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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterised by a progressive loss of motor
neurons controlling voluntary muscle activity. The disease manifests through a variety of motor dysfunctions related to the
extent of damage and loss of neurons at different anatomical locations. Despite extensive research, it remains unclear why
some motor neurons are especially susceptible to the disease, while others are affected less or even spared. In this article,
we review the neurobiological mechanisms, neurochemical profiles, and morpho-functional characteristics of various motor
neuron groups and types of motor units implicated in their differential exposure to degeneration. We discuss specific cell-
autonomous (intrinsic) and extrinsic factors influencing the vulnerability gradient of motor units and motor neuron types to
ALS, with their impact on disease manifestation, course, and prognosis, as revealed in preclinical and clinical studies. We
consider the outstanding challenges and emerging opportunities for interpreting the phenotypic and mechanistic variability
of the disease to identify targets for clinical interventions.
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ALS spectrum

Motor neurons (MNs) are a specialised cell type of the
central nervous system (CNS) supporting motor functions
through coordinated activation of skeletal and visceral mus-
cles. Accordingly, functional deficit in MNs due to intoxica-
tion, trauma, stroke, or degeneration leads to weakness and
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atrophy of muscles with motor impairments. Due to their
control of vital processes and functions, injury and loss of
MNs can lead to life-threatening muscular paralysis, with
respiratory failure marking the end point of lethal cases. As
a unique cell type, MNs can be affected by a specific group
of neurodegenerative conditions (Goutman et al. 2022).
This family of rare diseases includes spinal muscular atro-
phy (SMA), progressive bulbar palsy (PBL), primary lateral
sclerosis (PLS), and amyotrophic lateral sclerosis (ALS),
which are the most prevalent degenerative disease of MNs.
Affecting 2-3 persons per 100,000, over ~90% of ALS cases
are idiopathic with no identifiable cause, while the remain-
ing~10% run in families and are associated with genetic
aberrations (Kiernan et al. 2011; Goutman et al. 2022).
While generally considered a disease of MNs, there is
growing recognition of ALS as a multisystem disorder
(Swinnen and Robberecht 2014; Grossman 2019). The
composite nature of the disease is supported not only by the
fact that a significant proportion of ALS patients develop a
frontotemporal, extrapyramidal, cerebellar as well as multi-
ple visceral and non-motor dysfunctions (Swinnen and Rob-
berecht 2014; Strong et al. 2017; Masrori and Van Damme
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2020), but also by variations of the disease amongst distinct
cultural, geographical, and genetic groups (Swinnen and
Robberecht 2014; Gajdusek and Salazar 1982; Plato et al.
2003; Chio et al. 2013). Indeed, after age and sex adjust-
ments, ALS incidents amongst African, Asian, and Hispanic
ethnicity are significantly lower than in non-Hispanic Cauca-
sians (Alappat 2007; Marin et al. 2017; Collaborators 2018).
A comparison of ALS incidents in European countries
shows the highest rates in Finland, while Italy has the low-
est (Collaborators 2018; Alappat 2007; Marin et al. 2017).
Mounting data also suggest significant effects of gender,
occupation, and physical exercise on the prevalence, trajec-
tory, and severity of ALS (Julian et al. 2021; McCombe and
Henderson 2010). Finally, environmental, and genetic fac-
tors appear to influence the progression and prognosis of the
disease, with racially heterogeneous or admixed populations
with ALS living longer than homogeneous White or Black
(Collaborators 2018; Kiernan et al. 2011).

Most cases of ALS set on with muscle weakness and
spasticity in the limbs, indicating a predominantly spi-
nal form of the disease, which shows a survival median
of 3-5 years, while in ~20% of cases, the onset is bulbar,
leading to speech and swallowing problems with the worst
prognosis, yielding an average survival of ~2 years (Swin-
nen and Robberecht 2014; Kiernan et al. 2011). The causes
and mechanisms of the differences in the prevalence of ALS
in different groups and the site of the onset and severity
of motor phenotype remain unclear, with multiple players
emerging in the contribution (Ingre et al. 2015; Su et al.
2021; Yang et al. 2022; Kiernan et al. 2021; Ragagnin et al.
2019). As detailed in the following, multiple characteris-
tics of MNs, including their intrinsic excitability, synaptic
connections, and chemical microenvironment, seem to be at
play, which not only provide clues for the phenotypic vari-
ability of ALS and elucidate the multisystem characteristics
of the disease, but may also facilitate translational research
and potential therapeutic interventions.

Heterogeneity of MNs and their
vulnerability gradient to ALS

MNss is an umbrella term describing a heterogeneous popula-
tion of neurons which supports and coordinates a wide range
of somatic and visceral motor activities throughout the entire
body axis. In addition to the general division of MNs into
cerebral (upper) and bulbospinal (lower), there are remark-
able morphological and physiological differences between
MNss organised in various functional groups (Stifani 2014;
Ragagnin et al. 2019; Fitzpatrick 2001; Baczyk et al. 2022a).
Specifically, the lower MNs of the brain stem and spinal cord
subdivide into three groups: (1) somatic, (2) special visceral,
and (3) general visceral (Fitzpatrick 2001). With soma in the
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anterior horn of the spinal cord and motor nuclei of III, IV,
V, VI, VII, IX, X and XII cranial nerves in the brainstem,
somatic MNs are specialised further into a-, p- and y-MN
types (Fitzpatrick 2001; Stifani 2014; Baczyk et al. 2022a).
The large a-MNs control the bulk of force-generating ele-
ments of skeletal muscles of the body (Stifani 2014). Work-
ing as functional assemblies, they drive and coordinate the
voluntary contraction of specific muscle groups and control
the general muscular tone and activity. Two other MN types,
which control the tonus and strength of muscle contraction,
are (1) f-MNs innervating intrafusal and extrafusal fibres of
muscle spindles, and (2) y-MNs responsible for tuning the
sensitivity of muscle stretching via innervation of intrafusal
spindles (Fitzpatrick 2001; Scott et al. 2001; Burke et al.
1971). Special and general visceral MNs, on the other hand,
are responsible for innervation of specialised muscle groups,
with the former controlling the facial expression, mastica-
tion, swallowing, and phonation through cranial nerves, and
the latter regulating the tonus of the cardiac and smooth
muscles of the visceral organs, through synapsing on neu-
rons of autonomic ganglia, which in turn controls the muscle
activity of the inner organs (Fitzpatrick 2001; Scott et al.
2001).

The structural and functional differences of various MN
types reflect their evolutionary specialisation as part of
motor units supporting different functions (Mendell 2005;
Henneman et al. 1965; Button et al. 2007; Gardiner 1993)
(Fig. 1). As a critical constituent of motor activity, the motor
unit comprises MN with a group of muscle fibres innervated
by its axon via specialised connections known as neuromus-
cular junctions (NMJ). Based on the strength—contraction
characteristics and energetic requirements of the muscle
fibres, motor units organise into fast-twitch fatiguable (FF),
fast-twitch fatigue-resistant (FR) and fatigue-resistant slow-
twitch (S) types (Burke et al. 1971; Ragagnin et al. 2019;
Burke 1999). The activity of FF muscle fibres relies largely
on glycolytic (anaerobic) energy production and is the pri-
mary generator of strong muscular contractions controlled
by fast-firing a-MNs, which have larger sizes and thick mye-
linated axons. These units typically contain over 300-500
muscle fibres, with their number in big muscles of the trunk
and limbs reaching up to 2000 (Burke et al. 1974, 1971,
Burke and Tsairis 1973). Distinctly, the activity of motor
units with FR fibres relies on the supply of combined glyco-
lytic and oxidative (aerobic) energy, involving fewer muscle
fibres and generating weaker, fatigue-resistant contraction
(Highstein et al. 1982; Picard et al. 2012). The third motor
unit type is formed primarily of 200 or fewer S-type fibres
generating weak but sustained contraction, with fibre activ-
ity largely reliant on energy supply by oxidative metabolism,
capable of maintaining muscle contraction for an hour and
longer (Burke 1999; Picard et al. 2012). The specialisation
of MNss to drive the activity of muscle fibres with different
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Fig. 1 Schematic drawings of the three main types of motor units
with the relationship of MN size, muscle fibre innervation ratio and
vulnerability to ALS (grey and red arrows, respectively). From left
to right: S, FR and FF (slow, fatigue-resistant and fast-fatiguable,
respectively) motor units, with increasing number of innervated mus-
cle fibres per MN and a general trend of increasing MN size. Dif-
ferences in MN size impact their membrane capacitance (C,,) and

characteristics and functional role appears to be of prime
relevance to their vulnerability to ALS (Comley et al. 2015,
2016; Nijssen et al. 2017; Pun et al. 2006). Although multi-
ple factors are at play in setting the gradient of MN sensitiv-
ity to neurodegeneration, they are tentatively divided into
neuronal (intrinsic and extrinsic) and non-neuronal, with the
latter mediated largely by paracrine effects of neuromodula-
tors and trophic factors released from muscle fibres, support-
ing glia and immune cells.

Intrinsic factors influencing MN vulnerability
to neurodegeneration of ALS

MNs of different motor units show distinct activity charac-
teristics influenced by their intrinsic properties, such as the
size and morphology, consortium of ion channels and trans-
porters with their regulation, and mechanisms governing
intracellular Ca®* dynamics (Button et al. 2007; Gardiner
1993; Henneman et al. 1965; Highstein et al. 1982; Manuel
and Zytnicki 2019; Russo and Hounsgaard 1999; Ruegseg-
ger et al. 2016; Baczyk et al. 2022b). The differences in
the size of dendritic tree set the electrical capacitance of
MNs and rheobase, while the collection of ion channels
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excitability-firing activity (V) in response to depolarising inputs
(black traces of membrane capacitance and excitability-firing activity
of small and large MNs of the trigeminal motor nucleus). Differences
in colouring of muscle fibres designate specifics of the energetic
requirements and degree of reliance of muscle fibres on ATP pro-
duced by anaerobic or aerobic synthesis as source of energy for con-
traction (left to right—from oxidative phosphorylation to glycolysis)

supporting firing activity and shaping post-discharge recov-
ery defines kinetics, frequency and duration of their output
to muscle fibres (Henneman et al. 1965; Gardiner 1993; Bac-
zyk et al. 2022b). In general, MNs of S units with higher
intrinsic excitability and compact dendritic trees respond
more readily to depolarising inputs (Burke et al. 1982; Cull-
heim et al. 1987; Kernell and Zwaagstra 1981). Autopsy
reports of ALS patients show that surviving MNs of the spi-
nal cord have, on average, smaller soma and possibly higher
intrinsic excitability (Kawamura et al. 1981; Dengler et al.
1990). Accordingly, more excitable and in average smaller
MNs of oculomotor, trochlear and abducens nuclei inner-
vating ocular muscles are largely spared in ALS until the
end stage of the disease (Gizzi et al. 1992; Okamoto et al.
1993), permitting eye-tracking devices as communication
tools for fully paralysed patients (Caligari et al. 2013). Like-
wise, MNs of Onuf’s nucleus innervating striatal muscles
of the pelvic bed with lower rheobase and higher intrinsic
excitability (Hochman et al. 1991; Sasaki 1991) remain rela-
tively intact in advanced ALS patients (Iwata and Hirano
1978; Mannen et al. 1977, 1982). While these findings are
in line with greater sensitivity of large spinal cord MNs to
ALS and better survival of MNs of small motor units, the
effects of disease-related neuronal shrinkage and counting
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bias introduced by ALS-resistant smaller intrafusal MNs in
autopsy samples should be cautiously considered.

With regard to MN excitability and resistance to ALS
degeneration, mechanisms controlling intracellular Ca>*
dynamics by endoplasmic reticulum (ER) and mitochondria,
and differential expression of Ca>* binding proteins are of
particular interest (Grosskreutz et al. 2010; Leal and Gomes
2015; Verma et al. 2022a; Wainger et al. 2014) (Fig. 2). With
reported higher levels of calbindin D28k and parvalbumin
in ALS-resistant MNs (Alexianu et al. 1994; Comley et al.
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2015), tight regulation of intracellular Ca** dynamics is con-
sidered protective for MNs (Grosskreutz et al. 2010; Verma
et al. 2022a). In this context, the differential expression of
ER chaperones calreticulin and SIL1 has raised consider-
able interest (Bernard-Marissal et al. 2012, 2015; Filezac de
L'Etang et al. 2015; Ragagnin et al. 2019). While the former
is a multifunctional Ca**-binding protein, regulating its sig-
nalling activity and controlling the export of proteins from
ER, the latter tunes the ER response to stressors and related
secretory mechanisms. With both expressed in high amounts
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Fig.2 Summary diagram illustrating the principal intrinsic (cell
autonomous, MNSs), extrinsic neuronal and non-neuronal factors
influencing the vulnerability of MNs to ALS. Among intrinsic MN
factors, (1) cellular stress response to RNA and protein granules, (2)
disruption of mechanisms regulating Ca?* dynamics and (3) changes
in membrane excitability are most widely discussed. The extrinsic
influence on MN vulnerability to ALS, on the other hand, is medi-
ated mainly via (4) a shift of E/I balance at MN inputs, (5) higher
expression of Ca?*-permeable GluA2 subunit in AMPA receptors
and (6) paracrine effects of neuropeptides and hormones. Finally,
there is rising evidence for the role of trophic factors released by (7)
muscle fibres at NMJ, (8) peripheral glia (Schwann cells and satel-
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lite glia) and (9) astrocytes and immune cells in the central nervous
system. Specific factors and mechanisms mediating synaptic and
paracrine effects are discussed throughout the review. FUS fused in
sarcoma RAN-binding protein, SOD! superoxide dismutase, TDP-43
transactive response DNA-binding protein, C9ORF72 C9 open read-
ing frame 72 protein, MT mitochondria, PTP permeability transition
pore, UP uniporter, ER endoplasmic reticulum, EPSP excitatory post-
synaptic potential, /PSP inhibitory postsynaptic potential, CI calcium
impermeable, NTD (CTD) N- and C-terminal domain, TMD trans-
membrane domain, GluA2 subunit of AMPA receptor, NP neuropep-
tide, SSV small synaptic vesicle, LDCV large dense core vesicle
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in ALS-resistant MNs, their level gradually declines with
disease progression in preclinical models, while targeted
overexpression of Ca?* binding proteins in ALS MNs
extended their survival and increased the life span of exper-
imental mice (Nijssen et al. 2017). Longitudinal analysis
and comparison of three SOD1 models (G93A, G85R and
hSOD1) with different developmental onset and progression
of motor deficit and MN degeneration showed a positive cor-
relation of the ER stress response with the disease manifesta-
tion and loss of MNs (Saxena et al. 2009). MNs with higher
vulnerability to degeneration exhibited stronger ER stress
response judged on the expression of stress markers from
early stages of development. While in ALS, both vulnerable
and resistant MNs showed a developmental increase in ubig-
uitin signals, those with higher susceptibility to degenera-
tion showed stronger stress response associated with micro-
glia activation (Baczyk et al. 2022b; Saxena et al. 2009).
Saxena and co-workers suggested a mechanistic relation-
ship between the excitability and intrinsic neuroprotection
mechanisms of FF motor units, with enhancing MN activity
triggering neuroprotective response of MNs in SOD1 mice,
while reducing excitability accelerating neurodegeneration
and motor decline (Saxena et al. 2013). This mechanism
seems to be negatively regulated by metabotropic choliner-
gic drive through ER stress response and mTOR activation
(Saxena et al. 2013; Baczyk et al. 2022b).

Another intrinsic factor considered in the context of the
selective vulnerability of MNs to ALS is matrix metallo-
protease 9 (MMP9) (Kaplan et al. 2014; Spiller et al. 2019).
This Zn>*-activated protease is functionally related to vari-
ous cell surface proteins, including integrins, TrkA and TrkB
receptors, and plays essential roles in neurodevelopment and
synaptic plasticity (Verslegers et al. 2013; Vafadari et al.
2016) and regulation of axonal myelination and pruning
(Reinhard et al. 2015). MMP9 polymorphisms are among
the principal risk factors for sporadic ALS (Zawislak et al.
2009; Pabian-Jewula and Rylski 2023), with results of post-
mortem studies of ALS patients showing MMPO9 levels ~2.5-
fold lower in the oculomotor nucleus as compared to lumbar
MNs (Brockington et al. 2013). Accordingly, Kaplan and
co-workers reported higher expression of MMP9 in ALS-
vulnerable MNs of the SOD1 mouse model, with its over-
expression in wild-type MNs sufficient to trigger axonal
dieback (Kaplan et al. 2014). Likewise, targeted expression
of osteopontin in a-MNs, which is known to enhance MMP9
production through activation of the av33 integrin recep-
tor, promoted the degeneration of FR/S MNs in the SOD1
mouse model (Morisaki et al. 2016). In agreement with these
findings, lowering MMP?9 levels or its genetic removal was
shown to extend the survival of MNs (Kaplan et al. 2014;
Kiaei et al. 2007) with protective effects in SOD1 and TDP-
43 ALS mice (Lorenzl et al. 2006; Kaplan et al. 2014; Spiller
et al. 2019).

Extrinsic neuronal factors influencing MN
vulnerability to neurodegeneration of ALS

In addition to differences in the intrinsic properties, vari-
ous functional groups of MNs are under differential influ-
ence by their synaptic inputs and neurochemical microen-
vironment. Synaptic and non-synaptic membrane currents
not only regulate the development and integration of MN
in functional networks, but also play an essential role in
their survival and plasticity (Kalb and Hockfield 1992;
Stegenga and Kalb 2001; Inglis et al. 2000; Ovsepian and
Vesselkin 2006, 2014). Similar to the described intrinsic
effects, synaptic activity in MNs influences their vulner-
ability to ALS (Nijssen et al. 2017). Several groups have
demonstrated that changes in the balance of excitatory/
inhibitory (E/I) drives are of crucial importance to neu-
rodegeneration in ALS, with the E/I ratio highest in FF
MNs—the most vulnerable neuron type (Nijssen et al.
2017; Kanai et al. 2012). Increase in excitatory synaptic
drive as a contributor to ALS is supported by overall loss
of excitatory amino acid transporter 2 (EAAT2) in the
motor cortex and spinal cord of ALS patients, which could
lead to glutamate excitotoxicity (Rothstein et al. 1995).
The balance of E/I synaptic inputs and parameters of the
excitatory drive are essential regulators of Ca®* dynam-
ics in MNs and other neuron types, which, if disrupted,
could lead to impairments of signalling, causing abnormal
activity of neurons with cytotoxicity and cell death (Van
Den Bosch et al. 2006; Leal and Gomes 2015; Ovsepian
and Friel 2008). The inherently lower Ca>* buffering of
ALS-sensitive MNs is aggravated by high expression of
Ca’*-permeable AMPA receptors (AMPAR) compris-
ing the unedited glutamate receptor 2 (GluR2) subunit
(Grosskreutz et al. 2010; Van Den Bosch et al. 2006; Greig
et al. 2000; Zanganeh et al. 2022) (Fig. 2). With over 1/3
of AMPAR being permeable for Ca’", the larger Ca**
influx strains the ER and mitochondrial calcium buffering
of MNss and increases the risks of cell stress and degenera-
tion (Greig et al. 2000). Notably, the level of edited GluR2
transcripts in ALS-resistant oculomotor neurons of brain
autopsies is significantly higher (Brockington et al. 2013).
Although the total transcript level of GIuR2 in the spinal
cord of ALS patients is comparable to that in healthy, post-
translational editing fails in almost half of all transcripts,
leading to an increase in the level of Ca’*"-permeable
AMPAR with enhanced AMPAR-mediated Ca®* currents
(Kwak and Kawahara 2005). In support of the contribution
of unedited GluR2 to the vulnerability gradient of MNs
to ALS, the Ca?* current mediated by AMPAR of oculo-
motor MNs is smaller as compared to that in large spinal
cord MNs (Brockington et al. 2013). A recent analysis
showed that experimental manipulations of the expression
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of GluR2 gene and RNA could tune the sensitivity of MNs
in the SOD1 mouse model of ALS (Zanganeh et al. 2022).

The importance of E/I balance in influencing the vul-
nerability gradient for MNs in ALS is also showcased by
studies of inhibitory synaptic inputs. ALS patients display
cortical hyperexcitability that is thought to arise from E/I
imbalance in MNs therein. The underlying mechanisms of
this change remain unclear, but ALS patients appear to have
lower expression of GABA , receptors (GABA,R) in the
motor cortex and a generally lower efficacy of inhibitory
inputs (Petri et al. 2003; Nieto-Gonzalez et al. 2011). In FF
MNss of rat spinal cord, inhibitory postsynaptic currents are
predominantly glycinergic (Lorenzo et al. 2006), whereas in
oculomotor MNs of the same model, the inhibitory synaptic
drive is mediated mainly by GABA R (Brockington et al.
2013; Comley et al. 2015; Lorenzo et al. 2006). Congru-
ously, in ALS patients, the expression of GABA 4R a-subunit
is significantly higher in oculomotor MNs as compared to
those of the spinal cord and remains unchanged until the
end stage of the disease, suggesting its contribution to the
greater resilience of the former to neurodegeneration (Hed-
lund et al. 2010; Comley et al. 2015). Detailed analysis with
comparison of the subunit composition, expression pattern,
density, and localisation of inhibitory receptors in ALS-sen-
sitive (trigeminal, facial and hypoglossal) and ALS-resistant
(oculomotor, trochlear and abducens) MNs of cranial nerves
in rats revealed a significant correlation between the subu-
nit composition of GABA R, glycine/GABA 4R ratios and
frequency of extra-synaptic versus synaptic GABA 4R with
the degree of vulnerability of MNs to degeneration (Lor-
enzo et al. 2006; Nijssen et al. 2017). These differences con-
trast the relatively uniform density of gephyrin cluster and
synaptic glycinergic receptors levels measured in the same
motor nuclei (Lorenzo et al. 2006), with GlyR reported to
be significantly reduced in the spinal cord of ALS patients
(Hayashi et al. 1981). In this context, it is important to note
that ALS-resistant MNs of Onuf’s nucleus do not receive
recurrent inhibitory inputs, which in ALS-sensitive MNs are
glycinergic (Sasaki 1994; Schellino et al. 2020).

In addition to the E/I ratio, growing data supports the
non-autonomous effects of neuropeptides and neurotrophic
factors on the vulnerability of MNs to ALS. This premise
has been supported by reports demonstrating ALS-resist-
ant MNs in Onuf’s nucleus receiving dense innervations
by enkephalin-, somatostatin-, CGRP-, neuropeptide Y-
and neurokinin-positive terminals, as well as thyrotropin-
releasing hormone-positive axons (Schellino et al. 2020;
Gibson et al. 1988; Katagiri et al. 1988; Pullen et al. 1997).
The strong neuropeptide and neurotrophic drives have been
suggested to render MNs of Onuf’s nucleus comparable to
neurons of the autonomic nervous system, which also have
a higher resistance to ALS (Schellino et al. 2020). Notably,
the protective effect of neuropeptides on Onuf’s MNs is ALS
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specific, as they succumb to neurodegenerative conditions
affecting parasympathetic neurons, such as Fabry’s disease,
multiple systems atrophy, Shy—Drager syndrome and Par-
kinson's disease (Schellino et al. 2020).

Non-neuronal effects influencing MN
vulnerability to neurodegeneration of ALS

Unlike any other neuron type in CNS, MNs extend their
axons to reach target muscles at the periphery, forming
highly specialised synaptic connections beyond the defence
line of the blood-brain barriers. This unique arrangement
not only makes MNs subject to retrograde influence by an
array of trophic factors and messengers produced at the
periphery by muscle fibres, Schwann and satellite cells, but
also exposes them to a range of pathogens, toxins and envi-
ronmental factors (Henderson et al. 1993; Ovsepian et al.
2019, 2016; Cain et al. 2019; Sleigh et al. 2019). Consider-
able data suggests NMJ as the site of the onset of MN degen-
eration (Dadon-Nachum et al. 2011; Tsitkanou et al. 2019),
with the mediators and mechanisms of peripheral effects on
MN vulnerability to ALS remaining elusive.

Evidence from preclinical models and developmental
studies indicate protective and neuroplastic effects of several
trophic factors and metabolites released by muscles (Tovar
et al. 2014; Saini et al. 2021; Taylor et al. 2007) (Fig. 2).
Multiple reports showed an inverse correlation between the
propensity of the axon terminal sprouting and plasticity in
muscle with the vulnerability of source MNs to ALS (Frey
et al. 2000; Seijffers et al. 2014; Verma et al. 2022b; Pun
et al. 2006). A pioneering work by Pun and collaborators
showed that in SOD1%%*4 and SOD1°%R ALS models, axons
of FF MNs deteriorate long before the onset of motor symp-
toms, while axons of FR MNs break down with the onset of
motor deficit (Pun et al. 2006). The impairment of MN axons
leads to stalling synaptic vesicles at the presynaptic terminal
of NMIJ with a buildup of apoptotic marker BC12al-a, which
can be alleviated by ciliary neurotrophic factor. The authors
conclude that the vulnerability of MNs to ALS is selective
and predictable and might be related to the mechanisms of
remodelling of presynaptic terminals at NMJ (Pun et al.
2006). In support of these findings, the overexpression of
the activating transcription factor 3 (ATF3) in muscles of
ALS mice stimulated the sprouting of axon terminals and
delayed the onset of MN neurodegeneration (Seijffers et al.
2014). Overexpression of ephrin receptor A4 (EPHA4) in
MNss, on the other hand, impairs the reinnervation of NMlJs
(Van Hoecke et al. 2012) with EPHA4 level changes in the
blood of patients correlating with the onset of clinical ALS
(Van Hoecke et al. 2012). In SOD1 mice, haploinsufficiency
of EprA4 extended MN survival and increased NMJ forma-
tion, whereas, in TDP43 mice, it rescued axonopathy (Van
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Hoecke et al. 2012). Surprisingly, overexpression of peroxi-
some proliferator-activated receptor gamma coactive 1-alpha
(PGC-1a), known to regulate muscle fibre types and their
response to metabolic demands while increasing the oxida-
tive capacity of myotubes and fatigue resistance, did not
affect the onset of ALS signs or alter the survival of trans-
genic mice (Da Cruz et al. 2012). It is interesting to note that
the level of neuromuscular activity with activity-dependent
reprograming of FF motor units to less forceful, slower FR
types could reduce their vulnerability to ALS (Gordon et al.
2010). In a partially denervated hind limb muscle of SOD1
mice, the rapid age-dependent decline in fast twitching
muscles associates with significantly higher number of type
ITA and type IID/X fibres attributed to FR slower units with
higher resistance to ALS (Gordon et al. 2010).

Studies of paracrine effects of glial cells on MN survival
in ALS suggested their likely influence (Philips and Roth-
stein 2014; Valori et al. 2014; Takahashi 2023) (Fig. 2). The
removal of astrocytes in SOD1 mice, for instance, increased
their survival without effects on the disease onset, while
overexpression of SOD19%** in astrocytes has toxic effects
on MNs (Yamanaka et al. 2008; Yamanaka and Komine
2018). The relevance of these mechanisms to the vulner-
ability of various MN groups of ALS patients remains to
be shown. Likewise, the depletion of mutant SOD1 from
microglia resulted in an extended life span of mice with
slower disease progression (Boillee et al. 2006; Christofori-
dou et al. 2020). The mechanisms underlying the protec-
tive effects of microglia in ALS remain to be elucidated.
Interestingly, there have been no reports of the influence of
oligodendroglia and Schwann cells on the endurance of ALS
MNs of humans, even though during development, these
cells play a crucial role in MN differentiation and functional
integration (Lee et al. 2012; Horner et al. 2021). In animal
models, unlike astrocytes, microglia, and oligodendrocytes,
where suppression of mutated SOD1%*’R can confer protec-
tion on MNs, downregulation of this protein in Schwann
cells accelerated the progression in ALS phenotype without
effects on the onset of motor impairments (Lobsiger et al.
2009). This response could be partly due to attenuation in
IGF-1 effects in the MN axons, leading to the reduction of
the capacity of MNs to regenerate and form new contacts
with muscle fibres. It is noteworthy that Schwann cells of
axon terminals innervating different populations of muscle
fibre show different levels of axon-repellent Semaphorin 3A,
with postnatal, regenerative and paralysis-induced remodel-
ling of neuromuscular connection accompanied by increased
expression of this protein on FF muscle fibres (De Winter
et al. 2006). Based on the semaphorin 3A expression analy-
sis by terminal Schwann cells in the SOD1 mouse model,
the authors suggest that it suppresses terminal sprouting
under stress and contributes to their early and selective loss
in ALS (De Winter et al. 2006). On the same note, grafts of

bone marrow mononuclear cells in the muscles of SODI1
ALS and muscle-deficient mouse models yielded GDNF-
dependent protective effects, manifested in better NMJ sta-
bility and extended MN survival (Pastor et al. 2013; Rando
et al. 2018). In the context of long-range retrograde effects
of muscles on the viability of motor units, it is worth not-
ing that MNs of Onuf’s nucleus are under the protective
influence of testosterone of target bulbospongiosus muscles,
with its deficiency leading to the death of MNs (Schellino
et al. 2020; Little et al. 2009). These findings agree with the
results of an earlier study showing that castration can cause
retardation of Onuf’s MNs and a reduction in size (Vercelli
and Cracco 1990).

Implications of differential MN vulnerability
to ALS for clinical translation

In addition to gaining mechanistic insights into the pathobi-
ology of ALS, research into the differential vulnerability of
motor units has important implications for unveiling thera-
peutic targets and avenues for the protection and rescue of
motor functions. Because of the limited access to degen-
erating MN in the human nervous system, most concepts
and strategies used in translational studies of ALS have
relied on data from animal models of familial variants of
ALS (Mead et al. 2023; Perrin 2014). With their numer-
ous advantages in recapitulating specific features of familial
ALS, genetic models fall short of capturing the complexity
of familial and sporadic variants, with the latter compris-
ing over 90% of ALS cases (Todd and Petrucelli 2022). For
instance, cytoplasmic aggregations of TDP-43 DNA/RNA
binding protein observed in TDP-43 mice, which represent
the hallmark of degenerating human MNs, are not observed
in SOD1 and FUS (fused in sarcoma) mouse models (Vance
et al. 2009; Mackenzie et al. 2007). Another limitation of
the TDP-43 model is that under physiological conditions, its
level is tightly autoregulated, while in transgenic models, the
expression of TDP-43 is pathologically enhanced (Tsao et al.
2012). Therefore, the TDP-43 toxicity in preclinical models
may not fully capture the features of ALS proteinopathy with
effects on MNs (de Boer et al. 2020; Tsao et al. 2012). Histo-
pathological analysis of the most common genetic subtype of
ALS linked with expansion of GGGGCC hexanucleotide in
the C9orf72 gene, in addition to cytoplasmic TDP-43 aggre-
gates, shows p62-positive deposits formed by pathological
dipeptide repeat proteins (DPRs), which is absent in other
ALS models (Ramos-Campoy et al. 2018; Mead et al. 2023).
Although the implications of these differences for replicating
the disease phenotype and mechanisms of neurodegeneration
in ALS remain unclear, their unsought effects on the stability
and survival of motor units cannot be ruled out.
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Fig.3 Anatomical perspective on phenotypic variants of ALS with
effects on the pattern of motor function involvement. A Schematised
representation of the human central nervous system with location of
distinct functional groups of motor neurons (upper MNs and lower
motor neurons, which include brain stem or bulbar, cervical, tho-
racic, lumbar and sacral) and topographic map of their innervation
distribution along the body axis (left and right, respectively). B Pat-
ten of motor involvement in different ALS phenotypes. UMN upper
motor neurons, LMN lower motor neurons. Depending on the site of

The discrepancies in the histopathological profiles of
preclinical models suggest significant methodological limi-
tations and call for cross-model validation of MN vulner-
ability data, which have been mainly obtained in SOD1
studies (Baczyk et al. 2022b; Nijssen et al. 2017). They also
indicate potential flaws in the therapeutic strategies rely-
ing on preclinical data, with a pervasive impact on clinical
translation. With over 60 compounds currently in clinical
trials and many more tested over the recent two decades,
progress in developing disease-modifying therapies has been
frustratingly slow, with only three drugs of limited efficacy
authorized for use (Mead et al. 2023). Nevertheless, it is
reassuring that the approved drugs target pathological mech-
anisms inferred from preclinical studies. Indeed, the first and
the most widely utilised anti-ALS drug, riluzole, inhibits
voltage-gated Na* channels and suppresses the presynap-
tic release of glutamate (Bensimon et al. 1994). A decrease
in glutamatergic drive in MNs reinstates the E/I balance in
hyperexcitable networks, restores Ca>" homeostasis, and
alleviates the ER stress (Bellingham 2011). The second
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the onset of degeneration and structures involved, clinical phenotypes
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(flail arms), all specified above muscles (in primary lateral sclerosis,
PLS and primary muscular atrophy, PMA) as well as rare respiratory
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vating the diaphragm and intercostal muscles. Modified from Swin-
nen and Robberecht (2014) with permission
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pharmacotherapy approved for ALS, edaravone, augments
mitochondrial functions with antioxidant effects, slowing
down MN failure and countering the disability progres-
sion (Witzel et al. 2022). Finally, the most recently FDA-
approved therapy, AMXO0035, is a proprietary oral combina-
tion of two drugs already in use, sodium phenylbutyrate and
tauroursodeoxycholic acid, with beneficial effects attributed
to suppression of mitochondria-mediated apoptosis and miti-
gation of ER stress (Mitsumoto et al. 2022; Paganoni et al.
2020). The intersection of the action mechanisms of anti-
ALS therapies with those inferred in MN degeneration by
preclinical studies warrant systematic analysis and cross-
model validation of the effects of anti-ALS therapies on the
vulnerability of motor units in multiple models. Likewise, it
would be interesting to investigate the response of different
motor unit types to therapeutic leads currently in phase II/IIT
trials with antioxidant (RT001, AP-101), anti-amyloidogenic
(ION-363, Tofersen) and anti-inflammatory (Ibadilast, BLZ-
945) effects.
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Summary and future directions

ALS is the most prevalent degenerative disease of MNs,
with no existing cure or treatment to halt neuronal loss or
reverse the decline of motor functions available. Although
the breakdown of motor units and associated functional
decline represent principal hallmarks of the disease and the
prime cause of mortality, there is considerable variability
in clinical phenotypes attributed primarily to the anatomi-
cal location, extent and functions of affected MNs (Fig. 3).
Notably, the clinical phenotypes of ALS may extend beyond
impairements of voluntary motor activities, involving fron-
totemporal, extrapyramidal and cerebellar impairments, as
well as autonomic dysfunctions.

Throughout this article, we revisited molecular and cel-
lular mechanisms implicated in the differential vulnerability
of MNs to ALS and discussed factors contributing to the
extent of motor decline with neurodegeneration. Analysis
of the sensitivity of motor units, in addition to cell-auton-
omous effects, has uncovered various extrinsic neuronal
and non-neuronal factors, supporting the composite nature
of the disease. The complex interplay of these effects with
genetic, regulatory and environmental factors seems to shape
the multifaceted phenotypes of ALS and determine the tra-
jectory of its progression and prognosis. It is important to
note that, like other neurodegenerative proteinopathies, ALS
shows prion-like propagation of misfolded TDP-43, SOD1
and FUS proteins throughout the CNS, driving the feed-
forward cascade effects and evolution of clinical symptoms.
These features, along with numerous factors shaping the
differential vulnerability of MNs, may underlie the multi-
system features of ALS with a broad spectrum of clinical
phenotypes.

Notwithstanding significant mechanistic advances in
the pathobiology of ALS, the progress in developing dis-
ease-modifying pharmacotherapies has been very slow.
The recent arrival of precision therapeutic tools and gene
editing technologies inspires optimism for translational
breakthroughs in the foreseeable future through genetic
reprogramming, transcriptome interference and cell ther-
apy to pave the way for the protection of MNs and rescue
their functions (Amado and Davidson 2021; Ovsepian and
Waxman 2023). Together with improved animal models
and patient-derived tissue studies, these advances should
not only enhance our understanding of the limits of MNis,
but also expose their reserves to overcome the challenges
imposed by ALS.
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