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Abstract 

Area exploration is a task where a robot tries to gain information about an unknown 

environment. Exploring an unknown area is a challenging task for a group of robots as 

no pre-made map exists, leading to setting a suitable swarm formation compatible with 

the area to be explored. Having a suitable swarm formation allows the swarm to 

preserve the overall exploration time, by distributing sub-tasks for each robot, and 

collecting relevant data. Current swarm formations such as biologically inspired 

formations or Probabilistic RoadMap (PRM) tend to have a fixed shape, where robots 

are positioned in a fixed location point within the swarm, preventing the swarm from 

adjusting its formation to adapt to the unknown area, thus, are not suitable to explore 

unknown areas. One needs a more flexible formation, where each robot can change its 

position within the swarm. Consequently, this research aims to build a distributed 

robotic swarm formation using fractals. 

Fractals have the properties of self-similarity, allowing for an equal distribution of the 

robots, and recursiveness, allowing for a gradual expansion of a swarm formation. 

Utilising the properties of fractals allow for a robotic swarm to develop a fractal as a 

swarm formation. Additionally, changing the parameters of each fractal formation, such 

as a number of branches, will provide the swarm with the flexibility to adjust the fractal 

formation and to continue exploring an unknown area. In order to determine both 

advantages and disadvantages of using fractals as a swarm formation, the first step is to 

classify each selected fractal into either a line or curve-based formation class to 

distinguish the similarities and differences in each fractal’s behaviour. The second step 

is to implement the growth rule of each fractal formation using robots to explore an 

unknown area. The last step is to study the effect of changing the parameters of the of 

implemented fractal formations toward exploring unknown areas. 

The research’s outcome shows that using fractals as a swarm formation achieved near 

the amount of area covered by a traditional exploration method, such as PRM, with 

88% less use of robots. Furthermore, fractal formations balances between the number 

of robots used, and the amount of area covered as each fractal uses only the robots 

needed to develop specific iterations. The effect of changing the parameters of a fractal 

formation increases the chance of covering more areas. 
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Chapter 1: Introduction 
 

1.1 Swarm Robotics for Exploring Unknown Areas 

Swarm Robotics (SR) is the study of cooperative behaviour within a group of robots. 

The research effort on SR began in the late-20th century, where studies showed that a 

group of cooperating robots can perform complex tasks more efficiently than a single 

robot (Cabrera-Mora and Xiao, 2012). Mainly, SR helps human beings handle heavy 

tasks in industries, and safeguards humans from taking unnecessary risks in rescuing 

operations. This research aims to prevent people from getting into hazardous situations 

where human life is at risk, such as being trapped inside an unknown cave. 

To improve the functionality of a swarm when performing complex tasks, SR is 

currently being integrated with Artificial Intelligence (AI). AI gives SR the ability to 

use a decision-making process as part of Swarm Intelligence (SI). The decision-making 

process is mainly based on centralised SR because they are easier to build (Schranz et 

al., 2020). However, centralised SR provides limited swarm flexibility as each robot is 

positioned in a fixed location point within the swarm formation, and burdens the 

communication between a master and slaves, resulting in communication overheads. 

Therefore, this research uses distributed SR to allow the swarm to efficiently distribute 

sub-tasks for each robot to explore an unknown area. 

Changing SR formation from centralised control to distributed control is the key to 

studying different SR formations and identifying which swarm formation is suitable to 

explore unknown areas. At the beginning of an exploration task, it is difficult for a 

swarm to determine a suitable formation because no information is available about the 

area. The determination issue leads the swarm to set a fixed swarm formation, perform 

the exploration task, and broadcast the gathered data to each robot. This approach 

suffers from limited swarm flexibility as each robot perverse its location within the 

formation. Therefore, current research reviewed different swarm formations to 

understand the concept of structuring each swarm formation and their behaviour while 

exploring areas (Dorigo, Theraulaz and Trianni, 2021). Until swarm formations are 

sufficiently developed for exploring an unknown area, the better option is to use a 

human operator (Koch, Manuylov and Smolka, 2021). 
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While there has been some research work related to swarm transformation models, this 

research proposes using fractals as a framework for swarm formations, changing the 

current swarm formation during the exploration task to adapt to an unknown area's 

structure. The benefit of using fractals lies in their properties, such as self-similarity 

and recursiveness, which gives the swarm the ability to repeatedly expand a fractal 

formation until the formation fits the structure of its surrounding area. By using these 

properties to explore unknown areas, a robotic swarm would restructure the swarm 

formation, thus, allowing the swarm to quickly and efficiently achieve the task of 

exploring and covering an unknown area. Therefore, the following research question is 

raised: What are the advantages/disadvantages of using different fractal swarm 

formations to explore and cover unknown areas? It is expected that using fractal 

properties will help the robotic swarm improve its functionality by having a flexible 

swarm formation. 

1.2 Research Motivation 

Area exploration has been investigated in different research areas, including geological 

analysis (Roy, Maitra and Bhattacharya, 2021), searching for a treasure (Pang et al., 

2021), and rescue missions (Cardona and Calderon, 2019). The latter one is critically 

important as it relates to human lives and having an effective exploring strategy is 

essential to reach and save the lives of human beings. An example of a rescue mission 

is seen in a recent accident in 2018, where twelve associate football members, alongside 

their team manager, were trapped inside the Tham Luang Cave in the Philippines due 

to a heavy rainfall flooding the cave entrance. This flood resulted in a significant change 

in the cave’s structure, in which the current map of the cave was not helpful, and an 

alternative option was to depend on the geophysical exploration technique (Vichalai, 

2019; Ahmed et al., 2021). Although all the members were rescued, it came with the 

cost of losing a rescue officer. Therefore, using a flexible formation by a robotic swarm 

to safeguard humans from taking unnecessary risks is one factor that drives the 

motivation to develop fractal formations to adapt to the change of the unknown 

environment. 

While exploring an unknown area is a challenging task for a robotic swarm due to the 

difficulty to select a suitable formation, the same challenge applies to finding an object 

on a borderless area. Exploring a borderless area requires a suitable formation that 
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optimises resources, such as the number of robots, and time as the area has no boundary. 

An example of exploring a borderless area is seen in another recent accident where a 

scheduled flight air Malaysia 370 (MH370) was missing from the air traffic controller 

reader and disappeared in the Indian Ocean, leaving an area size of more than 70 million 

kilometres square to be explored (Ashton et al., 2015). The only searching strategy 

applied at the time was to divide the area size into small grids, each to be extensively 

covered by a group of scanned planes, ships, and submarines (le Hardy and Moore, 

2014). The search strategy exhausted much of the resources needed, and at the time of 

writing this chapter, there was no success in finding the location of the missing 

aeroplane, and the search stopped. Having a fractal formation that utilises the needed 

resources, and efficiently distributes the robotic swarm to cover a large area is another 

factor that drives the motivation to investigate the properties of fractals and uses these 

properties for building a flexible formation. 

The last and the most important reason for the research undertaken lies in understanding 

how to use fractals as a swarm formation  (Eissa et al., 2018). Fractals have been applied 

in a minimal number of engineering applications, such as antennas (Anguera et al., 

2020) and constructions (Wang and Tang, 2021). However, fractals typically have not 

been used in robotic’s exploration applications, which leaves a gap in the swarm 

robotics field, raising the question of the benefit of using fractals in robotic exploration 

tasks. Therefore, the research motivation is to fill this gap by answering the research 

question.  

1.3 Original Contribution to the Knowledge 

Because fractals have not been used as a robotic swarm, the contribution in this research 

lies in understanding the behaviour of fractals to be developed as a swarm formation. 

The contribution can be achieved by analysing the structure and development process 

of certain fractals, developing mathematical formulas describing the growth rule of a 

certain fractal, and discussing the advantages and disadvantages of using a particular 

fractal formation to explore unknown areas. The main contribution of this research is 

to add fractal formations as a new swarm formation method. With the potential to 

implement fractals as a swarm formation, it is possible to enhance the robotics field 

with fractals as a new research theme. 
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1.4 Research Overview 

This research aims to build a distributed robotic swarm to explore an unknown area 

using fractals as a swarm formation. Achieving the main aim of this research requires 

completing the following tasks: 

1- Understand the concept of growing a fractal by classifying different types of 

fractals into different classes according to their similar features. The 

classification will allow for the creation of similar mathematical formulas for 

each fractal within the same class. 

2- Derive a suitable mathematical formula that allows a robotic swarm to form a 

particular fractal formation and explore an unknown area. This objective can be 

achieved by creating formulas for each fractal class. For a particular fractal 

class, named line-based fractals, one formula sets the number of robots needed 

to create a fractal formation, and the other formula directs each robot's 

movement while developing a fractal formation. For another fractal class, 

named curve-based fractals, one formula that describes the robot’s location is 

needed. 

3- Analyse the effect of changing each fractal parameter, individually and in 

combination, while exploring an unknown area. The purpose of changing a 

fractal parameter is to adjust the current formation to avoid obstructions and, 

subsequently, continue the exploration process of the unknown area. This 

analysis allows the robotic swarm to decide which fractal parameter will be the 

best candidate for value change when facing an obstruction. 

Each objective is examined using a robotic simulation to resemble fractal formations, 

explore an unknown area, and evaluate the area explored for each fractal formation 

used. 

This thesis comprises the following chapters. Chapter 2 is a literature review that 

discusses various conventional exploration methods in the robotics field, current swarm 

formations, and fractals for SR. Chapter 3 focuses on implementing different fractal 

formation types on a robotic swarm using a developed growth rule formula to explore 

an unknown area. Chapter 4 investigates the effect of changing different fractal 

parameters and the effect the changes have on the distribution of the robotic swarm 
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while exploring an unknown area, and presents an optimisation process for a particular 

fractal model to obtain the maximum area coverage. Based on the analysis made in 

Chapters 3 and 4, Chapter 5 answers the research question and sub-questions, which 

shows both the advantages and disadvantages of using fractals as a swarm formation 

for exploring an unknown area. Additionally, a future work section is included 

describing the potential of analysing some more fractals as a swarm formation, and 

suggesting possible approaches to use a decision-making process to address more 

formation issues, such as overlapping between fractals’ branches and facing 

obstructions.  
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Chapter 2: Review of Literature 

Multi-Robot Systems (MRS) is a broad research area that focuses on the interactions 

within a group of robots concerning communication, control, and organisation. Swarm 

Robotics (SR) forms a sub-field of MRS that studies the coordination of a group of 

robots while performing numerous tasks such as moving specific objects. One exciting 

application for SR is area exploration, which includes tasks such as: searching for 

objects/treasures (Ismail and Hamami, 2021), navigation for rescue missions (Faria 

Dias et al., 2021), and mapping (Roy, Maitra and Bhattacharya, 2021). SR needs a 

designated exploration method for each task, which requires certain information about 

an explored area, such as the area’s size and boundaries. Without this information, 

exploration methods may not function, which is a challenge for SR. 

An alternative solution for a swarm of robots to explore an area is to rely on other 

factors such as a number of robots and a swarm formation type to explore unknown 

areas. However, using a particular swarm formation may not be adequate to explore an 

unknown area due to the inability to adjust selected swarm formations, leading to a 

fixed formation design. Therefore, it is essential to study different robotic swarm 

approaches used to explore unknown areas. 

Understanding different types of exploration methods and different types of swarm 

formations required classifying them into research themes. Therefore, this chapter 

reviews unknown areas’ exploration techniques used by a swarm of robots as a first 

research theme. Various swarm formation approaches used in area exploration tasks are 

investigated as a second research theme. Finally, the possibility of using fractals as a 

swarm formation towards exploring an unknown area is discussed as a third research 

theme.  

2.1 Exploring Unknown Areas 

Exploring an unknown area is challenging as the swarm seeks to gather as much 

information as possible about the area to facilitate the robot’s mission. As swarm’s 

challenge is to explore the known environment using suitable traditional exploration 

methods, such as sweeping and scanning, researchers have attempted to improve these 

traditional exploration methods to function in an unknown environment. 
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Exploration applications can be grouped into two categories: area covering and object 

searching. Depending on the size and shape of an area, alongside the swarm formation 

type, covering an area would facilitate the robots’ task towards targeting and finding a 

specific object inside the unknown area. Therefore, the area covering techniques will 

be the focus of this research.  

The following sections review conventional exploration methods, including grid 

patterns, path planning, and a modern exploration method using multi-agent systems. 

2.1.1 Grid Patterns for Covering Unknown Areas 

The idea behind the grid pattern approach is to divide an area into smaller sections 

called cells. Each cell is explored using either a single or multiple robots depending on 

the task requirements, e.g. finding a treasure or surveillance. For example, using this 

principle, each robot would be required to update a map of a specific area by occupying 

and covering assigned cells using proximity sensors  (Stachniss and Burgard, 2003a). 

An important application using this mechanism is where a robot scan selected cells to 

guard a specific area against intruders (Ahmadi and Stone, 2006). 

However, for exploring unknown areas, the grid method might be inadequate to use by 

a robot because the area’s information, such as size and boundary, is unavailable. This 

information is vitally important for the grid method to determine the number of cells 

and the size of each cell. Hence, the grid pattern method was improved by adding 

supporting methods that gain as much information as possible from an unknown area. 

One supportive approach can determine the size of an unknown area by exploring the 

boundary between open space and undiscovered territory called the Frontier-Based 

Approach (FBA) shown in Figure 2.1 (a) (Yamauchi, 1998). FBA helps grid methods 

to determine the number of cells needed to cover an unknown area. However, FBA does 

not take into account existing obstacles inside an unknown area, which can have a size 

bigger than the cell’s dimension leading to an inaccurate determination of the number 

of cells needed; therefore, as the area is unknown, determining a suitable size of each 

cell is impossible. An improved grid method, called the evidence grid, shown in Figure 

2.1 (b), uses a spatial representation to determine the possibility of occupying and 

covering grid cells (Moravec and Elfes, 1986). The evidence grid combines the 

information about area occupancy coming from different sensors, which helps a robot 
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build an accurate area map and increases the chance of recognising obstacles. However, 

the evidence grid is not concerned with determining the size of an unknown area, 

making it difficult for a robot to determine the number of grid cells needed (Schultz and 

Adams, 1998; Yamauchi, Schultz and Adams, 1998). In addition, the information 

gained by the evidence grid method might be incorrect due to the odometry error 

resulting from a robot’s movement (Schultz and Adams, 1998). 

 

(a)                                                      (b) 

Figure 2.1 The coverage of the area’s frontier using (a) FBA, where the black dots represent the edge 

segments of the area’s boundary (b) Evidence grid, where frontier edge segment is detected. It is 

noticed in both methods that a robot could not ultimately discover the frontier of an area due to facing 

obstacles (Yamauchi, 1997) - Used with permission. 

Using FBA and evidence grid approaches can help the grid method gain more accurate 

information about an explored area. However, the up-to-date location of each robot, 

where the information is obtained, is not accurate. The inaccuracy of a robot’s location 

is called the location error, where the asynchronous movement of robots causes an error 

that is typically accumulated, resulting in an incorrect calculation of a robot’s 

coordinates. Researchers tried to solve the location issue by combining grid methods 

with location-supporting methods, such as localisation methods, that help a robot detect 

its position within the area. One particular example is the localisation method 
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introduced by Yamauchi (1999), where FBA, simultaneous localisation, and map 

building are integrated into Integrated Exploration (IE) system, enabling a robot to 

determine its current position. However, the system is heavy and requires a level of 

processing that a low-cost development board cannot handle, resulting in a robot’s 

difficulty in processing the IE system (Makarenko et al., 2002). 

Using the grid method to explore an unknown area benefits the swarm by covering part 

of the area and learning its structure. However, the grid method reaches a point where 

it becomes limited in discovering unknown areas, and grid-supporting tools are needed. 

Combining various grid-supporting methods cannot guarantee to gain information 

about an unknown area as a single robot may not be able to combine more than a grid-

supporting tool due to its limited processing capabilities. Moreover, the overall area 

coverage completion time is severely affected because a single robot must 

simultaneously handle multiple tasks, such as collecting the area’s information and 

determining its location. One needs to consider developing a new exploration algorithm 

that specifies directions for a robot to follow. Therefore, path planning was introduced. 

2.1.2 Path Planning for Object Searching 

Path planning, also known as motion planning, is a method that identifies an optimal 

path to safely guide a robot from a start point A to an endpoint B (Lavalle, 2006). One 

of the most common path-planning techniques is the randomisation technique which 

includes: Probabilistic Roadmap Algorithm (PRM) (Kavraki et al., 1996) and Rapidly 

Random Tree (RRT) (LaValle, 1998). The idea of the PRM algorithm is to place 

random waypoints in free space and connect nearby points to create an optimal path 

between the start and the finish point using a local planner. Figure 2.2 shows the PRM 

algorithm setting possible road lines/curves on a simple and a complex area to 

determine a suitable path for the robot to follow. 
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Figure 2.2 A simulation example of a path planning algorithm showing the possible path for a robot 

from the start point A to endpoint B. 

Unlike PRM, RRT uses the concept of a space-filling tree, where a tree is incrementally 

constructed according to random points placed in a selected area. The structure of RRT 

is more like a stochastic fractal as the fractal branches are repeatedly generated but then 

with a random length1. 

Using the randomisation technique in RRT results in a number of problems. The first 

problem is that RRT does not always find a path between two points, especially in 

complex areas. The second problem is that RRT requires a pre-made map of an area, 

and consequently, this technique cannot be used to explore unknown areas. In order to 

address these problems, alternative path planning techniques, called path-finding, were 

developed, such as the A-Star algorithm (Hart, Nilsson and Raphael, 1968) and the D-

Star algorithm (Stentz, 1994), also known as Dynamic A-Star. 

The A-Star algorithm uses an incremental search method to find the nearest path 

between multiple points, called nodes, while the D-Star algorithm uses a heuristic 

search method repeatedly to restructure paths when changes occur. Both algorithms are 

computationally slow when used in a largely unknown area, and their search function 

may terminate when a robot faces obstacles. Both algorithms need either supporting 

tools or learning functions to avoid obstacles (Foead et al., 2021). 

 

1 For fractal definition and more information about fractals, see section 2.3 

A 

B 



 

11 

 

While path planning algorithms can accurately guide a robot to explore known or 

unknown areas, the overall exploration task takes as much time to complete compared 

to the grid method, especially for unknown areas. In addition, guiding a single robot to 

explore an unknown area is a challenging task because a robot will have to do multiple 

tasks simultaneously, including scanning, collecting information, updating its location, 

etc. Therefore, the total exploration time will dramatically increase, and the robot might 

not complete exploring an unknown area due to the fact that the estimated exploration 

time cannot be determined. An alternative solution is to consider improving the time 

and the robot’s capability to cover an unknown area. From a robotics perspective, 

distributing exploration tasks to partner robots is an efficient solution to increase each 

robot's exploration performance and decrease the total exploration time. 

2.1.3 Multi-Agent Systems 

Multi-Agent Systems (MAS) is the most recent solution for exploration applications 

because it can integrate with traditional exploration methods, such as frontier scan and 

probabilistic roadmap, by distributing sub-tasks between the robots (Kwa, Leong Kit 

and Bouffanais, 2022). MAS study the interaction between agents that can solve 

problems based on environmental perception. As MAS contain various applications in 

different research fields, one particular application of the MAS called Multi-Robot 

Systems (MRS) is used to focus on the behavioural response of a robotic swarm when 

exploring areas using different swarm formations. 

MRS consider the interactions between a group of robots while they are performing 

numerous tasks. MRS is a modern approach that uses four factors to explore areas, 

namely: communication, control, organisation, and decision-making. MRS allows 

researchers to develop traditional exploration methods into more modern methods and 

implement them for a group of robots. For example, the Trapezoid exploration strategy 

is a grid method application consisting of neighbouring local grids that shape a global 

grid. Each robot has its local grid to cover, and by sharing the coverage status with 

neighbouring robots, each robot can decide what to cover next (Sharma and Tiwari, 

2016). For the path planning approach, an alternative method called Gap-Navigation 

Tree (GNT) (Nasir and Elnagar, 2015) is being used for MRS, where robots are 

constructed to form a vital link based on their distance between each other, aiming to 

reach the maximum depth inside an unknown area. The usage of MRS improves the 
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robot’s performance as each robot is assigned a specific task, and in this way, the overall 

exploration time is reduced. Furthermore, the research on MRS is expanding to include 

methods on swarm control, swarm formation, swarm communication, etc. 

While each exploration method controls the swarm’s organisation and communication, 

choosing the proper method increases the swarm’s chance to cover more areas and 

minimises the overall exploration time. Therefore, having a decision-making method is 

crucial for the MRS. For instance, a simple decision-making method is presented by 

Kernbach et al. (2013) where a swarm of micro robots, with limited sensing capabilities 

and no direct communication, decide their spatial location using a thermal tactic 

aggregation of bees. Although this simple method proves that a decision made by 

limited-capability robots can be achieved, it does not provide a decision when facing 

an obstruction forcing the robot to hold on to its last position. Additionally, the method 

is a hardware-based decision in which the swarm uses its sensing capability, such as a 

thermal detector, to attract the swarm to a thermal source, such as heat, in the absence 

of cooperative decision making. Therefore, this method is unreliable for exploring 

unknown areas as each robot will collide with either an obstacle or another robot. An 

advanced cooperative decision approach proposed by Marjovi et al. (2009) uses both 

frontier-based exploration and A-Star searching techniques to localise a fire source and 

minimise the overall exploration time, which relies on the cost-gain ratio as a decision 

evaluation. This advanced method uses exploration methods that need a map of the area 

to function, which is impossible when exploring unknown areas. In other words, the 

cost-gain ratio cannot be established without a pre-made map. In addition, as the 

structure of an environment changes over time, the pre-made map will be outdated and 

invalid to use, leading to an incorrect evaluation of a decision-making process. 

More recent research by Faria Dias et al. (2021) reported many drawbacks in collision 

avoidance between robots and obstacle detection, especially when exploring unknown 

areas, and emphasised the importance of using swarm formation. Swarm formation 

methods, e.g. biological-inspired (Oh et al., 2017) and pattern formation (Xu et al., 

2010), cannot change the swarm’s formation as they are designed to create a fixed 

shape. As a swarm formation affects the robots’ task distribution, synchronisation and 

decision-making when exploring areas, it is necessary to review the latest methods of 

SR formations. Reviewing SR formations will help locate the point where the swarm 
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will need to change its formation, thus, facilitating the task of exploring an unknown 

area.  

2.2 Swarm Robotic Formations 

Swarm formation defines the group organisation between different robots within the 

swarm. When a swarm performs an exploration task, choosing a suitable swarm 

formation is essential to adapt to the area being explored. Therefore, determining the 

method of developing a swarm formation when exploring unknown areas is critically 

important to ensure the swarm’s discovery process. Consequently, studying different 

swarm formation methods is important to understand the choice of setting certain 

formations for specific robotic tasks. Also, to investigate the possibility of applying a 

swarm transformation when facing an obstruction for exploration purposes. 

This research theme contains two sections, one section which reviews different swarm 

formation methods named section 2.2.1, and the other section reviews swarm 

transformation models for exploration purposes named section 2.2.2. 

2.2.1 Swarm Formation Approaches 

Swarm formation describes the organisation of autonomous robots while structuring 

themselves to a certain formation. Swarm formations can be classified into two 

categories:  biologically based or mathematically based formations. Additionally, this 

review presents several swarm formation approaches depending on the swarm’s control 

type, which can use either a distributed or a centralised controller. 

The source of biologically based formations lies in formations seen in creatures such as 

flocking birds, school of fish, ant colony, bees, etc. (Olaronke et al., 2020). The typical 

applications used by biologically based formations are rescuing human beings and 

object-searching missions (Xiong et al., 2009). For the mentioned applications, a 

swarm must explore the area assigned for its mission, especially when the area’s 

structure is unknown. For example, an experiment described by Cheng, Wang and 

Dasgupta (2009) mined a flocking-bird formation, shown in Figure 2.3, to explore area 

shapes such as a square and a triangle. The experiment compares the coverage 

percentage between different flocking-bird formations, including line-flocking, V-

flocking, and hybrid-flocking. Additionally, the experiment compares the flocking-bird 
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formations with a stochastic swarm formation, where the distribution of the swarm 

formation is not predicted. The results show that the stochastic swarm formation can 

cover about 20% more area than the flocking-bird formation types. This is also 

confirmed in Stachniss and Burgard (2003b); Ahmadi and Stone (2006), which show 

that flocking-bird formations need improvements for area coverage applications, 

especially when compared to other biological formations. 

 

Figure 2.3 The designed formation of the V-flocking birds used to cover a specific area. Each unit 

(robot) is separated by distance d and with a separation angle of a (Cheng, Wang and Dasgupta, 2009) - 

Used with permission. 

Ant and bee formations have several useful features to improve area coverage. For 

example, ants use pheromones that leave marks to guide the swarm while exploring 

their colony using Ant Colony Optimisation (ACO) (Hunt, Jones and Hauert, 2019). 

Bees memorise an explored area by sending scouting bees to explore, for example, a 

rose field, and performing a dancing process called the waggle dance to describe both 

the direction and the level of suitability taken by a bee to the swarm (Karaboga and 

Akay, 2009). The reviewed features are mainly used for foraging purposes and can 

therefore also be applied to explore unknown areas. 

An example of ant formations is shown in a study that compares several methods of 

creating ant formations, including node-counting and Learning Real-Time A Star 

(LRTA*) while covering an area (Koenig, Szymanski and Liu, 2001). Although the 

study shows good coverage efficiency for ant formations, the total coverage time and 

the number of steps applied by a robotic swarm are relatively high compared to the use 

of other biological formations i.e. bees (Gordon, Wagner and Bruckstein, 2003). That 
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is because some of the ant formations rely on central swarm control, which affects the 

time for formation creation. Another decentralised ant-based formation named 

Stochastic Diffusion Search (SDS) is an intelligent algorithm that mimics the 

recruitment of a specific ant behaviour (Majid-al-Rifaie and Bishop, 2020). SDS 

manages to distribute useful information to the rest of the swarm in an effort to locate 

a target e.g. metastasis (Majid al-Rifaie, Aber and Raisys, 2013); however, the swarm 

formation is stochastic and does not control the distribution of a robotic swarm. 

Additionally, SDS terminates at a fixed activity rate, which may not be suitable for an 

unknown area exploration. 

The bee algorithms are mainly used for foraging applications, and therefore, a little 

work focuses on using bee formations for area-coverage applications. An example of a 

foraging application is described by (Efremov and Kholod, 2020), where a non-

pheromone algorithm inspired by bee behaviour shows a lower foraging time compared 

to a pheromone-based algorithm inspired by ants. However, as bee algorithms use a 

stochastic swarm formation, the total area coverage time is unstable and therefore, it is 

difficult to determine the total coverage time (Jevtić et al., 2012). 

A school-of-fish formation features a formation called the aggregation formation and 

attempts to cover a specific area. For example, an experiment conducted by (Yang and 

Tian, 2007) aimed to develop an aggregation formation using the school-of-fish model 

to surround a target. As the model shows a good performance in avoiding obstacles 

within an unknown area. The model is randomly searching for a target rather than 

exploring the unknown area, leading to inefficient use of the model and the exploration 

time. Other fish school formation methods such as Spatio-temporal (Vedachalam et al., 

2020) and self-organised school of fish (Thrun and Ultsch, 2021) are used for 

navigation applications. Like bee formation, there are only a limited number of studies 

that use school-of-fish formation for area-coverage applications because of the fixed 

formation design. 

Overall, there are several biologically based formations used for area exploration. 

However, biologically based formations are robust and cannot be adjusted due to their 

design restriction, e.g. flocking birds formation is fixed to a V-shape design, leading to 

a non-adjustable swarm formation which can be inadequate in exploring or covering 

unknown areas. Therefore, biologically based formations have been optimised to 
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improve their exploration performance by using features from other swarm creatures. 

For example, Particle Swarm Optimisation (PSO) is a metaheuristic optimisation 

method that uses flocking bird behaviours to explore areas (Dadgar, Jafari and Hamzeh, 

2016), while ACO is improved by combining different ants’ behaviours such as 

carrying, foraging, etc. for each robot within the swarm (Lima and Oliveira, 2017). A 

hybrid algorithm combining ACO and SPO is used to control the swarm’s ant formation 

and the communication between neighbouring robots (Amar and Jasim, 2021). 

Although these optimised formations might improve the total time of covering an area, 

the designed formations remain fixed, leading to inadequate use of biological-based 

formations to explore an unknown area. 

The review of some biologically based formations raises an important question: is it 

possible to build a flexible swarm formation that can restructure its current formation 

to explore unknown areas? Some biologically based formations, such as flocking birds, 

can be mathematically built using geometric shapes such as a square, a rectangle, a 

circle, etc. Therefore, it is necessary to review some of the mathematically based 

formations used to cover unknown areas. Within the SR field, examples of 

mathematically based formations are self-organisation, pattern formation, and 

reconfigurable robots. 

Self-organisation is a process of interaction between autonomous robots to build a 

formation that can be used for a specific purpose (Ashby, 2004; Trianni, Nolfi and 

Dorigo, 2008). The concept of self-organisation is based on a random distribution of a 

robotic swarm, where there is no leader, and each robot acts individually to interact 

with the other robots and construct a swarm formation suitable for completing the 

assigned task. Self-organisation is used mainly in mimicking biologically based 

formations because it functions spontaneously, and therefore, there is no particular 

formation for self-organisation. Self-organisation is a type of organisation that allows 

a robotic swarm to restructure itself to a different formation.  

Pattern formation describes the interaction between robots to construct a specific shape 

in an organised procedure, as shown in Figure 2.4. Both pattern formation and self-

organisation have the same approach of restructuring certain formations for a robotics 

application (Varghese and McKee, 2009). Several pattern formation algorithms have 

been developed for searching and covering techniques such as grading and path-
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planning. Like self-organisation, pattern formation does not have a specific formation 

structure and needs to build a suitable pattern for an exploration application. For 

example, a control law system was made for a group of Unmanned Aerial Vehicles 

(UAVs) to implement the desired swarm formation during area discovery (Koo and 

Shahruz, 2001). The system involves the use of a central UAV that builds a suitable 

pattern formation. Pattern formation relies on swarm control, and therefore, without 

having information about an unknown area, pattern formation will not be appropriate. 

Other examples of the use of pattern formation were described in the swarm formation 

approaches section 2.21 (Malchow et al., 2000; Gordon, Wagner and Bruckstein, 2003; 

Xu et al., 2010). 

 

Figure 2.4 A group of robots using self-organisation to form a pattern of the letter (E) (Xu et al., 

2010) - Used with permission. 

Reconfigurable robots, also known as modular robots, are a group of autonomous units 

that can mechanically attach together to form a specific shape (Kurokawa et al., 2008). 

Modular robots do not need formation algorithms but simple instructions to form a 

shape. These units can either have the same structure units known as homogenous 

modular robots or have different structural units known as heterogeneous modular 

robots. Modular robots are primarily used in search and rescue tasks due to their 

capability to structure different shapes. For example, a framework is made for a team 

of modular robots that can compensate for lost or failed units when searching within an 

unknown environment (Gunna and Anderson, 2013). Also, modular robots can perform 

a task using either a centralised or a decentralised swarm control (Abukhalil and Sobh, 

2013; Saldana et al., 2017). As modular robots are hardware-based control, each unit 

relies on one another to construct a formation. Therefore, modular robots can perform 

only a limited number of formations depending on the number of units, which is not 

suitable for unknown area exploration. 
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2.2.2 Transformation Models 

Swarm transformation is a process of restructuring an existing formation by either 

changing between different swarm formations or modifying the same formation. 

Commonly, the transformation process requires each robot to change its location so the 

swarm can establish a new formation. In SR field, researchers have proposed several 

swarm-transformation models such as: composition and decomposition (Jermann et al., 

2006), self-organisation (Ashby, 2004), and repositioning (Varghese and McKee, 2009) 

in order to improve the swarm’s abilities to surpass exploration challenges, such as 

avoiding obstacles, SR needs to determine the subsequent formation to change 

Additionally, the process of swarm transformation shows significant difficulties in 

repositioning each robot within the swarm. Therefore, this section discusses swarm 

issues while performing a transformation process. 

The major problem of swarm transformation lies in the determination of a suitable new 

formation. While performing a swarm transformation, the swarm’s target is to establish 

a formation that helps to explore an area. Swarm formations can be classified into two 

types: filling and non-filling formations. Filling formations can be applied to covering 

an area of a determined shape, while the non-filling formations describe the coverage 

of the perimeter of a determined shape (Cheng, Cheng and Nagpal, 2005). The benefit 

of a filling formation lies in covering a simple area, but for a random shape and a finite 

number of robots, there is no guarantee of covering an area completely. Thus, the filling 

formation does not help cover an unknown area. Determining a particular formation is 

made possible using the non-filling type because of its simplicity in performing using 

a robotic swarm (Varghese and McKee, 2009). However, neither the filling nor the non-

filling swarm transformation types can trace complex area shapes because of the 

difficulty of controlling each robot, resulting in robotic collisions (Cai et al., 2007). As 

a result, research work on determining a feasible formation using either filling or non-

filling types is limited to geometric shapes (Jermann et al., 2006). 

Another problem with swarm transformation lies in the repositioning of the robots. 

When performing a swarm transformation, a robot’s primary role is to change its 

position to support/create the newly desired swarm formation. However, a part of the 

robotics swarm might fail to reposition itself on a particular occasion. For instance, 

during a decomposition process, where all robots are separated from each other, a 
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communication failure could lead to an enormous collision and breakdown of the 

swarm formation, resulting in a failed transformation. Also, for a centralised swarm, an 

error caused by the leader robot will result in a repositioning failure and a termination 

of the transformation process. Researchers are working on integrating transformation 

models with supported robotic mechanisms, such as path planning and collision 

avoidance, to prevent problems caused by repositioning (Y. C. Chen and Wang, 2007). 

Still, the work on a method for repositioning robots is not being addressed. 

Additionally, other swarm transformation problems affect formation stability 

(Varghese and McKee, 2010), the robot’s role assignment (Y. G. Chen and Wang, 

2007), and the coordination of multiple swarms (Hsu and Liu, 2004). 

In conclusion, the current work on swarm transformations reveals many deficiencies in 

functionality and performance. The current swarm transformation models for exploring 

unknown areas cannot deal with complex areas and recognise complex shapes. Hence, 

swarm transformation needs a development process by building a modern model to 

form flexible shapes. Using flexible shapes will improve the swarm performance in 

exploring unknown areas and allow a robotic swarm to adapt to complex environments. 

Therefore, this research aims to develop a swarm transformation model that uses shapes 

inspired by nature. 

2.3 Fractals for Swarm Formations 

Restructuring a flexible shape is an essential swarm process to enable exploring 

complex areas. Therefore, this research attempts to understand the process of creating 

flexible shapes by observing natural phenomena. The concept behind the natural 

phenomenon is the growth of simple shapes to form complex shapes. These natural 

phenomena are known as fractals. For instance, the structure of a fractal tree is based 

on the growth of several line branches, while the structure of a water vortex is based on 

the growth of different-sized circles. 

A fractal is a recursive decomposition process of a basic shape into scaled patterns 

(Peitgen et al, 2004). Fractals can either be found in nature, i.e. snowflakes and clouds, 

or mathematically formed, i.e. Sierpinski triangle as shown in Figure 2.5.  
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Figure 2.5 Common fractal shapes (from left to right): Sierpinski triangle, Koch snowflake, water 

vortex, and 2-branch tree (Peitgen et al, 2004) - Used with permission. 

This section presents a classification of fractals and any work reflected in using fractals 

in swarm robotics. 

2.3.1 Fractal Classification 

Fractals can be classified based on self-similarity, shape, dimension, and flow direction. 

Self-similarity is the process of developing patterns that repeats the same fundamental 

shape known as an exact-similar shape. Patterns can also represent part of the 

decomposed shape’s properties, which is known as a quasi-similar shape. The 

decomposition of an original shape into patterns with a different structure and property 

is known as a statistical shape (Falconer, 1990). 

The definition of a shape classification is a presentation form of a particular object 

(Peitgen et al, 2004). A fractal shape can have either a deterministic or a random 

formation. The first type can be a geometric or an algebraic shape, while the second is 

stochastic. A deterministic formation is easy to decompose into smaller patterns and to 

calculate the formation’s dimension. For random formations, several stochastic creation 

methods can be used to analyse the rule behind the creation of the random shape, such 

as Brownian motion, percolation, Levy process(Yang et al., 2017), and chaos theory 

(Mandelbrot, 1983). 

The dimension classification uses the parameters of a different shape, such as perimeter, 

area, or volume. The purpose of dimension classification lies in understanding the 

creation of a random formation. Dimension classification presents a complexity index 

of different fractal shapes and measures their roughness and regularity levels (Cheng et 

al., 2012). Several methods are estimating the dimension of complex shapes, such as 

Hausdorff, box-counting, euclidean, and topological (Gneiting, Ševčíková and 

Percival, 2012; Balka, Buczolich and Elekes, 2015). Each of these dimension methods 

can simplify the complexity of different random or deterministic formations. 
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In the field of swarm robotics, there is limited research that attempts to use fractals. For 

example, a swarm of robots was used to form shape-based fractals such as space filling, 

tree and curve-based fractals, but these shapes have not been used in area exploration 

applications (Zhou and Goldman, 2017). Another attempt of using fractals is by 

structuring a robotic vortex formation to understand the aggregation behaviour of a 

school of fish (Yang and Tian, 2007). 

The review of fractals and their properties shows that the work on integrating fractals 

within the SR field is at an early stage. Further, the review demonstrates the swarm’s 

ability to build fractal formations. As it is possible to form different fractal formations, 

this research aims to use fractal properties to build different fractal formations with 

dynamic changeability towards exploring unknown areas. 

2.4 Research Gap 

Recent work on developing swarm transformations does not consider exploration 

applications as it shows several problems regarding swarm organisation. While MRS 

provides a feasible approach to exploring unknown areas compared to path planning 

and grid patterns, conventional swarm formations are inadequate for exploring 

unknown areas due to the swarm fixed design. Finally, based on reviewing fractals, it 

is possible to structure fractal formations using SR. 

Fractal formations have typically not been used in area exploration applications. Also, 

applying fractals to swarm transformation methods has not been reported. Using fractal 

formations for exploring unknown areas will allow the swarm to control the number of 

robots used, based on the fractal type. Also, fractal formations will increase the overall 

area coverage by adjusting different parameters, described in chapter 4, to allow for a 

flexible distribution of the robots. Hence, the research gap is to determine the benefits 

of applying fractal formations in exploring unknown areas. 

Therefore, the research question is formulated as follows: “What are the 

advantages/disadvantages of using different fractal swarm formations to explore and 

cover unknown areas?” Answering the research question requires answering sub 

research questions: the first sub research question is as follow: “How can a swarm of 

robots apply a fractal formation to unknown areas”. The second research question is as 
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follow: “What are the pros and cons of changing parameters of a fractal formation 

towards covering unknown areas”.  

As this research aims to determine both the advantages and disadvantages of using each 

fractal formation to cover an unknown area, Chapter 3 demonstrates the growth rule of 

different fractal formations by a swarm of robots by developing a mathematical formula 

that a robotic swarm can implement. Chapter 4 shows both the pros and cons of 

changing each parameter of a fractal formation class when covering an unknown area 

by a robotic swarm. Chapter 5 presents a reflection on the outcomes obtained by the 

previous chapters leading to present the contribution made to the SR field and 

considered for future work. 
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Chapter 3: The Mathematical Modelling of Fractals 

for a Swarm of Robots 

This chapter describes four fractals named: N-Branched Tree, Vicsek, Julia set, and 

Reverse Julia set, implemented as a robotic swarm formation. A demonstration of 

developing each fractal formation is made using the MATLAB platform, and 

implementation of each fractal formation is made using Virtual Robot Experimentation 

Platform (V-REP). This chapter contains four sections: the first section classifies the 

fractals according to their development process into two types, namely: line-based 

formation and curve-based formation. The second section shows the growth rule for 

line-based fractal formations resulting in a mathematical formula for each formation 

adequate for a robotic swarm. The third section shows the growth rule for curve-based 

formation. Additionally, a simulation of how each fractal formation is made, alongside 

improvements in the robotic swarm’s distribution while implementing a fractal 

formation. The final section summarises the overall work made as well as clarifies the 

contribution to swarm robotics research. 

3.1 Fractal Classes 

A fractal is a representation of objects, e.g., geometric shapes, which inherently has the 

ability to recure and has similar patterns to an original object. Observing natural 

fractals, such as plants, clouds, crystals, etc. shows a common growth concept of 

recuring a shape in a self-similar structure. However, the mathematical representation 

for each fractal can be different according to the original shape, which can be as simple 

as a line segment to a complex shape. Therefore, it is necessary to classify fractals based 

on the development of similar shapes. For instance, a line segment can be presented 

using a linear formula, while a curve shape can be presented using a non-linear formula. 

Therefore, fractals are classified according to their mathematical development into two 

types named: line-based fractals, where a fractal formation is developed linearly 

depending on one or two variables, and curve-based fractals, where a fractal formation 

is developed depending on a polynomial function. 

The purpose of classifying fractals is to develop a mathematical formula for each 

fractal, to be implemented by a robotic swarm. For the swarm robotics research, each 

fractal class presented with two fractals that have the same original shape, such as 
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straight line or curved line, and can be mathematically modelled and implemented by a 

swarm of robots. The selection of a fractal was inspired by observing the changes in 

plants and climate. Plants can have different structures such as trees, grass, flowers, 

etc., which recured themselves in identical patterns. Plants can adapt to the change in 

the environment by changing their structure frame when growing. For instance, 

planting two seeds of an apple in different environmental conditions can result in two 

different apple trees with different branches and leaves. A tree skeleton is seen as a 

number of line segments grown as branches, which can be described using a linear 

formula, and therefore, a tree fractal can be classified as a line-based fractal class.  

From a fractal perspective, climate represents the regular pattern of weather for a period 

of time, resulting in unusual weather behaviour. For example, having snowy weather 

results in snowflakes that are a fractal shape, and the low air pressure can result in a 

cyclone, and thunderstorms, which are also a fractal shape (Falconer, 1990). Unlike 

plants, different climate behaviours can be seen as a complicated shape, which cannot 

be represented using a linear formula. For example, cyclone behaviour has a vortex 

shape that revolves around itself in a curve shape. A cyclone can be seen as a curved 

line, which can be structured using a non-linear formula, and therefore, can be classified 

as a curve-based formation. 

A tree fractal consists of a main branch called a trunk that develops a smaller pattern of 

branches about the same shape as the trunk. Each tree’s branches can be seen in Figure 

3.1 (a) (Vicsek and Gould, 2013). In addition, the linking point, where two or more 

branches are joined together, can be modified. Considering the observation made on a 

tree formation in nature, structuring a tree fractal formation for a robotic swarm 

required a mathematical formula that controls the number of robots used and their 

position through the fractal formation.  

The Vicsek fractal is a snowflake-inspired formation where all the branches grow 

symmetrically in all directions from a single point, as shown in Figure 3.1 (b) (Vicsek 

and Gould, 2013). The simplest form of a Vicsek fractal formation is by having four 

branches grown in a cardinal direction, and these four branches continue recurring to 

their cardinal direction as patterns. Each of the Vicsek branches can be developed as a 

straight line that a robot can follow, and therefore, can be described as a line-based 

formation. 
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    (a)                                                                     (b) 

Figure 3.1 (a) A skeleton of a tree fractal (b) A structure of a snowflake which the Vicsek fractal is 

inspired from (Vicsek and Gould, 2013) - Used with permission. 

Another fractal which can be described in a curve-based class is Julia Set. Julia set is a 

fractal shape produced using a polynomial of complex values. Recuring a polynomial 

of complex numbers can result in complicated yet organised cyclone shapes. The Julia 

set fractal can be represented in different shapes by changing the values of the complex 

numbers (see chapter 4 Section 4.3), and therefore, it can have different shapes. Figure 

3.2 shows a number of developed cyclone shapes in different location points (Falconer, 

1990). These location points can be used to guide a swarm while discovering unknown 

areas. 

 

Figure 3.2 One set of the Julia fractal sets resembles different cyclone shapes (Falconer, 1990) - Used 

with permission. 

The reverse Julia set is a novel creation of a fractal formation inspired by the Julia set 

fractal. A polynomial function is modified to develop location points in a reverse 

growth direction of the Julia set. The reverse Julia set expands its curved lines outwards 

by reversing the Julia set formula, which helps the swarm explore unknown areas. Like 

the Julia set fractal formation, the reverse Julia set forms part of the curve-based class. 

The structure of the reverse Julia set resembles the shape in Figure 3.2. 
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The following section presents a growth rule formula for each fractal that describes its 

development process mathematically. Two elements were considered when creating a 

growth rule formula. The first element is the number of robots needed for developing a 

fractal formation. The second element is the direction of the swarm's movement as the 

fractal develops. For the line-based formation, the growth rule consists of two formulas, 

one for determining the number of robots needed for developing a fractal formation, 

and the other for determining the direction of each participating robot within the fractal 

development. For the curve-based formation, only one formula is needed to assign the 

direction of the robots, while the fractal formation can be developed using a minimum 

of two robots. 

3.2 Line-Based Fractals 

This section presents a detailed description of structuring two line-based fractal 

formations, namely: the N-Branch Tree Fractal Formation and the Vicsek Fractal 

Formation, by creating a growth rule formula that can be implemented using a robotic 

swarm. In addition, a demonstration of each fractal formation is made using MATLAB, 

and a robotic simulation tool called Virtual Robot Experimentation Platform V-REP. 

3.2.1 N-Branch Tree Fractal Formation 

The structure of an N-branch tree fractal formation is based on line segments. Taking 

that a swarm requires at least two robots, one robot will create the first line segment, 

which sets the trunk of the tree for the first iteration. Based on selecting the number of 

branches (N), the next robots will follow the first robot to form the next line segment, 

(branches). The tree fractal formation is developed using the fractal’s properties of self-

similarity and recursiveness. Each robot moves a specific distance (d) with an angle of 

separation (α) for each iteration, as shown in Figure 3.3. 
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Figure 3.3 Structure of the first iteration of a 3-branch tree fractal formation with N=3. 

Taking a 3-branch tree fractal formation as an example, the structure of developing a 

3-branch tree fractal formation goes as follow: the main tree line (trunk) is directed by 

the formation direction angle (θ), and each line must branch out exactly three segments 

of lines. The middle branch continues from the tree trunk, and the side branches are 

symmetrically separated by angle (α). Each robot is travelling at a distance (d). 

Determining the location of each robot in the formation is based on the cartesian 

coordinates, where each robot has its own specific location in every developing process. 

Figure 3.3 illustrates the growth process of the 3-branch tree fractal formation, 

including the location of each robot. 

Determining the exact Number of Robots (NoR) needed for the N-branch fractal tree 

formation is described in Equation (3.2), where (N) is the number of branches. While 

the 0th iteration (i=0) requires only one robot, the first iteration (i=1) is expressed as 

(𝑁𝑜𝑅1 = 𝑁1). The second iteration (i=2) is expressed as follow (𝑁𝑜𝑅2 = 𝑁2). The 

third iteration (i=3) is expressed as (𝑁𝑜𝑅3 = 𝑁3). Overall, the ith iteration for a tree 

fractal formation is expressed in Equation (3.2) as follow: 

                                𝑁𝑜𝑅𝑖𝑡ℎ = 𝑁𝑖     𝑓𝑜𝑟 𝑖 > 0 , 𝑁 > 1                  (3.1)  

Therefore, the total number of robots needed for all iterations is: 

              𝑇𝑜𝑡𝑎𝑙 𝑁𝑜𝑅𝑖𝑡ℎ =  ∑ 𝑁𝑝𝑖
𝑝=1          𝑓𝑜𝑟 𝑝 > 0 , 𝑁 > 1            (3.2) 
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Where (p) is an iteration counter ranges between (1 and i). Applying a 3-branch tree 

fractal formation, (N) = 3, and the first three iterations, according to Equation (3.1), 

resulted into the following number of robots respectively: 3, 9, and 27 robots. 

Assuming the starting points 𝑥0 and 𝑦0 are the origin points of the formation, the robots 

will travel to the next coordinates 𝑥1 and 𝑦1 using the below movement formulas: 

                                        𝑥1 = 𝑥0 + 𝑑 cos 𝜃                                   (3.3) 

                                        𝑦1 = 𝑦0 + 𝑑 sin 𝜃                                    (3.4) 

At this coordinate point, the swarm will apply the growth rule for a symmetric tree 

branch. The swarm will then move to the next coordinate point counted as 𝑖 according 

to the following formulas: 

           𝑥𝑖+1 = 𝑥𝑖 + 𝑑 cos(𝜃 + 𝛽)                  𝑓𝑜𝑟 𝑖 = 0,1,2 …       (3.5) 

           𝑦𝑖+1 = 𝑦𝑖 + 𝑑 sin(𝜃 + 𝛽)                  𝑓𝑜𝑟 𝑖 = 0,1,2 …        (3.6) 

Where β depends on the number of branches and the respective branch within the 

iteration’s set: 

 

  𝛽 = {
0, ± 𝑚𝛼   𝐹𝑜𝑟 𝑚: 1 → ⌊

𝑁

2
⌋     𝑊ℎ𝑒𝑛 𝑁 𝑖𝑠 𝑜𝑑𝑑

± 𝑚𝛼   𝐹𝑜𝑟 𝑚: 1 → ⌊
𝑁

2
⌋        𝑊ℎ𝑒𝑛 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

   (3.7) 

To verify the function of the tree fractal formation, the growth rule process for the 3-

branch tree formation is simulated using MATLAB. The formula for calculating the 

total number of robots needed as well as the formula for determining their next location, 

is added to MATLAB to produce the tree structure in which the swarm will follow. The 

number of branches is 3, a fixed travelled distance is given as (d = 53 units), and the 

separation angle is (α = 35°). The MATLAB will use the given values in the designed 

formulas to display a tree structure suitable for each robot to follow.  A MATLAB 

growth rule simulation for the first three iterations for a 3-branch tree fractal formation 

is shown in Figure 3.4. The development code for this section is presented in Appendix 

A.1. 
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         (a)                                                                      (b)  

 

                                                                                  (c)  

Figure 3.4 The growth rule of a 3-branch tree formation: (a) first iteration, (b) second iteration with 

overlaps (red circles), (c) and third iteration with high overlaps (red and blue circles). 

The MATLAB simulation in Figures 3.4 (b) and (c) show a noticeable overlap between 

two end line segments from the second iteration and an intersection between lines from 

the third iteration. The overlap occurs due to the self-similarity feature, where the 

distribution of the line segments is symmetric, causing an issue where two robots will 

be meeting at the exact location. One of the two interfering line segments must be 

removed to overcome this issue. 

To determine the amount of overlap within an iteration, an additional formula is 

required. Figure 3.4 (b) shows two overlapping location points in the structure of the 

tree formation, while it increases to six location points for the next iteration. The 

formula in Equation (3.8) counts the number of overlapping line segments while 
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preserving the overall structure of the tree formation. The overlap formula is expressed 

as follow: 

             𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ [𝑁 − 1]𝑖−1𝑛
𝑖=2                                     (3.8) 

Where i is the number of iterations for the tree fractal formation. The overlap formula 

is functional for all possible angles of separation (α) starting from the second iteration 

and can determine the number of overlaps occurring for each iteration. The total 

overlaps are then subtracted from the total number of robots needed is shown in 

Equation (3.9). 

            𝑇𝑜𝑡𝑎𝑙 𝑁𝑜𝑅𝑖𝑡ℎ =  ∑ 𝑁𝑝𝑛
𝑝=1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛                   (3.9) 

To demonstrate that equation (3.8) is adequate to use by a robotic swarm, an integrated 

robotic demonstration tool named V-REP is used. The robotic demonstration tool is 

linked to MATLAB as a bi-directional communication. MATLAB sends the number of 

robots needed and their assigned location for one iteration. The V-REP tool receives 

these values and sets a unique number for each robot in numerical order. Each robot 

will travel to the assigned location, and once a robot reaches the assigned location, the 

next robot will travel to the next assigned location and so on. When all robots have 

reached their assigned location, V-REP will send a confirmation signal to MATLAB 

indicating the successful operation of distributing the robots, and the robots will receive 

their assigned location in the next iteration by MATLAB. 

A simple area design in V-REP tool is a flat surface of square blocks with 11 blocks 

long, and 11 blocks width, and each block has an area size of 1m2. The area contains 

walls at the edges of the area, acting as the boundary for the robots to explore and one 

entrance as an origin point. A group of quadcopter robots were used to implement a 

fractal formation, which contains a built-in camera pointing to the ground that counts 

the number of blocks passed while the copter moves. Figures 3.5, 3.6, and 3.7 show a 

demonstration process for quadcopter robots travelling to their assigned location 

according to the values received by MATLAB. The development code for this section 

is presented in Appendix A.1. 
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Figure 3.5 A swarm of quadcopters mimics a 3-branch tree fractal formation. The left-hand image 

shows the first robot moving to the assigned location. The right-hand side image shows the follow-up 

progress of each robot sent by V-REP to MATLAB. 

 

Figure 3.6 A complete first iteration of a 3-branch tree fractal formation with a separation angle of 45° 

made by a swarm of 3 quadcopters (circled in red) shown in the left-hand side image. Alongside the 

follow-up progress of each robot sent by V-REP to MATLAB shown in the right-hand side image. 
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Figure 3.7 A complete second iteration of the 3-branch tree fractal formation with a separation angle of 

45° made by a swarm of 7 quadcopters (circled in red) is shown in the right-hand side image. 

Alongside the follow-up progress of each robot sent by V-REP to MATLAB shown on the right-hand 

side image. 

To validate the use of line-based fractal formations in exploring an unknown area, each 

fractal is implemented by a robotic swarm to explore a real unknown area of the Tabon 

cave (Choa et al., 2016). The structure of the cave discovered so far was taken and used 

to distribute a robotic swarm using both 3-branch tree fractal formation and Vicsek 

fractal formation. MATLAB is used to simulate the distribution process and present the 

amount of area covered compared to a traditional exploration method named the 

Probabilistic Roadmap (PRM). As shown in Figure 3.8 (a), each robot has a diameter 

size of D, can move up to a distance of d, and has a distance measurement sensor 

covering a range of 180° with a length of S.  

While each robot is scanning the unknown area, an overlap could occur due to the 

repetition of scanning part of the area by neighbouring robots when developing 

particularly the tree fractal formation. Figure 3.8 (b) shows that the repetition of 

scanning part of an area. Overall, there are 4 areas, of which 2 are identical in shape 

(named OL12 and OL13) both found at the bottom and then there is the half circle that 

forms the front of the scanning of 1 and overlaps with the new branches (named OL123) 

and the overlap between the 2 new branches (named OL23). While the latter 2 areas are 

a half circle and square respectively, the former (OL12 & OL13) are a set of triangles. 

The overlaps can be calculated as follow: 
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𝑂𝐿12 = 𝑂𝐿13 =  2 × [
𝑆2 × sin

𝛼

2

2
]  (3.10) 

𝑂𝐿123 =
𝜋𝑆2

2
     (3.11) 

𝑂𝐿23 =  𝑆2     (3.12) 

Resulting in a total overlap of: 

𝑇𝑜𝑡𝑎𝑙 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑂𝐿12 +  𝑂𝐿13 +  𝑂𝐿23 +  𝑂𝐿123   (3.13) 

                                 

                                         (a)                                                                               (b) 

Figure 3.8 (a) represents a robot (green circled size) moving with a distance of d and scanning the 

unknown area using a distance sensor with a maximum distance of S (b) An overlap occurred when 

neighbouring robots rescanned part of an area scanned by another robot, resulting in four shapes: one 

square shape (named OL23), one half circle shape (named OL123), and a set of triangle shapes (named 

OL12 and OL13).  

By calculating the overlap that occurred due to the rescanned area, it is possible to 

obtain the exact amount of area covered from MATLAB by subtracting the overlapped 

area from the total amount of area covered by the robotic swarm. Figure 3.9 (a) shows 

the area to be explored and the line where the robots can be distributed, and Figure 3.9 

(b) shows the swarm distribution of 100 robots using PRM, while Figure 3.10 shows 

the swarm distribution of 4 robots using 2-branch tree fractal formation. The formations 

in Figures 3.9 (b) and 3.10 initiated from the red entrance line, and the total amount of 

area obtained from these formations had their overlaps excluded. The tree fractal 

formation terminates it iteration process once a branch faces an obstacle, and this 

condition applies for the rest of the fractals in this chapter. 
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Figure 3.9 (a) The assigned area to be explored and the red line is where the robots can be distributed 

(b) The distribution of a robotic swarm using PRM in an unknown area. 

 

Figure 3.10 The distribution of a robotic swarm using a 2-branch tree formation in an unknown area. 

The simulation result in Figure 3.9 (b) shows the distribution process of 100 robots 

using PRM with an average covered area of 283.095m2 across 30 simulations. While 

Figure 3.10 shows the distribution process of distributing 4 robots using 2-branch tree 

formation with a branch distance of 3m, a scanning radius of 2m, and a total covered 

area of 143.414m2. It is noted that PRM covered a larger area size compared to the 2-

branch tree fractal formation, however, the tree formation uses only 4 robots to cover 

about half the area size compared to the use of 100 robots by PRM. Also, the swarm’s 

distribution of PRM forms a stochastic formation, which results in massive overlaps 

that are difficult to remove. On the other hand, the swarm’s distribution of the tree 
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fractal formation is organised, allowing for a minimum overlap that is manageable to 

remove. The organised fractal formation led to the swarm being distributed inside the 

unknown area, while using PRM led some robots to explore outside the unknown area. 

3.2.2 Vicsek Fractal Formation 

Like the N-branch tree fractal formation, the structure of a Vicsek fractal is also based 

on line segments. a Vicsek fractal develops in multiple directions of a 2D plane, which 

could be particularly handy for situations where the robots are dropped into an unknown 

area. Similar to the N-branch tree formation, the Vicsek formation has a number of 

branches (N) for this particular fractal, although the most commonly used Vicsek has 

N=4, which also forms the main focus for this development. Nevertheless, all formulas 

have been generalized to allow for more generic use in the future. 

The Vicsek fractal formation requires an initial number of robots of N, to allow 

development in each of the N directions and each one of these branches would then be 

separated by 360/N. The next iteration then starts from the end points of the first one, 

developing again in N directions similar to the original development, as shown in 

Figure 3.11. It is assumed that all developments are oriented in the same direction as 

the first development, hence parallel to the X-axis. However, due to symmetry around 

the Y-axis when N is even, there will be overlap between a previously discovered track 

and a new direction, which impacts on the number of robots, and so this overlap needs 

to be discounted by using N-1 rather than N for each new iteration, if N is even. The 

growth rule of the Vicsek fractal formation is expressed as follow: 

 𝑁𝑜𝑅𝑖 = 𝑁 ×  ∏ (𝑁 − 1)𝑖
𝑝=1       𝐹𝑜𝑟 𝑒𝑣𝑒𝑛 𝑁                      (3.14) 

𝑁𝑜𝑅𝑖 = 𝑁 ×  ∏ (𝑁)𝑖
𝑝=1              𝐹𝑜𝑟 𝑜𝑑𝑑 𝑁                        (3.15) 

Where (p) is an iteration counter ranges between (1 and i). Taking that the Vicsek 

formation develops in all directions, the origin point will always be the centre of the 

fractal, and is therefore also chosen as (𝑥0, 𝑦0). The next branches develop based on the 

number of branches and consequently their angle of separation as well as the distance 

to be travelled. There are as many branches to be calculated as N. So, for each iteration, 

one needs to add a factor of d/px cos (m (360°/N)) for the x-coordinate while a sine 
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is used for the y-coordinate. Within this formula d/(px) is the distance travelled and 

that normally reduces per iteration (p), while one needs to ensure that x is larger than 

1. While m (360°/N) needs to go through all possible m, starting at 0 and up to N-1 to 

deal with the different branches. As the fractal develops one needs to add additional 

factors as to calculate the new location points respectively starting from the end point 

of the previous iteration. Hence, for every i, one needs to run through m=0 to N-1. 

Figure 3.11 shows an illustration of the swarm movements towards developing the 

Vicsek fractal formation. 

 

Figure 3.11 Structure of the first iteration of the Vicsek fractal formation. The initial Vicsek structure 

(highlighted in a red square) has four patterns (highlighted in a blue square) in each cardinal direction. 

Consequently, the location point formula that can be used for any Vicsek is:  

X-coordinate: 

𝑥i,m = 𝑥0 +∑
𝑑

𝑝𝑥

𝑖+1
𝑝=1  cos(𝑚 × 

360°

𝑁
)     (3.16)  

Y-coordinate: 

     𝑦 i,m = 𝑦0 +∑
𝑑

𝑝𝑥

𝑖+1
𝑝=1  sin(𝑚 ×  

360°

𝑁
)        (3.17) 
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Where:  x >1, and for each iteration, one needs to recursively work through all possible 

m, from 0 to N-1. 

Verifying the functionality of the Vicsek formulas for determining the number of robots 

needed and their travel locations required computational software. Like the N-branch 

tree formation, MATLAB is used to implement the formulas of the Vicsek. For this 

simulation, the initial number of robots X0 is set to four robots, the separation angle 

between line segments is 90°, the formation direction angle is set according to the 

cardinal directions into the following values: (0°, 90°, 180°, 270°), and the initial travel 

distance is set to 8-unit length. The images in Figure 3.12 show the simulated Vicsek 

formation via MATLAB for the first two iterations. 

 

                                                (a)                                                                 (b) 

 

(c) 

Figure 3.12 The growth rule of the Vicsek fractal formation: (a) initial structure, (b) First iteration, (c) 

Second iteration. 
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To verify that a robotic swarm can mimic the Vicsek fractal formation. The V-REP tool 

is integrated with MATLAB. Each robot receives location points according to the 

Equations (3.16) and (3.17), observing the progress made by the robotic swarm and 

confirming the completion of developing the Vicsek fractal formation. The designed 

area in V-REP is the same as the one made for mimicking the N-branch tree fractal 

formation in MATLAB, but the origin location point is at the centre of the area. All the 

participating robots have the exact specifications used in developing the 3-branch tree 

formation adding a compass meter to support the robots in determining the current 

cardinal direction. Each robot moves to the first location point in the following 

directions: east, west, north, and south. To reach the next location point, each robot 

summoned two new robots to move towards the next location points, and so on. Figures 

3.13, 3.14, and 3.15 shows a real-time robotic swarm mimicking the Vicsek fractal 

formation for two iterations. 

 

Figure 3.13 A swarm of quadcopters mimics the Vicsek fractal formation. The left-hand image shows 

four robots moving to their assigned location. The right-hand side image shows the follow-up progress 

of each robot sent by V-REP to MATLAB. 
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Figure 3.14 The swarm has reached their initial location points preparing to develop the first iteration 

of the Vicsek fractal formation.  

 

Figure 3.15 A complete first iteration of the Vicsek fractal formation  

To validate the function of using the Vicsek fractal formation to cover an unknown 

area, the area of the Tabon cave is used as an unknown area for distributing the Vicsek 

formation. The formation starts from the centre of the cave’s entrance and can develop 

until a robot sense an obstacle, as shown in Figure 3.16.  
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Figure 3.16 The distribution of a robotic swarm using Vicsek fractal formation on an unknown area. 

The simulation in Figure 3.16 shows the distribution of 12 robots covering an area of 

111.513m2. The Vicsek formation covers about the same amount of area as the tree 

fractal formation but uses a higher number of robots. Also, the west part of the fractal 

formation attempted to cover areas outside the unknown area as the Vicsek formation 

distributed the robotic swarm in a cardinal direction. For the best use of the Vicsek 

fractal formation, the formation should be developed from the centre of the area 

investigated. 

3.3 Curve-Based Fractals 

This section presents a detailed description of Julia set and reverse Julia set as curve-

based fractals. Each fractal is developed using a growth rule formula built as a 

polynomial equation. MATLAB is used to demonstrate the function of both Julia Set 

and reverse Julia. While V-REP is used to illustrate the implementation process of 

mimicking the reverse Julia Set formation. 

3.3.1 Julia Set Fractal Formation 

Unlike the line-based fractal formations, the structure of the Julia Set is based on 

recuring a complex number using a quadratic polynomial function. The variables of the 
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quadratic function are Z and C, where (𝑍 = 𝑎𝑧 ± 𝑏𝑧𝑖) is a complex number 

representing a cartesian form as a location point for robots. (𝐶 = 𝑎𝑐 ± 𝑏𝑐𝑖) is a constant 

complex parameter that determines the specific set of the Julia fractal shape. As Julia 

fractal contains a set of different shapes, this research considers resembling the cyclone 

shape, which according to (Falconer, 1990; Heinz-Otto Peitgen, Hartmut Jürgens, 

2004), represents the constant values of [𝐶 = 0.1 + 0.6𝑖]. 

The complex quadratic polynomial equation for the Julia Set is expressed as follow: 

                                            𝑍𝑛+1 =  𝑍𝑛
2 + 𝐶                    𝑛 = 0,1,2, … ..          (3.18) 

By applying C as mentioned above, and the initial location point Z0 as an origin point, 

a first location point is generated as Z1. The next location point Z2 can then be generated 

by applying the previous location point Z1 and the same constant parameter, and so on. 

Considering R is a set of complex values generated by the quadratic polynomial 

equation where 𝑅𝑖 = {𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑖}, a complete iteration for the Julia Set is 

accomplished only when the following condition (𝑍𝑛 ≈ 𝑍𝑛+𝑖) is satisfied. This 

condition means that a complete cycle of a cyclone shape is generated, and accordingly, 

a new cycle will be generated as a new iteration. Therefore, the number of robots needed 

for one iteration depends on the condition of completing one iteration. While applying 

the Equation (3.18) with C = 0.1+0.6i, it is noticeable that one iteration is accomplished 

when (𝑍1 ≈ 𝑍8). The experiment shows that a complete iteration/cycle consists of 

seven points starting from Z1 to Z7, while Z8 is identical to the start point of a new 

iteration. Figure 3.17 (a) shows one complete iteration of a cyclone shape as the location 

points Z1 and Z8 are almost the same value. Table 1 shows a list of complex values Zn 

generated via MATLAB using the Julia Set Equation (3.18) for three complete 

iterations. 

The distribution process of the swarm for the Julia set formation is different from the 

line-based fractal formations. Unlike the line-based formation, where all the robots start 

travelling from the origin point, each location point in the first iteration of the Julia Set 

is a start point for one robot. For example, the location point Z1 is assigned for the first 

robot as a start location point, while the start location point for the second robot is Z2, 

and the process goes on until the last location point Z7 is assigned for the seventh robot. 
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As the swarm aims to mimic the cyclone shape, each robot travels to the nearest location 

point of the next iteration as its next location point. Each robot must follow the same 

condition (𝑍𝑛 ≈ 𝑍𝑛+𝑖) to ensure the correct selection of the next location point. 

Accordingly, the next location of the first robot is Z8, and the next location point for the 

second robot is Z9. Generally, each robot has a set of location points to follow, which 

can be described as follow: 

                        𝑅𝑖 =  {𝑍𝑛, 𝑍𝑛+𝑖, 𝑍𝑛+2𝑖, … , 𝑍𝑛+𝑥𝑖}            𝑛 = 1,2,3, …              (3.19) 

Where (Zn+xi) is the last location point for a robot to reach. Figure 3.17 (b), (c), and (d) 

show a cyclone shape generated using Equation (3.18) for a period of 85 iterations, 

alongside with lines linking each location point to another location point using Equation 

(3.19). It is noticeable that the distance between two location points is named the 

displacement. 

           

                                     (a)                                                                                   (b) 

                       

                                       (c)                                                                                   (d) 

Figure 3.17: A cyclone shape generated using the Julia set formula (a) first iteration that shows the first 

7 location points, and an 8th location point near to the first location point (b) A cyclone shape generated 

by 28 iterations of Julia Set (c) A cyclone shape generated by 57 iterations (d) A cyclone shape 

generated by 85 iterations. 

Z1 

Z2 

Z3 

Z4 

Z5 

Z6 

Z7 

Z8 ≈ Z1 
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3.3.2 Reverse Julia Set Fractal Formation 

The purpose of using fractals in the context of this research as swarm formations is to 

explore an unknown area. A fractal formation must be expandable for further iterations 

so the swarm can cover the area. The cyclone shape of the Julia set formation is 

developing in an inward direction. According to Table 1, the location point values 

highlighted in the same colour are getting smaller due to the recurring process of the 

quadratic polynomial equation. In order for the reverse Julia set fractal to extend its 

formation, quadratic polynomial Equation (3.18) must be reversed, hence the name. 

The reverse Julia Set fractal formation can be expressed as follow: 

 

                                     𝑍𝑛+1 =  √𝑍𝑛 − 𝐶                    𝑛 = 0,1,2, … ..                (3.20) 

 

Where all the parameters are the same as in Equation (3.18). To validate the 

functionality of the reverse Julia Set equation, Table 3-1 shows two highlighted 

columns of generated values for both the Julia set formula (left side) and the reverse 

Julia set (right side) for three complete iterations. The left highlighted column shows 

21 generated values (from Z1 to Z21) using Equation (3.18). The last generated value 

Z21 was used as Z0 for the Equation (3.20) while keeping the same value of C as 

mentioned in the Julia Set formation section. The right highlighted column shows 

another 21 generated values using the Equating (3.20). It is noticeable that the values 

generated by both the Julia set and the reverse Julia set have resembled. The last 4 

values generated by the reverse Julia Set Z18 to Z21 are however different from the first 

4 values of the Julia Set Z0 to Z3 as the reverse Julia Set formula does not reach absolute 

zero during the recuring process. 
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Table 3-1 A list of complex numbers generated by the Julia Set formula (left column) and the reverse 

Julia Set formula (right column) for three iterations. The values generated by the reverse Julia Set 

formula (e.g. Z1) match with the corresponding values generated by the Julia Set formula (e.g. Z20). 

Iterations Julia Set 

𝑍𝑛+1 =  𝑍𝑛
2 + 𝐶    

 Iterations Reverse Julia Set 

𝑍𝑛+1 =  √𝑍𝑛 − 𝐶 

   Initial “Z” Z0 = 0.086858 + 0.21822i 

 

3
rd

 I
te

ra
ti

o
n

 

Z21 = 0.086858 + 0.21822i  

 

1
st
 I

te
ra

ti
o
n

 

Z1 = -0.42946 + 0.44449i 

Z20 = -0.42946 + 0.44449i  Z2 = -0.10575 + 0.73528i 

Z19 = -0.10575 + 0.73528i Z3 = 0.14229 + 0.47539i 

Z18 = 0.14229 + 0.47539i Z4 = -0.29485 + 0.21131i 

Z17 = -0.29486 + 0.21131i Z5 = -0.28214 + 0.68881i 

Z16 = -0.28214 + 0.68881i Z6 = 0.071359 + 0.62228i 

Z15 = 0.071359 + 0.62228i Z7 = 0.061836 + 0.18018i 

 

2
n

d
 I

te
ra

ti
o
n
 

Z14 = 0.061832 + 0.18018i 

 

2
n

d
 I

te
ra

ti
o
n
 

Z8 = -0.43783 + 0.47943i 

Z13 = -0.43783 + 0.47944i Z9 = -0.081695 + 0.7379i 

Z12 = -0.081693 + 0.7379i Z10 = 0.15233 + 0.45266i 

Z11 = 0.15233 + 0.45265i Z11 = -0.32302 + 0.22807i 

Z10 = -0.32302 + 0.22807i Z12 = -0.26481 + 0.70225i 

Z9 = -0.26481 + 0.70225i Z13 = 0.083836 + 0.60979i 

Z8 = 0.083837 + 0.60979i Z14 = 0.03697 + 0.1324i 

 

1
st
 I

te
ra

ti
o
n

 

Z7 = 0.036964 + 0.1324i 

 

3
rd

 I
te

ra
ti

o
n

 

Z15 = -0.4521 + 0.51714i 

Z6 = -0.4521 + 0.51714i Z16 = -0.055605 + 0.74511i 

Z5 = -0.055602 + 0.74511i Z17 = 0.16906 + 0.42917i 

Z4 = 0.16906 + 0.42917i Z18 = -0.10575 + 0.73528i 

Z3 = -0.3559 + 0.24i Z19 = -0.42946 + 0.44449i 

Z2 = -0.25 + 0.72i Z20 = 0.086858 + 0.21822i 

Z1 = 0.1 + 0.6i Z21 = 0.059925 + 0.63791i 

Initial “Z” Z0 = 0 + 0i    

To verify that a robotic swarm can mimic the cyclone shape generated by the reverse 

Julia set, MATLAB was used to implement the formula of the reverse Julia set. During 

this simulation, the initial value (Z0) is as origin, while the constant value (C) is set to 

0.1+0.6i, allowing the reverse Julia set formula to generate a cyclone shape. The images 

in Figure 3.18 show the growth process of a cyclone shape that takes an outwards flow 

direction. Each image shows the growth of a cyclone shape from the first iteration all 

the way till the 30th iteration. 
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                                         (a)                                                                                  (b) 

       

                                          (c)                                                                                   (d) 

Figure 3.18 The cyclone shape generated using the reverse Julia Set formula (a) Cyclone shape after 8 

iterations (b) Cyclone shape after 15 iterations (c) Cyclone shape after 20 iterations. (d) Cyclone shape 

after 30 iterations. 

Like the line-based formation, MATLAB and V-REP were used for implementing the 

cyclone shape of the reverse Julia Set formation. The characteristic of the area used to 

implement the cyclone shape is the same as the one used in the line-based formation. 

Each robot will receive the location point from MATLAB using Equation (3.20). 

Because of the small values generated by the reverse Julia Set formula, both 𝑎𝑧 and 𝑏𝑧 

will be scaled up as well as the area. The first component 𝑎𝑧 is scaled 100 times, while 

the second component is scaled 10 times for a better distribution of the robotic swarm. 

Figures 3.19 and 3.20 show the process of distributing a swarm of copters inside an 

area where the swarm is performing a cyclone shape for 2 iterations. 
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Figure 3.19 A robotic swarm mimicking the first iteration of a cyclone shape generated by the reverse 

Julia Set, where each robot travelled to the assigned location point, preparing to travel to the next 

location point. 

 

Figure 3.20 A swarm of robots completed its first iteration of a cyclone shape using the reverse Julia 

set formula. 

To validate the function of using the reverse Julia set formation towards covering an 

unknown area, the reverse Julia set is used to distribute a robotic swarm on the Tabon 

cave as an unknown area. The reverse Julia set has a C component of 0.1+0.6i while 

the Z component of zero. The formation is developed until a robot faces an obstacle. 

Figure 3.21 presents a robotic swarm distribution that mimics the cyclone shape of the 

reverse Julia set. 
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Figure 3.21 The distribution of a robotic swarm using reverse Julia set fractal formation on an unknown 

area. 

The simulated result in Figure 3.21 shows the distribution of 7 robots covering an area 

of 81.097m2. It is noted that the formation expands at a slow rate which covers less 

amount of area compared to the line-based formations. However, the reverse Julia set 

is the only formation that uses a fixed number of robots for every incremented iteration 

compared to line-based formations.  

To analyse the outcomes e.g. number of robots used and the amount of area covered, 

from using different fractal formations, Table 3-2 shows the total amount of area 

covered and the used number of robots using both line and curve based formations 

compared to PRM. It is noted that although using PRM had covered more areas than 

using fractal formations, the number of robots needed by each fractal formation to cover 

about 45% of the area covered by PRM is 88% less than the PRM. As all fractals 

terminates their development process when a robot faces an obstacle, all the formations 

could not reach the same covering value obtained by PRM. One solution to overcome 

this obstruction is by changing one or more parameters of a fractal formation, which is 

discussed in chapter 4. 
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Table 3-2 A list of the number of robots used and the amount of area covered using different fractal 

formations and PRM. 

Formation type PRM Tree Vicsek R. Julia Set 

No. of robots 

used 

100 4 12 7 

Covered area 

(total = 785.1m2) 

283.095m2 143.414m2 111.513m2 81.097m2 

Average Time 

Cost (Seconds) 

54.1 17.5 22.8 14.5 

Average and 

Stand. Dev. 

Avg.: 283.095 

Std. Dev.: 8.862  
Not Applicable Not Applicable Not Applicable 

Percentage of 

covered area 

36.1% 18.3% 14.2% 10.3% 

 

3.4 Summary 

This chapter presents a detailed description of generating four fractal formations, where 

each fractal is mathematically modelled and implemented by a robotic swarm in an 

unknown area. Each fractal formation is classified according to its development process 

into either a line-based formation or a curve-based formation. Each fractal class 

contains two fractal formations, and each fractal formation had its growth rule formula 

built to determine the number of robots needed and their location point within the 

swarm. Table 2 shows a summary list of the amount of area obtained by a robotic swarm 

when using both PRM and different formations of fractals.  

The mathematical formula of the line-based fractals is based on the line segment, while 

the curve-based fractals use the quadratic polynomial function for complex numbers. 

Both MATLAB and V-REP are used to verify and implement the growth rule formulas 

of each fractal formation using a robotic swarm. The simulation results show the ability 

of a robotic swarm to implement a fractal as a swarm formation and use each formation 

for exploring and covering an unknown area with a limitation when facing an obstacle. 

This chapter answers the sub-question “How can a swarm of robots apply a fractal 

formation to cover unknown areas?” However, while a robot faces an obstruction, a 

change in fractal’s parameters could help the swarm to continue exploring and covering 
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an unknown area. Therefore, it is important to clarify the advantages/disadvantages of 

using fractal formations with different parameters by a robotic swarm to cover an 

unknown area. The next chapter describes, with extensive detail, both the pros and cons 

of using fractal formations by analysing a number of parameters related to the fractal 

class. 
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Chapter 4: Studying the Parameters of Fractal 

Formations for Covering Unknown Areas 

As fractals were used as a swarm formation to cover an unknown area, the parameters 

of fractals controlling the distribution of robots were fixed to a specific value, leading 

to a limited swarm distribution due to facing obstructions/boundaries. This chapter 

focuses on understanding the effect of these parameters, as these parameters linked to 

the growth rule formulas, on the distribution of a robotic swarm and covering an 

unknown area. This effect is investigated by changing each parameter to different 

values and observing the swarm behaviour's effect when using fractal formations 

towards covering an unknown area. The outcome of investigating each parameter is an 

analysis of the formation distribution on a pre-designed area and the amount of area 

covered when distributing the changed parameter of a fractal formation on an unknown 

area.  

Therefore, this chapter presents a detailed study of the parameters affecting the robotic 

swarm distribution for each fractal formation class. This study leads to an extraction of 

the advantages and disadvantages of changing different parameters towards distributing 

a robotic swarm and covering an unknown area. Each parameter is simulated using a 

fractal formation on two different areas. The first area is a rectangular shaped area with 

a known dimension to observe the impact of changing each individual parameter when 

developing a fractal formation. The second area is a real unknown area taken from the 

Tabon Cave (Choa et al., 2016). For both areas, fractal formations terminate their 

development process once a branch faces an obstacle. MATLAB is used to simulate 

each changing parameter when developed in both known and unknown areas. 

This chapter presents four sections: the first section describes the techniques of 

decomposing a complex area into simple shapes used as a basis for all the case studies. 

The second section presents a detailed description of changing parameters of the line-

based fractals to different values and simulated each change on a rectangle-size area 

and an unknown area. Part of the investigated parameters, such as obstacle existence, 

are included in the study. The third section presents a detailed description of changing 

parameters of the curve-based fractals. The simulation process used in the line-based 

fractals is also applied for the curve-based fractals. The fourth section presents an 
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optimisation process of combining all the parameters together and obtaining the best 

parameter values that provide the highest area coverage. The last section summarises 

the work achieved and describes the impact of changing the parameters of fractal 

formation towards covering an unknown area. 

4.1 Analysis of an Unknown Area 

As a robotic swarm uses a fractal formation to explore an unknown area, the swarm 

needs to identify the structure of the area being explored to make the necessary 

adjustment to one or more parameters and continue exploring the unknown area. While 

it is impossible to identify the size of an unknown area without exploring this area, a 

robotic swarm could partially estimate the shape of an unknown area by discovering 

the elements that construct this unknown shape. According to (Hoffman, Lomonosov 

and Sitharam, 2001; Jermann et al., 2006), a shape is constructed from joining line 

segments to create a perimeter, and an area, exploring the area inside the shape requires 

an entrance, and the area may contain obstacles. For the research purpose, the elements 

affecting the construction of a shape are: boundary, entrance, and obstacle. Defining 

each element helps the robotic swarm recognise these elements and determine the 

suitable change of a fractal’s parameter to explore the unknown area. Each element is 

defined as follow: 

Boundary: “A barrier that defines the area of a shape, which could limit the swarm 

from developing further formation iterations”. 

Entrance: “An access point located at the boundary of an unknown area allowing a 

robot to enter and explore”. 

Obstacle: “A solid object preventing a robot from moving forward”. 

As the area to be discovered is unknown, it is a challenging task for the robotic swarm 

to identify the total size of the shape being discovered. Having a discovered area helps 

the swarm match the discovered area to the nearest geometric shape, and therefore, has 

an estimated size of the discovered area. Consequently, the robotic swarm will be able 

to adjust parameters related to the selected fractal formation to increase the coverage of 

the unknown area.  
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In real life, an unknown area is seen as a complex shape that can be divided into a finite 

number of geometric shapes. One approach to analysing a complex shape is using 

geometric constraint solving, an approach where a complex shape is assembled into 

simple shapes using constraint solver algorithms such as graph reduction and 

recognition using region division (Brüderlin, 1998; Gu et al., 2009). For an unknown 

area, the geometric constraint solving method can facilitate the robot’s task to identify 

a discovered object by dividing an area into regions, as shown in Figure 4.1, where a 

division region approach is used to divide a swan into regions of head, body, and tail. 

 

Figure 4.1 A swan image is identified using the recognition of regions (head, body, and tail) (Gu et al., 

2009). It is noted that the approach did not efficiently separate the body and the tail (shown in the right-

downside image) due to the similarity in colouring - Used with permission. 

Using the division region method by a robotic swarm to explore complex areas can help 

the swarm assemble a complex shape into several geometric shapes using a suitable 

fractal formation. However, this method requires the swarm to have a pre-made map of 

the area to be analysed by a constrain solver algorithm. Therefore, the division region 

method is unsuitable for dividing an unknown area unless the perimeter is determined. 

A similar approach for analysing a complex shape is decomposing a complex shape 

into simple geometric shapes using a decomposition method such as a tree 

decomposition and a division analysis (Hidalgo and Joan-Arinyo, 2015; Kapoutsis, 

Chatzichristofis and Kosmatopoulos, 2017). This approach decomposes a complex 

shape into more minor forms of a basic shape, as shown in Figure 4.2. This approach is 

famous for the swarm robotics field when analysing and recognising areas (Jermann et 

al., 2006). However, for this approach to be practical, the swarm must identify the 
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boundaries of the complex area using the traditional exploration methods described in 

Chapter 2. In addition, having an effective swarm exploration relies on understanding 

each exploration method's features so the swarm can choose the most effective method 

for efficient exploration. 

 

Figure 4.2 Decomposing a complex shape (left side) into a number of triangle shapes (right side) using 

the division analysis method (Jermann et al., 2006) - Used with permission. 

The above approaches show the importance of understanding the features of each 

fractal formation for better covering an unknown area. Realising the effect of changing 

a parameter on a fractal formation when covering an unknown area requires examining 

these changes inside a rectangular shape with the criteria mentioned at the beginning of 

the chapter. As shown in Figure 4.3, a simple rectangular shape with a width of 2 m 

and a length of 4 m is used as a geometric area for each case study. The shape size was 

selected to fit the developed fractal formation. 

 

Figure 4.3 The proposed geometric shape used as an area to be explored. 

 

4.2 Line-Based Fractal Formation 

For the line-based formation, there are four algorithmic parameters related to the change 

of the line fractals, and they are: number of branches (N), branch length (d), initial 

formation direction (θ), and the separation angle between branches (α), while there are 

three non-algorithmic parameters for the rectangular shape, namely: multiple entrances, 

obstacle existence, and non-linear areas. 

 

2m 

4m 
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4.2.1 Case Study 1: Number of Branches (N) 

Increasing or decreasing the number of branches can impact the amount of area to be 

covered. Theoretically, the more branches the formation has, the higher the chance of 

exploring more areas as each branch is developed in a different direction from 

neighbouring branches. Demonstrating the effect of increasing the number of branches 

towards covering an area requires selecting a fractal formation of which ‘N’ can be 

adjusted. For this study, the tree fractal formation is used with a minimum number of 

two branches. 

The experiment conducted for this case study is to distribute a tree fractal formation 

with two branches and three branches per iteration. As the area structure used is a 

rectangular shape, shown in Figure 4.3, this experiment's assumption is as follows: the 

area has only one entrance and no obstacles. Other parameters, including branch length, 

initial formation direction, and the separation angle, are fixed to a constant value. As 

for the tree formation, the angle separating the branches is fixed to (α = 30°), the tree 

fractal formation can develop up to four iterations, the length of each branch (d = 0.5m), 

and the start iteration direction (θ = 90°) perpendicular to the angle of the entrance. 

The simulated images in Figure 4.4 shows both two and three branches of tree fractal 

formation, including the removal of the overlapping branches, distributed inside a 

rectangular shape. Each image is a simulation result of the tree formation behaviour 

using MATLAB.  

     

                                      (a)                                                                                (b)  
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               (c) 

Figure 4.4 The distribution behaviour of N-branch tree fractal formation inside a rectangular shape for 

(a) two (b) three including overlaps (c) three excluding overlaps. 

The simulation results in Figures 4.4 (a) and (b) show a noticeable increase in the area 

covered with an increase in the number of branches. However, both far-right and far-

left sides of the rectangle area are not covered. The higher the number of branches used, 

the more likely overlap of the branches will occur. 

Figure 4.4 (c) shows a simplified distribution of a 3-branch tree formation after 

removing the overlapping branches, allowing for even a higher area coverage and a 

smaller number of robots to use. For this experiment, it is suitable to an extend to 

increase the number of branches to cover more of the area’s surface, but it is not clear 

what the impact of increasing the number of branches is when exploring the Tabon 

Cave area. 

A robotic simulation is conducted to observe the coverage of an unknown area when 

changing the number of branches for a tree fractal formation, where each robot is 

distributed, within the swarm, using the N-tree branch formulas (3.3) and (3.4). Each 

robot has a sensing ability that covers a distance of 1m with a range of 180°. The robotic 

swarm is not aware of the total size of the Tabon Cave (Choa et al., 2016). Each robot 

can develop a branch with a distance of 5m. The simulated images in Figure 4.5 

demonstrate the amount of area covered using both 2-branches and 3-branches, 

respectively. 
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                                       (a)                                                                             (b) 

Figure 4.5 The robotic swarm distribution of N-branch tree fractal formation inside the Tabon Cave for 

(a) two branches with three iterations (b) three branches with two iterations. 

Figure 4.5 (a) shows a total distribution of 7 robots using 2-branch tree formation 

covering an area of 124.81m2, while Figure 4.5 (b) shows a total distribution of the 

same 7 robots but using 3-branch tree formation covering an area of 121.34m2. 

Although the 2-branch tree formation has a slightly higher area coverage, the formation 

needed 3 iterations, while the 3-branch tree formation required only 2 iterations to reach 

about the same area coverage. This experiment shows that, for the Tabon cave 

environment, it is preferable to increase the number of branches to increase the amount 

of area covered. 

4.2.2 Case Study 2: Branch Length (d) 

Increasing the length of all the branches can increase the amount of area covered in 

fewer iterations while decreasing the length of the branches can decrease the amount 

covered without affecting the number of robots used for both cases. From another 

perspective, each branch can have a different length, which allows a fractal formation 

to cover more of the unknown area in a particular direction than another direction. Two 

experiments are conducted to verify the effect of changing the branch length on the 

swarm distribution and the amount of area covered. The first experiment aims to change 

the length of all the branches, while the second experiment aims to change the length 

of each branch individually. 
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The first experiment's assumption is as follows: the exact characteristics of the area 

applied in the first case study also apply to this experiment. A tree fractal formation is 

used with the minimum number of branches N=2, the separation angle between the 

branches is fixed to (α = 30°), the tree fractal formation can develop up to four 

iterations, the length of each branch is double the length of the first case study (d = 1m), 

and the start iteration direction (θ = 90°) perpendicular to the angle of the entrance. The 

second experiment's assumption is the same as in the first experiment, but the branch 

length is changed as follow: the length of the left branch is 0.25m, the length of the 

middle branch is 0.5m, and the length of the right branch is 1m. 

For all the experiments below, the tree fractal formation is constrained with a fixed 

number of iterations (i=3) for an equal comparison with the different changes of the 

branch length. The images in Figure 4.6 shows the results for developing a tree fractal 

formation inside a rectangular area, where the branches of the tree formation are short 

(d = 0.25m) as shown in Figure 4.6 (a), while the branches are long (d = 1m) as shown 

in figure 4.6 (b). Figures 4.6 (c) show different lengths of branches developed in order. 

    

                                    (a)                                                                              (b) 

     

                                            (c) 

Figure 4.6 The distribution behaviour of 2-branch tree fractal formation inside a rectangular shape for 

(a) short length branches (b) long length branches (c) different lengths of branches. 



 

58 

 

The simulation result in Figure 4.6 (a) shows that the tree formation uses all the 

available robots to form 3 iterations and cover as much area as possible, while Figure 

4.6 (b) shows a fewer number of developed iterations as part of the formation reached 

to the boundary of the area. However, because of the small branch length in Figure 4.6 

(a), the tree fractal is able to expand its formation compared to the formation with long 

branches. As for the simulation results in Figure 4.6 (c), the formation tends to expand 

more at the longest branch side while narrowing at the shortest branch side, allowing 

the formation to expand towards the longer branches. It is noted that the increase of the 

branch length depends on the shape of the area, as some areas have a wide-size shape 

that requires the swarm to increase the branch length in a horizontal direction, and vice 

versa for the long shapes. 

The parameter (d) is adjusted and applied in the Tabon cave by a robotic swarm to 

observe the effect of changing a branch length when covering an unknown area. Each 

robot can travel up to a distance of d = 2.5m for the short branch and a distance of d= 

10m for the long branch. The characteristic of the robots used in this experiment is the 

same as in the first case study. The simulated images in Figure 4.7 show the amount of 

area covered using both short length branches and long length branches.  

   

                                        (a)                                                                            (b) 

Figure 4.7 The robotic swarm distribution of 2-branch tree fractal formation inside the Tabon Cave for 

(a) short length branches (b) long length branches. 

The simulated fractal formation image in Figure 4.7 (a) shows a total distribution of 4 

robots covering a total area of 37.766m2. Figure 4.7 (b) shows a total distribution of 4 

robots covering an area of 195.657m2. The results show that for the selected 

environment, the increase in the branch’s length allows the robotic swarm to cover more 
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area over the use of shorter branches. However, the long-length branch formation could 

not develop more branches if a robot faces an obstruction, as shown in Figure 4.7 (b). 

4.2.3 Case Study 3: Initial Formation Direction (θ) 

The third parameter affecting the behaviour of a fractal formation is the initial formation 

direction. The initial formation direction (θ) sets the direction of the formation to 

develop. The initial formation direction can help the swarm prevent any obstruction 

limiting the fractal development, and cover more areas in a specific direction. In the 

previous case studies, the initial formation direction was set to be perpendicular to the 

angle of the entrance (θ = 90°). For this case study, the initial formation direction is 

changed to four different angles ranging from zero to 180° as follow: 30°, 60°,120° and 

150°. 

The experiment's assumption is as follow: the characteristics of the area applied in the 

previous case study apply for this case study, a tree fractal formation is used with three 

branches development, the angle separating the branches is fixed to (α = 30°), the tree 

fractal formation can develop up to four iterations, and the branch length is fixed to (d 

= 0.5m). The initial formation direction is set to four angles of 30°, 60°, 120°, and 150°. 

Each value of the initial formation direction is applied as a separate experiment. The 

tree formation is developed inside the rectangular shape until reaching the boundary of 

the area. Images in Figure 4.8 show the simulation results of developing a tree fractal 

formation with different initial formation directions. 

   

                                      (a)                                                                                (b) 
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                                       (c)                                                                                (d) 

Figure 4.8 The distribution behaviour of 2-branch tree fractal formation with different initial formation 

directions inside a rectangular shape for (a) 30° (b) 60° (c) 120° (d) 150°. 

The simulation results show that the initial formation directions of 30° and 60° cover 

more areas towards the right side of the rectangular shape, while the initial formation 

directions of 120° and 150° tend to cover more towards the left side of the rectangular 

shape. |The initial formation direction helps the swarm cover more areas in a certain 

direction than the default initial formation direction (90°). However, the total area 

covered is about half of the rectangular shape, as shown in Figure 4.8 (a), where the 

right side of the rectangular shape is mainly covered but not for the left-side and vice 

versa for Figure 4.8 (d). Like the branch length case study, for this experiment, the 

change in the initial formation direction depends on the shape of the area, which could 

be a useful feature for the robotic swarm to avoid obstacles and cover a certain part of 

the unknown area. 

Observing the initial formation direction change in an unknown area required a 

simulation experiment. An experiment is conducted where a robotic swarm covers the 

Tabon cave but with an initial formation direction of 45°. The robotic sawm develops 

two branches using the tree fractal formation. The maximum distance for a branch is d 

= 5m, and the characteristic of the robots used in this experiment is the same as in the 

first case study. The simulated outcome in Figure 4.9 shows the amount of area covered 

when changing the initial formation direction to 45°. 
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Figure 4.9 The robotic swarm distribution of 2-branch tree fractal formation inside the Tabon Cave 

with a start point in the middle of the entrance, and for an initial formation direction of 45°. 

The simulated result shows the distribution of 4 robots with a covered amount of area 

of 74.235m2. Like the analysis made for Figure 4.8, the initial formation direction can 

either aid the robotic swarm in covering more areas or prevent the swarm from 

exploring the unknown area. In the case of exploring the Tabon cave, one side of the 

tree formation faces the boundary of the cave, preventing two robots from continuing 

exploring the area. To overcome the obstruction issue, cooperative decision-making is 

made to adjust two parameters: the distance of the branch (d) and the separation angle 

(α). The decision was made by all the robots to prevent any overlaps between 

neighbouring robots, avoid the obstruction caused, and continue exploring more areas. 

The separation angle (α) is increased from 30° to 110°, while the distance of the 

branches where left variable until each robot faces another obstacle. The decision 

allows the obstructed robots to continue exploring the unknown area until the boundary 

of the unknown area obstructs the robots. 

4.2.4 Case Study 4: Separation Angle between Branches (α) 

The last parameter that affects the line-based fractals is the separation angle (α), where 

a fractal can either expand or compress its formation by changing the separation angle 

between its branches. The wide fractal formation allows for a wide distribution of the 
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swarm, which can help explore wide areas, while the narrow fractal formation allows 

for a narrow distribution of the swarm, which helps explore narrow areas. In this case 

study, there are four experiments for different separation angles. The first experiment 

examines a narrow separation angle of α = 10°. The second experiment examines a 

regular separation angle of α = 45°. The third experiment examines a wide separation 

angle of α = 90°. The final experiment examines a wider separation angle of α = 135°. 

In this case study, a tree fractal formation is used in all the experiments, with two 

branches developed in each iteration. The initial formation direction is set to 90°, and 

the length of each branch is set to d = 0.5m. The characteristics of the area to be explored 

are the same as in the previous case studies. The procedure of each experiment is to use 

the tree fractal formation to distribute the robotic swarm but with different separation 

angles. Each experiment is conducted using MATLAB, and the tree formation is 

terminated when completing its fourth iteration. The images below in Figure 4.10 

shows a demonstration of a tree formation distribution with different separation angles. 

    

                                       (a)                                                                                (b) 

    

                                       (c)                                                                                (d) 

Figure 4.10 The distribution behaviour of 2-branch tree fractal formation with different separation 

angles of (a) 10° (b) 45° (c) 90° (d) 135°. 

The simulation results show a narrowed formation distribution using a narrower 

separation angle, as shown in Figure 4.10 (a), while the formation distribution is wider 

from Figure 4.10 (b) to Figure 4.10 (d). It is noticeable that the separation angle of α = 

45° gives the swarm the maximum distribution using the tree formation, while the 

separation angle of α = 135° reverses the formation distribution to grow inwards at one 
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iteration, then grows outwards in the next iteration as shown in Figure 4.10 (d). The 

reverse growing behaviour is caused due to the separation angle of 135° being higher 

than the maximum separation angle of distributing the swarm, which leads the branches 

to grow in the reverse direction on every iteration of the formation development. In 

addition, the same figure shows a high interference in branches caused by the reverse 

formation growth. The change in the separation angle helps the swarm to adjust the size 

of a fractal formation. Narrowing a fractal formation can facilitate the swarm’s task to 

cover narrow areas, e.g. hallway, while expanding a fractal formation can aid the 

robotic swarm in covering wide areas. 

To verify the above analysis, the 2-branch tree fractal formation is applied on the Tabon 

cave with a separation angle of 45°. The parameters of the tree fractal formation are 

fixed to the following values: the distance for each branch is set to 5m, the initial 

formation direction is set to zero, and the characteristic of the robots used in this 

experiment is the same as in the first case study. The simulated outcome in Figure 4.11 

shows the amount of area covered when changing the separation angle to 45°. 

 

Figure 4.11 The robotic swarm distribution of 2-branch tree fractal formation inside the Tabon Cave 

with a separation angle of 45°. 

The simulated formation shows the distribution of 4 robots covering a total amount of 

area of 86.177m2. The observation made for Figure 4.10 (b) matches the distribution of 
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the robotic simulation in Figure 4.11 as the robotic swarm gain the highest distribution 

and covers as much area as possible. Compared to the robotic simulation shown in 

Figures 4.9, 4.7 (a), and 4.5 (a), the separation angle change allows the robotic swarm 

to obtain the highest amount of area covered. However, compared to the robotic 

simulation shown in Figures 4.7 (b) and 4.5 (b), it is noted that changing both features 

of branch length and the number of branches has shown a higher area coverage 

compared to the change of the separation angle. However, the comparison applies to 

the Tabon cave area and may not provide the same notice for different areas. Verifying 

the impact of changing the angle of separation requires an optimisation process that is 

made in section 4.4. 

4.2.5 Case Study 5: Multiple Entrances 

Like the parameters of the line-based formation, an area has parameters that could affect 

the formation distribution during its development process. One parameter is the 

existence of multiple entrances, where a swarm can use one or more entrances as a start 

location point to develop a fractal formation. Two experiments are conducted to observe 

the effect of a fractal formation when developed from multiple entrances. The first 

experiment applies a fractal devolvement from all the existing entrances 

simultaneously. The second experiment applies a fractal development only from one 

entrance, putting the rest of the entrances without a fractal development, and this 

process is repeated for each entrance individually. 

All the experiments’ assumptions are as follows: A 2-branch tree fractal formation is 

used to develop with a separation angle of 30°. The initial formation direction is set to 

90°, and the length of each branch is set to d = 0.5m. The area to be explored is a 

rectangular shape with three entrances. One entrance is located at the width of the 

rectangle shape, a second entrance is located at the length of the rectangle shape, and a 

third entrance is located at the corner. In the first experiment, 2-branch tree fractal 

formation is developed in all the existing entrances at the same time, while in the second 

experiment, the 2-branch tree fractal formation is developed at one entrance, in which 

the fractal is developed at the entrance of the long side and repeating the same 

development process at the entrance of the width side until a branch overlaps with 

another branch. Figure 4.12 shows the simulation of the 2-branch tree fractal formation 

inside a rectangle area from different entrances. 



 

65 

 

           

                                      (a)                                                                                 (b) 

         

                                       (c)                                                                                  (d) 

Figure 4.12 The distribution behaviour of 2-branch tree fractal formation which applies on (a) all the 

existing entrances (b) the entrance of the long side (c) the entrance of the width side (d) the entrance at 

the corner side. 

The simulation result in Figure 4.12 (a) shows a higher coverage of the area compared 

to the Figures 4.12 (b), (c), and (d), as all the entrances were used to develop a fractal 

formation, leading to an overall time reduction in covering the rectangular area. 

However, this comes with overlaps between the distributed formations. Two 

approaches to address the overlap issue are to reduce the number of branches or the 

number of iterations used. The simulation results in Figures 4.12 (b) and (c) show that 

a robotic swarm used one entrance to develop a fractal formation to cover part of the 

area, which may not be covered when developing the formation from a different 

entrance. However, using one formation covered less area than using two fractals at the 

same time from different entrances. One approach that allows the swarm to increase 

their area coverage is by increasing the number of branches, as shown in Figure 4.4. 

For the select rectangle shape, it is noted that the entrances located on the long side of 

the rectangle shape and in the corner are the best locations to explore and cover the 

shape. Additionally, adjusting a certain parameter, such as the initial formation 

direction, for a fractal formation can reduce the overlap that occurs when developing 

another fractal to cover an area. 
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4.2.6 Case Study 6: Obstacle Existence 

Another parameter related to the designed area is the presence of obstacles. Obstacles 

are considered the most significant obstruction for a fractal formation because they 

prevent the formation from developing, consequently affecting the progress of covering 

an unknown area by a robotic swarm. It is impossible to determine an obstacle inside 

an unknown area unless it is detected and recognised by the swarm. The parameters 

which describe an obstacle are size, shape, and location, and therefore, this subsection 

presents three experiments showing the effect of fractal development when facing an 

obstacle.  

The first experiment shows the development of a fractal formation when facing one 

obstacle in different locations. The second experiment is divided into two parts, where 

one part shows the development of a fractal formation when facing multiple obstacles 

of the same shape and size but in different locations, while the second part contains 

multiple obstacles with the same shape but with a different size and in different 

locations. The third experiment shows the development of a fractal formation when 

facing multiple obstacles with different shapes, sizes, and locations. 

All the experiments’ assumptions are as follows: A 2-branch tree fractal formation is 

used with a separation angle of 30°. The initial formation direction is set to 90°, and the 

length of the fractal’s branch is set to d = 0.5m. The area to be explored is rectangular 

with one entrance and contains one or more obstacles placed in a random location. A 

2-branch tree fractal formation is developed inside the rectangle area where obstacles 

are randomly positioned for all the experiments. The branch which faces an obstacle 

terminates its development process, and the formation will terminate its development 

process when completing its fourth iteration. The simulation outcomes in Figure 4.13 

show the effect of the tree fractal formation’s development when facing obstacles. 

    

                                      (a)                                                                                (b) 
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                                      (c)                                                                                 (d) 

 

(e) 

Figure 4.13 The distribution behaviour of 2-branch tree fractal formation inside a rectangular shape 

which contains obstacles (a) far from the entrance (b) nearby the entrance (c) same size obstacles (d) 

different size obstacles (e) different shapes of obstacles.  

The simulation results in Figures 4.13 (a) and (b) show that the closer the obstacle to 

the entrance, the difficult the formation grows as an obstacle blocks some branches. 

One approach to resolve this issue is changing the separation angle to allow the 

branches to continue developing. Figures 4.13 (c) and (d) show that the higher the 

number of presented obstacles, the higher number of obstructed branches occur. 

However, the non-obstructed branches iterate around an obstacle, which compensates 

the obstructed branches from the inability to iterate further and helps the overall 

formation cover as much area as possible. Figures 4.13 (e) and (f) show that the larger 

the obstacle's size, the higher the number of obstructed branches occurs. Figures 4.13 

(g) and (h) show that having different obstacles prevents current branches from 

developing further branches.  

Having obstacles inside an area can have a major impact on developing a fractal 

formation, especially when these obstacles are nearby the start location point of the 

fractal formation. However, as the line-based fractal formation contains a number of 

flexible parameters, fractal formations can be adjusted to overcome the obstruction 

made by obstacles. Additionally, the compensation made by the unobstructed branches 
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allows the formation to surround obstacles and approximately identify their size and 

shape. 

4.2.7 Case Study 7: Non-linear Area 

The last parameter related to the designed area is the surface of an area, where the 

internal dimension of the area to be discovered does not represent a basic shape, but a 

random shape. As the formation aims to cover an area completely, the non-linear 

structure of the internal area surface can be considered an obstruction, preventing a 

fractal formation from continuing to develop more branches. To observe the effect of a 

fractal formation development towards covering a non-linear area, two random shapes 

are presented in Figure 4.14. Each random shape is considered a separate experiment 

covered by a fractal formation based on the assumption made. Two experiments were 

conducted; the first experiment aimed to develop a selected fractal formation inside the 

large area of a random shape shown in Figure 4.14 (a), and the second experiment aimed 

to develop a selected fractal formation inside the small area in a random shape as shown 

in Figure 4.14 (b). 

       

                                      (a)                                                                                  (b)  

Figure 4.14 Two random-dimension shapes to be covered by a line-based fractal formation (a) first 

random shape (b) second random shape. 

The assumptions for both experiments are as follows: a 2-branch tree fractal formation 

is used to develop up to 4 iterations with a separation angle of 30°. The initial formation 

direction is set to 90°, and the length of the fractal’s branch is set to d = 0.5m. The area 

to be explored is a random shape with one entrance, and no existing obstacles. The 2-

branch tree fractal formation is developed inside each random area, and the formation 

will terminate its development process after four iterations. The simulation outcomes 

in Figure 4.15 presents the formation development on random shapes. 
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                                          (a)                                                                               (b) 

Figure 4.15 The distribution behaviour of 2-branch tree fractal formation inside a random-dimension 

shape (a) first random shape (b) second random shape. 

Figure 4.15 (a) shows that the tree fractal formation was partially affected for some 

branches, while other non-affected branches could continue developing more branches. 

As a result of the partial obstruction, both large and small areas were not completely 

covered. One approach to overcoming this issue is changing the separation angle 

between branches, as shown in Figure 4.15 (a). The simulation result in Figure 4.15 (b) 

shows a severe effect on the formation development, where all the branches are 

obstructed. The same approach used for the previous experiment of Figure 4.15 (a) 

applies to this experiment, where the formation will continue developing more 

branches, but at the cost of overlapping. 

It is expected to have a complex random shape as an unknown area in real life, which 

requires a careful selection of a fractal formation and its parameter values. Therefore, 

the experiments for distributing a robotic swarm when changing a particular fractal 

parameter were applied on a real map of the Tabon cave to ensure the reliable use of 

different parameters towards exploring an unknown area. 

4.3 Curve-Based Fractal Formation 

Similar to the previous section, this section presents the effect of changing parameters 

but then for the curve-based formations. Each parameter is discussed and analysed as a 

separate case study where a brief introduction about the experiment is provided 

alongside the respective assumption and the experimental procedure. Simulation 

experiments are conducted using MATLAB, and result analysis is discussed at the end 

of each section. As the purpose of each experiment is to observe the expansion of the 

curve-based formation inside an area, all the experiments are executed using the reverse 
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Julia set formula. The curve-based formation contains five parameters, two are related 

to the change of the curve fractals, and three are related to the change of the rectangular 

shape. 

4.3.1 Case Study 1: Changing the Z Value 

As the principle of developing curve-based fractal formations is recuring the complex 

number Z using a quadratic polynomial function, this case focuses on observing the 

effect of changing the element Z towards developing a curve-based fractal formation in 

covering an unknown area. According to Section 3.3.1 in Chapter 3, the Z value 

represents the location points for the robots to follow. While 𝑍 = 𝑎𝑧 ± 𝑏𝑧𝑖 contains 

both real and imaginary parts, setting specific values for each part and recuring them, 

using Equation 3.22 or 3.24, produces a certain shape related to the Julia Set fractal 

formation.  

To observe the effect of changing the Z value towards discovering an unknown area, 

the C value is set to a fixed value of (0.1+0.6i) to resemble the cyclone shape, while the 

Z is changeable. For this section, two experiments are conducted in which the first 

experiment demonstrates the change of the cyclone shape affected by the change of the 

parameters of Z, while the second experiment applies some of the results from the first 

experiment into an area and observes the amount of area covered for each result. The 

area's characteristics to be explored are the same shape applied in the line-based 

formation, namely a rectangular shape with one entrance. 

In the first experiment, the values of the parameters 𝑎𝑧 and 𝑏𝑧 should have a similar 

structure to the cyclone shape, and therefore, are both ranged from 0.2 to 0.8. 𝑏𝑧 is fixed 

to a certain value while 𝑎𝑧 is changing its value in a step of 0.1. It is expected that some 

results can produce different formations that suit the swarm to mimic and apply for the 

second experiment, and some can produce overlapped formations that are difficult to 

use by the swarm. A total of 49 simulation images show the output shapes when 

changing the Z value, some of these simulated shapes are similar, and therefore, the 

three simulated images that resemble the cyclone shapes are presented in Figure 4.16 

(a), while the three simulated shapes that show irregular shapes are presented in Figure 

4.16 (b). The complete set of 49 simulation images is presented in Appendix A.2. 
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                                                                                (a) 

 

(b) 

Figure 4.16 The distribution behaviour of the reverse Julia set fractal formation when changing the Z 

values (a) Shapes which resemble a cyclone the closest (b) Shapes which are far from resembling a 

cyclone shape. 

The simulation results in Figure 4.16 (a) show that while changing the Z for both real 

and imaginary values can produce a different structure of cyclone shapes, it also can 

result in irregular shapes, as shown in Figure 4.16 (b), which is difficult to mimic by a 

robotic swarm due to the overlap. One can clearly observe that the flow direction of the 

cyclone shape can be either anti-clockwise (left side of Figure 4.16 (a)) or clockwise 

(right side of Figure 4.16 (a)). The simulated outcome is useful as it allows the robotic 

swarm to decide which cyclone shape is best to mimic based on the information 

obtained while exploring an unknown area. Based on the observed simulation, the 

selected formations in Figure 4.16 (a) are applied on a rectangle area where the core of 

each formation is centred at the middle of the entrance. Figure 4.17 shows the 

distribution of the selected formations towards covering a rectangular shape. 
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                                     (a)                                                                            (b)   

 

                                                                               (c) 

Figure 4.17 The distribution behaviour of different cyclone shapes of the reverse Julia set fractal 

formation inside a rectangle area (a) when Z = 0.3+0.4i (b) when Z = 0.2+0.6i (c) when Z = 0.4+0.4i. 

The simulation results in Figure 4.17 shows that the separation between the cyclone 

branches is wide (Figure 4.17 (b)), while it is narrow for other cyclone branches (Figure 

4.17 (a)). It is also notable that while all the cyclone shapes have the same iteration 

level, some of these shapes have covered more area than other cyclone shapes. 

Depending on the sensing capability of a robotic swarm, the swarm can select or adjust 

the separation of the current cyclone shape to allow for more expansion and more 

covering of an unknown area. 

To realise the effect of changing the value of Z towards covering an unknown area, the 

cyclone shapes presented in Figure 4.17 are applied to the Tabon cave as an unknown 

area. Three experiments are conducted where each cyclone formation holds a unique Z 

value and is distributed using a robotic swarm. The robot’s sensing ability as well as 

the speed have the same values as the in the first case study in the line-based formation. 

The simulated formation in Figure 4.18 shows the amount of area covered when 

changing the value of Z to 0.3+0.4i (a), 0.2+0.6i (b), and 0.4+0.4i (c), respectively. 
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                                        (a)                                                                              (b) 

 

(c) 

Figure 4.18 The robotic swarm distribution of different cyclone shapes of the reverse Julia set fractal 

formation inside the Tabon cave (a) when Z = 0.3+0.4i (b) when Z = 0.2+0.6i (c) when Z = 0.4+0.4i. 

The simulated images in Figures 4.18 (a), (b), and (c) show the distribution of 4 robots 

covering a total area of 69.514m2, 79.980m2, and 74.648m2, respectively. It is 

noticeable that applying different values of Z show different values of covered areas; 

more specifically, increasing the real part and decreasing the imaginary part improves 

the chances for the robotic swarm to cover more areas as Figure 4.18 (b) shows the 

highest value of the covered area. 

4.3.2 Case Study 2: Changing the C Value 

The second parameter which affects the behaviour of the Julia set fractal formation is 

the C value. Like the Z value, the C value contains both real and imaginary values 𝐶 =

𝑎𝑐 ± 𝑏𝑐𝑖 which can change the Julia set shape based on the change of both complex 
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parts. This section focuses on investigating the changing behaviour of the cyclone 

shape, presented the value of C = 0.1+0.6i of the Julia set formation by changing the 

values of both complex parts. 

The experiment's assumptions are as follows: the reverse Julia set formula is applied 

where the Z value is set to zero, while the C value is changeable. One part of the first 

experiment contains a fixed imaginary part 𝑏𝐶 = 0.6𝑖 while the real part is changed 

between zero and 0.3 with a step change of 0.05 for detailed results. The other part 

contains a fixed real part 𝑎𝐶 = 0.1 while the imaginary part is changed between 0.1 and 

0.4 with a step change of 0.1. Figure 4.19 shows the changing behaviour of the cyclone 

shape when changing both real and imaginary values in Figures 4.19 (a) and (b), 

respectively. 

     

                                (a)                                                                   (b)  

Figure 4.19 The distribution behaviour of the reverse Julia set fractal formation when changing the C 

value (a) changing the real part of the C value (b) changing the imaginary part of the C value. 

Figure 4.19 (a) shows that increasing the real part enlarge the cyclone formation, while 

increasing the imaginary part results in the cyclone expanding its formation vertically. 

Changing the parameters of the C value allows the robotic swarm to adjust its current 

cyclone formation to increase its size for a higher chance of covering more areas. 

Overall, the change in the C values shows the ability to resize the cyclone formation 

without the need to change the shape itself. 

 

C=0.05+0.6i 

C=0.1+0.6i 

C=0.15+0.6i 

C=0.2+0.6i 

C=0.25+0.6i 

C=0.3+0.6i 

C=0.1+0.1i 

C=0.1+0.2i 

C=0.1+0.3i 

C=0.1+0.4i 

C=0+0.6i 
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4.3.3 Case Study 3: Multiple Entrances 

Similar to the line-based formation, one needs to consider changes to the unknown area, 

such as the existence of multiple entrances. Having multiple entrances allows one 

cyclone formation to be developed at each entrance, increasing the overall coverage of 

the unknown area. To observe the effect of developing a cyclone formation at each 

entrance, two experiments are conducted. The first experiment presents a cyclone 

development in one entrance, while the second one presents cyclone development in all 

entrances. For both experiments, two entrances exist, one located at the width of the 

rectangle perimeter and another entrance located at the length of the perimeter. The 

formula used to develop a cyclone shape is the reverse Julia Set with Z value of zero, 

and C value of 0.1+0.6i. The reverse Julia Set will terminate its development at the 

fourth iteration or when any developed branches hit a boundary. Figure 4.20 presents 

the effect of developing multiple cyclone shapes on multiple entrances when covering 

a rectangle area. 

    

                                     (a)                                                                            (b) 

 

 (c) 

Figure 4.20 The distribution behaviour of the reverse Julia Set fractal formation inside a rectangle area 

(a) Using one entrance (b) Using all the available entrances (c) Using two entrances, one which located 

at the corner of the rectangular shape. 

Figure 4.20 shows that the upper part of the cyclone formation covered the area inside 

the rectangular shape, while the lower part covered some area outside of the area of 
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exploration. Having multiple cyclone shape helps the robotic swarm to cover more 

areas, but as part of the cyclone covers an area outside the rectangle, the overall 

coverage is only partially efficient. A suggested solution is to redevelop different fractal 

shapes from the last location points of the cyclone shape, if the last location points are 

inside the area. Unlike the cyclone development from both the width and length, the 

developed cyclone located at the corner entrance covers less area as most of the cyclone 

shape covers the outside area. 

4.3.4 Case Study 4: Obstacle Existence  

Another parameter that affects the development of a curve-based formation is the 

presence of obstacles. Obstacles can be either major or minor obstructions on 

developing a curve-based formation depending on their location inside the area. To 

observe the effect of developing a cyclone formation when facing obstacles, two 

experiments are conducted. The first experiment contains two obstacles, of which one 

is near the entrance, and the same applies to the second experiment, but with an obstacle 

far from the entrance of an area. The assumption for both experiments are as follow: 

the characteristics of the area to be explored is a rectangular shape with one entrance 

and contains two obstacles with different shapes, and the formula used for developing 

a cyclone shape is the reverse Julia Set with a Z value of zero and a C value of 0.1+0.6i. 

The procedure of both experiments is as follows: a cyclone shape is developed at the 

centre of the entrance until the formation reaches either an obstacle or a boundary. 

Figure 4.21 shows the impact of obstacle existence on the formation development and 

covering an area. 

                      

                                        (a)                                                                                  (b) 

Figure 4.21 The distribution behaviour of the reverse Julia set fractal formation inside a rectangle area 

(a) Two obstacles, one which is nearby the entrance (b) Two obstacles, one which is far from the 

entrance. 
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Figure 4.21 shows that the impact of the nearby rectangle obstacle prevents the cyclone 

from expanding (Figure 4.21 (a)). While the rectangle obstacle located far from the 

entrance allows the cyclone shape to complete its development (Figure 4.21 (b)), 

increasing the swarm’s ability to cover more of the area. Like the line-based formation, 

the curve-based formation needs to adjust its formation to prevent obstacles. One 

approach to overcoming the obstruction issue is changing the Z value to convert to a 

suitable shape that develops a formation away from obstacles. Also, changing the 

current formation to line-based formation can aid the robotic swarm towards covering 

more parts inside an area. 

4.3.5 Case Study 5: Non-linear Area 

The last parameter that affects the development of a curve-based formation is the 

change of the internal shape of an area. Similar to the line-based formation, the same 

shapes shown in Figure 4.14 are considered to observe the effect of developing a 

cyclone shape on covering a non-linear area. Therefore, two experiments were 

conducted. The first experiment is meant to apply a cyclone shape to be developed 

inside a large-space shape, and the second experiment applies the development of a 

cyclone shape inside a narrow shape. The assumptions made for both experiments are 

as follow: The cyclone formation is generated using the reverse Julia set with Z value 

set to zero, and C value is set to 0.1+0.6i, which resembles the cyclone shape. The 

cyclone formation is to develop until it hits the surface of the non-linear area. Figure 

4.22 shows the effect of developing a cyclone shape at the entrance of a non-linear area 

for large and narrow spaces. 

   

                                       (a)                                                                                (b)  

Figure 4.22 The distribution behaviour of the reverse Julia set fractal formation inside non-linear areas 

(a) large space non-linear area (b) narrow space non-linear area. 
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The simulation results in Figure 4.22 show that the upper part of the cyclone shape is 

able to cover inside the non-linear area, while the lower part covers the outside area. As 

the cyclone formation grows slowly, having a complex area surface with non-linear 

boundaries did not affect the development process of the cyclone formation. However, 

with the centre of the entrance being the start location for the cyclone formation, the 

formation did not fulfil the task of covering an unknown area. Therefore, the cyclone 

formation is useful when it develops inside the unknown area to ensure all the formation 

parts cover the unknown area. 

Overall, the change in any parameter of a fractal formation can affect the distribution 

of a robotic swarm towards covering an unknown area. The effect can be in the amount 

of area covered and the number of robots needed to develop certain fractal formations. 

To summarise the results obtained from the case studies, the table below lists all the 

robotic simulation results obtained using both line and curve-based formations and 

compare them with a traditional exploration method called PRM. Table 4-1 shows that 

although most of the changed parameters did not reach the amount of area covered by 

PRM, all the fractal formations use 88% less number of robots to reach about 50% of 

the area covered by PRM. 

 

Table 4-1 Lists all the results obtained from the robotic simulation experiments when changing each 

parameter and compared them to PRM. 

Formation 

type 
PRM Tree Tree Tree Tree Tree Tree R. Julia 

Set 

R. Julia 

Set 

R. Julia 

Set 

 

Adjusted 

Parameters 

 

- 

N = 2 

d = 5m 

θ = 0° 

α = 30° 

N = 3 

d = 5m 

θ = 0° 

α = 30° 

N = 2 

d = 10m 

θ = 0° 

α = 30° 

N = 2  

d =2.5m 

θ = 0° 

α = 30° 

N = 2  

d = 5m 

θ = 45° 

α = 30° 

N = 2 

d = 5m 

θ = 0° 

α = 45° 

Z = 

0.4+0.4i 

C = 

0.1+0.6i 

Z = 

0.3+0.4i 

C = 

0.1+0.6i 

Z = 

0.2+0.6i 

C = 

0.1+0.6i 

No. of 

robots used 

(Max = 100) 

 

100 

 

7 

 

7 

 

4 

 

4 

 

4 

 

4 

 

4 

 

4 

 

4 

Percentage 

of used 

robots 

 

100% 

 

7% 

 

7% 

 

4% 

 

4% 

 

4% 

 

4% 

 

4% 

 

4% 

 

4% 

Covered 

area 

(total = 

785.1m2) 

 

283.095m2 

 

124.810m2 

 

121.340m2 

 

195.657m2 

 

37.766m2 

 

74.253m2 

 

86.177m2 

 

74.648m2 

 

69.514m2 

 

79.980m2 

Percentage 

of covered 

area 

 

36.1% 

 

15.8% 

 

15.5% 

 

24.9% 

 

4.8% 

 

9.5% 

 

10.9% 

 

9.5% 

 

8.9% 

 

10.2% 
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4.4 Optimisation of Fractal Formations’ Parameters 

Parameters of a fractal model are individually investigated but with a set of selected 

values, and these values may not show the highest area coverage when combined with 

the rest of the parameters. The previous section did not investigate the possible 

combination of the parameters as it requires an optimisation process. Therefore, this 

section presents an optimisation for parameters of a fractal model to obtain the 

maximum area coverage a fractal model can reach. 

 In this section, one line-based fractal model named the N-branch tree fractal formation 

is optimised using the gradient descent algorithm (Hooman Oroojeni, Majid Al-Rifaie 

and Nicolaou, 2018). Gradient descent is a first-order optimisation method that obtains 

the maximum cost value by adjusting the entered parameters to reach the best value 

compared to a default one. This section focuses on optimising linear parameters, such 

as in the tree fractal formation, while the non-linear parameters of the curve-based 

formation require further steps of selecting the cyclone shape that expands2 and 

converting the complex numbers to new parameters suitable for optimisation. These 

further steps are out of the scope of the research, and therefore, gradient descent is a 

convenient method to optimise the tree fractal formation. 

To simplify the optimisation process, the simplest form of tree formation is the 2-branch 

tree fractal model, which constrains the number of branches to N=2. Therefore, the 

parameters to be optimised are the separation angle (α), the branch distance (d), and the 

initial formation direction (θ). Each parameter is set to the maximum range to ensure 

that all the possible combinations are processed, and the maximum area coverage is 

obtained. The separation angle parameter is ranged from 10° to 90° with 10° step size, 

the branch distance is ranged from 1m to 9m with 1m step size, and the initial formation 

direction is ranged from -90° to 90° with a 20° step size. It is noted that the step-size is 

adjusted to allow all the parameters to have the same size-length for the optimisation to 

perform3. The selected environment to use is the Tabon Cave area mentioned in Figure 

 

2 For more details on the reverse Julia set’s cyclone shapes, please check Appendix A.2 on page 97 

3 A simplified code illustrating the process of optimising the parameters of the N-branch Tree fractal 

formation is shown in Appendix A.3 on page 100. 
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3.9 (a). The images in Figure 4.23 show the results obtained after implementing the 

optimisation method for the combined parameters. 

 

(a)                  (b)    

 

           (c)  

Figure 4.23 High-dimensional representation of the area covered by optimising the parameters of (α, d, 

θ) for (a) the first iteration (b) the second iteration, and (c) the third iteration with the maximum area 

coverage shown on the top-left side. 

For the first iteration, Figure 4.23 (a) shows a linear relationship between the parameters 

and the amount of area covered. However, the graph shows a degradation of the covered 

area when the separation angle is higher than 70°, and the branch length is higher than 

5m. The degradation is presented because the formation faces obstacles when a wide 

separation angle is tested. For the second iteration, Figure 4.23 (b) shows a bit more 

degradation in area coverage compared to the first iteration when the branch length is 

equal to or higher than 5m. The degradation happens due to having more developed 

branches, allowing the formation to cover different areas and facing more obstacles. 

Figure 4.23 (c) shows even more degradation in area coverage for the third iteration 
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compared to the previous two iterations. However, the gradian descent successfully 

obtained maximum area coverage in the third iteration with a value of 634.248m2. 

The conducted optimisation process shows that a tree fractal formation with parameter 

values of α = 10°, d = 9m, and θ = 0° can cover 80.1% of the total area and 44.6% more 

covered area compared to PRM. It is noted that by optimising the parameters of a fractal 

formation, a robotic swarm can obtain the maximum possible area to cover with a 

minimum number of robots needed. The optimisation of fractal parameters shows the 

benefit of using fractals as a swarm formation by having the best possible parameter 

values deployed to the available number of robots and maximising the coverage of a 

particular area. To observe the overall iterations of the optimised tree fractal formation, 

Figure 4.24 represents the combination of the tree fractal parameters and their related 

area covered as a circle shape distributed in a horizontal sheet representing the 

iterations. 

 

Figure 4.24 The overall representation of the optimised parameters for the first 3 iterations with the 

maximum area coverage detected at the top-left side. 

4.5 Summary 

This chapter presented an analysis of fractal classes by understanding the effect of 

adjusting parameters of a fractal formation toward covering an unknown area. Each 

fractal class contains a number of parameters that can partially change the fractal 

formation without affecting the development process. Each parameter is studied 

separately and simulated on a rectangle size area and an unknown area. All the 

experiment outcomes are compared to the PRM in terms of the number of robots used 
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and the amount of area covered on a fixed timeframe. In order to understand the effect 

of changing multiple parameters simultaneously, optimisation of a tree fractal 

formation is made by combining the parameters “separation angle (α), the branch 

distance (d), and the initial formation direction (θ)” to determine the maximum area 

coverage. 

It is noticed that some parameters, such as the number of branches N, or changing the 

value of constant C, can aid the robotic swarm in increasing the chance of covering an 

unknown area. In contrast, some non-linear parameters, such as having obstacles inside 

an area, prevent the robotic swarm from covering an unknown area. The robotic swarm 

can adjust a part of the fractal formation to allow the robots to develop more branches, 

increasing the possibility of discovering different areas without changing the current 

formation. Optimising the parameters of the tree fractal model provides a substantial 

chance of obtaining the maximum area coverage by adjusting these parameters together 

and determining the best combination of the parameters leading to the highest area 

coverage a tree fractal model can get. 

Unlike the transformation from one formation to another, which requires decomposing 

and composing shapes, a robotic swarm is not required to go through these stages to 

change a specific formation as fractal formations are adjustable. Observing the change 

in a particular fractal parameter reveals that a robotic swarm can better cover certain 

areas where changes in fractal parameters are required. Therefore, the robotic swarm 

can choose which parameter to change to prevent obstruction and increase the ability 

to cover areas. The common effect in the swarm formation is reducing the number of 

robots used compared to the PRM exploration method, where PRM uses a higher 

number of robots to cover as much area as a fractal formation, but with 88% fewer 

number of robots. 
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 

This thesis presents an implementation of four fractal formations by a robotic swarm to 

explore and cover an unknown area. These fractals are classified, modelled, and verified 

to be used as a robotic swarm formation. The effect of changing a fractal parameter on 

SR when covering an unknown area shows an increase in the area coverage changing 

some parameters, such as branch length, and an obstruction avoidance when changing 

other parameters, such as the separation angle. 

Overall, the work presented in this thesis shows that a contribution is made to the SR 

field by introducing fractals as a swarm formation approach. Fractals show the balance 

of using a particular number of robots when developing to a certain iteration. SR shows 

the ability to explore an unknown area using fractal formations with about 88% less use 

of robots and 3 to 10 times more efficiency than PRM, according to, when changing 

the parameters, giving the SR the flexibility to extend the exploration of an unknown 

area. 

As fractal formations have advantages when used by SR to explore an unknown area, 

there also shows limitations with regards to facing obstruction and overlapping. 

Changing the parameters of a fractal formation can help the swarm to overcome 

obstacles, however, some of these parameters, such as the Z value, are not effective for 

certain fractal formations. One presented fractal, tree formation, shows overlaps 

between its branches when developing. This overlap is addressed by adding an overlap 

formula detecting and removing these overlapping branches. Still, the current 

development structure of the tree formation can be improved in future work. 

In conclusion, it is confirmed that a swarm of robots can use fractals as a swarm 

formation to explore an unknown area. The research question “What are the 

advantages/disadvantages of using different fractal swarm formations to explore and 

cover unknown areas?” is answered by presenting both the advantages and 

disadvantages. Consequently, a number of suggested future work is presented in the 

next section. 
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5.2 Future Work 

A number of suggested future work are described as follow: explore more fractals to 

improve the structure of the current fractal formations and obtain new advantages and 

parameters, and also, develop a decision-making process for a robotic swarm to decide 

which fractal to use. 

As the tree fractal formation shows overlap in its branch, future work should consider 

looking at a similar structure to tree fractals whose branches do not overlap with each 

other. An example of such a plant is a fern, whose branches do not overlap and show 

the fractal properties of self-similarity and recursiveness. A fern fractal formation will 

overcome the overlap issue and may provide new parameters helping the SR cover more 

areas. 

While a large number of fractals exist, future work should consider the exploration of 

new fractals for implementation by SR. This implementation will present new fractal 

classifications and discover new parameters. Examples of fractals to explore are: 

Sierpinski triangle, Koch curve, Apollonian gasket, etc (Bandt, Mörters and Zähle, 

2009). Other natural fractals such as crystals, lightning bolts, clouds, etc. can also be 

considered and may need a growth rule to be implemented by SR. 

Selecting a suitable fractal formation to explore an unknown area requires swarm 

detection, and therefore, future work should consider creating a decision-making 

process for a robotic swarm. This decision-making process would allow the swarm to 

make a cooperative decision and ensure that the selected fractal formation and the 

changing parameter effectively cover the unknown area. Building an independent 

decision-making process, particularly for fractal formations, allows for adding more 

fractals/parameters to be used by SR.  
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Appendix A 

A.1 MATLAB and V-REP Coding for fractal construction and implementation. 

Below is a simplified code illustrating the process of developing the N-branch Tree 

fractal formation. 

img = imread('The image of the area to be explored'); 

map = im2bw(img,0.5);     // convert to binary image 

imshow(map)               // prepare the map for exploration 

x-axis =                  // set x-axis as a start point in the map 

y-axis =                  // set y-axis as a start point in the map 

theta =                   // set the initial direction formation 

distance=                 // set the robot’s travel distance 

i =                        // counter to count the number of iterations 

a = b =                   // output locations to be used by the swarm 

 axis(gca,'equal') 

   [a,b,i] = rotate(x-axis,y-axis,theta,distance,map,0,0,1); 

 

function [a,b,i] = rotate(x1,y1,th,dis,map1,a,b,i) 

## this section is related to placing obstacles in case of having a 

rectangle area ## 

viscircles([300 60],20); 

## Circle obs. 

rectangle('Position',[184,60,50,40],'FaceColor',[0 0 .5]);     

##center obs. 

rectangle('Position',[144,30,30,40],'FaceColor',[0 0 .5]);        

##side obs 1 

rectangle('Position',[240,20,60,50],'FaceColor',[0 0 0]);          

##side obs 2 

## End of obstacle section ## 

 

## This section sets the limit of the image ## 

if y2 >= y-max-area 

   y2= y-max area; 

endif 

 

if y2 <= y-min-area 

   y2 = y-min-area; 

endif 

 

if x2 >= x-max area 

   x2= x-max area; 

endif 

 

if x2 <= x-min area 

   x2 = x-min area; 

endif 

## End of limit section ## 
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## This section shows the development of the tree fractal formation## 

x2=x1+cosd(th)*(dis+70); 

 y2=y1+sind(th)*(dis+70); 

 a(i)=x1; b(i)=y1; a(i+1)=x2; b(i+1)=y2; i+=2; 

## End of development section ## 

 

## This section ensures the location is collected and not set out of 

the range of the map ## 

if dis~=0 

     xa=round(x1); ya=round(y1); 

     xb=round(x2); yb=round(y2); 

     val1 = map1(ya,xa); 

     val2 = map1(yb,xb); 

      

als=sqrt(power(a[32]-a[22],2)+power(b[32]-b[22],2)); ##(need arrays 

to store data) 

 

     if val1 == 0 || val2 == 0 

         children = get(gca, 'children'); 

         delete(children(1)); 

          x2=x1; y2=y1; 

     endif 

  

line([x1 x2],[y1 y2],'Color','b', 'LineWidth',3)  // The path line for 

the robots to follow 

 

## End of obstacle section ## 

 

## This section the recurring process for N number of iterations ## 

    

     [a,b,i] = rotate(x2,y2,th+60,dis-1,map1,a,b,i); 

     [a,b,i] = rotate(x2,y2,th+30,dis-1,map1,a,b,i); 

     [a,b,i] = rotate(x2,y2,th,dis-1,map1,a,b,i); 

     [a,b,i] = rotate(x2,y2,th-30,dis-1,map1,a,b,i); 

     [a,b,i] = rotate(x2,y2,th-60,dis-1,map1,a,b,i); 

     pause(0.1); 

endif 

endfunction 

## End of the function ## 

The below simplified function illustrates the process of developing the Vicsek fractal 

formation. 

function [a,b,c] = Iter(a,b,c) 

x=[]; y=[]; 

z1=[0 0 0 0]; z2=[0 0 0 0]; 

th = 0; 

for n = 1:1:4 

x(n)=(a*cosd(th))+b; 

y(n)=(a*sind(th))+c; 

line([b x(n)],[c y(n)],'LineWidth',3,'Color','blue') 

th=th+90; 
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end 

 end 

Below is a simplified function illustrating the process of developing both Julia set and 

reverse Julia set fractal formation. 

zx(1)=0; 

ax(1)=real(zx(1)); ax(1)=(ax(1)*1510)+15; 

bx(1)=imag(zx(1)); bx(1)=(bx(1)*1510)-640; 

 

c=complex(0.1,0.6); 

 

 

for i=1:1:N 

   zx(i+1)=sqrt(zx(i)-c);    // Reverse Julia set 

   zx(i+1)=(zx(i))^2+c;      // Julia set 

    endif 

     

ax(i+1)=real(zx(i+1)); ax(i+1)=(ax(i+1)*1510)+15; 

bx(i+1)=imag(zx(i+1)); bx(i+1)=(bx(i+1)*1510)-640; 

 

end 

for i=1:1:N 

    pause(0.001); 

     line([ax(i) ax(i+1)],[bx(i) 

bx(i+1)],'LineWidth',2,'Color','blue') 

     hold on 

end 

Below is a simplified function illustrating the process of transmitting location points 

from MATLAB to V-REP for the robots. 

vrep=remApi('remoteApi'); 

vrep.simxFinish(-1); 

 

clientID=vrep.simxStart('127.0.0.1',19999,true,true,5000,5); 

 

if (clientID>-1) 

        disp('Connected'); 

        % set for devoloping a fractal formation 

for i=1:1:N                              // N is the number of robots 

[returnCode,copN]=vrep.simxGetObjectHandle(clientID 

,'Quadricopter_target' ,vrep.simx_opmode_blocking);      

        x(1:3)=[x, y, hight]; 

        [returnCode]=vrep.simxSetObjectPosition(clientID,copN ,-1 ,x 

,vrep.simx_opmode_oneshot_wait); 

pause(3); 

end   

vrep.delete(); 

test1; 
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A.2 All the 49 sets of the output shapes when changing the Z value for the reverse 

Julia set. 
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A.3 The optimisation process for N-Branch tree fractal formations’ parameters. 

Below is a simplified code illustrating the process of optimising the parameters of the 

N-branch Tree fractal formation. 

img = imread('TabonCaveImp.PNG'); 

map = im2bw(img,0.5); 

imshow(map) 

 

m=9; 

itration=linspace(1,3,3); 

alpha=linspace(10,90,m); 

distance=linspace(1,9,m); 

[X,Y,Z] = meshgrid(alpha,itration,distance); 

x = X(:); 

y = Y(:); 

z = Z(:); 

for itr = 1:length(itration) 

    for al=1:length(alpha) 

        for dist=1:length(distance) 

            x0 = [X(itr,al,dist),Y(itr,al,dist),Z(itr,al,dist)]; 

[a,b,i,N]=rotate(106,250,0,itration(itr)+1,distance(dist),alpha(al),m

ap,0,0,1,0); 

%area(itr,al,dist)=((distance(dist)*4)+(0.5*pi*(2)^2))+((distance(dis

t)*4)+(0.5*pi*(2)^2))*(itration(itr)*(itration(itr)-1)); 

area(itr,al,dist) = ((distance(dist)*4)+(0.5*pi*(2)^2))*(N); 

        end 

    end 

end 

figure(2);clf(2) 

pp=scatter3(x,y,z,50,area(:),'filled'); 

colorbar;colormap('jet'); 

xx = squeeze(X(1,:,:)); 

%yy = squeeze(Y(1,:,:)); 

zz = squeeze(Z(1,:,:)); 

area1 = squeeze(area(1,:,:)); 

figure(3);clf(3) 

surf(xx,zz,area1) 

colorbar;colormap('jet'); 


