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To Trust or Not to Trust: Evolutionary Dynamics of
an Asymmetric N-player Trust Game

Ik Soo Lim and Naoki Masuda

Abstract—Trusting others and reciprocating the received trust
with trustworthy actions are fundaments of economic and social
interactions. The trust game (TG) is widely used for studying
trust and trustworthiness and entails a sequential interaction
between two players, an investor and a trustee. It requires at least
two strategies or options for an investor (e.g. to trust versus not to
trust a trustee). According to the evolutionary game theory, the
antisocial strategies (e.g. not to trust) evolve such that the investor
and trustee end up with lower payoffs than those that they would
get with the prosocial strategies (e.g. to trust). A generalisation
of the TG to a multiplayer (i.e. more than two players) TG
was recently proposed. However, its outcomes hinge upon two
assumptions that various real situations may substantially deviate
from: (i) investors are forced to trust trustees and (ii) investors
can turn into trustees by imitation and vice versa. We propose an
asymmetric multiplayer TG that allows investors not to trust and
prohibits the imitation between players of different roles; instead,
investors learn from other investors and the same for trustees. We
show that the evolutionary game dynamics of the proposed TG
qualitatively depends on the nonlinearity of the payoff function
and the amount of incentives collected from and distributed to
players through an institution. We also show that incentives given
to trustees can be useful and sufficient to cost-effectively promote
trust and trustworthiness among self-interested players.

Index Terms—Evolutionary game theory, evolutionary dynam-
ics, replicator dynamics, trust game, incentives

I. INTRODUCTION

The evolution of pro-social behaviours among self-
interested individuals has been a focus of research across
disciplines. For instance, the evolution of cooperation in social
dilemma situations such as the Prisoner’s Dilemma (PD) and
its N -player generalisation, the Public Goods Game (PGG),
has attracted lots of attention [1][2][3][4][5][6]. Evolutionary
game theory provides a theoretical framework with which
to study the evolution of strategies or behaviours among
self-interested individuals in these social dilemmas or other
situations, in which successful strategies or genes are spread
by fitness-dependent reproduction and imitation [7][8]. It has
also been widely used for applications such as modelling the
propagation of competing technologies and policies for green
supply chain management [9][10].

Non-simultaneous or sequential interactions between two
players are common in many situations such as buyer-seller
interactions, whereas the PD and PGG are concerned with
simultaneous interactions. Non-simultaneous interactions yield
a problem of trust in the sense that the decision by one of two
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Fig. 1. Two-player binary TGs. (a) Game tree of the asymmetric two-player
binary TG, referred to as a general two-player TG1G in Ref. [27], in which
the role of each player is fixed. The payoffs of an investor are shown in
green. Those of a trustee are shown in orange. Adapted from Ref. [19]. We
generalise this game to an N -player game in this article. (b) Game tree of
the two-player binary TG that is used for the generalisation to the NTG in
Ref. [27]. This game does not allow an investor not to invest. In both (a) and
(b), we require 0 < r < 1, where r represents the relative productivity of the
prosocial strategies.

players (e.g. a buyer) can make oneself vulnerable to potential
exploitation by the other (e.g. a seller) [11]. In such situations,
higher levels of trusting in others and reciprocating the re-
ceived trust with trustworthy actions have been associated with
more efficient judicial systems, higher quality in government
bureaucracies, lower corruption, greater financial development,
and better economic outcomes among other benefits for the
society [12]. The concept of trust has also attracted interest
in engineering research communities, ranging from network-
ing to human-machine interaction and artificial intelligence
[13][14][15], where many problems are cast as buyer-seller in-
teractions [16]. The trust game (TG) is a current gold standard
of formalisation for non-simultaneous interaction in social
dilemma situations and has widely been used to study trust and
trustworthiness [11][12][17][18][19][20][21][22][23][24]. The
TG is composed of a one-shot sequential interaction between
two players in different roles, one as an investor (representing,
for example, a truster, buyer, or citizen) and the other as
a trustee (representing, for example, a seller or governor).
One of the simplest variants of TGs is the binary TG, which
involves two strategies per role [19][25][26]. An investor either
invests (i.e. trusts) or does not invest in a trustee. Then, the
trustee decides to be either trustworthy or untrustworthy to
the investor (Fig. 1a).

The evolutionary game theory predicts that self-interested
strategies (e.g. for an investor not to invest) evolve in the two-
player binary TG. The classical game theory also yields a
similar conclusion via backward induction; given investment
from an investor, a rational trustee is better off by being
untrustworthy and, anticipating it, a rational investor does not
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invest in a trustee in the first place. Thus, the two players
end up with lower payoffs than those that they would get
with the pro-social strategies (i.e. for the investor to invest
and for the trustee to be trustworthy). Therefore, an additional
mechanism is required for promoting the evolution of the pro-
social strategies in the TG [28][29][30].

An N -player binary TG (NTG) was recently proposed as a
multiplayer (i.e.N ≥ 2) generalisation of the binary TG [27].
However, it suffers from two major difficulties that hamper
us from clarifying mechanisms of trust and trustworthiness in
multiplayer situations in reasonably realistic manners. First, in
this NTG, the investor does not have an option not to invest
(Fig. 1b); the investor is assumed to invest. Therefore, one
cannot investigate the evolution and stability of trusting as
opposed to non-trusting behaviour. Note that their NTG with
N = 2 players is not the two-player TG, which this model
attempted to generalise. Second, investors are allowed to turn
into trustees and vice versa by payoff-driven imitation. An
evolutionary outcome of this second assumption is the cease
of game playing because all players eventually become trustees
[27]. Without an investor, one cannot carry on the game. The
justification of this result and the underlying assumption of
the role-unaware imitation is unclear. The NTG with citizens
and governors was used as an example in Ref. [27], where
citizens were allowed to imitate and become governors. The
evolutionary outcome is that all players become governors.
Once there is no citizen, there is no NTG to be played. A
population composed of all governors but no citizen is not
only unrealistic but also incompatible with the behavioural
experiment setups of the TGs, which ensures that both a
citizen (or an investor) and a governor (or a trustee) are
always available to play the TG [12]. The follow-up studies
of the original NTG [27] also inherit the aforementioned two
assumptions, i.e., that the investor does not have a choice not
to invest and that players can turn into a preferred role by
imitation [31][32][33].

In reality, investor-trustee interactions often involve mul-
tiplayer interactions rather than dyadic ones; for instance,
multiple investors may be involved in a large project. Hence,
setting up reasonable NTGs and understanding their popula-
tion dynamics remains a worthwhile goal. Our contributions
in this paper are threefold:

• We propose an asymmetric NTG with two strategies per
role, which generalises the two-player TG but does not
suffer from the two problems inherent in the previously
proposed NTG.

• We introduce non-linear payoff functions that can yield
evolutionary dynamics qualitatively different from that of
a linear one.

• We propose an incentive scheme to cost-effectively steer
the self-interested players to take prosocial strategies
such that the population average of the payoff (or social
welfare) is maximised.

The source code used for this paper is provided on Github:
https://github.com/iksoolim/asymmetric N-player trust
game.

II. MODEL

A. Population and Group Formation

We consider an asymmetric NTG in which the role of each
individual is fixed as either investor or trustee throughout the
whole evolutionary dynamics. Furthermore, we assume that
social learning, i.e., payoff-led imitation of strategies, only
occurs among individuals of the same role as in the two-player
TG [19]. There are two strategies available for each role. An
investor either invests or does not invest in trustees. A trustee
selects to be either trustworthy or untrustworthy to investors.
We consider two infinitely large populations, one for investors
and the other for trustees. From time to time, a group of NI

investors and NT trustees, selected uniformly at random from
the respective population, is formed and these N ≡ NI +NT

individuals participate in a one-shot NTG. We assume that NI

and NT are fixed.

B. Payoffs

We assume that the total value of the investment aggregated
over the investing investors is equal to

1− wki

1− w
=


0 if ki = 0,

1 if ki = 1,

1 + w + w2 + · · ·+ wki−1 if ki ≥ 2,

(1)

where ki ∈ {0, 1, . . . , NI} denotes the number of investing
investors in the group, and w > 0 determines how the
value of the investments accumulates when an additional
investor contributes to the collective good. A similar non-
linear payoff function was previously used for the PGG [4].
If 0 < w < 1, then the value of the contribution by each
additional investing investor is diminishing, i.e. discounted or
sub-additive. If w = 1, then the value of the contribution
is 1 for any investor regardless of the number of investing
investors, ki. This linear payoff function is the same as that
for the original NTG [27]. Note that the total value of the
investment is equal to ki when w = 1, which follows from
L’Hopital’s rule applied to the left-hand side of Eq. (1). If
w > 1, the value of the contribution per investor increases
as ki increases, i.e. representing synergistic or super-additive
benefits.

The total investment is equally divided and distributed to
the NT trustees. Therefore, the payoff that an untrustworthy
trustee in the group receives from the game, denoted by
Πo

u(ki), is given by

Πo
u(ki) =

1

NT

1− wki

1− w
. (2)

The payoff of a trustworthy trustee in the group, denoted by
Πo

t (ki), is given by

Πo
t (ki) = rΠo

u(ki) = r
1

NT

1− wki

1− w
, (3)

where r represents relative productivity of the prosocial strate-
gies and satisfies 0 < r < 1. In the two-player TG, when
an investing investor and a trustworthy trustee interact with
each other, each of them gets the same payoff (Fig. 1a). In the

https://github.com/iksoolim/asymmetric_N-player_trust_game
https://github.com/iksoolim/asymmetric_N-player_trust_game
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N -player generalisation, analogously, we assume that when a
group of investing investors and a group of trustworthy trustees
interact with each other, each group gets the same (group)
payoff. The aggregated return from the kt ∈ {0, 1, . . . , NT }
trustworthy trustees is equally distributed to the ki investing
investors in the group. Therefore, the payoff that an investing
investor receives from the game, denoted by Πo

i (ki, kt), is
given by

Πo
i (ki, kt) =

1

ki
ktΠ

o
t (ki)︸ ︷︷ ︸

net gain

+(NT − kt)

(
− 1

NT

)
︸ ︷︷ ︸

net loss

=
kt
NT

r
(
1− wki

)
ki(1− w)

+

(
1− kt

NT

)
· (−1).

(4)

The payoff Πo
i (ki, kt) is equal to the expected payoff of an

investing investor playing a two-player game with each of
the NT trustees; the net gain from a trustworthy trustee is
r(1−wki)
ki(1−w) and the net loss from an untrustworthy trustee is
−1. Lastly, the payoff of a non-investing investor is Πo

n = 0.
Note that a special case of NI = NT = 1 recovers the two-
player TG (Fig. 1a).

By including incentives and associated costs for the players,
we define the final payoffs Πi, Πn, Πt, and Πu for an
investing investor, non-investing investor, trustworthy trustee
and untrustworthy trustee, respectively, by

Πi(ki, kt) = Πo
i (ki, kt) + vI − avI , (5)

Πn = Πo
n − avI , (6)

Πt(ki) = Πo
t (ki) + vT − avT , (7)

Πu(ki) = Πo
u(ki)− avT , (8)

where an investor pays a fee avI to the institution providing
the incentives and an investing investor receives a reward vI
from the institution, where vI ≥ 0. We assume the fee rate
a > 1 such that the total incentive is less than the total fee,
taking into consideration the operating cost for the institution.
Similarly, a trustee pays a fee avT to the institution and
a trustworthy trustee receives a reward vT ≥ 0. A similar
incentive scheme has been assumed for the PGG [6]. For a
given investor in a group of N players, the probability that
mt among NT trustees are trustworthy (and thus NT − mt

trustees are untrustworthy) is
(
NT

mt

)
ymt
t (1− yt)

NT−mt , where
yt denotes the fraction of trustworthy trustees in the trustee
population; 1−yt is the fraction of untrustworthy trustees. For
a given investor, the probability that mi among the other NI−1
investors are investing is

(
NI−1
mi

)
ymi
i (1− yi)

NI−1−mi , where
yi denotes the fraction of investing investors in the investor
population. Therefore, the expected payoff for an investing
investor is

Pi =

NI−1∑
mi=0

(
NI − 1

mi

)
ymi
i (1− yi)

NI−1−mi

×
NT∑

mt=0

(
NT

mt

)
ymt
t (1− yt)

NT−mtΠi(mi + 1,mt)

=
r

NI(1− w)

yt
yi

{
1− [1 + (w − 1)yi]

NI

}
+ yt − 1

+ vI − avI .

(9)

Similarly, the expected payoffs Pn, Pt and Pu for a non-
investing investor, trustworthy trustee and untrustworthy
trustee, respectively, are given by

Pn = −avI , (10)

Pt =

NI∑
mi=0

(
NI

mi

)
ymi
i (1− yi)

NI−mi

×
NT−1∑
mt=0

(
NT − 1

mt

)
ymt
t (1− yt)

NT−1−mtΠt(mi),

=
r

NT (1− w)

{
1− [1 + (w − 1)yi]

NI

}
+ vT − avT ,

(11)

Pu =
1

NT (1− w)

{
1− [1 + (w − 1)yi]

NI

}
− avT . (12)

See Appendix A for the derivation Eqs. (9), (11) and (12).

C. Evolutionary Game Dynamics

For the evolutionary game dynamics, we use asymmetric
replicator equations given by

ẏi = yi(Pi − PI) = yi(1− yi)(Pi − Pn)

= (1− yi)yi

ryt

{
1− [1 + (w − 1)yi]

NI

}
NI(1− w)yi

+ yt − 1 + vI

 ,

(13)
ẏt = yt(Pt − PT ) = yt(1− yt)(Pt − Pu)

= (1− yt)yt

 (r − 1)
{
1− [1 + (w − 1)yi]

NI

}
NT (1− w)

+ vT

 ,

(14)

where the dot denotes a time derivative, PI = yiPi+(1−yi)Pn

is the average payoff of the investor in the entire population,
and PT = ytPt + (1 − yt)Pu is the average payoff of the
trustee.

To analyse the dynamics given by Eqs. (13) and (14), we
find all equilibria by setting ẏi = ẏt = 0. The stability of an
equilibrium is determined by the eigenvalues of the Jacobian
matrix, which is given by

J =

( ∂ẏi

∂yi

∂ẏi

∂yt

∂ẏt

∂yi

∂ẏt

∂yt

)
=

(
J11 J12
J21 J22

)
(15)

at the equilibrium, where

J11 = r(1− yi)yt[(w − 1)yi + 1]NI−1

−
ryt
{
[(w − 1)yi + 1]NI − 1

}
NI(w − 1)

− (2yi − 1)(vI + yt − 1),

(16)

J12 =
(1− yi)

(
r
{
[(w − 1)yi + 1]NI − 1

}
+NI(w − 1)yi

)
NI(w − 1)

,

(17)

J21 =
NI(r − 1)(1− yt)yt[(w − 1)yi + 1]NI−1

NT
, (18)

J22 =
(2yt − 1)(r − 1)

{
1− [(w − 1)yi + 1]NI

}
NT (w − 1)
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− (2yt − 1)vT . (19)

If any of the two eigenvalues is positive, the equilibrium
is unstable. Otherwise, the equilibrium is stable; trajectories
starting close enough to the equilibrium remain close enough.
Especially, the equilibrium is asymptotically stable if and only
if all the eigenvalues are negative; in this case, trajectories
starting close enough to the equilibrium converge to it [34].
Note that Eqs. (13), (14) (16), (17) and (19) are also valid for
w = 1 with the use of L’Hopital’s rule.

III. RESULTS

In this section, we characterize the equilibria, their stability,
and trajectories of the dynamical system given by Eqs. (13) and
(14), of which the state space is {(yi, yt) ∈ [0, 1]2}. Note that
Eqs. (13) and (14) imply that (0, 0), (0, 1), (1, 0), and (1, 1)
are always equilibria. For proof of the stability of these and
the other equilibria, see Appendix B.

A. vT = 0

For vT = 0, the edge yi = 0 of the state space is
a line of equilibria. For vT = 0 ∧ 0 ≤ vI < 1, the
part of the edge satisfying 0 ≤ yt < 1−vI

r+1 , including the
origin, (yi, yt) = (0, 0), is stable but not asymptotically stable
(Fig. 2a). The points on the line satisfying 1−vI

r+1 < yt ≤ 1,
including (0, 1), as well as (1, 0) and (1, 1), are unstable
equilibria. As Fig. 2a indicates, any trajectory is eventually
attracted to one of the stable equilibria. This evolutionary
outcome is qualitatively the same as that of the two-player
TG and it is so irrespectively of the non-linearity w in the
payoff function (e.g. for any of w ∈ {0.6, 1, 1.4}). With the
special case of vT = 0∧vI = 0∧w = 1, we obtain a baseline
model, which is an N -player generalisation of the two-player
TG without any other mechanism.

For vT = 0 ∧ vI > 1, the equilibrium (1, 0) is not only
asymptotically stable but also globally convergent (i.e. reached
from any initial state). The equilibria (0, 0), (0, 1), (1, 1) and
yi = 0 are unstable.

B. 0 < vT < v∗T

For 0 < vT < v∗T ≡ (1−r)(wNI−1)
NT (w−1) ∧0 ≤ vI < 1, an interior

equilibrium

Q =

(
d1/NI − 1

w − 1
,

NI(1− vI)
(
d1/NI − 1

)
NI

(
d1/NI − 1

)
+ (d− 1)r

)
, (20)

emerges, where d = 1+ NT vT (w−1)
1−r . The interior equilibrium

is at the intersection of the two nullclines, Pi − Pn = 0 and
Pt − Pu = 0 with 0 < yi < 1 ∧ 0 < yt < 1; see Appendix
B5 for the proof of the existence of the interior equilibrium.
Note that L’Hopital’s rule implies that v∗T = NI(1−r)

NT
and

Q =
(

NT vT
NI(1−r) ,

1−vI
1+r

)
for w = 1.

The interior equilibrium is asymptotically stable for w < 1,
neutrally stable for w = 1, and unstable for w > 1 (Fig. 2b).
The other equilibria are the four corners of the state space, all
of which are unstable. For w = 1, at which all the trajectories

surrounding Q form closed cycles, the time average of (yi, yt)
over each of the cycles is equal to (yi, yt) at Q given by
Eq. (20); see Appendix C for the proof. For w > 1, all the
trajectories converge to the heteroclinic cycle consisting of
the four unstable equilibria, which are saddle points, and the
four edges that connect them; (0, 0) → (0, 1) → (1, 1) →
(1, 0) → (0, 0). In this case, the time average of yi and yt
over the heteroclinic cycle does not converge; see Appendix
D for the proof.

For 0 < vT < v∗T ∧vI > 1, there does not exist any interior
equilibrium. In this case, only the four corners are equilibria.
The equilibrium (1, 0) is not only asymptotically stable but
also globally convergent. The equilibria (0, 0), (0, 1) and (1, 1)
are unstable.

C. vT = v∗T
At vT = v∗T , a line of equilibria yi = 1 emerges. For

vT = v∗T ∧ 0 ≤ vI < 1, the part of the line satisfying
NI(1−vI)(w−1)

r(wNI−1)+NI(w−1)
< yt ≤ 1, including (yi, yt) = (1, 1), is

stable but not asymptotically stable (Fig. 2c). The part of the
line satisfying 0 ≤ NI(1−vI)(w−1)

r(wNI−1)+NI(w−1)
< yt, including (1, 0),

and the equilibria (0, 0) and (0, 1) are unstable.
For vT = v∗T ∧vI > 1, the whole line of equilibria including

(1, 0) and (1, 1) is stable but not asymptotically stable. The
equilibria (0, 0) and (0, 1) are unstable. These results are
qualitatively the same across the different w values.

D. vT > v∗T
For vT > v∗T , only the four corners are equilibria. The

equilibrium (1, 1) is not only asymptotically stable but also
globally convergent (Fig. 2d). Note that (1, 1) represents the
fully cooperative populations entirely consisting of investing
investors and trustworthy trustees. All the other equilibria,
namely, (0, 0), (0, 1) and (1, 0), are unstable. These results
hold true independently of the vI ≥ 0 and w values, except
for the dependence of v∗T on w.

In Fig. 3, we show a schematic diagram summarising the
analysis so far. It presents the evolutionary dynamics that
varies in a qualitatively different manner depending on the
incentive values vI and vT .

E. Population Average of Payoff and Optimal Incentive

One of our goals for proposing and analysing the present
NTG is to steer the self-interested players to behave pro-
socially, increase the efficiency of the equilibrium in terms
of the payoff the players gain and do so in a cost-efficient
manner. Therefore, in this section, we analyze the population
average of the payoff given by

P (yi, yt) =
NI

NI +NT
PI(yi, yt) +

NT

NI +NT
PT (yi, yt)

=− a(w − 1)(NIvI +NT vT ) + 1

(w − 1)(NI +NT )
+

NI(vI − 1)

NI +NT
yi

+
NT vT (w − 1)− 2r + 1

(w − 1)(NI +NT )
yt +

NI

NI +NT
yiyt

+
[(2r − 1)yt + 1] [(w − 1)yi + 1]

NI

(w − 1)(NI +NT )
(21)
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w = 0.7

w = 1.0

(0,0)

(1,1)

yi

yt

w = 1.3

vT = 0 0 < vT < vT
* vT = vT

* vT > vT
*

(a) (b) (c) (d)

Fig. 2. Evolutionary game dynamics of the asymmetric NTG with fixed roles for the players. We set NI = 5, NT = 5, r = 0.6, vI = 0 and
vT /v∗T ∈ {0, 0.5, 1, 1.1}. (1st row) w = 0.7, (2nd) w = 1, and (3rd) w = 1.3. A filled circle represents a stable equilibrium. An open circle represents
an unstable equilibrium. On edges yi = 0 and yi = 1, the thick solid lines indicate stable equilibria and the hollow lines indicate unstable equilibria. The
dashed lines indicate the nullclines Pi − Pn = 0 (in green) and Pt − Pu = 0 (in red). (a) When vT = 0 (i.e. no incentive to trustworthy trustees), all
trajectories converge to a lower part of the edge yi = 0, and investment (i.e. trust) does not evolve. (b) When 0 < vT < v∗T , an interior equilibrium point
emerges and moves, with increasing vT , from yi = 0 towards yi = 1. (c) When vT = v∗T , the interior equilibrium disappears and all trajectories converge to
an upper part of the edge yi = 1. (d) When vT > v∗T , all trajectories converge to (1, 1), i.e., the state of full trust and full trustworthiness. The nonlinearity
in the payoff function yields a stable interior equilibrium with trajectories spiralling into it or an unstable interior equilibrium with trajectories spiralling out
of it. These dynamics are qualitatively different from those in the case of the linear payoff function (i.e. a neutrally stable interior equilibrium with periodic
trajectories around it).

Fig. 3. Schematic summarising the evolutionary dynamics as a function of
the incentive values vI and vT . On the boundaries of the state space, i.e. the
unit square, we only show the stable equilibria and trajectories flowing into
them. Non-generic cases (i.e. vT = 0, vT = v∗T , vI = 0, and vI = 1) are
not shown.

after equilibration through the evolutionary dynamics
(e.g. stable equilibria). Note ∂P

∂vI
= −NI(a−yi)

NI+NT
< 0 since

a > 1 and yi ≤ 1. In other words, somewhat counterintuitively,
the incentive given to investing investors, vI , harms the overall
social welfare in that the population average of the payoff
decreases as vI increases. Therefore, for any given (yi, yt),
one needs to minimise vI to maximise P (yi, yt).

1) Optimal Payoff at (0, 0): The population average of the
payoff at (0, 0) is given by

P (0, 0) = − aNIvI
NI +NT

. (22)

If (0, 0) is a stable equilibrium (i.e. 0 ≤ vI < 1 ∧ vT = 0),
then P (0, 0) is maximised at vI = 0 ∧ vT = 0.

2) Optimal Payoff at (1, 0): The population average of the
payoff at (1, 0) is

P (1, 0) =
NI(−avI + vI − 1)

NI +NT
+

NT

[
1−wNI

NT (1−w) − avT

]
NI +NT

.

(23)
We obtain ∂

∂vT
P (1, 0) = − aNT

NI+NT
< 0. Therefore, if (1, 0) is

an asymptotically stable equilibrium (i.e. vI > 1 ∧ 0 ≤ vT <
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Fig. 4. Effects of the incentive to trustworthy trustees, vT , and the nonlinearity
in the payoff function, w, on the evolutionary outcomes in the NTG. We use
the same parameter values as those used in Fig. 2 except for vT . (a) Fractions
of prosocial players as functions of the reward given to trustworthy trustees,
vT , in the equilibrium. We show the fraction of investing investors, yi, and
the fraction of trustworthy trustees, yt. For w > 1 and 0 < vT < v∗T ,
the time averages of yi and yt do not converge. Therefore, we instead plot
the ranges of asymptotic values of yi and yt by shaded regions. We observe
that yi increases as vT increases when vT < v∗T . When vT > v∗T , the full
trust yi = 1 and full trustworthiness yt = 1 evolve. (b) Population-averaged
payoff, P , as a function of vT . We observe that P increases as vT increases
when vT < v∗T and that P decreases as vT increases when vT > v∗T . Note
that the time average of P converges even if those of yi and yt do not. Panel
(a) indicates that as w increases (i.e from sub-linear to linear to super-linear),
the evolution of trust and trustworthiness becomes more difficult. In other
words, a higher value of vT is necessary for attaining the same fraction of
prosocial players when w is larger. In contrast, panel (b) indicates that the
payoff of full trust and trustworthiness increases as w increases.

v∗T ), then P (1, 0) is maximised at vI = 1+ ϵ∧vT = 0, where
0 < ϵ ≪ 1.

3) Optimal Payoff at (1, 1): The population average of the
payoff at (1, 1) is

P (1, 1) =
(1− a)(NIvI +NT vT )

NI +NT
+

2r
(
wNI − 1

)
(w − 1)(NI +NT )

.

(24)
We obtain ∂

∂vT
P (1, 1) = − (a−1)NT

NI+NT
< 0. If (1, 1) is an

asymptotically stable equilibrium (i.e. vT > v∗T ), then P (1, 1)
is maximised at vI = 0 ∧ vT = v∗T + ϵ.

4) Optimal Payoff at Q or on Cycles around Q: Recall
that there exists a unique interior equilibrium Q for 0 ≤ vI <
1 ∧ 0 < vT < v∗T . For w < 1, Q is an asymptotically stable
equilibrium and all the trajectories surrounding Q converge to
it. For w = 1, at which all the trajectories surrounding Q form
closed cycles, the time average of the population-mean payoff
over the cycle is the same as the payoff at the equilibrium,
i.e., P (Q); see Appendix C for the proof. Therefore, seeking
the optimal payoff at Q is sufficient in both cases w < 1 and
w = 1. The population average of the payoff at Q is given by

P (Q) =
NT vT − a(1− r)(NIvI +NT vT )

(1− r)(NI +NT )
. (25)

Note that P (Q) does not depend on w. We obtain ∂P (Q)
∂vT

=
NT (1−a+ar)

(1−r)(NI+NT ) > 0 when r > r∗0 ≡ a−1
a and ∂P (Q)

∂vT
< 0 when

r < r∗0 . Thus, P (Q) is monotonic as a function of vT (Fig. 4b).
For 0 < w ≤ 1, if Q is asymptotically stable (i.e., w < 1)
or neutrally stable (i.e., w = 1), then P (Q) is maximised at
vI = 0∧vT = v∗T −ϵ when r > r∗0 and at vI = 0∧v∗T = 0+ϵ
when r < r∗0 .

For w > 1, the time averages of yi and yt do not converge,
but the time average of the payoff converges to

P hc =

 1

(w − 1)

(
(r+1)(NI [1−r]+rNT vT )

NT vT (r[wNI−1]+NI(w−1))
− r

wNI−1

)
−a(NIvI +NT vT )]

1

NI +NT
,

(26)
where P hc is a convex combination of
P (0, 0), P (0, 1), P (1, 0) and P (1, 1) as shown in Appendix
D. Note that ∂P hc

∂vI
= − aNI

NI+NT
< 0 and that P hc is monotonic

or has a local maximum as a function of vT , as shown
in Appendix E2. Therefore, given vI = 0, the maximum
of P hc(vT ) is either P hc(0 + ϵ), P hc(v

hc
T ) or P hc(v

∗
T − ϵ),

where the local maximum of P hc(vT ) is at vT = vhc
T ≡{√

aNI(1−r2)(w−1)[r(wNI−1)+NI(w−1)]−aNI(1−r2)(w−1)

}
aNT r(w−1)(wNI−NIw+NI−1)

×(
wNI − 1

)
.

5) Comparison of the Optimal Payoff at the Different Equi-
libria: We now compare the average payoff at the different
equilibria. At each equilibrium, including the case of neutral
and heteroclinic cycles, we denote by P ∗ the payoff max-
imised with respect to vI and vT . We compare P ∗ across the
different equilibria to seek the overall maximum of the payoff
and the associated optimal incentive.

For 0 < w ≤ 1, if r > r∗1 ≡ a−1
a+1 , then the optimal payoff

among the different equilibria is P ∗(1, 1); if r < r∗1 , then the
optimal payoff is P ∗(0, 0); the associated optimal incentives
are vI = 0 ∧ vT = v∗T + ϵ and vI = 0 ∧ vT = 0, respectively.
For w > 1, as NI → ∞ or w → ∞, if r > r∗2 ≡ a

a+1 , then
the optimal payoff is P ∗(1, 1); if r < r∗2 , then the optimal
payoff is P ∗(1, 0); the associated optimal incentives are vI =
0 ∧ vT = v∗T + ϵ and vI = 1 + ϵ ∧ vT = 0, respectively. See
Appendix E for the derivation of the optimal incentives. For
relatively small values of w > 1 and NI ≥ 2, the analytical
derivation is not feasible and we instead numerically obtain the
optimal incentives. Differently from the case of large NI or
w, the incentive yielding the heteroclinic cycle can realize the
optimal payoff (Fig. 5). Note that copresence of incentives to
investors and trustees (i.e. vI > 0 ∧ vT > 0) is never optimal.

In summary, if the productivity of the prosocial strategies, r,
is high enough relative to the fee rate a, the incentive leading
to the full pro-sociality (i.e. full trust and full trustworthiness)
is optimal. If the productivity is relatively low, the incentive
leading to lower pro-sociality, including the case of the null
incentive, is optimal.

F. Other Nonlinear Payoff Functions

To test the robustness of the results with respect to de-
tails of nonlinear payoff functions, we numerically examine
evolutionary dynamics with nonlinear payoff functions that
are different from but qualitatively similar to those given by
Eq. (1). Specifically, we consider log(ki+1)/ log(2) as a sub-
linear payoff function that is qualitatively similar to Eq. (1)
with 0 < w < 1 and exp(0.7ki) − 1 as a super-linear payoff
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Fig. 5. Optimal incentives and associated evolutionary outcomes. Each
colored region shows the parameter region in which the associated stable
equilibrium or the heteroclinic cycle yields the largest population average
of the payoff given by Eq. (21). Among the two horizontal dashed lines,
the lower and upper ones indicate r = r∗1 = a−1

a+1
and r = r∗2 = a

a+1
,

respectively. The dotted curve indicates r(w) = r∗2 −
aNI (w−1)

(a+1)(wNI −1)
, where

P ∗(1, 1) = P ∗(1, 0); note that r(w) → r∗2 as w increases. The vertical
dotted line indicates w = w∗ > 1 that we obtained by numerically solving
P ∗(0, 0) = P ∗(1, 0). As the fee rate a increases, the parameter region in
which (0, 0) is optimal with the null incentive (in orange) and the region
in which the heteroclinic cycle is optimal with a positive incentive (in red)
become larger. As NI or w increases, the border between parameter region
in which P ∗(1, 1) is optimal (in dark green) and that in which P ∗(1, 0) is
optimal (in light yellow) converges to r = r∗2 , which we have analytically
derived in the limit NI → ∞ or w → ∞. For a larger fee rate, a, or
a larger size of the investor group, NI , the incentive yielding full trust and
trustworthiness is optimal for a smaller parameter region (i.e. the green regions
in the figure).

function that is qualitatively similar to Eq. (1) with w > 1.
Figure 6 indicates that each of these payoff functions yields
qualitatively the same evolutionary dynamics as those obtained
with Eq. (1).

IV. DISCUSSION

The N -player generalisation of a TG game proposed in
Ref. [27] assumes that an investor always invests. Therefore,
their NTG is structurally different from both the two-player
TG and our NTG. It may be instead called the trustworthiness
game in that the payoff of the game is entirely determined
by the strategy of a trustee. The ultimatum game (UG)
and the dictator game (DG) already have a parallel to this
distinction between the TG and the trustworthiness game. The
UG involves a non-simultaneous interaction on resource split
between a proposer and a responder [35]. The simplest variant
of the UG assumes two options for each role: for a proposer

to propose an unfair split in favour of the proposer or a fair
split, and for a responder to accept or reject the proposal. If
the responder accepts, both the proposer and responder obtain
the proposed payoffs. If the response rejects, both players get
nothing. The DG is similar to the UG except that a responder
has no option other than to accept any proposal made by
the proposer. Hence, the payoff entirely depends on what a
proposer does and thus the proposer is called a dictator. The
DG is related to but structurally different from the UG, and
therefore the DG has been analysed on its own [36][37][38].
In the UG, the reputation mechanism, which is equivalent to a
responder refusing an unfair split, can lead a proposer to offer a
fair one [35]. However, the reputation mechanism cannot work
for the DG since a responder has no option of refusing any
split. Our NTG is of the UG type in that it allows the investor
an option not to invest, which has enabled us to investigate
the evolution of trust as well as trustworthiness.

The evolutionary game dynamics in Ref. [27] assumes
role-unaware imitation, which allows imitation between the
different roles and leads to the cease of game playing. The
justification of this assumption is unclear. To the best of
our knowledge, this type of game dynamics has not been
used prior to Ref. [27], regardless of two-player or N -player
games. In fact, there have been two canonical approaches to
modelling evolutionary dynamics of non-simultaneous games.
One approach is to assume that each player plays each role
half of the time and imitates others in a role-aware manner
[35][39][40]. The player’s strategy is then a tuple consisting
of the strategies under the different roles (e.g. one as an
investor and the other as a trustee). This symmetrisation
probably better characterises scenarios in which each player
has multiple roles, and thus, the payoff of the player is the
average of the payoffs from the different roles. For instance, a
bank can lend money to or borrow money from other banks,
playing two roles, as a lender/investor and a borrower/trustee.
By this symmetrisation, one can consider the TG using a
single population and the corresponding replicator dynamics
[30][40]. The same approach has also been used for other
asymmetric games such as the UG [35][40]. Developing and
analyzing NTGs with this symmetrisation method is an open
question. A second approach is to fix the two roles such that
players can imitate others in their own role only [19][41]. We
took this approach to formulate an asymmetric NTG, which is
a faithful generalisation of a previously proposed two-player
TG [19]. Then, differently from the previous work allowing
the imitation between the different roles and hence leading to
the extinction of investors [27], we found that investors do not
perish but evolve not to trust trustees unless an incentive is in
place.

The payoff in Ref. [27] is a linear function of the number
of investing investors, which is also inherited in its follow-
up studies [31][32][33]. With a linear payoff function, any
N -player game is equivalent to a sum of two-player games
and thus the evolutionary outcome of the former is similar to
that of the latter. In N -player games, however, unlike two-
player games, nonlinear payoff functions can yield evolution-
ary outcomes that are qualitatively different from those of
linear ones. We have introduced nonlinear payoff functions
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Fig. 6. Robustness of the evolutionary dynamics with respect to details of nonlinear payoff functions. The parameters are the same as those used in Fig. 2.
The top panels show that a sub-linear payoff function log(ki + 1)/ log(2) leads to evolutionary dynamics similar to that for Eq. (1) with w = 0.7, which is
presented in the top panels in Fig. 2. The bottom panels show that a super-linear payoff function exp(0.7ki) − 1 leads to evolutionary dynamics similar to
that for Eq. (1) with w = 1.3, which is presented in the bottom panels in Fig. 2.

in the asymmetric NTG. Even with the nonlinear payoff
functions, we have found that it is more challenging for pro-
social behaviours to evolve in the asymmetric NTG than in
the PGG. The PGG is one of the most widely studied N -
player games [42]. With linear payoff functions, the PGG
becomes a dominance game for which anti-social behaviour
(i.e. defection) dominates pro-social behaviour in terms of the
payoff value and hence only anti-social behaviour evolves.
With the non-linear payoff functions of the same form used
in the present paper, the PGG becomes either a coexistence
game or a coordination game for which prosocial behaviour
can evolve [4]. Therefore, incentives have been applied only to
the linear PGGs but not the nonlinear PGGs; see Ref. [43] for
a review. In the asymmetric NTG with fixed roles, however,
we have found that the nonlinear payoff functions are not
sufficient for pro-social behaviour to evolve and an additional
mechanism such as an incentive is required. We have found
that the incentive to trustworthy trustees can be sufficient for
the full pro-sociality to evolve in both investor and trustee
populations, i.e., the full trust (i.e. investment) and the full
trustworthiness. An intuitive explanation of this result is as
follows. If the fraction of trustworthy trustees is high enough,
the payoff of investing investors is higher than that of non-
investing ones and thus investing investors evolve. Hence, if
the incentive to trustworthy trustees is large enough for them to
evolve, then it also yields the evolution of investing investors.

With the nonlinear payoff function given by Eq. (1), one can
express the discount (i.e., sub-linear) and synergy (i.e., super-
linear) effects by tuning the single parameter w. This payoff
function is advantageous because it allows us to analytically
examine the evolutionary dynamics for arbitrary group sizes
NI and NT . However, our results are not confined to this
particular form of payoff function. We ran numerical sim-
ulations with different payoff functions to support that our
results are robust with respect to details of the nonlinearity

of the payoff function. We remark that, unlike with Eq. (1),
different nonlinear payoff functions require separate analyses
of evolutionary dynamics for each combination of the values of
NI and NT in general. Specifically, one needs to numerically
find the interior equilibrium and carry out the linear stability
analysis for each given NI and NT .

Given an investing investor, the two-player TG creates
a social dilemma [19][27]. The total wealth (i.e. the sum
of the payoffs of an investing investor and a trustee) de-
pends on the strategy of a trustee. Although a self-interested
(i.e. untrustworthy) trustee earns higher than a pro-social
(i.e. trustworthy) trustee does, the former leads to a lower total
wealth (= 0) than the latter does (= 2r) (Fig. 1a). Our NTG
preserves the nature of a social dilemma. For a linear payoff
function, given the number of investing investors, ki, if all
trustees in a group are self-interested, they earn more than
any pro-social trustees would. However, the former leads to a
lower total wealth (= 0) than the latter does (= 2rki).

Most previous studies on institutional incentives have fo-
cused on which incentives promote prosocial behaviours the
best [44][45][33]. However, a better criterion for the success
of an incentive may be the population average of payoff at
the evolutionarily stable state [46]. Thus, we have sought the
optimal incentive that yields the highest payoff, taking into
consideration the operating cost of managing incentives. We
have found that the incentive leading to the most prosocial
behaviour (i.e. full trust and full trustworthiness) often yields
the highest payoff but not always. When the productivity of the
prosocial behaviours is not high enough, the incentive leading
to less prosocial behaviours (e.g. combination of full trust and
null trustworthiness) can yield the highest payoff; even the
null incentive leading to null trust and null trustworthiness
can be optimal when the operating cost of managing incentives
outweighs benefits from prosocial behaviours. A limitation of
our incentive scheme is to have assumed that an incentive
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is tailored to individual players while the game is played
in groups. Although this type of the individually targeted
incentive is widely used for N -player games [6][45][47][48],
it may be less feasible than it is for two-player games, in which
actions of the individual players are more easily identified than
in N -player games. Relaxing this assumption is worthwhile
investigation. For instance, a diluted incentive scheme, which
provides an incentive to a group, may be more feasible for
N -player games. In such an incentive scheme, all individuals
in a group receive the same incentive by construction, and
whether a group receives an incentive is determined based on
aggregated information such as the proportion of trustworthy
trustees in the group.

In summary, we started by noting that the N -player TG in
Ref. [27] is structurally different from the TG and proposed
an asymmetric N -player TG with two fixed roles. With this
setup, it is more challenging for pro-social strategies to evolve
than in the celebrated PGG. Nonetheless, we showed that
incentives provided to trustees can cost-effectively promote
the evolution of trust and trustworthiness among self-interested
players. We also showed that nonlinear payoff functions in the
N -player TG yield a richer set of evolutionary dynamics and
the associated optimal incentives than linear payoff functions.
We hope that our contribution paves the way for further studies
of N -player TGs and their variations such as the symmetrisa-
tion of asymmetric N -player TGs, the impacts of structured
populations [49][50], repeated interactions on the evolution of
trust/trustworthiness, and stochastic evolutionary dynamics in
finite populations. There can be different generalisations of
the two-player NTG each of which recovers the two-player
TG when NI = NT = 1; such generalisations are interesting
to explore. Applications of N -player TGs are also worthwhile
seeking; for instance, multi-hop relay in wireless sensors or
ad hoc networks could be mapped to an N -player TG among
self-interested nodes [51][52].

APPENDIX

A. Derivation of Eq. (9)
We obtain

P o
i =

NI−1∑
mi=0

(
NI − 1

mi

)
ymi
i (1− yi)

NI−1−mi

×
NT∑

mt=0

(
NT

mt

)
ymt
t (1− yt)

NT−mtΠo
i (mi + 1,mt)

=

NI−1∑
mi=0

(
NI − 1

mi

)
ymi
i (1− yi)

NI−1−mi

×
NT∑

mt=0

(
NT

mt

)
ymt
t (1− yt)

NT−mt

[
mt

NT

r
(
1− wmi+1

)
(mi + 1)(1− w)

+

(
1− mt

NT

)
· (−1)

]
=

NI−1∑
mi=0

(
NI − 1

mi

)
ymi
i (1− yi)

NI−1−mi

×
([

1

mi + 1
r
1− wmi+1

1− w
+ 1

]
yt − 1

)

=
ryt

NI(1− w)

[
NI−1∑
mi=0

(
NI

mi + 1

)
ymi
i (1− yi)

NI−1−mi

×(1− wmi+1)
]
+ yt − 1

=
r

NI(1− w)

yt
yi

[
1− (1 + (w − 1)yi)

NI
]
+ yt − 1,

(A.27)

where we have assumed that yi ̸= 0 and used the expression
of the mean of a binomial distribution

∑NT

mt=0

(
NT

mt

)
ymt
t (1 −

yt)
NT−mtmt = NT yt and the relationship

(
NI−1
mi

)
1

mi+1 =
1
NI

(
NI

mi+1

)
. To show the last equality in Eq. (A.27), with

substitution ki ≡ mi + 1, we used
NI−1∑
mi=0

(
NI

mi + 1

)
ymi
i (1− yi)

NI−1−mi
(
1− wmi+1

)
=

NI∑
ki=1

(
NI

ki

)
yki−1
i (1− yi)

NI−ki
(
1− wki

)
=

1

yi

NI∑
ki=1

(
NI

ki

)
yki
i (1− yi)

NI−ki
(
1− wki

)
=

1

yi

[
NI∑

ki=0

(
NI

ki

)
yki
i (1− yi)

NI−ki
(
1− wki

)
−
(
NI

0

)
y0i (1− yi)

NI
(
1− w0

)]
=

1

yi

[
NI∑

ki=0

(
NI

ki

)
yki
i (1− yi)

NI−ki
(
1− wki

)]

=
1

yi

[
(yi + 1− yi)

NI −
NI∑

ki=0

(
NI

ki

)
yki
i (1− yi)

NI−kiwki

]

=
1

yi

[
1−

NI∑
ki=0

(
NI

ki

)
(wyi)

ki(1− yi)
NI−ki

]

=
1

yi

[
1− (wyi + 1− yi)

NI
]

=
1

yi

[
1− (1 + (w − 1)yi)

NI
]
. (A.28)

We have Pi = P o
i +vI−avI , where P o

i is given by Eq. (A.27).
We can similarly derive Pt and Pu.

B. Existence and Stability of the Equilibria
One can deduce the signs of the two eigenvalues λ1 and λ2

of the Jacobian matrix, J , at an equilibrium by its determinant
and trace, which are equal to λ1λ2 and λ1 + λ2, respectively.
We denote by Det|y and Tr|y the determinant and trace,
respectively, of J evaluated at y ∈ [0, 1]2. Especially, the
asymptotical stability of an equilibrium requires λ1 < 0 and
λ2 < 0, which lead to Det|y > 0 and Tr|y < 0. We determine
the stability of each equilibrium as follows.

1) (0, 0): The Jacobian matrix at (yi, yt) = (0, 0) is given
by

J(0,0) =

(
vI − 1 0

0 vT

)
. (A.29)

We obtain
Det|(0,0) = (vI − 1)vT (A.30)
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and
Tr|(0,0) = vI + vT − 1. (A.31)

If 0 ≤ vI < 1∧ vT = 0, then Det|(0,0) = 0∧Tr|(0,0) < 0 such
that (0, 0) is stable but not asymptotically stable. Otherwise,
(0, 0) is unstable.

2) (0, 1): The Jacobian at (0, 1) is given by

J(0,1) =

(
r + vI 0

0 −vT

)
. (A.32)

We obtain
Det|(0,1) = −vT (r + vI) (A.33)

and
Tr|(0,1) = r + vI − vT . (A.34)

If vT = 0, then Det|(0,1) = 0 ∧ Tr|(0,1) > 0 such that (0, 1)
is unstable. If vT > 0, then Det|(0,1) < 0 such that (0, 1) is
unstable.

3) (1, 0): The Jacobian at (1, 0) is given by

J(1,0) =

(
1− vI 0

0 vT − (1−r)(wNI−1)
NT (w−1)

)

=

(
1− vI 0

0 vT − v∗T

)
.

(A.35)

We obtain
Det|(1,0) = (vT − v∗T ) (1− vI) (A.36)

and
Tr|(0,1) = vT − v∗T + 1− vI , (A.37)

where

v∗T =
(1− r)

(
wNI − 1

)
NT (w − 1)

> 0. (A.38)

If vI > 1 ∧ vT < v∗T , then Det|(1,0) > 0 ∧ Tr|(1,0) < 0 such
that (1, 0) is asymptotically stable. If (vI > 1 ∧ vT = v∗T ) ∨
(vI = 1 ∧ vT < v∗T ), then Det|(1,0) = 0 ∧ Tr|(1,0) < 0 such
that (1, 0) is stable but not asymptotically stable. Otherwise,
(1, 0) is unstable.

4) (1, 1): The Jacobian at (1, 1) is given by

J(1,1) =

 − r(wNI−1)
NI(w−1) − vI 0

0 (1−r)(wNI−1)
NT (w−1) − vT


=

(
− NT rv∗

T

NI(1−r) − vI 0

0 v∗T − vT

)
.

(A.39)
We obtain

Det|(1,1) = (vT − v∗T )

[
vI +

NT rv
∗
T

NI(1− r)

]
(A.40)

and

Tr|(1,1) =
[
1− NT r

NI(1− r)

]
v∗T − vI − vT . (A.41)

We obtain sign(Det|(1,1)) = sign (vT − v∗T ) since vI +
NT rv∗

T

NI(1−r) > 0, which is guaranteed by 0 < r < 1, vI ≥ 0 and

v∗T > 0. If vT >
[
1− NT r

NI(1−r)

]
v∗T −vI , then Tr|(1,1) < 0. We

also note
[
1− NT r

NI(1−r)

]
v∗T − vI ≤

[
1− NT r

NI(1−r)

]
v∗T < v∗T .

Therefore, if vT > v∗T , then Det|(1,1) > 0 ∧ Tr|(1,1) < 0 such
that (1, 1) is asymptotically stable.

If vT = v∗T , then Det|(1,1) = 0 ∧ Tr|(1,1) < 0. Therefore,
(1, 1) is stable but not asymptotically stable.

If vT < v∗T , then Det|(1,1) < 0. Therefore, (1, 1) is unstable.
5) Interior equilibrium Q : We show that there exists a

unique interior equilibrium Q if and only if 0 < vT <

v∗T =
(1−r)(wNI−1)

NT (w−1) and vI < 1. The internal equilibrium,
if it exists, is located at the intersection of the nullclines
Pt(yi, yt) − Pu(yi, yt) = 0 and Pi(yi, yt) − Pn(yi, yt) = 0
with 0 < yi < 1 ∧ 0 < yt < 1. Let us investigate the two
nullclines one by one.

Because Pt − Pu =
(1−r){1−[(w−1)yi+1]NI}

NT (w−1) + vT does
not depend on yt, the nullcline Pt − Pu = 0 is of the
form yi = constant. Specifically, Pt − Pu = 0 leads to
yi = yi,Q ≡ d1/NI−1

w−1 , where d = 1 + NT vT (w−1)
1−r . We obtain

d
dyi

[Pt − Pu] = −NI(1−r)[(w−1)yi+1]NI−1

NT
< 0. Therefore, if

and only if 0 < vT < v∗T , then Pt(0, yt)−Pu(0, yt) = vT > 0
and Pt(1, yt)−Pu(1, yt) = vT−v∗T < 0 such that the nullcline
Pt − Pu = 0 (i.e. yi = yi,Q) exists with 0 < yi,Q < 1.

To examine the other nullcline, we look into Pi − Pn =
ryt{1−[1+(w−1)yi]

NI}
NI(1−w)yi

+yt−1+vI . In fact, ∂
∂yt

[Pi − Pn] > 0

and Pi(yi, 1)−Pn(yi, 1) > 0 hold true for 0 < yi < 1, which
we will show later. Therefore, if and only if vI < 1, then
Pi(yi, 0) − Pn(yi, 0) = vI − 1 < 0 such that the nullcline
Pi − Pn = 0 exists in the range 0 < yt < 1. Note that the
nullcline Pi − Pn = 0 can be represented by yt = g(yi)
because there exists a unique yt satisfying Pi − Pn = 0 for
any yi.

We now show ∂
∂yt

[Pi − Pn] =
r{1−[1+(w−1)yi]

NI}
NI(1−w)yi

+1 > 0
for 0 < yi < 1. If 0 < w < 1, then we obtain 0 < 1 +
(w− 1)yi < 1 such that 1− [1 + (w − 1)yi]

NI and 1−w are
both positive. If w > 1, then 1 < 1 + (w − 1)yi such that
1− [1 + (w − 1)yi]

NI and 1−w are both negative. If w = 1,

then ∂
∂yt

[Pi − Pn] =
limw→1 r{1−[1+(w−1)yi]

NI}
limw→1 NI(1−w)yi

+1 = r+1 >

0. Therefore, we have proved ∂
∂yt

[Pi − Pn] > 0 for any w.
We now show Pi(yi, 1) − Pn(yi, 1) > 0. If w ̸= 1,

then we obtain Pi(yi, 1)− Pn(yi, 1) =
r{1−[1+(w−1)yi]

NI}
NI(1−w)yi

+

vI > 0. If w = 1, then we obtain Pi(yi, 1) − Pn(yi, 1) =
limw→1 r{1−[1+(w−1)yi]

NI}
limw→1 NI(1−w)yi

+ vI = r + vI > 0. Therefore,
Pi(yi, 1)− Pn(yi, 1) > 0 holds true for any w.

Finally, these results imply that there is a unique intersection
of yi = yi,Q and yt = g(yi) satisfying 0 < yi < 1∧ 0 < yt <
1, which is an interior equilibrium Q.

We now analyse the stability of the interior equilibrium Q.
The Jacobian at Q is given by

JQ =

(
JQ
11 JQ

12

JQ
21 0

)
, (A.42)

where JQ
11 = NIwd−d1/NI {d[(NI−1)w+NI ]+w}+[d(NI−1)+1]d2/NI

(w−1){d1/NI [NI−(d−1)r]−NId2/NI} ×

r(1 − vI), JQ
12 = −{NId

1/NI+[(d−1)r−NI ]}(d1/NI−w)
NI(w−1)2 , and

JQ
21 = −d1−1/NI (d1/NI−1){NIvId

1/NI+[(d−1)r−NIvI ]}
NT{NId1/NI+[(d−1)r−NI ]}2 ×
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N2
I (r − 1)(vI − 1). We first show Det|Q > 0 and

sign(Tr|Q) = sign(w − 1).
For w ̸= 1, we have Det|Q = (vI − 1)NI(1 −

r)d1−1/NI
(d1/NI−1)(d1/NI−w)[NIvI(d1/NI−1)+(d−1)r]

NT (w−1)2[NI(d1/NI−1)+(d−1)r]
.

We note that
NIvI(d1/NI−1)+(d−1)r

NI(d1/NI−1)+(d−1)r
is positive because

sign(d − 1) = sign
(
d1/NI − 1

)
. Since 0 < vT < v∗T =

(1−r)(wNI−1)
NT (w−1) for the existence of the interior equilibrium, we

have d = 1+ NT vT (w−1)
1−r = 1+s

(
wNI − 1

)
, where vT = sv∗T

and 0 < s < 1. Therefore, we obtain wNI − d = (1 −
s)
(
wNI − 1

)
=⇒ sign

(
wNI − d

)
= sign

(
wNI − 1

)
=⇒

sign
(
w − d1/NI

)
= sign (w − 1) =⇒

(
w < d1/NI < 1

)
∨(

1 < d1/NI < w
)

=⇒
(
d1/NI − 1

) (
d1/NI − w

)
< 0 =⇒

sign
((
d1/NI − 1

) (
d1/NI − w

))
= −1. For d ̸= 1, we obtain

sign (Det|Q) = sign (1− vI) because sign (Det|Q) =
sign (vI − 1) sign

[(
d1/NI − 1

) (
d1/NI − w

)]
×

sign
(

NIvI(d1/NI−1)+(d−1)r

NI(d1/NI−1)+(d−1)r

)
= (−1) · (−1) · 1 = 1.

Recall that 0 ≤ vI < 1 is required for the existence of Q. For
w = 1, we obtain Det|Q = (1−vI)vT (r+vI)[NI(1−r)−NT vT ]

NI(1−r2) > 0

since 0 < vT < v∗T =
limw→1(1−r)(wNI−1)

limw→1 NT (w−1) = NI(1−r)
NT

is
required for the existence of Q. Hence, we have shown
Det|Q > 0 or sign(Det|Q) = 1 regardless of the w value.

For w ̸= 1, we obtain Tr|Q =
r(1−vI)d

−1/NI{d1/NI [(d(NI−1)+1]−dNI}
NI(d1/NI−1)+(d−1)r

w−d1/NI

w−1 . We

obtain
sign(w−d1/NI )

sign(w−1) = 1 since sign
(
w − d1/NI

)
=

sign(w − 1) as already shown. For d ̸= 1, we have
q(d) ≡ d1/NI [d(NI − 1) + 1] − dNI > 0 since q(1) = 0 is
the global minimum of q(d) for d > 0, the latter of which
can be shown as follows. First, q(1) is a local minimum of

q(d) since ∂q
∂d

∣∣∣
d=1

=

{
d1/NI−1[d(N2

I −1)+1]
NI

−NI

}∣∣∣∣
d=1

= 0

and ∂2q
∂d2

∣∣∣
d=1

= (NI−1)d1/NI−2(dNI+d−1)
N2

I

∣∣∣
d=1

= NI−1
NI

> 0.

Second, d = d∗ ≡ 1
NI+1 ∈ (0, 1) is the only inflection point

of the function q(d) for d > 0 since ∂2q
∂d2 < 0 for d < d∗,

∂2q
∂d2 = 0 at d = d∗, and ∂2q

∂d2 > 0 for d > d∗. Therefore,
there is no local minimum in d ≤ d∗ and at most one local
minimum in d > d∗, which is at d = 1. Third, we obtain
q(0) = 0 = q(1). Hence, q(1) = 0 is the global minimum
of q(d) for d > 0. We obtain sign(NI

(
d1/NI − 1

)
+

(d − 1)r) = sign(w − 1) since sign(d1/NI − 1) =
sign(d − 1) = sign(w − 1). It follows that sign(Tr|Q) =

sign(1 − vI)
sign(d1/NI [(d(NI−1)+1]−dNI)

sign(NI(d1/NI−1)+(d−1)r)
sign(w−d1/NI )

sign(w−1) =

1 · 1
sign(w−1) · 1 = sign(w − 1). For w = 1, it holds true that

sign(Tr|Q) = 0 because Tr|Q = 0. Hence, we have shown
sign(Tr|Q) = sign(w − 1) regardless of the w value.

For w < 1, we obtain Det|Q > 0 ∧ Tr|Q < 0 such that
Q is asymptotically stable. For w > 1, we obtain Det|Q >
0 ∧ Tr|Q > 0 such that Q is unstable. For w = 1, we obtain
Det|Q > 0 and Tr|Q = 0. In this case, the discriminant D =
(Tr|Q)2 − 4Det|Q < 0 and Tr|Q = 0, which implies that the
eigenvalues are purely imaginary. Therefore, Q is neutrally
stable and the trajectories cycle around it.

6) yi = 0: We find that (0, yt), where 0 < yt < 1, is a line
of equilibria if and only if vT = 0. In this case, the Jacobian
at (0, yt) is given by

J(0,yt) =

(
ryt + vI + yt − 1 0

−NI(r−1)(yt−1)yt

NT
0

)
. (A.43)

We obtain Det|(0,yt) = 0 and Tr|(0,yt) = (r+1)yt+ vI − 1.
If vT = 0 ∧ yt <

1−vI
r+1 , then Tr|(0,yt) < 0 such that (0, yt) is

stable but not asymptotically stable. If vT = 0 ∧ yt >
1−vI

r+1 ,
then Tr|(0,yt) > 0 such that (0, yt) is unstable.

7) yi = 1: We find that (1, yt), where 0 < yt < 1, is a line
of equilibria if and only if vT = v∗T . In this case, the Jacobian
at (1, yt) is given by

J(1,yt) =

 − ryt(wNI−1)
NI(w−1) − vI − yt + 1 0

−NI(r−1)(yt−1)ytw
NI−1

NT
0

 . (A.44)

We obtain Det|(1,yt) = 0 and Tr|(1,yt) = − ryt(wNI−1)
NI(w−1) − vI −

yt+1. If vT = v∗T∧0 ≤ vI < 1∧yt > NI(1−vI)(w−1)

r(wNI−1)+NI(w−1)
, then

Tr|(0,yt) < 0 such that (1, yt) is stable but not asymptotically
stable, where 0 < NI(1−vI)(w−1)

r(wNI−1)+NI(w−1)
< 1. If vT = v∗T ∧ 0 ≤

vI < 1∧yt <
NI(1−vI)(w−1)

r(wNI−1)+NI(w−1)
, then Tr|(0,yt) > 0 such that

(1, yt) is unstable. If vT = v∗T ∧ vI > 1, then Tr|(0,yt) < 0
such that the entire line of equilibria is stable.

8) yt = 0: We find that (yi, 0), where 0 < yi < 1, is a line
of equilibria if and only if vI = 1. In this case, the Jacobian
at (yi, 0) is given by

J(yi,0) =

 0 − (yi−1)(r(((w−1)yi+1)NI−1)+NI(w−1)yi)
NI(w−1)

0
(r−1)([(w−1)yi+1]NI−1)

NT (w−1) + vT

 .

(A.45)
We obtain

Det|(yi,0) = 0, (A.46)

Tr|(yi,0) =
(r − 1)

(
[(w − 1)yi + 1]NI − 1

)
NT (w − 1)

+ vT

(A.47)

and

∂

∂yi
Tr|(yi,0) = −NI(1− r)[1 + (w − 1)yi]

NI−1

NT
< 0.

(A.48)
If vT = 0, then Tr|(yi,0) > 0 such that (yi, 0) is unstable. If

0 < vT < v∗T ∧ yi >

(
NT vT (1−w)

r−1 +1
)1/NI−1

w−1 = d1/NI−1
w−1 , then

Tr|(yi,0) < 0 such that (yi, 0) is stable but not asymptotically
stable. If 0 < vT < v∗T ∧yi < d1/NI−1

w−1 , then Tr|(yi,0) > 0 such
that (yi, 0) is unstable. Note that we obtain 0 < d1/NI−1

w−1 < 1
for 0 < vT < v∗T . If vT ≥ v∗T , then Tr|(yi,0) > 0 such that
(yi, 0) is unstable.

9) yt = 1: There is no equilibrium on the edge (yi, 1). This

is because ẏi = (1 − yi)yi

(
r{1−[1+(w−1)yi]

NI}
NI(1−w)yi

+ vI

)
> 0,

which follows from the combination of 1−[1+(w−1)yi]
NI

1−w > 0
shown in Appendix B5 and 0 < yi < 1.
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C. Time Average of (yi, yt) and the Payoff over a Cycle for
w = 1

We need to show (yi, yt) = (yi,Q, yt,Q) for w = 1, where
yi =

1
T

∫ T

0
yidt, yt = 1

T

∫ T

0
ytdt, T denotes the period of a

cycle and Q = (yi,Q, yt,Q) is given by Eq. (20). By dividing
both sides of Eq. (13) by yi(1−yi) > 0 and substituting w = 1,
we obtain ẏi

yi(1−yi)
=
(

r
NI

+ 1
)
yt − 1 + vI . Averaging both

sides of the equation over time yields 0 =
(

r
NI

+ 1
)
yt− 1+

vI since 1
T

∫ T

0
ẏi

yi(1−yi)
dt = 0, which follows from yi(0) =

yi(T ). On the other hand, Eq. (20) yields
(

r
NI

+ 1
)
yt,Q −

1 + vI = 0. Therefore, we obtain yt = yt,Q. Similarly, we
can show yi = yi,Q by starting with dividing both sides of
Eq. (14) by yt(1− yt) > 0.

We need to show 1
T

∫ T

0
Pdt = P (Q), where P (yi, yt) =

2rNIyiyt+NIvIyi+NT vT yt−a(NIvI+NT vT )
NI+NT

. Because we have
shown yi = yi,Q and yt = yt,Q above, we only need to
show yiyt = yi yt. To show this, we note that 1

yiyt

d(yiyt)
dt =

yiyt

[
NI(1−r)

NT
− r − 1

]
+ yi

[
NI(r−1)

NT
− vI + 1

]
+ yt(r −

vT + 1) + vI + vT − 1. Averaging both sides of the
equation over time yields 0 = yiyt

(
NI(1−r)

NT
− r − 1

)
+

yi

(
NI(r−1)

NT
− vI + 1

)
+ yt(r − vT + 1) + vI + vT − 1

since 1
T

∫ T

0
1

yiyt

d(yiyt)
dt dt = 0. Therefore, we use yi =

yi,Q = NT vT

NI(1−r) and yt = yt,Q = 1−vI
1+r to obtain

yiyt = yi(NI(r−1)+NT (1−vI))+ytNT (r−vT+1)+NT (vI+vT−1)
r(NI+NT )−NI+NT

=
NT vT (1−vI)
NI(1−r)(1+r) = yi yt.

D. Heteroclinic Cycle for w > 1

Assume that w > 1, 0 < vT < v∗T and 0 ≤ vI < 1.
We first show that the heteroclinic cycle F0 ≡ (0, 0) →
F1 ≡ (0, 1) → F2 ≡ (1, 1) → F3 ≡ (1, 0) → F0

is attracting, i.e., trajectories converge to it. We obtain
λ1|y > 0 and λ2|y < 0, where λ1|y and λ2|y are
eigenvalues of the Jacobian at y ∈ {F0,F1,F2,F3}.
Specifically, we obtain λ1|F0

= vT , λ1|F1
= r + vI ,

λ1|F2
= (1−r)(wNI−1)−NT vT (w−1)

NT (w−1) , λ1|F3
= 1− vI , λ2|F0

=

−1 + vI , λ2|F1 = −vT , λ2|F2 = − r(wNI−1)+NIvI(w−1)
NI(w−1)

and λ2|F3
= − (1−r)(wNI−1)−NT vT (w−1)

NT (w−1) . In other
words, each y is a saddle point. The heteroclinic
cycle F0 → F1 → F2 → F3 → F0 is attracting
since ρ ≡

(
−λ2|F0

λ1|F0

)(
−λ2|F1

λ1|F1

)(
−λ2|F2

λ1|F2

)(
−λ2|F3

λ1|F3

)
=

r(wNI−1)+NIvI(w−1)

NI(w−1)(r+vI)
> 1, according to the proof of Lemma

1 of Ref. [53].
We show

r(wNI−1)+NIvI(w−1)

NI(w−1)(r+vI)
> 1 as follows. Using

w > 1, we obtain 1 + NI(−1 + w) − wNI < 0 since
∂
∂w

[
1 +NI(−1 + w)− wNI

]
= NI

(
1− wNI−1

)
< 0 and[

1 +NI(−1 + w)− wNI
]
|w=1 = 0. We then obtain 1 +

NI(−1 + w) − wNI < 0 ⇐⇒ r(1 +NI(−1 + w) − wNI ) <
0 ⇐⇒ NIr(w−1) < r(wNI−1) ⇐⇒ NIr(w−1)+NIvI(w−
1) < r(wNI −1)+NIvI(w−1) ⇐⇒ r(wNI−1)+NIvI(w−1)

NI(w−1)(r+vI)
>

1.

The time average 1
T

∫ T

0
(yi, yt)dt does not converge, where

(yi, yt) = (yi(t), yt(t)) is a trajectory converging to the hete-
roclinic cycle. According to Theorem 1 of Ref. [53], instead,
1
T

∫ T

0
(yi, yt)dt asymptotically spirals towards the boundary

of a polygon (i.e. a quadrangle) A0A1A2A3, where Ai ≡
Fi+1+ρi+2Fi+2+ρi+2ρi+3Fi+3+ρi+2ρi+3ρi+4Fi+4

1+ρi+2+ρi+2ρi+3+ρi+2ρi+3ρi+4
, ρi ≡

−λ2|Fi−1

λ1|Fi

and the indices are counted by modulo 4 (e.g.F4 = F0,
ρ5 = ρ1). Because the points Ai,Ai+1 (with i ∈ {1, 2, 3, 4})
and Fi+1 are collinear, 1

T

∫ T

0
(yi, yt)dt asymptotically moves

on a line from Ai to Ai+1 in the direction of Fi+1 in each
cycle [53].

Although the time averages of yi and yt do not converge,
the time average of the payoff P = 1

T

∫ T

0
Pdt converges.

According to Lemma 1 of Ref. [53], the time for which the
trajectory spends near the saddle points Fi asymptotically
grows ρ times larger every cycle, whereas the time required
to move from a neighbourhood of one saddle point to that of
the next one changes little. Thus, we can neglect the latter in
comparison with the former. Then, we obtain

P =
t0P (F0) + t1P (F1) + t2P (F2) + t3P (F3)

t0 + t1 + t2 + t3

=
P (F0) +

t1
t0
P (F1) +

t2
t0
P (F2) +

t3
t0
P (F3)

1 + t1
t0

+ t2
t0

+ t3
t0

=
P (F0) +

t1
t0
P (F1) +

t1
t0

t2
t1
P (F2) +

t1
t0

t2
t1

t3
t2
P (F3)

1 + t1
t0

+ t1
t0

t2
t1

+ t1
t0

t2
t1

t3
t2

=
P (F0) + ρ1P (F1) + ρ1ρ2P (F2) + ρ1ρ2ρ3P (F3)

1 + ρ1 + ρ1ρ2 + ρ1ρ2ρ3
,

(A.49)

where ti denotes the time for which the trajectory spends in
an arbitrarily small neighbourhood of Fi and we have used
ti+1

ti
= ρi+1 from Lemma 1 of Ref. [53]. Note that P hc is a

convex combination of P (F0), P (F1), P (F2), and P (F3). By
substituting Eq. (21) with (yi, yt) = (0, 0), (0, 1), (1, 0) and
(1, 1) in Eq. (A.49), we obtain

P hc =

 1

(w − 1)

{
(r+1)[NI(1−r)+rNT vT ]

NT vT [r(wNI−1)+NI(w−1)]
− r

wNI−1

}
−a(NIvI +NT vT )]

1

NI +NT
.

(A.50)

E. Optimal Incentives

In this section, we calculate the optimal incentive and payoff
when w ≤ 1 and when (w > 1 ∧NI → ∞) ∨ (w → ∞).

1) w ≤ 1: To obtain the optimal payoff, we need to
know max{P ∗(0, 0), P ∗(1, 0), P ∗(1, 1), P ∗(Q)}. We obtain

P ∗(1, 1) − P ∗(Q) =
r(wNI−1)

(NI+NT )(w−1) + (a−1)NT

NINT
ϵ > 0. In

addition, we have

△P1 ≡P ∗(1, 1)− P ∗(1, 0)

=
[(a+ 1)r − a]

(
wNI − 1

)
(NI +NT )(w − 1)

+
aNI

NI +NT
+ (a− 1)ϵ

>0 (A.51)
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for 0 < w ≤ 1 because △P1 is a monotonic function of w > 0,
we have △P1|w=0 = a(NI+r−1)+r

NI+NT
+ (a − 1)ϵ > 0, and we

have △P1|w=1 = (a+1)rNI

NI+NT
+ (a − 1)ϵ > 0. Therefore, it

holds true that max{P ∗(0, 0), P ∗(1, 0), P ∗(1, 1), P ∗(Q)} =
max{P ∗(0, 0), P ∗(1, 1)}.

If r > r∗1 = a−1
a+1 , then

△P2 ≡ P ∗(1, 1)− P ∗(0, 0)

=
(a+ 1)r − a+ 1

NI +NT

wNI − 1

w − 1
+ (1− a)ϵ > 0.

(A.52)

In this case, the optimal payoff is P ∗(1, 1), and the corre-
sponding optimal incentive is vI = 0∧vT = v∗T +ϵ. If r < r∗1 ,
then △P2 < 0. In this case, the optimal payoff is P ∗(0, 0),
and the corresponding optimal incentive is vI = 0 ∧ vT = 0.

2) (w > 1 ∧NI → ∞) ∨ (w → ∞): As NI → ∞, we
obtain

△P1 = P ∗(1, 1)− P ∗(1, 0) → (a+ 1)r − a

NI +NT

wNI − 1

w − 1
.

(A.53)
The sign of △P1 is determined by that of (a+ 1)r − a since
wNI−1
w−1 > 0. Therefore, if r > r∗2 = a

a+1 , then P ∗(1, 1) >
P ∗(1, 0), and if r < r∗2 , then P ∗(1, 1) < P ∗(1, 0). As NI →
∞, we also obtain

P ∗(1, 0)− P
∗
hc → ∞, (A.54)

where we remind that P
∗
hc denotes the maximum of P hc with

respect to vI and vT . We prove Eq. (A.54) in Appendix F.
Equations (A.53) and (A.54) imply the following. First,

if r > r∗2 , then max{P ∗(0, 0), P ∗(1, 1), P ∗(1, 0), P
∗
hc} =

max{P ∗(0, 0), P ∗(1, 1)}. Since r > r∗1 , which follows from
r∗2 > r∗1 , we obtain △P2 = P ∗(1, 1)−P ∗(0, 0) > 0, which we
showed in Eq. (A.52). Therefore, max{P ∗(0, 0), P ∗(1, 1)} =
P ∗(1, 1); P ∗(1, 1) is the optimal payoff, and the associated
optimal incentive is vI = 0 ∧ vT = v∗T + ϵ. Second,
if r < r∗2 , then max{P ∗(0, 0), P ∗(1, 1), P ∗(1, 0), P

∗
hc} =

max{P ∗(0, 0), P ∗(1, 0)}. In this case, we obtain △P3 ≡
P ∗(1, 0) − P ∗(0, 0) = 1

NI+NT

(
−NIa+ 1−wNI

1−w

)
−

(a−1)NI

NI+NT
ϵ → ∞. Therefore, P ∗(1, 0) is the optimal payoff,

and the associated optimal incentive is vI = 1 + ϵ ∧ vT = 0.
Finally, when NI is finite and w → ∞, we have the same

outcome via similar calculations.

F. Proof of Eq. (A.54)

To prove Eq. (A.54), we first show that P hc is
monotonic or has a local maximum as a function
of vT ∈ (0, v∗T ). Since the denominator of ∂P hc

∂vT
is

(w − 1)
{
NI

[
(1− r2)

(
wNI − 1

)
−NT rvT (w − 1)

]
+NT rvT

(
wNI − 1

)}2
> 0, the sign of ∂P hc

∂vT

is determined by that of its numerator, c(vT ) ≡
−v2TN

3
Tar

2(w − 1)
(
wNI −NIw +NI − 1

)2
+ 2vTNIN

2
Tar(w − 1)

(
wNI − 1

) (
r2 − 1

) [(
wNI − 1

)
−NI(w − 1)]

+NTNI

(
1− r2

) (
wNI − 1

)2 [
NI(w − 1)

(
ar2 − a+ 1

)
+r
(
wNI − 1

)]
, which is a quadratic equation of

vT . Of the two real solutions of c(vT ) = 0,

we consider only the larger one, vT = vhc
T ={√

aNI(1−r2)(w−1)[r(wNI−1)+NI(w−1)]−aNI(1−r2)(w−1)

}
aNT r(w−1)(wNI−NIw+NI−1)

×(
wNI − 1

)
because the smaller one is guaranteed to be

always negative and vT ≥ 0. Since the coefficient of the
quadratic term v2T is negative, the sign of c(vT ) over the
domain (0, v∗T ) can be entirely positive, entirely negative, or
change from positive to negative just once. In other words,
P hc is monotonic or has a local maximum as a function of
vT ∈ (0, v∗T ). The local maximum of P hc, if it exists, is
realized at vT = vhc

T . Because ∂P hc
∂vI

= − aNI

NI+NT
< 0 implies

that the maximum of P hc in terms of vI is realized at vI = 0
regardless of the value of vT , we conclude that P

∗
hc is equal

to either P hc(0 + ϵ), P hc(v
hc
T ) or P hc(v

∗
T − ϵ).

We obtain P ∗(1, 0) − P hc(0 + ϵ) =
1−wNI

(1−w)(NI+NT ) − aNI

NI+NT
+ [(1−a)NI+aNT ]

NI+NT
ϵ −

1

(w−1)(NI+NT )

{
(r+1)[NI (1−r)+NT rϵ]

NT ϵ[r(wNI −1)+NI (w−1)]
− r

wNI −1

} →

∞ as NI → ∞ and ϵ → 0. At
vT = vhc

T , we have P ∗(1, 0) − P hc(v
hc
T ) =

aN2
I r(w−1)2+2(wNI−1)

√
aNI(1−r2)(w−1)[r(wNI−1)+NI(w−1)]

r(w−1)(NI+NT )(wNI−NIw+NI−1)
+

NI{a[(r−1)r−1]−r−1}(wNI−1)
r(NI+NT )(wNI−NIw+NI−1)

+ aNI

NI+NT
ϵ → ∞ as NI → ∞

and ϵ → 0. Finally, we have P ∗(1, 0) − P hc(v
∗
T − ϵ) =

[a(1−r)+1](wNI−1)
(w−1)(NI+NT ) − aNI

NI+NT
+ (1−a)NI−aNT

NI+NT
ϵ −

1
(r+1){r[(r−1)wNI +NT wϵ−NT ϵ−r+1]+NI (r−1)(w−1)}
[r(wNI −1)+NI (w−1)][(r−1)wNI +NT wϵ−NT ϵ−r+1]

− r

wNI −1

×

1
(w−1)(NI+NT ) , which tends to
2(wNI−1)

√
r(wNI−1)+NI(w−1)

r(w−1)(NI+NT )(wNI−NIw+NI−1)
×√

−aNI (r2 − 1) (w − 1) − aNI [NI(1−w)+r−1]

(NI+NT )(wNI−NIw+NI−1)
+

aNI([(r−1)r−1]wNI+1)
r(NI+NT )(wNI−NIw+NI−1)

− NI(r+1)(wNI−1)
r(NI+NT )(wNI−NIw+NI−1)

as ϵ → 0. As NI → ∞, this quantity tends to
2w

NI−1
2

√
aNI(1−r2)√

r(NI+NT )
→ ∞. This concludes the proof of

Eq. (A.54).
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