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Abstract

Background: Skin diseases are reported to contribute 1.79% of the global bur-
den of disease. The accurate diagnosis of specific skin diseases is known to be a
challenging task due, in part, to variations in skin tone, texture, body hair, etc.
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Classification of skin lesions using machine learning is a demanding task, due to the
varying shapes, sizes, colors, and vague boundaries of some lesions. The use of deep
learning for the classification of skin lesion images has been shown to help diagnose
the disease at its early stages. Recent studies have demonstrated that these models
perform well in skin detection tasks, with high accuracy and efficiency.

Objective: Our paper proposes an end-to-end framework for skin lesion clas-
sification, and our contributions are two-fold. Firstly, two fundamentally different
algorithms are proposed for segmenting and extracting features from images during
image preprocessing. Secondly, we present a deep convolutional neural network
model, S-MobileNet that aims to classify 7 different types of skin lesions.

Methods: We used the HAM10000 dataset, which consists of 10000 dermato-
scopic images from different populations and is publicly available through the Inter-
national Skin Imaging Collaboration (ISIC) Archive. The image data was prepro-
cessed to make it suitable for modeling. Exploratory data analysis (EDA) was per-
formed to understand various attributes and their relationships within the dataset.
A modified version of a Gaussian filtering algorithm and SFTA was applied for
image segmentation and feature extraction. The processed dataset was then fed
into the S-MobileNet model. This model was designed to be lightweight and was
analysed in three dimensions: using the Relu Activation function, the Mish acti-
vation function, and applying compression at intermediary layers. In addition, an
alternative approach for compressing layers in the S-MobileNet architecture was
applied to ensure a lightweight model that does not compromise on performance.

Results: The model was trained using several experiments and assessed using
various performance measures, including, loss, accuracy, precision, and the F1-
score. Our results demonstrate an improvement in model performance when ap-
plying a preprocessing technique. The Mish activation function was shown to out-
perform Relu. Further, the classification accuracy of the compressed S-MobileNet
was shown to outperform S-MobileNet.

Conclusions: To conclude, our findings have shown that our proposed deep
learning-based S-MobileNet model is the optimal approach for classifying skin lesion
images in the HAM10000 dataset. In the future, our approach could be adapted
and applied to other datasets, and validated to develop a skin lesion framework
that can be utilised in real-time.

Keywords: Skin lesion, Image Segmentation, Classification, Deep learning, Convolution
Neural Network, MobileNet

1 Introduction

The skin is the body’s largest organ and consists of three layers: the epidermis (out-

ermost layer), dermis, and hypodermis (innermost layer). Some common skin diseases

include acne, eczema, psoriasis, lesions, and skin cancer [1]. Skin lesions are unusual

patches or bumps on the skin and can be categorized into 3 classes: those formed by

fluids, those which are solid-like masses in the skin, and those which are flat, like rashes.

Manual detection and classification of skin lesions is challenging because of the varying
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shapes, sizes, colors, and vague boundaries of lesions. There are a number of studies in

the literature on image segmentation using deep learning (DL) algorithms and artificial

intelligence (AI) approach, and transfer learning, to detect and classify skin lesions in a

timely manner, before they become fatal [2], [3].

This paper aims to build an end-to-end deep convolutional neural network (D-CNN)

framework to classify skin lesion images. The proposed S-MobileNet D-CNN model is

a modified version of the MobileNet architecture [4]. The clinical image dataset used

in this work is HAM10000 [5]. The skin lesion images in the dataset are distributed

among 7 classes: Melanocytic nevi, Melanoma, Benign keratosis-like lesions, Basal cell

carcinoma, Actinic keratoses, Vascular lesions, and Dermatofibroma. The skin lesion

images were pre-processed before being fed into the neural network (NN) model. Image

preprocessing techniques viz. image segmentation and feature extraction were carried out

using the proposed algorithms to identify the latent clean image from the hidden layers.

Exploratory data analysis (EDA) and hypothesis formulation was carried out to obtain

a better understanding of the data. An additional analysis of the relationship between

various attributes was conducted to improve prediction. The dataset is split into train

and test sets for training and validation in the ratio of 80:20. The S-MobileNet model is

built, trained, and evaluated using various performance measures like accuracy, precision,

and F1 score. The main contributions of the paper include

1. Two new algorithms are proposed for image segmentation and feature extraction

respectively. The former segments images by analysing the pixels by constructing a

threshold and is more effective in removing noise from the image. The latter is a modified

version of the Segmentation-based Fractal (SFTA) that determines the texture pattern

from the image.

2. A D-CNN S-MobileNet is built to extract low-level features of the image and to

automatically classify skin lesion images into 7 classes of disease.

3. The proposed S-MobileNet model is fine-tuned and analysed using the Relu and

Mish Activation functions. Hyperparameters are fine-tuned to improve the model’s per-

formance.
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4. A lightweight S-MobileNet model is built by altering the architecture of the model

and by compressing the intermediary layers to enhance the classification performance.

The paper begins with a general introduction about the types of skin cancer, an ex-

planation of the problem statement, and the main contributions. In section 2, a literature

survey is presented with a detailed analysis of existing machine learning approaches and

image preprocessing techniques. Section 3 details the algorithm used for image segmenta-

tion and feature extraction, methodology, and architecture of the proposed S-MobileNet.

Section 4 describes the implementation setup, the experiments, and the corresponding

results. Finally, the paper is concluded in section 5.

2 Background

A number of custom-made models are proposed by researchers in recent years in relation

to skin lesion classification and prediction. Some of them related to the proposed problem

statement are briefed in Table 1. The Table aggregates the algorithms and performance

metrics used in the latest years to classify skin lesion images.

2.1 Machine Learning approaches

Machine learning algorithms are used for image classification across a number of ap-

plications [2]. A specific focus of this section is on image-based methods of classifying

skin diseases. In [6], as an initial preprocessing step, the image data is rescaled, resized,

and then classified using Naive Bayes, k-Nearest Neighbour (KNN), Support Vector Ma-

chines (SVM), Neural Network(NN). In spite of the high classification accuracy of the

model, prediction accuracy is a major concern. Self diagnosis of skin diseases is intro-

duced in [7] which uses image transformation techniques like Discrete Cosine Transform

(DCT), Discrete Wavelet Transform (DWT), and Singular Value Decomposition (SVD).

A comparison of all the image analysis techniques is made and an ensemble transforma-

tion technique is proposed by combining all three. This approach is found to be faster in

diagnosing the skin disease.
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A semi-supervised Computer-Aided System (CAD) [8] for Psoriasis image classifica-

tion uses both unsupervised and supervised image classification techniques. It builds a

dictionary for sparse image classification using aggregation methods deployed over local

features in an image. Multi-class machine learning classification techniques like Random

Forest (RF), SVM, and AlexNet are applied for severity score calculation. A detailed

analysis of pre-trained networks is applied in [9] for recognizing 20 skin abnormalities.

The performance of the different models is compared by generating the confusion matrix

and accuracy. However, the highest accuracy score is generated by an ensemble model.

Inspired by this work, the author in [10] used the median filtration technique to remove

the noise from the image. Following this sobel edge detection is applied to detect the

edges of the images. The result shows an increase in entropy value. Yet, ways to extract

the discriminative features from the image still remain fuzzy.

A mass of varying architectures of Convolution Neural Network (CNN) [11–15] is

applied in many research articles for skin image segmentation and classification. The

segmentation techniques, in general, help to minimize the distortions from the images

and improves the accuracy of classification. Although the impact of segmentation in the

classification of images has been explored partially in the literature work cited above,

there is still a lot of room for further research. D-CNN networks are also applied for

building learning models in [16–18] to classify skin lesion images. Gradient boosting is

applied to classify around 300 heterogeneous skin lesions into 5 categories in [16] and the

results of the machine learning algorithm are intervened by human interest and are cross

analysed to produce an accuracy of 82.95%. Five custom-designed deep learning CNN

models are proposed in by varying the convolution blocks, pooling blocks, and dropout

blocks. In addition, the model is tuned to bring the optimal results by modifying the

activation functions, and tuning the hyperparameters and so there is limited evidence for

considering this model as the de-facto standard.

Melanoma-affected skin lesion images are classified in multi-stage by analyzing their

pixels at the fine level using enhanced encoder-decoder feature map [18]. This approach

compares and classifies images in real-time using three segmentation techniques with
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a minimal number of training parameters and resources. A real-time algorithm using

Generative Adversarial Network (GAN) to detect melanin and sebum from skin images

is proposed in [19]. In the first step, grayscale images are converted into black and white

and enhanced before being passed on to the UNet architecture. Failing to clearly identify

melanin and sebum in the same image is one drawback of this approach.

The Lyme skin infection is identified using the skin images taken from the EM image

dataset [20] and applied to the HAM10000 dataset using the transfer learning approach

in [21]. This study applies twenty-three well-known CNN architectures and confirms a

lightweight CNN model to be very effective and useful in classifying the images. Addi-

tionally, the extended study in [22] by the same author proposes a customised ResNet

for classifying the skin images. In a way similar to this, the proposed method creates a

lightweight, customised S-MobileNet to classify the skin lesion images in HAM10000.

Another article, [23] introduces a customised CNN with compression complexity pool-

ing as compared to the conventional pooling technique. The pooling technique extracts

the spatial features from the image by generating relatively complex feature maps. The

experimental results show the results of object detection with a number of cropped and

resized CNNs. Hence, in order to create a model that is appropriate for the given dataset

in the domain or across domains, the convolution, pooling, and flattening layers of CNN

and the operations carried out in them can be modified in correspondence with the ap-

plication. Similarly, the layers of the proposed S-MobileNet are pruned, customised and

the activation functions are modified in accordance to attain the proposed objective.

2.2 Image Segmentation and Feature Extraction algorithms

The classification of skin images is been automated in recent years and a number of

researchers have proposed Automated Classification Methods (ACM) [31]. In general,

a study of skin image analysis includes preprocessing of images; image segmentation;

image feature extraction, and image classification. Image preprocessing [32] comprises

a variety of procedures: Downsampling, space transformations, contrast adjustments,

normalization, and artifact removal [33]. The accuracy of image classification totally
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Table 1: Literature related to the proposed problem statement

Ref Year Objective Algorithms used Performance
metrics

[7]
2017 Classification of Skin diseases DCT, DWT, SVD Accuracy

[8]
2018 Comparative study of the proposed sys-

tem with AlexNet and other CNN models
RF, SVM, Boosting F1 Score

[9]
2018 Propose a computer vision approach to

differentiate and recognize 20 skin abnor-
malities with increased accuracy

Inception v3, MobileNet,
Resnet, xception, RF,
and LR

Accuracy

[10]
2018 Apply segmentation and filtering tech-

niques to classify skin diseases. Provides
a visualization of the skin images for im-
proved identification and classification of
skin lesions

Sobel Edge Detection,
Median Filtering

Entropy

[11]
2018 Proposes a deep learning model called

FrCN for skin lesion segmentation analy-
sis

Full Resolution Convolu-
tional Networks

Jaccard Index,
Accuracy

[12]
2019 Classification of skin images k-means Clustering,

Morphology-based image
segmentation

Signal to Noise
Ratio

[13]
2019 Classification of skin images RF, Naive Bayes, LR,

Kernel SVM, and CNN
Accuracy and
Error rate

[14]
2019 Classification of skin images CNN and SVM Accuracy

[15]
2019 Classification of skin images CNN with regularization

algorithms like Lasso
Accuracy and
ROC curve

[16]
2019 Combines human intelligence with Artifi-

cial Intelligence to classify skin images
Deep learning, CNN Accuracy

[17]
2019 Classification of Skin diseases Deep learning model ROC Curve

[18]
2020 Classification of skin images and build an

automatic grouping system of the skin
diseases

CNN Accuracy

[24]
2020 Builds a system based on D-CNN with

a supervised encoder-decoder network
to recognize and differentiate between
melanoma and non-melanoma lesions.

D-CNN Accuracy

[25]
2020 Creates a web application for diagnosis of

skin lesion
D-CNN Accuracy

[26]
2020 Build a Deep Learning model for classifi-

cation of skin images
Mask R-CNN and
DeeplabV3+

Sensitivity and
Specificity

[27]
2020 Build a deep learning model with an en-

semble model with U-Net and ResNet
CNN and Transfer Learn-
ing

Jaccard Index,
Accuracy

[28]
2021 Investigates a number of deep learning

and transfer learning models in classifica-
tion of skin diseases

7 layered deep CNN Accuracy

[29]
2021 Classification of skin diseases and a com-

parative study of the proposed D-CNN
with other transfer learning models

D-CNN Accuracy

[30]
2021 Uses Deep Learning and Artificial Intel-

ligence to build an automated system for
skin disease

AI and CNN Accuracy
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depends upon the algorithms used in these stages.

In the process of segmentation, the infected area is extracted from the dermoscopy

image [27] and the segmentation process is carried out in three ways: Pixel-based seg-

mentation, Region-based segmentation, Edge-based segmentation [34, 35]. In addition

to the aforementioned methods, clustering-based segmentation and threshold-based seg-

mentation are also proposed in literature [36]. The study of inter-relation between pixels

in the Region Of Interest (ROI) of an image, facilitates proper segmentation. The au-

thors in [37] apply edge-based segmentation to find the rapid change in the intensity of

the pixels in an image. The color, texture, and contours of the image are figured dur-

ing the segmentation process. While another segmentation approach that analyses every

pixel and classifies each of them to a specific class label named semantic segmentation is

applied in [38]. Performance is measured in ResNet with the VGG model. The model

appears to be too complex with large parameters that consume more time and memory.

Feature extraction is the process of converting the image into numerical values. It

analyzes the color, texture, shape, and other qualities of the image. Numerous feature

extraction methods is been explored in literature like Gray Level Co-occurrence Matrix

(GLCM), Local Binary Patterns, Bag of features, etc [39]. The extracted features are sub-

jected to correlation analysis, homogeneity, and entropy analysis and further transformed

in [40] for increasing the predicting accuracy. In another relevant article [41] an UNet

CNN architecture is proposed over the ISIC 2018 skin lesion dataset that fuses image seg-

mentation with feature maps for segmentation. A five cross-validation is applied and the

performance is measured. Alternatively, the model is characterized as computationally

complex because of the large number of parameters.

According to one of the related works, [20] which investigates the effect of frequency

bias in CNN image classification, a number of challenges prevent CNN from accurately

extracting the features when used alone. So it employs the use of the Gaussian kernel

function and suggests using feature discrimination in addition to CNN. Following this

direction, the suggested work applies a segmentation method (modified Gaussian filtering)

and feature extraction method (modified version of Segmentation-based Fractal (SFTA))
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before moving on to the CNN model, which significantly increases accuracy as shown in

4. Image histogram, filtration and k-NN classifier is applied in on images of human finger

that is injured. Images of injured finger captured by mobile camera is processed after 60h,

160hr and 450 hrs of injury. This research work consumes minimal cost in capturing the

image and processing it in real time.

The challenges in segmenting lesion in skin images is detailed in [43] which noti-

fies that the color, texture, shape, hairs, veins and light reflections might add noise or

decrease the segmentation accuracy. The author applies the superpixel segmentation, L2

normalization and captures the variations in the superpixels using autoencoders. Given

that L1 norm is quite robust than L2 norm pruning [44], we apply L1 norm pruning

while designing the CNN model in our proposed system.

An end to end CNN is built using image segmentation techniques for edge prediction

in [45] to classify the skin lesion images. The deep CNN is customised and integrated

with modules to identify and highlight lesion boundaries for effective segmentation. Edge

detection being a pivotal element, in the proposed system, we use homogenity predi-

cates that distinguishes the change in the pixel color and gradients across the edges and

effectively segments the lesion. Section 3 discusses in detail the proposed system.

2.3 Dataset

Human Against Medicine with 10000 training images (HAM10000) [46] is an archive of

dermoscopic images from varying populations across the world Fig.1. The HAM10000

Dataset is cleaned to remove the ambiguous images as some of the images are similar but

shown in different magnifications and angles. Around 50% of the image, lesions are taken

from histopathology reports and from expert’s microscopical examination. The images

in the dataset are tracked using the metadata file. The HAM10000 dataset is used for

skin lesion classification in [47], [48], [49], [50], [51] and the performance of the proposed

Deep CNN framework is compared with the aforementioned state of the art approaches.

The dataset includes images from 7 different categories of skin disease. In order to

avoid bias, an equal number of images are taken from each of the 7 classes using a random
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Figure 1: Images from Dataset

image generator.

3 Materials andMethods

Machine Vision is generally categorized into low-level and high-level vision. In the low-

level vision, image processing operations are performed to produce another new image

with minimal noise and edges being enhanced. On the other hand, high-level vision tries

to perform object recognition and scene interpretation. Both of these are connected using

the segmentation process. The block architecture of the end-to-end Deep CNN is shown

in Fig. 2. The first block, displays the input, an image of the skin, is followed by two blocks

for image segmentation and feature extraction. These are followed by the blocks of the

customised S-MobileNet. Each block of customised S-MobileNet indicates a layer in the

CNN architecture and the two coloured (yellow and green) block signifies the depthwise

and pointwise convolution operations in the CNN layer. Also mentioned are the layer’s

filters and pruning percentages.

3.1 Proposed Image Segmentation Technique

As the first step in the proposed system, a modified version of the Gaussian Filtering [52]

algorithm is used for pixel-level segmentation of images. An ideal segmentor segments
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Figure 2: Architecture of the proposed end-to-end Deep CNN framework
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regions that are more uniform in texture, and homogeneous in gray tone, the boundaries

of the segmented image would be smooth and there would be a significant difference in

values between pixels of adjacent regions. Contemporary Gaussian filtering is effective

at eliminating noise from images, and it outperforms median filtering in terms of effec-

tiveness. In [53], the author compares Gaussian filtering, median filtering, and denoise

autoencoding to three performance measures, such as Normalization Mean Square Error,

Structure Similarity, and Peak Signal to Noise Ratio, demonstrating that a Gaussian

filter produces better results in a shorter period of time than two other filtering methods.

A sample of the result of the gaussian filtered images is shown in Fig.3.

Figure 3: Original image and Gaussian filtered image

Let A be some sample collection of pixels and N() be the homogeneity predicate on

the connected pixels. The homogeneity predicate specifies the property that the pixels

are homogenous or uniform. This property is set to true for regions that are similar in

color or edge gradient. Mathematically the initial setup of pixel arrangements within

regions can be represented below:

1. The segmentation ofA is simply the partitioning of the image into regions {𝑅𝑒1, 𝑅𝑒2, . . . ., 𝑅𝑒𝑥}

s.t 𝑥
𝑖=1𝑅𝑒𝑖 = 𝐴 wherein 𝑅𝑒𝑖

⋂
𝑅𝑒𝑏 = ∅ ∀ 𝑖 ≠ 𝑏. he homogenity predicate satisfies

the condition 𝑃𝑟𝑜𝑏(𝑅𝑒𝑖) = 𝑇𝑅𝑈𝐸 ∀ 𝑖. n addition, it is essential that the ho-

mogenity predicate satisfies rob(Re𝑖 ∪ 𝑅𝑒𝑏) = 𝐹𝐴𝐿𝑆𝐸, ∀ 𝑅𝑒𝑖 𝑏𝑒𝑖𝑛𝑔 𝑛𝑒𝑎𝑟 𝑡𝑜 𝑅𝑏 nd

(Re𝑖 ⊃ Re𝑏) ∧ (Re𝑏 ≠ ∅) ∧ (𝑃𝑟𝑜𝑏(Re𝑖) = 𝑇𝑅𝑈𝐸) =⇒ 𝑃𝑟𝑜𝑏(Re𝑏) = 𝑇𝑅𝑈𝐸

Image segmentation is an ad hoc property and is applied based on certain requirements

like the nature of the image, size of the region, etc. Often, the segmenter is applied at

the cost of other properties of the image. Disturbances like noise shatter the uniformity

in the image and fragment the segmentation results. Especially in large regions, noise
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considerably disturbs the segmentation result. The fourth indices mentioned above states

that a large region is considered to be uniform or noise-free if its subsets are uniform.

The proposed segmentation technique applies a modified version of the Gaussian fil-

tering algorithm for pixel-level segmentation. In this approach, the pixels are classified

based on the gray levels and uniformity of the pixels. Owing to the fact that gray-level

images are very supportive [54] in image classification and hence segmentation, the skin

images are converted to gray tones to improve the accuracy of the model. The prop-

erties of grayscale images: hue, saturation, and brightness enhance the correctness of

classification as compared to RGB.

Figure 4: Gaussian filtering threshold level

A specified threshold value captures the line of separation between the two modes:

the gray level of the objects and the gray level of the background pixels. The modified

Gaussian filtering algorithms roots in the Bayes algorithm. It analyzes the pixel density

of the object pixels in the foreground as well as the background pixels. Let there be an

image with object level and background level classified into dominant modes.

The threshold 𝑢 (𝑎, 𝑏) of the image 𝑣 (𝑎, 𝑏) is given as (𝑎, 𝑏) = 1 𝑖 𝑓 (𝑎, 𝑏) > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 𝑓 (𝑎, 𝑏) ≤

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇ℎ𝑖𝑠𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡𝑤𝑜𝑢𝑙𝑑𝑏𝑒𝑎𝑏𝑖𝑛𝑎𝑟𝑦𝑖𝑚𝑎𝑔𝑒𝑎𝑛𝑑𝑎𝑠𝑎𝑚𝑝𝑙𝑒𝑜 𝑓 𝑖𝑡𝑖𝑠𝑠ℎ𝑜𝑤𝑛𝑖𝑛𝐹𝑖𝑔.3.

Algorithm 1 details the proposed segmentation approach. It constructs the histogram

to classify the pixels between the object and the background of the image. More im-

portantly, an important feature of this proposed algorithm is that the histogram is

smoothened using the moving average as the smoothing function to minimize the er-
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ror while interpreting the results. The resultant of the algorithm would be a smoothened

histogram suitable for finding the threshold value. The central theme of classification is

to apply the threshold value in classifying the pixels (explained in Algorithm 2). Algo-

rithm 2 identifies the deep valley in the histogram and picks every pixel 𝑝 and marks it

to either of the two classes. The segmented skin lesion image is passed on to the next

level for feature extraction.

3.2 Proposed Feature Extraction technique

The critical aspect of image preprocessing is feature extraction. Analyzing the texture

of the skin lesion images gives a better understanding of whether the infected region is

swollen/bulged or is built with dead cells or has been rugged. Many researchers have been

predominantly using feature extraction in medical images for understanding the patterns

in an image. Nevertheless, the same feature extraction techniques cannot be applied

to all kinds of images, such as character recognition or object detection, since each of

them is unique. In the proposed work, a modified version of Segmentation-based Fractal

(SFTA) [55] is applied to break the components of the image into smaller fractions and

to determine the texture and other patterns in them.

As stated earlier, the texture underpins the semantic nature of the image and hence

classifying images considering the surrounding texture would yield greater accuracy. Es-

pecially when it comes to skin images, the hair over the skin is always an obstacle in

detecting its texture. Regardless of it, the proposed approach is efficient in capturing the

granularity structure of the image.

The binary version of the grayscale image is represented as 𝐼𝑏𝑖𝑛𝑎𝑟𝑦 which is obtained

by applying the threshold 𝑢(𝑎, 𝑏) on the image (from Section 3.1). As the first step, a

binary threshold image filter is applied to the image with two threshold values as input.

Let 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤𝑒𝑟 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑝𝑝𝑒𝑟 be the lower and upper threshold values. The

threshold values are chosen between [0.0,1.0] and are very influential in extracting pat-

terns from the image. There is limited evidence from the existing work that a randomly

chosen threshold would increase the efficiency of feature extraction. Nevertheless, in this
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Algorithm 1 Proposed Segmentation Algorithm - Building the Histogram - Part 1

Assumption: The density function of object level pixels and background level pixels
are gaussian in nature.

1. Construction of the histogram (H) to differentiate the density of the pixels in the
object vs the pixels in the background of the image
2. Let mean of the histogram be 𝐻𝜇, standard deviation of the histogram be 𝐻𝜎 and
number of chosen gray levels or gray level resolution be 𝐺 𝐿, given that 𝐺 𝐿 = 2𝑏𝑝𝑝

where bpp is the number of 𝑏𝑖𝑡𝑠
𝑝𝑖𝑥𝑒𝑙

𝐻𝜇 = 1
𝑋

∑
𝐻 (𝑖) ∗ 𝑖

𝐻𝜎 =

√︃
1
𝑋

∑
𝐻 (𝑖) ∗ (𝑖 − 𝐻𝜇)2

Here, 𝐻 (𝑖) → 𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑓 𝑜𝑟 𝑔𝑟𝑎𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖

𝑋 → 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑤𝑖𝑛𝑑𝑜𝑤

Alternatively 𝑋 can take up values either 0 or 1 representing number of pixels. If 𝑋 takes
up a value 0 in the window, it leads to undefined situation and hence a non negative
constant 𝑐 is added to 𝐻𝜎

𝐻𝜎 =

√︃
1
𝑋

∑
𝐻 (𝑖) ∗ (𝑖 − 𝐻𝜇)2 + 𝑐

3. Minimize the sum of the square of the offset of the below equation in against to the
𝐻 (𝑖) by altering the parameters included in it.

ℎ(𝑖) = 𝑁1
𝐻𝜎1

𝑒
−

(𝑖−𝐻𝜇1 )2

2𝐻𝜎1
2 + 𝑁2

𝐻𝜎2
𝑒
−

(𝑖−𝐻𝜇2 )2

2𝐻𝜎2
2

4. The next step is to alter the bins of the histogram and smoothen it using the below
equation. The smoothened histogram is analysed to find the deep valley (𝑑 𝑣) and that
is considered to be the threshold to partition the histogram.
Whilst the smoothening can be done in two steps:
(i)By using an moving average function 𝑊𝐹 = 1

(2𝑀+1)2

𝐻′(𝑖) = 1
2𝑀+1

∑2𝑀+1
𝑘=1 𝐻 (𝑖)

(ii)By using local weighted average

𝐻𝑖 (𝑖) = 𝐻 (𝑖−2)+2𝐻 (𝑖−1)+3𝐻 (𝑖)+2𝐻 (𝑖+1)+𝐻 (𝑖+2)
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

5. The 𝑑 𝑣 in the histogram is taken up for dividing the 𝐻 (𝑖) into two histograms. The
initial values of the parameters are given below:
𝑋1 =

∑𝑑 𝑣
𝑖=1 𝐻 (𝑖)

𝑋2 =
∑𝐺 𝐿

𝑖=𝑑 𝑣+1 𝐻 (𝑖)

𝐻𝜇1 =
1
𝑋1

∑𝑑 𝑣
𝑖=1 𝐻 (𝑖) ∗ 𝑖

𝐻𝜇2 =
1
𝑋2

∑𝐺 𝐿
𝑖=𝑑 𝑣+1 𝐻 (𝑖) ∗ 𝑖

𝐻𝜎1 =

√︃
1
𝑋1

∑𝑑 𝑣
𝑖=1 𝐻 (𝑖) (𝑖 − 𝐻𝜇1)2

𝐻𝜎2 =

√︃
1
𝑋2

∑𝐺 𝐿
𝑖=𝑑 𝑣+1 𝐻 (𝑖) (𝑖 − 𝐻𝜇2)2
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Algorithm 2 Proposed Segmentation Algorithm - Classifying the Pixels - Part 2

1. Deepest valley calculation in histogram
𝑚𝑖𝑛

∑𝐺 𝐿
𝑖=1 [ℎ (𝑖) − 𝐻 (𝑖)]2

2. For i being the deepest valley
𝑣𝑎𝑙𝑢𝑒 = |ℎ (𝑖) − 𝐻 (𝑖) |
LABEL: Value Calculation:
𝑙𝑒 𝑓 𝑡 𝑣𝑎𝑙𝑢𝑒 = |ℎ (𝑖 − 1) − 𝐻 (𝑖 − 1) |
𝑟𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒 = |ℎ (𝑖 + 1) − 𝐻 (𝑖 + 1) |

if 𝑙𝑒 𝑓 𝑡 𝑣𝑎𝑙𝑢𝑒 ≤ 𝑣𝑎𝑙𝑢𝑒 then
𝑑𝑒𝑒𝑝𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑖 − 1

else if 𝑟𝑖𝑔ℎ𝑡 𝑣𝑎𝑙𝑢𝑒 ≤ 𝑣𝑎𝑙 then
𝑑𝑒𝑒𝑝𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑖 + 1

else
𝑑𝑒𝑒𝑝𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑎𝑡 𝑖

end if

For any change in 𝑣𝑎𝑙𝑢𝑒 repeat to calculate new values for 𝑁1, 𝑁2, 𝐻𝜇1, 𝐻𝜇2, 𝐻𝜎1, 𝐻𝜎2

using Algorithm 1 and reestimate Value Calculation.
3. Let 𝑝 be a random gray pixel taken from the image. The pixel is allotted to the
object if

𝑁1
𝐻𝜎1

𝑒
−

(𝑝−𝐻𝜇1 )2

2𝐻𝜎1
2

>
𝑁2
𝐻𝜎2

𝑒
−

(𝑝−𝐻𝜇2 )2

2𝐻𝜎2
2

4. The threshold value is defined when

𝑁1
𝐻𝜎1

𝑒
−

(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑣𝑎𝑙𝑢𝑒−𝐻𝜇1 )2

2𝐻𝜎1
2

=
𝑁2
𝐻𝜎2

𝑒
−

(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑣𝑎𝑙𝑢𝑒−𝐻𝜇2 )2

2𝐻𝜎2
2

where both the error equation are equal.
5. And threshold value is supposed to satisfy

𝑉 =

(
1

𝐻2
𝜎1

− 1
𝐻2

𝜎2

)
𝑊 =

(
𝐻𝜇2

𝐻2
𝜎2

− 𝐻𝜇1

𝐻2
𝜎1

)
𝑌 =

(
𝐻2

𝜇1

𝐻2
𝜎1

−
𝐻2

𝜇2

𝐻2
𝜎2

)
𝑍 = 2𝑙𝑛 𝑋2𝐻𝜎1

𝑋1𝐻𝜎2

𝑉 ∗ thresholdvalue2 + 2 ∗𝑊 ∗ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑣𝑎𝑙𝑢𝑒 + 𝑌 + 𝑍 = 0
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work, the threshold values are chosen from the histogram that is designed in Algorithm

1 which improves the accuracy of the model. In addition, two intensity values are chosen

for classifying the pixels in the image. The intensity values range between [0,255]. Let

the intensity value of the pixel be 𝑣1 and 𝑣2. Let the range of chosen intensity values be

1, 2, 3, 4, 5, ..., 𝑔𝑙 . Let 𝑝 be the pixel taken randomly from the binary image 𝐼𝑏𝑖𝑛𝑎𝑟𝑦. The

pixel is allotted to the values based on the following condition:

𝑝𝑣 =



v1 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < threshold𝑙𝑜𝑤𝑒𝑟

v2 threshold𝑙𝑜𝑤𝑒𝑟 ≤ 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ threshold𝑢𝑝𝑝𝑒𝑟

v1 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > threshold𝑢𝑝𝑝𝑒𝑟

The 𝐼𝑏𝑖𝑛𝑎𝑟𝑦 is partitioned into smaller portions (𝑖𝑏𝑖𝑛𝑎𝑟𝑦) and the threshold filter is

applied to individual ones. The contiguous pairs of threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑝𝑎𝑖𝑟𝑠 are cho-

sen randomly during this thresholding process and {𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤𝑒𝑟 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑝𝑝𝑒𝑟} ∈

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑝𝑎𝑖𝑟𝑠. Say the thresholding process is done 𝑡 times over 𝑖𝑏𝑖𝑛𝑎𝑟𝑦 images, the

number of resultant binary images would be 2 ∗ 𝑡 ∗ 𝑔𝑙 . The
⋃
𝑖𝑏𝑖𝑛𝑎𝑟𝑦 will be the final

image. Another important aspect of the proposed work is that if thresholds are chosen

from a histogram built from Section 3.1 and lying in the midrange of gray level intensity

1, 2, 3, 4, 5, ..., 𝑔𝑙 , the feature extraction is further enhanced. It is undoubtedly possible to

choose threshold values in pairs to extract features from certain regions of an image such

as the middle portion or left corner which is difficult to extract using a single threshold.

Figure 5: Feature Extraction - Thresholding

The Fig. 5 illustrates the feature extraction process. The image is divided into smaller

portions, with each portion being thresholded separately using multiple threshold pairs.
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Once the decomposition and thresholding process is over, the extracted feature vectors are

structured to generate the fractal dimensions of the image. The final bordered output im-

age Δ𝑏𝑖𝑛𝑎𝑟𝑦 (𝑎, 𝑏) is computed after combining the individual threshold images (
⋃
𝑖𝑏𝑖𝑛𝑎𝑟𝑦).

Δ𝑏𝑖𝑛𝑎𝑟𝑦 (𝑎, 𝑏) =


1 ∃(𝑎′, 𝑏′) ∈ 𝑡 (𝑎, 𝑏) : 𝐼𝑏𝑖𝑛𝑎𝑟𝑦 (𝑎′, 𝑏′) = 0Λ 𝐼𝑏𝑖𝑛𝑎𝑟𝑦 (𝑎, 𝑏) = 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In the above equation 𝑡 (𝑎, 𝑏) is the number of times the thresholding process is exe-

cuted using the pairs of threshold and the set of pixels that are interconnected in t times

of execution is mentioned as 𝑡 [(𝑎, 𝑏)]. Using this approach, a resultant image is generated

that shows mean gray level, highlighted features, and boundaries that correlate with each

other to help identify patterns with minimal error.

3.3 Proposed CNN Architecture

Computer Vision has become increasingly popular with the use of CNN. Nevertheless,

modern CNN is becoming more complex and deeper as they strive to improve accuracy.

CNNs are a class of neural networks that uses grid-like topology to process data and

contains three layers, namely convolution, pooling, and fully connected layer. As part of

CNN, the convolution layer is responsible for computation. The input to the CNN is an

image (feature vector) and the parameters of this layer are a set of filters (kernels). The

kernels convolve over the feature vectors to produce feature maps (activation maps). This

layer keeps intact the spatial relation between the pixels in feature vectors. The feature

maps are then passed to the pooling layer. The pooling layer reduces the representation

size of the feature map and hence minimizes computation cost. Pooling techniques in

CNN include max pooling, min pooling, and average pooling. A number of convolution

and pooling layers are stacked one above the other to achieve accuracy. The reduced

feature maps from the pooling layer are flattened and passed to the fully connected layer

which is one-dimensional in nature. A number of such fully connected layers may be

stacked and following which Softmax or another classifier is applied for classification.

There are CNN models raised in literature like VGG Net [56], Alex Net [57], and
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Google Net [58]. These models are trained with ImageNet Large-Scale Visual Recogni-

tion (ILSVRC) [59] and are available as pre-trained models. Often a number of custom-

made models are developed in literature [60]. A few of the ways of modifying/building a

pre-trained network would be by compressing or shrinking the layers, factorizing the op-

erations, adding dropouts in them in accordance with the requirements of the developer,

the nature of the input images, and the tradeoff between latency and accuracy. The pro-

posed approach builds a modified MobileNet model, S-MobileNet for image classification.

The MobileNet is a deep learning model with the unique characteristics of being small,

showing low latency, and consuming little power. It produces higher accuracy than other

deep CNN models when it comes to categorizing images, identifying objects in images,

and segmenting images. Despite its low parameters, MobileNet has no latency excuse

compared with other CNN models. Unlike CNN, MobileNet uses Depthwise Separable

Convolution which makes it faster with fewer parameters than CNN.

3.3.1 S-MobileNet Model

This section discusses the S-MobileNet CNN architecture for image classification. The

proposed S-MobileNet architecture is very efficient in classifying images since the hyper-

parameters of the model are fine-tuned for producing results in low latency. The hyperpa-

rameters of a CNN model include modifying the kernel dimension, varying the number of

kernels, changing the stride length, etc. In addition, the classic MobileNet architecture is

shrunk to increase the accuracy of the proposed model (S-MobileNet CNN). S-MobileNet

is applied over the processed images Δ𝑏𝑖𝑛𝑎𝑟𝑦 (𝑎, 𝑏) generated after image segmentation and

feature extraction. The processed dataset contains 10000 images which are split into a

training dataset and a test dataset. One of the main features of MobileNet is that they

apply DepthWise Separable Convolution in lieu of normal convolution operation.

Depthwise Separable Convolution: The Depthwise Separable Convolution operates

in two phases: Depthwise Convolution and Pointwise Convolution. They perform the

filtration operation and combination operation respectively. The standard convolution

11



applies convolution operation across all channels whereas the depthwise convolution ap-

plies across one channel at a time. Channels are one of the parameters of input image

(feature vector), say for example, if an RGB image is passed as input, the number of

channels would be 3. The Fig. 6 shows the regular convolution operation that takes

place between input images of dimension (I1*I2*A) where I1 and I2 are its dimensions,

A is the number of input channels with kernels, each of dimension (K1*K2*A) where K1

and K2 are kernels dimensions, A is the width of kernel and there are B such kernels. This

operation consumes a large number of multiplication operations as the kernels convolve

over the input image, resulting in a huge cost.

Figure 6: A Regular Convolution Operation

A single convolving operation of kernel over an image takes (K1*K2*A) operations

and the complete convolving operation of a kernel over the image to produce a M1*M1

feature map would take (M1*M2*K1*K2*A). And for each of the B kernels it takes

(B*M1*M2*K1*K2*A).

However, when it comes to Depthwise Separable Convolution, it’s going to be a dif-

ferent case. The Fig. 7 shows the operation taking place in two stages. In the first

stage, a depthwise convolution operation takes place between input images of dimension

(I1*I2*A) with kernels of dimension (K1*K2*1) and there are A such kernels. The convo-

lution operation takes place between the input image channels and kernels in a 1:1 ratio,

unlike the conventional convolution where the kernel convolves over all the channels. In

this case, depthwise convolution requires the same number of kernels as the number of

input channels. The number of multiplication operation that takes place in one convo-
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lution operation would be (K1*K2*1) since it’s one dimensional. When this convolves

over the one channel of input image it takes (M1*M2*K1*K2*1). When A such filters

are applied to A channels it takes (A*M1*M2*K1*K2*1).

Figure 7: Depthwise Separable Convolution

Moving on to the second stage which is pointwise convolution. Each of the B filters of

dimension (1*1*A) convolves the input channels (M1*M2*A) (A is the depth of the in-

put volume) to produce an output tensor of dimension (M1*M2*B). The filters are called

KPC (Kernel Point Convolution) filters as their dimension is 1*1 and suited for pointwise

convolution. For one instance of convolution operation between one KPC filter with the

input channel of depth A, it would take (A) multiplications. The entire convolution of the

KPC filter over input volume would take (M1*M2*A). And for B such channels it would

be (B*M1*M2*A). The total number of multiplications in depthwise separable convolu-

tion would be (A*M1*M2*K1*K2*1)+ (B*M1*M2*A) → (A*M1*M2)(K1*K2+B). On

analysis, it’s seen that the number of multiplication in conventional convolution is 9 times

more than depthwise separable convolution.

S-MobileNet Architecture: It can be seen from [61] that MobileNet models are trained

with RGB images and hence requires 3 channels as input. However, the dataset that we

obtained after image segmentation and feature extraction include grayscale images of size

(450*650). While it is possible to convert the grayscale images to RGB and feed them

to the S-MobileNet model, but does so at the expense of losing a tremendous amount

of information in the first layer of the convolution process. Hence, the grayscale image

is reduced to (224*224) and is repeated 3 times to produce an input tensor of dimen-
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sion (224*224*3). The Fig. 8 represents the standard convolution layer, the MobileNet

convolution layer, and the S-MobileNet Convolution Layer.

Figure 8: Layers in Conventional Convolution Layer, Depthwise Separable Convolution
Layer and proposed S-MobileNet model

The proposed S-MobileNet model applies Mish as the activation which is very efficient

compared to the regular activation function (Relu) applied in the other convolution layer

as shown in Fig. 8. The activation function (Transfer function) defines the output that

has to be generated at the end of every node/layer based on the input values provided

to the node/layer. Very importantly they introduce non-linearity in the output which is

an important factor to learn complex patterns in the input image.

𝑓 (𝑥) =


1 𝑥 >= 0

0 𝑥 < 0

Figure 9: Activation function: Relu and Mish

The Relu activation function being non-linear in nature activates specific neurons at

the output leading to convergence of gradient to global minima. Though being an efficient

function, during training the model fails to activate certain neurons as their weight gets

diminished during backpropagation, and at one point it causes the neurons to die. This

is called the dying-Relu problem.
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On the other hand, the Mish activation function outperforms Relu (Fig. 9), Leaky

Relu, and other activation functions on several benchmark applications like ResNet, Dark-

Net, etc [62]. The Mish activation function is a non-monotonic activation function which

produces a smooth and continuous output.

𝑓 (𝑥) = 𝑥 ∗ 𝑡𝑎𝑛ℎ(𝑠𝑜 𝑓 𝑡 𝑝𝑙𝑢𝑠(𝑥))

𝑓 (𝑥) = 𝑥 ∗ 𝑡𝑎𝑛ℎ(𝑙𝑛(1 + 𝑒𝑥))

One of the remarkable characteristics of Mish is that it reduces overfitting and over-

comes the dying Relu problem by preserving a very small amount of negative weights

and permits information flow during backpropagation. Table 2 describes the S-MobileNet

architecture in levels, mentioning the operation, strides, filter dimension, and tensor out-

put dimension.

1. The S-MobileNet CNN architecture starts with the initial convolution layer {level

1} which takes up the input volume of dimension (width-224*height-224*depth-3) and

32 kernels with each filter of dimension (3*3*3). The convolving operation with a stride

of 2 produces an output tensor of dimension (112*112*32). The dimension of the output

tensor is calculated based on the following formula, ((𝑤𝑖𝑑𝑡ℎ𝑜 𝑓 𝑖𝑚𝑎𝑔𝑒− 𝑓 𝑖𝑙𝑡𝑒𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛+

2 ∗ 𝑝𝑎𝑑𝑑𝑒𝑑 𝑝𝑖𝑥𝑒𝑙)/𝑠𝑡𝑟𝑖𝑑𝑒) + 1. In our case, there are no padded pixels and hence it’s 0.

Thus ((224 − 3 + 2 ∗ 0)/2) + 1 → 112. The input to the next convolution layer will be

(112*112*number of filters i.e. 32).

2. This is followed by a sequence of depthwise convolution and pointwise convolution

operation in four iterations {level 2-level 5} with depthwise filters of dimension (3*3)

and pointwise filters of dimension (1*1) with (32-64, 64-128, 128-128, 128-256) number

of kernels respectively.

3. Layer 6 in the regular MobileNet architecture operates with the depthwise filter

(3*3) and pointwise filter (1*1) but with a kernel count of (256-256) respectively. On

the contrary, in the proposed S-MobileNet model, the convolution layer in level 6 is

compressed to produce an output tensor of reduced dimension. In this layer 10% of the
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filters are reduced during the depthwise convolution operation i.e.
⌊
10∗256
100

⌋
= 25 i.e. we

discard 25 filters in this layer. This reduces the depth of the output tensor from 256 to

231. The output tensor of dimension 28*28*231 is subjected to pointwise convolution

with 256 filters to produce an output of dimension 28*28*256.

4. In level 7, depthwise convolution applies 256 kernel filters of dimension (3*3) with a

stride of 2 and generates a downsampled image of dimension 14*14*256. This is followed

by 512 pointwise filters to produce an output tensor 14*14*512.

5. In Level 8, both depthwise and pointwise convolutions are applied with a stride of

1 and kernel count of 512 and 512 in each respectively, generating an output tensor of

depth 512 with dimension 14*14*512. As the dimension of the tensor is high, compression

is applied in the next layer to reduce the number of parameters.
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6. The depthwise convolution layer in level 9 is compressed by 8% and a total of 40

filters are reduced (
⌊
8∗512
100

⌋
= 40). The depth of the output tensor is reduced from 512 to

472. The output tensor (14*14*472) is passed to a pointwise convolution operation with

512 filters to produce a resultant tensor of dimension (14*14*512).

7. Level 10 shows no change. But again in level 11, there is a compression of 8%

reducing approximately 40 filters. This is followed by level 12 with no change. And again

in level 13, there is compression of 10% and 51 (
⌊
10∗512
100

⌋
= 51) filters are removed. A

stride length of 2 is applied and produces an output tensor of dimension (7*7*461). This

is followed by pointwise convolution with a 1024 filter and thus raising the depth of the

output tensor to 1024 (7*7*1024).

8. Padding is introduced in level 14 which applies a stride of 2 over the input tensor

of dimension (7*7*1024) and produces an output of the same dimension.

9. Nearing the end of the convolution layer, the average pooling operation is carried

out with a 7*7 sliding window and downsamples the tensor to a dimension of (1*1*1024)

10. The fully connected layer flattens into a layer of 1000 pixels and a softmax classifier

is applied for classifying them into 7 classes.

As mentioned before, Mish is the activation function that is applied in all the layers

of depthwise and pointwise convolution. On top, of all the layers of execution, dropout is

enabled to be True. During training, dropout ensures to prevent overfitting by dropping

certain neurons. And hence the model acts as an ensemble model and the prediction

value is by default averaged in each layer. In the network architecture the information

from the previous layers (𝐼 𝑗) is multiplied with the link weights (𝑊𝑖 𝑗) and the output

neuron (𝑂𝑖) aggregates them as shown below [63]:

𝑂𝑖 =
∑𝑁

𝑗=1 𝑊𝑖 𝑗 𝐼 𝑗

while the standard dropout applies bernoulli function

𝑂𝑖 = 1
𝑢

∑𝑁
𝑗=1 𝑊𝑖 𝑗 (𝛼 𝑗 ∗ 𝐼

𝑗
) , 𝛼 𝑗 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑢)

to minimize the number of neurons in intermediary layers.

Compressing the S-MobileNet : Compressing the CNN network is an efficient approach

since it reduces the number of parameters in compressed layers and thereby the total
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parameter count of the model. Although this approach produces a low latency and high-

speed network, applying compression in the initial layers leads to the loss of a huge amount

of pixel information. Hence, in the S-MobileNet model, they are applied in intermediary

layers. One of the key aspects of S-MobileNet is that the compression is applied four times

with enough spacing between layers and not between successive layers. Compression when

applied in successive layers will decrease the patterns of lost information in the first layer

over the further layers. In S-MobileNet, compression is applied in levels 6, 9, 11, and 13

and there is enough spacing between compressed layers to restore the patterns between

the lost features.

Compression is often referred to as the pruning of filters with sparse information that

is not significant in changing the final decision at the output. In the S-MobileNet CNN,

L1 norm pruning is applied to cut down the insignificant filters in levels 6, 9, 11, and 13

of the model. A CNN network{
𝑁 𝑖 ∈ R𝐼𝑖 ∗𝑂𝑖 ∗ 𝐶𝑊 ∗ 𝐶𝐻

}
, 1 ≤ 𝑖 ≤ 𝐿

is defined with parameters 𝑁𝑖, weight matrix of connections in layer i; L, number of lay-

ers; 𝐼𝑖 and 𝑂𝑖, Number of input channels and output channels in layer i respectively; 𝐶𝑊

and 𝐶𝐻 , represents the height and width of the input channel respectively. In our case

𝐶𝑊 = 𝐶𝐻 , as the input channel is a square of dimension 224*224 and varies in each layer

retaining the square property. The number of computational operations in a convolution

layer is given by 𝐼𝑖 ∗𝑂𝑖 ∗𝑊 ∗ 𝐻 ∗ 𝑤𝑖+1 ∗ ℎ𝑖+1. After applying the L1 norm, the number of

computational operations is 𝐼𝑖 ∗𝑊 ∗ 𝐻 ∗ 𝑤𝑖+1 ∗ ℎ𝑖+1. Here 𝑤𝑖 ∗ ℎ𝑖 and 𝑤𝑖+1 ∗ ℎ𝑖+1 are the

input feature size and output feature size respectively. The number of computations will

considerably reduce as the pruning is applied in the successive layers. During network

training, emphasis is provided on minimizing the loss function. The minimization objec-

tive of the loss function is represented as

𝜃 = min
𝑊

∑
(𝐼𝑖 ,𝑂𝑖) 𝜃

(
𝑊𝑇 𝐼𝑖 −𝑂𝑖

)2 + 𝜆 |𝑊 |

The function 𝜃 () is the squared loss function that sums the square of the difference

between the predicted and actual values. The 𝜆 controls the degree of sparsity of the
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weight matrix 𝑊 . The L1 norm is penalizing the filters that have a small magnitude

and in parallel keeps track of the optimization function 𝜃. In addition, it regulates the

tradeoff between the loss function, regularization parameters, and the weight matrix.

S-MobileNet hyperparameters : The two specific hyperparameters of MobileNet: width

multiplier, 𝛼, and resolution multiplier, 𝜌. The parameter 𝛼 takes any value from [0:1]

and for every layer with 𝐼𝑖 number of input channels and 𝑂𝑖 number of output channels,

it becomes 𝛼 ∗ 𝐼𝑖 and 𝛼 ∗ 𝑂𝑖. The tradeoff between latency and speed of small networks

is decided by the width multiplier and reduces the complexity by 𝛼2. The resolution

multiplier 𝜌 takes values between [0:1] and each layer’s internal representation parameter

is reduced by 𝜌. Similar as 𝛼, 𝜌 reduces the computational complexity by 𝜌2. The

TensorFlow version used in the proposed model is a stable release 2.10.0 using Python

language. The S-MobileNet model is executed using three optimizers individually: Adam,

RMSProp, and SGD with stochastic gradient descent and with Nesterov Momentum.

With this proposed model, data overfitting is minimized to a greater extent. The model

is trained varying the epochs and learning rate. In the next section, we will look in

detail at the experiments and results. In a similar way, the authors in [64] compare and

analyze a number of optimizers, among which are SGD, Adam, and FastAdaBelief, and

demonstrate that one outperforms the rest.

4 Experiments and Results

The HAM10000 archive [46] of dermoscopic images is subjected to a segmentation ex-

periment. The Dice and Jaccard coefficients are used to measure the performance of

modified Gaussian filtering and the standard Gaussian filtering approach. The Dice co-

efficient measured between the segmented image (S) and the ground truth Image (G) is

𝐷𝑖𝑐𝑒(𝑆, 𝐺) =
2∗(𝑆∩𝐺)
|𝑆 |+|𝐺 | . The Dice scores images on a scale of 0 to 1, with higher scores

indicating more accurate segmentation. Table 3 shows the Dice score obtained by execut-

ing the proposed segmentation algorithm discussed in Section 3.1 and standard Gaussian

filter on random 25 samples.
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Image Proposed segmentation dis-
cussed (in Algorithm 1 and
2)

Gaussian Filter

ISIC 25773 0.951 0.922
ISIC 26757 0.741 0.644
ISIC 27086 0.764 0.799
ISIC 24748 0.658 0.534
ISIC 28064 0.786 0.781
ISIC 26461 0.859 0.754
ISIC 27179 0.986 0.785
ISIC 27408 0.939 0.855
ISIC 27766 0.842 0.743
ISIC 27139 0.828 0.876
ISIC 27936 0.816 0.821
ISIC 24815 0.958 0.789
ISIC 27421 0.607 0.654
ISIC 24408 0.793 0.655
ISIC 25207 0.749 0.549
ISIC 28886 0.824 0.801
ISIC 26944 0.802 0.987
ISIC 27872 0.970 0.921
ISIC 28649 0.706 0.692
ISIC 27022 0.972 0.901
ISIC 27581 0.784 0.692
ISIC 25439 0.961 0.894
ISIC 26900 0.745 0.769
ISIC 26060 0.853 0.847
ISIC 25281 0.862 0.987
ISIC 27339 0.949 0.901
ISIC 26515 0.772 0.701
ISIC 27616 0.969 0.899
ISIC 26741 0.754 0.799
ISIC 25902 0.967 0.934
Average 0.839 0.796

Table 3: Dice Score of Proposed Segmentation method and standard Gaussian filter
approach
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Block of 500
random images
from shuffled
HAM dataset

Proposed seg-
mentation
discussed (in
Algorithm 1 and
2)

Gaussian Filter

Block 1 0.989 0.876
Block 2 0.976 0.705
Block 3 0.806 0.721
Block 4 0.989 0.789
Block 5 0.873 0.994
Block 6 0.790 0.598
Block 7 0.976 0.980
Block 8 0.885 0.899
Block 9 0.787 0.843
Block 10 0.989 0.768
Block 11 0.985 0.874
Block 12 0.878 0.872
Block 13 0.791 0.874
Block 14 0.979 0.923
Block 15 0.874 0.685
Block 16 0.840 0.743
Block 17 0.975 0.839
Block 18 0.777 0.854
Block 19 0.850 0.765
Block 20 0.974 0.896
Average 0.899 0.825

Table 4: Dice Score of HAM 10000 images in 20 blocks, each of 500 images with Proposed
Segmentation method against standard Gaussian filter approach

The HAM10000 dataset is shuffled and 20 blocks of random 500 images are subjected

to the proposed segmentation method and standard Gaussian filter approach. The aver-

age dice score of each block is recorded in Table 4 and is shown in Figure 10.

Following the image segmentation, feature extraction is applied over the images using

the modified version of Segmentation-based Fractal (SFTA). Several iterations of this

modified version are executed using pairs of thresholds selected from the histogram (de-

tailed in ??) that is generated during the segmentation phase. Figure 11 shows the results

of traditional feature selection and the proposed SFTA model. The proposed model ex-

tracts the infected region and the nearby segments that are risk at of infection. Many

recent works on feature extraction apply to label the image and to locate the region by

dividing them into smaller portions and analysing them individually. However, in SFTA
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Figure 10: Dice score plot with reference to Table 4

the feature vector is applied in 8 thresholds and its classification accuracy is recorded [65].

The feature extraction process using labeling has a couple of drawbacks. It consumes

more time and fails to extract new features when added to the image. And in most

the cases, this approach prioritizes features with more unique values than those with

redundant values. As can be seen that the feature extraction approach that is obtained

by modifying the SFTA algorithm produces better results in classifying the images using

S-MobileNet architecture.

4.1 Performance metrics - S-MobileNet model

The segmented images are subjected to S-MobileNet CNN architecture. This section

details the model parameters and tabulates the performance of the model by fine-tuning

its hyperparameters. As an initial step, the dataset is split in an 80:20 train-test split

ratio and the model is trained with 8000 images each of size (224*224) from the HAM

dataset in many epochs. The model is designed with layers as mentioned in Table 2 and

the learning rate is set to be 0.01 initially. The model is executed in 5 folds with 20% of

images in each fold. During the execution of the model in multiple iterations, the number

of epochs was varied and the performance was studied. It was found in the initial epochs

that the model learned the parameters and after 15 epochs the results were found to be

stable and minute changes were recorded. The performance metrics for evaluating the

model are the training loss, testing loss, training accuracy, testing accuracy, precision,

and F1-score. The model is executed using three optimizers Adam, RMSProp, and SGD.
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Figure 11: Feature extraction results of modified SFTA algorithm
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Categorical Cross Entropy loss : Being a multiclass classification, the loss function used

is Categorical Cross Entropy loss (Softmax loss).

𝐿𝑜𝑠𝑠 = −∑𝐶
𝑖 𝐺𝑖𝑙𝑜𝑔

(
𝑓 𝑢𝑛𝑐 (𝑆𝐶)𝑖

)
𝑓 𝑢𝑛𝑐(𝑆𝐶)𝑖 = 𝑒SC𝑖∑𝐶

𝑘
𝑒SC𝑘

Here C is the number of classes and in the proposed model its 7, 𝐺𝑖 is the ground

truth value of each class i, 𝑓 𝑢𝑛𝑐(𝑆𝐶)𝑖 is the S-MobileNet score for each class i. The afore-

mentioned loss function is used in both training and testing of the S-MobileNet model.

Accuracy : The accuracy of the S-MobileNet is calculated using

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Here 𝑇𝑃 refers to true positive, i.e. the number of positive images correctly predicted; 𝑇𝑁

refers to true negative, i.e. the number of negative images correctly predicted; 𝐹𝑃 refers

to false positive, i.e. the number of positive images incorrectly predicted; 𝐹𝑁 refers to

false negative, i.e. the number of negative images incorrectly predicted. The higher the

value of 𝑇𝑃, 𝑇𝑁 , the higher the accuracy. The metric accuracy defines the performance of

any network.

Precision: The precision is calculated using

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

and this metric defines the accuracy of the model in identifying a sample as positive. The

precision of a model increases in two cases: either when 𝑇𝑃 is high or when 𝐹𝑃 is low.

F1 Score: This score decides the overall performance of the model. There is a fine

line difference between accuracy and F1-score. Accuracy is primarily concerned with pre-

dicting the positive samples, while F1-score addresses the behavior of the model toward

negative samples as well.
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4.2 S-MobileNet model result analysis

In the initial go, the model is designed and tested by applying Mish and Relu activation

functions and by executing it with and without compression when the Mish activation

function is applied. The effectiveness of applying the Mish Activation function and com-

pression is shown in the experimental results. Firstly, the experiments are performed

with a batch size of 32 and the images are passed to the S-MobileNet model without

applying the modified segmentation and feature extraction procedure. In contrast, the

performance of the model is also recorded after applying segmentation and feature ex-

traction. Secondly, the model is executed with three different optimizers. Thirdly, each of

the optimizer’s results is recorded with the Relu activation function and Mish Activation

function. In the fourth and final step, the model is evaluated both with and without

layer compression. The words compression and pruning are used interchangeably in the

coming sections. All of their results are shown in Table 5 and Table 6.

Optimizers The state-of-the-art of deep learning libraries the gradient descent algo-

rithms (Optimizers). They are coded as a black box with their strength and weakness.

The performance of the gradient descent algorithm varies for different applications and

can be fine-tuned. Gradient descent algorithms are used to train the CNN model. Be-

ing an optimization algorithm the objective of gradient descent is to minimize the cost

function and reach the global minima. This is achieved by adjusting the learning rate.

The author in [66] has detailed different optimization algorithms on gradient descent.

Adaptive Moment Estimation (Adam) is a gradient descent algorithm that keeps track

of the exponentially decaying average of past gradients. Adam is a slight variation of

another gradient descent algorithm named momentum. Adam faces the problem of di-

minishing learning which is overcome by Root Mean Square Propagation (RMSProp)

and concludes that the learning rate of 0.001 will produce optimal results. Stochastic

Gradient Descent (SGD) produces better results with large datasets. Following many

trials of other gradient descent algorithms, the above three algorithms were chosen.

Table 5 shows the results of the model without segmentation and feature extraction

applied to the dataset. Trial analysis is made with Relu and Mish activation function.
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Method Batch
Size

Optimizer Training
loss

Test
loss

Training
Accu-
racy

Test
Accu-
racy

Precision F1
score

S-MobileNet using Relu 32 Adam 0.19905 0.19714 0.93042 0.88386 0.96958 0.93358
S-MobileNet using Mish
without pruning

32 Adam 0.19190 0.19103 0.94182 0.86156 0.96973 0.94341

S-MobileNet using Mish with
pruning of layers

32 Adam 0.17845 0.17281 0.94188 0.91272 0.97469 0.95828

S-MobileNet using Relu 32 RMSProp 0.17630 0.20839 0.80410 0.89891 0.89364 0.87904
S-MobileNet using Mish
without pruning

32 RMSProp 0.16598 0.20116 0.86561 0.90188 0.89382 0.88662

S-MobileNet using Mish with
pruning of layers

32 RMSProp 0.16169 0.19905 0.91159 0.91109 0.92594 0.92333

S-MobileNet using Relu 32 SGD 0.15895 0.23190 0.95078 0.86411 0.91791 0.92120
S-MobileNet using Mish
without pruning

32 SGD 0.15600 0.17845 0.95079 0.93265 0.92477 0.90309

S-MobileNet using Mish with
pruning of layers

32 SGD 0.14910 0.17630 0.97757 0.93222 0.95588 0.93567

Table 5: Performance evaluation of the proposed S-MobileNet model without applying
Segmentation and Feature extraction mehods, with different optimizers, Relu and Mish
activation function, with and without pruning intermediary layers

Across all three optimizers,

1. Mish activation function shows lower training and testing loss than relu.

2. Mish activation function shows an increased training and testing accuracy than

relu.

3. Mish activation function shows an increased precision and F1 score than relu.

4. Mish activation function along with pruning layers shows lower training and testing

loss than just applying Mish.

5. Mish activation function along with pruning layers shows higher training and test

accuracy than just applying Mish except for SGD optimizer.

6. Mish activation function along with pruning layers shows higher Precision than just

applying Mish.

7. Mish activation function along with pruning layers shows higher Accuracy than just

applying Mish.
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Method Batch
Size

Optimizer Training
loss

Test
loss

Training
Accu-
racy

Test
Accu-
racy

Precision F1
score

S-MobileNet using Relu 32 Adam 0.16177 0.19061 0.96650 0.95991 0.96809 0.93367
S-MobileNet using Mish
without pruning

32 Adam 0.15722 0.18617 0.96542 0.94289 0.97896 0.95330

S-MobileNet using Mish with
pruning of layers

32 Adam 0.15763 0.17607 0.96604 0.95032 0.97392 0.95838

S-MobileNet using Relu 32 RMSProp 0.13723 0.17346 0.87666 0.86086 0.89902 0.89653
S-MobileNet using Mish
without pruning

32 RMSProp 0.13498 0.17175 0.87639 0.89797 0.91053 0.91029

S-MobileNet using Mish with
pruning of layers

32 RMSProp 0.12739 0.16891 0.91619 0.93680 0.94757 0.95288

S-MobileNet using Relu 32 SGD 0.15603 0.16823 0.96340 0.91702 0.92162 0.92859
S-MobileNet using Mish
without pruning

32 SGD 0.15473 0.17177 0.98158 0.94489 0.94751 0.94592

S-MobileNet using Mish with
pruning of layers

32 SGD 0.14154 0.16093 0.98345 0.98154 0.96233 0.94593

Table 6: Performance evaluation of the proposed S-MobileNet model after applying Seg-
mentation and Feature extraction mehods, with different optimizers, Relu and Mish ac-
tivation function, with and without pruning intermediary layers

8. Adam optimizer produces a high precision and F1 score for image classification

when compared to other two, whereas the Accuracy score of SGD is slightly higher

than other two optimizers.

Following the passing of the processed dataset after segmentation and feature extrac-

tion to the S-MobileNet model the results are recorded in Table 6. A couple of differences

are found in the behavior of the optimizers as compared to Table 5.

The comparative results/inferences obtained by applying segmentation and feature

extration on S-MobileNet are listed below:

1. All the optimizers produce lower training and testing loss for applying Mish acti-

vation function than compared to Relu except the test loss of SGD which shows a

slighly higher value for Mish than for Relu.

2. The training and test accuracy of Adam optimizer shows a slightly lower value for

Mish than for Relu. A slighly exceptional case.

3. The training accuracy of RMSProp shows lower accuracy for Mish than Relu. But

the test accuracy is ideal with higher value for Mish than for Relu.
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Figure 12: Result Analysis (a) Training loss of S-MobileNet model (b) Test loss of S-
MobileNet model (c) Training Accuracy of S-MobileNet model (d) Testing Accuracy of
S-MobileNet model (e) Precision of S-MobileNet model (f) F1 score of S-MobileNet model
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4. For the SGD optimizer, the accuracy for training and testing is higher with Mish

activation function than with Relu.

5. The precision and F1 score of all the three optimizers shows a higher value for Mish

than for Relu.

6. A notable drop in training and testing loss values is found after pruning layers for

all the three optimizers except the training loss of Adam which is slightly higher.

7. For all the optimizers, a notable analysis is the accuracy, precision and F1-score of

the model after undergoing pruning is higher than that without pruning.

8. Thus it can be concluded that pruning layers produces higher accuracy irrespec-

tive of optimizer. Having many layers in the model not always guarantees higher

accuracy.

On comparison of Tables 5 and 6, the processed dataset, regardless of the optimizer

used, produced higher accuracy, precision, and f1 score than the original dataset. Figure

12 illustrates the performance of the S-MobileNet model.

4.3 Pruning layers in S-MobileNet

The layers of S-MobileNet at Level 6, 9, 11, 13 are pruned using L1-Norm values.

Level 6 of the S-MobileNet mentioned in Table 2 has 256 filters. The L1 norm values

of each filter are generated and are plotted in Figure 13-Diagram(A). The L1-norm value

of 0.1 is chosen as the threshold and this contributes to 10% of the filters at this layer,

around 25 in count, being pruned. Secondly, it is applied at Level 9 with 512 filters. The

L1-norm cutoff value is 0.09 (Figure (13)-Diagram(B)) and around 40 filters are pruned.

Thirdly at Level 11, the L1 norm threshold is fixed at 0.1, and around 40 filters are pruned

(Figure (13)-Diagram(C)). And finally, at Level 13, the L1 norm threshold is 0.11, and

around 51 filters out of 512 are pruned (Figure (13)-Diagram(D)).

After many trials, the threshold values are selected in a way that effectively increases

the classification accuracy of the model. Also, the levels for pruning are chosen with
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Figure 13: L1 norm compression value (A) Level 6 in S-MobileNet architecture-25 fil-
ters pruned with L1Norm cutoff-0.07 (B) Level 9 in S-MobileNet architecture-40 fil-
ters pruned with L1Norm cutoff-0.09 (C) Level 11 in S-MobileNet architecture-40 filters
pruned with L1Norm cutoff-0.1 (D) Level 13 in S-MobileNet architecture-51 filters pruned
with L1Norm cutoff-0.11.

Figure 14: L1 norm values
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enough gaps between them to avoid loss of data. The L1 norm values of all the 13

depthwise convolution layers are shown in Figure 14.

Pruning is only applied at only 4 levels in the proposed model since more pruning will

have a significant negative influence on accuracy. A detailed result analysis of the drop

in filter percentage and the associated increase in other performance metrics is discussed

below:

1. In levels 6, 9, 11, and 13, there are a total of 1792 filters. Of these, 156 filters are

pruned. Approximately 8% of the filters are pruned in these four levels. The complete

S-MobileNet architecture is made of 10944 filters and 156 filters are pruned, which is

approximately 1.4%.

2. The training accuracy of Adam, RMSProp, and SGD is raised by 0.06%, 4.5%, and

0.19% respectively. The testing accuracy of Adam, RMSProp, and SGD is raised by 0.78%,

4.32%, and 3.87% respectively. Precision has decreased by 0.51% for the Adam optimizer

while rising by 4.06% and 1.56% for the RMSProp and SGD optimizer respectively. The

F1 score shows a raise in 0.53%, 4.67%, and 0.0009% increase for Adam, RMSProp, and

SGD respectively. Figure 14 shows the percentage of variation in all these performance

metrics with and without applying the pruning process.

Figure 15: Percentage change in performance metrics after applying pruning

From Figure 15, it’s seen that there is a significant drop in the training and testing loss

percentage and an overall raise in other performance metrics. The proposed S-MobileNet

model works efficiently in classifying the images into 7 classes with high accuracy and
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Ref Model Accuracy

[47]
MobileNet 80.14%
Modified MobileNet without data up sampling and data
augmentation method

83.93%

Modified MobileNet with data up sampling and data
augmentation method

83.23%

[48] Custom built model 88.57%

[49]

Inception 87.70%
Xception 86.20%
Inception ResNet 87.80%
ResNet 85.20%
DenseNet 88.20%
Ensemble 85.20%

[50] SVM 89.80%

[51]

ShuffleNet 76.83%
Wide- ShuffleNet 77.88%
Entropy-based Weighting and First-order Cumulative
Moment (EW-FCM) + ShuffleNet

83.66%

Entropy-based Weighting and First-order Cumulative
Moment (EW-FCM) + wide -ShuffleNet

84.80%

Entropy-based Weighting and First-order Cumulative
Moment (EW-FCM) + EfficientNet-B0

85.50%

S-Mobile
Net

Without segmentation and feature extraction 97.757%
With segmentation and feature extraction 98.345%

Table 7: Performance comparison of S-MobileNet to MobileNet and other existing algo-
rithms executed over HAM10000

minimal loss.

The performance of the S-MobileNet framework is compared to the MobileNet bench-

mark algorithm and other existing algorithms executed over the HAM10000 dataset in

Table 7. Compared to other models/algorithms/CNN frameworks, S-MobileNet performs

better. A notable feature in the proposed model is the pruning which makes it lightweight

and other preprocessing techniques which boost its performance. Due to the uncertainty

about the GPU, processor, hardware power, or other external factors under which litera-

ture algorithms are executed, it would not be possible to compare or analyze the latency

of the algorithms or the time is taken to execute them with the proposed ones.

Although the S-MobileNet CNN framework has achieved promising performance on

the HAM10000 dataset, future enhancements may be applying S-MobileNet on other

datasets like ISBI 2016 challenge dataset for skin lesion analysis towards melanoma detec-

tion [67], PAD-UFES-20 skin lesion dataset [68], PH2 database [69] or other real-time

datasets to make it acceptable as a global framework on skin lesion analysis. Another

interesting challenge would be to identify and validate over-segmented images, as well as
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Figure 16: Skin lesion size pro-
gression

Figure 17: Change in skin lesion color with
time

to control thresholds based on brightness or contrast.

The societal benefits of automated processing of skin images can help in early de-

tection of skin diseases like cancer/melanoma etc, reduces misdiagnoses of skin diseases,

earlier the prediction reduces the healthcare cost, early predicts the change in the size

of the skin lesion (Fig. 16) and the color change (Fig. 17), and promotion of human well

being.

5 Conclusion

In this paper, we proposed an end-to-end deep CNN based skin lesion classification frame-

work. Images from the HAM10000 dataset were preprocessed using the proposed image

segmentation and feature extraction algorithm, and fed into our customised S-MobileNet

CNN model for classification. The S-MobileNet CNN model was fed the raw dataset in

the first phase, and the processed dataset in the second, and a comparative study is per-

formed. S-MobileNet CNN model was trained in either case and hyperparameters were

fine-tuned to ensure higher accuracy in classification. The layers of the S-MobileNet are

custom-made and analysed by applying the Mish activation function. The performance of

the S-MobileNet model with the Mish activation function was compared with the contem-

porary Relu activation function. Further, we compressed/pruned S-MobileNet to develop

a lightweight model. The filters in the four intermediary layers of the S-MobileNet model

were compressed using the L1-norm CNN compression technique. Overall, 156 filters were

pruned out of a total of 10944, in S-MobileNet. The performance of the model is eval-

uated in four dimensions: with and without passing preprocessed data; Relu activation

function vs Mish activation function; mish activation function with and without apply-
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ing compression and across three CNN optimizers, namely Adam, RMSProp, and SGD.

Our results demonstrated that using processed data in the model results in improved

performance. The Mish activation function was shown to outperform the Relu activation

function, and pruning specific layers was also shown to improve model performance. To

conclude, our proposed model demonstrated a higher classification accuracy compared to

benchmark approaches, whilst still being lightweight.
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