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Abstract: Gracilaria lemaneiformis polysaccharide (GLP) exhibits good physiological activities, and
it is more beneficial as it is degraded. After its degradation by hydrogen peroxide combined with
vitamin C (H2O2-Vc) and optimized by Box–Behnken Design (BBD), a new product of GLP-HV
will be generated. While using GLP as control, two products of GLP-H (H2O2-treated) and GLP-V
(Vc-treated) were also produced. These products chemical characteristics (total sugar content, molecu-
lar weight, monosaccharide composition, UV spectrum, morphological structure, and hypolipidemic
activity in vitro) were assessed. The results showed that the optimal conditions for H2O2-Vc degra-
dation were as follows: H2O2-Vc concentration was 18.7 mM, reaction time was 0.5 h, and reaction
temperature was 56 ◦C. The total sugar content of GLP and its degradation products (GLP-HV, GLP-H
and GLP-V) were more than 97%, and their monosaccharides are mainly glucose and galactose. The
SEM analysis demonstrated that H2O2-Vc made the structure loose and broken. Moreover, GLP,
GLP-HV, GLP-H, and GLP-V had significantly inhibition effect on α-glucosidase, and their IC50

value were 3.957, 0.265, 1.651, and 1.923 mg/mL, respectively. GLP-HV had the best inhibition
effect on α-glucosidase in a dose-dependent manner, which was the mixed type of competitive and
non-competitive. It had a certain quenching effect on fluorescence of α-glucosidase, which may be
dynamic quenching.

Keywords: Gracilaria lemaneiformis; polysaccharide; degradation optimization; chemical characteristics;
hypolipidemic activity; α-glucosidase

1. Introduction

Gracilaria lemaneiformis belongs to Rhodophyta Phylum, Gigartinales Order, Gracilariaceae
Family, and Gracilaria Genus, which is a kind of economic red algae, used as agar, feed, food,
and drug resources [1,2]. The mariculture yield of gracilaria accounts for 10% of the algae
production, second only to kelp. The main producing areas of Gracilaria lemaneiformis are
the province of Fujian (75.5%), Guangdong (12.3%), and Shandong (12.3%) in China, and it
is a traditional seaweed used both as medicine and food [3]. Polysaccharide is the main com-
ponent of Gracilaria lemaneiformis, which has the physiological activities of hypoglycemic,
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hypolipidemic, hypotensive, anti-obesity, and antineoplastic effects [4–9]. However, the
molecule and viscosity of Gracilaria lemaneiformis polysaccharide (GLP) are large, and the
structure is complex, which is not conducive to the digestion and absorption in human
body, and limits the application of polysaccharide. It has been said that polysaccharide with
lower molecular weight presented better physiological effects after degradation [10–12].
Xu et al. [13] gained the degradation products of GLP with better tyrosinase inhibition and
antioxidant abilities. Jin et al. [14] proved that oligosaccharides from Gracilaria lemaneiformis
exhibited the protective effect on alcohol-induced hepatotoxicity.

It has been reported that degradation methods include physical [15–17] (ultrasonic,
microwave, high temperature, high pressure, radiation), biological [12,18] (fermentation
and enzyme), and chemical [11] (acid hydrolysis, reductant-oxidant) methods. The princi-
ple of physical degradation is to break the glyosidic bonds of polysaccharide by mechanical
means, which has the advantages of being environmentally friendly, simple operation,
controllable conditions, and low energy consumption. However, the degradation degree
and the efficiency are low. It is usually used in combination with chemical methods [16].
Enzymes can selectively cut the specific glyosidic bond, which has the advantages of high
efficiency and maintaining the structure of polysaccharide [19]. However, it has the disad-
vantages of specificity and high cost, which is unsuitable for a large number of degradations
of polysaccharide [13]. Chemical degradation of polysaccharide mainly uses the chemical
reagents to destroy glyosidic bonds to achieve the purpose of degradation, which is more
rapid and low-cost [17]. In the acid degradation method, some inorganic acids, such as
phosphoric acid and hydrochloric acid, are adopted to cause the glyosidic bond breakage,
which degrade the polysaccharide into low molecular substances, and cause environmental
pollution, resulting in by-products and low purity of degradation products [13]. Oxidants
(such as H2O2) use free radicals to attack glyosidic bonds of polysaccharide to degrade,
with non-toxic, convenient, inexpensive and without by-products, which is suitable to
apply in the industry. Nevertheless, the sensitivity of glyosidic bonds at various positions
of polysaccharide to H2O2 is different, therefore it is necessary to explore the conditions
of H2O2 degradation, including H2O2 concentration, reaction time, temperature, etc., [20].
Alone, H2O2 treatment has a low oxidative degradation efficiency, while H2O2 can produce
higher hydroxyl radicals with the assistance of other reagents (Vc, Cu2+ and Fe2+) or means
(ultrasound, microwave, radiation) [17]. Vc, Cu2+ and Fe2+ have strong reducibility that can
react with H2O2 to produce HO2- and OH-. These free radicals degrade polysaccharide by
attacking glyosidic bonds [16,21]. Chen et al. [10] adopted H2O2-Vc to degrade Grateloupia
livida polysaccharide, and found that H2O2-Vc degradation is fast, effective, and beneficial
to enhance the antioxidant activity of polysaccharide. It also has been found that the
degradation of GLP treated by radiation-H2O2 promoted the better activity [11]. Compared
with other methods, the effect of free radicals on the glyosidic bond is stronger, the degree
of degradation is better, causes more reducing sugar to produce, and reduces the molecular
weight of polysaccharide [11,15,19].

Studies have shown that α-glucosidase is one of the enzymes that hydrolyze polysac-
charide. α-glucosidase inhibitors can effectively delay the hydrolysis and absorption of
carbohydrate by inhibiting α-glucosidase at the brush edge of the small intestinal mucosa,
thus improving the symptoms of hyperglycemia [22,23]. Wen et al. [24] proved that GLP
found the obvious hypoglycemic activity. Research has explored that GLP and its degra-
dation expressed the hypoglycemic effect by inhibiting α-glucosidase activity, and the
polysaccharide degradation had better inhibition effect [25]. According to previous reports,
the inhibitory activity of polysaccharide on α-glucosidase was related to a number of
factors, such as molecular weight, monosaccharide composition, and other structures [26].

In the present study, the degradation conditions of H2O2-Vc, the structure of degrada-
tion products of GLP, and its inhibition effect of α-glucosidase were explored.



Mar. Drugs 2022, 20, 13 3 of 22

2. Results
2.1. Optimized Degradation of Gracilaria Lemaneiformis Polysaccharide
2.1.1. Results of Single Factor Experiment

To research the effect of H2O2-Vc concentration on degradation of GLP, the experiment
was carried out under the conditions of temperature of 50 ◦C, reaction time of 0.5 h and
H2O2-Vc concentration of 5, 10, 15, 20, and 25 mM, respectively. Reducing sugar content
and α-glucosidase inhibition rate were taken as the screening indexes. From Figure 1a,
both reducing sugar content and α-glucosidase inhibition rate were the highest when the
concentration of H2O2-Vc concentration was 20 mM.
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Figure 1. Effect of H2O2-Vc concentration, time, and temperature on degradation. Note: (a) Effect of
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on degradation; a, b, and c represent significant differences among groups, and p < 0.05 indicates
significant differences.

In order to study the effect of time on degradation, the concentration of H2O2-Vc was
20 mM (attained from Figure 1a), the temperature was 50 ◦C, and the time was 0.1, 0.3, 0.5,
0.7, and 0.9 h. The reducing sugar content and α-glucosidase inhibition rate were taken as
indexes. The results (Figure 1b) showed that the reducing sugar content and α-glucosidase
inhibition rate were the highest when the time was 0.5 h.

On the basis of the above experiments (H2O2-Vc concentration was 20 mM and time
was 0.5 h), temperature of 30, 40, 50, 60, and 70 ◦C were selected to explore the influence
of temperature on the degradation. The results showed that the reducing sugar content
and α-glucosidase inhibition rate were higher when the temperature was 50 ◦C (as seen
in Figure 1c).

The above results indicated that H2O2-Vc concentration, time, and temperature all
had certain effects on degradation of GLP. The reducing sugar content and α-glucosidase
inhibition rate were the best when H2O2-Vc was 20 mM, time was 0.5 h and temperature
was 50 ◦C, respectively.

2.1.2. Results of Response Surface Experiment
Establishment of Regression Model

According to the single factor experiment results, H2O2-Vc concentration (A), time (B)
and temperature (C), were selected for response surface analysis. The codes “−1”, “0”, and
“1” severally represented the three levels of each factor (Table 1). A total of 17 experiment
groups were designed, and the reducing sugar was the response value of the degradation
products of GLP (Table 2). The Box–Behnken Design (BBD) principle of Design-Expert 8.0.6
was used to design and implement the corresponding surface method, and the response
surface results were fitted. Table 2 presented the response surface experimental design
scheme and results, and the regression equation was Y = 40.81 − 1.35A + 0.81B + 1.98C +
0.85AB − 0.84AC − 0.5BC − 3.28A2 − 1.87B2 − 1.81C2.
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Table 1. Factor level coding.

Factor
Level

−1 0 1

A H2O2-Vc concentration/mM 15 20 25
B Time/h 0.3 0.5 0.7

C Temperature/◦C 40 50 60

Table 2. Experimental design and results for response surface analysis.

Code A:H2O2-Vc
Concentration/mM B: Time/h C:Temperature/◦C Y:Reducing Sugar

Content/%

1 0 0 0 41.6564
2 0 0 0 40.6566
3 1 0 −1 32.9644
4 1 0 1 35.5119
5 0 1 1 39.2347
6 0 0 0 40.6399
7 −1 0 1 40.1668
8 0 0 0 41.0565
9 0 −1 −1 34.0254

10 0 −1 1 38.7351
11 −1 1 0 36.8824
12 1 1 0 36.1679
13 −1 0 −1 34.2537
14 1 −1 0 32.7301
15 0 0 0 40.0567
16 −1 −1 0 36.8499
17 0 1 −1 36.5345

Regression Model Analysis

In Table 3, F value of this model was 63.28, p value < 0.0001 (extremely significant),
and the misfitting item was 0.8223 > 0.05 (insignificant). The indexes (R2 = 0.9879 and
R2adj = 0.9722) indicated that the regression equation could accurately reflect the influence
of various factors on the degradation of GLP, which can be used for the analysis and
prediction of the degradation of GLP by H2O2-Vc. The values of A, B, C, A2, B2, and C2

were all less than 0.0001, showing extremely significant difference. According to the value
of F, the influence order of these three factors was C > A > B. Temperature had the greatest
influence on the degradation of GLP, while time had the least influence. The p value of AB
and AC were less than 0.01, while the p value of BC was greater than 0.05, indicating that
the interaction between H2O2-Vc concentration and time was obvious, and the interaction
between H2O2-Vc concentration and temperature was also significant, while the interaction
between time and temperature was not significant.

Analysis of Model Interaction Items

Figure 2 showed the contour map and response surface map of the degradation prod-
ucts of GLP. The contour maps of Figure 2a,b were oval, and (c) was circular. The response
surface slope of (a) and (b) were larger than (c). These results indicated that H2O2-Vc
concentration had significant interaction with reaction time, and H2O2-Vc concentration
had remarkable interaction with temperature, while the interaction between reaction time
and temperature was not obvious, which was consistent with the results of regression
model analysis.
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Table 3. ANOVA of regression equation.

Source Sun of Squares df Mean Square F Value p Value Significance

Model 139.59 9 15.51 63.28 <0.0001 **
A-H2O2-Vc

concentration 14.52 1 14.52 59.25 0.0001 **

B-Time 5.25 1 5.25 21.41 0.0024 **
C-Temperature 31.48 1 31.48 128.46 <0.0001 **

AB 2.90 1 2.90 11.83 0.0108 *
AC 2.83 1 2.83 11.55 0.0115 *
BC 1.01 1 1.01 4.12 0.0820
A2 45.35 1 45.35 185.04 <0.0001 **
B2 14.78 1 14.78 60.31 0.0001 **
C2 13.75 1 13.75 56.10 0.0001 **

Residual 1.72 7 0.25
Lack of Fit 0.32 3 0.11 0.30 0.8223
Pure Error 1.40 4 0.35
Cor Total 141.31 16

Note: * significant difference (p < 0.05); ** extremely significant difference (p < 0.01).

Response Surface Optimization and Validation

According to Design-Expert 8.0.6, the optimal process conditions of degradation were
as follows: H2O2-Vc concentration was 18.64 mM, reaction time was 0.51 h, and reaction
temperature was 56.03 ◦C. On the basis of the actual situation, the process parameters
were adjusted. After adjustment, the concentration of H2O2-Vc was 18.7 mM, the reaction
time was 0.5 h, and the reaction temperature was 56 ◦C. Under these conditions, the
reducing sugar content of the degradation product was 45.16%. The measured value
reached 41.62% (the predicted value), which proved that the process conditions of response
surface optimization were accurate and reliable, and the model was suitable. The deviation
between the actual measured value and the predicted value was less than 5%, indicating
that the response surface optimization scheme was reliable.

2.2. The Content of Total Sugar, Reducing Sugar and Protein

In Table 4, the total sugar content of GLP, GLP-HV, GLP-H, GLP-V were 98.77%, 98.43%,
97.28%, and 97.5%, respectively, which showed no significant difference among them
(p > 0.05). It showed us that extraction method of hot water and alcohol precipitation were
more suitable for the extraction of GLP. In addition, the total sugar content of polysaccharide
degradation products did not decrease. The total sugar content was only 66.68% treated
by critic acid [24], which was far lower than the polysaccharide obtained by the method
of water extraction and alcohol precipitation in this experiment. The total sugar content
severally was 91.4% with the method of amylase-assisted extraction from Wu et al. [27].
Li et al. [4] got 59% total sugar content, illustrating that the polysaccharide obtained by acid
extraction has more impurities. Moreover, the carbohydrate content was 72.06% extracted
with cold water [6]. In the present experiment, the total sugar content of GLP obtained by
hot water extraction was relatively high, compared with other methods, and the content
did not decrease after degradation.

Table 4. The content of total sugar, reducing sugar and protein from GLP and its degradation products.

Indexes GLP GLP-HV GLP-H GLP-V

Total sugar Content (%) 98.77 ± 5.94 a 98.43 ± 3.21 a 97.28 ± 2.63 a 97.5 ± 1.56 a
Standard curve y = 2.4623x + 0.0516, R2 = 0.9939

Reducing sugar Content (%) 2.47 ± 0.03 c 46.92 ± 2.38 b 1.95 ± 0.15 c 50.2 ± 1.00 a
Standard curve y = 0.8185x − 0.0258, R2 = 0.9999

Protein
Content (%) ND ND ND ND

Standard curve y = 0.6288x + 0.5582, R2 = 0.9902
Note: a, b, and c represent significant differences among groups, and p < 0.05 indicates significant differences.
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The reducing sugar of GLP was 2.47%, which enhanced the obvious degradation by
H2O2-Vc (GLP-HV was 46.92%) or Vc (GLP-V was 50.2%). However, GLP-H was only
1.95%, significantly lower than GLP. The results proved that both H2O2-Vc-treated and
Vc-treated promoted the production of reducing sugar, and H2O2-treated declined the
reducing sugar content. The reducing sugar of GLP attained by Gong et al. [11] was 1.2%,
lower than that of this experiment, and the content was diminished after treating with
H2O2, which was consistent with the experimental results of this study. H2O2-Vc and
Vc broke the glycosidic bonds, exposing more reducing sugars of polysaccharide. H2O2
may react with reducing groups on the sugar chain, declining the content of reducing
sugar. When Vc was added, a redox reaction occurred between Vc and H2O2 to produce
free radical, which promoted the breaking of glyosidic bonds and induced more reducing
sugar. There was still a small amount of H2O2 that reacted with the reducing group, so the
reducing sugar of GLP-HV was a little less than GLP-V.

The protein content of untreated Gracilaria lemaneiformis was 15.7 ± 0.0018%, detected
by the Kjeldahl method. After treated by ethanol and papain, the protein of GLP was
undetected with Coomassie Bright Blue method kit, which demonstrated that the protein
was removed during the extraction of GLP. Liu et al. [28] detected the protein content of GLP
treated by hot water was 0.98%. The protein of GLP attained by hot citric acid extraction
was 1.47% [29]. Moreover, the protein content of GLP was 0.7% (enzyme extraction) [27],
1.6% (acid extraction) [4], 0.28% (extracted with cold water) [6]. From the above analysis, it
can be seen that GLP obtained by other methods contain a small amount of protein, which
can be removed with the method in this experiment.

2.3. Monosaccharide Composition

As exhibited in Figure 3a, the main monosaccharide components of polysaccharide
and its degradation products were glucose and galactose, accompanied by a small amount
of mannose, ribose, glucuronic acid, galacturonic acid, arabinose, xylose, and fucose. GLP
contained 34.35% glucose and 57.37% galactose, respectively, and GLP-HV included 33.37%
glucose and 59.12% galactose. H2O2-Vc treatment slightly increased the content of galactose,
while the glucose content declined a small amount, probably because there was a little bit
more free radicals to attack the glyosidic bonds linking galactose. This result was consistent
with Gong et al. [11]. The monosaccharide composition of GLP extracted by this method
was relatively simple, mainly consisting of glucose and galactose, compared with previous
studies. The content of glucose and galactose respectively were 4.76% and 21.1% from
GLP extracted by Li et al. [4]. Moreover, the level of ribose and xylose were enhanced, but
rhamnose content declined after degradation.

2.4. Molecular Weight

The weight average molecular weight (Mw) of GLP was 14,78,524 Da (1478 kDa),
which was higher than that of citric acid extraction (21.2 kDa and 31.5 kDa) [4,24], and it
declined after degradation. In Table 5, the Mw of GLP-H and GLP-V were 1,329,838 and
1,000,630 Da, respectively, which was slightly lower than that of GLP. However, the Mw
of GLP-HV was only 16,245 Da, which was much smaller than the molecular weight of
GLP. It illustrated that the degradation level treated by H2O2-Vc was higher than alone
H2O2 or Vc. Moreover, the value of Mw/Mn represents the molecular weight distribution,
which can reflect the molecular weight distribution width and degree of polydispersity
of polysaccharide. From Table 5, the Mw/Mn of GLP, GLP-HV, GLP-H, GLP-V were
144.24, 2.43, 75.96, and 47.15, respectively, which explained the GLP-HV performing the
smallest distribution width, uniform distribution, and small dispersity. It was reported
that the Mw of GLP was changed from 2.15 × 105 to 1.22 × 105 Da after degradation by
fermentation [12], which demonstrated the degradation degree of H2O2-Vc was stronger
than fermentation.
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Table 5. The Molecular weight from GLP and its degradation products.

Molecular Weight (Da) GLP GLP-HV GLP-H GLP-V

Number average molecular weight(Mn) (Da) 10,250 6695 17,508 21,224
Weight average molecular weight(Mw) (Da) 1,478,524 16,245 1,329,838 1,000,630

Mw/Mn 144.24 2.43 75.96 47.15
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2.5. UV-Visible Spectroscopy

Four polysaccharide samples were respectively scanned under UV-visible spectroscopy
at 200–700 nm. As shown in Figure 3b, GLP, GLP-HV, GLP-H, GLP-V showed no absorption
at 260 nm and 280 nm, indicating that there were no nucleic acid and proteins before and
after the degradation of the polysaccharide, which was consistent with the determination
results of protein content in Table 4.

2.6. I2-KI Test

The blank solution of GLP, GLP-HV, GLP-H, GLP-V had no absorption peak at
300–700 nm of UV-visible spectroscopy. These four polysaccharide solutions were mixed
with I2-KI solution. After 10 min, I2-KI had the maximum absorption peak at 350 nm, and
four polysaccharides also had the maximum absorption wavelength at 350 nm when mixed
with I2-KI solution, while there was no absorption wavelength at 560 nm, indicating that
the GLP, GLP-HV, GLP-H, and GLP-V contained no starch in the solution (Figure 3c). The
GLP, degraded by UV-H2O2, also did not contain starch [11], which was consistent with
the present research.

2.7. Congo Red Test

Congo red is an acidic dye soluble in water and alcohol. When it combines with
the triple helix structure of polysaccharide to form a conjugate, its maximum absorption
wavelength will be redshifted. However, when the concentration of NaOH increases,
the complex formed by Congo red and the triple helix structure of polysaccharide will
be destroyed, forming irregular curls, and the maximum absorption wavelength will
first increase and then decrease [30]. From Figure 3d, GLP, GLP-HV, GLP-H, and GLP-V
did not appear the phenomenon of redshifted, which were consistent with the change
of pure Congo red. The results demonstrated that there was no triple helix structure in
polysaccharide before and after the degradation.

2.8. Scanning Electron Microscope Analysis

The surface morphology analysis of GLP and its degradation products were explored
by scanning electron microscope (SEM). The SEM images of GLP, GLP-HV, GLP-H, and
GLP-V were observed in Figure 4. The SEM images at 200-fold (Figure 4a) and 1000-fold
(Figure 4b) magnification indicated that the surface morphology of GLP was smooth,
compact, and flaky. After the degradation with H2O2 and Vc, the polysaccharide structure
was damaged, loose, and broken. The structure of GLP-V (treated by Vc) was damaged
and became irregular (in the shapes of strips and flakes), but the surface was also smooth,
compared with GLP. However, the structure of polysaccharide treated by H2O2 was broken,
and its surface became rough and loose (GLP-H). The effect of H2O2-Vc degradation was
more obvious, the structure was the most loose, and the damage for surface structure was
the most serious, but the size of fragments was relatively uniform. The polysaccharide
structure degraded by H2O2-Vc was more fragmented and looser. The morphologies of
the polysaccharide produced by H2O2 degradation alone were similar to those treated by
H2O2-Vc degradation, but the structures of the polysaccharide produced by H2O2-Vc were
more uniform and fragmented. The probable reason was that H2O2 had a major effect on
the structure of polysaccharide, while Vc played a supplementary role. Vc could promote
H2O2 to generate more free radicals, breaking glyosidic bonds, so that the structure of
polysaccharide became loose and broken [16].
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2.9. The Inhibition Effect on α-glucosidase

α-glucosidase is a key enzyme in hydrolysis of carbohydrate which can decompose
carbohydrates into glucose. The inhibition of α-glucosidase activity could reduce the pro-
duction of glucose, slow down the speed of glucose to enter the blood, and then decrease
postprandial blood glucose [22]. In addition, this inhibition reduces the absorption of carbo-
hydrates by the digestive tract and intestines, stimulates insulin-dependent glucose uptake,
and reduces inflammation, thereby improving the symptoms of diabetes [31]. Acarbose,
an α-glucosidase inhibitor, is a complex oligosaccharide with good inhibitory effect on
α-glucosidase, hence it was selected as the positive control in this experiment [26]. Figure 5
displayed that GLP and its degradation products were able to inhibit α-glucosidase activity.
In particular, GLP-HV exhibited an appreciable α-glucosidase inhibition, with inhibition
rate of 89.98% as the content was 5 mg/mL (Figure 5a). At the same concentration, the
inhibition rates of GLP, GLP-H, and GLP-V were 52.85%, 69.53%, and 56.76%, respectively,
which significantly were inferior to GLP-HV. In the figure, it was clear that the inhibition
rate was dose-dependent for all samples within a certain concentration range. Liao et al. [25]
attained the α-glucosidase inhibition rate of GLP degradation product, treated by 9 mM
H2O2-Vc for 2 h, was less than 70%, which was lower than GLP-HV (89.98%) at 5 mg/mL.
It pointed out that H2O2-Vc concentration and the reaction time of degradation played a
vital effect on the hypoglycemic activity of polysaccharide. Under different degradation
conditions, the molecular weight, monosaccharide composition, and other structural char-
acteristics of the obtained polysaccharide degradation products were obviously diverse,
which resulted in the difference of hypoglycemic activity in vitro. In Figure 5b, the IC50
value of acarbose (control), GLP, GLP-HV, GLP-H, and GLP-V were 0.053, 3.957, 0.265,
1.651, and 1.923 mg/mL, which explained the inhibition effect on α-glucosidase of these
samples from high to low was acarbose > GLP-HV > GLP-H > GLP-V > GLP.
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α-glucosidase inhibition rate of GLP, GLP-HV, GLP-H, and GLP-V; (b) The IC50 value of α-glucosidase
inhibition rate of GLP, GLP-HV, GLP-H, and GLP-V; (c) The Lineweaver–Burk curve of α-glucosidase
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α-glucosidase a, b, c, d and e represented significant differences among groups, and p < 0.05 indicates
significant differences.

In Figure 5c, the Lineweaver–Burk curve of different concentrations of GLP-HV inter-
sected in the second quadrant. From Table 6, when concentrations were 0, 1, 5 mg/mL, the
Km values were 2.409, 4.164, and 7.839 mg/mL, and Vmax values were 0.005881, 0.002995,
and 0.002917 mg/mL, respectively. Km was enhanced and Vmax was declined as the
sample concentration increased, which were accorded with the mix of competitive and
non-competitive inhibition, respectively. All of these results demonstrated that inhibition
type of GLP-HV on α-glucosidase was the mix of competitive and non-competitive. The
mechanism may be that samples would bind to the active sites of the enzyme, reducing
the activity of the enzyme and preventing the combination of the enzyme to the substrate.
On the other hand, the sample interacted with groups outside the active center of the
enzyme, which had no direct inhibition effect on the enzyme, but can inhibit the release
of products combined by enzyme and substrate, so as to achieve the inhibition effect.
Cao et al. [32] studied the α-glucosidase inhibition effect of Lentinus edodes mycelia polysac-
charide; the inhibition type also was mixed-type manner, which was in accordance with our
results. Polysaccharides from different materials may have diverse types of α-glucosidase
inhibition. Zhao et al. [33] found that the inhibition type was a competitive mode on
α-glucosidase affected by polysaccharide from Ribes nigrum L.

Table 6. The inhibitory kinetic constant on α-glucosidase of GLP-HV.

[S] (mg/mL) V max (mg/mL·min−1) Km (mg/mL) Inhibition Type

0 0.0059 2.409 The mix of competitive
and non-competitive1 0.0030 4.164

5 0.0029 7.839

Figure 5d reflected the fluorescence intensity on α-glucosidase from GLP, GLP-HV,
GLP-H, and GLP-V, which confirmed that all of the samples had fluorescence quenching
effect to some extent. The fluorescence intensity became weakened, and the phenomenon of
red shift occurred after the addition of samples. GLP-HV performed the best impact on the
fluorescence intensity, and the second was GLP-H. GLP and GLP-V exhibited the similar
effect, which were a little bit worse than the first two samples. Therefore, we chose GLP-HV
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with series of concentrations to observe the effect on fluorescence intensity of α-glucosidase
(Figure 5e). The degree of redshift was bigger and bigger as the concentration increased (the
concentration from 0 to 10 mg/mL), observed by Figure 5e and the value of F (Table 6). It
demonstrated that the bigger content of GLP-HV displayed the stronger combination with
the luminophore groups (tryptophan, tyrosine, and phenylalanine) of α-glucosidase. It was
also possible that the combination of samples with the groups of the enzyme may cause
changes of the environment around the luminescent groups, thus affecting the luminescence
intensity. Calculating by fluorescence quenching Stern–Volmer equation, the fluorescence
parameters on α-glucosidase of GLP-HV were showed in Table 7 and Figure 5f. The
quenching constant Ksv and Kq were 0.07566 L/mol and 7.566 × 106 L/mol/s, respectively.
The value of Ksv was poorer than the other polysaccharide from literatures [34]. Kq was
lower than 2.0 × 1010 L/mol/s [35], the maximum collision rate constant of quenchers
caused by large biomolecules. On the other hand, the quenching curve between F0/F and
[Q] almost showed the linear relationship. As a result, the fluorescence quenching type
of GLP-HV to enzyme may be dynamic quenching, but the quenching effect was weak,
according to the value of Ksv. Ka was the binding constant of GLP-HV with α-glucosidase,
that could be calculated from the intercept of lg((F0 − F)/F) versus lg[Q] curve. Such data
are summarized in Table 7: Ka was 9.5082 L/mol, and the number of binding sites (n) was
0.8137 (close to 1). We noticed that the value of Ka was relatively low, and the value of n
was only 1, which indicated that the binding effect of the GLP-HV to the α-glucosidase was
weak and there was only one binding site.

Table 7. The fluorescence parameter on α-glucosidase of GLP-HV.

[Q] (mg/mL) F F0/F Ksv (L/mol) Kq (L/mol/s) Ka (L/mol) n

0 419 1

0.07566 7.566 × 106 9.5082 0.8137

0.5 399 1.0518
1 371 1.1309

2.5 346 1.2107
5 263 1.5930

10 251 1.6690

equation of curve F0/F= −1.23796∗e−[Q]/13.21797 + 2.24913,
R2 = 0.99148

lg((F0 − F)/F) =
0.8137∗lg[Q]−0.9781,

R2 = 0.9788

According to the results of inhibition rate, IC50, inhibition kinetics and fluorescence
spectrum analysis, GLP-HV had a good inhibition effect on α-glucosidase in a dose-
dependent manner, which was the mixed type of competitive and non-competitive. It had
a certain quenching effect on fluorescence, which may be dynamic quenching. GLP-HV
may have the potential to be developed as new hypoglycemic agents.

3. Discussion

The degradation degree of polysaccharide was related to H2O2-Vc concentration,
degradation time and temperature according to single factor and response surface exper-
iments. H2O2-Vc concentration in the system was very small, and the degradation time
was short, which had the advantages of rapid reaction, high efficiency, and low cost. The
Mw of H2O2 and Vc were both lower than 300 g/mol, respectively, which can be removed
by dialysis without introducing impurities and interfering with the activity of polysaccha-
ride. This method is safe and reliable that can be used in industrial production. The total
sugar and protein content were not changed after degradation, indicating that H2O2-Vc
did not introduce other impurities. In addition, the reducing content of polysaccharide
was higher after degradation, and its lower Mw, exhibiting the effective degradation of
H2O2-Vc. And the degradation effect was better than fermentation, and similar to HPT
treatment (high temperature and pressure combined with Vc) from the comparison of
molecular weight [12,15].
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Polysaccharide degradation is attributed to the breaking of glyosidic bonds, resulting
in changes in monosaccharide composition. Various degradation methods act on different
glyosidic bonds, so the breakage of glyosidic bonds’ location and number may be diverse,
resulting in differences in the amount and content of monosaccharides exposed [11,20,21].
Xu et al. [13] found that the glucose and galactose were changed after degradation by
HCl (the content of galactose was 35.9%) and enzyme (the content of galactose was 68.9%,
respectively), compared with GLP (56.6%). It might be that the positions and quantities
of glyosidic bonds destroyed by diverse degradation methods were different, leading
to changes in monosaccharides content. However, the ratio of main monosaccharide
components GLP-H (24.63% glucose and 66.39% galactose) and GLP-V (24.43% glucose
and 69.64% galactose) were changed a little, compared with GLP, and exhibited the same
variation. Moreover, the level of ribose and xylose enhanced, but rhamnose content
declined after degradation. This phenomenon may be due to the position of glyosidic bond
affected by different degradation ways. Alone, H2O2 or Vc treatment may break the similar
position or numbers of glyosidic bond. They may cut the glyosidic bonds on both sides of
galactose, promoting the produce of galactose, compared with H2O2-Vc treatment. The
degradation of polysaccharide led to the change of monosaccharide composition, which
may be the main reason for the change of glucosidase inhibition effect by polysaccharide
and its production products.

The SEM results were consistent with the change of reducing sugar and molecular
weight, which exhibited that H2O2-Vc obviously degraded the Gracilaria lemaneiformis
polysaccharide effectively, thus could break its structure, and changed its surface mor-
phology. Furthermore, H2O2-Vc treatment exhibited the better degradation effect than
alone H2O2 or Vc treatment, might be due to the differences in the distance and degree
of crosslinking between molecules. Gong et al. [11] also found that GLP presented the
thick slices image with flat and smooth surface, and then changed into thin, lacerating, and
rough after degradation by UV-H2O2. However, the polysaccharide structure was more
fragmented and looser degraded by H2O2-Vc. Perhaps Vc reacted with H2O2 to produce
more free radicals, which had a stronger effect on the polysaccharide molecules. The Mw
of polysaccharides dreaded by H2O2 or Vc were only slightly less than GLP, and H2O2-Vc
exhibited the excellent degradation effect with the minimum Mw. This finding validated
the SEM result.

α-glucosidase is one of the hydrolases in the digestive tract, which is closely related to
hypoglycemic activity [32]. The inhibition effect of polysaccharide on α-glucosidase can re-
duce the production of glucose in the blood and thus change the carbohydrate metabolism.
Therefore, the inhibitory effect of polysaccharide on α-glucosidase can reflect the hypo-
glycemic effect in vitro. From the results of the inhibition effect of α-glucosidase, the
polysaccharide treated by H2O2-Vc enhanced the hypoglycemic activity in vitro, compared
with H2O2 or Vc treatment alone. GLP-HV presented higher galactose, ribose, and xylose
than GLP, and lower glucose and rhamnose. Both GLP-H and GLP-V expressed similar
changes with GLP-HV, but the effect were not as significant as GLP-HV. The degraded
polysaccharides showed better inhibition, especially GLP-HV. It possibly was related to
these changes in monosaccharide compositions. Cao et al. [32] exerted the outstanding
inhibition on α-glucosidase by Lentinus edodes mycelia polysaccharide containing mannose,
arabinose, galactose, xylose, and rhamnose. Combined with the results of molecular weight,
GLP-HV had the lower Mw than GLP, GLP-H, and GLP-V. For another, the Mw of GLP-V
was smaller than GLP and GLP-H, but its inhibition rate on α-glucosidase was worse than
GLP-H and higher than GLP. Therefore, the good inhibition effect of GLP-HV may not
only be due to the low molecular weight and monosaccharide composition, but also to the
connection mode of glycoside chains, which needs to be verified by subsequent studies.
Lv et al. [30] researched the backbone of WXA-1 (polysaccharide from wheat bran) was
→4)-β-D-Xylp-(1→, which was substituted at O-3 positions by arabinose, glucose, and
galactose residues, while the backbone of AXA-1 (polysaccharide from wheat bran) was
→ 4)-β-D-Xylp-(1→, which was mainly substituted at O-3 positions by arabinose. AXA-1
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exhibited a stronger inhibitory effect on the activities of α-amylase and α-glucosidase
compared with WXA-1. When the concentration range of GLP-HV was 0–5 mg/mL, the
inhibition rate of α-glucosidase was dose-dependent, and the higher concentration played
the higher inhibition rate. When the concentration was from 5 to 10 mg/mL, the inhibition
rate decreased. However, fluorescence quenching effect of GLP-HV with 10 mg/mL was
a little bit stronger than 5 mg/mL, which was contrary to the results of inhibition rate.
The probable reason may that the inhibition type was the mix of competitive and non-
competitive. GLP-HV inhibited the products of enzyme-substrate interaction rather than
directly binding to the enzyme active groups. Furthermore, the strength of fluorescence
quenching cannot fully represent the inhibitory effect on the enzyme. The fluorescence
spectrum of α-glucosidase under this condition was due to the existence of luminescent
groups such as tryptophan, tyrosine, and phenylalanine. Changes of the groups and their
environment led to the changes in fluorescence intensity. The weak binding ability between
GLP-HV and the luminescent group or the weak influence on the environment of the
luminescent group cannot fully explain the weak inhibitory activity of the sample.

The method of hot water extraction and alcohol precipitation is a suitable extraction
method for polysaccharide, with high total sugar content and without protein. H2O2-Vc
is also an excellent degradation method, which has the advantages of high efficiency, low
cost, and no by-products. Low molecular weight polysaccharide with high hypoglycemic
activity could be obtained by H2O2-Vc degradation. Polysaccharide degradation products
showed the inhibition on α-glucosidase, and GLP-HV presented the best effect in a dose-
dependent manner, which was the mixed type of competitive and non-competitive. It
had a certain quenching effect on fluorescence of α-glucosidase, which may be dynamic
quenching. The best inhibition effect on α-glucosidase may be related to its molecular
weight, monosaccharide composition and other factors.

4. Materials and Methods
4.1. Materials and Chemicals

Gracilaria lemaneiformis was purchased from Nan’ao Island (Shantou, Gguangdong, China),
the Coomassie Bright Blue kit was purchased from Shanghai Biyuntian Biotechnology Co.,
LTD (Shanghai, China); vitamin C (Vc) and α-glucosidase were purchased from Shanghai
Yuanye Biotechnology Co., LTD (Shanghai, China); P-nitrobenzene-α-d-glucoside (PNPG)
was purchased from Shanghai Maclin Biochemical Technology Co., LTD (Shanghai, China).

4.2. Preparation of GLP

Gracilaria lemaneiformis was cleaned many times to remove impurities, dried in an oven
at 50 ◦C, crushed and sifted through 40 mesh to obtain uniform powder. The powder was
soaked on a shaking table (50 ◦C) with an ethanol volume of nine times to remove pigment,
fat, and alcohol-soluble impurities. After 24 h, the filter residue was extracted and placed
in a drying oven at 50 ◦C for drying. The GLP was extracted by hot water and precipitated
by ethanol according to the previous reported methods with some modifications [11]. After
30 min of ultrasonic wall breaking, Gracilaria lemaneiformis was extracted with water at a
ratio of 1:45 (w/v) at 90 ◦C for 4 h under oscillation, and then cooled to room temperature to
add 1% papain and 0.5% cellulase (w/v). The mixture was incubated at 60 ◦C for 2 h under
oscillation, and then rapidly heated in boiling water for 10 min to denature the papain and
cellulase. After cooling to room temperature, the mixture was centrifuged at 8000 rpm
for 15 min, and the supernatant was collected and condensed to one third of the original
volume by rotary evaporation (60 ◦C). The concentrated solution was precipitated at 4 ◦C
for 12 h, centrifuged for precipitation, filtered with 200 mesh gauze, and then dialyzed
(7 kDa) at 4 ◦C for 72 h, and pure water was changed once at 4 h. After freeze-drying, GLP
values were obtained.
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4.3. Degradation of GLP with H2O2-Vc
4.3.1. Single-Factor Experiment

The degradation was adopted based on the reported method [10]. GLP was degraded
by H2O2-Vc (mole ratio of H2O2 and Vc was 1:1). In brief, GLP (5 mg/mL) and H2O2-Vc at
different concentrations (5, 10, 15, 20, and 25 mM) were added directly into the solution.
Degradation times were 0.1, 0.3, 0.5, 0.7, and 0.9 h, and the temperature were maintained at
30, 40, 50, 60, and 70 ◦C. Reducing sugar content and α-glucosidase inhibition rate were
used as screening indexes.

4.3.2. Response Surface Analysis

According to the single-factor experimental results, the response surface method was
designed and implemented using the Box–Behnken Design (BBD) principle of Design-
Expert 8.0.6 software, and the response surface results were fitted.

4.3.3. Preparation of Degradation Products from GLP

The polysaccharide was degraded by the optimal process obtained by the results of
single-factor experiment and response surface analysis. The degradation product was
neutralized (pH 7.0) with 1 M NaOH, concentrated to 1/3 volume at 60 ◦C using a rotary
evaporator, and precipitated at 4 ◦C for 12 h with absolute ethanol (1:4, v/v). After
centrifuging (8000 rpm, 15 min), the precipitation was dissolved with pure water in the
magnetic blender, and then dialyzed (300 Da) at 4 ◦C for 48 h, and pure water was changed
once at 4 h. After freeze-drying, the degradation product was obtained, named GLP-HV
(Gracilaria lemaneiformis polysaccharide degraded by H2O2-Vc). Only H2O2 in the same
concentration was used for polysaccharide, the other conditions were the same, the sample
was obtained, named GLP-H (Gracilaria lemaneiformis polysaccharide degraded by H2O2).
Only Vc in the same concentration was used for polysaccharide, the other conditions were
the same, the sample was obtained, named GLP-V (Gracilaria lemaneiformis polysaccharide
degraded by Vc). GLP-H and GLP-V were the controls of GLO-HV.

4.4. Analysis of Chemical Characterizatics
4.4.1. Determination of Total Sugar, Reducing Sugar and Protein Content

Total sugar, reducing sugar, and protein content were determined by phenol-sulfuric
acid method with D-glucose as the standard compound, DNS (3,5-Dinitrosalicylic acid)
method with D-glucose as the standard compound, and Coomassie Bright Blue kit.

4.4.2. Determination of Monosaccharide Composition

Monosaccharide composition was determined using high performance liquid chro-
matography (LC-20AD) according to the method reported by Kang et al. [9], with a slight
modification. The analysis conducted with a drift tube temperature of 30 ◦C, wavelength
of 250 nm, using Xtimate C18 column (4.6 mm × 250 mm, 5 µm) at 30 ◦C for 50 min. The
monosaccharides were eluted using 0.05 M potassium dihydrogen phosphate (PH 6.7)-
acetonitrile mobile phase (83:17) at a flow rate of 1 mL/min.

Derivatives of standard products: After the monosaccharide standards were dissolved
in water, 250 uL 0.6 mol/L NaOH and 500 uL 0.4 mol/L PMP-methanol were added and
reacted at 70 ◦C for 1 h. Subsequently, the solution was cooled in cold water for 10 min,
500 uL 0.3 mol/L HCl was added for neutralization, and 1 mL chloroform was added and
mixed. Centrifugation was performed at 3000 r/min for 10 min. The supernatant was
carefully taken and extracted three times.

Hydrolysis and derivatization of samples: appropriate amounts of samples were
accurately weighed, 2 mL 2 mol/L trifluoroacetylacetone (TFA) was added and acidolized
at 120 ◦C for 4 h. TFA was blow-dried with nitrogen and redissolved with 2 mL water. The
derivatization procedure of the hydrolyzed sample solution was consistent with that of
the standard.
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4.4.3. Determination of Molecular Weight

Molecular weight was determined by Gel Permeation Chromatography (Shimadzu, Japan),
referred to the report [36], with a slight modification. The analysis carried out on differential
refractive index detector of RID-20A with a drift tube temperature of 35 ◦C, using TSKgel
GMPWXL column for 25 min. The molecular weight was eluted using 0.1 M sodium nitrate
(NaNO3) and 0.06% Sodium azide (NaN3) at a flow rate of 0.6 mL/min.

4.4.4. UV-Visible Spectroscopy

The method was referred to the previous research [37]. The absorption spectra of
sample solutions (0.5 mg/mL) were measured using a UV-vis spectrophotometer (UV2550,
Shimadzu, Japan), with the wavelength ranging from 200 to 700 nm with an interval
of 1 nm.

4.4.5. I2-KI Test

A polysaccharide and degradation products solution (2.0 mg/mL, 2.0 mL) was mixed
with I2-KI reagent (0.8 mL, containing 0.2% KI and 0.02% I2, w/v) for 10 min. The ab-
sorbance was detected by a UV-vis spectrophotometer (UV2550, Japan) with the range of
300–700 nm [38].

4.4.6. Congo Red Test

Polysaccharide and degradation products solution (2 mg/L, 2.0 mL) were prepared,
and 2 mL of 80 uM Congo red was added, and then 1 M NaOH was dropped to make the
concentration of NaOH in different solutions vary from 0 to 0.5 mol/L. UV-vis spectropho-
tometer scanning (400–700 nm) was conducted to determine the maximum absorption
wavelength under various concentration gradients of NaOH [33].

4.4.7. Scanning Electron Microscope Analysis (SEM)

The morphology of GLP, GLP-HV, GLP-H, and GLP-V were analyzed by SEM (SU 8010,
Hitachi, Japan) [38]. These samples were dipped in a small amount of powder with conduc-
tive tape and pasted on the sample table. After spraying gold for 30–60 s, the samples were
vacuumized and tested on the machine. The images were taken by SU 8010 Hitachi scan-
ning electron microscope and the magnifications were 1000-fold and 200-flod, respectively.

4.5. The Inhibition Effect on α-Glucosidase

The inhibition effect on α-glucosidase was detected according to the previous report [26],
with some modifications.

The inhibition rate: 30 µL polysaccharide and degradation products solution (0.1, 0.5,
1, 2.5, 5, 10 mg/mL), mixed with 100 µL phosphate buffer solution (PBS, 0.1 mol/L, pH 6.8,)
and 30 µL α-glucoside enzyme solution (0.5 U/mL, pH 6.8, prepared by PBS) in 96-well
plates, which incubated at 37 ◦C for 15 min. 30 µL PNPG solution (10 mmol/L, prepared
by PBS) was mixed into the reaction mixture and incubated at 37 ◦C for 20 min. Then
measured the absorbance value at 405 nm, and calculated the inhibitory activity according
to the following formula:

Inhibition rate/% = ((A3 − A4) − (A1 − A2))/(A3 − A4) × 100, (1)

A1: Samples and enzyme; A2: The enzyme was replaced by PBS; A3: Samples are
replaced with pure water; A4: Samples and enzyme were replaced with pure water and
PBS, respectively.

Inhibition kinetics: The sample concentration was 0, 1, and 5 mg/mL, and the concen-
tration of PNPG was 1, 2.5, 5, 7.5, and 10 mM, respectively. The reaction time was 20 min,
and the determination was performed every 2 min. The Lineweaver–Burk curve was drawn
by double reciprocal plotting method with reciprocal of substrate concentration as abscissa
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and reciprocal of reaction rate as ordinate, which calculated the Michaelis constant (Km),
the maximum reaction rate (Vmax), according to the following formula:

1/v = Km/Vmax × 1/([S]) + 1/Vmax, (2)

V: initial reaction rate; Vmax: the maximum reaction rate; [S]: the concentration of
PNPG; Km: the Michaelis constant.

Fluorescence spectrum analysis: The fluorescence spectrum analysis was studied
according to literature [31] with some modifications. The excitation wavelength was
280 nm, the emission wavelength was 290–500 nm, and the slit width was 5 nm. 0.5 mL
samples solution (5 mg/mL) and 2.5 mL α-glucosidase (5 U/mL) were taken, and the
fluorescence spectrum was measured under these conditions after shaking and mixing,
and the samples were replaced by PBS as blank. The samples with the best activity were
prepared with concentrations of 0.1, 0.5, 1, 2.5, 5 and 10 mg/mL, and the fluorescence
spectra were determined under the same conditions. The equation of Stern–Volmer was
used to express the fluorescence quenching:

F0/F = 1 + Ksv [Q] = 1 + Kq τ0 [Q], (3)

F0/F = eˆ(Ksv[Q]), (4)

Ksv = Kqτ0, (5)

lg ((F0 − F)/F) = lgKa + nlg[Q], (6)

F0: fluorescence intensity of α-glucosidase without samples; F: fluorescence intensity
of α-glucosidase with samples; [Q]: the concentration of samples; τ0: the average life of
fluorescent substances without quenching agent is generally 10−8; Kq: quenching rate
constant; Ksv: quenching constant of Stern–Volmer. Ka: the binding constant between
samples and α-glucosidase; n: the binding-site number.

4.6. Statistical Analysis

Data are expressed as means ± standard (SD). Duncan’s multiple range test was
applied to identify differences between the mean values for each group by IBM SPSS
software (version 22). p < 0.05 was considered to represent statistical significance. The
degradation experimental design and analysis was performed using Design-Expert 8.0.6.
IC50 was calculated by IBM SPSS software 22. Figures were finished by Origin-Pro 8.5.

5. Conclusions

The optimal conditions for H2O2-Vc degradation were as follows: H2O2-Vc concentra-
tion was 18.7 mM, reaction time was 0.5 h, and reaction temperature was 56 ◦C. The total
sugar content of GLP, GLP-HV, GLP-H and GLP-V were 98.77%, 98.43%, 97.28%, and 97.5%,
respectively, and their reducing sugar were 2.47%, 46.92%, 1.95%, and 50.2%, respectively.
Moreover, the Mw was reduced after degradation, and the monosaccharides were mainly
glucose and galactose before and after degradation. In addition, GLP and its degrada-
tion products did not have protein, starch, and triple helix structure. The degradation
method of H2O2-Vc is feasible, and no by-products can be produced. The SEM analysis
demonstrated that H2O2-Vc made the structure loose and broken. All samples showed the
inhibition on α-glucosidase, and GLP-HV presented the best effect in a dose-dependent
manner, which was the mixed type of competitive and non-competitive. It had a certain
quenching effect on fluorescence of α-glucosidase, which may be dynamic quenching. The
polysaccharide degraded by H2O2-Vc, with low Mw, exerted the good inhibition effect on
glucosidase activity.
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