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Abstract 

Global eating habits cause health issues leading people to mindful eating. This has directed attention to applying deep learning 

to food-related data. The proposed work develops a new framework integrating neural network and natural language processing 

for classification of food images and automated recipe extraction. It address the challenges of intra-class variability and inter-class 

similarity in food images that have received shallow attention in the literature. Firstly, a customised lightweight deep convolution 

neural network model, MResNet-50 for classifying food images is proposed. Secondly, automated ingredient processing and recipe 

extraction is done using natural language processing algorithms: Word2Vec and Transformers in conjunction. Thirdly, a 

representational semi-structured domain ontology is built to store the relationship between cuisine, food item, and ingredients. 

The accuracy of the proposed framework on the Food-101 and UECFOOD256 datasets is increased by 2.4% and 7.5%, respectively, 

outperforming existing models in literature such as DeepFood, CNN-Food, Wiser, and other pre-trained neural networks. 
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People have become more mindful about healthy eating. 

This has led to an increase in interest in healthy home cooking 

[1]. Culinary styles, known as cuisine, closely mirror 

individuals’ eating habits, and there is a trend of people 

learning cooking through online resources. This trend has led 

to an increased circulation of food-related images on the 

internet and has opened up a lot of challenges in the field of 

Computer Vision and Artificial Intelligence [2]. Automated 

classification of diverse food images in different cuisines, 

estimating the platter nutritional quantity, identifying the 

ingredients from the food images, diet analysis, and food 

preference learning are a few areas of re- 
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search attraction in recent days [3]. This demands training 
machines to understand the realm of culinary arts and hence 
can be suitably modified for specific applications. 

Machine Learning inferential models plays a vital role in diet 
monitoring, calorie calculation, food weight estimation, and 
ingredient identification apps in day-to-day life [4]. However, 
these models often require extensive training and may be 
susceptible to errors due to human input. For instance, a user 
might upload an image of a food platter, hoping the application 
can identify the ingredients and provide a recipe for preparing 
it. Indeed, food images are examples of fine-grained visual 
recognition because they are non-rigid and have intrinsic 
properties. 
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Figure 1: Food Variants 

Inter-class similarity [5] and intra-class variability [6] are the 
another characteristic of food images that render it hard to 
classify. The Fig. 1 (a) includes images of pasta, noodle, and 
salads, appear to be similar despite coming from different 
classes, demonstrating inter-class similarity. Alternately, the 
Fig. 1 (b) include images of different types of pizza and despite 
being in the same class, they look dissimilar demonstrating 
intra-class variability. 

Most food categorization and ingredient detection systems 

rely on human validation to verify their predictions, often 

employing algorithms like k-Means, Support Vector Machines 

(SVM), and Vocabulary Trees [7]. Other studies focus on 

developing Convolution Neural Networks (CNN) for processing 

food images [8, 9, 10]. These self-learning CNN mod- 
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els are robust than human-validated ones, and exhibit superior 

performance in object identification, boundary detection, 

pattern/texture identification, etc. 

A customised AlexNet Deep CNN (DCNN) model is 

introduced in [8], trained using the extensive ImageNet 

database and applied to the UECFOOD100 and UECFOOD256 

datasets. The RootHoG feature extraction method was 

employed and the model’s performance is compared against 

the Foodness Classifier (FC) model [9]. One of the main 

concerns in [8] DCNN model was the high number of 

parameters. The FC model in [9] is trained by tuning its 

hyperparameters over 470,000 food pictures scraped from 

Twitter to classify the image into 100 different classes. The 

model was trained with the UECFOOD256 databases and Food-

101 databases [10] and recorded an accuracy of 94.3% on ’beef 

raman noodle’ and 92.7% on curry. 

The area of food image analysis faces several challenges 

regardless of whether a supervised learning algorithm, an 

unsupervised learning algorithm, or a deep neural network 

algorithm is used. Most existing research works apply these 

algorithms and models on the benchmarked datasets and 

medium-scale image datasets or endeavor to build a fully 

automated system without human intervention. Also, there 

exists an unintentional bias in classifying food images across 

different classes; heterogenous food image databases are 

another notable factor. To address these challenges and 

shortcomings of existing methods, the proposed approach 

focuses on building a comprehensive Food Classification and 

Recipe extraction by utilising an FC&R-CNN model with 

enhanced robustness to extract features from the food images. 

The utilization of Natural Language Processing (NLP) becomes 

essential for the efficient extraction and processing of recipes, 

cuisines, and food classes. Hence, NLP is introduced to discern 

and establish relationships within these elements, enhancing 

the effectiveness of recipe extraction and processing. This is 

achieved through the following novel developments: 

1. A custom-made CNN network architecture, MResNet-50 

is built as a modified version of ResNet-50 and then is 

employed to classify images in UECFOOD256 and 

Food101 datasets. The MResNet-50 is applied to the 

UECFOOD256 dataset and Food-101 dataset to classify 

the images and it is found that MResNet-50 

outperformed ResNet-50 by achieving higher accuracy on 

both datasets. 

2. We propose to automatically identify and label the 

ingredients in the image using Natural Language 

Processing (NLP) techniques namely Word2Vec and 

Transformers and extract appropriate recipes from the 

Recipe1M+ and Recipe Ingredient datasets. 

3. An ingredient-recipe hierarchical domain ontology is built 

to link ingredients, recipes, and cuisines facilitating 

structured knowledge organization. It automatically 

establishes relationships between ingredients, 

encompassing various food types and cuisines. 

Additionally, it identifies and categorizes food types 

containing allergens, promoting informed food choices. 

The primary objective of the MResNet-50 model is to 

achieve fine-grained classification of food images by effectively 

 

Figure 2: A schematic illustrating the organization of the paper and its 
associated objectives. 

discerning inter-class similarities and intra-class variabilities, 

utilizing its specifically designed layers for this purpose within 

the CNN model. Unlike existing literature models that rely on 

human intervention, the CNN model operates independently 

and does not necessitate human verification. 
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To assess its effectiveness, the model’s performance is 

compared against those in the literature that require human 

intervention and struggle with identifying inter-class 

similarities and intra-class variabilities in images. This 

comparative analysis demonstrates that the proposed model 

achieves superior accuracy, confirming its capability in 

precisely classifying interclass similarities and intra-class 

variabilities. 

As part of objective 3, a domain ontology specific to food 

images is constructed. Given its semi-supervised nature, the 

domain ontology allows for human intervention to evaluate 

classification quality and validate the model for potential 

future applications, if necessary. 

The images depicted in Fig. 1 (a) and Fig. 1 (b) are sourced 

from the Food-101 and UECFOOD256 datasets, respectively 

which demonstrates inter-class similarity and intra-class 

variability. These images are considered as a basis for a brief 

case study analysis. In subsequent experiments, they are 

inputted into the proposed framework, the MResNet-50, 

which effectively classifies the images. Additionally, 

ingredients and cuisine are identified using the suggested NLP 

method, and the ontology is further updated with the 

pertinent information related to these images. 

The rest of the paper is organized as follows. Section II 

reviews background research in food image classification, 

recipe extraction using NLP, and methods that use domain 

ontology for food-related applications. Section III provides a 

detailed explanation of the FC&R CNN which in three modules: 

the DCNN model (MResNet-50), recipe extraction algorithms in 

NLP, and food domain ontology. In Section IV, presents the 

implementation process and experimental findings. Section V 

concludes the paper by listing potential enhancements for 

future research. 

2. Related work 

This section explores the existing literature on classifying 

food images, identifying and labeling food items, extracting 

ingredients, and using ontologies for food-related applications 

corresponding to the objecctives. However the following 

sections and subsections are also framed each corresponding 

to one objective as shown in the Figure 2 

 

Figure 3: A Collection of Food Image Datasets 

2.1. Food Image Classification and Labelling 

Research in food image classification has led to 

advancements in visual and feature-based recognition, making 

it possible to extract abstract information from food images 

using machine learning algorithms. Yang et al. [11] recognize 

the food by assigning a label to each of the pixels in the image 

which are then distributed over a histogram. The combined 

histogram from different portions of the image is taken as the 

feature vector and passed on to the discriminant classifier to 

recognize the food type. This method is termed Pairwise 

Feature Distribution (PFD). Although this method works 

effectively to detect food types in highly pixelated images, their 

performance tends to scale down in clustered images. The 

research presented in [12] uses Scale Invariant Feature 

Transformation (SIFT) to identify food types in images with 

variations in deformations and geometry. Despite being able to 

identify the food type in images with deformations and 

geometric variations, this approach has limitations as it cannot 

handle texture invariance in images. The list of food image 

datasets used in literature is shown in Fig 3. Following SIFT, a 

Non-redundant local binary pattern (NRLBP) is applied in [13] 

to extract the interest points in the image and and categorizes 

their appearance. However, there is room for analysing the 

structural invariance in the food images. 

Alternately, a 2-step model is proposed in [14] on PFID 

dataset [15] to detect candidate regions in an image using 

region segmentation. DPM uses the sliding window to slide 

over the image making it computationally expensive and 

achieves a classification rate of 55.8%. A multi-ranking 

framework with modified growing region segmentation and 

SVM is proposed in [16]. It segments a food image into smaller 

regions and calculates similarity within pixels. The 

segmentation process is validated by human evaluation on 20 

food images, achieving an accuracy of 61% for 17 food items. 

However, identifying tiny food ingredients with varying 

textures and colors would be more challenging and time-

consuming. Another movable bounding box algorithm to 

identify the individual objects in an image is proposed in [17]. 

SVM with Linear kernel is applied to achieve a classification 

rate of 81.55%. The majority of recent work uses SVMs for 

classification and despite their popularity, SVMs perform 

poorly on large datasets and images with cluttered objects. 

Several deep learning algorithms are designed specifically for 

the classification of food images. The author in [18] proposes 

Im2Calories, which uses the GoogleNet CNN model on 

Food101 and MenuMatch dataset for calorie estimation of the 

food platter. This technique works effectively with raw, 

uncooked foods than cooked food because food change colour 

when they are cooked. 

CNNs have been used extensively in the food image 

processing. Krizhevsky CNN [19] is trained with ImageNet to 

extract the colour features from the image. Comparing the 

Krizhevsky CNN’s performance to that of the Spatial Pyramid 
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Matching (SPM) algorithm and the conventional SVM 

algorithm, the Krizhevsky CNN outperforms the other two 

benchmark techniques. 

Bounding boxes are used to identify and categorise the 

objects in an image, based on which several DCNN networks 

are proposed in the literature [20]. These networks typically 

extract both high-level and pixel-level features from the image. 

The bounding boxes are formed by dividing the image into 

regions using: R-CNN [21], Fast R-CNN [22], Faster R-CNN [23], 

Mask R-CNN [24] models. Regression-based bounding boxes 

based on class probabilities are framed using YOLO [25], 

YOLOv2 [26], SSD [27], DSSD [28] CNN models. In General, 

CNN frameworks like AlexNet, VGGNet, ResNet, and DarkNet 

are used for object detection. Inspired by ResNet [29], a robust 

feature extractor DarkNet-53 [30], is developed, and almost all 

the variants of the ResNet models have succeeded in providing 

excellent results with many datasets and benchmark 

applications. Different ResNet models, including ResNet-18, 

ResNet-19, ResNet-20, and ResNet-34 using CIFAR datasets, are 

mentioned in a recent work [31, 32]. The reason the authors in 

[31] have decided to investigate ResNet models is that they 

utilise less energy than other pretrained networks, which 

motivated us to further investigate ResNet and introduce a 

modified version of it for the proposed study. A Wide 

Hierarchical Subnetwork-based Neural Network (Wi-HSNN) is 

applied in [13] which employs a subnet-based iterative training 

and a batch-by-batch parallel scheme. This approach is 

particularly useful for processing large-scale datasets but faces 

the drawbacks of subnetwork algorithms. 

2.2. Recipe Extraction 

The process of extracting a food’s recipe based on its 

ingredients requires the application of NLP techniques and a 

detailed understanding of the semantic relationships between 

ingredients. Probabilistic models, Bayesian models, Neural 

network models, Text processing models, and several other 

models are proposed in the literature for recipe extraction. 

A graphical model in NLP, Conditional Random Field (CRF) is 

applied to the VIREO Food-172 dataset and the corpus from 

the ’Xinshipu’ website [33]. The graphical model, G is a 

collection of ingredients and contains N vertices representing 

the ingredients. The model generates a matching score that is 

matched against corresponding recipe’s CRF. However, it is a 

computationally expensive process and demands more 

training time. A probabilistic Bayesian cuisine topic model is 

used for recipe identification from food images in [34]. It 

applies probability distribution using a Gaussian kernel over 

Yummily66K and also compares the result with the Bayesian 

model and Boltzmann machines. Nevertheless, the topics 

under which the cuisines are classified are statically fixed but 

have to vary dynamically as different food styles evolve. 

A joint neural embedding with Long-Short Term Network 

(LSTM) is used for learning the recipe-image pair in Recipe1M 

corpus [35]. It trains the neural network by embedding the 

recipes with the food images. ResNet-50 and VGG-16 models 

are executed over the dataset in three versions: fixed vision, 

fine-tuning, and semantic regularization. The semantic 

embedding approach outperforms the other two in both the 

ResNet50 and VGG-16 CNN models. Although semantic 

embedding is taken into account, many of the foods prepared 

today use ingredients that are in new and unusual 

combinations, which makes the process challenging. An 

extended VGG and multitask CNN is applied in [36]. Term 

Frequency–Inverse Document Frequency (TF-IDF) and 

Word2Vec from NLP are applied for recipe extraction. The 

ingredient vector vj corresponding to rj recipe data is defined 

by vj = 
P

k
N

=1 tf −id fk,j∗Word2Vec(wk), where N is the count of 

words corresponding to a recipe, Word2Vec() is the vector 

derived for the specific word wk, and tf − id f is the TF-IDF value 

of the ingredient in the recipe. VGG, on the other hand, is more 

computationally intensive than ResNet models. 

2.3. Domain Ontology for food based applications 

Domain ontology is a knowledge framework of specific 

concepts that are designed to a specific domain and is 

extensively applied in many different applications. However, 

little research is done in the area of food ingredient-recipe 

background. FoodOn [37] is a specific food ontology that 

provides the semantics of food nutritional facts, chemical 

ingredients, and nutritional components. But it contains a lot 

of information about food-related nutrition facts than food-

recipe itself. FoodKG [38] proposes a food ontology graph that 

recommends food to the user based on nutritional facts on a 

day-to-day basis. Each of the ingredients, its corresponding 

recipes, and their nutritional composition is represented as 

entities and relationships in the ontology hierarchy. NLTK 

toolkit is also used to manage the queries raised by the users 

and nouns, verbs, adverbs are handled by 

WordNetLemmatizer. FoodKG is linked to FoodOn and 

semantic descriptions from USDA (the U.S. Department of 

Agriculture) but yet designed with very minimal ontological 

conceptualization. 

3. Materials and Methods 

In this section, we discuss the proposed approach in three 

folds. 

3.1. Proposed DCNN Model 

CNNs are layered architecture that is helpful for image 

labeling, annotation, classification, etc. These multi-layered 

neural network process the input images with minimal 

preprocessing. Almost all the pre-trained CNN architectures 

are trained with ImageNet Dataset (The biggest repository of 

1.2 million highresolution images). The ImageNet Large-Scale 

Visual Recognition Challenge (ILSVRC) competition evaluates 
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neural network algorithms developed for image classification 

[19]. It is obligatory to report top-1 % and top-5 % error rates 

when the 

 
 (b) Proposed (c) Identity block and Convolution block — 
(a) ResNet-34 MResNet-50 MResNet-50 Proposed model 

Figure 4: Building blocks 

Imagenet dataset is used over any CNN architectures. Top-1 % 

accuracy is obtained when the image is rightly identified. 

Alternatively, Top-5% accuracy is achieved when the predicted 

result matches with the top 5 images that are identified by 

ImageNet. A CNN is trained using ImageNet to carry out a 

particular task, initial weights are assigned to the network 

links, and the transfer learning approach is used to use the 

learned information to complete another task. 

CNN networks are modeled with several convolution layers 

followed by at least one fully connected layer with a set of 

nodes that corresponds to the number of image classes. 

ResNets, the residual network model was developed by He et 

al., in the year 2016 [29]. The ResNet-50 model is designed 

with 48 convolutional layers, one max pooling layer, and one 

fully connected layer. As compared to AlexNet and VGGNet, 

ResNet exhibits superior generalization performance with 

essentially fewer parameters compared to other models. 

Deeper CNNs like AlexNet would typically increase accuracy, 

but they would cause vanishing gradient problems [39]. 

ResNet, on the other hand, introduces a skip connection to 

solve the issue of vanishing gradients in deep layers 

Fig. 4 (a) & (b) shows the building block of the ResNet model. 

The input x is passed into the first layer and is processed by a 

mapping function H(x) to produce an output function F(x), 

where F(x) = H(x) − x. The input x is again passed to layer 3 

skipping layer 2. Hence layer 3 reads input x explicitly and 

draws an identical pattern from it. Although the layers are 

stacked, the input is skipped to the middle layer, referring to it 

as a ”skip connection,” and since identity mapping is carried 

out, neither the parameters nor the complexity is increased. 

The proposed MResNet-50 model is designed to use swish 

activation function in all its building blocks (Fig. 4 (b)). 

The swish activation function [40] proposed by Google 

outperforms Relu activation function at many occasions during 

image classification. The function swish,f(x) = x.sigmoid(x) i.e. 

f(x) = f(x) = 1+
x
e−x as compared to relu, f(x) = max(0, x), used in 

Inception-ResNet-v2 and Mobile NASNetA shows improved 

accuracy of 0.9% and 0.6%, respectively over ImageNet 

dataset. Inspired by the properties of swish being a non-

monotonic, smooth, and self-gated function, the performance 

of MResNet-50 further increases with swish. The two building 

blocks of the MResNet-50: Identity block and Convolution 

block are shown in Fig. 4 (c). The identity block produces an 

output: swish((block3(block2(block1(x))))+ x) and the output 

produced by convolution block would be: 

swish((block3(block2(block1(x)))) + batch  norm(conv2D(x))) 

with x as input. 

The MResNet-50 model is designed in five stages with 50 

layers. The MResNet-50 model is designed to be lightweight as 

the 

1. The first stage is designed with the convolution operation 

of 64 kernels each with a kernel size of 7*7 with a stride 

of 2. Following this, batch normalization, swish activation, 

and max pooling operation are done. This is the first layer 

of MResNet-50. 

2. The second stage has one convolution block and two 

identity blocks. In each block three convolution 

operations are carried out with a kernel size of 1*1, 3*3, 

and 1*1 and a corresponding kernel count of 64, 64, and 

256. This adds 9 layers to the MResNet-50. 

3. The third stage has one convolution block and three 

identity blocks. In each block three convolution 

operations are carried out with a kernel size of 1*1, 3*3, 

and 1*1 and a corresponding kernel count of 128, 128, 

and 512. This adds 12 layers to the MResNet-50. 8% of the 

filters are reduced in this layer following the final identity 

block. 

4. The fourth stage has one convolution block and five 

identity blocks. In each block three convolution 

operations are carried out with a kernel size of 1*1, 3*3, 

and 1*1 and a corresponding kernel count of 256, 256, 

and 1024. This adds 18 layers to the MResNet-50. 10% of 

the filters are reduced in this layer following the final 

identity block. 

5. The fifth stage is similar to stage 2 but with a kernel count 

of 512, 512, and 2048 respectively for each layer. This 

adds 9 layers to the MResNet-50. 

6. This is followed by the average pooling, layer flattening, 

fully connected layer, and a softmax function. It adds 1 

layer to the MResNet-50. 

On the whole, they all add up to 50 layers in the MResNet-50. 

The swish activation function is used in all the layers, and the 

model is trained and tested while the epoch and optimizer are 

changed and validated. 
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3.2. Automated Ingredient Identification using NLP 

Following the food images classification in the Food101 and 

UECFOOD256 datasets, the Recipe1M+ dataset and the Recipe 

Ingredient datasets are processed using the Word2Vec 

algorithm to learn the dependencies between the ingredient 

and food classes. 

The Word2Vec converts every word into a vector 

representation without losing its syntactic and semantic 

properties. It applies the Cosine function and finds the 

correlation between the words. Since Word2Vec is a two-

layered network with one hidden and one output layer. The 

Word2Vec learns by speculating on the words around the input 

word of the food item using the formula: Word2Vec(wordin) = 

wordin ∗ P(word
wordoutin ) i.e. 

 

 (a) skip-gram model (b) Word Embedding & similarity calculation 

Figure 5: Word2Vec 

Word2Vec(fooditem) = fooditem ∗ P(∀wordsinsentencefooditem ). 

Word2Vec uses the Skip-gram approach to predict the 

probability of the context given the name of the food item (Fig. 

5(a)). For example, to search for the word ’mac and cheese’ in 

a random sentence one-half teaspoon of chitpole makes a spicy 

mac taken from the Recipe1M+ dataset, the probable 

predictions are 

P(macandcheeseone−half), P(macandcheeseteaspoon ), P(macandcheeseof ), 

P(macandcheesechitpole ), 

P(macandcheesemakes), P(macandcheesea), P(macandcheesespicy ), 

P(macandcheesemac ). 

For every word wordposition = [1,2,3,4,...P] in the randomly 

chosen sentence within a fixed window size of s, the context 

within the words is calculated. The likelihood of the prediction 

is given by 

likelihood(Θ) = 
Q

i
P

=1 
Q

−s⩽j⩽s,j,0 P(wordi+j|wordi;θ) which is 

likelihood(Θ) = 
Q

i
P

=1 
Q

−s⩽j⩽s,j,0 P(wordout|wordin;θ). The word 

out slides every word in the sentence and the 

P(wordout|wordin) is calculated by 

P(wordout|wordin) = P

∀windowexp(wordexp(wordin∗wordin∗wordout) out). 

The softmax function is applied on wordin ∗ wordout and for 

every food item that is passed into the untrained model, the 

embeddings are mapped, probability prediction and likelihood 

are calculated, and the output vocabulary softmax(wordin ∗ 

wordout) is predicted (Fig. 5(b)). In simple words, the Skipgram 

algorithm, part of the Word2Vec framework, is extensively 

utilized for learning word embeddings. These embeddings 

represent words in a continuous vector space and are designed 

to predict surrounding context words based on a given target 

word. This approach effectively captures semantic 

relationships between words. The food item identified by the 

Word2Vec and MResNet-50 models is validated against various 

window sizes/embeddings during the training phase until the 

best embedding with the highest score that shows the highest 

similarity is found. The embeddings that generate a negative 

error score are ignored while training the next food item saving 

the execution time. 

The transformers are another tool for finding the long-term 

dependencies between the text contents [41]. The transformer 

has two parts encoder and a decoder. The architecture of the 

transformer is shown in [42]. The encoder and decoder have 

multi-head attention and feed-forward blocks. In addition, the 

decoder has a masked multi-head attention block. The encoder 

maps the word representation word = [w1,w2,w3,w4,...wP] to a 

sequence of continuous values z = [v1,v2,v3,v4,...vP], the 

decoder utilises the results of the previous iteration and then 

generates output words in an autoregressive fashion. A 

pointwise convolution with fully connected layers and a 

stacked selfattention unit is used in both the encoder and 

decoder units. 

The attention function takes the query and key-value pair as 

input and outputs a weighted sum of a value. The 
Query∗KeyTranspose 

attention(Query, Key,Value) = softmax
( 

sqrt(DimensionKey)) ∗ Value where dimensionkey is the dimension of 

the query and key. The multi-head attention function in the 

decoder instead of performing dot-product of queries with 

keys projects the querykey value N times, and the results of 

each of the projections are finally concatenated 

multiheadattention(Query, Key,Value) = 

Concatenation(A1, A2,..AN) where Ai represents the 

attention(Query, Key,Value) for every ith projection. In the 

proposed method, we train the model with sentences from 

Recipe1M+ and Recipe Ingredient dataset and each training 

batch includes a sentence with a word length of 100. The 

training period in our machine took 0.02 seconds and the 

overall training time was around 32 mins significantly smaller 

than the preprocessed dataset. Alternately during the initial 

execution of the transformer model architecture, it took 12 hrs 

for training 36 million sentences in 100,000 steps. One of the 

effective features of the transformer model is the attention 

mechanism and this capability allows transformers to handle 

all words or tokens simultaneously, enhancing processing 
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speed and facilitating the development of larger language 

models. The proposed approach integrates both Word2Vec 

and Transformers to effectively manage short words and 

lengthy sentences, particularly in reverse order. This 

integration results in the creation of a robust automated recipe 

extraction model. 

3.3. Food Domain Ontology 

A directed graphical ontology is developed using the Protege 

tool. The food items, ingredients, and cuisine are considered to 

be the main classes and each of their occurrence would be an 

instance. The relation between the food item and the 

ingredient would be a ’has ingredient’ relationship, and 

similarly, there are many other relationships like ’use together’, 

and ’check for allergen’. The items used in the ingredients may 

be a simple mixture or compound mixture and are also 

specified in the ontology. The proposed one is capable of 

accommodating many hierarchies and its semi-supervised. The 

hierarchy can be extended to make it deeper still keeping the 

model faster. Food items and ingredients identified by the 

model in the aforementioned section are stored in the 

ontology. 

For a specific cuisine, there may be a number of food items, 

but a few might be prepared using the staple ingredients and 

many of them are made from the same ingredients but in a 

different form. For example, the dish Gratin (id 30 in 

UECFOOD256 category) is a French Cuisine and can be made 

with breadcrumbs, grated cheese, egg, butter with many other 

vegetables. Alternately, Gulai (id 231 in UECFOOD256 

category) is Indonesian cuisine and is made with completely 

different types of ingredients. Though there are a number of 

cross relations between the cuisine, food items, and 

ingredients the ontology always organises to bring them into a 

structure. 

4. Experiments and Results 

The proposed framework is executed in a x86-64 machine 

(minimal 32GB) connected to NVIDIA TITAN X (32GB dedicated 

memory) GPU including a software stack comprising of GPU 

driver 352.68 or newer, a CUDA toolkit of 8.0 or newer, a 

python version 3.7 or compatible version beyond 2.7. The 

execution environment is pytorch build stable (1.13.1), 

package CONDA, language python and computation platform 

CUDA. We selected the specified hardware because the chosen 

hardware configuration possessed sufficient speed to manage 

the extensive datasets we were working with and the 

algorithms we designed. Above all it was readily accessible to 

us. The reason for creating a customised CNN architecture is 

that it is optimized and trained to excel at the detection of 

patterns and intricate features within and across food images. 

This customized model strikes a balance between the task’s 

complexity and the computational resources at hand. 

Moreover, it integrates domain-specific insights by 

incorporating a domain ontology. The fine-tuning of 

hyperparameters is conducted systematically to enhance the 

model’s performance for the targeted application. 

4.1. MResNet-50 performance analysis 

The MResNet-50 model is trained using ImageNet and the 

weights are reused for classifying images in Food-101, and 

UECFOOD256 datasets. The input image to the ResNet50 

model is of size 256*256 with 3 slices of RGB image taken from 

both datasets. The model is trained and tested against three 

optimizers: Adaptive moment estimation (Adam), Stochastic 

Gradient Descent (SGD), and SGD with momentum. The 

performance of the model is analysed with each of the 

aforementioned optimizers and using three loss functions: (1) 

Angular Softmax, (2) Categorical Cross-Entropy, and (3) Large 

Margin Softmax Loss. In addition, the batch size, validation 

split, and epoch are varied, and the model’s performance is 

measured using several metrics: training loss, test loss, training 

accuracy, test Accuracy, precision, and F1 score. A very detailed 

layer architecture of the proposed MResNet-50 is explained 

below and shown in Fig. 6 and the below steps shows how it is 

made lightweight by introducing the pruning operation at 

intermediary stages: 

1) In the 1st layer-1st stage, the input image of shape 

(256*256*3) corresponding to (image height, image width, 

channels) is passed into the MResNet-50 model. The input 

image is zero-padded with (3*3) matrix and is then subjected 

to 2D convolution operation between input image (256,256,3) 

and 64, (7*7) kernel with stride 2. Both the input image and 

kernels are square in shape. The spatial dimension of the 

resultant feature map is calculated us- 

ing jinputsize

(height/widthstrides)+2∗padding−kernelsizek + 1. This implies 
j 

1 giving 128 as the dimension of the new feature map. It 

produces a resultant feature map of size (128*128*64). 

Following this Batch Normalization is executed with axis 

value=3, swish activation function, and max pooling with (3*3) 

kernel size with a stride of 2. The shape of the new 

feature map after max pooling is calculated using 

jinputsize(height/width)−kernelsizek jk 

strides +1 which implies +1 which gives 

a feature map with a dimension of (63*63*64). 2) In 2nd layer-

2nd stage, the feature map (63*63*64) is subjected to a 2D 

convolution operation with 64, (1*1) kernel with a stride=1 and 

padding=0. The resultant feature map is of size (63,63,64). This 

is followed by Batch Normalization with axis value=3 and swish 

activation function. 

3) In 3rd layer-2nd stage, the feature map (63*63*64) is 

subjected to a 2D convolution operation with 64, (3*3) kernel 

with a stride=1 and padding=1. The resultant feature map is of 

size (63,63,64). This is followed by Batch Normalization with 

axis value=3 and swish activation function. 
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4) In 4th layer-2nd stage, the feature map (63*63*64) is 

subjected to a 2D convolution operation with 256, (1*1) kernel 

with a stride=1 and padding=0. The resultant feature map is of 

size (63,63,256). This is followed by Batch Normalization with 

axis value=3 and swish activation function. 

The feature map out of the 1st layer-1st stage is subjected to 

2D convolution with 256, (1*1) kernel, stride=1, padding=0 

followed by batch normalization and produces an output 

feature map (63,63,256) that is added to the output feature 

map from 4th layer-4th stage (63,63,256). This is subjected to 

the swish activation function and the (63*63*256) feature map 

is passed to the next layer. 

5) The 5th, 6th and 7th layer in stage 2 performs the 

same functions similar to 2nd, 3rd and 4th layer in stage 2. 

Alternately, the output feature map out of the 4th layer-2nd 

stage is added to the output feature map of the 7th layer-2nd 

stage and subjected to the swish activation function. 

6) The 8th, 9th and 10th layer in stage 2 performs the 

same functions similar to 2nd, 3rd and 4th layer in stage 2. The 

output feature map out of the 7th layer-2nd stage is added to 

the output feature map of the 10th layer-2nd stage and 

subjected to the swish activation function. Following which 8% 

of the layers are pruned to ensure that the model is made 

lightweight. 

7) In the 11th layer-3rd stage, the feature map 

(63*63*256) is subjected to a 2D convolution operation with 

128, (1*1) kernel with a stride=2 and padding=0. The resultant 

feature map is of size (32,32,128). This is followed by Batch 

Normalization with axis value=3 and swish activation function. 

8) In 12th layer-3rd stage, the feature map (32*32*128) 

is subjected to a 2D convolution operation with 128, (3*3) 

kernel with a stride=1 and padding=1. The resultant feature 

map is of size (32,32,128). This is followed by Batch 

Normalization with axis value=3 and swish activation function. 

9) In the 13th layer-3rd stage, the feature map 

(32*32*128) is subjected to a 2D convolution operation with 

512, (1*1) kernel with a stride=1 and padding=0. The resultant 

feature map is of size (32,32,512). This is followed by Batch 

Normalization with axis value=3 and swish activation function. 

The feature map out of the 10th layer-2nd stage is subjected 

to 2D convolution with 512, (1*1) kernel, stride=2, padding=0 

followed by batch normalization and is added to the output 

feature map from the 13th layer-3rd stage. This is subjected to 

the swish activation function and the (32*32*512) feature map 

is passed to the next layer. 

10) The batch of (14th, 15th, 16th), (17th, 18th, 19th), 

(20th, 21st, 22nd) layer performs operation similar to (11th, 

12th, 13th) layers. The resultant of it is a (32*32*512) feature 

map. Following this, 10% of the layers are pruned to ensure 

that the model is made lightweight. 

11) In 23rd layer-4th Stage the feature map (32*32*512) 

is subjected to a 2D convolution operation with 256, (1*1) 

kernel with a stride=2, padding=0. The resultant feature map 

is of size (16*16*256). This is followed by Batch Normalization 

with axis value=3 and swish activation function. Layers 24th, 

and 25th are then executed in the same way as followed in the 

12th and 13th layers but with a kernel count of 256 and 1024. 

Following this, the convolution block is applied. The resultant 

of this layer would be a (16*16*1024) feature map. 12) The 

batch of (26th, 27th 28th), (29th, 30th, 31st), (32nd, 33rd, 

34th), (35th, 36th, 37th), (38th, 39th, 40th) layer performs 

operation similar to (23rd, 24th 25th) layers. However, 

following each of these batches, the identity block is applied. 

The resultant of this layer would be a (16*16*1024) feature 

map 13) In 41st layer-5th Stage the feature map (16*16*1024) 

is subjected to a 2D convolution operation with 512, (1*1) 

kernel with a stride=2, padding=0. The resultant feature map 

is of size (8*8*512). This is followed by Batch Normalization 

with axis value=3 and swish activation function. Layers 42nd, 

and 43rd are then executed in the same way as followed in the 

24th and 25th layers but with a kernel count of 512 and 2048. 

Following this, the convolution block is applied. The resultant 

of this layer would be an (8*8*2048) feature map 

14) The batch of (44th, 45th, 46th), (47th, 48th, 49th) 

layer performs operation similar to (41st, 42nd, 43rd) layers. 

However, following each of these batches, the identity block is 

applied. The resultant of it is an (8*8*2048) feature map. 

15) The 50th layer performs average pooling. In average 

pooling the (8*8*2048) feature map is reduced to (4*4(2048). 

This is followed by a flattening and a softmax layer. 

The results of the MResNet-50 model are applied to the 

Food-101 dataset Table 1 with a split ratio of 80:20 for training 

and testing. The experimental analysis is carried out with batch 

sizes of 16 and 32 and alternating with changing epochs of 10, 

35, and 50 respectively for each of the optimizers Adam, SGD, 

and SGD-w-M (SGD with Momentum). 

It is observed that the batch size and the number of epochs 

have an impact on the results produced by the three 

optimizers. During the testing and training phases of the 

MResNet-50, the loss values and accuracy values for each of 

the three loss functions are measured. The accuracy value 

achieved during testing for all three optimizers is slightly less 

than training, although the difference is not exceptionally 

significant. Hence, the MResNet-50 model is neither 

underfitting nor overfitting, as evidenced by the results. The 

model can predict accurately for testing data since it has 

learned adequately from the training data. The subsubsections 

4.1.1 and 4.1.2, address the results of the FOOD-101 dataset 

and the UECFOOD256 dataset, respectively. The results 

obtained on the FOOD-101 dataset and the UECFOOD256 

dataset are separately mentioned in Table 1 
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Batc

h 
Size 

Optimiz

er 
Epoch

s 

Angular Softmax loss Categorical Cross 

entropy loss 
Large Margin Softmax 

Loss 
Loss  Accuracy Loss  Accuracy Loss  Accuracy 

Train Test Train Test Train Test Train Test Train Test Train Test 

16 Adam 10 0.088

1 
0.095

4 
0.833

1 
0.8040 0.087

4 
0.092

9 
0.827

3 
0.798

2 
0.088

6 
0.094

1 
0.828

5 
0.799

4 
16 Adam 35 0.069

7 
0.079

0 
0.871

9 
0.8346 0.092

4 
0.098

3 
0.865

8 
0.828

4 
0.093

2 
0.099

1 
0.866

5 
0.829

2 
16 Adam 50 0.051

1 
0.060

1 
0.914

0 
0.8779 0.114

1 
0.120

2 
0.810

8 
0.870

4 
0.114

9 
0.120

9 
0.909

6 
0.894

7 
32 Adam 10 0.031

3 
0.042

6 
0.906

8 
0.8915 0.108

4 
0.114

3 
0.839

7 
0.854

3 
0.109

1 
0.115

0 
0.900

4 
0.855

0 
32 Adam 35 0.083

9 
0.093

9 
0.913

5 
0.8635 

 

0.108

1 
0.114

3 
0.890

1 
0.856

4 
0.109

3 
0.115

5 
0.875

0 
0.857

5 

16 SGD 35 
0.078

3 
0.086

8 
0.894

2 0.8602 
0.107

5 
0.114

6 
0.887

1 
0.853

0 
0.108

2 
0.115

3 
0.887

8 
0.853

8 
16 SGD 50 0.071

5 
0.080

6 
0.824

0 
0.7875 0.085

9 
0.091

3 
0.818

3 
0.781

8 
0.087

1 
0.092

5 
0.819

5 
0.783

0 
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Figure 6: MResNet-50 architecture diagram 

Table 1: Performance of the MResNet-50 model using Angular Softmax Loss, Categorical cross Entropy Loss, Large Margin Softmax Loss Function over Food 101 
dataset 
Table 2: Performance of the MResNet-50 model using Angular Softmax Loss, Categorical cross Entropy Loss, Large Margin Softmax Loss Function over UEC- 
Food256 

Batc

h 
Size 

Optimiz

er 
Epoc

hs 

Angular Softmax loss Categorical Cross 

entropy loss 
Large Margin Softmax 

Loss 
Loss  Accuracy Loss  Accuracy Loss  Accuracy 

Train Test Train Test Train Test Train Test Train Test Train Test 

16 Adam 10 0.097

8 
0.100

2 
0.844

2 
0.8155 0.094

2 
0.097

3 
0.851

0 
0.789

7 
0.094

5 
0.096

9 
0.812

7 
0.793

7 
16 Adam 35 0.080

4 
0.082

4 
0.881

0 
0.8644 0.065

6 
0.068

2 
0.850

8 
0.838

9 
0.072

8 
0.074

4 
0.828

0 
0.814

3 
16 Adam 50 0.072

5 
0.074

3 
0.888

3 
0.8051 0.091

5 
0.093

8 
0.840

0 
0.809

9 
0.076

3 
0.078

6 
0.822

0 
0.805

0 
32 Adam 10 0.057

0 
0.058

4 
0.846

7 
0.8168 0.081

8 
0.083

6 
0.823

8 
0.746

7 
0.108

2 
0.110

2 
0.804

4 
0.786

9 
32 Adam 35 0.105

3 
0.107

9 
0.892

2 
0.8616 0.053

4 
0.056

8 
0.821

1 
0.831

7 
0.064

2 
0.065

5 
0.852

4 
0.817

5 
32 Adam 50 0.092

4 
0.094

7 
0.870

8 
0.8270 0.068

3 
0.071

3 
0.808

9 
0.816

9 
0.070

2 
0.071

9 
0.826

5 
0.812

4 

16 SGD 10 0.106

1 
0.108

8 
0.812

5 
0.7545 0.105

6 
0.109

0 
0.803

4 
0.762

4 
0.091

6 
0.094

2 
0.776

4 
0.756

5 
16 SGD 35 0.093

0 
0.095

3 
0.821

3 
0.8005 0.085

6 
0.088

6 
0.890

3 
0.868

1 
0.073

6 
0.075

7 
0.902

1 
0.843

6 
16 SGD 50 0.074

7 
0.076

6 
0.856

7 
0.8087 0.085

6 
0.088

0 
0.876

9 
0.853

1 
0.051

7 
0.053

8 
0.894

7 
0.869

7 

32 SGD 10 0.051

8 
0.061

1 
0.889

5 
0.8524 0.090

0 
0.096

5 
0.906

6 
0.846

3 
0.090

7 
0.097

2 
0.884

2 
0.847

1 
32 SGD 35 0.055

7 
0.064

4 
0.904

2 
0.8696 

 

0.113

7 
0.120

3 
0.873

9 
0.862

1 
0.114

6 
0.121

1 
0.898

0 
0.863

0 

16 
SGD-w-

M 35 
0.053

1 
0.061

5 
0.842

7 0.8093 
0.090

7 
0.097

8 
0.836

6 
0.803

2 
0.091

9 
0.099

0 
0.837

8 
0.804

3 
16 SGD-w-

M 
50 0.077

7 
0.084

2 
0.902

0 
0.8761 0.088

4 
0.095

2 
0.826

1 
0.870

1 
0.089

4 
0.096

3 
0.897

0 
0.871

1 
32 SGD-w-

M 
10 0.061

9 
0.069

4 
0.903

0 
0.8689 0.088

4 
0.094

3 
0.863

6 
0.863

0 
0.089

1 
0.095

0 
0.875

6 
0.863

6 
32 SGD-w-

M 
35 0.063

5 
0.071

5 
0.879

8 
0.8478 0.092

5 
0.098

7 
0.890

0 
0.841

6 
0.093

6 
0.099

7 
0.864

7 
0.842

7 
32 SGD-w-

M 
50 0.084

4 
0.090

7 
0.896

6 
0.9155 0.098

6 
0.105

6 
0.897

1 
0.908

9 
0.099

5 
0.106

4 
0.890

9 
0.909

7 
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32 SGD 10 0.071

0 
0.072

8 
0.866

2 
0.7859 0.052

8 
0.055

1 
0.830

3 
0.809

7 
0.095

8 
0.097

1 
0.889

6 
0.874

6 
32 SGD 35 0.075

1 
0.077

0 
0.891

3 
0.8557 0.082

4 
0.084

8 
0.870

7 
0.879

0 
0.057

2 
0.059

3 
0.838

4 
0.825

1 
32 SGD 50 0.104

2 
0.106

8 
0.885

5 0.8559 
        

16 SGD-w-

M 
10 0.051

1 
0.062

4 
0.862

2 
0.8339 0.092

4 
0.094

0 
      

16 SGD-w-

M 
35 0.056

5 
0.067

9 
0.859

7 
0.7910 0.089

4 
0.091

2 
0.842

8 
0.812

1 
0.067

9 
0.070

1 
0.824

0 
0.807

7 
16 SGD-w-

M 
50 0.092

5 
0.094

8 
0.892

3 
0.9220 0.104

2 
0.107

2 
0.815

3 
0.880

9 
0.087

8 
0.090

4 
0.895

0 
0.875

3 
32 SGD-w-

M 
10 0.055

8 
0.087

2 
0.877

3 
0.8676 0.074

7 
0.076

5 
0.742

8 
0.742

1 
0.097

9 
0.099

8 
0.811

0 
0.794

6 
32 SGD-w-

M 
35 0.098

2 
0.100

7 
0.895

1 
0.8420 0.066

4 
0.069

5 
0.711

4 
0.730

1 
0.066

5 
0.068

2 
0.779

2 
0.765

9 
32 SGD-w-

M 
50 0.088

5 
0.090

7 
0.906

5 
0.8315 0.081

3 
0.084

1 
0.795

5 
0.876

2 
0.085

6 
0.087

6 
0.868

6 
0.851

9 

and Table 2 respectively. The significant findings and the 

accuracy associated with each optimizer are delineated using 

red and blue font colors to facilitate quick referencing. The 

highest accuracy achieved for each optimizer is represented in 

the font color red. 

4.1.1. Food101 dataset- Inferences on the Results-Table 1 

With angular softmax loss function, the optimizer Adam 

achieves the maximum training accuracy as compared to the 

other two optimizers for a batch size of 32, and after training 

the model with 50 epochs produces a 92.67% accuracy. 

Alternatively, this could be overfitting as with the same batch 

size, and in 35 epochs, Adam produces an accuracy of 91.35%. 

During training on the ImageNet Dataset, ResNet-50 produced 

a greater accuracy overall in 35 iterations [43], while 

MResNet50 likewise delivers the greatest accuracy in 35 

iterations. Similarly, the accuracy produced by the optimizer 

SGD with a batch size of 32 and 35, and 50 epochs, respectively, 

is 90.42% and 90.96%, and there is no noticeable difference 

between these numbers. The accuracy produced by SGD with 

Momentum optimizer seems to be fluctuating between 89% 

and 91% with batch sizes of 16 and 32. 

With Categorical cross-entropy loss, the optimizer Adam 

produces the highest training accuracy of 91.97% in 50 epochs 

with a batch size of 32 and 89.01% in 35 epochs with the same 

batch size. Also, these two numbers do not significantly differ 

from one another. Hence 35 epochs are again considered to be 

the optimal number with MResNet-50. The SGD optimizer 

slightly fluctuates in the accuracy value with 16 and 32 batch 

sizes with 10, 35, and 50 epochs. SGD with Momentum 

optimizer produces an accuracy of 89.00% and 89.71% with a 

batch size of 32 and in 35 and 50 epochs with no discernable 

difference between them. 

With Large Margin Softmax loss, the optimizer Adam 

produces the highest training accuracy of 90.96% with a batch 

size of 16 in 50 epochs. The optimizer SGD with batch size 32 

produces an accuracy of 90.09% and 89.80% in 35 and 50 

epochs respectively and there is no major noticeable 

difference between the numbers. Surprisingly, in batch size 16, 

SGD with Momentum optimizer produces an accuracy of 

89.09%, and 86.47% for 50 and 35 epochs, and a slight 

difference between them is seen. Overall, the Adam optimizer 

with MResNet-50 produces good results on the Food101 

dataset across all three optimizers and the accuracy produced 

by all three optimizers is higher for batch size 32 than for 16. 

4.1.2. UECFOOD256 dataset- Inferences on the Results-Table 2 

With Angular softmax loss the SGD with Momentum 

optimizer produces a higher accuracy of 90.65% in 50 epochs 

with batch size 32 and 89.51% in 35 epochs with batch size 32 

and there is no discernible difference between them. Adam 

produces the second-highest accuracy of 89.22% in 35 epochs 

and SGD produces 89.13% in 35 epochs with batch size 32. As 

such in both Adam and SGD, there is no major difference in the 

accuracy. 

With Categorical Cross entropy loss, the SGD optimizer 

produces a higher accuracy of 89.03% in 35 epochs with a 

batch size of 16 and in 50 epochs the accuracy is slightly getting 

reduced for the same batch size hence 35 epochs with 16 batch 

size is considered an optimal tuning. The Adam optimizer 

produces an accuracy of 85.10% and 85.08% with 16 batch 

sizes but with 10 and 35 epochs respectively. The SGD with 

Momentum optimizer produces an 86.10% and 84.28% with 10 
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and 35 epochs with batch size 16. As a unique feature, the 

batch size of 16 is well suited for Categorical cross-entropy loss 

with the UECFOOD256 dataset. 

With the large margin softmax loss for the SGD produces a 

higher accuracy of 90.21% for a batch size of 16 and in 35 

epochs and 89.47% for the same batch size in 50 epochs. The 

SGD with momentum also produces an accuracy of 89.50% 

with batch size 16 for 50 epochs and 82.50% with the batch 

size but for 35 epochs. The difference seems to be a bit higher 

in this case. 

Overall for the UECFOOD256 dataset the accuracy produced by 

all three optimizers is higher for batch size 16 than for 32 and 

the very highest is produced by SGD with momentum. The 

fluctuations observed in the results of implementing 

MResNet50 on various optimizers for both datasets, where the 

highest accuracy obtained exceeds 85%, might stem from 

several factors. These include the diversity of images within 

the datasets, variations in optimizers and loss functions 

utilized, as well as differences in hyperparameter tuning. 

Comparative analysis of the proposed MResNet-50’s Top1% 

and Top-5% accuracy values to other models in existing 

literature are shown in Table 3. Top-1% accuracy refers to the 

model accurately predicting the food item to its corresponding 

class, while top-5% accuracy refers to the predicted class 

matching any of the top five predictions. Additionally, the 

proposed model proves that the prediction accuracy of the 

Top5% is greater than the prediction accuracy of the Top-1%. 

The execution time taken by MResNet-50 for Food101 dataset 

using Adam optimizer is 29.2 min, 30.1 min and 38.6 min and 

for UECFOOD256 dataset using SGD optimizer it is 19.8 min, 

18.4 min and 23.1 min for each of the models as shown in Table 

3. The reduced execution time for the UECFOOD256 dataset 

compared to the FOOD-101 dataset is attributed to the smaller 

size of the UECFOOD256 than the FOOD-101 dataset. 

The results in Table 3 show that the MResNet-50 model 

proposed demonstrates superior performance compared to 

existing models that required human intervention and those 

that struggle with intra-class similarity and inter-class 

variability issues. This achievement substantiates the 

successful attainment of our objective. Moreover, we have 

augmented the test image set with intricate images to evaluate 

the model’s ability to handle diverse scenarios. The higher 

accuracy observed in handling these images further validates 

the effectiveness of our approach. As part of the case study, 

food items mentioned in Fig. 1 (a) and Fig. 1 (b) are extracted 

from the FOOD101 and UECFOOD256 datasets and the 

proposed MResNet-50 model accurately classifies the food 

images. 

4.2. Results of Ingredient and Recipe extraction 

The ingredient identification module runs on the Recipe1M+ 

and recipe ingredients dataset using two algorithms. The 

results of the Word2Vec are shown in Table 4. Following the 

preprocessing, the skip-gram algorithm in Word2Vec is applied 

with the vector length of 20 and 40 to identify the target 

ingredients and thereby extract them. The lower error means 

that the vector and the food item are closely related to each 

other whereas if higher it means they are far away from each 

other and that specific recipe/ingredient is not to the food 

item. However, the results of applying Word2Vec before and 

after stemming show a marginal difference because stemming 

changes the meaning of the sentence. Hence the results shown 

in the table is the one that is obtained before applying the 

stemming. We train the 256 and 101-dimensional models on 

more than a million words and 

 

Figure 7: Patterns learnt by the Transformer 

compute the score of every sentence and try to find the 

appropriate sentence with the highest computing score. At the 

end of the iteration, the final score will be added to the sum of 

all the individual predictions, and using the likelihood factor 

the relevant sentence is identified and extracted. 

The Transformer model is executed on both datasets. As an 

initial step, they are subjected to byte-pair encoding. The 

millions of sentence pairs are divided into tokens i.e. word-

piece vocabulary. The sentence pairs are then grouped into a 

specific lengths of 20 and 40. The Recipe1M+ dataset has two 

layers: layer 1 and layer 2. The BLEU (BiLingual Evaluation 

Understudy) score is used for measuring the similarity of 

prediction in machine translation of searching. The results of 

applying transformers and regular baseline LSTM (Long short-

term Memory) [41] are shown in Table 5. The LSTM 

approaches using single forward and single reversed methods 

followed in [41] are applied to both datasets. The training BLEU 

score produced by Transformers on both datasets is recorded. 

Fig. 7 shows the pattern learned by the Transformer. 

The LSTM is very effective in handling short sentences but 

not efficient in handling reversed sentences because it fails to 

understand the reversed sequences. On the contrary, 

transformers are very good at handling both of them. Most 

importantly, we apply the unoptimized, simple, and 

straightforward transformer function for handling both the 

long and short sequences. 
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4.3. Ontology validation 

The proposed semi-structured ontology shown in Fig. 8 can 

be validated using descriptive information [50] which tells us 

how well the ontology can provide us with the specified 

information for the query that is asked of it. 

An ingredient name when passed onto the ontology will 

identify all the food types that use it. The ontology can be used 

to filter the food types that have a specific allergen. The 

advantage of ontology over using documenting software is that 

ontology reunites the food types that share similar ingredients 

near to each other in space thereby reducing the entropy 

value. The ontology that is built for this application has one-to-

one, one-tomany, and many to one and many to many 

relationships. Cer- 

Table 4: Word2Vec SkipGram Training Error on both the datasets 
Input word Output 

vector 

length 

Target Recipe 
1M+ 

Training 

Error 

Recipe 
Ingredient 

dataset 

Food item 1 20 0 -0.91 -0.82 
Food item 1 40 1 0.64 0.58 
Food item 2 20 1 0.18 0.17 
Food item 2 40 1 -0.83 -0.77 
Food item 3 20 0 -0.08 -0.03 
Food item 3 40 0 0.72 0.76 
Food item 4 20 1 0.32 0.28 
Food item 4 40 0 0.59 0.58 
Food item 5 20 1 -0.89 -0.87 
Food item 5 40 1 -0.12 0.78 
Food item 6 20 0 0.90 0.81 
Food item 6 40 0 -0.43 -0.65 

Table 5: Transformers BLEU score on both the datasets 

Method Training 
score 
1M+ 

BLEU 
Recipe 

Training BLEU 

score Recipe 

ingredients 

dataset 
LSTM single forward [41] 28.97  25.23 

LSTM single reversed [41] 35.28  29.01 

Transformers 45.12  24.19 

 

Figure 8: Ontology picture of cuisine-food type relationship 

Table 3: Comparison of the performance of the Top-1% Top-5% of the proposed MResNet-50 model with other existing deep CNN models over Food-101 and 
UECFOOD256 dataset 

 
 Food-101 Dataset UECFOOD256 

 Top-1% Top-5%  Top-1% Top-5% 

Deep Food [44] 77.4 93.7 DeepFood [44] 54.7 81.5 
CNN-FOOD(ft) [8] 70.41 - CNN-FOOD(ft) [8] 67.57 88.97 
ResNet(APL) [45] 78.5 94.1 ResNet(APL) [45] 71.2 91.1 
Inception-V3 [46] 88.28 96.88 Inception-V3 [46] 76.17 92.58 
WISeR [47] 90.27 98.71 WiSer [47] 83.15 95.45 
AlexNet-CNN [10] 56.4 - DeepFoodCam [48] 63.77 85.82 
Inception+Wi-HSNN [49] 84.7 - Inception+Wi-HSNN [49] 77.7 - 
(Combined results of ResNet, 

DenseNet, and InceptionNet) 

+WiHSNN [49] 

90.8 - (Combined results of

 ResNet, DenseNet, and 

InceptionNet) +WiHSNN [49] 

83.1 - 

ResNet-50 [3] 82.54 95.79 ResNet-50 [3] 71.7 91.33 
MResNet-50 - Angular Softmax 
Loss (32, Adam, 50) (29.2 min) 

92.67 96.43 MResNet-50 - Angular Softmax 

Loss (32, SGD-w-M, 50) (19.8 

min) 

90.65 95.47 

MResNet-50 - Categorical Cross 

Entropy Loss (32, Adam, 50) (30.1 

min) 

91.97 97.29 MResNet-50 - Categorical Cross 

Entropy Loss (16, SGD, 35) (18.4 

min) 

89.03 94.35 

MResNet-50 - Largin Margin 

Softmax Loss (16, Adam, 50) (38.6 

min) 

90.96 95.79 MResNet-50 - Largin Margin 

Softmax Loss (16, SGD, 35) (23.1 

min) 

90.21 96.59 

 CNN 

approaches

 CNN approaches 
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tain dishes are related to specific cuisine which signifies oneto-

one relation and a few food items are shared across many 

cuisines showing one-to-many relations, many ingredients are 

used in one food item showing many relations, and there are a 

lot many other relations which are indirectly seen between 

food items, cuisines, ingredients, etc. The interrelation 

between food and cuisine can be quickly identified in ontology 

than the conventional search techniques. 

In summary, the application of MResNet-50 to the Food-101 

and UECFOOD256 datasets yielded accuracies of 92.67% and 

90.65%, respectively compared to existing models. 

Additionally, employing the transformer model for ingredient 

and recipe extraction resulted in BLEU scores of 45.12 and 

24.19 on the Recipe 1M+ and Recipe Ingredients datasets 

compared to other techniques. The domain ontology model 

integrates the architecture of food-cuisine and ingredients, 

establishing a comprehensive framework for Fine-Grained 

Food Image Classification and Recipe Extraction through a 

tailored combination of Deep 

Neural Networks and Natural Language Processing techniques. 

Like other research endeavors, this project faces limitations 

from two distinct perspectives: the deep learning framework 

and the chosen application. In terms of model development, 

one of the main concern involves fine-tuning hyperparameters 

in ResNet models, given their sensitivity. This sensitivity may 

hinder the model’s ability to capture the intricate longrange 

dependencies within images during training. However, this is 

effectively addressed in the proposed work by leveraging a 

domain ontology, which documents relationships between 

cuisines and ingredients. Nevertheless, this necessitates the 

creation of different domain ontology for various applications. 

Regarding the food image application, a limitation stems from 

the diversity of cultures and regions, each with its unique 

cuisine, which are not all recorded or the images captured into 

available datasets. Additionally, to personalize these 

applications for individual users, their dietary preferences and 

allergens need to be captured and by cross-referencing these 

preferences, a holistic application can be developed to meet 

the diverse needs of users. 

5. Conclusion 

This research paper presents a novel Fine-Grained Food 

Image Classification and Recipe Extraction framework, 

integrating a Customized Deep Neural Network and NLP. The 

framework achieves its objectives through three key 

innovations. Firstly, a tailored MResNet-50 model is developed, 

enhancing food item identification accuracy, surpassing 

traditional ResNet-50 models and other similar models in 

literature. The MResNet-50 model is optimized for a 

lightweight design through layer modifications, feature 

pruning, and the adoption of the swish activation function. 

Secondly, an NLP module, employing Recipe1M+ and Recipe 

Ingredient datasets, utilizes Word2Vec and transformer 

algorithms to identify ingredients, demonstrating superior 

performance compared to LSTM approaches. Thirdly, an 

ontology structured around cuisine, food type, and ingredients 

is established, facilitating rapid allergen identification through 

the Protege ontology model. 

The combined framework of CNN, NLP, and Ontology 

exhibits robust and precise performance in food image 

processing applications, achieving notable accuracies of 

92.67% and 90.65% on the Food-101 and UECFOOD256 

datasets, respectively. Furthermore, employing the 

transformer model for ingredient and recipe extraction yields 

significant BLEU scores of 45.12 and 24.19 on the Recipe 1M+ 

and Recipe Ingredients datasets, outperforming alternative 

techniques. The developed ontology enhances the 

framework’s versatility for future applications and accelerates 

data processing. The framework enables accurate food image 

classification while automating recipe extraction through NLP 

and ontology. Considering its potential for future extensions, 

this solution stands as a viable option capable of delivering 

commendable results within a reasonable timeframe. 

The impact of this work extends to the healthcare domain, 

empowering vulnerable patients to manage ingredient labels, 

allergens, and overall health, while aiding food safety 

inspection operators in allergen detection and advisory tasks. 

Additionally, the lightweight design of the framework enables 

integration with wearable smart devices, facilitating various 

healthcare applications such as nutrition tracking, calorie 

computation, remote monitoring, and telehealth services. Its 

lightweight nature ensures swift real-time execution especially 

in mobile applications, offering quick outputs, which could be 

explored as a potential avenue for future expansion. 
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