− 1 are calculated for arable land, pasture, other agri
cultural areas and permanent crops, respectively. 

The average value per country (Fig. 7) shows that Latvia, Estonia, 
Lithuania, Finland and Poland present the lowest averages, equal to 
2.03, 2.10, 2.30, 2.41 and 2.68 mg kg− 1, respectively. Among the 

countries with the highest values, Luxembourg, Portugal, Slovenia, 
France and Austria present averages of 9.00, 9.00, 9.21, 9.71 and 9.74 
mg kg− 1, respectively. 

Fig. 8 shows the probability of pixels exceeding two soil As action 
levels in European countries, 20 mg kg− 1 (top) and 45 mg kg− 1 (bottom), 
obtained from the fitted distribution of As for each pixel. Austria, 
France, Spain, Portugal, and Belgium contain several locations where 
the chance of exceeding the Norwegian/German and Belgian thresholds 
(i.e. 20 mg kg− 1 and 45 mg kg− 1, respectively) surpasses 12 % and 2 %, 
respectively. Germany, the Czech Republic, Slovenia, Italy and Greece 
also display a similar pattern, but to a more limited extent. The highest 
probability calculated for exceeding the first and second thresholds was 
77.1 % and 58.1 %, respectively, with the two pixels belonging to 
France. A comparison with the calibrated GEMAS model indicates that 
the LUCAS dataset may be underestimating the risk against the 20 mg 
kg− 1 threshold in Portugal, Scotland (in the United Kingdom - UK), 
France, Spain, Poland, Lithuania and Latvia. For the 45 mg kg− 1 

Fig. 8. Exceedance probabilities for two limits of action in Europe: 20 mg kg− 1 (top) and 45 mg kg− 1 (bottom). Results are predictions from the fitted LUCAS model 
(left), and the ratio of predictions from the calibrated GEMAS model to those of the LUCAS model (right). 
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threshold, the comparison with GEMAS indicates that the fitted LUCAS 
model may be overestimating the risk for most of Western Europe, but 
largely underestimating for the UK, Romania, Germany, Poland, 
Lithuania, Latvia and Estonia. In Sweden and Finland, both over and 
underestimation may be occurring. 

The probability of exceedance concerning the background concen
tration of 1.5 mg kg− 1 (Fig. 9) shows a high chance that the As con
centrations from the fitted LUCAS model are higher than to the natural 
occurrence levels. In several locations in Poland, Sweden, Finland, 
Latvia, Estonia, and Lithuania, such a chance does not generally exceed 
50 %. However, the comparison against the GEMAS dataset indicates 
that the risks may be underestimated in these countries. 

4. Discussion 

4.1. GAMLSS-RF approach and the drivers of as concentration in Europe 

The diagnostics made on the residuals from the fitted LUCAS model 
indicated a good fit and ability to extrapolate beyond the training dataset, 
with very few violations to the 95 % pointwise confidence intervals 
(Fig. 3). Such a result was reinforced by the mostly flat worm plots ob
tained against the validation dataset (SM1–6) for different ranges of the 
five variables with the most practical influence on the model. Model re
siduals also indicated low spatial correlation due to a high nugget-to-sill 
ratio, which indicates a non-violation of the assumption of indepen
dence between observations. Comparison against the GEMAS samples 
indicated that the values represented in our fitted LUCAS model are 
possibly underestimated, but comparison must be taken with care due to 
methodological differences. The generation of maps of median values and 
exceedance probabilities was only possible due to the assumption that the 
left tail could be reconstructed (Fig. 6, right). Although necessary to 
overcome the data limitation problems described earlier, this assumption 
is strong and can be seen as a limitation of the modeling approach itself. 
However, In comparison to other works that mapped Arsenic in Europe, 
the GAMLSS-RF model advances other assumptions beyond the incorpo
ration of censored observations. For instance, the inclusion of explanatory 
variables produces more detailed results than the kriging interpolations 
performed by Tarvainen et al. (2013), and the RF model is able to capture 
non-linear relationships, therefore extending the linear assumption of Tóth 
et al. (2016) and Rodríguez-Lado et al. (2008). Furthermore, applying a 

learning technique to censored data adds to recent efforts to improve As 
contamination mapping. Such efforts include, for example, the detection 
of As concentrations using hyperspectral data using RFs (Agrawal and 
Petersen, 2021), the use of several machine learning algorithms to esti
mate As concentrations from drone imagery (Jia et al., 2021), the esti
mation of background As concentrations using support vector machines 
(Wu et al., 2016), the prediction of sustainable As mitigation techniques 
using Naïve Bayes classifier (Singh et al., 2022), among others. 

The assessment of the importance of the input variables for the 
parameter μ was made using three different metrics, and pointed to
wards the high importance of edaphoclimatic factors and indicators of 
human influence. In decreasing order, temperature, clay content, 
phosphorus content, distance to roads and terrain elevation were found 
to be the most practically influential features (i.e., with higher practical 
importance). These variables were followed by soil pH, annual precipi
tation and distance to mines, although the statistical effect of these 
variables was usually not unanimous across all metrics used (Fig. 4). The 
linear models for the other distribution parameters indicated an effect of 
soil pH, phosphorus content and distance to mines on the shape of the 
distribution. The linear models coefficients suggest that all variables 
tend to marginally decrease σ, ν and τ, leading to different patterns, as 
described in Fig. 2. 

For the human-related factors, the one-dimensional ALE plots for the 
model variables (Fig. 5) shows that As concentrations tend to be higher 
in areas surrounding the existence of mines and roads. As is known to be 
found in metal ores (McLaren et al., 2006), and the results may be 
capturing a pattern of As accumulation in the soil as a result of human 
pollution, for example from the release of dusts and effluents (Thornton 
and Farago, 1997). Among the edaphoclimatic variables, the reasoning 
behind the temperature effect on As concentration may reflect its impact 
on solubilization and sorption rates, as well as the uptake by roots and 
leaves (Horswell and Speir, 2006). Besides, clay-sized particles include 
metal (Fe, Al, Mn) (hydr)oxides, which are the most important adsor
bents for As in soils (Voegelin et al., 2007). The relationship obtained for 
the phosphorus content may relate to the fact that this element reacts 
similarly to As in the soil environment (Adriano, 1986), to the highly 
complex interactions between their availability in soils (Jing et al., 
2022), and to the previous application of agricultural products (Jaya
sumana et al., 2015). 

Fig. 9. Exceedance probabilities for the background concentration of 1.5 mg kg− 1. Results are predictions from the fitted LUCAS model (left), and the ratio of 
predictions with the calibrated GEMAS model (right). 
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4.2. As contamination assessment and policy implications 

The country-averaged As concentration of Fig. 7 points to the exis
tence of three groups of countries: with lower (< 4 mg kg− 1), medium (4 
- 7 mg kg− 1), and higher (> 7 mg kg− 1) As concentrations. The group of 
low values is geographically clustered, with the spatial distribution of 
Fig. 6 displaying a clear difference between the As concentrations in 
Northern Europe and the other regions. These findings visually coincide 
with previous modeling efforts, such as those by Tóth et al. (2016), 
Tarvainen et al. (2013) and Rodríguez-Lado et al. (2008). This North- 
South differentiation between topsoil As concentration has been 
explained by the natural difference between Southern Europe’s older 
and more fine-textured soils and Northern Europe’s younger and more 
coarse-textured soils (Tarvainen et al., 2013). As noted by Tarvainen 
et al. (2013), the spatial pattern coincides with the areas covered by 
glacial ice in the last glacial period. A similar case is observed, for 
instance, in the concentration of Zn in European topsoils (Van Eynde 
et al., 2023). Besides, the visualization of the practical importance of 
model variables (SM11 and SM12) suggests different conditions 
affecting As concentration across countries. In the Northern countries 
mentioned above, the status of most variables with high practical 
importance in the model (e.g., temperature, clay content, and soil pH) 
leads to predominantly lower As concentrations. On the other hand, 
different dynamics are observed in the countries with the highest As 
concentrations. For example, the high As median concentrations in re
gions of Central France (Fig. 6) are correlated with a particular combi
nation of precipitation and temperature, soil phosphorus content, 
distance to mines, and terrain elevation. It is worth mentioning, how
ever, that this analysis ignores interactions between variables, which are 
presented in our model but not in the visualizations of SM11 and SM12. 

While the results of the comparison against the background con
centration (Fig. 9) indicate that most of the As found may come from 
human contamination, the comparison against exceedance probabilities 
(Fig. 8) indicate that most of Europe has a relatively small risk of 
exceeding 45 mg kg− 1. Higher risks are found in France, Austria, Spain 
and Portugal, as well as smaller contamination areas in Belgium, Ger
many, Italy and the Czech Republic. Since the highest threshold adopted 
exceeds the 40 mg kg− 1 usually used to detect harm for crop plants 
(Sheppard, 1992), these regions must take extra care for adverse effects 
that include inhibited metabolic processes and death (Mahimairaja 
et al., 2005). It must be noted that the thresholds adopted in Fig. 8 are 
not a consensus, and some regionality exists in the regulations. For 
instance, in Finland, where As concentrations are generally lower than 
in other countries (Fig. 7), the threshold for assessing contamination and 
remediation needs is 5 mg kg− 1, and the limit for ecological risks ranges 
between 50 and 100 mg kg− 1 (FME, 2007). In Sweden and Denmark, the 
screening values for residential use are 15 and 20 mg kg− 1, respectively, 
with the second value also being the threshold for Austria (Carlon, 
2007). Slovakia, Germany, and the Czech Republic adopt screening 
values of 30, 50, and 65 mg kg− 1, respectively (Carlon, 2007). In a 
slightly different context, the European Chemicals Agency (ECHA) 
evaluated the toxicity of As against terrestrial organisms, and the mean 
values of the 10 % effect concentration (i.e., EC10) ranged from 5.0 to 
142.8 mg (kg dry weight of soil)-1, depending on the species under 
consideration (ECHA, 2023). Since EC10 values correspond to the con
centrations at which 10 % of the organisms present are significantly 
negatively affected (Corn, 1993), the range presented is expected to be 
lower than other commonly used indicators, such as the LC10 and LC50 
values (i.e., the concentrations at which 10 and 50 % of the organisms 
die, respectively). The different references, together with the increased 
variability when including GEMAS observation in the analyses, suggests 
a relatively large uncertainty concerning the true risks of As concen
tration in European soils. 

Similarly to the contamination levels, the definition of background 
concentrations also varies. Beyond the 1.5 mg kg− 1 adopted, the 
Registration, Evaluation, Authorisation and Restriction of Chemicals 

(REACH) regulation from the ECHA defined the predicted no-effect 
concentration as 0.7 mg kg− 1 (Reimann et al., 2018). In Finland, the 
Ministry of the Environment defines natural concentrations as 1.0 [0.1, 
2.5] mg kg− 1 (FME, 2007), and the background concentration in 
German soils were calculated to vary spatially from the interval [0, 5] to 
> 25 mg kg− 1 (BGR, n.d.). In Sweden, sediment data from the Baltic Sea 
indicated a median pre-industrial concentration of 12.4 mg kg− 1, 
exceeding the 10 mg kg− 1 recommended by the National Environmental 
Protection Agency (Shahabi-Ghahfarokhi et al., 2021). Additionally, 
natural background concentrations in Poland were reported to vary 
between 0.8 and 9.1 mg kg− 1, 2.76 to 16.0 mg kg− 1 in the Czech Re
public, and equal to 15 mg kg− 1 in Austria (Sakala et al., 2011). In this 
sense, the large spatial variation of As concentration across Europe 
(Fig. 6) led Tarvainen et al. (2013) to state that “it is clearly not possible 
to define one background value for the whole continent”. 

Concerning policy developments, the European Commission pro
posed in 2021 the Zero Pollution Action Plan (ZPAP) to improve soil 
quality and reduce diffuse contamination, including improvements to 
air and water quality. The overarching objective of ZPAP is to create a 
toxic-free environment by reducing soil pollution to levels considered no 
longer harmful for health and ecosystems. In ZPAP, the goals of better 
preventing, remedying, monitoring and reporting on soil pollution are 
pursued by monitoring the current state of diffuse pollution in soils. In 
this sense, the present work contributes to establishing baselines of 
pollution by As, therefore aligning with the objectives of the EU Soil 
Observatory of searching for better uses of the LUCAS soil survey, and 
promoting modeling assessments to develop baseline maps of metals in 
the soil environment (Panagos et al., 2022b). In addition, the European 
Commission recently adopted new rules to increase food safety by 
reducing the presence of As in food products (i.e., Commission Regu
lation no 2023/465 of 3 March 2023). With most of the food coming 
from soils, this regulation exemplifies how policy measures could 
benefit from more knowledge of baseline indicators of heavy metal 
occurrence in European lands. As, along with Hg, Cd and Pb, has a high 
priority for the dangers it poses (Fuller et al., 2022). This and other legal 
efforts could help prevent industrial abuse in the application of As-based 
products. 

Furthermore, the proposed Soil Monitoring Law has three main ob
jectives: i) “a solid and coherent monitoring framework for all soils 
across the EU”, ii) “making sustainable soil management the norm in the 
EU”, and iii) “requesting Member States to identify potentially 
contaminated sites and contributing to a toxic free environment by 
2050” (EC, 2023b). In this context, the proposed As map of the European 
Union is a baseline that contributes to the estimation of diffuse soil 
contamination. The present work aligns with past efforts to map other 
elements in soil, such as Cu (Ballabio et al., 2018), Hg (Ballabio et al., 
2021), and Zn (Van Eynde et al., 2023), and the development of a high 
resolution As dataset as well as the investigation of the main natural and 
anthropogenic variables correlated with increased As concentration 
contribute to a better understanding of soil contamination in the EU. 

5. Conclusions 

In this work, a model called GAMLSS-RF was proposed as an alter
native to mapping As concentrations in Europe while dealing with data 
censoring issues that appear in the LUCAS database. GAMLSS-RF 
allowed modeling highly nonlinear interactions among variables while 
establishing a coupled model for the left and right parts of data (i.e. 
below and above the LUCAS detection limit of 2.84 mg kg− 1, respec
tively) in such a way that an additional assumption leads to the recon
struction of the unobserved left tail. Before the fitting procedure, the 
observations were split into training and validation datasets, and the 
analysis of residuals showed a consistent performance of the fitted 
model against all datasets. An interpretation of the statistical importance 
of model variables showed a reasonable behavior, with edaphoclimatic 
and human-related variables playing a relevant role in the prediction of 
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As concentrations. 
Compared to other existing approaches to map As at the European 

level, the present work contains a higher spatial resolution and presents 
more adequate modeling assumptions, thus advancing towards more 
realistic spatial representations. The approach also allows the incorpo
ration of observation from external data sources, which helps to un
derstand the uncertainties of the analysis developed. The results 
indicated a high spatial variability of As concentrations in Europe, and 
countries such as Portugal, Belgium, Austria, France and Spain present a 
non-negligible risk of exceeding even the highest limit of action 
considered in the analysis (i.e., 45 mg kg− 1). Results also indicated a 
high chance of human-related contamination of As in the whole of 
Europe, but the background concentration adopted is highly uncertain 
(i.e., 1.5 mg kg− 1) and other threshold values could be checked for the 
whole EU when consolidated. The proposed GAMLSS-RF approach can 
be adopted by researchers facing similar limitations in other contexts, 
and the findings presented in this work can help support future assess
ments of soil health and pollution at a continental level, as well as its 
ecotoxicological implications. 

6. Data availability 

The datasets generated are available in the European Soil Data 
Centre 2.0 (ESDAC) (ESDAC, 2023; Panagos et al., 2022a). 
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