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Abstract

Respiratory diseases caused by inhalation of air pollutants are affected by sea-
sonal changes and mitigated by air pollution control, resulting in complex dy-
namics. In order to investigate the effects of various factors such as random
noise and air pollution control on respiratory diseases, we developed determin-
istic and stochastic two-dimensional coupled SIS models with multiple control
measures. The proposed models and parameter estimation methods, including
determinations of unknown parameter values, were used to fit the Air Quali-
ty Index (AQI) data for Xi'an city in recent 10 years. The existences of the
optimal solutions for the deterministic and stochastic models were analyzed
theoretically and provided to compare the parameter fitting solutions with the
optimal solutions, and give theoretical support for seeking a more reasonable air
pollution optimization prevention and control scheme. To show this, we con-
ducted numerical simulations of the optimal control solution and state evolution
trajectories under different weight coefficient ratios and control objectives. The
results show that the stochastic optimal control problem is more consistent with
the practical scenario. We also formulate the optimal control problem assuming
that the control variable depends on the concentration of air pollutants. The

optimal control solution reflected the periodic variation of the air pollution con-
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trol strategy well. A comparison of cost values for different combinations of
the three control measures illustrated that air pollution reduction is the most

effective control measure.

Keywords:  Air pollution; Respiratory disease; Optimal control; Stochastic

model; Data validation

1. Introduction

Severe air pollution issues often accompany rapid economic growth in urban
conurbations [1, 2, 3]. Exposure to high concentrations of pollutants in the air
such as sulphur dioxides (502}, nitrogen oxides (NOx), and fine particulates
can diminish lung function and cause negative respiratory impacts [4, 5, 6.
The health hazards of air pollution have led to increased medical expenditures
and the loss of labour productivity, resulting in substantial social costs |7, 8].
Effects on human health associated with air pollution constitute a major pro-
portion of such social costs [9]. Many efforts have been undertaken to control
air pollution in China [10] where source of energy and climate policies are lead-
ing to significant changes. The air pollution prevention and control strategies
include monitoring various data indicators related to air quality, energy-saving,
and reduction policies [11, 12, 13, 14]. The most direct and effective air pollu-
tion control measure 1= to reduce the emission of pollutants. This is reflected
in the pollution-related industry closures, restricted use of motor vehicles, or
the promotion of new cleaner energy techniques [15, 16]. However, a primary
goal of air pollution control is to protect human health and promote sustainable
development. The management of air pollution requires careful consideration
of various measures to develop the most cost-effective actions.

Epidemic models have heen widely used to explored transmission dynamics
and the effects of control interventions, and have provided feasible control in-
tervention strategies. Similarly, optimal control models have been widely used
to identify effective strategies for minimizing the economic impacts of infections

diseases [17, 18, 19, 20, 21, 22, 23, 24]. We can apply optimal control theory



to evaluate the total number of infected individuals and the costs of medical
treatments (25, 26, 27]. There are usually two approaches in these studies. One
is to reduce the disease’s infection rate by taking preventive measures, where-
by researches focus on investigating behaviour changes, vaceines, isolation, and
other measures [28, 20, 30]. The other is to reduce the number of infections
through treatment and many studies have been sought to devise the most ef-
fective strategies in relation to the available resources [31, 32, 33]. In the study
[34], Wang et al. determined the optimal vaccination strategy for a time-varying
SEIR (Susceptible, Exposed, Infected, and Recovered) epidemic model with sea-
sonally varving coefficients. Their analyvtical and numerical results imply that
taking time-varying factors into account is more reasonable and reliable for a
control strategy. Based on a simple SIR model, Bolzom et al. investigated a
multi-objective optimal control problem by minimizing an epidemic’s size and
duration through isolation or vaccination. They also considered limitations on
the total resources available for controlling the epidemic. They discussed opti-
mal solutions under different conditions [35]. There have also been some studies
of the optimal control problem using stochastic differential equation models
[36, 37, 38, 30, 40, 41, 42|. Gani et al. [43] conducted optimal control analysis
by considering the effects of media awareness programmes and the treatment
of infectives. They obtained numerical results from both deterministic and s-
tochastic differential equation models. The air pollution problem has also been
studied using optimal control theory of deterministic and stochastic models. For
example, Zhu and Zeng have established a partial differential forecast system
and discussed the issue of optimal air pollution control based on the weather
forecasts [44]. The optimal control solution obtained by models is usually for
idealized situations, lacking comparison with actual data. The challenges pre-
sented by optimal control problems 1s how to combine the results of theoretical
analysis with complex actual situations to give a more practical and reliable
control strategy.

Respiratory disease infections depend on air conditions and environmental

changes, showing seasonal characteristics. The main purpose of the present



paper i& to develop mathematical models with interactions between multiple
control measures, and to explore the optimal control strategy according to the
actual data. To investigate the control strategies for the respiratory disease
caused by air pollution, we will consider a variety of measures, including indirect
control measures for air pollution and direct control measures for disease treat-
ment, based on a coupled epidemic model studied in [45]. The two-dimensional

determini=stic model 1s

St = BF () S — (1),

1
B0 = c— p(t)F(t). W

The variable I(f} in the model represents the number of infected cases and the
variable F'(f) measures the air quality. The dynamiecs of disease transmission are
described by the simple SIS model with the assumption that the total population
is constant N. < is the recovery rate for infected individuals. The disease
transmission rate depends on the level of air pollution. A simple and reasonable
assumption is that the infection rate is linearly related to the concentration of air
pollutants. The clearance rate of air pollutants is assumed to be a seasonally
time-varying function, ie. p(t) = pg + pysinf(wt + ¢g ). Our work focuses on
analyzing the practical control measures and then mathematically incorporating
them into the model. The problem is stated as determining the optimal strategy
for the set of control measures. The multiple control measures discussed in this
study include reducing the inflow during air pollution control, decreasing the
infection rate, etc. The parameters in the model will be estimated based on the
air quality index (AQI) of the city of Xi’an and associated data on the numbers
of cases of influenza-like illnesses (ILI) for the period 15 November 2010 to 14
November 2016 described by He et al. [45]. Theoretically, we will develop an
analytical method for studying both the deterministic and stochastic models and
compare the optimal control solutions of the two models. The remaining part
of the paper is organized as follows: the formulation and analvsis of the coupled
determimistic model with multiple control measures are given in Section 2. The

corresponding stochastic model 1s addressed in Section 3. Section 4 presents



the data fitting results and the numerical simulations under different scenarios
including several special cases and different control measure combinations. The

discussion and conclusions follow In Section 5.

2. The deterministic coupled system with multiple control measures

2.1. Model formulation

To investigate the optimal prevention and treatment strategies for the control
of air pollution and related respiratory diseases, we propose an optimal control
problem for the deterministic model (1). The model includes relevant control

variables governed by the following equations

L0 = (1w (1)BF (1) 5O g1 (r) - B2GrD) @
4G = (1 ug(t) e — p(t)F(2).

Our goal is to reduce the number of infected individuals and decrease the
value of the air pollution index. There are three intervention methods, called
controls, that are included in the model (2). Control efficacy is represented
as a time-varying function and assigned upper bound one and lower bound
zero. The meanming of the control variables we considered in the model are
as follows: uy(t) is the percentage of susceptible individuals taking protective
measures siuch as wearing masks, and us(t) represents treatment of the infected
population. We use a saturated treatment rate function to depict the limited
medical resources (medical diagnosis, medical beds, treatment, health care, etc),
where k is positive and o is non-negative. The parameter o measures the
reverse effect of the infected being delayed for treatment. When a = 0, the
saturated treatment function returns to the linear one. wug(t) represents the
reduction in the influx of pollutants per unit time caused by the measures taken
by the government. The control functions are assumed to be L'(0,T') functions,
helonging to a set of admissible controls I defined by

U = {u1, up, us|u; measurable,0 < u;(t) < 1,t € [0,T]},i =1,2,3.



For simplicity, we re-write system (2) as follows

ax(e) _
= = Z(X (1), u(t)). @3)

where X (t) = [I(t), F(t)]",u(t) = [u1(t), ua(t), us(t)]" and Z(t) = [21(t), z2(t)]".
Controls u, (), uz(t) and uy(t) are used to minimize the number of infectives,

improve air quality, economize manpower and material resources over a certain

period [0, T]. Here, the costs are assumed to be proportional to the square of

the corresponding control function. The cost functional is given by

T
Tus(9),ua(t)ua(0) = [ [ AL+ BF(O) + 501u3(0) + 5080 + 5Caui(0)] .
0

For convenience, we define the following functions

o . R T | P | .
I(I(t), F(t),u(t)) = AI(t)+ BF(t) + EC-'luf{rJ + Eﬂzuém + EC‘:;u;ﬁ{r}.

The initial time 1= 0, and the termination time of the investigation is T'. The
control cost function is a nonlinear quadratic function. The positive constants
A and B are weight factors in the cost of air pollution control and the number
of people infected with respiratory diseases, respectively. The positive constants
', U, and Cy are weight coefficients to reflect the cost of three different contral
measures. The quadratic expressions of the controls indicate nonlinear costs
potentially arising at strong control efforts.

The optimal control problem 1s to minimize the objective functional over

[0,T7], i.e. to find u* € U satisfying
J{u }:JELJ“‘ X.u).

2.2, Necessary condition of optimal control

We derive the first-order necessary condition for the optimal control solution
by constructing the Hamiltonian H and then applying Pontryagin’s minimum
principle. This method introduced the idea of adjoint functions to the ohjective

function, which appends constraints to minimize or maximize the Hamiltonian



in terms of controls rather than the objective functional. The Hamiltonian of
the problem is made up of the integrand of the objective functional, adjoint

function and the right-hand side of (2). Thus, the Hamiltonian for the control

problem is given by
HI(t), i (t),uz(t),ua(t)) = UI(E), F(t),u(t)) + A L 4+ 42,250
= Al(t)+ BF(t) + EC] ui(t) + Eﬂguﬂt] + %C;;u%[tj
+Z§=] A{Ef(f}

(5)
Here A;(t), for i € {1,2} are the adjoint variables, which were evaluated at the
optimal controls and corresponding states. By applying Pontryvagin’s minimuim

principle, we obtain the following theorem

Theorem 2.1. Let X*(t) be the optimal state solution with associated optimal
control variables ui(t), ui(t) and ui(t) for the optimal comtrol problem (2).
There exist adjoint variables Ay (t) and Ay(t) satisfying the following system of

differential equations

it

BAq(t =—A—;’L1 (1_u1}ﬂ_ﬂ.‘:;:r__ﬂl_-}r_ﬁ%§]

Bhg(t)

, (6)
B2al) = —B+ Aapa(t) — A (1 — ug ) EELL

with transversality (or boundary) conditions
AL(T)=0,A2(T) =

Moreover, the optimal control is given by

uf = min {1 max {ﬂ i@-‘:‘;,—]—}}

uj = min{1,mﬂ${ ,Gﬂ?lii”}} (7)
u§=min{1,mﬂr{ﬂ,—§5}}.

FProof. We use the Hamiltonian (5) to determine the adjoint equations and the
transversality conditions. By differentiating the Hamiltonian with respect to all
the state variables to obtain time derivatives, the adjoint system can be written

as



A (t BF(N-=-2I k
—t%l=—%?7{‘=—‘4—’\1[(1—“1)—(ﬁ—)—“f—m§%v : &

A N-INI
2a(t) _ M — B Aap(t) — Xy (1 —uy) BEDL

To obtain the characterization of the optimality control, we differentiate the

Hamiltonian with respect to (u;, uz,u3) and set it to zero,

O =_,\lﬁ"‘(§r_‘”’ =10

Huy
3‘% . —/\11‘%1 + Couz =0, (9)
% = C3'U.3 — AzC =0.

In the interior of U, the optimal control can be expressed as follows by

solving (9)

_MBFIN-DI ., NEI Aae

* <

~Gl+ad) B0

* :
u, = y U

C 1 .'\r

%

Since the control is bounded by 0 and 1, then u; = 0 if u; < 0 and u; = 1
if u; > 1 otherwise u; = u;. Using the property of the control space, we can

obtain the desired characterization (7). This completes the proof. O

2.3. Eristence and uniqueness of the optimality system

In this section, we will prove the existence and uniqueness of the optimal

control for system (2).

Theorem 2.2. There erists an optimal control u*(t) such that
J(u*(£)) = min J (u(2))

subject to the control system (2) with the initial conditions.

Proof. By Theorem 4.1 in reference [27], the following conditions in this mini-

mization problem can be easily verified:

(D1) (X(0),uf,u3, uf) : (wr(t), ua(t), u(t)) € U # 0

(D2) The admissible control set U is closed and convex:



(D3) The right hand side of the state system Z(X(t), u(f)) is continuous and
Z(X(t),ult)) = o(t, X(t)) +v(t, X(£))u(t),

where &(t, X(t)) and (¢, X(f)) are two dimensional matrix function of ¢
and X;

(D4) The integrand of the objective functional J with I(t) is convex on I{;

(D5) There exist constants K; > 0, K; > 0 and & > 1 such that the integrand
of the objective function is bounded below by K ([u |? + |uz|? + |ua|?)* —
K.

The conclusion is that there exists an optimal control. O

3. The corresponding stochastic system

In this section, we consider that the transmitted rate of disease and the
clearance of air pollutants are disturbed by random noise, 1.e. 3(F(t)) is replaced
by B(F(t)) + o1m(t) and u(t) is replaced by p(t) 4+ oonz(t) in the deterministic
model, where 1,(t) and m;(t) are white noises. We obtain the corresponding
stochastic differential equation model and formulate the stochastic version of

the optimization problem. The stochastic model 15

di(t) = [(1—w(t)BF(e) S0 pr) - BelBIO ] g
+or (1 — uy (2) E=HE g, (1), (10)
dF(t) = [(1—ua(t))e— p(t)F(t)]dt — oo F(£)dWa(t).

where W1 (f) and W5 (t) are independent standard Brownian motions. We write

system (10) as
dX(t) = Z(X(t),u(t))dt + G(X (t))dW(t), (11)
where G(t) = [g1(t),g=2(t)]" with

a1(t) = or(1 - un(6) TIE gy = o, F(0),




and W(t) = [Wy(t), Wa(t)]".
Our objective 1= to find an optimal control solution u* that minimizes the

objective functional for an initial state X,. The objective functional is
T
Jst, X,u) = E{fy UI(s), F(s),u(s))dt}, (12)

The expectation is conditional on the state of the system being a fixed value
X at time t. Based on the above deterministic problem, the set of admissible

control A is given by
A = {uy, uq, us|u; measurable,0 < u,(t) < 1,t € [0,T]},i =1,2,3.
We define the value function V' (t,z) € C'*(R x R?) as follows
Vit,X)= ig{d‘Js{t.. X,u) = Js(t, X, u*). (13)

The stochastic optimal control problem can be stated as follows: Given the
system (10) and A4 with J as in (12), find the value of the function V(f, X') and

an optimal control function

(1) = inf  Jg(z;u(t)) € Ui=1,2,3, 14
ui{t)=arg inf Js(ziw(t)el,i=1, (14)

We introduce the Hamiltonian H(X, u. p, q) defined by

H(z,u,p,q) = (z(z,u),p) + l(z,u) + (g(z).q}, (15)

where (-,-) denotes a Euclidean inner product, p(t) = [p,(t),p2(t)]" and g(t) =
[q1(t),g2(t)] are a pair of adjoint vectors satisfying the following adjoint back-

ward stochastic differential equations

{ dp(t) = —{bx(t, x,u)p(t) + 3271, ol (t, = (t), u(t))q; (t) + l=(t, z,u) }dt + q(t)dw(t),

p(T) = —ha(2(T)).
(16)

It follows from the stochastic minimum principle that the following relations

hold:
_ OH(z*. u®

- Lo gt 4 o2 (1)) duw(2), (17)

dz* (t)

10



H[I*'.u*:-p:q}Zﬂi&H{I*:u1PJQJ: [IEJ

where z*(t) is an optimal trajectory of x(f). The adjoint variables p,(t) and

po(t) satisfy the following stochastic differential equations:

dpi(t) = (—A—p ((1—u) 2R g — Gl
+on (1 — up ) 552 gy )dt + q(t)dWa (t),

dpa(t) = (—B +popa(t) — pr(1 — wy ) EELOL ﬂz&'z) dt +q(t)dWa(t).
(19)

The initial and terminal conditions of (17) and (16) are given by
x*(0) = [Io, Ful,

p(T) = [0,0,0]".

Since (18) implies that the optimal control u*(t) is a function of p(t).q(f) and
x*(t), we have

H(z*,u*,p,q) = H(z",p,q). (20)

By the following theorem, we can obtain the optimal control wi(t), u3(t) and
ui(t). Let us define by L the differential operator associated with the function
displayed in (11),

Vv

- %{GT—G]T. (21)

L |
R T otz

LV ot dr

Theorem 3.1. The optimal solution for the problem (18) erists and has the

following form

. BF(N —IIV;
uy = min {l,mar {ll. N }} .

. 1 [ kI
Uy = Tin {1,”1!1.1: {ﬂ, C_Z (mm) }} 3
N _ eV
uy = min {l,mﬂ;r {D.. C_s}} .

11



Proof: We calculate

Ly(t)

2 (OVi(t) + 22(0)Vie(t) + 362Vir (1) + 23Vir() + 9102Vir (1)
= (10— wa (1) ZEOREDL — 1 (t) — B2 ) Vi )+
(1 = us(t))e — p(OF (1)) V() (o1 2521) Vir )+
3 (02F (6)* Vier(t) — (1025510 F () Vir (2).
(22)
where Vy is the partial derivative and Vyy are second-order partial derivatives
of V(t) (X and ¥ can be taken as I and F).

Applying Hamiltonian Jacobi Bellman theory, the infimum of (14) is

1 1 1
inf |AI(t) + BF(t) + Eclu% + Eczuﬁ + Ecgui +Ly|. (23)

To obtain the optimal control u,(f) and usz(t), it follows from (23) that

Cyuy — 22X Dy, — g,

— 2 OV; + Cyuy =0, (24)
03113 — CVF =.

We consider the bounds of u;, us and ug, and can obtain the asserted expressions
for u¥, u3 and uj, respectively.

We use the results of the deterministic control problem to find an approx-
imate numerical solution for the stochastic control problem. In particular, we

* in this case. We note

use pp, po as a proxy for Vr, Vi in the calculation of u
that the presence of I(t) makes V' become a stochastic variable even with the

proxy (in the stochastic case)[36, 43].

4. Model with pollution-dependent interventions

The implementation of intervention measures for controlling air pollution is
dynamically adjusted, which usually depends on the air quality. For instance,
when the value of AQI reaches the level of severity, the government will carry out
strict policies, such as issuing orders restricting the number of vehicles and bans

of factory operations to reduce emissions of air pollutants. Thus, the control

12



variable us(t) in the deterministic model (2) and stochastic model (10) changes

F(t)

with time ¢ and also F'(t). Heplacing the control variable us(t) with uy(t) Flij

the deterministic model (2) and stochastic model {10) become

{ G = (- m@OBFOSE 10 - 0.

0 = (1 — ua(t) 7 )e — u(t)F (),

and
dI(t) = |(1—w (0)BF() X —q7(r) - 52RO 4
oy (1 — g () B gy, (1) (26)
dF(t) = [(1—us(t)phy)e— p(O)F(8)] dt — ouF (E)AW-(8),

where the Hill function F‘L—m describes how the level of air pollution influences

the intervention measures. It is an increasing function of F(t) and n 1s the AQI

value at which the intensity of the control measure is half its maximum.
Following the same method in previous section, we can calculate the solution

of the optimal control problem for the deterministic system (25). It is given by

uy = min{l max {'D LFC':S:,—}}
us = min {l,mﬂ;r{ ; Cz?lj‘_i“}} (27)

Uy = min {l,ma;r{ . lel:;fn]l}}
where the adjoint variables A;(t) and A(t) satisty the following system of dif-

ferential equations

i

(28)
AN Une N —I I

The solution of the optimal control problem for the stochastic model (26)

takes the form

. _ BF(N —ITV;
uj =mm{1,max {ll. {C-'lN) }}

. 1 kI
us = mm{l,mar {'EI,':_—2 (l—l-ﬂ'fﬂ)}}’

ur = min {l IMALT {'D ﬂ}}
a0 : "C3(F + 1) )

13



The adjoint vectors p; and p; are used to replace Vi and Vi, satistying the

following equations:

dPll:t] = {A—pl ({l_ul]'ﬂ_ﬂiﬁrﬂl_?_ lfr;g )
+ [1 — ul} N ol qulrit + q[t}dW’l{tL

dpa(t) = (B+pa(fis +u(t)) — pu(1 — w) EEGR — 0agp ) dt + g(£)dWa(t)

(29)

5. Numerical results

In this section we will present the results of fitting the optimal control model
to the actual data. Further, the results of numerical simulations generated by
the implementation of the intervention strategies under various scenarios to
investigate the effect of optimal control strategies on the transmission dynamics

of respiratory disease with air pollution are described.

5.1. Data fitting

To investigate the utility of the determimstic and stochastic models discussed
in Section 3 with respect to real data on influenza-like illness (ILI) cases and
the air quality index (AQI), we collected data related to air pollution for the
period of 15 November 2012 to 14 November 2021 from Xi’an, Shaanxa Province,
China, which are shown in Figure 1 (a). It can be seen from the time series
data that the air pollution is serious in autumn and winter every year, and the
AQI value 1s between 150 and 500. The air quality is good in spring and sum-
mer every vear, when the AQI value is less than 150 most of the time. Since
the winter of 2017, the local government has taken wehicle control measures in
Xi'an to improve the air quality. The normalized traffic restriction measure 1s
that 20% of cars (according to the last two digits of their licence plate num-
bers) are banned from travelling every day. Thus, we assumed that the control
variables u5(t) in the deterministic model (2} and the stochastic model (10) are
switched in the light of the policy implementation time. Based on the AQI

data , we estimated parameters associated with the F(t) variable with control

14



measures implemented. The estimation results related to the concentration of
air pollutants are given in Table 1. The estimates of control variables wq in the
policy implementation phase is 0.3. The fitting results in Figure 1 (b) show that

government responses did indeed have achieved some success.

BggiBEBERE

1 1 1 1
HHINIME HHEA1ME HHTHAHE A 1HE HFHHAHE
i

ACIFR)
g 8

E T

100 [,

e R
e |
1
AM3ANIAS A1511HE ZOTHIAS a1 1HE AEH1AS
t

Figure 1: Time series and results of fitting the AQI data from 15 Nov. 2012 to 14 Nov., 2021
(a) The AQI for Xi’an, Shaanxi province; (b): The blue points are actual data, the dark pink
curves and light pink curves are correspond to the deterministic and stochastic simulation

results, respectively.

The above result is the estimation of the control variables based on the
actual data, and the optimal control is numerically solved by the backward-
forward sweep method for the deterministic model. We use the fourth-order
Bunge-Kutta algorithm to solve the state system and the backward fourth-
order Runge-Kutta to solve the adjoint system. The whole process i= repeated
until convergence. The process is the same for the stochastic model except
for the mumerical method for solving the stochastic differential equations. In

the following simulation, the initial conditions of the infected population and

15



parameters associated with respiratory disease infections refer to the parameter
estimation results in [45], which are shown in Table 1. The period we choose

for simulation is 2000 days.

5.2. Special case B=10

We consider a case in which the goal i1s to reduce the number of infected
individuals. The weight B i= set to zero in the cost functional. To investigate
how the optimal control depends upon various input costs and the intensity of
control measures in the model, we plot the control u(t) and the evolution of
state variables for different values of weight coefficients. Figure 2 presents the
mumerical solution of the optimal control and the simulated path of the number
of mmfected cases and the concentration of air pollutants for the determimistic
model (2). We also provide the corresponding simulated paths without control
for comparison. The values of weights are chosen to balance the weights of
variables in the objective function. The baseline for the cost weight coeflicients
of the three different control measures are assumed to be the same (C'1 =
1, C2 =1, €3 = 1). The optimal trajectories and the state evolution are
shown in Figure 2 (al-cl). The optimal control solution in Figure 2 (al) shows
some decrease with the decline in the infected population. It is observed from
Figure 2 (bl-cl) that the infected population will be well controlled when the
strength of the three control measures reaches the maximum from the beginning.
The concentration of air pollutants can also he well controlled if the strictest
measures are taken. It will return to its original state when the number of
infectives is zero. It is clear that there are no constraints on the concentration of
air pollutants. Notice that the optimal trajectories of the first control variable
uy(t) have a sudden increase. This is caused by the sudden increase in the
concentration of air pollutants. The optimal results are similar when increasing
the cost weight coefficient of treatment for the infected population (C'2 changes
from 1 to 1000). We obtain similar optimal results when increasing the cost
weight coefficient of air pollution control (C'2 changes from 1 to 100, and €2
changes from 1 to 10000). Regardless of the variation in the weight cost, it

16



is optimal to implement the three control measures to control the respiratory
disease in the end.

Figure 3 presents the mumerical solution of the optimal control, the simulated
path of the number of infected cases, and the concentration of air pollutants for
the stochastic model (10). The cost weight coefficients of the three different
control measures are the same as those in the deterministic model. However,
the optimal solution of the third control variable us(f) for the stochastic model
15 different from the corresponding deterministic solution. As shown in Figure
3 (al), the strength of the optimal strategy of air pollution control fluctuates
dynamically between 0 and 1 when the combination weight factors are C'1 =1,
C2 =1, €3 = 1. The optimal strategy for the respiratory control 18 mainly
based on the first two control strategies, while the third control strategy does
not play a major role when the combination weight factors are C'1 = 1000,
C2=100,C3=10or Cl =1, C2 =100, ¢3 = 10000, which are shown in
Figure 3 (a2) and (ad), respectively. If the weight of air pollution control cost is
much higher than the other two control cost, then the proportion of air pollution
control in the optimal control strategy is very small. In addition, the simulated
results for optimal trajectories show that the stochastic optimization control is

more practical and reasonahble.

5.3. General case B #10

In this section, some numerical simulations for the deterministic model (2)
and corresponding stochastic model (10) are performed to evaluate the effect of
the control strategy in a general senario, where the weight factor of the cost of
air pollution control 15 not zero, 1.e., B # (. Figure 4 presents the numerical
solution of the optimal control, simulation path of the number of infected cases,
and the concentration of air pollutants for the deterministic model (2). When
we consider that all the costs are equal (the weight factors are A =1, B =1,
Cl =1, C2 =1, C3 = 1), the optimal control strategy is that the three
control measures are all in full force. In this case, the number of infected cases

and the concentration of air pollutants will quickly drop to zero. As shown
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in Figure 4 (al-cl), the first two control measures can stop when the number
of infected cases reaches zero and the third measure for air pollution control
needs to be implemented all the time to ensure that the concentration of air
pollutants does not rise. However, this is an extreme case. It is impractical
to completely eliminate the emission of pollutants into the air. As the weight
factor of the cost of control measures increases (set as C'1 = 1000, €2 = 100,
C'3 = 100}, the optimal trajectory of us(t) follows a periodic change (see Figure
4 (a2-c2)). When the concentration of air pollutants is high, the intensity of
control measures is large, and vice versa. Suppose the proportion of air pollutant
control is reduced. In that case, the value of B is reduced (4 =1, B = 0.001),
and the intensity of the third measure for air pollution control decreases once
the number of infected cases reaches zero (see in Figure 4 (a3-c3)). Figure 5
shows the simulated optimal control results for the corresponding stochastic
model (10). When the weight factors are the same as those in Figure 4 (a3-
cd), the optimal stochastic solution of the third control variable us(t) for the
stochastic model is different from the corresponding deterministic solution. As
shown in Figure 3 (al), the intensity of the optimal strategy of air pollution
control Huctuates dynamically between zero and one. It is stronger than that of
the corresponding determimistic model. For the other two sets of weight factors,
the simulated results of the stochastic model, shown in Figure 3 (al-cl) and

Figure 3 (a2-c2), are similar to the corresponding deterministic model.

5.4. Numerical results of the model with pollution-dependent interventions

In this section, we study the optimal control solutions of the deterministic
model (25) and the corresponding stochastic model (26) in which the control
variable uz(t) depends on the air pollution F(f). The optimal trajectories of
control variables uy(f), uz(t), us(f) and the combination term “—E'Eg.i_%ﬂ for the
deterministic model with three different weight factor sets are shown in Figure
6 (al-ald), where the value of the parameter 5 is 200. Regardless of the ratio
of the weight factors, the number of infected cases can be well controlled, as

shown in Figure 6 (b1-b3). For the control of air pollution, the concentration of
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Figure 5: Optimal trajectories and comparison of the state evolution with and without optimal
control for the deterministic model (10). (al-cl): A=1, B=1,C1=1,C2=1,C3 =1;
(a2c2): A=1,B=1,C1=1, C2 = 1000, 3 = 100; (a3-<3): A=1, B =0.001, C1 =1,
C2=1,03=1
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air pollutants can be reduced during the severe period of a cycle. The trend of
air pollutant concentration changes remains unchanged, which 1s different from
the result in Figure 4 (c2)). It illustrates that the optimal control solution of
the new model (25) 1s more in line with reality. By comparing the results under
three sets of different weight factors shown in Figure 6 (cl-c3), we find that
the concentration of air pollutants will be better controlled when the cost of air
pollution control is lower than the cost of disease treatment. If the proportion
of air pollutant control is reduced, that is, the value of B is reduced (4 =1,
B =0.001), then the air pollution control would not be improved significantly.
Figure 7 presents the simulated results of the corresponding stochastic model

(26). We have conclusions similar to the two cases in previous sections.
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Figure 6: Optimal trajectories and comparison of the state evolution with and without optimal
control for the stochastic model (25). (al-cl): A=1, B=1,01=1,C2=1, U3 =1; (a2
2 A=1,8=101=1, C2 =1000, C3 = 100; (a3-c3): A =1, B =0001, C1 =1,
C2=1,03=1
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5.5, Comparison of stochastic and deterministic model

The range of control variables 1s between 0 and 1 in the above numerical
simulations, which show that the solution of optimal trajectories reaches the
maximum value of 1 at the initial stage, and the number of infected people
decreases rapidly and finally tends to zero with control measures. However, the
estimate of control variables ug 1s 0.3 when the policy is implemented. This
shows that it is not easy to achieve the maximum control level. Thus, we will
explore the difference in the optimal control solution between the deterministic
model (25) and stochastic model (26) by narrowing the range of control vari-
ables. In the simulations, we fixed the cost weight factor of control measures
(setas A=1,B=1,C1=1,02=1, C3 =1), increased the parameter value
of the disease infection rate to 2.9760 % 10~*, and set three ranges for control
variables as [0,0.2], [0,0.28], [0,0.35]. It can be seen from the results in Figure
8 (al-cl) that when the maximum intensity of the control variable is 0.4, the
disease will go extinct with control measures both in stochastic and determin-
istic models. The results in Figure 8 (a3-c3) show that the disease will persist
when the maximum intensity of the control variable is 0.2. However, when the
maximum intensity of the control variable is set to 0,285, the optimal control
trajectory of the number of infected people I{t) in the deterministic model still
persists. In contrast, the optimal control trajectory of the number of infected
people I(t) in the corresponding stochastic model is finally goes to extinction,
as shown in Figure 8 (a2-c2). This illustrates that the disease control based
on the stochastic optimal control model 15 more effective under the same con-
ditions than the deterministic model. These findings have also been verified in
the actual data fitting results shown in Figure 1.

5.6. The value of the objective function

When the government decides what control measures to be implemented
or when individuals decide whether to take protective measures, they usually
consider the cost of different measures. Thus, we will calculate the value of

the objective function under different combinations of three control measures to
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Table 1: Parameters and initial conditions of the system.

Parameters Definition Values

c Inflow rate of pollutants 24.6706
Ho Parameter in the rate of pollutant clearance 0.2477
i Parameter in the rate of pollutant clearance 0.1071
ity Parameter in the rate of pollutant clearance 3.5444
d2 Noise intensity of pollutant clearance 0.1793
A Baseline transmission coefficient 23838 % 101
¥ Recovery rate for infectives 0.017
81 Noise intensity of transmission coefficient 0.0025
k Cure rate for infectives 0.017
o The magnitude of the effect of the infected being delayed for treatment 0.0025

o Initial value of infected population 26

F(0) Initial value of concentration of air pollutants 105

analyze control strategies. Eight combinations of the three control measures are
listed in Table 2. For comparison, the weight coefficients A, B, C'1, C2 and C3
are set to 1 in mumerical simulations. By comparing the results of .J in Table 2,
we find that it is the highest when no measure is taken. Taking any of the three
measures is conducive to respiratory disease control. The control measures can
reduce the mumber of infected cases of respiratory diseases and the concentration
of air pollutants, and the total cost of measures is low. As long as us(t) # 0,
the values of J decrease significantly compared with other combinations. This
indicates that the improvement of air quality is the most effective measure to
reduce respiratory disease infection. Therefore, taking measures to reduce the
concentration of air pollutants can improve air quality and play a critical role
in the control of respiratory diseases related to air pollution. We also obtain a

similar conclusion by ealeulating the mean value of J for the stochastic model

(10}, which is shown in Table 2.
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Table 2: The values of J(u) for the deterministic model {2) and stochastic model (10).

Combination of control variables | J(u) of deterministic model | J(u) of stochastic model

uy(t), ua(t), ug(t) =0 5.24 % 108 5.00 & 108
ug(t) # 0,ua(t), us(t) =0 3.28 % 10° 3.27 % 10°
ua(t) # 0,uq(t), ug(t) =0 3.33 # 10° 3.33 % 108
usz(t) # 0,u1(t),ua{t) = 0 7.56 % 10* 7.60 + 10°
uglt). us(t) # 0,us(t) = 0 3.24 % 10° 3.22 + 10°
ug(t), ug(t) # 0,ua(t) =0 7.56 % 104 743 % 104
ua(t), ua(t) # 0,u1(t) =0 4.06 % 10* 418+ 10*

uy (), ua(t), ug(t) # 0 3.68 104 378 % 104

6. Comparison with other studies

We developed a coupled model to study optimal control measures for the
transmission of respiratory diseases cansed by air pollution. In many studies
addressing optimal control problems of infectious disease models, parameters are
commonly used to characterize factors of interest [46, 47, 48]. In our research,
instead of using a parameter coupled with disease transmission dynamics, we
employ a differential equation to represent changes in air pollutants. This ap-
proach introduces diversity into our findings compared to other studies. While
many studies solely focus on minimizing the number of infections and reducing
economic costs, our model aims for comprehensive governance by incorporating
optimization of air quality.

When studying the optimal control problem of the deterministic model, our
numerical implementation results indicate that with total control measures, the
disease becomes extinct, and the concentration of air pollutants shows a trend
of periodic changes following a short-term decrease. In the case of incomplete
control measures, the disease persists, and the number of infected cases ex-

hibits periodic changes, driven by the periodicity of the air pollutant concen-
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tration. This optimal control outcome from our periodic model aligns with
the findings of the fractional optimal control problem when studying a human
respiratory syncytial virus surveillance system [49]. Typically, when analyzing
cost-effectiveness, weight coefficients correspond to unit costs and are set to 1.
However, we have improved our numerical analysis method by considering the
different costs associated with various control measures. We have analyvzed the
results under different weight factor values for the three control measures. The
optimal control solution can exhibit various phenomena, such as stability to the
boundary value and periodic oscillations. In the case of the stochastic optimal
control solution of the coupled model, periodic oscillations are observed under
specific weight values.

Gani et al. also conducted research on the optimal control problem of de-
terministic and stochastic models to analyze an epidemic model incorporating
media awareness programs and treatment for infectives [43]. Their findings in-
dicate that the optimal control problem of the stochastic model generally aligns
with the numerical solution of the deterministic model. Our results further

corroborate the relationship between the deterministic and stochastic models.

7. Discussion

This work studied the optimal control problem for respiratory diseases in-
duced by air pollution based on a two-dimensional coupling system. We con-
sidered the optimal control for two models (the deterministic model and the
corresponding stochastic model). In the optimal control problem, three type-
s of measures, including self preventive measures, treatment of disease, and
reducing the emission of air pollutants, are included in the air pollution con-
trol and disease control. According to Pontrvagin’s minimum principle and the
Hamiltonian-Jacobi-Bellman equation. the optimal control solutions for the de-
terministic model are obtained. The adjoint vectors are used to find an approsx-
imate mumerical solution for analyzing the stochastic optimality system. The

identification of the model and the estimation of parameters are implemented

29



by the fitting analysis of the actual measured data and the control measures.
The effectiveness of the interventions against air pollution were verified based
on the model with control. On this basis, in order to find the optimal control
measures, we presented the numerical simulation of optimal control strategies
and the corresponding state variables for models with different weight factor
values. We also showed the numerical results without control for comparison.
The wvalues of objective functionals under various combinations of three con-
trol measures were calculated to evaluate the effectiveness of different control
measures.

Assuming reducing the number of infected cases is the only control objec-
tive, numerical results showed that the relevant respiratory diseases can be well
controlled by taking the three control measures. The number of infected cases
will reduce to zero. At the same time, the air quality will improve once the dis-
ease is under control. If the objective is to reduce the mumber of infected cases
and improve the air quality, numerical results show that the diseases will be
eliminated and the air pollution will be well controlled. In addition, considering
the flexibility of control measures in the implementation process, we replaced
the time-dependent control variable us(t) with a function dependent on both
the time and the value of AQI. The optimal control results of the improved
model show that the periodic change of air pollutant concentration control is
more 1n line with the actual situation. From the cost values under different
control measures, it can be found that reducing the emission of air pollutants
is a control measure that has the lowest overall cost and plays a significant role
in the control of related respiratory diseases.

The comparison of the numerical results between the deterministic and s-
tochastic models shows the advantage of each model. The optimal control for
the deterministic model can reflect the control effect, but it cannot reverse the
randomness in the process. The optimal solution of the control variable in the
stochastic model oscillates between the upper and lower boundaries of 1 and
(0. This indicates that the intensity of control measures changes dynamically,

which should be the case in realistic situations when the control measures are
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implemented. Therefore, the stochastic optimal control model and the corre-
sponding optimal control solution are closer to reality and can reflect the actual
situation. There are a couple of limitations in our work. Firstly, the numerical
simulation only shows the results of three representative groups with different
weight coefficient values, which only present part of the many possible scenar-
i0s. Secondly, the value of the objective function is only for comparison between
different control strategies because the implementation cost will be hard to de-
termine. Further work on surveving, sampling, and assessment of the cost of

each control measure 15 needed.
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