
Functional Ecology. 2023;00:1–14.	﻿�   | 1wileyonlinelibrary.com/journal/fec

Received: 24 October 2022  | Accepted: 11 September 2023

DOI: 10.1111/1365-2435.14441  

R E S E A R C H  A R T I C L E

Plant neighbourhood diversity effects on leaf traits:  
A meta-analysis

Juri A. Felix1,2  |   Philip C. Stevenson2  |   Julia Koricheva1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

1Department of Biological Sciences, 
Royal Holloway University of London, 
Egham, UK
2Royal Botanic Gardens, Kew, UK

Correspondence
Juri A. Felix
Email: juri.felix.2020@live.rhul.ac.uk

Funding information
Biotechnology and Biological Sciences 
Research Council, Grant/Award Number: 
BB/M011178/1

Handling Editor: Sabrina Russo

Abstract
1.	 Leaf traits often vary with plant neighbourhood composition, which in turn may 

mediate plant susceptibility to herbivory. However, it is unknown whether there 
are any common patterns of change in leaf trait expression in response to neigh-
bourhood diversity, and whether these responses confer increased resistance or 
susceptibility to herbivores.

2.	 We used meta-analysis to combine data from 43 studies that examined the influ-
ence of neighbourhood diversity on eight physical and chemical leaf traits that 
could affect herbivory. All leaf traits apart from leaf thickness were highly plas-
tic and exhibited significant differences between plant monocultures and spe-
cies mixtures, but the direction of effect was variable. Leaf toughness was the 
only trait that displayed a significant decrease with plant diversity, whereas spe-
cific leaf area (SLA) and leaf nitrogen were both marginally increased in species 
mixtures.

3.	 The magnitude and direction of leaf trait responses to neighbourhood diversity 
were independent of plant density and phylogenetic diversity, but changes in 
SLA correlated positively with plant species richness. SLA was also significantly 
increased in experimental studies, but not in observational studies, while neigh-
bourhoods containing nitrogen-fixers were associated with increased leaf nitro-
gen and reduced phenolics. When studies on the over-represented species Betula 
pendula were removed from the analysis, the effect of neighbourhood diversity 
on leaf toughness became nonsignificant, but phenolics were significantly re-
duced in diverse neighbourhoods composed of mature trees, and marginally re-
duced in species mixtures across all studies.

4.	 Increases in plant neighbourhood diversity are often associated with reductions 
of herbivory, although in some cases, the reverse occurs, and plants growing in 
species mixtures are found to suffer greater herbivory than those in monocul-
tures. This study offers a potential explanation for the latter phenomenon, as our 
results show that leaf trait expression is highly plastic in response to neighbour-
hood diversity, and in certain cases could lead to increased leaf quality, which in 
turn could promote greater rates of herbivory.
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1  |  INTRODUC TION

Plants growing in mixed-species neighbourhoods are often subject 
to lower rates of herbivory than those growing in monocultures 
(Jactel et al.,  2021). The mechanisms frequently attributed to this 
phenomenon include reduced host plant apparency and increased 
regulation of herbivores by predators and parasitoids (Barbosa 
et al.,  2009; Guyot et al.,  2016; Jactel et al.,  2021; Letourneau 
et al.,  2011; Root,  1973; Stemmelen et al.,  2022). However, these 
mechanisms are unable to account for the results of numerous 
studies that have documented increased rather than decreased her-
bivory in diverse neighbourhoods, which suggests that additional 
factors are involved in determining the strength and direction of 
plant neighbourhood effects on herbivores (Barbosa et al.,  2009; 
Berthelot et al., 2021; Jactel et al., 2021; White & Whitham, 2000). 
One such factor that has been increasingly explored is the intraspe-
cific variation in physical and chemical leaf traits of the focal plant 
in different neighbourhoods, that can in turn influence leaf quality 
and rates of herbivory (Mraja et al., 2011; Poeydebat et al., 2020; 
Rosado-Sánchez et al., 2018a). Understanding the patterns of leaf 
trait variation in heterospecific vs conspecific neighbourhoods 

may offer additional insights into the variability of neighbourhood 
diversity effects on herbivores, as well as other processes that are 
mediated by neighbourhood diversity (Cardinale et al., 2007; Hong 
et al., 2021).

Leaf traits are highly plastic to the variation in biotic and abi-
otic conditions in different plant neighbourhoods due to the distinct 
morphologies, canopy structures and resource requirements of 
different species (Callaway et al., 2003; Pretzsch, 2014; Rozendaal 
et al.,  2006). Changes in leaf traits can affect leaf quality to her-
bivores, and hence increase or decrease the amount of herbivore 
damage received (Figure  1; Awmack & Leather,  2002; Carmona 
et al., 2011; Castagneyrol et al., 2018; Moreira et al., 2016; Rosado-
Sánchez et al., 2018b). For example, fast-growing neighbours in spe-
cies mixtures can increase canopy stratification and the amount of 
shading experienced by a focal plant, which might result in a higher 
specific leaf area (SLA) and lower leaf thickness as an adaptation 
to maximise photosynthesis in a light-limited environment (Reich 
et al., 1997; Roberts & Paul, 2006; Williams et al., 2020). This in turn 
may increase the palatability of leaves to herbivores, as leaves with 
higher SLA are more tender and easier to digest (Muiruri et al., 2019). 
Likewise, the nutritional value of leaves may vary with the availability 

K E Y W O R D S
associational effects, BEF, defence, insect herbivore, leaf traits, meta-analysis neighbourhood 
diversity

F I G U R E  1  Conceptual diagram showing the ways that neighbourhood diversity can influence leaf quality. Light intensity, nutrient and 
water availability, and individual tree growth may all vary with neighbourhood diversity, which can cause variation in leaf traits and lead to 
increased or decreased leaf quality. Differences in leaf quality can in turn lead to variation in herbivory.
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    |  3Functional EcologyFELIX et al.

of nitrogen in the soil, that can be boosted through the presence of 
neighbouring nitrogen-fixing plants (N-fixers) in species mixtures 
(Richards et al., 2010).

Diverse neighbourhoods may also increase resource-use com-
plementarity, leading to niche-partitioning effects, that can reduce 
competition for space and nutrients. If these mechanisms result 
in increased resource uptake in species mixtures as compared to 
monocultures, plants in species mixtures might experience more 
vigorous growth and increase their investment into chemical and 
physical defences (Cardinale et al., 2007; Isbell et al., 2017; Loreau & 
Hector, 2001; Potvin & Gotelli, 2008). Alternatively, growth-defence 
trade-offs could lead to lower levels of defences in plants with in-
creased vigour (Herms & Mattson,  1992); however, evidence for 
such trade-offs in diverse neighbourhoods has been limited (Abdala-
Roberts et al., 2014; Moreira et al., 2014).

Leaf trait variation in response to neighbourhood diversity has in-
creasingly been investigated in grassland and forest diversity experi-
ments, but results have been highly variable, with leaf traits including 
SLA, phenolic compounds and foliar nitrogen increasing, decreasing, 
or not changing significantly between focal plants growing in mono-
cultures and species mixtures (Castagneyrol et al.,  2019; Kostenko 
et al.,  2017; Poeydebat et al.,  2020; Wäschke et al.,  2015; Williams 
et al.,  2020). Furthermore, plant ontogeny, planting density and the 
presence of specific neighbour plants such as N-fixers can also influence 
leaf traits and may obscure overall neighbourhood diversity effects 
(Barton & Koricheva, 2010; Benavides et al., 2019; Guyot et al., 2016; 
Moreira et al., 2017; Richards et al., 2010; Tobner et al., 2014).

Neighbourhood effects may also depend on the species rich-
ness and the phylogenetic diversity of the plant mixture. As spe-
cies richness increases, so does the number of unique plant–plant 
interactions and of biotic and abiotic environments experienced by 
a focal plant. The phylogenetic diversity of a neighbourhood can 
have similar influences, where more phylogenetically diverse spe-
cies mixtures (e.g. pine-oak mixture, as opposed to a mixture of two 
oak species) are predicted to harbour more heterogeneous biotic 
and abiotic environments due to the greater diversity of plant niches 
and growth patterns (Jactel et al., 2021; Williams et al., 2020).

To identify general patterns of trait responses to neighbourhood 
diversity, we conducted a meta-analysis of studies that compared 
leaf traits in monocultures and species mixtures. We assessed the 
responses of leaf thickness, toughness, leaf dry matter content 
(LDMC), terpenoids, phenolics, carbon (C), SLA and nitrogen (N). We 
chose to focus on traits that have been shown to influence chewing 
insects as they have received the most attention in neighbourhood 
diversity studies (Jactel et al.,  2021). We expect that increases of 
SLA and N would increase leaf quality for chewers, whereas in-
creases of the other six traits assessed would decrease leaf quality 
(Farmer, 2014; Gardarin et al., 2014; Schädler et al., 2003).

Sources of variation in leaf trait responses were elucidated by 
assessing the influences of plant species richness, phylogenetic di-
versity, presence of nitrogen-fixers, planting density, ontogeny and 
experimental design in meta-regression models. Our analysis aimed 
to answer the following questions:

•	 Does leaf trait expression differ for plants growing in species mix-
tures compared to those growing in monocultures?

•	 Does the direction and/or magnitude of response to neighbour-
hood diversity differ between individual leaf traits?

•	 Do leaf trait responses to neighbourhood diversity depend on 
plant density, species richness, phylogenetic diversity, presence 
of nitrogen-fixing neighbours, ontogeny and experimental design?

2  |  MATERIAL S AND METHODS

2.1  |  Literature search and screening

SCOPUS and the Web of Science Core Collection were searched 
for relevant publications in January 2021 using the following search 
string:

(“plant” OR “tree” OR “crop”) AND (“divers*” OR “intercrop*” OR 
“species rich*” OR “monoculture” OR “polyculture” OR “cultivar mix-
ture*” OR “neighbo?r*”) AND (“VOC” OR “defen?e” OR “trichome” 
OR “secondary metabolite*” OR “leaf chemi*” OR “plant quality*” 
OR “phytochem*” OR “volatile*” OR “resistance” OR “leaf trait” OR 
“plant trait”) AND “herbivor*”.

Articles published in English were retained, yielding 2381 and 
2064 results from the two databases, respectively. A further 24 pa-
pers were identified through checking the reference lists of papers 
identified through the database search, as well as from relevant re-
view papers. Moreover, the list of publications on the TreeDivNet 
Website (https://treed​ivnet.ugent.be/index.html) was checked, and 
members of the network were sent requests for unpublished data. 
This yielded 18 additional papers and data sets. Finally, several stud-
ies included in a previous meta-analysis by Richards et al. (2010) that 
had investigated foliar nitrogen levels of trees in monocultures and 
species mixtures were integrated into this meta-analysis.

All article titles and abstracts were screened, and irrelevant 
studies where leaf traits were not measured were excluded. The full 
text of the remaining articles was then examined, and studies that 
fitted the following inclusion criteria were retained to be used in the 
meta-analysis (see Figure S1 in Supporting Information).

a.	 Plant traits that could influence herbivory were measured on undam-
aged leaves for a focal plant species growing within monocultures 
and species mixtures, with other factors such as plant ontogeny, 
time of year and stand density remaining constant between different 
plots. Only studies on constitutive leaf traits were considered.

b.	 Mean values of trait measurements, standard errors or standard 
deviations and sample sizes were reported in the paper or in the 
supplementary information or were available upon request from 
the authors.

c.	 Data were gathered from a minimum of two replicate plots for 
monocultures and each species mixture.

While the original literature search extended to all plant traits, 
the majority of relevant papers provided data on leaf traits and 
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4  |   Functional Ecology FUNCTIONAL ECOLOGY

hence the subsequent analysis was restricted to plant diversity 
effects on eight leaf traits: SLA, leaf dry matter content (LDMC), 
thickness, toughness, total nitrogen (N), total carbon (C), pheno-
lic compounds and terpenoid compounds. The canopy layer from 
which leaves were sampled differed between studies (e.g. lower 
branches, sun leaves or a mixture of different positions) but was 
consistent between monoculture and species mixture sampling 
within each study. Phenolics and terpenoids represent large classes 
of plant secondary compounds that share a common biosynthetic 
pathway; in our analysis terpenoids include data on monoterpenes, 
sesquiterpenes, diterpenes and iridoid glycosides, whereas phe-
nolics include flavonoids, lignins, condensed tannins, hydrolysable 
tannins and measurements of total phenolics. Due to insufficient 
data, responses of individual compounds could not be considered; 
however, there were sufficient effect sizes to examine the effects 
of neighbourhood diversity on the four subgroups of phenolic com-
pounds mentioned above as well as ‘total phenolics’.

To investigate sources of variation among effect sizes, data 
for the following moderators were also extracted from each pub-
lication: plant species richness for each species mixture; planting 
density (only for woody plants); study design (experimental vs ob-
servational); plant ontogenetic stage (only for woody plants); and 
presence of nitrogen-fixing species in a mixture. Additionally, the 
identity of all focal and neighbouring species within each study was 
used to calculate average phylogenetic diversity values for each plot 
(see Methods S1 for details).

2.2  |  Effect size calculations

All statistical analyses were conducted in R version 4.04 (R 
Core Team,  2021) using the package metafor version 3.4 (Viech-
tbauer, 2010). Effect sizes were calculated as a standardised mean 
difference (SMD, Hedges' g; Gurevitch & Hedges,  1993) between 
the mean value of a leaf trait of a focal species in a species mixture 
and that in a monoculture. Positive SMD values indicated that the 
leaf trait value was higher for focal plants growing in species mix-
tures compared with monocultures. As we expected the direction of 
the effect to be highly context-dependent (i.e. different neighbours 
may cause either an increase or a decrease in the same leaf trait), we 
also calculated absolute value effect sizes (hereafter referred to as 
absolute effect sizes) by removing the sign from all SMD values. This 
allowed us to compare the magnitude of the effect of neighbour-
hood diversity on different plant traits.

If traits were measured for a focal plant species in several dif-
ferent mixture types (e.g. monoculture, 2, 4 and 8-species mixtures) 
then the same monoculture values would be used as a control for 
each of the mixture types. When data were presented on a graph, 
mean values and SD/SE were extracted using the software Web-
PlotDigitizer (https://autom​eris.io/WebPl​otDig​itize​r/). When only 
standard errors were reported, they were transformed to standard 
deviations by multiplying them by the square root of the sample size.

If studies reported correlations between leaf trait values and 
plant species richness instead of mean values for monocultures and 
species mixtures, SMD (d) and variance (Vd) values were approxi-
mated using the following formulae derived from Borenstein (2009) 
(Methods S1). A total of 1007 effect sizes from 43 studies were in-
cluded in the final meta-analysis. Distribution of directional and ab-
solute effect sizes for each trait was visualised using orchard plots 
(Nakagawa et al., 2021).

2.3  |  Meta-analysis

Multilevel model analysis was performed using the ‘rma.mv’ func-
tion in metafor. Study ID, experimental site, individual effect ID and 
plant species were included as random factors to control for non-
independence among effect sizes (Table S11; Nakagawa et al., 2017; 
Noble et al., 2017). To account for phylogenetic nonindependence 
arising from relatedness among focal species, the R package rotl (Mi-
chonneau et al., 2016) was used to create a phylogenetic correlation 
matrix of all focal species in the meta-analysis that was then linked to 
an additional phylogeny random factor (Cinar et al., 2022; Nakagawa 
& Santos, 2012).

The overall effect of neighbourhood diversity on each leaf trait 
of a focal plant species was assessed by calculating the grand mean 
effect sizes of the SMD. An effect was considered significant if 
the 95% confidence intervals did not overlap with zero (Koricheva 
et al., 2013). To explore sources of heterogeneity, moderators were 
incorporated into analysis models for traits with sufficient numbers 
of effect sizes (Nakagawa et al., 2017), which in this study included 
C, N, SLA, LDMC, and phenolics. Moderator interactions were not 
included due to insufficient sample sizes.

Absolute effects of neighbourhood diversity on leaf traits were 
calculated by repeating the meta-analysis and meta-regression mod-
els with the sign removed from all effect sizes. This technique has 
been utilised in previous meta-analyses to compare the magnitudes 
of effects where the direction of effects was variable (e.g. Bailey 
et al., 2009; Champagne et al., 2016; Clements et al., 2022) and was 
used here to assess the degree of plasticity of different leaf traits in 
response to neighbourhood diversity, regardless of the direction of 
response.

Publication bias for each trait type was assessed by construct-
ing funnel plots and inspecting them for asymmetry. In addition, 
we ran meta-regression models with sampling error or publication 
year as moderators to test for small study biases and decline ef-
fects, respectively (Nakagawa et al., 2022). Potential biases due 
to over-represented plant species were investigated by calculat-
ing the proportion of effect sizes derived from each plant spe-
cies; those that contributed >10% of effect sizes for a specific 
trait were considered to be over-represented. Sensitivity analy-
ses were then run to test the impact of these species by testing 
whether the results changed when these species are excluded 
from analysis.
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3  |  RESULTS

3.1  |  Description of the dataset

Phenolics, N, C, LDMC and SLA were the leaf traits most reported 
in studies looking at the effects of plant species richness (Table 1). 
Neighbourhood diversity was experimentally manipulated in most 
studies (85% of the data) and the majority of data (90% of effect 
sizes from 32 studies) came from studies on trees, with only 10% of 
effect sizes from 11 studies reporting effects of neighbourhood di-
versity on leaf traits in herbaceous plants. A total of 125 focal plant 
species were represented in the dataset, but silver birch (Betula pen-
dula) was highly over-represented and contributed 26% of all effect 
sizes. Studies exploring effects of plant diversity on leaf traits had 
an uneven global distribution, with 57% of effect sizes coming from 
temperate biomes, 16% from boreal biomes and 27% from tropical 
and subtropical biomes (mainly from the subtropical BEF-China ex-
periment, see Figure S2 for details).

3.2  |  Mean directional and absolute effects of 
neighbourhood diversity on plant traits

Leaf toughness was the only leaf trait that displayed a significant 
directional change with plant diversity; focal plant leaves were on 
average tougher in monocultures than in species mixtures, whereas 
SLA and leaf nitrogen both showed a marginally significant posi-
tive response to neighbourhood diversity (Table 1, Figure 1a). The 
95% prediction intervals for most traits were broad, showing a high 
level of heterogeneity. When phenolics were analysed separately 
by class, none of the phenolic classes showed significant directional 
responses to neighbourhood diversity, although total phenolics ex-
hibited a marginally significant reduction (Figure 2).

Analysis of absolute effect sizes showed that all leaf traits apart 
from leaf thickness exhibited significant differences between mono-
cultures and mixtures (Table  1, Figure  1b). The largest absolute 

effects were seen for SLA followed by N, whereas leaf toughness 
and phenolics showed the smallest absolute changes (Table  1; 
Figure 3).

3.3  |  Meta-regressions for directional effects

The only continuous variable that had a significant effect was spe-
cies richness, where the positive effects of neighbourhood diversity 
on SLA were significantly stronger in mixtures with higher species 
richness (Table S2, Figure 4). SLA also showed significantly different 
responses depending on study type and tree age and was increased in 
diverse neighbourhoods in both experimental studies (Table S5) and 
studies of juvenile trees (Table S4). Nitrogen was likewise increased 
in mixtures of juvenile trees but, contrary to SLA, was significantly 
higher in mixed stands only in observational studies—although this is 
likely a statistical artefact due to low sample sizes. Focal trees in neigh-
bourhoods containing N-fixers had decreased levels of phenolics and 
increased N levels as compared to monocultures (Table S3, Figure 4).

3.4  |  Meta-regressions for absolute effects

Absolute effect sizes for SLA and phenolics were significantly larger 
in experimental studies than in observational studies (Table  S10), 
and effects on SLA exhibited marginally significant positive relation-
ship with phylogenetic diversity (Table  S7). Plant density, species 
richness, ontogenetic stage and the presence of N-fixing species had 
no significant effects on absolute magnitudes of leaf trait responses 
to neighbourhood diversity (Tables S7–S10; Figure 5).

3.5  |  Sensitivity analysis and publication bias

Due to the uneven distribution of moderators across studies, sev-
eral of the categorical moderators were confounded. For instance, 

TA B L E  1  Mean directional and absolute effect sizes showing standardised mean differences in leaf traits between diverse 
neighbourhoods and monocultures.

Trait k (N) Effect, 95% CI 95% PI Absolute effect, 95% CI Absolute 95% PI

Thickness 20 (3) −0.05 [−1.69; 1.60] [−2.85; 2.76] 0.72 [−0.24; 1.68] [−0.87; 2.31]

Toughness 20 (3) −0.40 [−0.72; −0.08]* [−0.72; −0.08] 0.44 [0.12; 0.75]** [0.12; 0.75]

LDMC 119 (9) −0.10 [−0.70; 0.51] [−1.94; 1.74] 0.66 [0.35; 0.98]*** [0.12; 1.21]

SLA 251 (17) 0.46 [−0.03; 0.95] [−1.53; 2.45] 1.04 [0.72; 1.35]*** [0.16; 1.91]

Terpenoids 24 (6) −0.12 [−1.06; 0.82] [−2.01; 1.77] 0.70 [0.15; 1.26]* [−0.28; 1.68]

Phenolics 228 (13) −0.07 [−0.27; 0.13] [−0.72; 0.58] 0.51 [0.36; 0.65]*** [0.20; 0.81]

Nitrogen 206 (27) 0.23 [−0.03; 0.49] [−1.04; 1.50] 0.83 [0.53; 1.13]*** [0.10; 1.57]

Carbon 139 (11) −0.08 [−0.34; 0.18] [−1.07; 0.92] 0.68 [0.53; 0.83]*** [0.53; 0.83]

Note: Effects were considered significant if 95% confidence intervals (95% CI) did not overlap with zero. 95% PI—prediction interval that estimates 
the range in which effect sizes of 95% of future studies would be expected to fall, N—number of studies from which data was extracted for each trait 
data, k—number of individual effect sizes for each trait. Significant effects are shown in bold, marginally significant effects in italics. *** significant at 
the 0.001 level, ** significant at the 0.01 level, * significant at the 0.05 level
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6  |   Functional Ecology FUNCTIONAL ECOLOGY

most studies that included N-fixing neighbours were experimen-
tal, and very few were observational. To account for this, meta-
regressions were repeated with subgroups of effect sizes that were 
limited to one set of categorical moderators at a time (e.g. by com-
paring leaf trait responses to neighbourhood diversity in mature 
and juvenile trees only in experimental forests without N-fixing 
neighbours). There were no significant differences between these 
subsets and the meta-regressions that used the full data set (results 
not shown), suggesting that confounded moderators did not lead to 
any erroneous conclusions.

Studies on silver birch (Betula pendula) were over-represented in 
this meta-analysis and contributed >10% of effect sizes for LDMC, 
C, N, phenolics, toughness and thickness. When B. pendula was ex-
cluded, the reduction of leaf toughness in species mixtures was no 
longer significant, but the decrease in phenolics became marginally 
significant. The mean absolute effect for leaf toughness was also no 

longer significant when B. pendula effect sizes were excluded from 
analyses, while the mean absolute effect for leaf thickness became 
significant (see Table S10).

The removal of B. pendula effect sizes from meta-regressions 
on phenolics changed the outcome of several models; phenolics in 
mature trees were significantly reduced in species mixtures (Ju-
venile = −0.04 [−0.23; 0.16] k = 34, Mature = −0.23 [−0.44; −0.02], 
k = 33, Qm = 1.812, p = 0.178), while increasing species richness 
had a marginal negative effect (intercept = −0.13 [−0.27; 0.01], 
k = 75). Phenolics remained significantly reduced in the presence 
of N-fixing species when B. pendula effect sizes were excluded 
(N-fixing = −0.38 [−0.70; −0.06] k = 12, no N-fixing = −0.08 [−0.22; 
0.06] k = 63, Qm = 2.818, p = 0.093). Moreover, the difference in 
response of absolute effects for phenolics to neighbourhood di-
versity in observational and experimental studies was no longer 
significant when B. pendula effect sizes were removed (Qm = 2.677, 

F I G U R E  2  Orchard plots of the directional (a) and absolute (b) effects of neighbourhood diversity on eight leaf traits. N—number of 
studies from which data was extracted for each trait, k—number of individual effect sizes for each trait, thick bars—95% confidence intervals 
(95% CI), thin bars—95% prediction intervals. Effects are considered significant if the 95% CI does not overlap with zero.
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    |  7Functional EcologyFELIX et al.

p = 0.102). Meta-regression results for LDMC, C and N were not 
affected by the removal B. pendula effect sizes.

Visual inspection of funnel plots revealed no major asymme-
tries (Figure  S3); however, the relationship between effect sizes 
and sampling error was significantly negative for phenolics and 
significantly positive for N and SLA (Figure  S4a). No significant 
changes in effect sizes with publication year were detected for 
any trait (Figure S4b).

4  |  DISCUSSION

All but one of the examined leaf traits showed significant abso-
lute differences between monocultures and species mixtures, in-
dicating high phenotypic plasticities of both physical and chemical 
leaf traits in response to neighbourhood diversity. However, the 

only trait that displayed a significant mean directional response 
to neighbourhood diversity was leaf toughness. Taken together, 
these results suggest that the magnitude and direction of leaf trait 
responses to plant diversity are highly context-dependent and 
may contribute to either increased or decreased leaf quality for 
herbivores depending on the identity of the focal and neighbour-
ing species.

4.1  |  Individual leaf trait responses to 
neighbourhood diversity

The largest absolute effects were observed for SLA and N, followed 
by C and LDMC, whereas smaller changes occurring for leaf tough-
ness, phenolics and terpenoids. The high plasticity of SLA to neigh-
bourhood diversity may reflect responses to light variation, where 

F I G U R E  3  Orchard plots of the 
directional effects of neighbourhood 
diversity on five classes of phenolic 
compounds. Thick bars—95% confidence 
intervals (95% CI), thin bars—95% 
prediction intervals. Effects are 
considered significant if the 95% CI does 
not overlap with zero.

F I G U R E  4  Effect of the species 
richness of a mixture on the standardised 
mean difference value for SLA. Black 
line—slope of the effect, dark grey 
area—95% confidence interval, light grey 
area—95 % prediction interval.
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decreased light availability typically leads to greater SLA and thus 
greater light capture per unit mass, and the reverse occurs in high 
light conditions (Chapin et al.,  2011; Reich et al.,  1997; Williams 
et al., 2020). Increased canopy stratification and shading in species 
mixtures could increase SLA in shorter plants, while fast growing 
species such as Betula spp. may conversely experience higher SLA in 
monocultures where they are self-shaded by conspecifics (Poeyde-
bat et al., 2020). Leaf dry matter content, toughness and thickness 
are also known to vary with light levels (Valladares & Niinem-
ets, 2008), albeit to a lesser extent than SLA (Rozendaal et al., 2006), 
which may explain their lower absolute mean effect sizes. Further-
more, different light conditions can also mediate variation in carbon-
based chemical defences including phenolics and terpenoids, as well 
as total carbon, as a function of photosynthesis rates (Koricheva 
et al., 1998; Roberts & Paul, 2006).

While we found no significant differences between the neigh-
bourhood diversity effects on different classes of phenolic com-
pounds, significant variation in direction of response was observed 
in each group. To further explore this variation, future studies would 
benefit from including more detailed analysis of secondary metabo-
lites, ideally making use of techniques that can identify specific com-
pounds as has been done by chemical ecologists working in related 
fields (e.g. metabolomic-type approaches used by Sedio et al., 2017; 
Walker et al., 2022).

4.2  |  Predictors of the leaf trait shifts

Both shading and niche partitioning effects have been found to in-
tensify at higher species richness levels (Davrinche & Haider, 2021; 
Pretzsch, 2014), which might offer an explanation for the increased 
response of SLA with species richness. While lower relative plastici-
ties could explain the lack of response from other traits to species 
richness, effect sizes from plant neighbourhoods with high species 

richness (>6) were derived from only four studies, thereby limiting 
the extent to which species richness effects could be examined.

Neighbourhood diversity effects in observational studies were 
expected to be weaker than in experimental studies due to reduced 
control of confounding environmental variables and the imperfect 
composition of monoculture plots (monocultures in observational 
studies are often defined as stands containing >80%–90% of a given 
species). This was the case for SLA and phenolics, which showed 
significantly stronger absolute responses to neighbourhood diver-
sity in experimental studies than they did in observational studies. 
Moreover, the directional shift in SLA was significantly higher in ex-
perimental studies than it was in observational studies.

Plant ontogenetic stage influences the expression of leaf 
traits and defences in plants (Barton & Koricheva,  2010) and may 
have an interactive effect with neighbourhood diversity (Moreira 
et al., 2017). The observed decrease in leaf phenolics in species mix-
tures of mature but not juvenile trees when over-represented B. pen-
dula effect sizes were excluded suggests that phenolic compounds in 
mature trees are more responsive to neighbourhood effects. Alter-
natively, decreased phenolics in mature mixed stands of trees could 
result from stronger shading and complementarity effects relative 
to those in juvenile stands (Jucker et al., 2020; Lohbeck et al., 2013); 
however, this is not supported by the responses of both SLA and N, 
both of which were significantly increased in species mixtures com-
posed of juvenile trees but not mature trees.

Leaf traits were predicted to be more responsive to neighbour-
hood diversity in stands of high density due to increased shading ef-
fects and tree–tree interactions (Pretzsch, 2014; Tobner et al., 2014). 
Although no overall effect of density was found in this analysis, 
much of the high-density data was taken from studies of juvenile 
trees that may not have grown large enough for canopy closure and 
notable niche-partitioning effects to occur.

Species mixtures with high phylogenetic diversity were also pre-
dicted to have a greater influence on leaf traits, as distantly related 

F I G U R E  5  Orchard plots of the effects of neighbourhood diversity on phenolics and leaf nitrogen in the presence and absence of N-
fixing neighbours. Thick bar—95% confidence interval (95% CI), thin bar—95% prediction interval. Effects are considered significant if the 
95% CI does not overlap with zero.
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species are more likely to occupy different ecological niches, which 
could minimise competition and promote niche-partitioning effects. No 
significant effects of phylogenetic diversity on leaf trait responses to 
neighbourhood diversity were found in our analysis, possibly because 
the phylogenetic diversity score method used in our models may have 
missed important functional distinctions between closely related spe-
cies (e.g. deciduous English oak and evergreen Holm oak). Life-history 
strategy (e.g. pioneer vs. late successional species) and shade tolerance 
have been used in other studies to gain insights into the influence of 
functional diversity (Niinemets & Valladares, 2006; Rüger et al., 2020; 
Williams et al., 2020); however, a lack of available data for all the focal 
species considered in primary studies included in our meta-analysis pre-
vented the inclusion of these metrics into meta-regression models.

In agreement with a previous meta-analysis by Richards 
et al.  (2010), leaf nitrogen was significantly increased in diverse 
neighbourhoods that contained N-fixers. Conversely, phenolics 
were reduced in plants growing in neighbourhoods containing N-
fixers, which could be interpreted as evidence of growth-defences 
trade-offs, although only partial support for interspecific growth-
defence trade-offs has been found in studies included in this meta-
analysis that also measured plant growth (Moreira et al.,  2014; 
Rosado-Sánchez et al., 2018b; Walter et al., 2012).

4.3  |  Implications of leaf trait shifts in 
species mixtures

Our study showed that the response of leaf traits to neighbourhood 
diversity is highly heterogeneous and may contribute to either in-
creased or decreased leaf quality for herbivores, depending on the 
context. When paired with meta-analyses by Barbosa et al.  (2009) 
and Jactel et al.  (2021) that found that insect herbivory and abun-
dance is on average lower in species mixtures than in monocul-
tures, our findings indicate that leaf trait variation is not a dominant 
mechanism in mediating reductions in herbivory between diverse 
neighbourhoods.

However, despite finding overall negative effects of neighbour-
hood diversity effects on herbivory, both meta-analyses by Barbosa 
et al. (2009) and Jactel et al. (2021) demonstrated high degrees of 
heterogeneity and revealed numerous instances of increased her-
bivory and herbivore abundance in species mixtures. Our findings 
may offer novel insights here, as we revealed several circumstances 
where trait variation in diverse neighbourhoods could positively in-
fluence leaf quality for herbivores. For instance, increased SLA in 
mixtures with high species richness, or increased N and decreased 
phenolics in neighbourhoods containing N-fixers could increase 
the leaf quality of a focal plant and potentially offset the negative 
effects of reduced plant apparency and increased predation from 
natural enemies. The advantages of increased leaf quality could be 
particularly strong for generalist herbivores, which are often less 
sensitive to neighbourhood diversity effects due to a broader diet 
range, and may even benefit from a mixed diet (Jactel et al., 2021).

In addition to resistance to herbivory, leaf trait variation may 
also contribute to differences in plant fitness and productivity in 
different neighbourhood types (Davrinche & Haider,  2021; Proß 
et al., 2021; Zeugin et al., 2010). Plants in diverse neighbourhoods 
often exhibit increased productivity compared to those in monocul-
tures (Feng et al., 2022; Tilman et al., 2001), which might in part be 
due to a shift towards more acquisitive leaf trait profiles that max-
imise photosynthesis and growth (e.g. high SLA and N, low LDMC, 
C and phenolic defences). We found only partial evidence of an ac-
quisitive trait shift in diverse neighbourhoods, with SLA increasing 
with species richness and phenolics decreasing and N increasing 
in certain neighbourhood types (e.g. with N-fixers). Davrinche and 
Haider (2021) recently assessed the leaf trait responses of 16 tree 
species in a subtropical diversity experiment and found that imme-
diate conspecific neighbours shifted leaf traits into an acquisitive di-
rection more strongly than neighbourhood diversity on a plot-level, 
which may partially explain why evidence for this phenomenon var-
ied in this meta-analysis.

4.4  |  Future work

This meta-analysis was limited to the examination of eight leaf 
traits as there were insufficient data available on other defen-
sive and nutritional leaf traits such as alkaloids and sugar content 
(Table S1), as well as on other plant parts. Although seminal biodi-
versity studies were conducted in grasslands (Tilman et al., 2001), 
studies addressing effects of neighbourhood diversity on leaf 
traits of herbaceous plants are under-represented in the literature, 
and several of the models in this analysis had to be restricted to 
data on trees. Finally, the genotypic diversity of a neighbourhood 
may have similar effects on plant traits to species diversity, but 
received insufficient attention in the literature to be considered in 
this study (but see Hoeber et al., 2017; Moreira et al., 2014; Weih 
et al., 2021).

We encourage future studies to explore the areas highlighted 
above, and to further investigate diverse neighbourhoods with 
characteristics that were under-represented in our meta-regression 
models, (mature trees, high species richness levels, high phyloge-
netic diversity).

More broadly, a deeper understanding of neighbourhood di-
versity effects on leaf traits could be gained if researchers were to 
account functional diversity within different species mixtures, such 
as differences in life-history strategies and shade tolerance, in addi-
tion to including measurements of abiotic factors know to effect leaf 
traits including light availability and soil moisture.
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