
Journal Pre-proof

Key-Aggregate Searchable Encryption Supporting Conjunctive Queries for Flexible Data Sharing
in the Cloud

Jinlu Liu, Bo Zhao, Jing Qin, Xinyi Hou and Jixin Ma

PII: S0020-0255(23)00921-0

DOI: https://doi.org/10.1016/j.ins.2023.119336

Reference: INS 119336

To appear in: Information Sciences

Received date: 7 November 2021

Revised date: 14 June 2023

Accepted date: 16 June 2023

Please cite this article as: J. Liu, B. Zhao, J. Qin et al., Key-Aggregate Searchable Encryption Supporting Conjunctive Queries for Flexible Data Sharing in the
Cloud, Information Sciences, 119336, doi: https://doi.org/10.1016/j.ins.2023.119336.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for
readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its
final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier.

https://doi.org/10.1016/j.ins.2023.119336
https://doi.org/10.1016/j.ins.2023.119336

Key-Aggregate Searchable Encryption Supporting
Conjunctive Queries for Flexible Data Sharing

in the Cloud

Jinlu Liua, Bo Zhaoa, Jing Qina,∗, Xinyi Houa, Jixin Mab

aSchool of Mathematics, Shandong University, Jinan, 250100, Shandong, China
bSchool of Computing and Mathematical Sciences University of Greenwich, London, UK

Abstract

Searchable encryption (SE) meets users’ demand for the keyword search on en-

crypted data. Key-aggregate searchable encryption (KASE) improves data own-

ers’ ability to selectively share encrypted data with users. In KASE, the data

owner encrypts different documents/document classes with distinct keys and can

share any selected subset of documents by simply transmitting an aggregate key

to the user. The user only uploads an aggregate trapdoor to the server for query-

ing these shared documents. However, the existing KASE schemes have some

limitations: the security definition is incomplete, only single-keyword search is

supported, and the provable security scheme relies on the random oracle model.

For these reasons, in this paper, we propose the Key-Aggregate Searchable En-

cryption supporting Conjunctive Queries (KASE-CQ) framework and its two

security models: indistinguishability against selective-document chosen keyword

attack and existential unforgeability against selective-document chosen keyword

attack. These models reflect the indistinguishability of ciphertext and the un-

forgeability of the aggregate key, respectively. Our system supports flexible data

sharing and the conjunctive keyword search on encrypted data. Furthermore,

we design a concrete KASE-CQ construction, which can be proven secure in the

∗Corresponding author
Email addresses: jinlulmath@163.com (Jinlu Liu), zhaobomath@163.com (Bo Zhao),

qinjing@sdu.edu.cn (Jing Qin), hxy2353@163.com (Xinyi Hou), j.ma@greenwich.ac.uk
(Jixin Ma)

Preprint submitted to Information Sciences June 19, 2023

standard model. We also demonstrate that our construction is secure against

the insider trapdoor attack presented by Zhou et al. [40]. Finally, performance

analysis and comparisons with Cui et al.’s scheme [10] illustrate the superior

efficiency of our scheme.

Keywords: Data sharing, Key-aggregate, Conjunctive keyword query,

Standard model.

1. Introduction

In today’s era of data explosion, data storage and transmission problems

have been solved with the advent of cloud technology [32, 18, 23, 28, 17]. Cloud

storage is an innovative information storage technology. With the Internet,

especially 5G communication technology, users can quickly transfer their files,5

photos, and videos to cloud terminals anytime and anywhere [6]. When data is

outsourced, users cannot control data directly, making data privacy a significant

concern for cloud storage [31, 35, 39, 29]. A basic strategy is “encryption-before-

outsourcing” [37, 28, 41]. However, when data is encrypted using traditional

encryption schemes with semantic security (such as AES and ElGamal), the10

encrypted data is indistinguishable from a ciphertext randomly selected from

the ciphertext space. This leads to the loss of semantic information [27], posing

challenges for users to efficiently search for the data of interest.

To support data retrieval without compromising confidentiality, searchable

encryption (SE) [20, 12, 11, 24, 36, 38] technology has been proposed. In an15

SE scheme, a data owner encrypts potential keywords and uploads them to the

cloud server along with the encrypted data. When searching for data matching

a specific keyword, the user submits the corresponding keyword trapdoor (i.e.

encrypted keyword) to the server. This allows the server to test whether any

ciphertext matches the trapdoor, namely ciphertexts embedded with the same20

keyword as the trapdoor. The SE is mainly classified into searchable symmetric

encryption (SSE) and public key encryption with keyword search (PEKS). SSE

permits only the secret key holder to produce ciphertexts and generate trapdoors

2

for searching. On the other hand, PEKS allows certain users who know the

public key to generate ciphertexts, but only the secret key holder can create25

trapdoors.

1.1. The Need for Key-Aggregate Searchable Encryption

Although SE technology has attracted broad attention from both industry

and academia, it still has limitations. One particular limitation is the ability to

selectively share encrypted data, which is a crucial function of cloud systems.30

Data owners outsource much of their data to the cloud server but want to autho-

rize various users to access different parts of them. In large-scale applications

with numerous users and files, implementing systems that support both keyword

search and selective sharing of encrypted data using traditional searchable en-

cryption techniques is hindered by practical problems. These problems include35

the complex and expensive key management in SSE and the need for multiple

copies of ciphertexts in PEKS. To further illustrate this point, we consider the

following scenario.

Assume that Alice uses a public storage server (e.g., Dropbox) to store her

private photos. Before uploading them to the cloud storage, Alice encrypts40

her photos to prevent potential data leakage and generates keyword ciphertexts

based on time, place, and person, enabling her to search for photos of interest.

Alice then selectively shares these photos with her friends. For instance, she

shares photos 1, 2, and 3 with Bob, photos 1 and 2 with Carol, and photos 2

and 4 with Dan. For her friends to view the shared photos, Alice must delegate45

permission for keyword search and decryption of these photos to them. There are

two extreme methods for Alice using the traditional SE technology [12, 8, 11, 7]:

1) Using SSE, Alice encrypts her photos (and their keywords) with different

secret keys. She then sends the secret keys for photos 1, 2, and 3 to

Bob, the secret keys for photos 1 and 2 to Carol, and the secret keys50

for photos 2 and 4 to Dan. Bob securely stores the received secret keys.

When searching for photos matching a keyword, he utilizes these keys to

generate the trapdoors for photos 1, 2, and 3, respectively. Then, Bob

3

submits these trapdoors to the cloud server. Carol and Dan can also

perform similar operations.55

2) Using PEKS, Alice encrypts photos 1, 2, and 3 with Bob’s public key,

photos 1 and 2 with Carol’s public key, and photos 2 and 4 with Dan’s

public key. Then, Bob can utilize his secret key to generate a trapdoor

and submit it to the cloud server to conduct keyword searches on photos

1, 2, and 3. Carol and Dan can also perform similar operations.60

Both of these methods are very heavy and expensive to implement. For the

first method, first, the number of secret keys that need to be distributed to a

user is proportional to the number of shared photos. These keys not only need to

be sent via secure channels but also to be securely stored and managed by users

within their devices. Second, to perform the keyword search on shared photos,65

a large number of trapdoors must be generated and submitted to the server.

The communication, storage, and computational complexity involved generally

increase with the number of secret keys to be shared. For the second method, a

photo is encrypted multiple times using the public keys of all authorized users.

The resulting multiple ciphertexts for each photo need to be uploaded and stored70

in the cloud server. The communication, computational, and (cloud) storage

complexity involved generally increase with the number of users authorized to

access a photo. Therefore, both methods render the system inefficient and

impractical.

The Key-Aggregate Searchable Encryption (KASE) proposed by Cui et al.75

[10] is an excellent technology to address the abovementioned problems. In

KASE, the data owner divides his data into different classes and encrypts each

piece of data not only under his public key but also under an identifier that

indicates the data’s class. The data owner can extract an aggregate key of

constant size from any number of different classes by embedding the secret key80

into the product of public keys associated with these data classes. The aggregate

key is a single key but aggregates the ability to search ciphertexts of these

different classes. Therefore, with KASE, the data owner can share any subset

4

Dan

𝑘1

Alice;

China;

May 2021

𝑘2

Alice;

Korea;

June 2022

𝑘3

Bob;

America;

April 2022

𝑘4

Dan;

Canada;

March 2023

𝑘𝑛

Emma;

England;

July 2022

Alice

Carol

Bob

Public

channel

Secure

channel

Cloud Server

(a) SSE

Dan;

Canada;

March 2023

Emma;

England;

July 2022

𝑝𝑘Bob

Alice;

China;

May 2021

Alice;

Korea;

June 2022

𝑝𝑘Bob

Bob;

America;

April 2022

𝑝𝑘Bob

𝑝𝑘Carol 𝑝𝑘Carol

𝑝𝑘Dan

𝑝𝑘Dan

Bob(𝑠𝑘𝐵𝑜𝑏)

Carol(𝑠𝑘𝐶𝑎𝑟𝑜𝑙)

Dan(𝑠𝑘𝐷𝑎𝑛)
Alice

𝑝𝑘Eva

Cloud Server

(b) PEKS

𝑘1′

Alice;

China;

May 2021

Alice;

Korea;

June 2022

Bob;

America;

April 2022

Dan;

Canada;

March 2023

Emma;

England;

July 2022

Alice
Carol

Bob

Dan

Matched

Photo

Aggregate

𝑘2′ 𝑘3′ 𝑘4′ 𝑘𝑛′

Cloud Server

(c) KASE

Figure 1: Keyword search in data sharing

of data classes by solely sending the corresponding aggregate key to the user via

secure channels. The user merely generates a single aggregate trapdoor using85

the obtained aggregate key and submits it to the cloud for searching all shared

documents. The server can adjust this aggregate trapdoor to trapdoors for each

document using some public information 1. Compared with the methods using

SSE and PEKS, the most prominent property of the KASE system is that the

ciphertext, aggregate key, and trapdoor are all of constant size. This property90

significantly reduces the computational, communication, and storage overhead.

1We notice that although the server needs to adjust the aggregate trapdoor to trapdoors
for each document, it can be seen from our concrete KASE-CQ construction in Section 4 that
the process only requires the server to perform multiplication operations, which is acceptable
for the computation-rich cloud server.

5

Fig. 1 depicts the comparison of using SSE, PEKS, and KASE to realize the

above photo sharing scenario.

1.2. Current Research States

Since the introduction of the KASE system [10], various KASE schemes95

[19, 21, 22] have been proposed. However, none of these schemes provide con-

crete security model definitions for KASE. Zhou et al. [40] showed an attack

on [10] (none of [19, 21, 22] can resist such an attack), which we call the in-

side trapdoor attack (ITA). In ITA, the inside attacker of the system can guess

the aggregate keys of users who share the document access with him. [40]100

also designed a file-centric multi-key aggregate keyword searchable encryption

(Fc-MKA-KSE) scheme that can resist ITA and formally defined two security

models: indistinguishability against selective-file chosen keyword attack (IND-

sF-CKA) and indistinguishability against selective-file keyword guessing attack

(IND-sF-KGA). The IND-sF-CKA ensures that an adversary who can perform105

aggregate key queries and trapdoor queries cannot obtain the relationship be-

tween the challenge ciphertext and the corresponding keyword. Hence, it cap-

tures the privacy of the keyword ciphertext, that is, the keyword ciphertext will

not reveal any information about the corresponding keyword to unauthorized

users. The IND-sF-KGA ensures that an adversary who can perform aggregate110

key queries and keyword ciphertext queries cannot obtain the relationship be-

tween the challenge trapdoor and the corresponding keyword. So it captures the

privacy of the keyword trapdoor, that is, the keyword trapdoor will not reveal

any information about the corresponding keyword to unauthorized users.

Although KASE is an invaluable cryptographic tool for achieving both key-115

word search and selective sharing of encrypted data, existing schemes still face

the following problems. These problems limit their practical utilization and

motivate our work.

• Security Definition. In most previous studies on key aggregate search-

able encryption, the security definition was not formally discussed. Zhou120

6

et al. [40] defined the IND-sF-CKA and IND-sF-KGA security models.

However, the IND-sF-CKA does not capture that the adversary can obtain

the ciphertext stored on the server, because the adversary is not allowed

to perform ciphertext queries (Note that the generation of the keyword

ciphertext requires a secret key). Moreover, in the trapdoor query of IND-125

sF-CKA, only the non-challenged file set is allowed to be queried, which

can be calculated by itself after the adversary conducts the aggregate key

query. Thus, the trapdoor query is unnecessary. Additionally, although

Zhou et al. defined the IND-sF-KGA security model, they did not provide

proof under this model. [40] also did not prove that their scheme could130

resist ITA. At last, search controllability is necessary in the KASE system

[10], which means the attacker cannot generate a new aggregate key from

the known aggregate keys, to search for files that are not authorized to

access. However, no related security model is given in [40].

• Query Type. Existing key-aggregate searchable encryption systems solely135

allow the single keyword search. However, the conjunctive query [13, 1, 25]

is essential for the efficient utilization of the data repository, because the

single keyword search always produces extremely coarse results. For exam-

ple, Bob may not want to search all the photos in which “Alice” appeared,

but only the photos taken in “China” in “May 2021” in which “Alice” ap-140

peared. In this case, the capacity to search “Alice∧China∧May 2021” is

needed. To achieve this goal with existing schemes, the user is required to

submit trapdoors for each keyword. Subsequently, the server utilizes each

trapdoor to locate the documents matching each keyword and returns the

intersection of those documents to the user. This approach is insecure145

and inefficient because the server can know which documents contain each

individual keyword in addition to the result of the conjunctive query, and

the computational and communication overhead of the trapdoor is linear

in the number of conjuncts being searched.

• Security Model. Zhou et al. [40] proved that their Fc-MKA-KSE150

7

scheme meets the IND-sF-CKA security model. Regrettably, this can

only be proved in the random oracle model (ROM). In the security proof,

ROM is an ideal substitute for the hash function in reality. The scheme

proved secure in the ROM is not sure secure in the actual implementation.

Hence, it is preferable to design a scheme that can prove security in the155

standard model (SM).

1.3. Our Contributions

To fill the gap in the literature, we propose a novel KASE system called

Key-Aggregate Searchable Encryption supporting Conjunctive Queries (KASE-

CQ). We also present two security models to capture the keyword ciphertext160

security and controlled searching respectively, as well as a concrete KASE-CQ

construction. Compared with previously proposed KASE schemes, we make the

following primary contributions:

• Enhanced Security Definition. We formalize the indistinguishability

against selective-document chosen keyword attack (IND-sDOC-CKA) and165

existential unforgeability against selective-document chosen keyword at-

tack (EU-sDOC-CKA) security models on the KASE-CQ system. The def-

inition of IND-sDOC-CKA is the same as that of IND-sF-CKA [40], except

that our model also captures the ability to obtain the ciphertext stored on

the server by allowing the adversary to perform ciphertext queries. The170

EU-sDOC-CKA model captures the search controllability. Specifically,

an adversary owing aggregate keys KS1
agg,K

S2
agg, ...,K

Sq
agg corresponding to

document class sets S1, S2,...,Sq, respectively, cannot generate a new ag-

gregate key corresponding to set S∗, such that the challenge document

i∗ satisfies i∗ ∈ S∗ and i∗ /∈ (S1 ∪ S2 ∪ ... ∪ Sq). In other words, the175

attacker cannot generate an aggregate key for a document set containing

an unauthorized document from known aggregate keys.

• Conjunctive Keyword Query. Our KASE-CQ construction can sup-

port conjunctive queries, i.e. given a keyword set {w1, w2, ..., wl}, the user

8

can generate the trapdoor for “w1∧w2∧ ...∧wl”. The server can then use180

this trapdoor to directly locate and return the set of documents contain-

ing all of these keywords. This eliminates the need for generating separate

trapdoors for each keyword and returning the intersection of documents

matching each keyword. Therefore, in our KASE-CQ scheme, the com-

putational and communication overhead of trapdoors is independent of185

the number of conjuncts being searched. The server does not know the

documents that match each individual keyword in the conjunctive query.

• Standard Model. We formally prove that KASE-CQ construction meets

the ciphertext indistinguishability under the decisional Bilinear Diffie-

Hellman Exponent (BDHE) assumption in the IND-sDOC-CKA security190

model and the aggregate key unforgeability under the Diffie-Hellman Ex-

ponent (DHE) assumption in the EU-sDOC-CKA security model without

random oracle. We also prove the KASE-CQ is secure against ITA.

1.4. Related Work

Chu et al. [9] defined the key-aggregate cryptosystem (KAC). Thereafter,195

many KAC schemes have been proposed [14, 26, 34, 30, 15]. The KAC system

allows users to decrypt multiple documents encrypted with different keys using

a single aggregate key, realizing the effective authorization of decryption per-

mission on any ciphertext set. However, KAC does not provide functionality

for searching encrypted data. Cui et al.[10] applied the aggregate key technol-200

ogy to propose a KASE system. The data owner uses different keys to encrypt

different documents. When sharing multiple documents, the data owner only

transmits an aggregate key to the user. Users only generate an aggregate trap-

door to search for documents encrypted with different keys. However, [10] did

not give the formal security model definitions for its scheme. Considering that205

the server may return only a portion of the search results to save its comput-

ing resources, Li et al. [19] introduced a verifiable searchable encryption with

aggregate keys (VSEAK) scheme using bloom filter [3] based on [10]. But the

9

verification mechanism of this scheme causes a significant computational bur-

den to the user. When multiple data owners share documents with the same210

user, [10] and [19] require users to securely store aggregate keys from multiple

owners and generate trapdoors corresponding to each aggregate key for search.

Users have a great burden of computation and storage. Accordingly, Liu et al.

[21] designed a VSEAK scheme under the multi-owner setting. Building upon

the scheme proposed in [19], they use a key uk to encrypt each aggregate key215

and convert them into auxiliary values that can be publicly stored on the server.

The user just stores uk locally and uses it to generate a single trapdoor to query

multiple owners’ data.

In 2018, Zhou et al. [40] proposed a concrete attack on the scheme proposed

in [10], which we call the inside trapdoor attack (ITA). In addition, Zhou et220

al. [40] presented an Fc-MKA-KSE system and its two security models: IND-

sF-CKA and IND-sF-KGA, which capture the keyword ciphertext security and

trapdoor privacy, respectively. However, in the concrete Fc-MKA-KSE con-

struction proposed, the public/secret keys of the data owner are proportional

to the documents’ quantity, and the security is proved in ROM. Since the cloud225

server probably tampers with data stored by data owners and unauthorized

users may send search queries to obtain information about the data owner, Liu

et al. [22] introduced a verifiable and authenticated KASE scheme. In 2019,

Wang et al. [33] presented an efficient key-aggregate keyword searchable en-

cryption scheme, which is secure against ITA, but the elements contained in230

each document index are linearly related to the data owner’s documents.

In Table 1, we compare our work with KASE [10] and Fc-MKA-KSE [40] in

terms of functionality and security. Note we use — to denote “not applicable”.

For all we know, our scheme is the first KASE system that simultaneously

formalizes the security model, supports conjunctive keyword search, is provably235

secure in the SM, and is secure against ITA.

10

Table 1: Functionality and Security Comparise with [10], [40]

Scheme Query Type Against ITA Security Definition ROM or SM

KASE [10] Single # # —

Fc-MKA-KSE [40] Single !(no proof provided)
IND-sF-CKA
IND-sF-KGA

ROM

Ours Conjunctive !(proof is provided)
IND-sDOC-CKA
EU-sDOC-CKA

SM

1.5. Organization

In the following Section, we present the relevant notations, abbreviations,

and primitives. In Section 3, we propose the system model, system framework,

and requirements of KASE-CQ. The KASE-CQ scheme and related security240

analysis are provided in Section 4, and in Section 5 we show performance anal-

ysis. The conclusion is in Section 6.

2. PRELIMINARIES

In this section, we introduce some cryptography backgrounds relevant to our

study, including the description of main notations and abbreviations, bilinear245

pairing, and the complexity assumptions on which the security of our scheme is

based.

2.1. Notations and Abbreviations

The main notations and abbreviations used in this paper are illustrated in

Table 2 and Table 3, respectively.250

2.2. Bilinear Pairing

G and G1 are two cyclic multiplicative groups of prime order p, and g is a

generator of G. The map e : G × G → G1 is a bilinear pairing if the following

properties are satisfied [4].

• Bilinearity: For ∀ g1, g2 ∈ G, a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)ab.255

• Non-degeneracy: e(g, g) 6= 1.

11

Table 2: Notations

Notation Description

a ∈ G a is an element of set G
|A| the number of elements in set A

n
the maximum number of

documents owned by a data owner

m
the number of keyword
fields of each document

Wi the keyword set of ith document
Ci the keyword ciphertext of ith document
Q the queried keyword set

SA
the set of document identifiers that

authorized user A can access
kSagg the aggregate key of document set S

• Computability: For ∀ u, v ∈ G, there is an efficient algorithm to calculate

e(u, v).

2.3. Complexity Assumptions

The security of our concrete KASE-CQ construction is based on complex-260

ity assumptions called the Divisible Computational Diffie-Hellman (DCDH) as-

sumption, Diffie-Hellman Exponent (DHE) assumption, and decisional Bilinear

Diffie-Hellman Exponent (BDHE) assumption. We recall the formal definitions

of them as follows.

2.3.1. Divisible Computational Diffie-Hellman (DCDH) Assumption265

DCDH Problem [2]: Given a 3-tuple (g, ga, gb) ∈ G3, where a, b are randomly

chosen from Zp, compute g
a
b .

The advantage of algorithm A to solve the DCDH problem in G is ε if

Pr
[
A(g, ga, gb) = g

a
b

]
≥ ε.

Definition 1. The (t, ε)-DCDH assumption holds in G if there exists no t-time

algorithm that can solve the DCDH problem with advantage greater than ε.

12

Table 3: Abbreviations

Abbr. Full Name Abbr. Full Name

SE Searchable Encryption IND-sDOC-CKA
Indistinguishability against

Selective-Document

Chosen Keyword Attack

SSE
Symmetric

Searchable Encrytpion
EU-sDOC-CKA

Existential Unforgeability against

Selective-Document

Chosen Keyword Attack

PEKS
Public Key Encryption

with Keyword Search
Fc-MKA-KSE

File-Centric

Multi-Key Aggregate

Keyword Searchable Encryption

KAC
Key-Aggregate

Cryptosystem
IND-sF-CKA

Indistinguishability against

Selective-File

Chosen Keyword Attack

KASE
Key-Aggregate

Searchabel Encryption
IND-sF-KGA

Indistinguishability against

Selective-File

Keyword Guessing Attack

KASE-CQ

Key-Aggregate

Searchable Encryption

Supporting

Conjunctive Queries

ITA Inside Trapdoor Attack

VSEKA
Verifiable

Searchable Encryption

with Aggregate Keys

DCDH
Divisible Computational

Diffie-Hellman

ROM Random Oracle Model DHE
Diffie-Hellman

Exponent

SM Standard Model BDHE
Bilinear Diffie-

Hellman Exponent

2.3.2. Diffie-Hellman Exponent (DHE) Assumption270

n-DHE Problem [16]: Given a tuple of 2n elements (g, gα, g(α2), ..., g(αn), g(αn+2),

..., g(α2n)) ∈ G2n, compute g(αn+1). For shorthand, when g and α are specified,

we use gi to denote g(αi).

The advantage of algorithm A to solve the n-DHE problem in G is ε if

Pr[A(g, g1, g2, ..., gn, gn+2, .., g2n) = gn+1] ≥ ε.

Definition 2. The (t, ε, n)-DHE assumption holds in G if there exists no t-time

algorithm that can solve the n-DHE problem with advantage greater than ε.275

13

2.3.3. Bilinear Diffie-Hellman Exponent (BDHE) Assumption

n-BDHE Problem [5]: Given a vector of 2n+ 1 elements

(h, g, gα, g(α2), ..., g(αn), g(αn+2), ..., g(α2n)) ∈ G2n+1

as input, output e(g, h)(αn+1) ∈ G1. As n-DHE Problem, we use gi to represent

g(αi).

The advantage of algorithm A to solve the n-BDHE problem in G is ε if

Pr[A(h, g, g1, g2, ..., gn, gn+2, .., g2n) = e(gn+1, h)] ≥ ε.

Decisional n-BDHE Problem: Given a vector of 2n+ 1 elements

(h, g, g1, g2, ..., gn, gn+2, ..., g2n) ∈ G2n+1

and Z ∈ G1, the decisional version of n-BDHE problem is to decide Z
?
=

e(gn+1, h). For shorthand, let yg,α,n = (g1, g2, ..., gn, gn+2, ..., g2n).280

The advantage of algorithm A with output b ∈ {0, 1} to solve decisional

n-BDHE problem is ε if

|Pr[A(g, h, yg,α,n, e(gn+1, h)) = 1]− Pr[A(g, h, yg,α,n, Z) = 1]| ≥ ε.

We denote the distribution on the left as TBDHE and the distribution on the

right as FBDHE .

Definition 3. The (t, ε, n)-(decisional) BDHE assumption holds in G if there

exists no t-time algorithm that can solve the (decisional) n-DBHE problem with

advantage greater than ε.285

3. Problem Formulation of KASE-CQ

In this section, we introduce a new cryptography primitive called Key-

Aggregate Searchable Encryption supporting Conjunctive Queries (KASE-CQ).

14

Data Owner

Aggregate

User

Public

channel

Secure

channel

𝑻𝒓𝟏 𝑻𝒓𝟐

Cloud Server

Figure 2: The System Model of KASE-CQ

We also propose the system model, system framework, and function and security

requirements of the KASE-CQ.290

3.1. System Model

The KASE-CQ system model is shown in Fig. 2. A KASE-CQ system

consists of three types of entities: a data owner, users, and a cloud server. We

introduce the detailed description of each entity as follows.

• Data Owner. The entity is fully credible. He is responsible for setting295

up the system to generate system parameters. He divides his documents

into different classes and encrypts each document under his public key, the

cloud server’s public key and an identifier that indicates the document’s

class, then outsources the generated ciphertexts to the cloud server. He

also uses his secret key to compute the aggregate key for the set of shared300

document classes and transmits it to the user through the secure channel.

• Users. After obtaining the aggregate key, this entity can generate the

aggregate trapdoor based on his interested keywords and submit the trap-

door to the cloud server to issue the conjunctive search query. The entities

15

may collude to obtain as much secret information as possible by combining305

the aggregate keys they possess.

• Cloud Server. The entity is honest-but-curious, i.e. it honestly performs

the protocols but is curious to spy out the valuable information. It stores

the ciphertexts from the data owner. After getting the aggregate trapdoor

from the user, the server adjusts the aggregate trapdoor to trapdoors for310

each different document class. Subsequently, it performs the ciphertext

search operation and transmits the matched ciphertexts to the user.

3.2. System Framework

We consider the data owner storing encrypted documents on the untrusted

cloud server. The maximum number of documents or document classes owned315

by a data owner is n. Suppose each document hasm keyword fields, and different

keyword fields have different keywords. For the ith document Di, we use Wi =

{wi,1, wi,2, ..., wi,m} to represent its keyword set, where wi,j is the jth keyword of

Di. Q =
{
w′j1 , w

′
j2
, ..., w′jl

}
denotes the queried keyword set, where ji, 1 ≤ i ≤ l

is the keyword field and |Q| ≤ m. About document encryption, we can use320

the key-aggregate cryprosystem [9] to get the ciphertext ci of each document

Di. This is not the focus of our research. We mainly focus on how to encrypt

keywords so that the keyword ciphertexts can be searched. Therefore, in our

algorithm, we will not dwell on the encryption of the document itself.

Definition 4. (KASE-CQ) A KASE-CQ system contains the following eight325

algorithms:

• Setup(1k, n). On input n and security parameter k, the data owner runs

this algorithm to generate the public system parameter params. We im-

plicitly assume that all other algorithms take params as input.

• KeyGen. The data owner outputs his public-secret key pair (pk, sk).330

• KeyGens The cloud server outputs its public-secret key pair (pks, sks).

16

• Encrypt(pk, sk, pks, i,Wi). On input Wi, (pk, sk), and pks, the data

owner runs this algorithm to generate the keyword ciphertext Ci = {CWi, ∆i},

where CWi = {ci,1, ci,2, ..., ci,m} is obtained by encrypting each keyword

in Wi and ∆i is the auxiliary value. Finally, Ci is uploaded to the cloud.335

• Extract(sk, S). The data owner runs this algorithm to generate the ag-

gregate searchable encryption key for the user who has access to the selected

document set. He inputs sk and a document identifier set S, then outputs

aggregate key kSagg and transmits it to the user over the secure channel.

Users who get the key have the keyword search right for documents of the340

ith class, where i ∈ S.

• Trapdoor(pk, kS
agg, Q). The user runs this algorithm to generate an

aggregate trapdoor Tr using aggregate key kSagg and queried keyword set

Q, and then submits Tr and S to the cloud.

• Adjust(Tr, i, S). The cloud server runs this algorithm to adjust Tr to345

the trapdoor Tri of the document with identifier i belonging to S.

• Test(Tri, S, Ci, sks). The cloud server runs this algorithm. It takes the

Ci and trapdoor Tri as input, and output 1 if the expression

(wi,j1 = w′j1) ∧ (wi,j2 = w′j2) ∧ ... ∧ (wi,jl = w′jl) (1)

holds; otherwise, output 0.

Example. For better understanding, we give an example to illustrate how

our KASE-CQ system works. The security parameter is denoted as k, and

its value can be set according to specific security requirements. We assume350

that a data owner has four documents (for simplicity, assume that a docu-

ment class contains one document), and each document has three keyword

fields, i.e., n = 4 and m = 3. Therefore, we have W1 = {w1,1, w1,2, w1,3},

W2 = {w2,1, w2,2, w2,3}, W3 = {w3,1, w3,2, w3,3} and W4 = {w4,1, w4,2, w4,3}.

The data owner generates the public system parameter params by running the355

17

Setup(1k, 4) algorithm, and generates his public-secret key pair (pk, sk) by run-

ning the KeyGen algorithm. The cloud server runs the KeyGens algorithm

to generate its public-secret key pair (pks, sks). Then, the data owner runs al-

gorithms Encrypt(pk, sk, pks, 1,W1),..., Encrypt(pk, sk, pks, 4,W4) to generate

keyword ciphertexts C1,..., C4 and uploads them to the cloud server. When the360

data owner wants to share the 1st, 3rd, and 4th documents to a user, that is

S = {1, 3, 4}, he runs the Extract(sk, {1, 3, 4}) algorithm to generate an ag-

gregate key k
{1,3,4}
agg and transmits it to the user over the secure channel. With

k
{1,3,4}
agg , the user can perform conjunctive keyword queries on the 1st, 3rd, and

4th documents. For example, when he wants to search for documents whose first365

keyword field is the keyword w′1 and the fourth keyword field is the keyword w′4,

that is Q = {w′1, w′4}, the user runs Trapdoor(pk, k
{1,3,4}
agg , {w′1, w′4}) to generate

the trapdoor Tr. Then, he submits Tr and S = {1, 3, 4} to the cloud server.

The server runs algorithms Adjust(Tr, 1, {1, 3, 4}), Adjust(Tr, 3, {1, 3, 4}), and

Adjust(Tr, 4, {1, 3, 4}) to adjust Tr to the trapdoors Tr1, Tr3, and Tr4 of370

the 1st document, 3rd document, and 4th document respectively. Finally, for

i = 1, 3, 4, the server runs Test(Tri, S, Ci, sks) to test whether the expression

(wi,1 = w′1) ∧ (wi,4 = w′4) is held, and if it is held, the corresponding encrypted

document ci is returned to the user.

3.3. Requirements of KASE-CQ375

3.3.1. Function Requirements

Considering the motivation, a valid KASE-CQ scheme must meet the fol-

lowing two function requirements.

Definition 5 (Correctness). For any sets S ⊆ {1, 2, ..., n} and Q =
{
w′j1 , w

′
j2
, ...,

w′jl
}

(|Q| ≤ m), any identifier i ∈ S, (pk, sk) ← KeyGen, (pks, sks) ←380

KeyGens, Ci ← Encrypt(pk, sk, pks, i,Wi), k
S
agg ← Extract(sk, S), Tr ←

Trapdoor(pk, kSagg, Q), and Tri ← Adjust(Tr, i, S), if the ith document con-

tains the same keywords as the queried keyword set in corresponding keyword

fields, then the algorithm Test(Tri, S, Ci, sks) outputs 1.

18

Definition 6 (Compactness). For any document identifier set S ⊆ {1, 2, ..., n},385

the algorithms Extract(sk, S) and Trapdoor(pk, kSagg, Q) output a fixed-length

aggregate key and a fixed-length aggregate trapdoor, respectively.

3.3.2. Security Requirements

The cloud server is “honest-but-curious”, meaning it runs algorithms cor-

rectly but obtains secret information from encrypted data whenever possible.390

Unauthorized users may collude to expose keywords in keyword ciphertexts

and generate an aggregate key for a new document set utilizing known aggre-

gate keys. The user may also carry out the inside trapdoor attack. Hence, a

KASE-CQ scheme must meet the following security requirements, where A is

the polynomial-time adversary and C is the challenger. Both A and C are given395

n and m.

1) Ciphertext Privacy : ensure that Encrypt does not disclose any informa-

tion of relative keyword set to unauthorized attackers. We define the indis-

tinguishability against selective-document chosen keyword attack (IND-sDOC-

CKA) security model for ciphertext privacy. Security is defined by the game400

between A and C as below.

Init. A declares the document identifier i∗(i∗ ∈ [1, n]) that he wants to be chal-

lenged.

Setup. The system parameter generation algorithm Setup(1k, n) is executed

to generate system parameter params. The two key generation algorithms405

KeyGen and KeyGens are executed to generate public-secret key pairs (pk, sk)

and (pks, sks) for data owner and server, respectively. Then, C sends params,

pk, and pks to A.

Phase1. A makes the following queries adaptively.

Aggregate key query (S): Once the document identifier set S is received, C410

runs Extract(sk, S) to generate the aggregate key kSagg and sends it to A. We

constrain i∗ /∈ S.

Ciphertext query (W, i): Once the keyword set W and related document iden-

tifier i are received, C runs Encrypt(pk, sk, pks, i,W) to generate the keyword

19

ciphertext Ci and sends it to A.415

Challenge. A outputs two distinct challenge keyword sets W0 and W1 (|W0| =

|W1| = m). C randomly selects a bit c and computes challenge ciphertext

CT ∗ = Encrypt(pk, sk, pks, i
∗,Wc), which is sent to A.

We restrict W0 6= W , W1 6= W when i∗ = i, where (W, i) is for the ciphertext

query.420

Phase2. Same as in Phase 1, C responds to aggregate key queries and ciphertext

queries. The restriction is that (W, i) 6= (W0, i
∗) and (W, i) 6= (W1, i

∗) for

ciphertext query (W, i).

Guess. Finally, A outputs a bit c′. If c′ = c, A wins.

We define the advantage of A’s winning game as

AdvIND−sDOC−CKAA (k) = |Pr [c′ = c]− 1

2
|.

Definition 7 (IND-sDOC-CKA-Secure). A KASE-CQ scheme is (t, qk, qc, ε)-425

secure in IND-sDOC-CKA security model if AdvIND−sDOC−CKAA (k) is less than

or equal to ε for any A after making qk aggregate key queries and qc ciphertext

queries in time t.

2) Inside Trapdoor Attack Secure : ensure that an inside attacker can’t in-

fer the aggregate key of the user who shares document access with him.430

In 2018, Zhou et al. [40] showed an attack on the scheme in [10], which we

call it the inside trapdoor attack (ITA). We briefly review the attack.

The trapdoor of a keyword w in [10] is kSagg ·H ′(w), where H ′ : {0, 1}∗ → G

is a hash function. A is an attacked user who has the right to access document

set SA, so the aggregate key is kSAagg. B is an inside attacker who can access435

document set SB . SA and SB satisfy SA 6= SB , SA ∩ SB 6= ∅, and SA * SB .

We assume D ∈ (SA ∩ SB) and D contains the keywords w1, w2, and w3.

A submits the trapdoor Tr = kSAagg · H ′(w∗) of keyword w∗ for query-

ing, and the returned results contain document D. If B eavesdrops on the

trapdoor Tr, he knows the key kSAagg must belong to set K = {k1, k2, k3} =440 {
Tr

H′(w1) ,
Tr

H′(w2) ,
Tr

H′(w3)

}
. Therefore, B can use each ki, in turn, to generate the

20

trapdoor of wj (j 6= i) for keyword search, and then check whether ki is A’s

aggregate key based on the search results. For example, B guesses kSAagg = k1,

namely w∗ = w1, and computes Tri = k1 · H ′(wi), i=2 or 3. After the cloud

server receives Tri for search, if D is in search results, Tri is valid, which means445

k1 = kSAagg. Otherwise, Tri is invalid, and B continues to perform a similar

operation on k2.

So B can get A’s aggregate key by guessing three times at most. Further-

more, after obtaining the aggregate key of A, B can utilize the same strategy to

obtain the aggregate keys of other users who shares document access with A.450

Definition 8 (ITA Secure). A KASE scheme is ITA secure if it can resist the

above ITA attack, namely no inside attacker A can obtain other users’ aggregate

keys by performing an inside trapdoor attack.

3) Aggregate Key Unforgeability : ensure that attackers can’t generate an

aggregate key for a document set containing an unauthorized document from the455

known aggregate keys. We define the existential unforgeability against selective-

document chosen keyword attack (EU-sDOC-CKA) security model for aggregate

key unforgeability. Security is defined by the game between A and C as below.

Init. A proclaims the document identifier i∗(i∗ ∈ [1, n]) that he wants to be

challenged.460

Setup. The system parameter generation algorithm Setup(1k, n) is executed

to generate system parameter params. The two key generation algorithms

KeyGen and KeyGens are executed to generate public-secret key pairs (pk, sk)

and (pks, sks) for data owner and server, respectively. Then, C sends params,

pk, and pks to A.465

Query. A makes the aggregate key queries and ciphertext queries adaptively.

Aggregate key query (S): Once the document identifier set S is received, C runs

Extract(sk, S) to generate aggregate key kSagg and sends it to A. We constrain

i∗ /∈ S.

Ciphertext query (W, i): Once the keyword set W and related document iden-470

tifier i are received, C runs Encrypt(pk, sk, pks, i,W) to generate the keyword

21

ciphertext Ci and sends it to A.

Forgery. A outputs an aggregate key kS
∗

agg and wins if

• kS
∗

agg is a valid aggregate key of document set S∗.

• i∗ ∈ S∗.475

The probability of A returning forged aggregate key is the advantage

AdvEU−sDOC−CKAA (k) of winning the game.

Definition 9 (EU-sDOC-CKA-Secure). A KASE-CQ scheme is (t, qk, qc, ε)-

secure in EU-sDOC-CKA security model if AdvEU−sDOC−CKAA (k) is less than

or equal to ε for any A after making qk aggregate key queries and qc ciphertext480

queries in time t.

4. THE PROPOSED KASE-CQ SCHEME

In this section, we first instantiate the proposed KASE-CQ primitive by

providing a concrete construction for KASE-CQ. We then show that this con-

struction satisfies the proposed function and security requirements.485

4.1. Construction

1) Setup(1k, n)→ params. On input n and security parameter k , the data

owner initializes the system parameters:

• Generates a symmetric bilinear map group PG = (G,G1, p, e(·, ·)), where

p is the order of G and G1, and 2k ≤ p ≤ 2k+1;490

• Randomly chooses a generator g of G and α ∈ Z∗p , and calculates gi = g(αi)

for i = {1, 2, ..., n, n+ 2, ..., 2n};

• Chooses a cryptographic hash function H : {0, 1}∗ → Z∗p .

Output the public system parameters

params = {PG, (g1, g2, ..., gn, gn+2, ..., g2n), H} .

22

2)KeyGen→ (pk, sk). Randomly pick β, γ ∈ Z∗p and compute v1 = gβ , v2 = gγ .

Output the data owner’s public-secret key pair (pk, sk):

pk = (v1, v2), sk = (β, γ).

3) KeyGens → (pks, sks). The cloud server randomly picks λ ∈ Z∗p , computes

v = gλ, and outputs the public-secret key pair (pks, sks) as:

(pks, sks) = (v, λ).

4) Encrypt(pk, sk, pks, i,Wi) → Ci. Input document identifier i and keyword

set Wi, randomly choose t, r ∈ Z∗p , and then generate the keyword ciphertext495

as follows:

• Generate the auxiliary value ∆i = {c1, c2, c3, c4, c5} by computing:

c1 = gt, c2 = (v2 · gi)t, c3 = e(g1, gn)t, c4 = g
t
β , c5 = e(g, g)rt.

• Encrypt each keyword in Wi to generate ciphertext set CWi as follows:

CWi = {ci,j}mj=1 =
{
pkH(wi,j)+βr
s

}m
j=1

.

Therefore, the output of this algorithm is Ci = (∆i, CWi).

5) Extract(sk, S) → kSagg. Given the document identifier subset S ⊆ {1, ..., n},

the aggregate key is calculated as

kSagg =
∏
j∈S

gγn+1−j .

Then, the data owner sends kSagg and S to the user securely, thus delegating the

user the right to access documents in the set S.

6) Trapdoor(pk, kSagg, Q)→ Tr.Given the queried keyword setQ =
{
w′j1 , w

′
j2
, ...,

w′jl
}

, generate an aggerate trapdoor Tr = {T1, T2, T3} for all documents related

23

to the key kSagg. Specifically, the user first randomly picks s ∈ Z∗p . Then, the

user calculates Tr = {T1, T2, T3} as follows:

T1 = kSagg · gs, T2 =
vs1

g
∑l
k=1H(w′jk

)
, T3 = {jk}lk=1 .

We can see that T3 is the keyword field set of the queried keyword set. Finally,

the Tr and S are submitted to the server.

7) Adjust(Tr, i, S)→ Tri. Upon receiving the trapdoor Tr and document iden-

tifier set S, the server can adjust Tr to the actual trapdoor Tri = {Ti,1, Ti,2, Ti,3}

for the document class with identifier i ∈ S as:

Ti,1 = T1 ·
∏

j∈S,j 6=i

gn+1−j+i, Ti,2 = T2, Ti,3 = T3.

That is, the server only needs to adjust T1, while T2 and T3 are independent of

the document being searched, so no adjustment is required.

8) Test(Tri, S, Ci, sks) → 1/0. Once the trapdoor Tri is obtained, the server

can locate the corresponding keyword ciphertext set {ci,jk}
l
k=1 based on the

queried keyword field set Ti,3. Then, the server verifies the following equation:

e(Ti,1, c1)

e(
∏
j∈S gn+1−j , c2)

?
=
e((
∏l
k=1 ci,jk)

1
sks · T2, c4)

c3cl5
. (2)

If the equation 2 holds, it indicates that expression 1 holds and therefore outputs

1, otherwise output 0.

Correctness: First, we have

e(Ti,1, c1)

e(
∏
j∈S gn+1−j , c2)

=
e(kSagg · gs ·

∏
j∈S,j 6=i gn+1−j+i, g

t)

e(
∏
j∈S gn+1−j , (v2 · gi)t)

=
e(kSagg, g

t)e(gs, gt)e(
∏
j∈S,j 6=i gn+1−j+i, g

t)

e(
∏
j∈S gn+1−j , gγt)e(

∏
j∈S gn+1−j , gti)

=
e(g, g)st

e(g1, gn)t
.

(3)

24

In addition, if Equation 1 holds, then

e((
∏l
k=1 ci,jk)

1
sks · T2, c4)

c3cl5

=
e(g

∑l
k=1H(w′jk

)+lβr · gβs−
∑l
k=1H(w′jk

), g
t
β)

e(g1, gn)te(g, g)rtl

=
e(glβr+βs, g

t
β)

e(g1, gn)te(g, g)rtl

=
e(g, g)st

e(g1, gn)t

(4)

Therefore, combining Equations 3 and 4, we can see that if the aggregate key

is valid, and the keywords of the document and the queried keywords are the500

same in the corresponding fields, then
e(Ti,1,c1)

e(
∏
j∈S gn+1−j ,c2) =

e((
∏l
k=1 ci,jk)

1
sks ·T2,c4)

c3cl5
.

Compactness: We show that the size of the aggregate key and aggregate

trapdoor has nothing to do with |S|. For any S, the Extract algorithm always

outputs an element of group G. The output of the Trapdoor algorithm consists

of three parts. Both T1 and T2 are elements of group G. Although the size of505

T3 is related to the quantity of queried keywords, it has nothing to do with |S|.

Therefore, given the queried keywords, Trapdoor’s output is also of fixed length

for any S.

4.2. Security analysis

Theorem 1. The KASE-CQ is (t, qk, qc, ε)-IND-sDOC-CKA secure if deci-510

sional (t′, ε, n)-BDHE assumption holds, where t′ = t+O(qk + qc).

Proof. Assuming there is an adversary A that can break the IND-sDOC-CKA

security model with advantage ε after making qk aggregate key queries and

qc ciphertext queries, we can construct a simulator B to solve the decisional

n-BDHE problem.515

Let gi = g(αi) for a generator g ∈ G and α ∈ Zp. Given as input a problem

instance (h, g, g1, g2,, gn, gn+2, ..., g2n, Z) over the symmetric bilinear group

PG = (G,G1, p, e), B works as follows by running A.

Init. Adversary A outputs a challenge document identifier i∗(i∗ ∈ [1, n]).

25

Setup. H : {0, 1}∗ → Z∗p is a hash function. B randomly chooses β, γ′, λ ∈ Z∗p520

and computes public key pk = (v1, v
′
2) = (gβ , gγ

′
g−1
i∗ = gγ

′−αi
∗

), pks = v =

gλ. Therefore, params = (PG, (g1, g2, ..., gn, gn+2, .., g2n), H), pk, and pks are

available from the problem instance and chosen parameters. B sends params,

pk, and pks to adversary A.

Phase1.525

• For an aggregate key query (S), since i∗ /∈ S, B can calculate

kSagg = (
∏
j∈S

gγ
′

n+1−j)(
∏
j∈S

gn+1−j+i∗)
−1 =

∏
j∈S

gγ
′−αi

∗

n+1−j .

Therefore, kSagg is a valid aggregate key for S.

• For a ciphertext query (W, i), since B knows the params, public key v′2,

v, and secret key β used to generate ciphertext, it always can respond to

the valid ciphertext to A.

Challenge. A outputs two distinct keyword sets W0 and W1 to be challenged.

The restriction is that W0 and W1 over document i∗ have not been queried. B

randomly selects r ∈ Z∗p and a bit c and responds the challenge ciphertext

CT ∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4, c
∗
5, CW

∗)

= (h, hγ
′
, Z, h1/β , e(gr, h),

{
vH(wi)+βr

}
wi∈Wc

).

Let t = loggh. When Z = e(gn+1, h), we have

CT ∗ = (gt, gtγ
′
, e(gn+1, g)

t, g
t
β , e(gr, gt),

{
vH(wi)+βr

}
wi∈Wc

)

= (gt, (v′2 · gi∗)t, e(g1, gn)t, g
t
β , e(g, g)rt,

{
vH(wi)+βr

}
wi∈Wc

).

Accordingly, CT ∗ is a valid challenge keyword set ciphertext for Wc.530

Phase2. Same as in Phase 1. The restriction is that (W, i) 6= (W0, i
∗) and

(W, i) 6= (W1, i
∗) for ciphertext query (W, i).

Guess. A outputs a bit c′. If c′ = c, B outputs true meaning Z = e(gn+1, h).

26

Otherwise, it outputs false meaning Z is random in G1.

535

This completes the simulation of interaction with A. The advantage and time

to solve the problem instance are calculated as follows.

If the problem instance is sampled from TBDHE , simulation and real attack

game are indistinguishable, and therefore A has probability 1
2 + ε of guessing

c′ = c. If the problem instance is sampled from FBDHE , Pr [c′ = c] = 1
2 .

Therefore, we have

|Pr [A(g, h, yg,α,n, e(gn+1, h)) = 1]− Pr [A(g, h, yg,α,n, Z) = 1] |

=(
1

2
+ ε)− 1

2

=ε.

Ts is used to represent simulation time, then Ts = O(qk + qc), which depends

on the aggregate key and ciphertext generation. So B will solve the n-BDHE

problem in t+O(qk + qc)-time with advantage ε.540

The proof is completed.

Theorem 2. The KASE-CQ is ITA secure if DCDH assumption holds.

Proof. Using the same notations as in the description of ITA, we use a concrete

example to show that ITA is invalid for the proposed KASE-CQ scheme. A is

an attacked user who has the right to access document set SA and the aggregate545

key is kSAagg. B is an inside attacker who can access document set SB . SA and

SB satisfy SA 6= SB , SA ∩ SB 6= ∅, and SA * SB . We assume D ∈ (SA ∩ SB)

and the keyword set of D is WD = {w1, w2, w3}.

Suppose A submits the trapdoor Tr = {T1, T2, T3} = {kSAagg ·gs,
vs1

g
∑2
k=1

H(wjk
)
,

{jk}2k=1} to the server and document D is included in search results. Therefore,550

B can know the queried keyword set corresponding to Tr. However, from T1,

we can see that B needs to get gs to obtain the aggregate key kSAagg and even

if B guesses the keyword set, he can only get gβs by computing
vs1

g
∑2
k=1

H(wjk
)
·

27

g
∑2
k=1H(wjk) = vs1 = gβs. Therefore, if the DCDH assumption holds, it is

intractable for B to compute the gs from gβs and public key gβ .555

The proof is completed.

Theorem 3. The KASE-CQ is (t, qk, qc, ε)-EU-sDOC-CKA secure if (t′, ε, n)-

DHE assumption holds, where t′ = t+O(qk + qc).

Proof. In the same way as Theorem 1, we prove by contradiction. Assuming

there is an adversary A that can break the EU-sDOC-CKA security model with560

advantage ε after making qk aggregate key queries and qc ciphertext queries,

then we can use A to construct a simulator B to break the DHE assumption.

Let gi = g(αi) for a generator g ∈ G and α ∈ Zp. Given as input a problem

instance (g, g1, g2, ..., gn, gn+2,, g2n) over the group G, B works as follows by

running A.565

The first three algorithms “Init”, “Setup”, and “Query” are the same as

“Init”, “Setup”, and “Phase1” in theorem 1 respectively, so we will not

repeat them.

Forgery. A returns a forged aggregate key kS
∗

agg of the document set S∗.

According to the definition of aggregate key and the above simulation pro-

cess, we have

kS
∗

agg =
∏
j∈S∗

gγ
′−αi

∗

n+1−j = gγ
′−αi

∗

n+1−i∗ ·
∏

j∈S∗,j 6=i∗
gγ
′−αi

∗

n+1−j .

B computes

gγ
′

n+1−i∗ ·
∏
j∈S∗,j 6=i∗ g

γ′

n+1−j ·
∏
j∈S∗,j 6=i∗ g

−1
n+1−j+i∗

kS∗agg

=
gγ
′

n+1−i∗ ·
∏
j∈S∗,j 6=i∗ g

γ′

n+1−j ·
∏
j∈S∗,j 6=i∗ g

−1
n+1−j+i∗

gγ
′

n+1−i∗ · (gα
i∗

n+1−i∗)
−1 ·

∏
j∈S∗,j 6=i∗ g

γ′

n+1−j ·
∏
j∈S∗,j 6=i∗(g

αi∗
n+1−j)

−1

=

∏
j∈S,j 6=i∗ g

−1
n+1−j+i∗

(gα
i∗

n+1−i∗)
−1 ·

∏
j∈S∗,j 6=i∗(g

αi∗
n+1−j)

−1

= g(αn+1)

28

to get the solution of the DHE problem.570

The simulation of interaction with A and the solution of the DHE problem are

completed. The advantage and time to solve the problem instance are analyzed

as follows.

From the above simulation and problem-solving process, it can be seen that575

as long as adversary A returns a valid forged aggregate key, B can get the

solution of the DHE problem using the forged key. According to the assumption,

A has the advantage ε to return the forged aggregate key, thus B can solve the

DHE problem with advantage ε. Let Ts denote the cost of simulation, then

Ts = O(qk + qc), which mainly depends on the aggregate key and ciphertext580

responses. Therefore, B will solve the DHE problem in t+O(qk + qc)-time with

advantage ε, that is, the (t′, ε, n)-DHE assumption in G will be broken.

The proof is completed.

5. PERFORMANCE

5.1. Theoretical Analysis585

We compare the computational and communication cost of our scheme with

that of KASE [10].

Table 4: Computation Comparison with [10]

KASE [10] Ours

Setup (2n− 1)EG + (2n− 2)MZp (2n− 1)EG + (2n− 2)MZp

KeyGen EG 2EG

KeyGens — EG

Encrypt 2mP + 2EG + 2mG1 +MG +mMG1 2P + (m+ 3)EG + 2EG1 +MG + (m+ 1)MZp

Extract (|S| − 1)MG + EG (|S| − 1)MG + EG

Trapdoor lMG 2MG + 3EG

Adjust l(|S| − 1)MG (|S| − 1)MG

Test 2lP + (|S| − 1)MG + lMG1 3P + (|S|+ l − 1)MG + 3MG1 + EG + EG1

29

We compare the computational cost in Table 4. For the sake of comparison,

we take into account only a few time-consuming operations, including bilinear

pairing operation P , exponentiation operation EZp in Zp, exponentiation op-590

eration EG in G, exponentiation operation EG1 in G1, multiplication operation

MZp in Zp, multiplication operation MG in G, and multiplication operation MG1

in G1. As in Table 1, in Table 4, we also use — to denote “not applicable”.

In Setup, the two schemes perform the same operation except for the hash

function selection; In KeyGen, KASE generates one public-secret key pair and595

our scheme generates two public-secret key pairs to meet the proposed security

model definitions; In KeyGens, our scheme generates the server’s public-secret

pair; In Encrypt, KASE needs two bilinear pairing operations for every keyword

contained in the document, so its bilinear pairing operations are proportional to

the number of keywords fields, while our scheme merely has two bilinear pairing600

operations in total; In Extract, the two schemes need to take the same actions

to generate the aggregate key; In Trapdoor, for conjunctive query, KASE needs

to generate separate trapdoor components for each keyword, and our scheme

merely calculates a whole trapdoor for all queried keywords; In Adjust, KASE

adjusts the trapdoor of each keyword, while our scheme only needs to adjust T1;605

In Test, our scheme is more efficient, because KASE searches for each keyword

in queried keyword set and find the intersection of the search results to obtain

the target documents.

Table 5: Communication Comparison with [10]

KASE [10] Ours

Ciphertext
(Data Owner→Cloud Server)

2|G|+m|G1| (m+ 3)|G|+ 2|G1|

Aggregate Key
(Data Owner→User)

|G| |G|

Trapdoor
(User→Cloud Server)

l|G|+ l|k| 2|G|+ l|k|

”|G|”: the bit-length of an element in group G;
”|G1|”: the bit-length of an element in group G1;
”|k|”: the length of security parameter k.

30

In Table 5, we show the communication comparison. The Ciphertext size

and Aggregate Key size of our scheme are almost the same as KASE’s. But610

for Trapdoor, because our scheme supports conjunctive keyword search and

KASE needs to search each queried keyword individually, the size of our scheme

is much smaller than KASE.

5.2. Practical Analysis

We use C programming language and Paring Based Cryptography (PBC) Li-615

brary to calculate the system running time and select Type-A pairing to perform

the specific algorithm. We set the security parameter to 512 bits. The whole

experiment is run on Ubuntu 20.04.1 LTS operating system and is implemented

by GCC 9.3.0 compile on a Linux Server with AMD Ryzen 5 4600H with Radeon

Graphics CPU@ 3.00 GHz and 2GB memory. The documents and source codes620

of KASE-CQ are on GitHub https://github.com/jinlu06/KASE-CQ.

System running time comparison is shown in Fig. 3. Fig. 3 (a) and Fig.

3 (c) suggest that the running time in KASE Setup and Extract are nearly

the same as in our scheme, respectively. And the time overhead in Setup and

Extract has a linear relation with the maximum number of documents and625

the number of shared documents, respectively. These are all consistent with

theoretical analysis. Fig. 3 (b) gives the time spent in Encrypt when n = 1000,

indicating that our scheme needs much less computational cost. From Fig. 3

(d), the Trapdoor running time of our scheme is constant, but the Trapdoor

time of KASE grows linearly with the amount of queried keywords. In Fig.3 (e)630

and Fig. 3 (f), we demonstrate the sum of the computational cost in Adjust

and Test. Since both Adjust and Test are algorithms that need to run for the

server to Search, we test the total running time of these two algorithms. In Fig.

3 (e), we fix |S| = 100, we notice that the Search time of KASE is affected by

the number of queried keywords, and increases linearly with l increases, while635

the time cost of our scheme remains almost unchanged. In Fig.3 (f), we fix l = 2

to test the effect of |S| on Search efficiency. The performance of our scheme is

superior to KASE.

31

1 2 3 4 5

of documents owned by a data owner (×103)

2

4

6

8

10

Ti
m
e c

os
t o

f S
et
up

(s)

KASE_CQ
KASE

(a)

2 4 6 8 10
#of keyword fields in each document

10

20

30

40

50

Ti
m
e c

os
t o

f E
nc

ry
pt
(s)

KASE_CQ
KASE

(b)

1 2 3 4 5

of shared documents (×102)
0.1

0.2

0.3

0.4

0.5

Ti
m
e c

os
t o

f E
xt
ra
ct(

s)

KASE_CQ
KASE

(c)

1 2 3 4 5
of queried keywords

2

4

6

8

10

12

Ti
m
e c

os
t o

f T
ra
pd

oo
r(m

s)

KASE_CQ
KASE

(d)

1 2 3 4 5
of queried keywords

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m
e c

os
t o

f S
ea
rc
h(
s)

KASE_CQ
KASE

(e)

1 2 3 4 5

of shared documents(×102)

1

2

3

4

5

6

7

Ti
m
e c

os
t o

f S
ea
rc
h(
s)

KASE_CQ
KASE

(f)

Figure 3: Time cost Comparison

32

In short, our scheme achieves stronger security guarantees (IND-sDOC-

CKA, EU-sDOC-CKA, and ITA secure) in SM, a more practical function (con-640

junctive query), and the performance is more efficient.

6. Conclusion

Key-aggregate searchable encryption is a useful tool for searching and shar-

ing encrypted data. Considering the limitations of existing KASE systems,

in this paper, we proposed the key-aggregate searchable encryption supporting645

conjunctive queries (KASE-CQ) framework and its security notions IND-sDOC-

CKA and EU-sDOC-CKA. We also designed a concrete KASE-CQ construction.

This construction supports conjunctive keyword search, satisfies the proposed

security notions in SM, and is secure against ITA. Additionally, the performance

analysis shows the scheme’s efficiency.650

In the future, we will try to investigate other expressive searches, such as

disjunctive search, fuzzy keyword search, wildcard search, etc. In addition,

revocation functionality is vital in any data sharing system because some users

may exit. Therefore, we will also work on the revocation of the delegated search

for KASE.655

Acknowledgments

This work is supported by the National Natural Science Foundation of China

(No.62072276, No.61772311).

References

[1] Lucas Ballard, Seny Kamara, and Fabian Monrose. Achieving efficient660

conjunctive keyword searches over encrypted data. In International confer-

ence on information and communications security, pages 414–426. Springer,

2005.

33

[2] Feng Bao, Robert H Deng, and Huafei Zhu. Variations of diffie-hellman

problem. In Information and Communications Security: 5th International665

Conference, ICICS 2003, Huhehaote, China, October 10-13, 2003. Proceed-

ings 5, pages 301–312. Springer, 2003.

[3] Burton H Bloom. Space/time trade-offs in hash coding with allowable

errors. Communications of the ACM, 13(7):422–426, 1970.

[4] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate670

and verifiably encrypted signatures from bilinear maps. In International

conference on the theory and applications of cryptographic techniques, pages

416–432. Springer, 2003.

[5] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast

encryption with short ciphertexts and private keys. In Annual international675

cryptology conference, pages 258–275. Springer, 2005.

[6] Ning Cao, Shucheng Yu, Zhenyu Yang, Wenjing Lou, and Y Thomas Hou.

Lt codes-based secure and reliable cloud storage service. In 2012 Proceed-

ings IEEE INFOCOM, pages 693–701. IEEE, 2012.

[7] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-680

Cătălin Roşu, and Michael Steiner. Highly-scalable searchable symmetric

encryption with support for boolean queries. In Annual cryptology confer-

ence, pages 353–373. Springer, 2013.

[8] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword

searches on remote encrypted data. In International conference on applied685

cryptography and network security, pages 442–455. Springer, 2005.

[9] Cheng-Kang Chu, Sherman SM Chow, Wen-Guey Tzeng, Jianying Zhou,

and Robert H Deng. Key-aggregate cryptosystem for scalable data sharing

in cloud storage. IEEE transactions on parallel and distributed systems,

25(2):468–477, 2013.690

34

[10] Baojiang Cui, Zheli Liu, and Lingyu Wang. Key-aggregate searchable en-

cryption (kase) for group data sharing via cloud storage. IEEE Transactions

on computers, 65(8):2374–2385, 2015.

[11] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Search-

able symmetric encryption: improved definitions and efficient construc-695

tions. Journal of Computer Security, 19(5):895–934, 2011.

[12] Eu-Jin Goh et al. Secure indexes. IACR Cryptol. ePrint Arch., 2003:216,

2003.

[13] Philippe Golle, Jessica Staddon, and Brent Waters. Secure conjunctive

keyword search over encrypted data. In International conference on applied700

cryptography and network security, pages 31–45. Springer, 2004.

[14] Cheng Guo, Ningqi Luo, Md Zakirul Alam Bhuiyan, Yingmo Jie, Yuanfang

Chen, Bin Feng, and Muhammad Alam. Key-aggregate authentication

cryptosystem for data sharing in dynamic cloud storage. Future Generation

Computer Systems, 84:190–199, 2018.705

[15] Cheng Guo, Ruhan Zhuang, Yingmo Jie, Yizhi Ren, Ting Wu, and Kim-

Kwang Raymond Choo. Fine-grained database field search using attribute-

based encryption for e-healthcare clouds. Journal of medical systems,

40(11):1–8, 2016.

[16] Javier Herranz, Fabien Laguillaumie, Benôıt Libert, and Carla Rafols.710

Short attribute-based signatures for threshold predicates. In Cryptogra-

phers’ Track at the RSA Conference, pages 51–67. Springer, 2012.

[17] Yinghui Huang, Wenting Shen, Jing Qin, and Huiying Hou. Privacy-

preserving certificateless public auditing supporting different auditing fre-

quencies. Computers & Security, 128:103181, 2023.715

[18] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In Inter-

national Conference on Financial Cryptography and Data Security, pages

136–149. Springer, 2010.

35

[19] Tong Li, Zheli Liu, Ping Li, Chunfu Jia, Zoe L Jiang, and Jin Li. Verifiable

searchable encryption with aggregate keys for data sharing in outsourcing720

storage. In Australasian Conference on Information Security and Privacy,

pages 153–169. Springer, 2016.

[20] Jinlu Liu, Bo Zhao, Jing Qin, Xi Zhang, and Jixin Ma. Multi-keyword

ranked searchable encryption with the wildcard keyword for data sharing

in cloud computing. The Computer Journal, 2021.725

[21] Zheli Liu, Tong Li, Ping Li, Chunfu Jia, and Jin Li. Verifiable searchable

encryption with aggregate keys for data sharing system. Future Generation

Computer Systems, 78:778–788, 2018.

[22] Zhenhua Liu and Yaohui Liu. Verifiable and authenticated searchable en-

cryption scheme with aggregate key in cloud storage. In 2018 14th Interna-730

tional Conference on Computational Intelligence and Security (CIS), pages

421–425. IEEE, 2018.

[23] Peter Mell, Tim Grance, et al. The nist definition of cloud computing.

2011.

[24] Brice Minaud and Michael Reichle. Dynamic local searchable symmetric735

encryption. In Advances in Cryptology–CRYPTO 2022: 42nd Annual In-

ternational Cryptology Conference, CRYPTO 2022, Santa Barbara, CA,

USA, August 15–18, 2022, Proceedings, Part IV, pages 91–120. Springer,

2022.

[25] Dong Jin Park, Kihyun Kim, and Pil Joong Lee. Public key encryption740

with conjunctive field keyword search. In International Workshop on In-

formation Security Applications, pages 73–86. Springer, 2004.

[26] Sikhar Patranabis, Yash Shrivastava, and Debdeep Mukhopadhyay. Prov-

ably secure key-aggregate cryptosystems with broadcast aggregate keys

for online data sharing on the cloud. IEEE Transactions on Computers,745

66(5):891–904, 2016.

36

[27] Darren Quick and Kim-Kwang Raymond Choo. Dropbox analysis: Data

remnants on user machines. Digital Investigation, 10(1):3–18, 2013.

[28] Kui Ren, Cong Wang, and Qian Wang. Security challenges for the public

cloud. IEEE Internet computing, 16(1):69–73, 2012.750

[29] Wenting Shen, Jia Yu, Ming Yang, and Jiankun Hu. Efficient identity-

based data integrity auditing with key-exposure resistance for cloud stor-

age. IEEE Transactions on Dependable and Secure Computing, 2022.

[30] Jiann-Cherng Shieh, Cheng-Chi Lee, and Shu-Yu Lee. A dynamic key ag-

gregate cryptosystem in cloud environment. In 2015 IIAI 4th International755

Congress on Advanced Applied Informatics, pages 73–78. IEEE, 2015.

[31] Ashish Singh and Kakali Chatterjee. Cloud security issues and challenges:

A survey. Journal of Network and Computer Applications, 79:88–115, 2017.

[32] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A

break in the clouds: towards a cloud definition, 2008.760

[33] Xuqi Wang, Yu Xie, Xiangguo Cheng, and Zhengtao Jiang. An efficient key-

aggregate keyword searchable encryption for data sharing in cloud storage.

In 2019 IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2019.

[34] Z. Wang. Provably secure key-aggregate cryptosystems with auxiliary in-

puts for data sharing on the cloud. Future generation computer systems,765

93(APR.):770–776, 2019.

[35] Haining Yang, Ye Su, Jing Qin, and Huaxiong Wang. Privacy-preserving

outsourced inner product computation on encrypted database. IEEE

Transactions on Dependable and Secure Computing, 2020.

[36] Lisha Yao, Jian Weng, Anjia Yang, Xiaojian Liang, Zhenghao Wu, Zike770

Jiang, and Lin Hou. Scalable cca-secure public-key authenticated encryp-

tion with keyword search from ideal lattices in cloud computing. Informa-

tion Sciences, 624:777–795, 2023.

37

[37] PENG Yong, ZHAO Wei, XIE Feng, Zhong-hua DAI, Gao Yang, and Dong-

qing CHEN. Secure cloud storage based on cryptographic techniques. The775

Journal of China Universities of Posts and Telecommunications, 19:182–

189, 2012.

[38] Hongjie Zhang, Shengke Zeng, and Jiali Yang. Backward private dynamic

searchable encryption with update pattern. Information Sciences, 624:1–

19, 2023.780

[39] Xi Zhang, Bo Zhao, Jing Qin, Wei Hou, Ye Su, and Haining Yang. Prac-

tical wildcard searchable encryption with tree-based index. International

Journal of Intelligent Systems, 2021.

[40] Rang Zhou, Xiaosong Zhang, Xiaojiang Du, Xiaofen Wang, Guowu Yang,

and Mohsen Guizani. File-centric multi-key aggregate keyword searchable785

encryption for industrial internet of things. IEEE Transactions on Indus-

trial Informatics, 14(8):3648–3658, 2018.

[41] Binrui Zhu, Jiameng Sun, Jing Qin, and Jixin Ma. A secure data

sharing scheme with designated server. Secur. Commun. Networks,

2019:4268731:1–4268731:16, 2019.790

38

	Introduction
	The Need for Key-Aggregate Searchable Encryption
	Current Research States
	Our Contributions
	Related Work
	Organization

	PRELIMINARIES
	Notations and Abbreviations
	Bilinear Pairing
	Complexity Assumptions
	Divisible Computational Diffie-Hellman (DCDH) Assumption
	Diffie-Hellman Exponent (DHE) Assumption
	Bilinear Diffie-Hellman Exponent (BDHE) Assumption

	Problem Formulation of KASE-CQ
	System Model
	System Framework
	Requirements of KASE-CQ
	Function Requirements
	Security Requirements

	THE PROPOSED KASE-CQ SCHEME
	Construction
	Security analysis

	PERFORMANCE
	Theoretical Analysis
	Practical Analysis

	Conclusion

