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There is a clear case for drug treatments to be selected according to the characteristics of the individual patient in order to improve efficacy and to reduce the number and severity of adverse drug reactions1,2.  However, such personalisation of drug treatment requires the ability to predict how different individuals will respond to a particular drug/dose combination and, following initial optimism, there is increasing recognition of the limitations of the pharmacogenomic approach, which does not take account of important environmental influences on drug absorption, distribution, metabolism and excretion3-5.  For instance, a major factor underlying inter-individual variation in drug effects is variation in metabolic phenotype, which is influenced not only by genotype but also by environmental factors such nutritional status, the gut microbiota, age, disease and the co- or pre-administration of other drugs6,7.  Thus, whilst genetic variation is clearly important, it seems unlikely that personalised drug therapy will be enabled for a wide range of major diseases using genomic knowledge alone.  We describe here an alternative and conceptually new ‘pharmaco-metabonomic’ approach to personalising drug treatment, which uses a combination of pre-dose metabolite profiling and chemometrics to model and predict the responses of individual subjects.  We provide ‘proof-of-principle’ for this new approach, which is sensitive to both genetic and environmental influences, with a study of paracetamol (acetaminophen) administered to rats, which demonstrates pre-dose prediction of an aspect of the urinary drug metabolite profile and an association between pre-dose urinary composition and the extent of the liver damage sustained post-dose.   Additional results from related studies on galactosamine and allyl alcohol are also presented.


1H NMR spectroscopy has been widely applied as a metabolite profiling tool for metabonomic studies as it enables many endogenous metabolites to be quantified rapidly and reproducibly without derivatisation or separation8-11.  In one of many potential applications, NMR-based metabonomic analysis of post-dose rodent biofluids has been developed as a rapid and non-invasive means of assessing the toxicity of potential drug compounds and this has involved studying the effects of a variety of model toxins12.  In one such study, we dosed galactosamine hydrochloride (800 mg/kg) to a group of ten rats and found the extent of the induced effects to be so variable that the rats could be classified as either “responders” or “non-responders”. Searching for the cause of this variation, we performed Principal Components Analysis (PCA) on the NMR spectra of the relevant pre-dose urine samples and observed some discrimination between the responder and non-responder groups in terms of their pre-dose metabolite profiles (Fig. 1a).  Whilst this result was not sufficient to say that galactosamine responder/non-responder behaviour is predictable, it suggested that information on individual responses to xenobiotics might be contained in the metabolite patterns of pre-dose biofluids.  Thus, we hypothesised the possibility of ‘pharmaco-metabonomics’, which we define as ‘the prediction of the outcome of a drug or xenobiotic intervention in an individual based on a mathematical model of pre-intervention metabolite signatures’.  In a larger study on the severity of liver damage induced in rats by allyl alcohol (50 mg/kg), we found a weak but statistically significant association between the extent of the induced damage and the pre-dose urinary data (Fig. 1b), although in this case the discriminating factor was total pre-dose excretion rather than the metabolite pattern.  However, knowing that the multivariate endogenous metabolite profiles of biofluids reflect inter-subject variation with respect to a multitude of factors such as age, sex, diet, ethnicity and disease13-17 and recognising that many of the factors that influence the metabolism of drugs would normally operate on endogenous and dietary substances, we decided to test the hypothesis (Fig. 1c) that the pre-dose metabolite profile of an individual animal contains sufficient information to allow the prediction of aspects of drug metabolism and toxicity in that individual without any prior knowledge of the individual’s genomic profile.  Paracetamol was chosen for this investigation.

In an extensive study, we collected pre- and post-dose urine samples from sixty five rats given a single toxic-threshold dose of paracetamol (600 mg/kg), a treatment that produced no mortality or clinical signs, and we analysed all of these samples by 1H NMR spectroscopy (Fig 2). The post-dose spectra showed the characteristic signals of both endogenous and paracetamol-related metabolites, with the major paracetamol-related metabolites being identified as paracetamol sulfate (S), paracetamol glucuronide (G), the mercapturic acid (MA) derived from paracetamol and paracetamol (P) itself.  Using these spectra in conjunction with the known urinary volumes, we determined the amounts and relative proportions of paracetamol-related metabolites excreted by each animal and variation in these data was modelled in relation to the multivariate endogenous metabolite profiles obtained from the pre-dose samples.  Liver damage of variable severity was identified and quantified by clinical chemistry and by histopathology in samples taken at ca. 24 h post-dose, with the extent of the microscopically-visible damage being scored in each of five liver lobes and a mean histology score (MHS) derived for each rat (see supplementary tables and figure).  The inter-animal variation in MHS was also modelled in relation to the multivariate endogenous metabolite profiles obtained from the pre-dose samples, in an attempt to integrate classical end-point histopathology with a pre-dose metabonomic data set. The predictive ability of the various models was then tested. 

The G/P mole ratio (G/P) was found to be the most convincingly predicted of the various post-dose metabolite quantities.  Thus, a PLS model (see methods) was built and validated for predicting, from the pre-dose metabolite profiles, the G/P values obtained post-dose for individual animals (Fig. 3).  The most important factors underlying this model were a positive correlation (r = 0.48) between G/P and the integral of the δ 5.06-5.14 region of the pre-dose NMR spectra and negative correlations  (r   =  -0.56 and -0.54 respectively) between G/P and the integrals of the δ 8.98-9.10 and δ 0.50-0.86 regions of the pre-dose spectra (Fig. 3b).  The integrals for the latter two regions were found to be correlated to one another (r = 0.90) but showed no clear relationship to the integral for the δ 5.06-5.14 region.  Inspection of the pre-dose spectra revealed some small but distinct signals in the δ 5.06-5.14 region, with the δ 8.98-9.10 region and much of the δ 0.50-0.86 region being relatively featureless but positive relative to the zero line.  The validation performed (Fig. 3c and 3d) confirms that the predictive model for G/P is robust and the positive correlation between G/P and the δ 5.06-5.14 region of the pre-dose spectra is consistent with metabolic control.  The glucuronide part of G produces a doublet in this region post-dose and the signals in the δ 5.06-5.14 region of the pre-dose spectra may arise, correspondingly, from endogenous ether glucuronides. It is logical that G/P would be positively correlated to the pre-existing tendency of each individual rat to form and excrete such ether glucuronides and the integral for the δ 5.06-5.14 region could be a good reflection of that tendency, being relatively free of other signals.  The significance of the negative correlations between G/P and the specified regions of the pre-dose spectra is not understood but might reflect some dependency on urinary protein.

Whilst we did not obtain a fully validated model for predicting post-dose histology, our analysis did demonstrate a statistically significant association between the nature of the pre-dose urinary biochemical profile and the post-dose histological outcome. Having assigned each animal to one of three histology classes, as described in Table 1,   PCA was carried out on the pre-dose spectral data (62 animals) with partial separation between histology classes 1 and 3 being found on PC2 (Fig. 4a).  Furthermore, a weak but statistically significant correlation (r = -0.34; P = 0.007) was found between the PC2 scores and MHS (Fig. 4b).  PCA was also carried out on the pre-dose data for classes 1 and 3 only (32 animals) with partial separation of those classes again being observed on PC2 (Fig. 4c) and the statistical significance of that separation being confirmed by a Mann-Whitney test (P = 0.002).  The principal pre-dose factors underlying this class discrimination are the levels of taurine, trimethylamine-N-oxide (TMAO) and betaine (Fig 4d).  A higher pre-dose level of taurine is associated more with class 1 than with class 3 whilst a higher combined pre-dose level of TMAO plus betaine is associated more with class 3 than with class 1.  The beneficial relationship found between pre-dose urinary taurine and the extent of paracetamol-induced liver damage is consistent with earlier findings for the degree of liver damage induced by a variety of other liver toxins and with the protective effect observed when taurine is administered to rats before or soon after an hepatotoxic dose of paracetamol18,19.  The significance of the pre-dose level of taurine might lie in its known defensive properties but urinary taurine might also reflect the availability of inorganic sulfate, to which taurine is metabolically related and which is a precursor of the paracetamol sulfating agent phosphoadenosine phosphosulfate (PAPS)20-22.  The latter interpretation is consistent with our observation that most of the animals with a high degree of liver necrosis (MHS > 2.5) showed a low proportion of S in their post-dose urine.  In contrast, a higher pre-dose level of TMAO is associated with more paracetamol-induced liver damage, suggesting that the gut bacteria might have a role in determining the extent of that damage23,24 and the contribution of the gut bacteria to a Bayesian probabilistic (‘Pachinko’) model of metabolism has already been postulated11.  The occasional pre-dose presence of a significant quantity of betaine, which produces an NMR signal that overlaps that of TMAO, may be a confounding factor and certainly contributed to the abnormal position of one of the class 1 animals on the scores plot shown in Fig 4c.   

Whatever the basis of the observed pre-dose discrimination, the paracetamol study findings demonstrate statistically significant relationships between variation in the pre-dose data and the post-dose variation in histopathology and in the urinary level of a drug metabolite relative to its parent.  Thus, the two apparently independent models provide the first demonstration of the concept of pharmaco-metabonomics, wherein drug-induced responses in individual subjects are potentially predictable from pre-dose metabolite profiles, which serve as biochemical signatures that report simultaneously on multiple factors of relevance to drug metabolism and drug effects.  Looking forward, we propose that this pharmaco-metabonomic approach, which amounts to response-targeted pre-dose phenotyping, might provide the basis of a future population screening tool for selecting individuals according to their suitability for treatment with particular drugs, drug classes, or drug doses.  Furthermore, this approach should have certain advantages over methods for drug and dose selection that are dependent on the use of test compounds25 to characterise particular aspects of an individual’s metabolic phenotype with the pharmaco-metabonomic approach potentially providing automatic identification and weighting of multiple response-determining factors.  A further inherent benefit of the pharmaco-metabonomic approach is the identification of new biomarkers and the provision of insights into their significance.

The main potential application we envisage for pharmaco-metabonomics is in respect of personalised human healthcare and clearly there is a need for further development and to investigate how well the approach can be transferred from single strain laboratory animals to human subjects, where much greater genetic and environmental variation would be expected.    Recent developments in data analysis should assist the process of pharmaco-metabonomic modelling and biomarker identification26,27. Other analytical techniques such as LC-MS and GC-MS might also be employed, with the likelihood of detecting a large number of low concentration metabolites not normally accessible by NMR.  Metabolic profiling of fluids other than urine, such as blood and faecal extracts, should also provide additional information.  In practise, the success or otherwise of the pharmaco-metabonomic approach would be expected to vary from drug to drug and would depend on the nature of the challenge posed by each drug, on the response of interest and on the extent to which the relevant response-controlling factors are reported in the pre-dose data.  However, in principle, by using this methodology, adverse drug reactions could potentially be avoided and drugs and dose levels could be targeted more effectively according to the metabolic and other characteristics of each individual.  Theoretically, pharmaco-metabonomics has an important advantage over pharmacogenomics in that it can potentially take account of both genomic and environmental factors affecting drug-induced responses.  Furthermore, whilst pharmaco-metabonomics would normally relate to predicting drug- or xenobiotic-induced responses, we envisage that similar methodology could also be applied to predicting individual responses to broader medical, dietary, microbiological or physiological challenges.

Methods

This section relates to the paracetamol study only. Further details are provided as supplementary methods.
Animal treatment and sampling.  The study was performed in accordance with the relevant national legislation using 75 male Sprague-Dawley rats [Crl:CD (SD)IGS BR] obtained from Charles River, France.  The rats (approximately 7 weeks old) were placed in individual cages in a controlled environment with free access to water and a commercial feed.  65 animals received, by oesophageal intubation, a single oral dose of paracetamol (600 mg/kg) as an aqueous suspension containing methylcellulose (0.5% w/v) and Tween 80 (0.1% w/v). A further 10 rats were used as a control set and were orally dosed with the vehicle.  Individual pre- (-48 to -24 h) and post-dose (0 to 24 h) urine samples were collected into ice-cooled vessels containing 0.5 ml of an aqueous 100 mg/ml solution of sodium azide as a preservative.  After the post-dose urine collection, individual blood samples were collected and centrifuged to recover plasma for clinical chemistry. The animals were then euthanased by means of CO2 and the liver of each was examined, weighed and sampled for histopathology. 
NMR sample preparation, spectral acquisition, processing and construction of data sets.  Urine samples were prepared as described in the supplementary information.   1H NMR spectra were acquired (7200 Hz spectral width, 65536 time domain points, 8 dummy scans, 64 real scans) at 600 MHz, at a nominal 303K, on a Bruker DRX 600 NMR spectrometer operated by the ‘XWINNMR’ software (both Bruker Biospin, Rheinstetten, Germany) with the ‘noesypresat’ pulse sequence28 used to suppress the water signal during a 3 s relaxation delay and during the 0.1 s mixing time.  Following Fourier transformation with 0.3Hz line broadening and a single zero-filling, the pre-dose spectra were manually phased and baseline-corrected and the chemical shift scale set by assigning the value of  0 to the signal from the added TSP.  Each of these processed spectra was then ‘data-reduced’ using the ‘AMIX’ software (Bruker Biospin) wherein the spectral regions δ > 9.5, δ 6.1 - 5.5, δ 5.0 - 4.5 and δ < 0.5 were discarded before dividing the remainder of each spectrum into sequential 0.04 ppm-wide segments (‘bins’) and obtaining an integral for each segment.  These integrals were then normalised to give the same total integral for each data-reduced spectrum.  Each 0.04 ppm-wide spectral segment (bin) was initially identified by the chemical shift at its mid-point but quantities relating to certain compounds were derived by making appropriate bin combinations as described in the supplementary information.   The post-dose spectra were processed as above and subsequently with resolution enhancement, in order to determine, by reference to the cluster of N-acetyl signals in the range  2.11 – 2.22, the TSP signal and the post-dose urinary volume, the amounts and the relative proportions of the paracetamol-related compounds excreted by each animal.  The amounts excreted were corrected to unit body mass.
Clinical chemistry.  The blood plasma samples were analysed at 30C, on an AU600 clinical analyser (Olympus, Paris, France), for a variety of parameters and univariate statistical analyses performed.  Details and results in the supplementary material.
Histopathology.  For each animal, ten representative samples of the liver (two each from the left, right, left middle, right middle and caudate lobes) were examined, the changes in each lobe scored, a mean histology score (MHS) calculated and an histology class assigned as described in Table 1.
Multivariate modelling.  ‘Pirouette’ (v 2.7 and 3.1, Infometrix, Woodinville, WA, USA) and ‘SIMCA P+’ (v. 10.0 and 10.5, Umetrics, Umeå, Sweden) software was used.   After initial investigations, three animals were excluded from all of the subsequent modelling because of abnormal pre- or post-dose behaviour.  The predictive multivariate modelling was carried out in SIMCA with, a supervised pattern recognition method, Projection to Latent Structure (PLS) being used to model the co-variation between the NMR-derived pre-dose data (X) and the selected post-dose response variables (Y).  Model validation was performed as described in the supplementary information.  The VIP (Variable Influence on Projection) values characterise the relative overall importance of the individual X variables to the model whilst the weights for each component of the model reveal the nature of the relationship between each individual X variable and the predicted quantity, Y.  In the predictive modelling of the G/P mole ratio, total area normalised pre-dose spectral data were used with unit variance variable scaling.  An unsupervised pattern recognition method, Principal Components Analysis (PCA) was also employed.  The histology-coded PCA was performed, in Pirouette, on the pre-dose spectral data normalised to constant total spectra area, with mean-centred variable scaling and with the histology class of each animal assigned as described in Table 1.  The relevant loadings describe how the original variables contribute to each principal component. 
Univariate statistical analysis and test of correlation.  All significance tests were 2-sided.  See supplementary information for details.
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Table 1. Liver histopathology in paracetamol-dosed rats at ca. 24 hours after dosing.

	Mean histology score (MHSa)
	Extent of liver necrosis
	Number of rats in this category
	Class designation and colour-coding for PCA

	MHS = 0.0
	No significant necrosis
	1

	} 1, green

	0.0 < MHS < 1.5
	Minimal necrosis
	20

	

	1.5 < MHS < 2.5
	Mild necrosis
	32

	          2, blue

	2.5 < MHS
	Moderate necrosis
	12

	          3, red


a It was not possible to obtain mean histology scores of 1.5 or 2.5 because of the methodology employed, wherein the individual scores across five liver lobes were averaged.  See the supplementary information for further details.

Fig. 1		Preliminary studies and the pharmaco-metabonomic hypothesis.  a, a scores plot from a PCA of the 1H NMR spectra of urine samples obtained prior to dosing male Sprague-Dawley rats with galactosamine hydrochloride (800 mg/kg).  Each point represents an individual rat with colour-coding according to post-dose behaviour.  b, a scores plot from a PCA of urinary data obtained prior to dosing male Sprague-Dawley rats with allyl alcohol (50 mg/kg).  Each point represents an individual rat with colour-coding according to the extent of post-dose liver damage.  Mid-damage group excluded.  c, a diagram showing the pharmaco-metabonomic hypothesis.  

Fig. 2		Representative 1H NMR spectra.  a and b, pre- and post-dose 1H NMR spectra, respectively, of 24 h urine samples from a rat dosed with paracetamol (600 mg/kg).  The inset provided in a is an expansion of the  1.9 to 1.0 region indicating the complexity of the endogenous profile and the richness of the embedded information.  2-OG, 2-oxoglutarate.  G, paracetamol glucuronide.

Fig. 3		Pre-dose prediction of the urinary mole ratio of paracetamol glucuronide to paracetamol (G/P) obtained in paracetamol-dosed rats.  a, observed vs. predicted G/P values for a two-component PLS model where all the predictions relate to model-building data.  b, the twelve regions of the pre-dose 1H NMR spectra most important to the above model with each of the 0.04 ppm-wide spectral segments identified by the chemical shift at its mid-point.  VIP, variable influence on projection.  c, internal validation of the above model showing clear decreases in performance as the G/P data are permuted relative to the pre-dose data.    d,  the result of a 7-round cross-validation exercise where every point represents test data not used in the model-building [regression line: observed value = (0.89*predicted value) + 0.29; root mean square error of predictions = 0.32].

Fig. 4		Pre-dose discrimination of the degree of liver damage obtained in paracetamol-dosed rats.  a, a scores plot from a PCA of the pre-dose NMR data. Each point represents an individual rat and is colour-coded by its histology class (see Table 1).  b, a plot of mean histology score (MHS) vs. the PC2 score obtained from the above PCA, with colour-coding as before.  c,  a scores plot from a PCA of the pre-dose NMR data for rats in histology classes 1 and 3.  Each point represents an individual rat with colour-coding as before.  d, a loadings plot corresponding to Fig. 4c, showing the principal contributions to PC2 and the direction of each contribution. Individual 0.04 ppm-wide spectral regions are identified by the chemical shifts at their mid-points whilst variables corresponding to particular compounds are identified by name (TAU, taurine; CITR, citrate; OXOG, 2-oxoglutarate; TMAO, trimethylamine-N-oxide; BET, betaine; 2TAU indicates doubling of the TAU values). 








