

Distributed Intelligent Systems for a
Swarm of Robots

Hazem Mohamed Fawzy Zakaria Eissa

A thesis submitted in partial fulfilment of the
Requirements of the University of Greenwich for the Degree of

Doctor of Philosophy

DECEMBER 2021

I

DECLARATION

I certify that the work contained in this thesis, or any part of it, has not been accepted

in substance for any previous degree awarded to me or any other person, and is not

concurrently being submitted for any other degree other than that of Doctor of

Philosophy which has been studied at the University of Greenwich, London, UK.

I also declare that the work contained in this thesis is the result of my own

investigations, except where otherwise identified and acknowledged by references. I

further declare that no aspects of the contents of this thesis are the outcome of any form

of research misconduct.

I declare any personal, sensitive or confidential information/data has been removed or

participants have been anonymised. I further declare that where any questionnaires,

survey answers or other qualitative responses of participants are recorded/included in

the appendices, all personal information has been removed or anonymised. Where

University forms (such as those from the Research Ethics Committee) have been

included in appendices, all handwritten/scanned signatures have been removed.

……Hazem Mohamed Fawzy Zakaria Eissa……. Date ……02/12/2021……

(Student)

……...…… Dr. Wim J. C. Melis ……………… Date ………02/12/2021………

(First Supervisor)

II

Abstract

Area exploration is a task where a robot tries to gain information about an unknown

environment. Exploring an unknown area is a challenging task for a group of robots as

no pre-made map exists, leading to setting a suitable swarm formation compatible with

the area to be explored. Having a suitable swarm formation allows the swarm to

preserve the overall exploration time, by distributing sub-tasks for each robot, and

collecting relevant data. Current swarm formations such as biologically inspired

formations or Probabilistic RoadMap (PRM) tend to have a fixed shape, where robots

are positioned in a fixed location point within the swarm, preventing the swarm from

adjusting its formation to adapt to the unknown area, thus, are not suitable to explore

unknown areas. One needs a more flexible formation, where each robot can change its

position within the swarm. Consequently, this research aims to build a distributed

robotic swarm formation using fractals.

Fractals have the properties of self-similarity, allowing for an equal distribution of the

robots, and recursiveness, allowing for a gradual expansion of a swarm formation.

Utilising the properties of fractals allow for a robotic swarm to develop a fractal as a

swarm formation. Additionally, changing the parameters of each fractal formation, such

as a number of branches, will provide the swarm with the flexibility to adjust the fractal

formation and to continue exploring an unknown area. In order to determine both

advantages and disadvantages of using fractals as a swarm formation, the first step is to

classify each selected fractal into either a line or curve-based formation class to

distinguish the similarities and differences in each fractal’s behaviour. The second step

is to implement the growth rule of each fractal formation using robots to explore an

unknown area. The last step is to study the effect of changing the parameters of the of

implemented fractal formations toward exploring unknown areas.

The research’s outcome shows that using fractals as a swarm formation achieved near

the amount of area covered by a traditional exploration method, such as PRM, with

88% less use of robots. Furthermore, fractal formations balances between the number

of robots used, and the amount of area covered as each fractal uses only the robots

needed to develop specific iterations. The effect of changing the parameters of a fractal

formation increases the chance of covering more areas.

III

Acknowledgement

I would like to express my deep appreciation to my ultimate supervisors Dr Wim J. C.

Melis, Mrs Radi Dontcheva, and Prof. David Wray for their patience and their guidance

throughout the research in tough times, to all my lecturers, family, and friends for their

endless support that makes me reach to the point where I can present my work to the

audience.

Nevertheless, I would like to express my gratitude to the University of Greenwich for

providing me with the necessary facilities and support to present this research work to

the world. Also, I would like to express my gratitude to MSA University for their

financial support in making this project happen.

IV

Table of Contents

Chapter 1: Introduction .. 1

1.1 Swarm Robotics for Exploring Unknown Areas ... 1

1.2 Research Motivation .. 2

1.3 Original Contribution to the Knowledge ... 3

1.4 Research Overview .. 4

Chapter 2: Review of Literature .. 6

2.1 Exploring Unknown Areas .. 6

2.1.1 Grid Patterns for Covering Unknown Areas 7

2.1.2 Path Planning for Object Searching ... 9

2.1.3 Multi-Agent Systems ... 11

2.2 Swarm Robotics Formations .. 13

2.2.1 Swarm Formation Approaches .. 13

2.2.2 Transformation Models .. 18

2.3 Fractals for Swarm Formations .. 19

2.3.1 Fractal Classification ... 20

2.4 Research Gap ... 21

Chapter 3: The Mathematical Modelling of Fractals for a Swarm of Robots 23

3.1 Fractal Classes ... 23

3.2 Line-Based Fractals ... 26

3.2.1 N-Branch Tree Fractal Formation .. 26

3.2.2 Vicsek Fractal Formation ... 35

3.3 Curve-Based Fractals ... 40

3.3.1 Julia Set Fractal Formation .. 40

3.3.2 Reverse Julia Set Fractal Formation .. 43

3.4 Summary .. 48

Chapter 4: Studying the Parameters of Fractal Formations for Covering

Unknown Areas ... 50

V

4.1 Analysis of an Unknown Area ... 51

4.2 Line-Based Fractal Formation ... 53

4.2.1 Case Study 1: Number of Branches (N) .. 54

4.2.2 Case Study 2: Branch Length (d) ... 56

4.2.3 Case Study 3: Initial Formation Direction (θ) 59

4.2.4 Case Study 4: Separation angle Between Branches (α) 61

4.2.5 Case Study 5: Multiple Entrances .. 64

4.2.6 Case Study 6: Obstacle Existence .. 66

4.2.7 Case Study 7: Non-linear Area .. 68

4.3 Curve-Based Fractal Formation ... 70

4.3.1 Case Study 1: Changing the Z Value ... 70

4.3.2 Case Study 2: Changing the C Value ... 73

4.3.3 Case Study 3: Multiple Entrances .. 75

4.3.4 Case Study 4: Obstacle Existence .. 76

4.3.5 Case Study 5: Non-linear Area .. 77

4.4 Optimisation of Fractal Formations’ Parameters 79

4.5 Summary .. 81

Chapter 5: Conclusion and Future Work .. 83

5.1 Conclusion ... 83

5.2 Future Work ... 84

References .. 85

Appendix A ... 94

A.1. MATLAB and V-REP Coding for fractal construction and

implementation ... 94

A.2. Simulation Results When changing the Z value ... 97

A.3. The optimisation process for N-Branch tree fractal formations’

parameters .. 100

VI

List of Acronyms

ACO Ant Colony Optimisation

AI Artificial Intelligence

d Branch Distance

FBA Frontier-Based Approach

GNT Gap-Navigation Tree

IE Integrated Exploration

LRTA Learning Real-Time A

MAS Multi-Agent Systems

MRS Multi-Robot Systems

N Number of Branches

PRM Probabilistic RoadMap

RRT Rapidly-Random Tree

PSO Particle Swarm Optimisation

SI Swarm Intelligence

SR Swarm Robotics

UAV Unmanned Aerial Vehicles

V-REP Virtual Robotic Experimentation Platform

θ Initial formation Direction

α Separation Angle

VII

List of Figures

Figure 2.1 The coverage of the area’s frontier using (a) FBA, where the black dots

represent the edge segments of the area’s boundary (b) Evidence grid, where frontier

edge segment is detected. It is noticed in both methods that a robot could not ultimately

discover the frontier of an area due to facing obstacles ... 8

Figure 2.2. A simulation example of a path planning algorithm showing the possible

path for a robot from the start point A to endpoint B. ... 10

Figure 2.3 The designed formation of the V-flocking birds used to cover a specific area.

Each unit (robot) is separated by distance d and with a separation angle of a 14

Figure 2.4 A group of robots using self-organisation to form a pattern of the letter (E)

.. 17

Figure 2.5 Common fractal shapes (from left to right): Sierpinski triangle, Koch

snowflake, water vortex, and 2-branch tree ... 20

Figure 3.1 (a) A skeleton of a tree fractal (b) A structure of a snowflake which the

Vicsek fractal is inspired from ... 25

Figure 3.2 One set of Julia fractal sets resembles different cyclone shapes 25

Figure 3.3 Structure of the first iteration of a 3-branch tree fractal formation 27

Figure 3.4 The growth rule of a 3-branch tree formation: (a) first iteration, (b) second

iteration with overlaps (red circles), (c) and third iteration with increased overlaps (red

and blue circles) .. 29

Figure 3.5 A swarm of quadcopters mimics a 3-branch tree fractal formation. The left-

hand image shows the first robot moving to the assigned location. The right-hand side

image shows the follow-up progress of each robot sent by V-REP to MATLAB 31

Figure 3.6 A complete first iteration of a 3-branch tree fractal formation with a

separation angle of 45° made by a swarm of 3 quadcopters (circled in red) is shown in

VIII

the left-hand side image. Alongside the follow-up progress of each robot sent by V-

REP to MATLAB shown in the right-hand side image ... 31

Figure 3.7 A complete second iteration of the 3-branch tree fractal formation with a

separation angle of 45° made by a swarm of 7 quadcopters (circled in red) is shown in

the right-hand side image. Alongside the follow-up progress of each robot sent by V-

REP to MATLAB shown on the right-hand side image .. 32

Figure 3.8 (a) represents a robot (green circled size) moving with a distance of d and

scanning the unknown area using a distance sensor with a maximum distance of S (b)

An overlap occurred when neighbouring robots rescanned part of an area scanned by

another robot, resulting in four shapes: one square shape (named OL23), one half circle

shape (named OL123), and a set of triangle shapes (named OL12 and OL13) 33

Figure 3.9 The distribution of a robotic swarm using PRM in an unknown area 34

Figure 3.10 The distribution of a robotic swarm using a 2-branch tree formation in an

unknown area ... 34

Figure 3.11 Structure of the first iteration of the Vicsek fractal formation. The initial

Vicsek structure (highlighted in red square) has four patterns (highlighted in a blue

square) on each cardinal direction ... 36

Figure 3.12 The growth rule of the Vicsek fractal formation: (a) initial structure, (b)

First iteration, (c) Second iteration .. 37

Figure 3.13 A swarm of quadcopters mimics the Vicsek fractal formation. The left-

hand image shows four robots moving to their assigned location. The right-hand side

image shows the follow-up progress of each robot sent by V-REP to MATLAB 38

Figure 3.14 The swarm has reached their initial location points preparing to develop the

first iteration of the Vicsek fractal formation ... 39

Figure 3.15 A complete first iteration of the Vicsek fractal formation 39

Figure 3.16 The distribution of a robotic swarm using Vicsek fractal formation on an

unknown area .. 40

IX

Figure 3.17: A cyclone shape generated using the Julia set formula (a) first iteration

that shows the first 7 location points, and an 8th location point near to the first location

point (b) A cyclone shape generated by 28 iterations of Julia set (c) A cyclone shape

generated by 57 iterations (d) A cyclone shape generated by 85 iterations 42

Figure 3.18 The cyclone shape generated using the reverse Julia set formula (a) Cyclone

shape after 8 iterations (b) Cyclone shape after 15 iterations (c) Cyclone shape after 20

iterations. (d) Cyclone shape after 30 iterations .. 45

Figure 3.19 A robotic swarm mimicking the first iteration of a cyclone shape generated

by the reverse Julia set, where each robot travelled to the assigned location point,

preparing to travel to the next location point ... 46

Figure 3.20 A swarm of robots completed its first iteration of a cyclone shape using the

reverse Julia set formula ... 46

Figure 3.21 The distribution of a robotic swarm using reverse Julia set fractal formation

on an unknown area .. 47

Figure 4.1 A swan image is identified using the recognition of regions (head, body, and

tail) .. 52

Figure 4.2 Decomposing a complex shape (left side) into a number of triangle shapes

(right side) using the division analysis method.. 53

Figure 4.3 The proposed geometric shape which will be used as an area to be explored

.. 53

Figure 4.4 The distribution behaviour of N-branch tree fractal formation inside a

rectangular shape for (a) two (b) three (c) four (d) five branches 55

Figure 4.5 The robotic swarm distribution of N-branch tree fractal formation inside the

Tabon Cave for (a) three branches (b) four branches .. 56

Figure 4.6 The distribution behaviour of 2-branch tree fractal formation inside a

rectangular shape for (a) short length branches (b) long length branches (c) different

X

lengths of branches (formation grows to the right-side) (d) different lengths of branches

(formation grows to the left-side) ... 57

Figure 4.7 The robotic swarm distribution of 2-branch tree fractal formation inside the

Tabon Cave for (a) short length branches (b) long length branches 58

Figure 4.8 The distribution behaviour of 2-branch tree fractal formation with different

initial formation directions inside a rectangular shape for (a) 30° (b) 60° (c) 120° (d)

150° .. 60

Figure 4.9 The robotic swarm distribution of 2-branch tree fractal formation inside the

Tabon Cave with a start point in the middle of the entrance, and for an initial formation

direction of 45° .. 61

Figure 4.10 The distribution behaviour of 2-branch tree fractal formation with different

separation angles of (a) 10° (b) 45° (c) 90° (d) 135° ... 62

Figure 4.11 The robotic swarm distribution of 2-branch tree fractal formation inside the

Tabon Cave with a separation angle of 45° ... 63

Figure 4.12 The distribution behaviour of 2-branch tree fractal formation which applies

on (a) all the existing entrances (b) the entrance of the long side (c) the entrance of the

width side (d) the entrance at the corner side .. 65

Figure 4.13 The distribution behaviour of 2-branch tree fractal formation inside a

rectangular shape which contains obstacles (a) far from the entrance (b) nearby the

entrance (c) same size obstacles (d) different size obstacles (e) different shapes of

obstacles ... 67

Figure 4.14 Two random-dimension shapes to be covered by a line-based fractal

formation (a) first random shape (b) second random shape .. 68

Figure 4.15 The distribution behaviour of 2-branch tree fractal formation inside a

random-dimension shape (a) first random shape (b) second random shape 69

XI

Figure 4.16 The distribution behaviour of the reverse Julia set fractal formation when

changing the Z values (a) Shapes which resemble a cyclone the closest (b) Shapes which

are far from resembling a cyclone shape ... 71

Figure 4.17 The distribution behaviour of different cyclone shapes of the reverse Julia

set fractal formation inside a rectangle area (a) when Z = 0.3+0.4i (b) when Z =

0.2+0.6i (c) when Z = 0.4+0.4i .. 72

Figure 4.18 The robotic swarm distribution of different cyclone shapes of the reverse

Julia set fractal formation inside the Tabon cave (a) when Z = 0.3+0.4i (b) when Z =

0.2+0.6i (c) when Z = 0.4+0.4i .. 73

Figure 4.19 The distribution behaviour of the reverse Julia set fractal formation when

changing the C value (a) changing the real part of the C value (b) changing the

imaginary part of the C value .. 74

Figure 4.20 The distribution behaviour of the reverse Julia Set fractal formation inside

a rectangle area (a) Using one entrance (b) Using all the available entrances (c) Using

two entrances, one which located at the corner of the rectangular shape 75

Figure 4.21 The distribution behaviour of the reverse Julia Set fractal formation inside

a rectangle area (a) Two obstacles, one which is nearby the entrance (b) Two obstacles,

one which is far from the entrance ... 76

Figure 4.22 The distribution behaviour of the reverse Julia Set fractal formation inside

non-linear areas (a) large space non-linear area (b) narrow space non-linear area...... 77

Figure 4.23 High-dimensional representation of the area covered by optimising the

parameters of (α, d, θ) for (a) the first iteration (b) the second iteration, and (c) the third

iteration with the maximum area coverage shown on the top-left side. 80

Figure 4.24 The overall representation of the optimised parameters for the first 3

iterations with the maximum area coverage detected at the top-left side 81

1

Chapter 1: Introduction

1.1 Swarm Robotics for Exploring Unknown Areas

Swarm Robotics (SR) is the study of cooperative behaviour within a group of robots.

The research effort on SR began in the late-20th century, where studies showed that a

group of cooperating robots can perform complex tasks more efficiently than a single

robot (Cabrera-Mora and Xiao, 2012). Mainly, SR helps human beings handle heavy

tasks in industries, and safeguards humans from taking unnecessary risks in rescuing

operations. This research aims to prevent people from getting into hazardous situations

where human life is at risk, such as being trapped inside an unknown cave.

To improve the functionality of a swarm when performing complex tasks, SR is

currently being integrated with Artificial Intelligence (AI). AI gives SR the ability to

use a decision-making process as part of Swarm Intelligence (SI). The decision-making

process is mainly based on centralised SR because they are easier to build (Schranz et

al., 2020). However, centralised SR provides limited swarm flexibility as each robot is

positioned in a fixed location point within the swarm formation, and burdens the

communication between a master and slaves, resulting in communication overheads.

Therefore, this research uses distributed SR to allow the swarm to efficiently distribute

sub-tasks for each robot to explore an unknown area.

Changing SR formation from centralised control to distributed control is the key to

studying different SR formations and identifying which swarm formation is suitable to

explore unknown areas. At the beginning of an exploration task, it is difficult for a

swarm to determine a suitable formation because no information is available about the

area. The determination issue leads the swarm to set a fixed swarm formation, perform

the exploration task, and broadcast the gathered data to each robot. This approach

suffers from limited swarm flexibility as each robot perverse its location within the

formation. Therefore, current research reviewed different swarm formations to

understand the concept of structuring each swarm formation and their behaviour while

exploring areas (Dorigo, Theraulaz and Trianni, 2021). Until swarm formations are

sufficiently developed for exploring an unknown area, the better option is to use a

human operator (Koch, Manuylov and Smolka, 2021).

2

While there has been some research work related to swarm transformation models, this

research proposes using fractals as a framework for swarm formations, changing the

current swarm formation during the exploration task to adapt to an unknown area's

structure. The benefit of using fractals lies in their properties, such as self-similarity

and recursiveness, which gives the swarm the ability to repeatedly expand a fractal

formation until the formation fits the structure of its surrounding area. By using these

properties to explore unknown areas, a robotic swarm would restructure the swarm

formation, thus, allowing the swarm to quickly and efficiently achieve the task of

exploring and covering an unknown area. Therefore, the following research question is

raised: What are the advantages/disadvantages of using different fractal swarm

formations to explore and cover unknown areas? It is expected that using fractal

properties will help the robotic swarm improve its functionality by having a flexible

swarm formation.

1.2 Research Motivation

Area exploration has been investigated in different research areas, including geological

analysis (Roy, Maitra and Bhattacharya, 2021), searching for a treasure (Pang et al.,

2021), and rescue missions (Cardona and Calderon, 2019). The latter one is critically

important as it relates to human lives and having an effective exploring strategy is

essential to reach and save the lives of human beings. An example of a rescue mission

is seen in a recent accident in 2018, where twelve associate football members, alongside

their team manager, were trapped inside the Tham Luang Cave in the Philippines due

to a heavy rainfall flooding the cave entrance. This flood resulted in a significant change

in the cave’s structure, in which the current map of the cave was not helpful, and an

alternative option was to depend on the geophysical exploration technique (Vichalai,

2019; Ahmed et al., 2021). Although all the members were rescued, it came with the

cost of losing a rescue officer. Therefore, using a flexible formation by a robotic swarm

to safeguard humans from taking unnecessary risks is one factor that drives the

motivation to develop fractal formations to adapt to the change of the unknown

environment.

While exploring an unknown area is a challenging task for a robotic swarm due to the

difficulty to select a suitable formation, the same challenge applies to finding an object

on a borderless area. Exploring a borderless area requires a suitable formation that

3

optimises resources, such as the number of robots, and time as the area has no boundary.

An example of exploring a borderless area is seen in another recent accident where a

scheduled flight air Malaysia 370 (MH370) was missing from the air traffic controller

reader and disappeared in the Indian Ocean, leaving an area size of more than 70 million

kilometres square to be explored (Ashton et al., 2015). The only searching strategy

applied at the time was to divide the area size into small grids, each to be extensively

covered by a group of scanned planes, ships, and submarines (le Hardy and Moore,

2014). The search strategy exhausted much of the resources needed, and at the time of

writing this chapter, there was no success in finding the location of the missing

aeroplane, and the search stopped. Having a fractal formation that utilises the needed

resources, and efficiently distributes the robotic swarm to cover a large area is another

factor that drives the motivation to investigate the properties of fractals and uses these

properties for building a flexible formation.

The last and the most important reason for the research undertaken lies in understanding

how to use fractals as a swarm formation (Eissa et al., 2018). Fractals have been applied

in a minimal number of engineering applications, such as antennas (Anguera et al.,

2020) and constructions (Wang and Tang, 2021). However, fractals typically have not

been used in robotic’s exploration applications, which leaves a gap in the swarm

robotics field, raising the question of the benefit of using fractals in robotic exploration

tasks. Therefore, the research motivation is to fill this gap by answering the research

question.

1.3 Original Contribution to the Knowledge

Because fractals have not been used as a robotic swarm, the contribution in this research

lies in understanding the behaviour of fractals to be developed as a swarm formation.

The contribution can be achieved by analysing the structure and development process

of certain fractals, developing mathematical formulas describing the growth rule of a

certain fractal, and discussing the advantages and disadvantages of using a particular

fractal formation to explore unknown areas. The main contribution of this research is

to add fractal formations as a new swarm formation method. With the potential to

implement fractals as a swarm formation, it is possible to enhance the robotics field

with fractals as a new research theme.

4

1.4 Research Overview

This research aims to build a distributed robotic swarm to explore an unknown area

using fractals as a swarm formation. Achieving the main aim of this research requires

completing the following tasks:

1- Understand the concept of growing a fractal by classifying different types of

fractals into different classes according to their similar features. The

classification will allow for the creation of similar mathematical formulas for

each fractal within the same class.

2- Derive a suitable mathematical formula that allows a robotic swarm to form a

particular fractal formation and explore an unknown area. This objective can be

achieved by creating formulas for each fractal class. For a particular fractal

class, named line-based fractals, one formula sets the number of robots needed

to create a fractal formation, and the other formula directs each robot's

movement while developing a fractal formation. For another fractal class,

named curve-based fractals, one formula that describes the robot’s location is

needed.

3- Analyse the effect of changing each fractal parameter, individually and in

combination, while exploring an unknown area. The purpose of changing a

fractal parameter is to adjust the current formation to avoid obstructions and,

subsequently, continue the exploration process of the unknown area. This

analysis allows the robotic swarm to decide which fractal parameter will be the

best candidate for value change when facing an obstruction.

Each objective is examined using a robotic simulation to resemble fractal formations,

explore an unknown area, and evaluate the area explored for each fractal formation

used.

This thesis comprises the following chapters. Chapter 2 is a literature review that

discusses various conventional exploration methods in the robotics field, current swarm

formations, and fractals for SR. Chapter 3 focuses on implementing different fractal

formation types on a robotic swarm using a developed growth rule formula to explore

an unknown area. Chapter 4 investigates the effect of changing different fractal

parameters and the effect the changes have on the distribution of the robotic swarm

5

while exploring an unknown area, and presents an optimisation process for a particular

fractal model to obtain the maximum area coverage. Based on the analysis made in

Chapters 3 and 4, Chapter 5 answers the research question and sub-questions, which

shows both the advantages and disadvantages of using fractals as a swarm formation

for exploring an unknown area. Additionally, a future work section is included

describing the potential of analysing some more fractals as a swarm formation, and

suggesting possible approaches to use a decision-making process to address more

formation issues, such as overlapping between fractals’ branches and facing

obstructions.

6

Chapter 2: Review of Literature

Multi-Robot Systems (MRS) is a broad research area that focuses on the interactions

within a group of robots concerning communication, control, and organisation. Swarm

Robotics (SR) forms a sub-field of MRS that studies the coordination of a group of

robots while performing numerous tasks such as moving specific objects. One exciting

application for SR is area exploration, which includes tasks such as: searching for

objects/treasures (Ismail and Hamami, 2021), navigation for rescue missions (Faria

Dias et al., 2021), and mapping (Roy, Maitra and Bhattacharya, 2021). SR needs a

designated exploration method for each task, which requires certain information about

an explored area, such as the area’s size and boundaries. Without this information,

exploration methods may not function, which is a challenge for SR.

An alternative solution for a swarm of robots to explore an area is to rely on other

factors such as a number of robots and a swarm formation type to explore unknown

areas. However, using a particular swarm formation may not be adequate to explore an

unknown area due to the inability to adjust selected swarm formations, leading to a

fixed formation design. Therefore, it is essential to study different robotic swarm

approaches used to explore unknown areas.

Understanding different types of exploration methods and different types of swarm

formations required classifying them into research themes. Therefore, this chapter

reviews unknown areas’ exploration techniques used by a swarm of robots as a first

research theme. Various swarm formation approaches used in area exploration tasks are

investigated as a second research theme. Finally, the possibility of using fractals as a

swarm formation towards exploring an unknown area is discussed as a third research

theme.

2.1 Exploring Unknown Areas

Exploring an unknown area is challenging as the swarm seeks to gather as much

information as possible about the area to facilitate the robot’s mission. As swarm’s

challenge is to explore the known environment using suitable traditional exploration

methods, such as sweeping and scanning, researchers have attempted to improve these

traditional exploration methods to function in an unknown environment.

7

Exploration applications can be grouped into two categories: area covering and object

searching. Depending on the size and shape of an area, alongside the swarm formation

type, covering an area would facilitate the robots’ task towards targeting and finding a

specific object inside the unknown area. Therefore, the area covering techniques will

be the focus of this research.

The following sections review conventional exploration methods, including grid

patterns, path planning, and a modern exploration method using multi-agent systems.

2.1.1 Grid Patterns for Covering Unknown Areas

The idea behind the grid pattern approach is to divide an area into smaller sections

called cells. Each cell is explored using either a single or multiple robots depending on

the task requirements, e.g. finding a treasure or surveillance. For example, using this

principle, each robot would be required to update a map of a specific area by occupying

and covering assigned cells using proximity sensors (Stachniss and Burgard, 2003a).

An important application using this mechanism is where a robot scan selected cells to

guard a specific area against intruders (Ahmadi and Stone, 2006).

However, for exploring unknown areas, the grid method might be inadequate to use by

a robot because the area’s information, such as size and boundary, is unavailable. This

information is vitally important for the grid method to determine the number of cells

and the size of each cell. Hence, the grid pattern method was improved by adding

supporting methods that gain as much information as possible from an unknown area.

One supportive approach can determine the size of an unknown area by exploring the

boundary between open space and undiscovered territory called the Frontier-Based

Approach (FBA) shown in Figure 2.1 (a) (Yamauchi, 1998). FBA helps grid methods

to determine the number of cells needed to cover an unknown area. However, FBA does

not take into account existing obstacles inside an unknown area, which can have a size

bigger than the cell’s dimension leading to an inaccurate determination of the number

of cells needed; therefore, as the area is unknown, determining a suitable size of each

cell is impossible. An improved grid method, called the evidence grid, shown in Figure

2.1 (b), uses a spatial representation to determine the possibility of occupying and

covering grid cells (Moravec and Elfes, 1986). The evidence grid combines the

information about area occupancy coming from different sensors, which helps a robot

8

build an accurate area map and increases the chance of recognising obstacles. However,

the evidence grid is not concerned with determining the size of an unknown area,

making it difficult for a robot to determine the number of grid cells needed (Schultz and

Adams, 1998; Yamauchi, Schultz and Adams, 1998). In addition, the information

gained by the evidence grid method might be incorrect due to the odometry error

resulting from a robot’s movement (Schultz and Adams, 1998).

(a) (b)

Figure 2.1 The coverage of the area’s frontier using (a) FBA, where the black dots represent the edge

segments of the area’s boundary (b) Evidence grid, where frontier edge segment is detected. It is

noticed in both methods that a robot could not ultimately discover the frontier of an area due to facing

obstacles (Yamauchi, 1997) - Used with permission.

Using FBA and evidence grid approaches can help the grid method gain more accurate

information about an explored area. However, the up-to-date location of each robot,

where the information is obtained, is not accurate. The inaccuracy of a robot’s location

is called the location error, where the asynchronous movement of robots causes an error

that is typically accumulated, resulting in an incorrect calculation of a robot’s

coordinates. Researchers tried to solve the location issue by combining grid methods

with location-supporting methods, such as localisation methods, that help a robot detect

its position within the area. One particular example is the localisation method

9

introduced by Yamauchi (1999), where FBA, simultaneous localisation, and map

building are integrated into Integrated Exploration (IE) system, enabling a robot to

determine its current position. However, the system is heavy and requires a level of

processing that a low-cost development board cannot handle, resulting in a robot’s

difficulty in processing the IE system (Makarenko et al., 2002).

Using the grid method to explore an unknown area benefits the swarm by covering part

of the area and learning its structure. However, the grid method reaches a point where

it becomes limited in discovering unknown areas, and grid-supporting tools are needed.

Combining various grid-supporting methods cannot guarantee to gain information

about an unknown area as a single robot may not be able to combine more than a grid-

supporting tool due to its limited processing capabilities. Moreover, the overall area

coverage completion time is severely affected because a single robot must

simultaneously handle multiple tasks, such as collecting the area’s information and

determining its location. One needs to consider developing a new exploration algorithm

that specifies directions for a robot to follow. Therefore, path planning was introduced.

2.1.2 Path Planning for Object Searching

Path planning, also known as motion planning, is a method that identifies an optimal

path to safely guide a robot from a start point A to an endpoint B (Lavalle, 2006). One

of the most common path-planning techniques is the randomisation technique which

includes: Probabilistic Roadmap Algorithm (PRM) (Kavraki et al., 1996) and Rapidly

Random Tree (RRT) (LaValle, 1998). The idea of the PRM algorithm is to place

random waypoints in free space and connect nearby points to create an optimal path

between the start and the finish point using a local planner. Figure 2.2 shows the PRM

algorithm setting possible road lines/curves on a simple and a complex area to

determine a suitable path for the robot to follow.

10

Figure 2.2 A simulation example of a path planning algorithm showing the possible path for a robot

from the start point A to endpoint B.

Unlike PRM, RRT uses the concept of a space-filling tree, where a tree is incrementally

constructed according to random points placed in a selected area. The structure of RRT

is more like a stochastic fractal as the fractal branches are repeatedly generated but then

with a random length1.

Using the randomisation technique in RRT results in a number of problems. The first

problem is that RRT does not always find a path between two points, especially in

complex areas. The second problem is that RRT requires a pre-made map of an area,

and consequently, this technique cannot be used to explore unknown areas. In order to

address these problems, alternative path planning techniques, called path-finding, were

developed, such as the A-Star algorithm (Hart, Nilsson and Raphael, 1968) and the D-

Star algorithm (Stentz, 1994), also known as Dynamic A-Star.

The A-Star algorithm uses an incremental search method to find the nearest path

between multiple points, called nodes, while the D-Star algorithm uses a heuristic

search method repeatedly to restructure paths when changes occur. Both algorithms are

computationally slow when used in a largely unknown area, and their search function

may terminate when a robot faces obstacles. Both algorithms need either supporting

tools or learning functions to avoid obstacles (Foead et al., 2021).

1 For fractal definition and more information about fractals, see section 2.3

A

B

11

While path planning algorithms can accurately guide a robot to explore known or

unknown areas, the overall exploration task takes as much time to complete compared

to the grid method, especially for unknown areas. In addition, guiding a single robot to

explore an unknown area is a challenging task because a robot will have to do multiple

tasks simultaneously, including scanning, collecting information, updating its location,

etc. Therefore, the total exploration time will dramatically increase, and the robot might

not complete exploring an unknown area due to the fact that the estimated exploration

time cannot be determined. An alternative solution is to consider improving the time

and the robot’s capability to cover an unknown area. From a robotics perspective,

distributing exploration tasks to partner robots is an efficient solution to increase each

robot's exploration performance and decrease the total exploration time.

2.1.3 Multi-Agent Systems

Multi-Agent Systems (MAS) is the most recent solution for exploration applications

because it can integrate with traditional exploration methods, such as frontier scan and

probabilistic roadmap, by distributing sub-tasks between the robots (Kwa, Leong Kit

and Bouffanais, 2022). MAS study the interaction between agents that can solve

problems based on environmental perception. As MAS contain various applications in

different research fields, one particular application of the MAS called Multi-Robot

Systems (MRS) is used to focus on the behavioural response of a robotic swarm when

exploring areas using different swarm formations.

MRS consider the interactions between a group of robots while they are performing

numerous tasks. MRS is a modern approach that uses four factors to explore areas,

namely: communication, control, organisation, and decision-making. MRS allows

researchers to develop traditional exploration methods into more modern methods and

implement them for a group of robots. For example, the Trapezoid exploration strategy

is a grid method application consisting of neighbouring local grids that shape a global

grid. Each robot has its local grid to cover, and by sharing the coverage status with

neighbouring robots, each robot can decide what to cover next (Sharma and Tiwari,

2016). For the path planning approach, an alternative method called Gap-Navigation

Tree (GNT) (Nasir and Elnagar, 2015) is being used for MRS, where robots are

constructed to form a vital link based on their distance between each other, aiming to

reach the maximum depth inside an unknown area. The usage of MRS improves the

12

robot’s performance as each robot is assigned a specific task, and in this way, the overall

exploration time is reduced. Furthermore, the research on MRS is expanding to include

methods on swarm control, swarm formation, swarm communication, etc.

While each exploration method controls the swarm’s organisation and communication,

choosing the proper method increases the swarm’s chance to cover more areas and

minimises the overall exploration time. Therefore, having a decision-making method is

crucial for the MRS. For instance, a simple decision-making method is presented by

Kernbach et al. (2013) where a swarm of micro robots, with limited sensing capabilities

and no direct communication, decide their spatial location using a thermal tactic

aggregation of bees. Although this simple method proves that a decision made by

limited-capability robots can be achieved, it does not provide a decision when facing

an obstruction forcing the robot to hold on to its last position. Additionally, the method

is a hardware-based decision in which the swarm uses its sensing capability, such as a

thermal detector, to attract the swarm to a thermal source, such as heat, in the absence

of cooperative decision making. Therefore, this method is unreliable for exploring

unknown areas as each robot will collide with either an obstacle or another robot. An

advanced cooperative decision approach proposed by Marjovi et al. (2009) uses both

frontier-based exploration and A-Star searching techniques to localise a fire source and

minimise the overall exploration time, which relies on the cost-gain ratio as a decision

evaluation. This advanced method uses exploration methods that need a map of the area

to function, which is impossible when exploring unknown areas. In other words, the

cost-gain ratio cannot be established without a pre-made map. In addition, as the

structure of an environment changes over time, the pre-made map will be outdated and

invalid to use, leading to an incorrect evaluation of a decision-making process.

More recent research by Faria Dias et al. (2021) reported many drawbacks in collision

avoidance between robots and obstacle detection, especially when exploring unknown

areas, and emphasised the importance of using swarm formation. Swarm formation

methods, e.g. biological-inspired (Oh et al., 2017) and pattern formation (Xu et al.,

2010), cannot change the swarm’s formation as they are designed to create a fixed

shape. As a swarm formation affects the robots’ task distribution, synchronisation and

decision-making when exploring areas, it is necessary to review the latest methods of

SR formations. Reviewing SR formations will help locate the point where the swarm

13

will need to change its formation, thus, facilitating the task of exploring an unknown

area.

2.2 Swarm Robotic Formations

Swarm formation defines the group organisation between different robots within the

swarm. When a swarm performs an exploration task, choosing a suitable swarm

formation is essential to adapt to the area being explored. Therefore, determining the

method of developing a swarm formation when exploring unknown areas is critically

important to ensure the swarm’s discovery process. Consequently, studying different

swarm formation methods is important to understand the choice of setting certain

formations for specific robotic tasks. Also, to investigate the possibility of applying a

swarm transformation when facing an obstruction for exploration purposes.

This research theme contains two sections, one section which reviews different swarm

formation methods named section 2.2.1, and the other section reviews swarm

transformation models for exploration purposes named section 2.2.2.

2.2.1 Swarm Formation Approaches

Swarm formation describes the organisation of autonomous robots while structuring

themselves to a certain formation. Swarm formations can be classified into two

categories: biologically based or mathematically based formations. Additionally, this

review presents several swarm formation approaches depending on the swarm’s control

type, which can use either a distributed or a centralised controller.

The source of biologically based formations lies in formations seen in creatures such as

flocking birds, school of fish, ant colony, bees, etc. (Olaronke et al., 2020). The typical

applications used by biologically based formations are rescuing human beings and

object-searching missions (Xiong et al., 2009). For the mentioned applications, a

swarm must explore the area assigned for its mission, especially when the area’s

structure is unknown. For example, an experiment described by Cheng, Wang and

Dasgupta (2009) mined a flocking-bird formation, shown in Figure 2.3, to explore area

shapes such as a square and a triangle. The experiment compares the coverage

percentage between different flocking-bird formations, including line-flocking, V-

flocking, and hybrid-flocking. Additionally, the experiment compares the flocking-bird

14

formations with a stochastic swarm formation, where the distribution of the swarm

formation is not predicted. The results show that the stochastic swarm formation can

cover about 20% more area than the flocking-bird formation types. This is also

confirmed in Stachniss and Burgard (2003b); Ahmadi and Stone (2006), which show

that flocking-bird formations need improvements for area coverage applications,

especially when compared to other biological formations.

Figure 2.3 The designed formation of the V-flocking birds used to cover a specific area. Each unit

(robot) is separated by distance d and with a separation angle of a (Cheng, Wang and Dasgupta, 2009) -

Used with permission.

Ant and bee formations have several useful features to improve area coverage. For

example, ants use pheromones that leave marks to guide the swarm while exploring

their colony using Ant Colony Optimisation (ACO) (Hunt, Jones and Hauert, 2019).

Bees memorise an explored area by sending scouting bees to explore, for example, a

rose field, and performing a dancing process called the waggle dance to describe both

the direction and the level of suitability taken by a bee to the swarm (Karaboga and

Akay, 2009). The reviewed features are mainly used for foraging purposes and can

therefore also be applied to explore unknown areas.

An example of ant formations is shown in a study that compares several methods of

creating ant formations, including node-counting and Learning Real-Time A Star

(LRTA*) while covering an area (Koenig, Szymanski and Liu, 2001). Although the

study shows good coverage efficiency for ant formations, the total coverage time and

the number of steps applied by a robotic swarm are relatively high compared to the use

of other biological formations i.e. bees (Gordon, Wagner and Bruckstein, 2003). That

15

is because some of the ant formations rely on central swarm control, which affects the

time for formation creation. Another decentralised ant-based formation named

Stochastic Diffusion Search (SDS) is an intelligent algorithm that mimics the

recruitment of a specific ant behaviour (Majid-al-Rifaie and Bishop, 2020). SDS

manages to distribute useful information to the rest of the swarm in an effort to locate

a target e.g. metastasis (Majid al-Rifaie, Aber and Raisys, 2013); however, the swarm

formation is stochastic and does not control the distribution of a robotic swarm.

Additionally, SDS terminates at a fixed activity rate, which may not be suitable for an

unknown area exploration.

The bee algorithms are mainly used for foraging applications, and therefore, a little

work focuses on using bee formations for area-coverage applications. An example of a

foraging application is described by (Efremov and Kholod, 2020), where a non-

pheromone algorithm inspired by bee behaviour shows a lower foraging time compared

to a pheromone-based algorithm inspired by ants. However, as bee algorithms use a

stochastic swarm formation, the total area coverage time is unstable and therefore, it is

difficult to determine the total coverage time (Jevtić et al., 2012).

A school-of-fish formation features a formation called the aggregation formation and

attempts to cover a specific area. For example, an experiment conducted by (Yang and

Tian, 2007) aimed to develop an aggregation formation using the school-of-fish model

to surround a target. As the model shows a good performance in avoiding obstacles

within an unknown area. The model is randomly searching for a target rather than

exploring the unknown area, leading to inefficient use of the model and the exploration

time. Other fish school formation methods such as Spatio-temporal (Vedachalam et al.,

2020) and self-organised school of fish (Thrun and Ultsch, 2021) are used for

navigation applications. Like bee formation, there are only a limited number of studies

that use school-of-fish formation for area-coverage applications because of the fixed

formation design.

Overall, there are several biologically based formations used for area exploration.

However, biologically based formations are robust and cannot be adjusted due to their

design restriction, e.g. flocking birds formation is fixed to a V-shape design, leading to

a non-adjustable swarm formation which can be inadequate in exploring or covering

unknown areas. Therefore, biologically based formations have been optimised to

16

improve their exploration performance by using features from other swarm creatures.

For example, Particle Swarm Optimisation (PSO) is a metaheuristic optimisation

method that uses flocking bird behaviours to explore areas (Dadgar, Jafari and Hamzeh,

2016), while ACO is improved by combining different ants’ behaviours such as

carrying, foraging, etc. for each robot within the swarm (Lima and Oliveira, 2017). A

hybrid algorithm combining ACO and SPO is used to control the swarm’s ant formation

and the communication between neighbouring robots (Amar and Jasim, 2021).

Although these optimised formations might improve the total time of covering an area,

the designed formations remain fixed, leading to inadequate use of biological-based

formations to explore an unknown area.

The review of some biologically based formations raises an important question: is it

possible to build a flexible swarm formation that can restructure its current formation

to explore unknown areas? Some biologically based formations, such as flocking birds,

can be mathematically built using geometric shapes such as a square, a rectangle, a

circle, etc. Therefore, it is necessary to review some of the mathematically based

formations used to cover unknown areas. Within the SR field, examples of

mathematically based formations are self-organisation, pattern formation, and

reconfigurable robots.

Self-organisation is a process of interaction between autonomous robots to build a

formation that can be used for a specific purpose (Ashby, 2004; Trianni, Nolfi and

Dorigo, 2008). The concept of self-organisation is based on a random distribution of a

robotic swarm, where there is no leader, and each robot acts individually to interact

with the other robots and construct a swarm formation suitable for completing the

assigned task. Self-organisation is used mainly in mimicking biologically based

formations because it functions spontaneously, and therefore, there is no particular

formation for self-organisation. Self-organisation is a type of organisation that allows

a robotic swarm to restructure itself to a different formation.

Pattern formation describes the interaction between robots to construct a specific shape

in an organised procedure, as shown in Figure 2.4. Both pattern formation and self-

organisation have the same approach of restructuring certain formations for a robotics

application (Varghese and McKee, 2009). Several pattern formation algorithms have

been developed for searching and covering techniques such as grading and path-

17

planning. Like self-organisation, pattern formation does not have a specific formation

structure and needs to build a suitable pattern for an exploration application. For

example, a control law system was made for a group of Unmanned Aerial Vehicles

(UAVs) to implement the desired swarm formation during area discovery (Koo and

Shahruz, 2001). The system involves the use of a central UAV that builds a suitable

pattern formation. Pattern formation relies on swarm control, and therefore, without

having information about an unknown area, pattern formation will not be appropriate.

Other examples of the use of pattern formation were described in the swarm formation

approaches section 2.21 (Malchow et al., 2000; Gordon, Wagner and Bruckstein, 2003;

Xu et al., 2010).

Figure 2.4 A group of robots using self-organisation to form a pattern of the letter (E) (Xu et al.,

2010) - Used with permission.

Reconfigurable robots, also known as modular robots, are a group of autonomous units

that can mechanically attach together to form a specific shape (Kurokawa et al., 2008).

Modular robots do not need formation algorithms but simple instructions to form a

shape. These units can either have the same structure units known as homogenous

modular robots or have different structural units known as heterogeneous modular

robots. Modular robots are primarily used in search and rescue tasks due to their

capability to structure different shapes. For example, a framework is made for a team

of modular robots that can compensate for lost or failed units when searching within an

unknown environment (Gunna and Anderson, 2013). Also, modular robots can perform

a task using either a centralised or a decentralised swarm control (Abukhalil and Sobh,

2013; Saldana et al., 2017). As modular robots are hardware-based control, each unit

relies on one another to construct a formation. Therefore, modular robots can perform

only a limited number of formations depending on the number of units, which is not

suitable for unknown area exploration.

18

2.2.2 Transformation Models

Swarm transformation is a process of restructuring an existing formation by either

changing between different swarm formations or modifying the same formation.

Commonly, the transformation process requires each robot to change its location so the

swarm can establish a new formation. In SR field, researchers have proposed several

swarm-transformation models such as: composition and decomposition (Jermann et al.,

2006), self-organisation (Ashby, 2004), and repositioning (Varghese and McKee, 2009)

in order to improve the swarm’s abilities to surpass exploration challenges, such as

avoiding obstacles, SR needs to determine the subsequent formation to change

Additionally, the process of swarm transformation shows significant difficulties in

repositioning each robot within the swarm. Therefore, this section discusses swarm

issues while performing a transformation process.

The major problem of swarm transformation lies in the determination of a suitable new

formation. While performing a swarm transformation, the swarm’s target is to establish

a formation that helps to explore an area. Swarm formations can be classified into two

types: filling and non-filling formations. Filling formations can be applied to covering

an area of a determined shape, while the non-filling formations describe the coverage

of the perimeter of a determined shape (Cheng, Cheng and Nagpal, 2005). The benefit

of a filling formation lies in covering a simple area, but for a random shape and a finite

number of robots, there is no guarantee of covering an area completely. Thus, the filling

formation does not help cover an unknown area. Determining a particular formation is

made possible using the non-filling type because of its simplicity in performing using

a robotic swarm (Varghese and McKee, 2009). However, neither the filling nor the non-

filling swarm transformation types can trace complex area shapes because of the

difficulty of controlling each robot, resulting in robotic collisions (Cai et al., 2007). As

a result, research work on determining a feasible formation using either filling or non-

filling types is limited to geometric shapes (Jermann et al., 2006).

Another problem with swarm transformation lies in the repositioning of the robots.

When performing a swarm transformation, a robot’s primary role is to change its

position to support/create the newly desired swarm formation. However, a part of the

robotics swarm might fail to reposition itself on a particular occasion. For instance,

during a decomposition process, where all robots are separated from each other, a

19

communication failure could lead to an enormous collision and breakdown of the

swarm formation, resulting in a failed transformation. Also, for a centralised swarm, an

error caused by the leader robot will result in a repositioning failure and a termination

of the transformation process. Researchers are working on integrating transformation

models with supported robotic mechanisms, such as path planning and collision

avoidance, to prevent problems caused by repositioning (Y. C. Chen and Wang, 2007).

Still, the work on a method for repositioning robots is not being addressed.

Additionally, other swarm transformation problems affect formation stability

(Varghese and McKee, 2010), the robot’s role assignment (Y. G. Chen and Wang,

2007), and the coordination of multiple swarms (Hsu and Liu, 2004).

In conclusion, the current work on swarm transformations reveals many deficiencies in

functionality and performance. The current swarm transformation models for exploring

unknown areas cannot deal with complex areas and recognise complex shapes. Hence,

swarm transformation needs a development process by building a modern model to

form flexible shapes. Using flexible shapes will improve the swarm performance in

exploring unknown areas and allow a robotic swarm to adapt to complex environments.

Therefore, this research aims to develop a swarm transformation model that uses shapes

inspired by nature.

2.3 Fractals for Swarm Formations

Restructuring a flexible shape is an essential swarm process to enable exploring

complex areas. Therefore, this research attempts to understand the process of creating

flexible shapes by observing natural phenomena. The concept behind the natural

phenomenon is the growth of simple shapes to form complex shapes. These natural

phenomena are known as fractals. For instance, the structure of a fractal tree is based

on the growth of several line branches, while the structure of a water vortex is based on

the growth of different-sized circles.

A fractal is a recursive decomposition process of a basic shape into scaled patterns

(Peitgen et al, 2004). Fractals can either be found in nature, i.e. snowflakes and clouds,

or mathematically formed, i.e. Sierpinski triangle as shown in Figure 2.5.

20

Figure 2.5 Common fractal shapes (from left to right): Sierpinski triangle, Koch snowflake, water

vortex, and 2-branch tree (Peitgen et al, 2004) - Used with permission.

This section presents a classification of fractals and any work reflected in using fractals

in swarm robotics.

2.3.1 Fractal Classification

Fractals can be classified based on self-similarity, shape, dimension, and flow direction.

Self-similarity is the process of developing patterns that repeats the same fundamental

shape known as an exact-similar shape. Patterns can also represent part of the

decomposed shape’s properties, which is known as a quasi-similar shape. The

decomposition of an original shape into patterns with a different structure and property

is known as a statistical shape (Falconer, 1990).

The definition of a shape classification is a presentation form of a particular object

(Peitgen et al, 2004). A fractal shape can have either a deterministic or a random

formation. The first type can be a geometric or an algebraic shape, while the second is

stochastic. A deterministic formation is easy to decompose into smaller patterns and to

calculate the formation’s dimension. For random formations, several stochastic creation

methods can be used to analyse the rule behind the creation of the random shape, such

as Brownian motion, percolation, Levy process(Yang et al., 2017), and chaos theory

(Mandelbrot, 1983).

The dimension classification uses the parameters of a different shape, such as perimeter,

area, or volume. The purpose of dimension classification lies in understanding the

creation of a random formation. Dimension classification presents a complexity index

of different fractal shapes and measures their roughness and regularity levels (Cheng et

al., 2012). Several methods are estimating the dimension of complex shapes, such as

Hausdorff, box-counting, euclidean, and topological (Gneiting, Ševčíková and

Percival, 2012; Balka, Buczolich and Elekes, 2015). Each of these dimension methods

can simplify the complexity of different random or deterministic formations.

21

In the field of swarm robotics, there is limited research that attempts to use fractals. For

example, a swarm of robots was used to form shape-based fractals such as space filling,

tree and curve-based fractals, but these shapes have not been used in area exploration

applications (Zhou and Goldman, 2017). Another attempt of using fractals is by

structuring a robotic vortex formation to understand the aggregation behaviour of a

school of fish (Yang and Tian, 2007).

The review of fractals and their properties shows that the work on integrating fractals

within the SR field is at an early stage. Further, the review demonstrates the swarm’s

ability to build fractal formations. As it is possible to form different fractal formations,

this research aims to use fractal properties to build different fractal formations with

dynamic changeability towards exploring unknown areas.

2.4 Research Gap

Recent work on developing swarm transformations does not consider exploration

applications as it shows several problems regarding swarm organisation. While MRS

provides a feasible approach to exploring unknown areas compared to path planning

and grid patterns, conventional swarm formations are inadequate for exploring

unknown areas due to the swarm fixed design. Finally, based on reviewing fractals, it

is possible to structure fractal formations using SR.

Fractal formations have typically not been used in area exploration applications. Also,

applying fractals to swarm transformation methods has not been reported. Using fractal

formations for exploring unknown areas will allow the swarm to control the number of

robots used, based on the fractal type. Also, fractal formations will increase the overall

area coverage by adjusting different parameters, described in chapter 4, to allow for a

flexible distribution of the robots. Hence, the research gap is to determine the benefits

of applying fractal formations in exploring unknown areas.

Therefore, the research question is formulated as follows: “What are the

advantages/disadvantages of using different fractal swarm formations to explore and

cover unknown areas?” Answering the research question requires answering sub

research questions: the first sub research question is as follow: “How can a swarm of

robots apply a fractal formation to unknown areas”. The second research question is as

22

follow: “What are the pros and cons of changing parameters of a fractal formation

towards covering unknown areas”.

As this research aims to determine both the advantages and disadvantages of using each

fractal formation to cover an unknown area, Chapter 3 demonstrates the growth rule of

different fractal formations by a swarm of robots by developing a mathematical formula

that a robotic swarm can implement. Chapter 4 shows both the pros and cons of

changing each parameter of a fractal formation class when covering an unknown area

by a robotic swarm. Chapter 5 presents a reflection on the outcomes obtained by the

previous chapters leading to present the contribution made to the SR field and

considered for future work.

23

Chapter 3: The Mathematical Modelling of Fractals

for a Swarm of Robots

This chapter describes four fractals named: N-Branched Tree, Vicsek, Julia set, and

Reverse Julia set, implemented as a robotic swarm formation. A demonstration of

developing each fractal formation is made using the MATLAB platform, and

implementation of each fractal formation is made using Virtual Robot Experimentation

Platform (V-REP). This chapter contains four sections: the first section classifies the

fractals according to their development process into two types, namely: line-based

formation and curve-based formation. The second section shows the growth rule for

line-based fractal formations resulting in a mathematical formula for each formation

adequate for a robotic swarm. The third section shows the growth rule for curve-based

formation. Additionally, a simulation of how each fractal formation is made, alongside

improvements in the robotic swarm’s distribution while implementing a fractal

formation. The final section summarises the overall work made as well as clarifies the

contribution to swarm robotics research.

3.1 Fractal Classes

A fractal is a representation of objects, e.g., geometric shapes, which inherently has the

ability to recure and has similar patterns to an original object. Observing natural

fractals, such as plants, clouds, crystals, etc. shows a common growth concept of

recuring a shape in a self-similar structure. However, the mathematical representation

for each fractal can be different according to the original shape, which can be as simple

as a line segment to a complex shape. Therefore, it is necessary to classify fractals based

on the development of similar shapes. For instance, a line segment can be presented

using a linear formula, while a curve shape can be presented using a non-linear formula.

Therefore, fractals are classified according to their mathematical development into two

types named: line-based fractals, where a fractal formation is developed linearly

depending on one or two variables, and curve-based fractals, where a fractal formation

is developed depending on a polynomial function.

The purpose of classifying fractals is to develop a mathematical formula for each

fractal, to be implemented by a robotic swarm. For the swarm robotics research, each

fractal class presented with two fractals that have the same original shape, such as

24

straight line or curved line, and can be mathematically modelled and implemented by a

swarm of robots. The selection of a fractal was inspired by observing the changes in

plants and climate. Plants can have different structures such as trees, grass, flowers,

etc., which recured themselves in identical patterns. Plants can adapt to the change in

the environment by changing their structure frame when growing. For instance,

planting two seeds of an apple in different environmental conditions can result in two

different apple trees with different branches and leaves. A tree skeleton is seen as a

number of line segments grown as branches, which can be described using a linear

formula, and therefore, a tree fractal can be classified as a line-based fractal class.

From a fractal perspective, climate represents the regular pattern of weather for a period

of time, resulting in unusual weather behaviour. For example, having snowy weather

results in snowflakes that are a fractal shape, and the low air pressure can result in a

cyclone, and thunderstorms, which are also a fractal shape (Falconer, 1990). Unlike

plants, different climate behaviours can be seen as a complicated shape, which cannot

be represented using a linear formula. For example, cyclone behaviour has a vortex

shape that revolves around itself in a curve shape. A cyclone can be seen as a curved

line, which can be structured using a non-linear formula, and therefore, can be classified

as a curve-based formation.

A tree fractal consists of a main branch called a trunk that develops a smaller pattern of

branches about the same shape as the trunk. Each tree’s branches can be seen in Figure

3.1 (a) (Vicsek and Gould, 2013). In addition, the linking point, where two or more

branches are joined together, can be modified. Considering the observation made on a

tree formation in nature, structuring a tree fractal formation for a robotic swarm

required a mathematical formula that controls the number of robots used and their

position through the fractal formation.

The Vicsek fractal is a snowflake-inspired formation where all the branches grow

symmetrically in all directions from a single point, as shown in Figure 3.1 (b) (Vicsek

and Gould, 2013). The simplest form of a Vicsek fractal formation is by having four

branches grown in a cardinal direction, and these four branches continue recurring to

their cardinal direction as patterns. Each of the Vicsek branches can be developed as a

straight line that a robot can follow, and therefore, can be described as a line-based

formation.

25

 (a) (b)

Figure 3.1 (a) A skeleton of a tree fractal (b) A structure of a snowflake which the Vicsek fractal is

inspired from (Vicsek and Gould, 2013) - Used with permission.

Another fractal which can be described in a curve-based class is Julia Set. Julia set is a

fractal shape produced using a polynomial of complex values. Recuring a polynomial

of complex numbers can result in complicated yet organised cyclone shapes. The Julia

set fractal can be represented in different shapes by changing the values of the complex

numbers (see chapter 4 Section 4.3), and therefore, it can have different shapes. Figure

3.2 shows a number of developed cyclone shapes in different location points (Falconer,

1990). These location points can be used to guide a swarm while discovering unknown

areas.

Figure 3.2 One set of the Julia fractal sets resembles different cyclone shapes (Falconer, 1990) - Used

with permission.

The reverse Julia set is a novel creation of a fractal formation inspired by the Julia set

fractal. A polynomial function is modified to develop location points in a reverse

growth direction of the Julia set. The reverse Julia set expands its curved lines outwards

by reversing the Julia set formula, which helps the swarm explore unknown areas. Like

the Julia set fractal formation, the reverse Julia set forms part of the curve-based class.

The structure of the reverse Julia set resembles the shape in Figure 3.2.

26

The following section presents a growth rule formula for each fractal that describes its

development process mathematically. Two elements were considered when creating a

growth rule formula. The first element is the number of robots needed for developing a

fractal formation. The second element is the direction of the swarm's movement as the

fractal develops. For the line-based formation, the growth rule consists of two formulas,

one for determining the number of robots needed for developing a fractal formation,

and the other for determining the direction of each participating robot within the fractal

development. For the curve-based formation, only one formula is needed to assign the

direction of the robots, while the fractal formation can be developed using a minimum

of two robots.

3.2 Line-Based Fractals

This section presents a detailed description of structuring two line-based fractal

formations, namely: the N-Branch Tree Fractal Formation and the Vicsek Fractal

Formation, by creating a growth rule formula that can be implemented using a robotic

swarm. In addition, a demonstration of each fractal formation is made using MATLAB,

and a robotic simulation tool called Virtual Robot Experimentation Platform V-REP.

3.2.1 N-Branch Tree Fractal Formation

The structure of an N-branch tree fractal formation is based on line segments. Taking

that a swarm requires at least two robots, one robot will create the first line segment,

which sets the trunk of the tree for the first iteration. Based on selecting the number of

branches (N), the next robots will follow the first robot to form the next line segment,

(branches). The tree fractal formation is developed using the fractal’s properties of self-

similarity and recursiveness. Each robot moves a specific distance (d) with an angle of

separation (α) for each iteration, as shown in Figure 3.3.

27

Figure 3.3 Structure of the first iteration of a 3-branch tree fractal formation with N=3.

Taking a 3-branch tree fractal formation as an example, the structure of developing a

3-branch tree fractal formation goes as follow: the main tree line (trunk) is directed by

the formation direction angle (θ), and each line must branch out exactly three segments

of lines. The middle branch continues from the tree trunk, and the side branches are

symmetrically separated by angle (α). Each robot is travelling at a distance (d).

Determining the location of each robot in the formation is based on the cartesian

coordinates, where each robot has its own specific location in every developing process.

Figure 3.3 illustrates the growth process of the 3-branch tree fractal formation,

including the location of each robot.

Determining the exact Number of Robots (NoR) needed for the N-branch fractal tree

formation is described in Equation (3.2), where (N) is the number of branches. While

the 0th iteration (i=0) requires only one robot, the first iteration (i=1) is expressed as

(𝑁𝑜𝑅1 = 𝑁1). The second iteration (i=2) is expressed as follow (𝑁𝑜𝑅2 = 𝑁2). The

third iteration (i=3) is expressed as (𝑁𝑜𝑅3 = 𝑁3). Overall, the ith iteration for a tree

fractal formation is expressed in Equation (3.2) as follow:

 𝑁𝑜𝑅𝑖𝑡ℎ = 𝑁𝑖 𝑓𝑜𝑟 𝑖 > 0 , 𝑁 > 1 (3.1)

Therefore, the total number of robots needed for all iterations is:

 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜𝑅𝑖𝑡ℎ = ∑ 𝑁𝑝𝑖
𝑝=1 𝑓𝑜𝑟 𝑝 > 0 , 𝑁 > 1 (3.2)

28

Where (p) is an iteration counter ranges between (1 and i). Applying a 3-branch tree

fractal formation, (N) = 3, and the first three iterations, according to Equation (3.1),

resulted into the following number of robots respectively: 3, 9, and 27 robots.

Assuming the starting points 𝑥0 and 𝑦0 are the origin points of the formation, the robots

will travel to the next coordinates 𝑥1 and 𝑦1 using the below movement formulas:

 𝑥1 = 𝑥0 + 𝑑 cos 𝜃 (3.3)

 𝑦1 = 𝑦0 + 𝑑 sin 𝜃 (3.4)

At this coordinate point, the swarm will apply the growth rule for a symmetric tree

branch. The swarm will then move to the next coordinate point counted as 𝑖 according

to the following formulas:

 𝑥𝑖+1 = 𝑥𝑖 + 𝑑 cos(𝜃 + 𝛽) 𝑓𝑜𝑟 𝑖 = 0,1,2 … (3.5)

 𝑦𝑖+1 = 𝑦𝑖 + 𝑑 sin(𝜃 + 𝛽) 𝑓𝑜𝑟 𝑖 = 0,1,2 … (3.6)

Where β depends on the number of branches and the respective branch within the

iteration’s set:

 𝛽 = {
0, ± 𝑚𝛼 𝐹𝑜𝑟 𝑚: 1 → ⌊

𝑁

2
⌋ 𝑊ℎ𝑒𝑛 𝑁 𝑖𝑠 𝑜𝑑𝑑

± 𝑚𝛼 𝐹𝑜𝑟 𝑚: 1 → ⌊
𝑁

2
⌋ 𝑊ℎ𝑒𝑛 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

 (3.7)

To verify the function of the tree fractal formation, the growth rule process for the 3-

branch tree formation is simulated using MATLAB. The formula for calculating the

total number of robots needed as well as the formula for determining their next location,

is added to MATLAB to produce the tree structure in which the swarm will follow. The

number of branches is 3, a fixed travelled distance is given as (d = 53 units), and the

separation angle is (α = 35°). The MATLAB will use the given values in the designed

formulas to display a tree structure suitable for each robot to follow. A MATLAB

growth rule simulation for the first three iterations for a 3-branch tree fractal formation

is shown in Figure 3.4. The development code for this section is presented in Appendix

A.1.

29

 (a) (b)

 (c)

Figure 3.4 The growth rule of a 3-branch tree formation: (a) first iteration, (b) second iteration with

overlaps (red circles), (c) and third iteration with high overlaps (red and blue circles).

The MATLAB simulation in Figures 3.4 (b) and (c) show a noticeable overlap between

two end line segments from the second iteration and an intersection between lines from

the third iteration. The overlap occurs due to the self-similarity feature, where the

distribution of the line segments is symmetric, causing an issue where two robots will

be meeting at the exact location. One of the two interfering line segments must be

removed to overcome this issue.

To determine the amount of overlap within an iteration, an additional formula is

required. Figure 3.4 (b) shows two overlapping location points in the structure of the

tree formation, while it increases to six location points for the next iteration. The

formula in Equation (3.8) counts the number of overlapping line segments while

30

preserving the overall structure of the tree formation. The overlap formula is expressed

as follow:

 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ [𝑁 − 1]𝑖−1𝑛
𝑖=2 (3.8)

Where i is the number of iterations for the tree fractal formation. The overlap formula

is functional for all possible angles of separation (α) starting from the second iteration

and can determine the number of overlaps occurring for each iteration. The total

overlaps are then subtracted from the total number of robots needed is shown in

Equation (3.9).

 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜𝑅𝑖𝑡ℎ = ∑ 𝑁𝑝𝑛
𝑝=1 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (3.9)

To demonstrate that equation (3.8) is adequate to use by a robotic swarm, an integrated

robotic demonstration tool named V-REP is used. The robotic demonstration tool is

linked to MATLAB as a bi-directional communication. MATLAB sends the number of

robots needed and their assigned location for one iteration. The V-REP tool receives

these values and sets a unique number for each robot in numerical order. Each robot

will travel to the assigned location, and once a robot reaches the assigned location, the

next robot will travel to the next assigned location and so on. When all robots have

reached their assigned location, V-REP will send a confirmation signal to MATLAB

indicating the successful operation of distributing the robots, and the robots will receive

their assigned location in the next iteration by MATLAB.

A simple area design in V-REP tool is a flat surface of square blocks with 11 blocks

long, and 11 blocks width, and each block has an area size of 1m2. The area contains

walls at the edges of the area, acting as the boundary for the robots to explore and one

entrance as an origin point. A group of quadcopter robots were used to implement a

fractal formation, which contains a built-in camera pointing to the ground that counts

the number of blocks passed while the copter moves. Figures 3.5, 3.6, and 3.7 show a

demonstration process for quadcopter robots travelling to their assigned location

according to the values received by MATLAB. The development code for this section

is presented in Appendix A.1.

31

Figure 3.5 A swarm of quadcopters mimics a 3-branch tree fractal formation. The left-hand image

shows the first robot moving to the assigned location. The right-hand side image shows the follow-up

progress of each robot sent by V-REP to MATLAB.

Figure 3.6 A complete first iteration of a 3-branch tree fractal formation with a separation angle of 45°

made by a swarm of 3 quadcopters (circled in red) shown in the left-hand side image. Alongside the

follow-up progress of each robot sent by V-REP to MATLAB shown in the right-hand side image.

32

Figure 3.7 A complete second iteration of the 3-branch tree fractal formation with a separation angle of

45° made by a swarm of 7 quadcopters (circled in red) is shown in the right-hand side image.

Alongside the follow-up progress of each robot sent by V-REP to MATLAB shown on the right-hand

side image.

To validate the use of line-based fractal formations in exploring an unknown area, each

fractal is implemented by a robotic swarm to explore a real unknown area of the Tabon

cave (Choa et al., 2016). The structure of the cave discovered so far was taken and used

to distribute a robotic swarm using both 3-branch tree fractal formation and Vicsek

fractal formation. MATLAB is used to simulate the distribution process and present the

amount of area covered compared to a traditional exploration method named the

Probabilistic Roadmap (PRM). As shown in Figure 3.8 (a), each robot has a diameter

size of D, can move up to a distance of d, and has a distance measurement sensor

covering a range of 180° with a length of S.

While each robot is scanning the unknown area, an overlap could occur due to the

repetition of scanning part of the area by neighbouring robots when developing

particularly the tree fractal formation. Figure 3.8 (b) shows that the repetition of

scanning part of an area. Overall, there are 4 areas, of which 2 are identical in shape

(named OL12 and OL13) both found at the bottom and then there is the half circle that

forms the front of the scanning of 1 and overlaps with the new branches (named OL123)

and the overlap between the 2 new branches (named OL23). While the latter 2 areas are

a half circle and square respectively, the former (OL12 & OL13) are a set of triangles.

The overlaps can be calculated as follow:

33

𝑂𝐿12 = 𝑂𝐿13 = 2 × [
𝑆2 × sin

𝛼

2

2
] (3.10)

𝑂𝐿123 =
𝜋𝑆2

2
 (3.11)

𝑂𝐿23 = 𝑆2 (3.12)

Resulting in a total overlap of:

𝑇𝑜𝑡𝑎𝑙 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑂𝐿12 + 𝑂𝐿13 + 𝑂𝐿23 + 𝑂𝐿123 (3.13)

 (a) (b)

Figure 3.8 (a) represents a robot (green circled size) moving with a distance of d and scanning the

unknown area using a distance sensor with a maximum distance of S (b) An overlap occurred when

neighbouring robots rescanned part of an area scanned by another robot, resulting in four shapes: one

square shape (named OL23), one half circle shape (named OL123), and a set of triangle shapes (named

OL12 and OL13).

By calculating the overlap that occurred due to the rescanned area, it is possible to

obtain the exact amount of area covered from MATLAB by subtracting the overlapped

area from the total amount of area covered by the robotic swarm. Figure 3.9 (a) shows

the area to be explored and the line where the robots can be distributed, and Figure 3.9

(b) shows the swarm distribution of 100 robots using PRM, while Figure 3.10 shows

the swarm distribution of 4 robots using 2-branch tree fractal formation. The formations

in Figures 3.9 (b) and 3.10 initiated from the red entrance line, and the total amount of

area obtained from these formations had their overlaps excluded. The tree fractal

formation terminates it iteration process once a branch faces an obstacle, and this

condition applies for the rest of the fractals in this chapter.

d

S S

S

D

34

Figure 3.9 (a) The assigned area to be explored and the red line is where the robots can be distributed

(b) The distribution of a robotic swarm using PRM in an unknown area.

Figure 3.10 The distribution of a robotic swarm using a 2-branch tree formation in an unknown area.

The simulation result in Figure 3.9 (b) shows the distribution process of 100 robots

using PRM with an average covered area of 283.095m2 across 30 simulations. While

Figure 3.10 shows the distribution process of distributing 4 robots using 2-branch tree

formation with a branch distance of 3m, a scanning radius of 2m, and a total covered

area of 143.414m2. It is noted that PRM covered a larger area size compared to the 2-

branch tree fractal formation, however, the tree formation uses only 4 robots to cover

about half the area size compared to the use of 100 robots by PRM. Also, the swarm’s

distribution of PRM forms a stochastic formation, which results in massive overlaps

that are difficult to remove. On the other hand, the swarm’s distribution of the tree

35

fractal formation is organised, allowing for a minimum overlap that is manageable to

remove. The organised fractal formation led to the swarm being distributed inside the

unknown area, while using PRM led some robots to explore outside the unknown area.

3.2.2 Vicsek Fractal Formation

Like the N-branch tree fractal formation, the structure of a Vicsek fractal is also based

on line segments. a Vicsek fractal develops in multiple directions of a 2D plane, which

could be particularly handy for situations where the robots are dropped into an unknown

area. Similar to the N-branch tree formation, the Vicsek formation has a number of

branches (N) for this particular fractal, although the most commonly used Vicsek has

N=4, which also forms the main focus for this development. Nevertheless, all formulas

have been generalized to allow for more generic use in the future.

The Vicsek fractal formation requires an initial number of robots of N, to allow

development in each of the N directions and each one of these branches would then be

separated by 360/N. The next iteration then starts from the end points of the first one,

developing again in N directions similar to the original development, as shown in

Figure 3.11. It is assumed that all developments are oriented in the same direction as

the first development, hence parallel to the X-axis. However, due to symmetry around

the Y-axis when N is even, there will be overlap between a previously discovered track

and a new direction, which impacts on the number of robots, and so this overlap needs

to be discounted by using N-1 rather than N for each new iteration, if N is even. The

growth rule of the Vicsek fractal formation is expressed as follow:

 𝑁𝑜𝑅𝑖 = 𝑁 × ∏ (𝑁 − 1)𝑖
𝑝=1 𝐹𝑜𝑟 𝑒𝑣𝑒𝑛 𝑁 (3.14)

𝑁𝑜𝑅𝑖 = 𝑁 × ∏ (𝑁)𝑖
𝑝=1 𝐹𝑜𝑟 𝑜𝑑𝑑 𝑁 (3.15)

Where (p) is an iteration counter ranges between (1 and i). Taking that the Vicsek

formation develops in all directions, the origin point will always be the centre of the

fractal, and is therefore also chosen as (𝑥0, 𝑦0). The next branches develop based on the

number of branches and consequently their angle of separation as well as the distance

to be travelled. There are as many branches to be calculated as N. So, for each iteration,

one needs to add a factor of d/px cos (m (360°/N)) for the x-coordinate while a sine

36

is used for the y-coordinate. Within this formula d/(px) is the distance travelled and

that normally reduces per iteration (p), while one needs to ensure that x is larger than

1. While m (360°/N) needs to go through all possible m, starting at 0 and up to N-1 to

deal with the different branches. As the fractal develops one needs to add additional

factors as to calculate the new location points respectively starting from the end point

of the previous iteration. Hence, for every i, one needs to run through m=0 to N-1.

Figure 3.11 shows an illustration of the swarm movements towards developing the

Vicsek fractal formation.

Figure 3.11 Structure of the first iteration of the Vicsek fractal formation. The initial Vicsek structure

(highlighted in a red square) has four patterns (highlighted in a blue square) in each cardinal direction.

Consequently, the location point formula that can be used for any Vicsek is:

X-coordinate:

𝑥i,m = 𝑥0 +∑
𝑑

𝑝𝑥

𝑖+1
𝑝=1 cos(𝑚 ×

360°

𝑁
) (3.16)

Y-coordinate:

 𝑦 i,m = 𝑦0 +∑
𝑑

𝑝𝑥

𝑖+1
𝑝=1 sin(𝑚 ×

360°

𝑁
) (3.17)

37

Where: x >1, and for each iteration, one needs to recursively work through all possible

m, from 0 to N-1.

Verifying the functionality of the Vicsek formulas for determining the number of robots

needed and their travel locations required computational software. Like the N-branch

tree formation, MATLAB is used to implement the formulas of the Vicsek. For this

simulation, the initial number of robots X0 is set to four robots, the separation angle

between line segments is 90°, the formation direction angle is set according to the

cardinal directions into the following values: (0°, 90°, 180°, 270°), and the initial travel

distance is set to 8-unit length. The images in Figure 3.12 show the simulated Vicsek

formation via MATLAB for the first two iterations.

 (a) (b)

(c)

Figure 3.12 The growth rule of the Vicsek fractal formation: (a) initial structure, (b) First iteration, (c)

Second iteration.

38

To verify that a robotic swarm can mimic the Vicsek fractal formation. The V-REP tool

is integrated with MATLAB. Each robot receives location points according to the

Equations (3.16) and (3.17), observing the progress made by the robotic swarm and

confirming the completion of developing the Vicsek fractal formation. The designed

area in V-REP is the same as the one made for mimicking the N-branch tree fractal

formation in MATLAB, but the origin location point is at the centre of the area. All the

participating robots have the exact specifications used in developing the 3-branch tree

formation adding a compass meter to support the robots in determining the current

cardinal direction. Each robot moves to the first location point in the following

directions: east, west, north, and south. To reach the next location point, each robot

summoned two new robots to move towards the next location points, and so on. Figures

3.13, 3.14, and 3.15 shows a real-time robotic swarm mimicking the Vicsek fractal

formation for two iterations.

Figure 3.13 A swarm of quadcopters mimics the Vicsek fractal formation. The left-hand image shows

four robots moving to their assigned location. The right-hand side image shows the follow-up progress

of each robot sent by V-REP to MATLAB.

39

Figure 3.14 The swarm has reached their initial location points preparing to develop the first iteration

of the Vicsek fractal formation.

Figure 3.15 A complete first iteration of the Vicsek fractal formation

To validate the function of using the Vicsek fractal formation to cover an unknown

area, the area of the Tabon cave is used as an unknown area for distributing the Vicsek

formation. The formation starts from the centre of the cave’s entrance and can develop

until a robot sense an obstacle, as shown in Figure 3.16.

40

Figure 3.16 The distribution of a robotic swarm using Vicsek fractal formation on an unknown area.

The simulation in Figure 3.16 shows the distribution of 12 robots covering an area of

111.513m2. The Vicsek formation covers about the same amount of area as the tree

fractal formation but uses a higher number of robots. Also, the west part of the fractal

formation attempted to cover areas outside the unknown area as the Vicsek formation

distributed the robotic swarm in a cardinal direction. For the best use of the Vicsek

fractal formation, the formation should be developed from the centre of the area

investigated.

3.3 Curve-Based Fractals

This section presents a detailed description of Julia set and reverse Julia set as curve-

based fractals. Each fractal is developed using a growth rule formula built as a

polynomial equation. MATLAB is used to demonstrate the function of both Julia Set

and reverse Julia. While V-REP is used to illustrate the implementation process of

mimicking the reverse Julia Set formation.

3.3.1 Julia Set Fractal Formation

Unlike the line-based fractal formations, the structure of the Julia Set is based on

recuring a complex number using a quadratic polynomial function. The variables of the

41

quadratic function are Z and C, where (𝑍 = 𝑎𝑧 ± 𝑏𝑧𝑖) is a complex number

representing a cartesian form as a location point for robots. (𝐶 = 𝑎𝑐 ± 𝑏𝑐𝑖) is a constant

complex parameter that determines the specific set of the Julia fractal shape. As Julia

fractal contains a set of different shapes, this research considers resembling the cyclone

shape, which according to (Falconer, 1990; Heinz-Otto Peitgen, Hartmut Jürgens,

2004), represents the constant values of [𝐶 = 0.1 + 0.6𝑖].

The complex quadratic polynomial equation for the Julia Set is expressed as follow:

 𝑍𝑛+1 = 𝑍𝑛
2 + 𝐶 𝑛 = 0,1,2, … .. (3.18)

By applying C as mentioned above, and the initial location point Z0 as an origin point,

a first location point is generated as Z1. The next location point Z2 can then be generated

by applying the previous location point Z1 and the same constant parameter, and so on.

Considering R is a set of complex values generated by the quadratic polynomial

equation where 𝑅𝑖 = {𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑖}, a complete iteration for the Julia Set is

accomplished only when the following condition (𝑍𝑛 ≈ 𝑍𝑛+𝑖) is satisfied. This

condition means that a complete cycle of a cyclone shape is generated, and accordingly,

a new cycle will be generated as a new iteration. Therefore, the number of robots needed

for one iteration depends on the condition of completing one iteration. While applying

the Equation (3.18) with C = 0.1+0.6i, it is noticeable that one iteration is accomplished

when (𝑍1 ≈ 𝑍8). The experiment shows that a complete iteration/cycle consists of

seven points starting from Z1 to Z7, while Z8 is identical to the start point of a new

iteration. Figure 3.17 (a) shows one complete iteration of a cyclone shape as the location

points Z1 and Z8 are almost the same value. Table 1 shows a list of complex values Zn

generated via MATLAB using the Julia Set Equation (3.18) for three complete

iterations.

The distribution process of the swarm for the Julia set formation is different from the

line-based fractal formations. Unlike the line-based formation, where all the robots start

travelling from the origin point, each location point in the first iteration of the Julia Set

is a start point for one robot. For example, the location point Z1 is assigned for the first

robot as a start location point, while the start location point for the second robot is Z2,

and the process goes on until the last location point Z7 is assigned for the seventh robot.

42

As the swarm aims to mimic the cyclone shape, each robot travels to the nearest location

point of the next iteration as its next location point. Each robot must follow the same

condition (𝑍𝑛 ≈ 𝑍𝑛+𝑖) to ensure the correct selection of the next location point.

Accordingly, the next location of the first robot is Z8, and the next location point for the

second robot is Z9. Generally, each robot has a set of location points to follow, which

can be described as follow:

 𝑅𝑖 = {𝑍𝑛, 𝑍𝑛+𝑖, 𝑍𝑛+2𝑖, … , 𝑍𝑛+𝑥𝑖} 𝑛 = 1,2,3, … (3.19)

Where (Zn+xi) is the last location point for a robot to reach. Figure 3.17 (b), (c), and (d)

show a cyclone shape generated using Equation (3.18) for a period of 85 iterations,

alongside with lines linking each location point to another location point using Equation

(3.19). It is noticeable that the distance between two location points is named the

displacement.

 (a) (b)

 (c) (d)

Figure 3.17: A cyclone shape generated using the Julia set formula (a) first iteration that shows the first

7 location points, and an 8th location point near to the first location point (b) A cyclone shape generated

by 28 iterations of Julia Set (c) A cyclone shape generated by 57 iterations (d) A cyclone shape

generated by 85 iterations.

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8 ≈ Z1

43

3.3.2 Reverse Julia Set Fractal Formation

The purpose of using fractals in the context of this research as swarm formations is to

explore an unknown area. A fractal formation must be expandable for further iterations

so the swarm can cover the area. The cyclone shape of the Julia set formation is

developing in an inward direction. According to Table 1, the location point values

highlighted in the same colour are getting smaller due to the recurring process of the

quadratic polynomial equation. In order for the reverse Julia set fractal to extend its

formation, quadratic polynomial Equation (3.18) must be reversed, hence the name.

The reverse Julia Set fractal formation can be expressed as follow:

 𝑍𝑛+1 = √𝑍𝑛 − 𝐶 𝑛 = 0,1,2, … .. (3.20)

Where all the parameters are the same as in Equation (3.18). To validate the

functionality of the reverse Julia Set equation, Table 3-1 shows two highlighted

columns of generated values for both the Julia set formula (left side) and the reverse

Julia set (right side) for three complete iterations. The left highlighted column shows

21 generated values (from Z1 to Z21) using Equation (3.18). The last generated value

Z21 was used as Z0 for the Equation (3.20) while keeping the same value of C as

mentioned in the Julia Set formation section. The right highlighted column shows

another 21 generated values using the Equating (3.20). It is noticeable that the values

generated by both the Julia set and the reverse Julia set have resembled. The last 4

values generated by the reverse Julia Set Z18 to Z21 are however different from the first

4 values of the Julia Set Z0 to Z3 as the reverse Julia Set formula does not reach absolute

zero during the recuring process.

44

Table 3-1 A list of complex numbers generated by the Julia Set formula (left column) and the reverse

Julia Set formula (right column) for three iterations. The values generated by the reverse Julia Set

formula (e.g. Z1) match with the corresponding values generated by the Julia Set formula (e.g. Z20).

Iterations Julia Set

𝑍𝑛+1 = 𝑍𝑛
2 + 𝐶

 Iterations Reverse Julia Set

𝑍𝑛+1 = √𝑍𝑛 − 𝐶

 Initial “Z” Z0 = 0.086858 + 0.21822i

3
rd

 I
te

ra
ti

o
n

Z21 = 0.086858 + 0.21822i

1
st
 I

te
ra

ti
o
n

Z1 = -0.42946 + 0.44449i

Z20 = -0.42946 + 0.44449i Z2 = -0.10575 + 0.73528i

Z19 = -0.10575 + 0.73528i Z3 = 0.14229 + 0.47539i

Z18 = 0.14229 + 0.47539i Z4 = -0.29485 + 0.21131i

Z17 = -0.29486 + 0.21131i Z5 = -0.28214 + 0.68881i

Z16 = -0.28214 + 0.68881i Z6 = 0.071359 + 0.62228i

Z15 = 0.071359 + 0.62228i Z7 = 0.061836 + 0.18018i

2
n

d
 I

te
ra

ti
o
n

Z14 = 0.061832 + 0.18018i

2
n

d
 I

te
ra

ti
o
n

Z8 = -0.43783 + 0.47943i

Z13 = -0.43783 + 0.47944i Z9 = -0.081695 + 0.7379i

Z12 = -0.081693 + 0.7379i Z10 = 0.15233 + 0.45266i

Z11 = 0.15233 + 0.45265i Z11 = -0.32302 + 0.22807i

Z10 = -0.32302 + 0.22807i Z12 = -0.26481 + 0.70225i

Z9 = -0.26481 + 0.70225i Z13 = 0.083836 + 0.60979i

Z8 = 0.083837 + 0.60979i Z14 = 0.03697 + 0.1324i

1
st
 I

te
ra

ti
o
n

Z7 = 0.036964 + 0.1324i

3
rd

 I
te

ra
ti

o
n

Z15 = -0.4521 + 0.51714i

Z6 = -0.4521 + 0.51714i Z16 = -0.055605 + 0.74511i

Z5 = -0.055602 + 0.74511i Z17 = 0.16906 + 0.42917i

Z4 = 0.16906 + 0.42917i Z18 = -0.10575 + 0.73528i

Z3 = -0.3559 + 0.24i Z19 = -0.42946 + 0.44449i

Z2 = -0.25 + 0.72i Z20 = 0.086858 + 0.21822i

Z1 = 0.1 + 0.6i Z21 = 0.059925 + 0.63791i

Initial “Z” Z0 = 0 + 0i

To verify that a robotic swarm can mimic the cyclone shape generated by the reverse

Julia set, MATLAB was used to implement the formula of the reverse Julia set. During

this simulation, the initial value (Z0) is as origin, while the constant value (C) is set to

0.1+0.6i, allowing the reverse Julia set formula to generate a cyclone shape. The images

in Figure 3.18 show the growth process of a cyclone shape that takes an outwards flow

direction. Each image shows the growth of a cyclone shape from the first iteration all

the way till the 30th iteration.

45

 (a) (b)

 (c) (d)

Figure 3.18 The cyclone shape generated using the reverse Julia Set formula (a) Cyclone shape after 8

iterations (b) Cyclone shape after 15 iterations (c) Cyclone shape after 20 iterations. (d) Cyclone shape

after 30 iterations.

Like the line-based formation, MATLAB and V-REP were used for implementing the

cyclone shape of the reverse Julia Set formation. The characteristic of the area used to

implement the cyclone shape is the same as the one used in the line-based formation.

Each robot will receive the location point from MATLAB using Equation (3.20).

Because of the small values generated by the reverse Julia Set formula, both 𝑎𝑧 and 𝑏𝑧

will be scaled up as well as the area. The first component 𝑎𝑧 is scaled 100 times, while

the second component is scaled 10 times for a better distribution of the robotic swarm.

Figures 3.19 and 3.20 show the process of distributing a swarm of copters inside an

area where the swarm is performing a cyclone shape for 2 iterations.

46

Figure 3.19 A robotic swarm mimicking the first iteration of a cyclone shape generated by the reverse

Julia Set, where each robot travelled to the assigned location point, preparing to travel to the next

location point.

Figure 3.20 A swarm of robots completed its first iteration of a cyclone shape using the reverse Julia

set formula.

To validate the function of using the reverse Julia set formation towards covering an

unknown area, the reverse Julia set is used to distribute a robotic swarm on the Tabon

cave as an unknown area. The reverse Julia set has a C component of 0.1+0.6i while

the Z component of zero. The formation is developed until a robot faces an obstacle.

Figure 3.21 presents a robotic swarm distribution that mimics the cyclone shape of the

reverse Julia set.

47

Figure 3.21 The distribution of a robotic swarm using reverse Julia set fractal formation on an unknown

area.

The simulated result in Figure 3.21 shows the distribution of 7 robots covering an area

of 81.097m2. It is noted that the formation expands at a slow rate which covers less

amount of area compared to the line-based formations. However, the reverse Julia set

is the only formation that uses a fixed number of robots for every incremented iteration

compared to line-based formations.

To analyse the outcomes e.g. number of robots used and the amount of area covered,

from using different fractal formations, Table 3-2 shows the total amount of area

covered and the used number of robots using both line and curve based formations

compared to PRM. It is noted that although using PRM had covered more areas than

using fractal formations, the number of robots needed by each fractal formation to cover

about 45% of the area covered by PRM is 88% less than the PRM. As all fractals

terminates their development process when a robot faces an obstacle, all the formations

could not reach the same covering value obtained by PRM. One solution to overcome

this obstruction is by changing one or more parameters of a fractal formation, which is

discussed in chapter 4.

48

Table 3-2 A list of the number of robots used and the amount of area covered using different fractal

formations and PRM.

Formation type PRM Tree Vicsek R. Julia Set

No. of robots

used

100 4 12 7

Covered area

(total = 785.1m2)

283.095m2 143.414m2 111.513m2 81.097m2

Average Time

Cost (Seconds)

54.1 17.5 22.8 14.5

Average and

Stand. Dev.

Avg.: 283.095

Std. Dev.: 8.862
Not Applicable Not Applicable Not Applicable

Percentage of

covered area

36.1% 18.3% 14.2% 10.3%

3.4 Summary

This chapter presents a detailed description of generating four fractal formations, where

each fractal is mathematically modelled and implemented by a robotic swarm in an

unknown area. Each fractal formation is classified according to its development process

into either a line-based formation or a curve-based formation. Each fractal class

contains two fractal formations, and each fractal formation had its growth rule formula

built to determine the number of robots needed and their location point within the

swarm. Table 2 shows a summary list of the amount of area obtained by a robotic swarm

when using both PRM and different formations of fractals.

The mathematical formula of the line-based fractals is based on the line segment, while

the curve-based fractals use the quadratic polynomial function for complex numbers.

Both MATLAB and V-REP are used to verify and implement the growth rule formulas

of each fractal formation using a robotic swarm. The simulation results show the ability

of a robotic swarm to implement a fractal as a swarm formation and use each formation

for exploring and covering an unknown area with a limitation when facing an obstacle.

This chapter answers the sub-question “How can a swarm of robots apply a fractal

formation to cover unknown areas?” However, while a robot faces an obstruction, a

change in fractal’s parameters could help the swarm to continue exploring and covering

49

an unknown area. Therefore, it is important to clarify the advantages/disadvantages of

using fractal formations with different parameters by a robotic swarm to cover an

unknown area. The next chapter describes, with extensive detail, both the pros and cons

of using fractal formations by analysing a number of parameters related to the fractal

class.

50

Chapter 4: Studying the Parameters of Fractal

Formations for Covering Unknown Areas

As fractals were used as a swarm formation to cover an unknown area, the parameters

of fractals controlling the distribution of robots were fixed to a specific value, leading

to a limited swarm distribution due to facing obstructions/boundaries. This chapter

focuses on understanding the effect of these parameters, as these parameters linked to

the growth rule formulas, on the distribution of a robotic swarm and covering an

unknown area. This effect is investigated by changing each parameter to different

values and observing the swarm behaviour's effect when using fractal formations

towards covering an unknown area. The outcome of investigating each parameter is an

analysis of the formation distribution on a pre-designed area and the amount of area

covered when distributing the changed parameter of a fractal formation on an unknown

area.

Therefore, this chapter presents a detailed study of the parameters affecting the robotic

swarm distribution for each fractal formation class. This study leads to an extraction of

the advantages and disadvantages of changing different parameters towards distributing

a robotic swarm and covering an unknown area. Each parameter is simulated using a

fractal formation on two different areas. The first area is a rectangular shaped area with

a known dimension to observe the impact of changing each individual parameter when

developing a fractal formation. The second area is a real unknown area taken from the

Tabon Cave (Choa et al., 2016). For both areas, fractal formations terminate their

development process once a branch faces an obstacle. MATLAB is used to simulate

each changing parameter when developed in both known and unknown areas.

This chapter presents four sections: the first section describes the techniques of

decomposing a complex area into simple shapes used as a basis for all the case studies.

The second section presents a detailed description of changing parameters of the line-

based fractals to different values and simulated each change on a rectangle-size area

and an unknown area. Part of the investigated parameters, such as obstacle existence,

are included in the study. The third section presents a detailed description of changing

parameters of the curve-based fractals. The simulation process used in the line-based

fractals is also applied for the curve-based fractals. The fourth section presents an

51

optimisation process of combining all the parameters together and obtaining the best

parameter values that provide the highest area coverage. The last section summarises

the work achieved and describes the impact of changing the parameters of fractal

formation towards covering an unknown area.

4.1 Analysis of an Unknown Area

As a robotic swarm uses a fractal formation to explore an unknown area, the swarm

needs to identify the structure of the area being explored to make the necessary

adjustment to one or more parameters and continue exploring the unknown area. While

it is impossible to identify the size of an unknown area without exploring this area, a

robotic swarm could partially estimate the shape of an unknown area by discovering

the elements that construct this unknown shape. According to (Hoffman, Lomonosov

and Sitharam, 2001; Jermann et al., 2006), a shape is constructed from joining line

segments to create a perimeter, and an area, exploring the area inside the shape requires

an entrance, and the area may contain obstacles. For the research purpose, the elements

affecting the construction of a shape are: boundary, entrance, and obstacle. Defining

each element helps the robotic swarm recognise these elements and determine the

suitable change of a fractal’s parameter to explore the unknown area. Each element is

defined as follow:

Boundary: “A barrier that defines the area of a shape, which could limit the swarm

from developing further formation iterations”.

Entrance: “An access point located at the boundary of an unknown area allowing a

robot to enter and explore”.

Obstacle: “A solid object preventing a robot from moving forward”.

As the area to be discovered is unknown, it is a challenging task for the robotic swarm

to identify the total size of the shape being discovered. Having a discovered area helps

the swarm match the discovered area to the nearest geometric shape, and therefore, has

an estimated size of the discovered area. Consequently, the robotic swarm will be able

to adjust parameters related to the selected fractal formation to increase the coverage of

the unknown area.

52

In real life, an unknown area is seen as a complex shape that can be divided into a finite

number of geometric shapes. One approach to analysing a complex shape is using

geometric constraint solving, an approach where a complex shape is assembled into

simple shapes using constraint solver algorithms such as graph reduction and

recognition using region division (Brüderlin, 1998; Gu et al., 2009). For an unknown

area, the geometric constraint solving method can facilitate the robot’s task to identify

a discovered object by dividing an area into regions, as shown in Figure 4.1, where a

division region approach is used to divide a swan into regions of head, body, and tail.

Figure 4.1 A swan image is identified using the recognition of regions (head, body, and tail) (Gu et al.,

2009). It is noted that the approach did not efficiently separate the body and the tail (shown in the right-

downside image) due to the similarity in colouring - Used with permission.

Using the division region method by a robotic swarm to explore complex areas can help

the swarm assemble a complex shape into several geometric shapes using a suitable

fractal formation. However, this method requires the swarm to have a pre-made map of

the area to be analysed by a constrain solver algorithm. Therefore, the division region

method is unsuitable for dividing an unknown area unless the perimeter is determined.

A similar approach for analysing a complex shape is decomposing a complex shape

into simple geometric shapes using a decomposition method such as a tree

decomposition and a division analysis (Hidalgo and Joan-Arinyo, 2015; Kapoutsis,

Chatzichristofis and Kosmatopoulos, 2017). This approach decomposes a complex

shape into more minor forms of a basic shape, as shown in Figure 4.2. This approach is

famous for the swarm robotics field when analysing and recognising areas (Jermann et

al., 2006). However, for this approach to be practical, the swarm must identify the

53

boundaries of the complex area using the traditional exploration methods described in

Chapter 2. In addition, having an effective swarm exploration relies on understanding

each exploration method's features so the swarm can choose the most effective method

for efficient exploration.

Figure 4.2 Decomposing a complex shape (left side) into a number of triangle shapes (right side) using

the division analysis method (Jermann et al., 2006) - Used with permission.

The above approaches show the importance of understanding the features of each

fractal formation for better covering an unknown area. Realising the effect of changing

a parameter on a fractal formation when covering an unknown area requires examining

these changes inside a rectangular shape with the criteria mentioned at the beginning of

the chapter. As shown in Figure 4.3, a simple rectangular shape with a width of 2 m

and a length of 4 m is used as a geometric area for each case study. The shape size was

selected to fit the developed fractal formation.

Figure 4.3 The proposed geometric shape used as an area to be explored.

4.2 Line-Based Fractal Formation

For the line-based formation, there are four algorithmic parameters related to the change

of the line fractals, and they are: number of branches (N), branch length (d), initial

formation direction (θ), and the separation angle between branches (α), while there are

three non-algorithmic parameters for the rectangular shape, namely: multiple entrances,

obstacle existence, and non-linear areas.

2m

4m

54

4.2.1 Case Study 1: Number of Branches (N)

Increasing or decreasing the number of branches can impact the amount of area to be

covered. Theoretically, the more branches the formation has, the higher the chance of

exploring more areas as each branch is developed in a different direction from

neighbouring branches. Demonstrating the effect of increasing the number of branches

towards covering an area requires selecting a fractal formation of which ‘N’ can be

adjusted. For this study, the tree fractal formation is used with a minimum number of

two branches.

The experiment conducted for this case study is to distribute a tree fractal formation

with two branches and three branches per iteration. As the area structure used is a

rectangular shape, shown in Figure 4.3, this experiment's assumption is as follows: the

area has only one entrance and no obstacles. Other parameters, including branch length,

initial formation direction, and the separation angle, are fixed to a constant value. As

for the tree formation, the angle separating the branches is fixed to (α = 30°), the tree

fractal formation can develop up to four iterations, the length of each branch (d = 0.5m),

and the start iteration direction (θ = 90°) perpendicular to the angle of the entrance.

The simulated images in Figure 4.4 shows both two and three branches of tree fractal

formation, including the removal of the overlapping branches, distributed inside a

rectangular shape. Each image is a simulation result of the tree formation behaviour

using MATLAB.

 (a) (b)

55

 (c)

Figure 4.4 The distribution behaviour of N-branch tree fractal formation inside a rectangular shape for

(a) two (b) three including overlaps (c) three excluding overlaps.

The simulation results in Figures 4.4 (a) and (b) show a noticeable increase in the area

covered with an increase in the number of branches. However, both far-right and far-

left sides of the rectangle area are not covered. The higher the number of branches used,

the more likely overlap of the branches will occur.

Figure 4.4 (c) shows a simplified distribution of a 3-branch tree formation after

removing the overlapping branches, allowing for even a higher area coverage and a

smaller number of robots to use. For this experiment, it is suitable to an extend to

increase the number of branches to cover more of the area’s surface, but it is not clear

what the impact of increasing the number of branches is when exploring the Tabon

Cave area.

A robotic simulation is conducted to observe the coverage of an unknown area when

changing the number of branches for a tree fractal formation, where each robot is

distributed, within the swarm, using the N-tree branch formulas (3.3) and (3.4). Each

robot has a sensing ability that covers a distance of 1m with a range of 180°. The robotic

swarm is not aware of the total size of the Tabon Cave (Choa et al., 2016). Each robot

can develop a branch with a distance of 5m. The simulated images in Figure 4.5

demonstrate the amount of area covered using both 2-branches and 3-branches,

respectively.

56

 (a) (b)

Figure 4.5 The robotic swarm distribution of N-branch tree fractal formation inside the Tabon Cave for

(a) two branches with three iterations (b) three branches with two iterations.

Figure 4.5 (a) shows a total distribution of 7 robots using 2-branch tree formation

covering an area of 124.81m2, while Figure 4.5 (b) shows a total distribution of the

same 7 robots but using 3-branch tree formation covering an area of 121.34m2.

Although the 2-branch tree formation has a slightly higher area coverage, the formation

needed 3 iterations, while the 3-branch tree formation required only 2 iterations to reach

about the same area coverage. This experiment shows that, for the Tabon cave

environment, it is preferable to increase the number of branches to increase the amount

of area covered.

4.2.2 Case Study 2: Branch Length (d)

Increasing the length of all the branches can increase the amount of area covered in

fewer iterations while decreasing the length of the branches can decrease the amount

covered without affecting the number of robots used for both cases. From another

perspective, each branch can have a different length, which allows a fractal formation

to cover more of the unknown area in a particular direction than another direction. Two

experiments are conducted to verify the effect of changing the branch length on the

swarm distribution and the amount of area covered. The first experiment aims to change

the length of all the branches, while the second experiment aims to change the length

of each branch individually.

57

The first experiment's assumption is as follows: the exact characteristics of the area

applied in the first case study also apply to this experiment. A tree fractal formation is

used with the minimum number of branches N=2, the separation angle between the

branches is fixed to (α = 30°), the tree fractal formation can develop up to four

iterations, the length of each branch is double the length of the first case study (d = 1m),

and the start iteration direction (θ = 90°) perpendicular to the angle of the entrance. The

second experiment's assumption is the same as in the first experiment, but the branch

length is changed as follow: the length of the left branch is 0.25m, the length of the

middle branch is 0.5m, and the length of the right branch is 1m.

For all the experiments below, the tree fractal formation is constrained with a fixed

number of iterations (i=3) for an equal comparison with the different changes of the

branch length. The images in Figure 4.6 shows the results for developing a tree fractal

formation inside a rectangular area, where the branches of the tree formation are short

(d = 0.25m) as shown in Figure 4.6 (a), while the branches are long (d = 1m) as shown

in figure 4.6 (b). Figures 4.6 (c) show different lengths of branches developed in order.

 (a) (b)

 (c)

Figure 4.6 The distribution behaviour of 2-branch tree fractal formation inside a rectangular shape for

(a) short length branches (b) long length branches (c) different lengths of branches.

58

The simulation result in Figure 4.6 (a) shows that the tree formation uses all the

available robots to form 3 iterations and cover as much area as possible, while Figure

4.6 (b) shows a fewer number of developed iterations as part of the formation reached

to the boundary of the area. However, because of the small branch length in Figure 4.6

(a), the tree fractal is able to expand its formation compared to the formation with long

branches. As for the simulation results in Figure 4.6 (c), the formation tends to expand

more at the longest branch side while narrowing at the shortest branch side, allowing

the formation to expand towards the longer branches. It is noted that the increase of the

branch length depends on the shape of the area, as some areas have a wide-size shape

that requires the swarm to increase the branch length in a horizontal direction, and vice

versa for the long shapes.

The parameter (d) is adjusted and applied in the Tabon cave by a robotic swarm to

observe the effect of changing a branch length when covering an unknown area. Each

robot can travel up to a distance of d = 2.5m for the short branch and a distance of d=

10m for the long branch. The characteristic of the robots used in this experiment is the

same as in the first case study. The simulated images in Figure 4.7 show the amount of

area covered using both short length branches and long length branches.

 (a) (b)

Figure 4.7 The robotic swarm distribution of 2-branch tree fractal formation inside the Tabon Cave for

(a) short length branches (b) long length branches.

The simulated fractal formation image in Figure 4.7 (a) shows a total distribution of 4

robots covering a total area of 37.766m2. Figure 4.7 (b) shows a total distribution of 4

robots covering an area of 195.657m2. The results show that for the selected

environment, the increase in the branch’s length allows the robotic swarm to cover more

59

area over the use of shorter branches. However, the long-length branch formation could

not develop more branches if a robot faces an obstruction, as shown in Figure 4.7 (b).

4.2.3 Case Study 3: Initial Formation Direction (θ)

The third parameter affecting the behaviour of a fractal formation is the initial formation

direction. The initial formation direction (θ) sets the direction of the formation to

develop. The initial formation direction can help the swarm prevent any obstruction

limiting the fractal development, and cover more areas in a specific direction. In the

previous case studies, the initial formation direction was set to be perpendicular to the

angle of the entrance (θ = 90°). For this case study, the initial formation direction is

changed to four different angles ranging from zero to 180° as follow: 30°, 60°,120° and

150°.

The experiment's assumption is as follow: the characteristics of the area applied in the

previous case study apply for this case study, a tree fractal formation is used with three

branches development, the angle separating the branches is fixed to (α = 30°), the tree

fractal formation can develop up to four iterations, and the branch length is fixed to (d

= 0.5m). The initial formation direction is set to four angles of 30°, 60°, 120°, and 150°.

Each value of the initial formation direction is applied as a separate experiment. The

tree formation is developed inside the rectangular shape until reaching the boundary of

the area. Images in Figure 4.8 show the simulation results of developing a tree fractal

formation with different initial formation directions.

 (a) (b)

60

 (c) (d)

Figure 4.8 The distribution behaviour of 2-branch tree fractal formation with different initial formation

directions inside a rectangular shape for (a) 30° (b) 60° (c) 120° (d) 150°.

The simulation results show that the initial formation directions of 30° and 60° cover

more areas towards the right side of the rectangular shape, while the initial formation

directions of 120° and 150° tend to cover more towards the left side of the rectangular

shape. |The initial formation direction helps the swarm cover more areas in a certain

direction than the default initial formation direction (90°). However, the total area

covered is about half of the rectangular shape, as shown in Figure 4.8 (a), where the

right side of the rectangular shape is mainly covered but not for the left-side and vice

versa for Figure 4.8 (d). Like the branch length case study, for this experiment, the

change in the initial formation direction depends on the shape of the area, which could

be a useful feature for the robotic swarm to avoid obstacles and cover a certain part of

the unknown area.

Observing the initial formation direction change in an unknown area required a

simulation experiment. An experiment is conducted where a robotic swarm covers the

Tabon cave but with an initial formation direction of 45°. The robotic sawm develops

two branches using the tree fractal formation. The maximum distance for a branch is d

= 5m, and the characteristic of the robots used in this experiment is the same as in the

first case study. The simulated outcome in Figure 4.9 shows the amount of area covered

when changing the initial formation direction to 45°.

61

Figure 4.9 The robotic swarm distribution of 2-branch tree fractal formation inside the Tabon Cave

with a start point in the middle of the entrance, and for an initial formation direction of 45°.

The simulated result shows the distribution of 4 robots with a covered amount of area

of 74.235m2. Like the analysis made for Figure 4.8, the initial formation direction can

either aid the robotic swarm in covering more areas or prevent the swarm from

exploring the unknown area. In the case of exploring the Tabon cave, one side of the

tree formation faces the boundary of the cave, preventing two robots from continuing

exploring the area. To overcome the obstruction issue, cooperative decision-making is

made to adjust two parameters: the distance of the branch (d) and the separation angle

(α). The decision was made by all the robots to prevent any overlaps between

neighbouring robots, avoid the obstruction caused, and continue exploring more areas.

The separation angle (α) is increased from 30° to 110°, while the distance of the

branches where left variable until each robot faces another obstacle. The decision

allows the obstructed robots to continue exploring the unknown area until the boundary

of the unknown area obstructs the robots.

4.2.4 Case Study 4: Separation Angle between Branches (α)

The last parameter that affects the line-based fractals is the separation angle (α), where

a fractal can either expand or compress its formation by changing the separation angle

between its branches. The wide fractal formation allows for a wide distribution of the

62

swarm, which can help explore wide areas, while the narrow fractal formation allows

for a narrow distribution of the swarm, which helps explore narrow areas. In this case

study, there are four experiments for different separation angles. The first experiment

examines a narrow separation angle of α = 10°. The second experiment examines a

regular separation angle of α = 45°. The third experiment examines a wide separation

angle of α = 90°. The final experiment examines a wider separation angle of α = 135°.

In this case study, a tree fractal formation is used in all the experiments, with two

branches developed in each iteration. The initial formation direction is set to 90°, and

the length of each branch is set to d = 0.5m. The characteristics of the area to be explored

are the same as in the previous case studies. The procedure of each experiment is to use

the tree fractal formation to distribute the robotic swarm but with different separation

angles. Each experiment is conducted using MATLAB, and the tree formation is

terminated when completing its fourth iteration. The images below in Figure 4.10

shows a demonstration of a tree formation distribution with different separation angles.

 (a) (b)

 (c) (d)

Figure 4.10 The distribution behaviour of 2-branch tree fractal formation with different separation

angles of (a) 10° (b) 45° (c) 90° (d) 135°.

The simulation results show a narrowed formation distribution using a narrower

separation angle, as shown in Figure 4.10 (a), while the formation distribution is wider

from Figure 4.10 (b) to Figure 4.10 (d). It is noticeable that the separation angle of α =

45° gives the swarm the maximum distribution using the tree formation, while the

separation angle of α = 135° reverses the formation distribution to grow inwards at one

63

iteration, then grows outwards in the next iteration as shown in Figure 4.10 (d). The

reverse growing behaviour is caused due to the separation angle of 135° being higher

than the maximum separation angle of distributing the swarm, which leads the branches

to grow in the reverse direction on every iteration of the formation development. In

addition, the same figure shows a high interference in branches caused by the reverse

formation growth. The change in the separation angle helps the swarm to adjust the size

of a fractal formation. Narrowing a fractal formation can facilitate the swarm’s task to

cover narrow areas, e.g. hallway, while expanding a fractal formation can aid the

robotic swarm in covering wide areas.

To verify the above analysis, the 2-branch tree fractal formation is applied on the Tabon

cave with a separation angle of 45°. The parameters of the tree fractal formation are

fixed to the following values: the distance for each branch is set to 5m, the initial

formation direction is set to zero, and the characteristic of the robots used in this

experiment is the same as in the first case study. The simulated outcome in Figure 4.11

shows the amount of area covered when changing the separation angle to 45°.

Figure 4.11 The robotic swarm distribution of 2-branch tree fractal formation inside the Tabon Cave

with a separation angle of 45°.

The simulated formation shows the distribution of 4 robots covering a total amount of

area of 86.177m2. The observation made for Figure 4.10 (b) matches the distribution of

64

the robotic simulation in Figure 4.11 as the robotic swarm gain the highest distribution

and covers as much area as possible. Compared to the robotic simulation shown in

Figures 4.9, 4.7 (a), and 4.5 (a), the separation angle change allows the robotic swarm

to obtain the highest amount of area covered. However, compared to the robotic

simulation shown in Figures 4.7 (b) and 4.5 (b), it is noted that changing both features

of branch length and the number of branches has shown a higher area coverage

compared to the change of the separation angle. However, the comparison applies to

the Tabon cave area and may not provide the same notice for different areas. Verifying

the impact of changing the angle of separation requires an optimisation process that is

made in section 4.4.

4.2.5 Case Study 5: Multiple Entrances

Like the parameters of the line-based formation, an area has parameters that could affect

the formation distribution during its development process. One parameter is the

existence of multiple entrances, where a swarm can use one or more entrances as a start

location point to develop a fractal formation. Two experiments are conducted to observe

the effect of a fractal formation when developed from multiple entrances. The first

experiment applies a fractal devolvement from all the existing entrances

simultaneously. The second experiment applies a fractal development only from one

entrance, putting the rest of the entrances without a fractal development, and this

process is repeated for each entrance individually.

All the experiments’ assumptions are as follows: A 2-branch tree fractal formation is

used to develop with a separation angle of 30°. The initial formation direction is set to

90°, and the length of each branch is set to d = 0.5m. The area to be explored is a

rectangular shape with three entrances. One entrance is located at the width of the

rectangle shape, a second entrance is located at the length of the rectangle shape, and a

third entrance is located at the corner. In the first experiment, 2-branch tree fractal

formation is developed in all the existing entrances at the same time, while in the second

experiment, the 2-branch tree fractal formation is developed at one entrance, in which

the fractal is developed at the entrance of the long side and repeating the same

development process at the entrance of the width side until a branch overlaps with

another branch. Figure 4.12 shows the simulation of the 2-branch tree fractal formation

inside a rectangle area from different entrances.

65

 (a) (b)

 (c) (d)

Figure 4.12 The distribution behaviour of 2-branch tree fractal formation which applies on (a) all the

existing entrances (b) the entrance of the long side (c) the entrance of the width side (d) the entrance at

the corner side.

The simulation result in Figure 4.12 (a) shows a higher coverage of the area compared

to the Figures 4.12 (b), (c), and (d), as all the entrances were used to develop a fractal

formation, leading to an overall time reduction in covering the rectangular area.

However, this comes with overlaps between the distributed formations. Two

approaches to address the overlap issue are to reduce the number of branches or the

number of iterations used. The simulation results in Figures 4.12 (b) and (c) show that

a robotic swarm used one entrance to develop a fractal formation to cover part of the

area, which may not be covered when developing the formation from a different

entrance. However, using one formation covered less area than using two fractals at the

same time from different entrances. One approach that allows the swarm to increase

their area coverage is by increasing the number of branches, as shown in Figure 4.4.

For the select rectangle shape, it is noted that the entrances located on the long side of

the rectangle shape and in the corner are the best locations to explore and cover the

shape. Additionally, adjusting a certain parameter, such as the initial formation

direction, for a fractal formation can reduce the overlap that occurs when developing

another fractal to cover an area.

66

4.2.6 Case Study 6: Obstacle Existence

Another parameter related to the designed area is the presence of obstacles. Obstacles

are considered the most significant obstruction for a fractal formation because they

prevent the formation from developing, consequently affecting the progress of covering

an unknown area by a robotic swarm. It is impossible to determine an obstacle inside

an unknown area unless it is detected and recognised by the swarm. The parameters

which describe an obstacle are size, shape, and location, and therefore, this subsection

presents three experiments showing the effect of fractal development when facing an

obstacle.

The first experiment shows the development of a fractal formation when facing one

obstacle in different locations. The second experiment is divided into two parts, where

one part shows the development of a fractal formation when facing multiple obstacles

of the same shape and size but in different locations, while the second part contains

multiple obstacles with the same shape but with a different size and in different

locations. The third experiment shows the development of a fractal formation when

facing multiple obstacles with different shapes, sizes, and locations.

All the experiments’ assumptions are as follows: A 2-branch tree fractal formation is

used with a separation angle of 30°. The initial formation direction is set to 90°, and the

length of the fractal’s branch is set to d = 0.5m. The area to be explored is rectangular

with one entrance and contains one or more obstacles placed in a random location. A

2-branch tree fractal formation is developed inside the rectangle area where obstacles

are randomly positioned for all the experiments. The branch which faces an obstacle

terminates its development process, and the formation will terminate its development

process when completing its fourth iteration. The simulation outcomes in Figure 4.13

show the effect of the tree fractal formation’s development when facing obstacles.

 (a) (b)

67

 (c) (d)

(e)

Figure 4.13 The distribution behaviour of 2-branch tree fractal formation inside a rectangular shape

which contains obstacles (a) far from the entrance (b) nearby the entrance (c) same size obstacles (d)

different size obstacles (e) different shapes of obstacles.

The simulation results in Figures 4.13 (a) and (b) show that the closer the obstacle to

the entrance, the difficult the formation grows as an obstacle blocks some branches.

One approach to resolve this issue is changing the separation angle to allow the

branches to continue developing. Figures 4.13 (c) and (d) show that the higher the

number of presented obstacles, the higher number of obstructed branches occur.

However, the non-obstructed branches iterate around an obstacle, which compensates

the obstructed branches from the inability to iterate further and helps the overall

formation cover as much area as possible. Figures 4.13 (e) and (f) show that the larger

the obstacle's size, the higher the number of obstructed branches occurs. Figures 4.13

(g) and (h) show that having different obstacles prevents current branches from

developing further branches.

Having obstacles inside an area can have a major impact on developing a fractal

formation, especially when these obstacles are nearby the start location point of the

fractal formation. However, as the line-based fractal formation contains a number of

flexible parameters, fractal formations can be adjusted to overcome the obstruction

made by obstacles. Additionally, the compensation made by the unobstructed branches

68

allows the formation to surround obstacles and approximately identify their size and

shape.

4.2.7 Case Study 7: Non-linear Area

The last parameter related to the designed area is the surface of an area, where the

internal dimension of the area to be discovered does not represent a basic shape, but a

random shape. As the formation aims to cover an area completely, the non-linear

structure of the internal area surface can be considered an obstruction, preventing a

fractal formation from continuing to develop more branches. To observe the effect of a

fractal formation development towards covering a non-linear area, two random shapes

are presented in Figure 4.14. Each random shape is considered a separate experiment

covered by a fractal formation based on the assumption made. Two experiments were

conducted; the first experiment aimed to develop a selected fractal formation inside the

large area of a random shape shown in Figure 4.14 (a), and the second experiment aimed

to develop a selected fractal formation inside the small area in a random shape as shown

in Figure 4.14 (b).

 (a) (b)

Figure 4.14 Two random-dimension shapes to be covered by a line-based fractal formation (a) first

random shape (b) second random shape.

The assumptions for both experiments are as follows: a 2-branch tree fractal formation

is used to develop up to 4 iterations with a separation angle of 30°. The initial formation

direction is set to 90°, and the length of the fractal’s branch is set to d = 0.5m. The area

to be explored is a random shape with one entrance, and no existing obstacles. The 2-

branch tree fractal formation is developed inside each random area, and the formation

will terminate its development process after four iterations. The simulation outcomes

in Figure 4.15 presents the formation development on random shapes.

69

 (a) (b)

Figure 4.15 The distribution behaviour of 2-branch tree fractal formation inside a random-dimension

shape (a) first random shape (b) second random shape.

Figure 4.15 (a) shows that the tree fractal formation was partially affected for some

branches, while other non-affected branches could continue developing more branches.

As a result of the partial obstruction, both large and small areas were not completely

covered. One approach to overcoming this issue is changing the separation angle

between branches, as shown in Figure 4.15 (a). The simulation result in Figure 4.15 (b)

shows a severe effect on the formation development, where all the branches are

obstructed. The same approach used for the previous experiment of Figure 4.15 (a)

applies to this experiment, where the formation will continue developing more

branches, but at the cost of overlapping.

It is expected to have a complex random shape as an unknown area in real life, which

requires a careful selection of a fractal formation and its parameter values. Therefore,

the experiments for distributing a robotic swarm when changing a particular fractal

parameter were applied on a real map of the Tabon cave to ensure the reliable use of

different parameters towards exploring an unknown area.

4.3 Curve-Based Fractal Formation

Similar to the previous section, this section presents the effect of changing parameters

but then for the curve-based formations. Each parameter is discussed and analysed as a

separate case study where a brief introduction about the experiment is provided

alongside the respective assumption and the experimental procedure. Simulation

experiments are conducted using MATLAB, and result analysis is discussed at the end

of each section. As the purpose of each experiment is to observe the expansion of the

curve-based formation inside an area, all the experiments are executed using the reverse

70

Julia set formula. The curve-based formation contains five parameters, two are related

to the change of the curve fractals, and three are related to the change of the rectangular

shape.

4.3.1 Case Study 1: Changing the Z Value

As the principle of developing curve-based fractal formations is recuring the complex

number Z using a quadratic polynomial function, this case focuses on observing the

effect of changing the element Z towards developing a curve-based fractal formation in

covering an unknown area. According to Section 3.3.1 in Chapter 3, the Z value

represents the location points for the robots to follow. While 𝑍 = 𝑎𝑧 ± 𝑏𝑧𝑖 contains

both real and imaginary parts, setting specific values for each part and recuring them,

using Equation 3.22 or 3.24, produces a certain shape related to the Julia Set fractal

formation.

To observe the effect of changing the Z value towards discovering an unknown area,

the C value is set to a fixed value of (0.1+0.6i) to resemble the cyclone shape, while the

Z is changeable. For this section, two experiments are conducted in which the first

experiment demonstrates the change of the cyclone shape affected by the change of the

parameters of Z, while the second experiment applies some of the results from the first

experiment into an area and observes the amount of area covered for each result. The

area's characteristics to be explored are the same shape applied in the line-based

formation, namely a rectangular shape with one entrance.

In the first experiment, the values of the parameters 𝑎𝑧 and 𝑏𝑧 should have a similar

structure to the cyclone shape, and therefore, are both ranged from 0.2 to 0.8. 𝑏𝑧 is fixed

to a certain value while 𝑎𝑧 is changing its value in a step of 0.1. It is expected that some

results can produce different formations that suit the swarm to mimic and apply for the

second experiment, and some can produce overlapped formations that are difficult to

use by the swarm. A total of 49 simulation images show the output shapes when

changing the Z value, some of these simulated shapes are similar, and therefore, the

three simulated images that resemble the cyclone shapes are presented in Figure 4.16

(a), while the three simulated shapes that show irregular shapes are presented in Figure

4.16 (b). The complete set of 49 simulation images is presented in Appendix A.2.

71

 (a)

(b)

Figure 4.16 The distribution behaviour of the reverse Julia set fractal formation when changing the Z

values (a) Shapes which resemble a cyclone the closest (b) Shapes which are far from resembling a

cyclone shape.

The simulation results in Figure 4.16 (a) show that while changing the Z for both real

and imaginary values can produce a different structure of cyclone shapes, it also can

result in irregular shapes, as shown in Figure 4.16 (b), which is difficult to mimic by a

robotic swarm due to the overlap. One can clearly observe that the flow direction of the

cyclone shape can be either anti-clockwise (left side of Figure 4.16 (a)) or clockwise

(right side of Figure 4.16 (a)). The simulated outcome is useful as it allows the robotic

swarm to decide which cyclone shape is best to mimic based on the information

obtained while exploring an unknown area. Based on the observed simulation, the

selected formations in Figure 4.16 (a) are applied on a rectangle area where the core of

each formation is centred at the middle of the entrance. Figure 4.17 shows the

distribution of the selected formations towards covering a rectangular shape.

72

 (a) (b)

 (c)

Figure 4.17 The distribution behaviour of different cyclone shapes of the reverse Julia set fractal

formation inside a rectangle area (a) when Z = 0.3+0.4i (b) when Z = 0.2+0.6i (c) when Z = 0.4+0.4i.

The simulation results in Figure 4.17 shows that the separation between the cyclone

branches is wide (Figure 4.17 (b)), while it is narrow for other cyclone branches (Figure

4.17 (a)). It is also notable that while all the cyclone shapes have the same iteration

level, some of these shapes have covered more area than other cyclone shapes.

Depending on the sensing capability of a robotic swarm, the swarm can select or adjust

the separation of the current cyclone shape to allow for more expansion and more

covering of an unknown area.

To realise the effect of changing the value of Z towards covering an unknown area, the

cyclone shapes presented in Figure 4.17 are applied to the Tabon cave as an unknown

area. Three experiments are conducted where each cyclone formation holds a unique Z

value and is distributed using a robotic swarm. The robot’s sensing ability as well as

the speed have the same values as the in the first case study in the line-based formation.

The simulated formation in Figure 4.18 shows the amount of area covered when

changing the value of Z to 0.3+0.4i (a), 0.2+0.6i (b), and 0.4+0.4i (c), respectively.

73

 (a) (b)

(c)

Figure 4.18 The robotic swarm distribution of different cyclone shapes of the reverse Julia set fractal

formation inside the Tabon cave (a) when Z = 0.3+0.4i (b) when Z = 0.2+0.6i (c) when Z = 0.4+0.4i.

The simulated images in Figures 4.18 (a), (b), and (c) show the distribution of 4 robots

covering a total area of 69.514m2, 79.980m2, and 74.648m2, respectively. It is

noticeable that applying different values of Z show different values of covered areas;

more specifically, increasing the real part and decreasing the imaginary part improves

the chances for the robotic swarm to cover more areas as Figure 4.18 (b) shows the

highest value of the covered area.

4.3.2 Case Study 2: Changing the C Value

The second parameter which affects the behaviour of the Julia set fractal formation is

the C value. Like the Z value, the C value contains both real and imaginary values 𝐶 =

𝑎𝑐 ± 𝑏𝑐𝑖 which can change the Julia set shape based on the change of both complex

74

parts. This section focuses on investigating the changing behaviour of the cyclone

shape, presented the value of C = 0.1+0.6i of the Julia set formation by changing the

values of both complex parts.

The experiment's assumptions are as follows: the reverse Julia set formula is applied

where the Z value is set to zero, while the C value is changeable. One part of the first

experiment contains a fixed imaginary part 𝑏𝐶 = 0.6𝑖 while the real part is changed

between zero and 0.3 with a step change of 0.05 for detailed results. The other part

contains a fixed real part 𝑎𝐶 = 0.1 while the imaginary part is changed between 0.1 and

0.4 with a step change of 0.1. Figure 4.19 shows the changing behaviour of the cyclone

shape when changing both real and imaginary values in Figures 4.19 (a) and (b),

respectively.

 (a) (b)

Figure 4.19 The distribution behaviour of the reverse Julia set fractal formation when changing the C

value (a) changing the real part of the C value (b) changing the imaginary part of the C value.

Figure 4.19 (a) shows that increasing the real part enlarge the cyclone formation, while

increasing the imaginary part results in the cyclone expanding its formation vertically.

Changing the parameters of the C value allows the robotic swarm to adjust its current

cyclone formation to increase its size for a higher chance of covering more areas.

Overall, the change in the C values shows the ability to resize the cyclone formation

without the need to change the shape itself.

C=0.05+0.6i

C=0.1+0.6i

C=0.15+0.6i

C=0.2+0.6i

C=0.25+0.6i

C=0.3+0.6i

C=0.1+0.1i

C=0.1+0.2i

C=0.1+0.3i

C=0.1+0.4i

C=0+0.6i

75

4.3.3 Case Study 3: Multiple Entrances

Similar to the line-based formation, one needs to consider changes to the unknown area,

such as the existence of multiple entrances. Having multiple entrances allows one

cyclone formation to be developed at each entrance, increasing the overall coverage of

the unknown area. To observe the effect of developing a cyclone formation at each

entrance, two experiments are conducted. The first experiment presents a cyclone

development in one entrance, while the second one presents cyclone development in all

entrances. For both experiments, two entrances exist, one located at the width of the

rectangle perimeter and another entrance located at the length of the perimeter. The

formula used to develop a cyclone shape is the reverse Julia Set with Z value of zero,

and C value of 0.1+0.6i. The reverse Julia Set will terminate its development at the

fourth iteration or when any developed branches hit a boundary. Figure 4.20 presents

the effect of developing multiple cyclone shapes on multiple entrances when covering

a rectangle area.

 (a) (b)

 (c)

Figure 4.20 The distribution behaviour of the reverse Julia Set fractal formation inside a rectangle area

(a) Using one entrance (b) Using all the available entrances (c) Using two entrances, one which located

at the corner of the rectangular shape.

Figure 4.20 shows that the upper part of the cyclone formation covered the area inside

the rectangular shape, while the lower part covered some area outside of the area of

76

exploration. Having multiple cyclone shape helps the robotic swarm to cover more

areas, but as part of the cyclone covers an area outside the rectangle, the overall

coverage is only partially efficient. A suggested solution is to redevelop different fractal

shapes from the last location points of the cyclone shape, if the last location points are

inside the area. Unlike the cyclone development from both the width and length, the

developed cyclone located at the corner entrance covers less area as most of the cyclone

shape covers the outside area.

4.3.4 Case Study 4: Obstacle Existence

Another parameter that affects the development of a curve-based formation is the

presence of obstacles. Obstacles can be either major or minor obstructions on

developing a curve-based formation depending on their location inside the area. To

observe the effect of developing a cyclone formation when facing obstacles, two

experiments are conducted. The first experiment contains two obstacles, of which one

is near the entrance, and the same applies to the second experiment, but with an obstacle

far from the entrance of an area. The assumption for both experiments are as follow:

the characteristics of the area to be explored is a rectangular shape with one entrance

and contains two obstacles with different shapes, and the formula used for developing

a cyclone shape is the reverse Julia Set with a Z value of zero and a C value of 0.1+0.6i.

The procedure of both experiments is as follows: a cyclone shape is developed at the

centre of the entrance until the formation reaches either an obstacle or a boundary.

Figure 4.21 shows the impact of obstacle existence on the formation development and

covering an area.

 (a) (b)

Figure 4.21 The distribution behaviour of the reverse Julia set fractal formation inside a rectangle area

(a) Two obstacles, one which is nearby the entrance (b) Two obstacles, one which is far from the

entrance.

77

Figure 4.21 shows that the impact of the nearby rectangle obstacle prevents the cyclone

from expanding (Figure 4.21 (a)). While the rectangle obstacle located far from the

entrance allows the cyclone shape to complete its development (Figure 4.21 (b)),

increasing the swarm’s ability to cover more of the area. Like the line-based formation,

the curve-based formation needs to adjust its formation to prevent obstacles. One

approach to overcoming the obstruction issue is changing the Z value to convert to a

suitable shape that develops a formation away from obstacles. Also, changing the

current formation to line-based formation can aid the robotic swarm towards covering

more parts inside an area.

4.3.5 Case Study 5: Non-linear Area

The last parameter that affects the development of a curve-based formation is the

change of the internal shape of an area. Similar to the line-based formation, the same

shapes shown in Figure 4.14 are considered to observe the effect of developing a

cyclone shape on covering a non-linear area. Therefore, two experiments were

conducted. The first experiment is meant to apply a cyclone shape to be developed

inside a large-space shape, and the second experiment applies the development of a

cyclone shape inside a narrow shape. The assumptions made for both experiments are

as follow: The cyclone formation is generated using the reverse Julia set with Z value

set to zero, and C value is set to 0.1+0.6i, which resembles the cyclone shape. The

cyclone formation is to develop until it hits the surface of the non-linear area. Figure

4.22 shows the effect of developing a cyclone shape at the entrance of a non-linear area

for large and narrow spaces.

 (a) (b)

Figure 4.22 The distribution behaviour of the reverse Julia set fractal formation inside non-linear areas

(a) large space non-linear area (b) narrow space non-linear area.

78

The simulation results in Figure 4.22 show that the upper part of the cyclone shape is

able to cover inside the non-linear area, while the lower part covers the outside area. As

the cyclone formation grows slowly, having a complex area surface with non-linear

boundaries did not affect the development process of the cyclone formation. However,

with the centre of the entrance being the start location for the cyclone formation, the

formation did not fulfil the task of covering an unknown area. Therefore, the cyclone

formation is useful when it develops inside the unknown area to ensure all the formation

parts cover the unknown area.

Overall, the change in any parameter of a fractal formation can affect the distribution

of a robotic swarm towards covering an unknown area. The effect can be in the amount

of area covered and the number of robots needed to develop certain fractal formations.

To summarise the results obtained from the case studies, the table below lists all the

robotic simulation results obtained using both line and curve-based formations and

compare them with a traditional exploration method called PRM. Table 4-1 shows that

although most of the changed parameters did not reach the amount of area covered by

PRM, all the fractal formations use 88% less number of robots to reach about 50% of

the area covered by PRM.

Table 4-1 Lists all the results obtained from the robotic simulation experiments when changing each

parameter and compared them to PRM.

Formation

type
PRM Tree Tree Tree Tree Tree Tree R. Julia

Set

R. Julia

Set

R. Julia

Set

Adjusted

Parameters

-

N = 2

d = 5m

θ = 0°

α = 30°

N = 3

d = 5m

θ = 0°

α = 30°

N = 2

d = 10m

θ = 0°

α = 30°

N = 2

d =2.5m

θ = 0°

α = 30°

N = 2

d = 5m

θ = 45°

α = 30°

N = 2

d = 5m

θ = 0°

α = 45°

Z =

0.4+0.4i

C =

0.1+0.6i

Z =

0.3+0.4i

C =

0.1+0.6i

Z =

0.2+0.6i

C =

0.1+0.6i

No. of

robots used

(Max = 100)

100

7

7

4

4

4

4

4

4

4

Percentage

of used

robots

100%

7%

7%

4%

4%

4%

4%

4%

4%

4%

Covered

area

(total =

785.1m2)

283.095m2

124.810m2

121.340m2

195.657m2

37.766m2

74.253m2

86.177m2

74.648m2

69.514m2

79.980m2

Percentage

of covered

area

36.1%

15.8%

15.5%

24.9%

4.8%

9.5%

10.9%

9.5%

8.9%

10.2%

79

4.4 Optimisation of Fractal Formations’ Parameters

Parameters of a fractal model are individually investigated but with a set of selected

values, and these values may not show the highest area coverage when combined with

the rest of the parameters. The previous section did not investigate the possible

combination of the parameters as it requires an optimisation process. Therefore, this

section presents an optimisation for parameters of a fractal model to obtain the

maximum area coverage a fractal model can reach.

 In this section, one line-based fractal model named the N-branch tree fractal formation

is optimised using the gradient descent algorithm (Hooman Oroojeni, Majid Al-Rifaie

and Nicolaou, 2018). Gradient descent is a first-order optimisation method that obtains

the maximum cost value by adjusting the entered parameters to reach the best value

compared to a default one. This section focuses on optimising linear parameters, such

as in the tree fractal formation, while the non-linear parameters of the curve-based

formation require further steps of selecting the cyclone shape that expands2 and

converting the complex numbers to new parameters suitable for optimisation. These

further steps are out of the scope of the research, and therefore, gradient descent is a

convenient method to optimise the tree fractal formation.

To simplify the optimisation process, the simplest form of tree formation is the 2-branch

tree fractal model, which constrains the number of branches to N=2. Therefore, the

parameters to be optimised are the separation angle (α), the branch distance (d), and the

initial formation direction (θ). Each parameter is set to the maximum range to ensure

that all the possible combinations are processed, and the maximum area coverage is

obtained. The separation angle parameter is ranged from 10° to 90° with 10° step size,

the branch distance is ranged from 1m to 9m with 1m step size, and the initial formation

direction is ranged from -90° to 90° with a 20° step size. It is noted that the step-size is

adjusted to allow all the parameters to have the same size-length for the optimisation to

perform3. The selected environment to use is the Tabon Cave area mentioned in Figure

2 For more details on the reverse Julia set’s cyclone shapes, please check Appendix A.2 on page 97

3 A simplified code illustrating the process of optimising the parameters of the N-branch Tree fractal

formation is shown in Appendix A.3 on page 100.

80

3.9 (a). The images in Figure 4.23 show the results obtained after implementing the

optimisation method for the combined parameters.

(a) (b)

 (c)

Figure 4.23 High-dimensional representation of the area covered by optimising the parameters of (α, d,

θ) for (a) the first iteration (b) the second iteration, and (c) the third iteration with the maximum area

coverage shown on the top-left side.

For the first iteration, Figure 4.23 (a) shows a linear relationship between the parameters

and the amount of area covered. However, the graph shows a degradation of the covered

area when the separation angle is higher than 70°, and the branch length is higher than

5m. The degradation is presented because the formation faces obstacles when a wide

separation angle is tested. For the second iteration, Figure 4.23 (b) shows a bit more

degradation in area coverage compared to the first iteration when the branch length is

equal to or higher than 5m. The degradation happens due to having more developed

branches, allowing the formation to cover different areas and facing more obstacles.

Figure 4.23 (c) shows even more degradation in area coverage for the third iteration

81

compared to the previous two iterations. However, the gradian descent successfully

obtained maximum area coverage in the third iteration with a value of 634.248m2.

The conducted optimisation process shows that a tree fractal formation with parameter

values of α = 10°, d = 9m, and θ = 0° can cover 80.1% of the total area and 44.6% more

covered area compared to PRM. It is noted that by optimising the parameters of a fractal

formation, a robotic swarm can obtain the maximum possible area to cover with a

minimum number of robots needed. The optimisation of fractal parameters shows the

benefit of using fractals as a swarm formation by having the best possible parameter

values deployed to the available number of robots and maximising the coverage of a

particular area. To observe the overall iterations of the optimised tree fractal formation,

Figure 4.24 represents the combination of the tree fractal parameters and their related

area covered as a circle shape distributed in a horizontal sheet representing the

iterations.

Figure 4.24 The overall representation of the optimised parameters for the first 3 iterations with the

maximum area coverage detected at the top-left side.

4.5 Summary

This chapter presented an analysis of fractal classes by understanding the effect of

adjusting parameters of a fractal formation toward covering an unknown area. Each

fractal class contains a number of parameters that can partially change the fractal

formation without affecting the development process. Each parameter is studied

separately and simulated on a rectangle size area and an unknown area. All the

experiment outcomes are compared to the PRM in terms of the number of robots used

82

and the amount of area covered on a fixed timeframe. In order to understand the effect

of changing multiple parameters simultaneously, optimisation of a tree fractal

formation is made by combining the parameters “separation angle (α), the branch

distance (d), and the initial formation direction (θ)” to determine the maximum area

coverage.

It is noticed that some parameters, such as the number of branches N, or changing the

value of constant C, can aid the robotic swarm in increasing the chance of covering an

unknown area. In contrast, some non-linear parameters, such as having obstacles inside

an area, prevent the robotic swarm from covering an unknown area. The robotic swarm

can adjust a part of the fractal formation to allow the robots to develop more branches,

increasing the possibility of discovering different areas without changing the current

formation. Optimising the parameters of the tree fractal model provides a substantial

chance of obtaining the maximum area coverage by adjusting these parameters together

and determining the best combination of the parameters leading to the highest area

coverage a tree fractal model can get.

Unlike the transformation from one formation to another, which requires decomposing

and composing shapes, a robotic swarm is not required to go through these stages to

change a specific formation as fractal formations are adjustable. Observing the change

in a particular fractal parameter reveals that a robotic swarm can better cover certain

areas where changes in fractal parameters are required. Therefore, the robotic swarm

can choose which parameter to change to prevent obstruction and increase the ability

to cover areas. The common effect in the swarm formation is reducing the number of

robots used compared to the PRM exploration method, where PRM uses a higher

number of robots to cover as much area as a fractal formation, but with 88% fewer

number of robots.

83

Chapter 5: Conclusion and Future Work

5.1 Conclusion

This thesis presents an implementation of four fractal formations by a robotic swarm to

explore and cover an unknown area. These fractals are classified, modelled, and verified

to be used as a robotic swarm formation. The effect of changing a fractal parameter on

SR when covering an unknown area shows an increase in the area coverage changing

some parameters, such as branch length, and an obstruction avoidance when changing

other parameters, such as the separation angle.

Overall, the work presented in this thesis shows that a contribution is made to the SR

field by introducing fractals as a swarm formation approach. Fractals show the balance

of using a particular number of robots when developing to a certain iteration. SR shows

the ability to explore an unknown area using fractal formations with about 88% less use

of robots and 3 to 10 times more efficiency than PRM, according to, when changing

the parameters, giving the SR the flexibility to extend the exploration of an unknown

area.

As fractal formations have advantages when used by SR to explore an unknown area,

there also shows limitations with regards to facing obstruction and overlapping.

Changing the parameters of a fractal formation can help the swarm to overcome

obstacles, however, some of these parameters, such as the Z value, are not effective for

certain fractal formations. One presented fractal, tree formation, shows overlaps

between its branches when developing. This overlap is addressed by adding an overlap

formula detecting and removing these overlapping branches. Still, the current

development structure of the tree formation can be improved in future work.

In conclusion, it is confirmed that a swarm of robots can use fractals as a swarm

formation to explore an unknown area. The research question “What are the

advantages/disadvantages of using different fractal swarm formations to explore and

cover unknown areas?” is answered by presenting both the advantages and

disadvantages. Consequently, a number of suggested future work is presented in the

next section.

84

5.2 Future Work

A number of suggested future work are described as follow: explore more fractals to

improve the structure of the current fractal formations and obtain new advantages and

parameters, and also, develop a decision-making process for a robotic swarm to decide

which fractal to use.

As the tree fractal formation shows overlap in its branch, future work should consider

looking at a similar structure to tree fractals whose branches do not overlap with each

other. An example of such a plant is a fern, whose branches do not overlap and show

the fractal properties of self-similarity and recursiveness. A fern fractal formation will

overcome the overlap issue and may provide new parameters helping the SR cover more

areas.

While a large number of fractals exist, future work should consider the exploration of

new fractals for implementation by SR. This implementation will present new fractal

classifications and discover new parameters. Examples of fractals to explore are:

Sierpinski triangle, Koch curve, Apollonian gasket, etc (Bandt, Mörters and Zähle,

2009). Other natural fractals such as crystals, lightning bolts, clouds, etc. can also be

considered and may need a growth rule to be implemented by SR.

Selecting a suitable fractal formation to explore an unknown area requires swarm

detection, and therefore, future work should consider creating a decision-making

process for a robotic swarm. This decision-making process would allow the swarm to

make a cooperative decision and ensure that the selected fractal formation and the

changing parameter effectively cover the unknown area. Building an independent

decision-making process, particularly for fractal formations, allows for adding more

fractals/parameters to be used by SR.

85

References

Abukhalil, T. and Sobh, T. (2013) Survey on Decentralized Modular Swarm Robots

and Control Interfaces, Madhav Patil & Tarek Sobh International Journal of

Engineering (IJE).

Ahmadi, M. and Stone, P. (2006) “A Multi-Robot System for Continuous Area

Sweeping Tasks,” in Proceedings - IEEE International Conference on Robotics and

Automation, pp. 1724–1729.

Ahmed, J.U. et al. (2021) Rescue Mission in the Tham Luang Nang Non Cave,

Thailand. 1st edn, Rescue Mission in the Tham Luang Nang Non Cave, Thailand. 1st

edn. London, United Kingdom: SAGE Publications.

Amar, L.B. and Jasim, W.M. (2021) “Hybrid metaheuristic approach for robot path

planning in dynamic environment,” Bulletin of Electrical Engineering and Informatics,

10(4).

Anguera, J. et al. (2020) “Fractal Antennas: An Historical Perspective,” Fractal and

Fractional, 4(1), pp. 1–26.

Ashby, W.R. (2004) “Principles of the Self-Organizing System,” ECO Emergence:

Complexity and Organization, 6(1–2), pp. 102–126.

Ashton, C. et al. (2015) “The Search for MH370,” Journal of Navigation, 68(1), pp. 1–

22.

Balka, R., Buczolich, Z. and Elekes, M. (2015) “A New Fractal Dimension: The

Topological Hausdorff Dimension,” Advances in Mathematics, 274, pp. 881–927.

Bandt, C., Mörters, P. and Zähle, M. (2009) Fractal Geometry and Stochastics IV,

Progress in probability. Edited by P. Mörters. Berlin: Birkhäuser Verlag AG.

Brüderlin, B. (1998) Geometric Constraint Solving and Applications, Geometric

Constraint Solving and Applications. Springer Science & Business Media.

86

Cabrera-Mora, F. and Xiao, J. (2012) “A Flooding Algorithm for Multirobot

Exploration,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 42(3), pp. 850–863.

Cai, C. et al. (2007) “Collision Avoidance in Multi-Robot Systems,” in Proceedings of

the 2007 IEEE International Conference on Mechatronics and Automation, ICMA

2007, pp. 2795–2800.

Cardona, G.A. and Calderon, J.M. (2019) “Robot Swarm Navigation and Victim

Detection Using Rendezvous Consensus in Search and Rescue Operations,” Applied

Sciences (Switzerland), 9(8), pp. 1–23.

Chen, Y.C. and Wang, Y.T. (2007) “Obstacle Avoidance and Role Assignment

Algorithms for Robot Formation Control,” in IEEE International Conference on

Intelligent Robots and Systems, pp. 1–6.

Chen, Y.G. and Wang, Y.T. (2007) “Dynamic Role Assignment Algorithm for Robot

Formation Control,” in IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, AIM, pp. 1–6.

Cheng, C. et al. (2012) “Outdoor scene image segmentation based on background

recognition and perceptual organization,” IEEE Transactions on Image Processing,

21(3), pp. 1007–1019.

Cheng, J., Cheng, W. and Nagpal, R. (2005) “Robust and self-repairing formation

control for swarms of mobile agents,” AAAI’05 Proceedings of the 20th national

conference on Artificial intelligence, 1, pp. 59–64.

Cheng, K., Wang, Y. and Dasgupta, P. (2009) “Distributed Area Coverage Using Robot

Flocks,” in 2009 World Congress on Nature & Biologically Inspired Computing

(NaBIC), pp. 678–683.

Choa, O. et al. (2016) “Stable Isotopes in Guano: Potential Contributions Towards

Palaeoenvironmental Reconstruction in Tabon Cave, Palawan, Philippines,”

Quaternary International, 416, pp. 27–37.

87

Dadgar, M., Jafari, S. and Hamzeh, A. (2016) “A PSO-based multi-robot cooperation

method for target searching in unknown environments,” Neurocomputing, 177.

Dorigo, M., Theraulaz, G. and Trianni, V. (2021) “Swarm robotics: Past, present, and

future,” Proceedings of the IEEE.

Efremov, M.A. and Kholod, I.I. (2020) “Swarm Robotics Foraging Approaches,” in

Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical

and Electronic Engineering, EIConRus 2020.

Eissa, H. et al. (2018) “Enhancing Robotic Swarms With Fractal Behaviours to Explore

Unknown Enclosed Areas,” in 3rd Medway Engineering Conference: Systems:

Efficiency, Sustainability and Modelling. Chatham Maritime, United Kingdom, pp. 1–

6.

Falconer, K. (1990) “Fractal Geometry: Mathematical Foundations and Applications.,”

John Wiley and Sons, p. 886.

Faria Dias, P.G. et al. (2021) “Swarm robotics: A perspective on the latest reviewed

concepts and applications,” Sensors.

Foead, D. et al. (2021) “A Systematic Literature Review of A*Pathfinding,” in

Procedia Computer Science.

Gneiting, T., Ševčíková, H. and Percival, D.B. (2012) “Estimators of Fractal

Dimension: Assessing the Roughness of Time Series and Spatial Data,” Statistical

Science, 27(2), pp. 247–277.

Gordon, N., Wagner, I. a. and Bruckstein, A.M. (2003) “Discrete Bee Dance Algorithm

for Pattern Formation on a Grid,” in IEEE/WIC International Conference on Intelligent

Agent Technology, 2003. IAT 2003., pp. 1–5.

Gu, C. et al. (2009) “Recognition Using Regions,” in 2009 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops, CVPR

Workshops 2009, pp. 1030–1037.

88

Gunna, T. and Anderson, J. (2013) “Dynamic Heterogeneous Team Formation for

Robotic Urban Search and Rescue,” in Procedia Computer Science, pp. 22–31.

le Hardy, P.K. and Moore, C. (2014) “Deep Ocean Search for Malaysia Airlines Flight

370,” in 2014 Oceans - St. John’s, OCEANS 2014. St. John’s, NL, Canada: IEEE, pp.

1–4.

Hart, P.E., Nilsson, N.J. and Raphael, B. (1968) “A Formal Basis for the Heuristic

Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science and

Cybernetics, 4(2), pp. 100–107.

Heinz-Otto Peitgen, Hartmut Jürgens, D.S. (2004) Chaos and Fractals: New Frontiers

of Science. 2nd edn. NewYork: Springer.

Hidalgo, M. and Joan-Arinyo, R. (2015) “h-graphs: A New Representation for Tree

Decompositions of Graphs,” Computer-Aided Design, 67–68(2015), pp. 38–47.

Hoffman, C.M., Lomonosov, A. and Sitharam, M. (2001) “Decomposition Plans for

Geometric Constraint Problems, Part II: New Algorithms,” Journal of Symbolic

Computation, 31(4), pp. 409–427.

Hooman Oroojeni, M.J., Majid Al-Rifaie, M. and Nicolaou, M.A. (2018) “Deep

neuroevolution: Training deep neural networks for false alarm detection in intensive

care units,” in European Signal Processing Conference.

Hsu, H.C.-H. and Liu, A. (2004) “Multiple Teams for Mobile Robot Formation

Control,” in Proceedings of the 2004 IEEE International Symposium on Intelligent

Control, 2004., pp. 168–173.

Hunt, E.R., Jones, S. and Hauert, S. (2019) “Testing the Limits of Pheromone

Stigmergy in High-Density Robot Swarms,” Royal Society Open Science, 6(11), pp. 1–

14.

Ismail, Z.H. and Hamami, M.G.M. (2021) “Systematic literature review of swarm

robotics strategies applied to target search problem with environment constraints,”

Applied Sciences (Switzerland).

89

Jermann, C. et al. (2006) “Decomposition of Geometric Constraint Systems: a Survey,”

International Journal of Computational Geometry & Applications, 23(7), pp. 1–31.

Jevtić, A. et al. (2012) “Distributed Bees Algorithm for Task Allocation in Swarm of

Robots,” IEEE Systems Journal, 6(2), pp. 296–304.

Kapoutsis, A.C., Chatzichristofis, S.A. and Kosmatopoulos, E.B. (2017) “DARP:

Divide Areas Algorithm for Optimal Multi-Robot Coverage Path Planning,” Journal of

Intelligent and Robotic Systems: Theory and Applications, 86(3–4), pp. 663–680.

Karaboga, D. and Akay, B. (2009) “A survey: Algorithms simulating bee swarm

intelligence,” Artificial Intelligence Review, 31(1–4), pp. 61–85.

Kavraki, L.E. et al. (1996) “Probabilistic Roadmaps For Path Planning in High-

Dimensional Configuration Spaces,” IEEE Transactions on Robotics and Automation,

12(4), pp. 566–580.

Kernbach, S. et al. (2013) “Adaptive Collective Decision-Making in Limited Robot

Swarms Without Communication,” International Journal of Robotics Research, 32(1),

pp. 35–55.

Koch, M., Manuylov, I. and Smolka, M. (2021) “Robots and Firms,” The Economic

Journal, 131(683), pp. 2553–2584.

Koenig, S., Szymanski, B. and Liu, Y. (2001) “Efficient and Inefficient Ant Coverage

Methods,” Annals of Mathematics and Artificial Intelligence, 31(1–4), pp. 41–76.

Koo, T.J. and Shahruz, S.M. (2001) “Formation of a Group of Unmanned Aerial

Vehicles (UAVs),” in Proceedings of the American Control Conference. Arlington,

VA, USA: IEEE, pp. 69–74.

Kurokawa, H. et al. (2008) “Distributed Self-Reconfiguration of M-TRAN III Modular

Robotic System,” International Journal of Robotics Research, 27(3–4), pp. 373–386.

Kwa, H.L., Leong Kit, J. and Bouffanais, R. (2022) “Balancing Collective Exploration

and Exploitation in Multi-Agent and Multi-Robot Systems: A Review,” Frontiers in

Robotics and AI. Frontiers Media S.A.

90

LaValle, S.M. (1998) “Rapidly-Exploring Random Trees: A New Tool for Path

Planning,” in The annual research report, pp. 1–4.

Lavalle, S.M. (2006) Planning Algorithms, Cambridge University Press. Cambridge,

United Kingdom: Cambridge University Press.

Lima, D.A. and Oliveira, G.M.B. (2017) “A Probabilistic Cellular Automata Ant

Memory Model for a Swarm of Foraging Robots,” in 2016 14th International

Conference on Control, Automation, Robotics and Vision, ICARCV 2016. Phuket,

Thailand, pp. 1–6.

Majid al-Rifaie, M., Aber, A. and Raisys, R. (2013) “Swarming robots and possible

medical applications,” International Society for Electronic Art, pp. 1–7.

Majid-al-Rifaie, M. and Bishop, J.M. (2020) “Stochastic Diffusion Search: A Tutorial,”

in Swarm Intelligence Algorithms.

Makarenko, A.A. et al. (2002) “An Experiment in Integrated Exploration,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems. Lausanne, pp. 534–539.

Malchow, H. et al. (2000) “Spatio-Temporal Pattern Formation in Coupled Models of

Plankton Dynamics and Fish School Motion,” Nonlinear Analysis: Real World

Applications, 1(1), pp. 53–67.

Mandelbrot, B.B. (1983) The Fractal Geometry of Nature. San Francisco: W.H.

Freeman and Company.

Marjovi, A. et al. (2009) “Multi-Robot Exploration and Fire Searching,” in 2009

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp.

1929–1934.

Moravec, H.P. and Elfes, A. (1986) “High Resolution Maps from Wide-Angle Sonar,”

in IEEE International Conference on Robotics and Automation, pp. 116–121.

Nasir, R. and Elnagar, A. (2015) “Gap Navigation Trees for Discovering Unknown

Environments,” Intelligent Control and Automation, 6, pp. 229–240.

91

Oh, H. et al. (2017) “Bio-inspired self-organising multi-robot pattern formation: A

review,” Robotics and Autonomous Systems, 91, pp. 83–100.

Olaronke, I. et al. (2020) “A Systematic Review of Swarm Robots,” Current Journal

of Applied Science and Technology, pp. 79–97.

Pang, B. et al. (2021) “Effect of Random Walk Methods on Searching Efficiency in

Swarm Robots for Area Exploration,” Applied Intelligence, 51(7), pp. 5189–5199.

Roy, D., Maitra, M. and Bhattacharya, S. (2021) “Exploration of Multiple Unknown

Areas by Swarm of Robots Utilizing Virtual-Region-Based Splitting and Merging

Technique,” IEEE Transactions on Automation Science and Engineering, pp. 1–12.

Saldana, D. et al. (2017) “A decentralized algorithm for assembling structures with

modular robots,” in IEEE International Conference on Intelligent Robots and Systems.

Schranz, M. et al. (2020) “Swarm Robotic Behaviors and Current Applications,”

Frontiers in Robotics and AI, 7(April), pp. 1–20.

Schultz, a. C. and Adams, W. (1998) “Continuous Localization Using Evidence Grids,”

in Proceedings - IEEE International Conference on Robotics and Automation (Cat.

No.98CH36146), pp. 2833–2839.

Sharma, S. and Tiwari, R. (2016) “A survey on multi robots area exploration techniques

and algorithms,” in 2016 International Conference on Computational Techniques in

Information and Communication Technologies, ICCTICT 2016 - Proceedings, pp. 151–

158.

Stachniss, C. and Burgard, W. (2003a) “Exploring Unknown Environments With

Mobile Robots Using Coverage Maps,” in IJCAI International Joint Conference on

Artificial Intelligence.

Stachniss, C. and Burgard, W. (2003b) “Exploring Unknown Environments with

Mobile Robots Using Coverage Maps,” in IJCAI International Joint Conference on

Artificial Intelligence, pp. 1127–1132.

92

Stentz, A. (1994) “Optimal and Efficient Path Planning for Partially-Known

Environments,” in Proceedings - IEEE International Conference on Robotics and

Automation, pp. 3310–3317.

Thrun, M.C. and Ultsch, A. (2021) “Swarm intelligence for self-organized clustering,”

Artificial Intelligence, 290.

Trianni, V., Nolfi, S. and Dorigo, M. (2008) “Evolution, Self-organization and Swarm

Robotics,” in Swarm Intelligence, Natural Computing Series, pp. 163–191.

Varghese, B. and McKee, G. (2009) “A Review and Implementation of Swarm Pattern

Formation and Transformation Models,” International Journal of Intelligent

Computing and Cybernetics, 2(4), pp. 786–817.

Varghese, B. and McKee, G. (2010) “A mathematical model, implementation and study

of a swarm system,” Robotics and Autonomous Systems, 58(3), pp. 287–294.

Vedachalam, N. et al. (2020) “Design considerations for strategic autonomous

underwater swarm robotic systems,” Marine Technology Society Journal, 54(2).

Vichalai, C. (2019) “Geophysics Under Stressed: a Case Study of Tham Luang Nang

Non Cave,” RMUTSB Academic Journal, 7(2), pp. 247–258.

Vicsek, T. and Gould, H. (2013) Fractal Growth Phenomena. 2nd edn, Computers in

Physics. 2nd edn. World Scientific Press.

Wang, L. and Tang, S. (2021) “Editorial: An introduction to Fractals in Construction

Materials,” Fractals, 29(2), pp. 1–5.

Xiong, N. et al. (2009) “Decentralized Flocking Algorithms for a Swarm of Mobile

Robots: Problem, Current Research and Future Directions,” in 2009 6th IEEE

Consumer Communications and Networking Conference, CCNC 2009, pp. 1–6.

Xu, H.X.H. et al. (2010) “A Multi-robot Pattern Formation Algorithm Based on

Distributed Swarm Intelligence,” in Computer Engineering and Applications (ICCEA),

2010 Second International Conference on, pp. 71–75.

93

Yamauchi, B. (1997) “A Frontier-Based Exploration for Autonomous Exploration,” in

IEEE International Symposium on Computational Intelligence in Robotics and

Automation, Monterey, CA. Monterey, CA, USA, pp. 146–151.

Yamauchi, B. (1998) “Frontier-Based Exploration Using Multiple Robots,” in

Proceedings of the International Conference on Autonomous Agents, pp. 47–53.

Yamauchi, B., Schultz, A. and Adams, W. (1998) “Mobile Robot Exploration and Map-

Building with Continuous Localization,” in Proceedings - IEEE International

Conference on Robotics and Automation (ICRA), pp. 3715–3720.

Yamauchi, B., Schultz, A. and Adams, W. (1999) “Integrating Exploration and

Localization for Mobile Robots,” Adaptive Behavior, 7(2), pp. 217–229.

Yang, X.-S. et al. (2017) “Swarm Intelligence: Past, Present and Future,” Soft

Computing, 22(1), pp. 5923–5933.

Yang, Y. and Tian, Y. (2007) “Swarm Robots Aggregation Formation Control Inspired

by Fish School,” in 2007 IEEE International Conference on Robotics and Biomimetics,

ROBIO, pp. 805–809.

Zhou, Y. and Goldman, R. (2017) “Building Fractals with a Robot Swarm,” in

International Conference in Swarm Intelligence, pp. 185–198.

94

Appendix A

A.1 MATLAB and V-REP Coding for fractal construction and implementation.

Below is a simplified code illustrating the process of developing the N-branch Tree

fractal formation.

img = imread('The image of the area to be explored');

map = im2bw(img,0.5); // convert to binary image

imshow(map) // prepare the map for exploration

x-axis = // set x-axis as a start point in the map

y-axis = // set y-axis as a start point in the map

theta = // set the initial direction formation

distance= // set the robot’s travel distance

i = // counter to count the number of iterations

a = b = // output locations to be used by the swarm

 axis(gca,'equal')

 [a,b,i] = rotate(x-axis,y-axis,theta,distance,map,0,0,1);

function [a,b,i] = rotate(x1,y1,th,dis,map1,a,b,i)

this section is related to placing obstacles in case of having a

rectangle area ##

viscircles([300 60],20);

Circle obs.

rectangle('Position',[184,60,50,40],'FaceColor',[0 0 .5]);

##center obs.

rectangle('Position',[144,30,30,40],'FaceColor',[0 0 .5]);

##side obs 1

rectangle('Position',[240,20,60,50],'FaceColor',[0 0 0]);

##side obs 2

End of obstacle section ##

This section sets the limit of the image ##

if y2 >= y-max-area

 y2= y-max area;

endif

if y2 <= y-min-area

 y2 = y-min-area;

endif

if x2 >= x-max area

 x2= x-max area;

endif

if x2 <= x-min area

 x2 = x-min area;

endif

End of limit section ##

95

This section shows the development of the tree fractal formation##

x2=x1+cosd(th)*(dis+70);

 y2=y1+sind(th)*(dis+70);

 a(i)=x1; b(i)=y1; a(i+1)=x2; b(i+1)=y2; i+=2;

End of development section ##

This section ensures the location is collected and not set out of

the range of the map ##

if dis~=0

 xa=round(x1); ya=round(y1);

 xb=round(x2); yb=round(y2);

 val1 = map1(ya,xa);

 val2 = map1(yb,xb);

als=sqrt(power(a[32]-a[22],2)+power(b[32]-b[22],2)); ##(need arrays

to store data)

 if val1 == 0 || val2 == 0

 children = get(gca, 'children');

 delete(children(1));

 x2=x1; y2=y1;

 endif

line([x1 x2],[y1 y2],'Color','b', 'LineWidth',3) // The path line for

the robots to follow

End of obstacle section ##

This section the recurring process for N number of iterations ##

 [a,b,i] = rotate(x2,y2,th+60,dis-1,map1,a,b,i);

 [a,b,i] = rotate(x2,y2,th+30,dis-1,map1,a,b,i);

 [a,b,i] = rotate(x2,y2,th,dis-1,map1,a,b,i);

 [a,b,i] = rotate(x2,y2,th-30,dis-1,map1,a,b,i);

 [a,b,i] = rotate(x2,y2,th-60,dis-1,map1,a,b,i);

 pause(0.1);

endif

endfunction

End of the function ##

The below simplified function illustrates the process of developing the Vicsek fractal

formation.

function [a,b,c] = Iter(a,b,c)

x=[]; y=[];

z1=[0 0 0 0]; z2=[0 0 0 0];

th = 0;

for n = 1:1:4

x(n)=(a*cosd(th))+b;

y(n)=(a*sind(th))+c;

line([b x(n)],[c y(n)],'LineWidth',3,'Color','blue')

th=th+90;

96

end

 end

Below is a simplified function illustrating the process of developing both Julia set and

reverse Julia set fractal formation.

zx(1)=0;

ax(1)=real(zx(1)); ax(1)=(ax(1)*1510)+15;

bx(1)=imag(zx(1)); bx(1)=(bx(1)*1510)-640;

c=complex(0.1,0.6);

for i=1:1:N

 zx(i+1)=sqrt(zx(i)-c); // Reverse Julia set

 zx(i+1)=(zx(i))^2+c; // Julia set

 endif

ax(i+1)=real(zx(i+1)); ax(i+1)=(ax(i+1)*1510)+15;

bx(i+1)=imag(zx(i+1)); bx(i+1)=(bx(i+1)*1510)-640;

end

for i=1:1:N

 pause(0.001);

 line([ax(i) ax(i+1)],[bx(i)

bx(i+1)],'LineWidth',2,'Color','blue')

 hold on

end

Below is a simplified function illustrating the process of transmitting location points

from MATLAB to V-REP for the robots.

vrep=remApi('remoteApi');

vrep.simxFinish(-1);

clientID=vrep.simxStart('127.0.0.1',19999,true,true,5000,5);

if (clientID>-1)

 disp('Connected');

 % set for devoloping a fractal formation

for i=1:1:N // N is the number of robots

[returnCode,copN]=vrep.simxGetObjectHandle(clientID

,'Quadricopter_target' ,vrep.simx_opmode_blocking);

 x(1:3)=[x, y, hight];

 [returnCode]=vrep.simxSetObjectPosition(clientID,copN ,-1 ,x

,vrep.simx_opmode_oneshot_wait);

pause(3);

end

vrep.delete();

test1;

97

A.2 All the 49 sets of the output shapes when changing the Z value for the reverse

Julia set.

98

99

100

A.3 The optimisation process for N-Branch tree fractal formations’ parameters.

Below is a simplified code illustrating the process of optimising the parameters of the

N-branch Tree fractal formation.

img = imread('TabonCaveImp.PNG');

map = im2bw(img,0.5);

imshow(map)

m=9;

itration=linspace(1,3,3);

alpha=linspace(10,90,m);

distance=linspace(1,9,m);

[X,Y,Z] = meshgrid(alpha,itration,distance);

x = X(:);

y = Y(:);

z = Z(:);

for itr = 1:length(itration)

 for al=1:length(alpha)

 for dist=1:length(distance)

 x0 = [X(itr,al,dist),Y(itr,al,dist),Z(itr,al,dist)];

[a,b,i,N]=rotate(106,250,0,itration(itr)+1,distance(dist),alpha(al),m

ap,0,0,1,0);

%area(itr,al,dist)=((distance(dist)*4)+(0.5*pi*(2)^2))+((distance(dis

t)*4)+(0.5*pi*(2)^2))*(itration(itr)*(itration(itr)-1));

area(itr,al,dist) = ((distance(dist)*4)+(0.5*pi*(2)^2))*(N);

 end

 end

end

figure(2);clf(2)

pp=scatter3(x,y,z,50,area(:),'filled');

colorbar;colormap('jet');

xx = squeeze(X(1,:,:));

%yy = squeeze(Y(1,:,:));

zz = squeeze(Z(1,:,:));

area1 = squeeze(area(1,:,:));

figure(3);clf(3)

surf(xx,zz,area1)

colorbar;colormap('jet');

