


threshold of prostate specific antigen (PSA), which is a biomarker for the disease. After reach-
ing this threshold, the patients will be cancelled until their PSA level rises above the second
threshold, and then they will receive androgen deprivation therapy again. CAD therapy refers
to continuous injection of drugs. Generally speaking, the efficacy of CAD therapy is expressed
as a constant, while the efficacy of IAD therapy is described as a function [3, 4]. Although
ADT is effective initially, AD will eventually develop into AI cells, both of which lead to fatal
consequences [6, 7]. It has been shown that CAD plays a significant role in the treatment of
advanced prostate cancer, but the overall survival interval is less than 6 months [8]. Therefore,
IAD, which improves the quality of life of an individual patient and reduces the adverse side
effects of ADT, has been proposed and has attracted the attention of the medical community
[3, 9–13].

Initiation of additional therapies is still necessary to prevent production of AI cells and
treat existing AI cells. Since immunotherapy can stimulate the body’s immunity to fight
against cancer cells, it has been widely used to treat hormone-resistant prostate cancer cells and
advanced prostate cancer [14–17]. In particular, dendritic cells have been proved to be the most
robust antigen-presenting cells to promote immunotherapy, by means of inducing a tumour
immune response, such as the production of immature T cells and the destruction of peripheral
tolerance [18–20]. By extracting a patient’s dendritic cells, then loading them with antigens
and injecting them back into the patients, a dendritic cell vaccine may become possible. Trials
have shown that because different patients have different immune response abilities, for some
patients, PSA levels dropped significantly, while the disease progressed steadily in others
[3, 21]. Consequently, dendritic cells are considered to be promising candidates for cancer
vaccine therapy due to their multiple anti-tumour effects [18].

In order to explore the combined mechanisms of ADT and immunotherapy, mathematical
models with therapy for prostate cancer have attracted a lot of attention [4, 21–26]. Ideta
et. al. established a mathematical model with IAD for prostate cancer, proposing a new
perspective on optimal intermittent regulation to avoid the recurrence of AD cells [25]. Jain
and Friedman discussed the response of prostate cancer to CAD and IAD therapy [26]. Portz
and Kuang studied the effectiveness of dendritic cell vaccines on CAD or IAD therapy and their
results revealed that immunotherapy can successfully stabilize the disease through continuous
and intermittent ADT [21]. Moreover, Rutter and Kuang developed a new mathematical
model incorporating ADT combined with dendritic cell vaccines. From the analysis for their
whole model and its limit cases, the necessary conditions for global stability of the disease-free
equilibria were determined [3].

For simplicity, these studies were carried out with deterministic dynamical systems so the
influence of random elements were often ignored [3, 21, 25–27]. However, changes in external
environment factors may have impacts on the activities of proteins and enzymes, which in
turn affect the growth of tumours [4, 28–31]. To explore the influence of these uncertain-
ties on deterministic models of prostate cancer and its treatment, it is necessary to develop
new stochastic differential equation models [1, 30, 32–34]. Zazoua and Wang constructed a
stochastic mathematical model with competition for prostate cancer to investigate the effects
of CAD therapy, and proved that the intensities of white noise can determine the dynamics
of the tumours [4]. Yang and collaborators pointed out that noise can alter the final states of
tumours [29], but only a few studies have considered the effects of random perturbations on
prostate cancer. In addition, Yang established a tumour immune model with pulse compre-
hensive treatment under random disturbance. Their results show that random disturbance can
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inhibit the growth of tumour cells, and the combination of chemotherapy and immunotherapy
can reduce the damage of treatment to healthy cells [35]. Later, Yang utilized a stochastic im-
pulsive tumour model combining ADT and immunotherapy to analyze the elimination of AD
and AI cells. It is proved that high intensity noise interference is unfavorable to the evolution
of prostate cancer cells [36].

Piece-wise functions are usually employed to describe IAD therapy. Injections or use
of drugs are usually applied at fixed intervals, and Yang verified that frequent vaccination
can improve the survival time of patients with ADT [36], so they can be characterized by
impulsive differential equations. Hence, we make use of impulsive differential equations to
capture the characteristics of IAD therapy. In addition, there is competition between AD and
AI cells, so the equivalent of a competition coefficient in interspecific competition equations
has been studied [3, 21]. But different shapes, genes and functions of AD and AI cells will
result in different abilities for them to compete for resources, such as nutrients and oxygen
[1, 4, 37]. Moreover, the antigenicity of tumours exists throughout the life of tumours, so
taking into account the influence of the antigenicity on tumour growth will make a model
more realistic. Based on these assumptions, we have extended previous stochastic models of
prostate cancer by introducing combinations of antigenicity and impulsive immunotherapy
with different competition coefficients. The main objectives of this paper are to investigate
how white noise, IAD and different competition coefficients affect the global dynamics of
tumours.

The paper is arranged as follows. In section 2, the model is derived and some important
definitions and lemmas are presented. In section 3, the tumour-free periodic solution is ob-
tained, and it is proved that the solution is globally attractive. In section 4, we first show that
the solution is stochastically ultimately bounded and stochastic permanent. Then thresholds
for extinction, persistence and stochastic permanence for both AD and AI cells are derived.
In section 5, the stationary distribution and ergodicity of the system are explored. In section
6, numerical simulations are performed to verify our theoretical results. Finally, the biological
significance of the model is discussed and conclusions are drawn.

2. Model formation and preliminaries

2.1. Model formation

Recently, Rutter and Kuang constructed a mathematical model to investigate the effects
of ADT and immunotherapy with dendritic cell vaccines on prostate cancer [3]. Their model
is a population-style model of the interaction between the number of AD cells (X1), number
of AI cells (X2), number of effector cells (Y ) (such as natural killer cells, cytotoxic T cells and
macrophages) that act on the tumour cells, concentration of cytokine IL-2 (IL), concentration
of androgen (A) in serum and number of dendritic cells (D) at time t. Their model can be
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written as follows:

dX1 = {r1(A,X1, X2)X1 −m1(A)X1 +m2(A)X2 −X1f1(X1, X2, Y )}dt,
dX2 = {r2(X1, X2)X2 +m1(A)X1 −m2(A)X2 −X2f2(X1, X2, Y )}dt,

dY = { eD

g +D
− µY + Y f3(IL, Y )}dt,

dIL = {Y f4(X1, X2)− ωIL}dt,
dA = {γ(a0 − A)− γa0u(t)}dt,
dD = −cDdt,

(2.1)

where γ and a0 denote the clearance and production rate of androgen and the basic level
of androgen concentration, respectively. µ and c are the death rates of effector cells and
dendritic cells, respectively. e and ω are the maximum activation rates of Y cells and the
clearance rate of IL-2, respectively. g is the saturation level of dendritic cells activated by
Y cells. r1(A,X1, X2)X1 and r2(X1, X2)X2 are the reproductive rates of AD and AI cells,
respectively. In general, f1(X1, X2, Y ), f2(X1, X2, Y ), f3(IL, Y ) and f4(X1, X2) are nonlinear
functions. f1(X1, X2, Y ) and f2(X1, X2, Y ) represent the death rate functions to simulate the
number of AD and AI cells killed by Y cells, respectively. f3(IL, Y ) represents the activation
rate function of Y cells by cytokines. f4(X1, X2) denotes the activation rate function of tumour
secretion on IL-2. m1(A)X1 denotes the maximum mutation rate from AD to AI cells and
m2(A)X2 is the maximum mutation rate from AI to AD cells. The androgen concentration is
controlled by the function u(t). u(t) is either 0 (if treatment is off) or 1 (if treatment is on).
For details see [3].

Model (2.1) is a mathematical model describing the growth of prostate cancer under IAD
therapy based on the monitoring of PSA in serum. The administration switching based on
the observation of serum PSA level can be regarded as the feedback control of the observable
output of the system. The intermittent administration included in the model will be described
as a hybrid dynamic system [3]. The IAD therapy of the model (2.1) is described by piecewise
function, but the details of its period, frequencies and dosages, and the effect of immunotherapy
on prostate cancer are still unclear. To explore these characteristics, it is meaningful to use
impulsive differential equations to describe IAD therapy and immunotherapy [38]. On the one
hand, in order to explore the dynamic behaviours of AD and AI cells to develop more specific
treatment regimens for prostate cancer, we will distinguish the types of prostate cancer cells
and expand the mathematical model in reference [38]. On the other hand, competition between
AD cells and AI cells may alter the fate of tumour cells, then the interspecific competition
between AD and AI cells should be considered [4].

Besides, the growth rate r1A of AD cells depends on androgen, the growth rate of AI cells r2
and the antigenicity C are perturbed randomly around some average value [38]. Thus, r1A, r2
and C can be random variables ˜r1A, r̃2 and C̃, in [t, t+dt), then ˜r1Adt = r1Adt+δ1(X1)dB1(t),
r̃2dt = r2dt+δ2(X2)dB2(t) and C̃dt = Cdt+δ3(Y )dB3(t), where dBi(t) = Bi(t+dt)−Bi(t)(i =
1, 2, 3) denotes the increment of a standard Brownian motion. Here we retain the notation
of r1A, r2 and C instead of ˜r1A, r̃2 and C̃. Based on [3, 38], we do not consider the effects
of mutation m2 from AI to AD cells and cytokines IL. Then we develop model (2.1) with
different competition coefficients by introducing combinations of the stochastic perturbations
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and impulsive immunotherapy, leading to the following extended model:

dX1 = {[r1A(1− X1+αX2

K
)− (d1 +m1)(1− A

a0
)− a1Y

g1+X1+X2
]dt+ δ1dB1(t)}X1,

dX2 = [r2(1− βX1+X2

K
)X2 +m1(1− A

a0
)X1 − a2X2Y

g2+X1+X2
]dt+ δ2X2dB2(t),

dY = [(C − µ)Y + eD
g3+D

]dt+ δ3Y dB3(t),

dA

dt
= −γ(A− a0),

dD

dt
= −cD,


t ̸= nT,

A(nT+) = (1− δ)A(nT ),

D(nT+) = D(nT ) + τ,

}
t = nT,

(2.2)
where, K is the carrying capacity of prostate cancer cells. α and β are the competition
coefficients between two types of prostate cancer cells. m1 is the irreversible mutation rate
from AD cells to AI cells. g1 and g2 are the killing rates of effector cells at saturation level of
AD and AI cells. g3 is the saturation concentration of dendritic cells activated by effector cells,
d1 denotes the death rate of AD cells. a1 and a2 are the maximum killing rates of effector cells
due to AD and AI cells. τ is the dosage of immunotherapy drugs injected at impulsive point
series nT (n = 1, 2, 3, · · · ). δ is the treatment intensity of IAD therapy. δ21, δ

2
2 and δ23 denote

the intensities of the white noise. Note that X1, X2, Y , A and D have the same biological
significance as model (2.1).

From above, AD cells are controlled by their proliferation and death, dependent of andro-
gen, their mutation to AI cells and the number killed by Y cells. AI cells are controlled by
proliferation, independent of androgen, their mutation from AD cells and the number killed
by Y cells. The number of Y cells is determined by the number of dendritic cells activated,
their natural death and the linear growth of effector cells induced by tumour antigenicity.
The concentration of androgen in the blood is described by homeostasis term and deprivation
therapy term [3]. Dendritic cells are controlled by their mortality. ADT and immunotherapy
with dendritic cells are achieved by pulsed and periodic medication.

The dynamics of the immunotherapeutic drug and ADT are given by the last four lines of
(2.2), i.e.: 

dA

dt
= −γ(A− a0),

dD

dt
= −cD,

 t ̸= nT,

A(nT+) = (1− δ)A(nT ),

D(nT+) = D(nT ) + τ,

}
t = nT.

(2.3)

By simple calculation, we obtained the explicit expressions of the T periodic solution AT (t)
and DT (t) of (2.3) with

AT (t) = a0 + (A∗ − a0)e
−γ(t−nT ) = a0 −

a0δe
−γ(t−nT )

1− (1− δ)e−γT
,

DT (t) =
τe−c(t−nT )

1− e−cT
,
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where t ∈ (nT, (n+ 1)T ], and

AT (nT+) =
a0(1− δ)

(
1− e−γT

)
1− (1− δ)e−γT

, DT (nT+) =
τ

1− exp(−cT )
.

In the following parts, the global dynamic behaviour of system (2.2) will be studied, so we
first introduce some useful definitions and lemmas.

2.2. Preliminaries

Assume (Ω,F , {Ft}t≥0,P) is a complete probability space with conditions (right continuous
and F0 contains all P-null sets), which has a filtration {Ft}t≥0. Let Bi(t)(i = 1, . . . , n) be an
independent Brownian motion which is defined on this probability space [21].
Definition 2.1. For any positive solution Z(t) = (y1(t), y2(t), y3(t)) with initial condition
Z(0) = Z0 ∈ R3

+, if for any ε ∈ (0, 1), there exists a solution with a positive constant H such
that

lim sup
t→∞

P{|Z(t)| > H} < ε,

then the positive solutions of system (2.2) are stochastically ultimately bounded.
Definition 2.2. For any solutions Z1(t) = (y11(t), y12(t), y13(t)), Z2(t) = (y21(t), y22(t), y23(t))
of system (2.2) with Z1(0) > 0, Z2(0) > 0, if

lim
t→+∞

| y11(t)− y21(t) |= 0, lim
t→+∞

| y12(t)− y22(t) |= 0 and lim
t→+∞

| y13(t)− y23(t) |= 0,

then system (2.2) is said to be globally attractive.
Lemma 2.3. Assume that M = {M(t)}t≥0 is a real-valued continuous local martingale
vanishing at time zero. If

lim sup
t→∞

⟨M,M⟩t
t

<∞ a.s.

then

lim
t→∞

Mt

t
= 0 a.s.

Besides, for an integrable function y(t) on [0,∞), we give the following notations,

< x >t=
1

t

∫ t

0

y(s)ds for t > 0,

< x >∗= lim sup
t→∞

1

t

∫ t

0

y(s)ds,

< x >∗= lim inf
t→∞

1

t

∫ t

0

y(s)ds.

Definition 2.4. If limt→∞ Zi(t) = 0, then the population Zi(t) is said to go to extinction; if
< Zi(t) >

∗> 0, then the population Zi(t) is said to be persistent in mean.
Definition 2.5. ([39, 40]) Let Z(t) = (y1(t), y2(t), y3(t))

T be any solution of system (2.2),
yi(t) is called stochastically permanent if for any ε ∈ (0, 1), there exists a solution with β > 0
and δ > 0 such that for all i = 1, 2, 3

lim inf
t→+∞

Pyi(t) ≥ β} ≥ 1− ε, lim inf
t→+∞

Pyi(t) ≤ δ} ≥ 1− ε.
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Lemma 2.6. ([41–43]) Assume that
(1) (Minorization condition) for a compact set Γ1 ⊂ R3

+, there are S, β > 0 and a probability
measure m on R3

+ with m(Γ1) > 0 such that

PS(Y0, D) ≥ βm(D), ∀ Y0 ∈ Γ1, ∀ D ∈ C(R3
+).

(2) (Lyapunov condition) defining a function V : R3
+ → [1,∞) satisfies lim|Y (t)|→∞ V (Y ) = ∞,

for any real numbers α1, α2 ∈ (0,∞) yield

LV (Y ) ≤ α1 − α2V (Y ),

where LV (Y ) is a function of Y .
If there exists a state with an unique stationary distribution Λ such that for constants B,χ > 0,

|Ef(Y (t))− Λ(f)| ≤ BV (Y0)e
−χt, ∀ Y (0) = Y0 ∈ R3

+,

for all measurable function f ∈ ℑ := {measurable f : R3
+ → R3 with |f(Y)| ≤ V(Y)}, then the

Markov process Y (t) is V-geometrically ergodic.
More details of Lemma 2.6 are shown in ([41], Theorem 16.0.1) or ([42], Theorem 2.5).

In what follows, unless otherwise specified, the function V (·) represents different variables in
different places.
Remark 1. ([43, 44]) Let Z(t) = (y1(t), y2(t), y3(t))

T be the solution of system (2.2) with
initial value y(0) ∈ R3

+. For any 0 < ϵ < 1, if there exists a positive constant Υ = Υ(ϵ) such
that for all i = 1, 2, 3,

lim
t→∞

inf P{yi(t) ≥ Υ} ≥ 1− ϵ,

then the stochastic model (2.2) is stochastically persistent; if there exists a positive constant
δ = δ(ϵ) such that for all i = 1, 2, 3,

lim
t→∞

inf P{yi(t) ≤ δ} ≥ 1− ϵ,

then the stochastic model (2.2) is stochastically bounded from above. A stochastic system is
stochastic permanent if it is both stochastic persistent and stochastic bounded.

3. Global positive solution

The dynamics of the immunotherapeutic drug can be described by
dD

dt
= −cD, t ̸= nT,

D(nT+) = D(nT ) + τ, t = nT.

(3.1)

Lemma 3.1. DT (t) is a unique positive periodic solution of system (3.1) and satisfies
limt→∞D(t) = DT (t). Besides, for any ϵ > 0 we get

DT (t)− ϵ < D(t) < DT (t) + ϵ and lim
t→∞

1

t

∫ t

0

DT (s)ds =
τ

cT
. (3.2)
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Now we study the tumour-free solution of the system, assume that the prostate cancer
cells can be eliminated. Let X1(t) = X2(t) = 0, the system (2.2) becomes

dY = [(C − µ)Y +
eD

g3 +D
]dt+ δ3Y dB3(t),

dD = −cDdt,

 t ̸= nT,

D(nT+) = D(nT ) + τ, t = nT.

(3.3)

Replacing D with DT (t), then system (3.3) can be reduced to

dY = [(C − µ)Y +
eDT (t)

g3 +DT (t)
]dt+ δ3Y dB3(t). (3.4)

Theorem 3.2. For any initial value Y (0+) = Y (0), there exists a state with a unique global
positive solution Y (t) of system (3.4), where

Y (t) = Y (0) exp[(C − µ− δ23
2
)t+ δ3B3(t)]

+
∫ t

0
eDT (s)

g3+DT (s)
exp[(C − µ− δ23

2
)(t− s) + δ3(B3(t)−B3(s))]ds.

(3.5)

Proof. For the homogeneous linear stochastic differential equation, let

dỸ = (C − µ)Ỹ dt+ δ3Ỹ dB3(t).

Then, we define a Lyapunov function V (t) = ln Ỹ (t) by using Itô’s formula which leads to

d ln Ỹ (t) = dỸ
Ỹ

− (dỸ )2

2Ỹ 2

=
(
C − µ− δ23

2

)
dt+ δ3dB3(t).

From 0 to t, integrating the above equation yields

ln Ỹ (t)− ln Ỹ (0) =
∫ t

0
(C − µ− δ23

2
)ds

+
∫ t

0
δ3B3(t)ds.

Hence,

Ỹ (t) = Ỹ (0) exp[(C − µ− δ23
2
)t+ δ3B3(t)].

Now writing the solution of the nonhomogeneous linear stochastic differential equation (3.4)
as Y (t) = P (t)Y0(t), this problem is to determine P (t).

P (t) = Y −1
0 (t)Y (t),

where

Y −1
0 (t) = exp

{
−

∫ t

0

(C − µ− δ23
2
)ds−

∫ t

0

δ3dB3(s)

}
.

Applying the preceding result for linear homogeneous equation dỸ (t) gives

dY −1
0 (t) = Y −1

0 (t){[−(C − µ) + δ23]dt− δ3dB3(t)}.
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From the above we can see that

dP (t) = Y −1
0 (t)dY (t) + Y (t)dY −1

0 (t)− δ3Y (t)Y −1
0 (t)δ3dt

= Y −1
0 (t)

{
[ eDT (t)
g3+DT (t)

+ (C − µ)Y (t)]dt+ δ3Y (t)dB3(t)

}
+Y (t)Y −1

0 (t)

{
[−(C − µ) + δ23]dt− δ3dB3(t)

}
− δ3Y (t)Y −1

0 (t)δ3dt

= Y −1
0 (t)

{
eDT (t)

g3+DT (t)

}
dt.

Therefore,

P (t) = P (0) +

∫ t

0

Y −1
0 (s)

eDT (s)

g3 +DT (s)
ds.

Consequently, by combining Ỹ and P (t), the solution of equation (3.4) is as follows:

Y (t) = Y0(t)

{
Y (0) +

∫ t

0

Y −1
0 (s)

eDT (s)

g3 +DT (s)
ds

}
,

where Y0(t) = exp[(C−µ− δ23
2
)t+δ3B3(t)]. After sorting out the above equations, it is concluded

that

Y (t) = Y (0) exp[(C − µ− δ23
2
)t+ δ3B3(t)]

+

∫ t

0

eDT (s)

g3 +DT (s)
exp[(C − µ− δ23

2
)(t− s) + δ3(B3(t)−B3(s))]ds.

Hence, this completes the proof.
For the global dynamics of system (2.2), replacing A and D with AT (t) and DT (t), then

we get the equivalent system (3.6) for system (2.2),
dX1 = [r1A

T (t)(1− X1+αX2

K
)− (d1 +m1)(1− AT (t)

a0
)− a1Y

g1+X1+X2
]X1dt+ δ1X1dB1(t),

dX2 = [r2(1− βX1+X2

K
)X2 +m1(1− AT (t)

a0
)X1 − a2XY

g2+X1+X2
]dt+ δ2X2dB2(t),

dY = [(C − µ)Y + eDT (t)
g3+DT (t)

]dt+ δ3Y dB3(t).

(3.6)
For convenience, let

W1 = r1A
T (t) = r1a0 −

r1a0δe
−γ(t−nT )

1− (1− δ)e−γT
, H1 = (d1 +m1)(1−

AT (t)

a0
),

S1 = m1(1− AT (t)/a0) and S2 = eDT (t)/(g3 +DT (t)), then system (2.2) becomes
dX1 = [W1(1−

X1 + αX2

K
)−H1 −

a1Y

g1 +X1 +X2

]X1dt+ δ1X1dB1(t),

dX2 = [r2(1−
βX1 +X2

K
)X2 + S1X1 −

a2X2Y

g2 +X1 +X2

]dt+ δ2X2dB2(t),

dY = [(C − µ)Y + S2]dt+ δ3Y dB3(t).

(3.7)
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4. Dynamics of stochastic model

4.1. Existence and uniqueness of the solution

This part mainly focuses on the existence and uniqueness of the solution for system (3.7).

Theorem 4.1. If µ−C−a1/g1−a2/g2 > 0, then for any initial value (X1(0), X2(0), Y (0)) ∈
IntR3

+, system (3.7) has a unique positive solution Z(t) = (X1(t), X2(t), Y (t)) for all t ≥ 0
almost surely.

Proof. Notice that the coefficients of system (3.7) satisfy the local Lipschitz condition, for
any (X1(0), X2(0), Y (0)) ∈ IntR3

+, there exists with a unique positive local solution on [0, τe),
where τe represents the explosion time. If τe = ∞, then the solution is global. Choose k0 > 0
such that X1(0), X2(0) and Y (0) all lie within the interval (1/k0, k0). For each k ≥ k0, the
stopping time can be defined as

τk = inf{t ∈ [0, τe), X1(t) /∈ (
1

k
, k) or X2(t) /∈ (

1

k
, k) or Y (t) /∈ (

1

k
, k)},

where τk is increasing as k → ∞. Denote τ∞ := limk→∞ τk. Then, τ∞ ≤ τe a.s. If τ∞ = ∞
a.s., then τe = ∞ a.s. and the solution (X1(t), X2(t), Y (t)) ∈ IntR3

+ for t ≥ 0 a.s. Otherwise,
if τ∞ ̸= ∞, then there are two constants T1 > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T1} > ε.
Thus, for an integer k1 ≥ k0 we have

P{τk ≤ T1} ≥ ε for k ≥ k1. (4.1)

Constructing a C2− function V : IntR3
+ → R+ as

V (X1, X2, Y ) = X1 − 1− lnX1 +X2 − 1− lnX2 + Y − 1− lnY,

Applying Itô’s formula gives

dV = LV dt+ δ1(X1 − 1)dB1(t) + δ2(X2 − 1)dB2(t) + δ3(Y − 1)dB3(t),

where

LV = (X1 − 1)(W1(1− X1+αX2

K
)−H1 − a1Y

g1+X1+X2
) + (X2 − 1)(r2(1− βX1+X2

K
)

+S1X1

X2
− a2Y

g2+X1+X2
) + (Y − 1)(C − µ) + S2 − S2

Y
+ 1

2
δ21 +

1
2
δ22 +

1
2
δ23

= X1W1 − W1

K
X2

1 − W1αX1X2

K
−H1X1 − a1Y X1

g1+X1+X2
−W1 +

W1X1

K
+ αW1X2

K
+H1

+ a1Y
g1+X1+X2

+ r2X2 − r2βX1X2

K
− r2β

K
X2

2 + S1X1 − a2Y X2

g2+X1+X2
− r2 +

r2β
K
X1

+ r2X2

K
− S1X1

X2
− a2Y

g2+X1+X2
+ CY − µY − C + µ+ S2 − S2

Y
+ 1

2
δ21 +

1
2
δ22 +

1
2
δ23.

Then

LV ≤ −W1

K
X2

1 + (W1 +
W1

K
+ S1 +

r2β

K
)X1

− r2
K
X2

2 + (
W1α

K
+ r2 +

r2
K

)X2

+
1

Y
(−(µ− C − a1

g1
− a2
g2
)Y 2 + S2)

+H1 + S2 + µ+
1

2
δ21 +

1

2
δ22 +

1

2
δ23,
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where

φ(X1) = −W1

K
X2

1 + (W1 +
W1

K
+ S1 +

r2β

K
)X1,

φ(X2) = − r2
K
X2

2 + (
W1α

K
+ r2 +

r2
K

)X2,

φ(Y ) = −(µ− C − a1
g1

− a2
g2
)Y 2 + S2.

Clearly, φ(X1) and φ(X2) are both quadratic functions with negative leading coefficients,
which indicates that they are upper bounded. Similarly, φ(Y ) is also upper bounded if µ −
C − a1/g1 − a2/g2 > 0. Consequently, φ(X1) + φ(X2) + φ(Y ) is always upper bounded, i.e.,
we have

LV ≤M,

where

M = φ(X1)max + φ(X2)max + φ(Y )max +H1 + S2 + µ+
1

2
δ21 +

1

2
δ22 +

1

2
δ23,

with M being positive. Thus,

dV ≤Mdt+ δ1(X1 − 1)dB1(t) + δ2(X2 − 1)dB2(t) + δ3(Y − 1)dB3(t). (4.2)

Integrating both sides of this inequality from 0 to τk ∧ T1 and taking the expectation on both
sides, then

E(V (X1(τk ∧ T1), X2(τk ∧ T1), Y (τk ∧ T1))) ≤ V (X1(0), X2(0), Y (0)) +MT1. (4.3)

Let Ωk = {τk ≤ T1} at this moment with k ≥ k1. The inequality (4.1) leads to P (Ωk) ≥ ε.
Note that each of ω ∈ Ωk, X1(τk, ω) or X2(τk, ω) or Y (τk, ω) equals either k or 1/k,

V (X1(τk ∧ T1, ω), X2(τk ∧ T1, ω), Y (τk ∧ T1, ω)) ≥ min{k − 1− ln k,
1

k
− 1 + ln k}. (4.4)

From (4.3) and (4.4),

V (X1(0), X2(0), Y (0)) +MT1 ≥ E(1Ωk
(ω)V (X1(τk, ω), X2(τk, ω), Y (τk, ω)))

≥ εmin{k − 1− ln k,
1

k
− 1 + ln k},

where 1Ωk
is the indicator function of Ωk. If k → ∞, then

∞ > V (X1(0), X2(0), Y (0)) +MT1 = ∞,

which is a contradiction. Therefore, τ∞ = ∞ a.s. This completes the proof.
Theorem 4.1 indicates that system (3.7) exists with a unique global positive solution Z(t) =

(X1(t), X2(t), Y (t)) for all t ≥ 0 almost surely, which is the precondition to study other
properties of the solution of system (3.7).
Theorem 4.2. If µ−C > 0, then the positive solutions Z(t) = (X1(t), X2(t), Y (t)) of system
(3.7) are stochastically ultimately bounded.
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Proof. Let V (t,X) = etXp with p > 1, then the application of Itô’s formula leads to

dV (X1) = etXp
1dt+ etpXp−1

1 [(W1(1− X1+αX2

K
)−H1 − a1Y

g1+X1+X2
)X1dt

+δ1X1dB1(t)] +
p(p−1)

2
etXp−2

1 X2
1dt

= etXp
1 + etpXp

1 ((W1 − W1X1

K
− W1αX2

K
−H1 − a1Y

g1+X1+X2
)

+p−1
2
δ21)dt+ petδ1X

p
1dB1(t)

≤ etXp−1
1 {(1 + p(W1 +

p−1
2
δ21))X1 − pW1

K
X2

1}dt
+petδ1X

p
1dB1(t).

Denote

g(X1) = (1 + p(W1 +
p− 1

2
δ21))X1 − p

W1

K
X2

1 .

Let A1 = pP1/K > 0 and A2 = 1 + p(W1 + (p− 1)δ21/2) > 0, then

g(X1) = −A1X
2
1 + A2X1.

Apparently, g(X1) is always upper bounded and let M1 be its upper bound, thus,

dV (X1) ≤M1e
tdt+ petδ1X

p
1dB1(t).

Integrating the above inequality from 0 to t and taking the expectation yields

E[etXp
1 (t)] ≤ Xp

1 (0) +M1(e
t − 1),

then
E[Xp

1 (t)] ≤ Xp
1 (0)e

−t +M1(1− e−t).

As a result,
lim sup
t→+∞

E[Xp
1 (t)] ≤M1. (4.5)

By using the same methods,

dV (etXp
2 ) = et{(1 + p(r2(1− βX1+X2

K
) + p−1

2
))Xp

2 + pS1X1X
p−1
2

− pa2Y Xp
2

g2+X1+X2
)}dt+ petδ2X

p
2dB2(t)

≤ et{(1 + p(r2 +
p−1
2
δ22))X

p
2 + pS1X1X

p−1
2 − pr2

K
Xp+1

2

− pa2Y Xp
2

g2+X1+X2
}dt+ petδ2X

p
2dB2(t)

≤ M2e
t + petδ2X

p
2dB2(t),

where M2 is a positive constant. Integrating the above inequality from 0 to t and taking the
expectation from both sides, then

E[etXp
2 (t)] ≤ Xp

2 (0) +M2(e
t − 1),

which implies
E[Xp

2 (t)] ≤ Xp
2 (0)e

−t +M2(1− e−t).
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Thereby,
lim sup
t→+∞

E[Xp
2 (t)] ≤M2. (4.6)

Using the same method,

dV (etY p) = et[1 + p(C − µ+ S2

Y
+ p−1

2
δ23)]Y

pdt

+petδ3Y
pdB3(t)

≤ et[1 + p(−(µ−C)Y 2+S2Y
Y 2 + p−1

2
δ23)]Y

pdt

+petδ3Y
pdB3(t)

≤ M3e
tdt+ petδ3Y

pdB3(t),

where M3 is a positive constant.
Thus,

lim sup
t→+∞

E[Y p(t)] ≤M3. (4.7)

Notice that
(X1(t)

2 +X2(t)
2 + Y (t)2)p/2 ≤ 3p/2(X1(t)

p +X2(t)
p + Y (t)p).

If follows from (4.5), (4.6) and (4.7) that

lim sup
t→+∞

E(|Z|p) ≤ 3p/2[M1 +M2 +M3] <∞.

By Chebychev’s inequality, the solutions of system (3.7) are stochastically ultimately bounded.
The proof is completed.
Remark 2. Theorem 4.2 implies that the number of prostate cancer cells will be controlled
and they will not grow indefinitely.

Next we show that the Markov process Z(t) = (X1(t), X2(t), Y (t)) is V-geometrically
ergodic [43].
Theorem 4.3. For Z0 ∈ R3

+, if δ1 > 0, δ2 > 0, δ3 > 0 and µ − C > 0, then Markov process
Z(t) = (X1(t), X2(t), Y (t)) is V-geometrically ergodic.
Proof. Denote N = X1+X2+Y , defining a Lyapunov function V (Z(t)) such that V (Z(t)) →
∞ as | Z(t) |→ ∞ for Z(t) ∈ R3

+, where

V (Z(t)) = N +
1

N
. (4.8)
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Applying Itô’s formula yields

LV (Z(t)) = (1− 1
N2 )dN +

δ21X
2
1+δ22X

2
2+δ23Y

2

N3

= (W1 −H1)X1 − W1X2
1

K
− W1αX1X2

K
− X1Y

g1+X1+X2
+ r2X2

− r2βX1X2

K
− r2X2

2

K
+ S1X1 − a2X2Y

g2+X1+X2
+ (C − µ)Y

+S2 − dN
N2 +

δ21X
2
1+δ22X

2
2+δ23Y

2

N3

≤ −W1X2
1

K
+ (W1 + S1)X1 − r2X2

2

K
+ (r2 + 1)X2 −H1X1 −X2

+(C − µ)Y + S2 − dN
N2 +

δ21X
2
1+δ22X

2
2+δ23Y

2

N3

≤ K(W1+S1)2

4W1
+ K(r2+1)2

4r2
− ρN + S2 − ρN−2ρN

N2 +
δ21X

2
1+δ22X

2
2+δ23Y

2

N3

= K(W1+S1)2

4W1
+ K(r2+1)2

4r2
− ρV (Z) + S2 +

2ρN
N2 +

δ21X
2
1+δ22X

2
2+δ23Y

2

N3

≤ (K(W1+S1)2

4W1
+ K(r2+1)2

4r2
+ S2 + 2ρ) +

δ21+δ22+δ23
N

− ρV (Z)

≤ (K(W1+S1)2

4W1
+ K(r2+1)2

4r2
+ S2 + 2ρ+ δ21 + δ22 + δ23)− ρV (Z)

= D∗ − ρV (Z),

(4.9)

where

D∗ =
K(W1 + S1)

2

4W1

+
K(r2 + 1)2

4r2
+ S2 + 2ρ+ δ21 + δ22 + δ23, ρ = min{H1, 1, µ− C}.

It implies that condition (2) (Lyapunov condition) of Lemma 2.6 holds.
If δ1 > 0, δ2 > 0 and δ3 > 0, then SDE (3.7) is uniformly elliptic [45]. Defining a jointly

continuous function as q : R+ × R3
+ × R3

+ → (0,∞). For each (t, Z0, P ), qt(Z0, P ) is strictly
positive and for all measure sets B we obtain

qt(Z0, B) =

∫
B

qt(Z0, P )dP.

For any ϖ > 0, there is a positive constant b = b(ϖ, t) > 0 such that inf{qt(Z0, P ) : Z0, P ∈
R3

+, | Z0 |, | P |≤ ϖ} ≥ b. So for any measurable set B,

qt(Z,B) =
∫
B
qt(Z0, P )dP ≥ bLeb(B ∩ Bϖ(0)) = bLeb(Bϖ(0))m(B),

where m(B) = Leb(B ∩ Bϖ(0))/Leb(Bϖ(0)) and Leb is the Lebesgue measure. It indicates
that condition (1) (Minorization condition) of Lemma 2.6 holds true. Therefore, the Markov
process Z(t) = (X1(t), X2(t), Y (t)) is V-geometrically ergodic. This completes the proof.
Theorem 4.4. The solution of system (3.7) is globally attractive.
Proof. Without loss of generality, we assume that Z1(t) = (x1(t), y1(t), z1(t)) and Z2(t) =
(x2(t), y2(t), z2(t)) be any two solutions of system (3.7) with initial values Z1(0) > 0 and
Z2(0) > 0. Since (X1(t), X2(t), Y (t)) is stochastically ultimately bounded, then there are four
positive constants N1 > 0, c1 > 0, c2 > 0, c3 > 0 such that X1 ≤ N1, X2 ≤ N1 and Y ≤ N1

almost surely for all t ≥ T0, and we assume that N1 = c1X1 = c2X2 = c3Y . Defining the
following Lyapunov function:

V (t) =| lnx1(t)− lnx2(t) | + | ln y1(t)− ln y2(t) | + | ln z1(t)− ln z2(t) |,
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where t > 0 and t ̸= nT . By calculating the upper right derivative d+V (t) of V (t) and
employing the Itô’s formula on (3.7), we get

d+V (t) = sign(x1(t)− x2(t))d(lnx1(t)− lnx2(t))

+sign(y1(t)− y2(t))d(ln y1(t)− ln y2(t))

+sign(z1(t)− z2(t))d(ln z1(t)− ln z2(t))

≤ sign(x1(t)− x2(t))[−W1

K
(x1(t)− x2(t))− W1α

K
(y1(t)− y2(t))

+
−a1

g1
(z1(t)−z2(t))

(1+
c3
g1

z1(t))(1+
c3
g1

z2(t))
]dt

+sign(y1(t)− y2(t))[− r2
K
(y1(t)− y2(t))− r2β

K
(x1(t)− x2(t))

+
−a2

g2
(z1(t)−z2(t))

(1+
c3
g2

z1(t))(1+
c3
g2

z2(t))
]dt

≤ [−(W1

K
+ r2β

K
) | x1(t)− x2(t) | −(W1α

K
+ r2

K
) | y1(t)− y2(t) |

−( a1
g1(1+

c3
g1

N1)2
+ a2

g2(1+
c3
g2

N1)2
) | z1(t)− z2(t) |]dt

≤ −ρ(| x1(t)− x2(t) | + | y1(t)− y2(t) | + | z1(t)− z2(t) |)dt
.
= −ρV(t)dt,

(4.10)

where ρ = min{W1/K+r2β/K, W1α/K+r2/K, a1/g1(1+
c3
g1
N1)

2+a2/(g2(1+
c3
g2
N1)

2)}.When
t = nT ,

V (nT+) = | lnx1(nT+)− lnx2(nT
+) | + | ln y1(nT+)− ln y2(nT

+)

+ | ln z1(nT+)− ln z2(nT
+) |

= | lnx1(nT )− lnx2(nT ) | + | ln y1(nT )− ln y2(nT ) |
+ | ln z1(nT )− ln z2(nT ) |

= V (nT ).

Integrating equation (4.10) from 0 to t and taking expectation of both sides gives

V (t) ≤ V (0)− ρ

∫ t

0

V(s)ds.

Hence,

V (t) + ρ

∫ t

0

V(s)ds ≤ V (0) <∞.

In addition, since V (t) > 0 is always valid which gives rise to limt→+∞ V(t) = 0. That is to
say,

lim
t→∞

| x1(t)− x2(t) |= 0 and lim
t→∞

| y1(t)− y2(t) |= 0 and lim
t→∞

| z1(t)− z2(t) |= 0.

This completes the proof.
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4.2. Extinction and persistence in mean

In this subsection, the threshold conditions for the extinction and persistence of prostate
cancer cells will be studied.

Theorem 4.5. (i) Assume that

W1 −H1 <
1

2
δ21, (4.11)

(a) then AD cells X1 go to extinction;
(b) if

r2 −
δ22
2
< 0, (4.12)

then AI cells X2 go to extinction;
(c) if

C − µ <
δ23
2

and r2 − r2β − δ22
2
> 0, (4.13)

then AI cells X2 are persistent in mean.
(ii) If

C − µ <
δ23
2

and W1 −H1 −W1α− 1

2
δ21 > 0, (4.14)

then AD cells X1 are persistent in mean.

Proof. (i)(a) For a positive solution of (2.2), we get

dX1(t) ≤ (W1 −H1 −
W1

K
X1)X1dt+ δ1X1dB1(t).

Let φ(t) be the solution of

dφ(t) = (W1 −H1 −
W1

K
φ)φdt+ δ1φdB1(t), φ(0) = X1(0), for all t ≥ 0.

The comparison principle of stochastic differential equations [46] leads to

X1(t) ≤ φ(t) for all t ≥ 0.

A simple calculation yields
lim

t→+∞
φ(t) = 0 a.s.

Therefore,
lim

t→+∞
X1(t) = 0 a.s.

That is to say, P (Ω̄) = 1 where

Ω̄ = {ω ∈ Ω : lim
t→+∞

X1(ω, t) = 0}.

Then for any ω ∈ Ω̄ and any small ε > 0, there exists a system with a constant T2(ω, ε) > 0
such that

X1(ω, t) < ε for t ≥ T2. (4.15)

(i)(b) Now let us prove the extinction of X2 under (4.11) and (4.12). From (4.15),

16



dX2(ω, t) ≤ (r2X2(ω, t) + S1ε)dt+ δ2X2(ω, t)dB2(ω, t)

for all t ≥ T2 and ω ∈ Ω̄.
Notice that

ϕ(t, ω) = ϕ(0, ω)et(r2−
δ22
2
+σ2

B2(t,ω)
t

) + S1ε

∫ t

0

e(t−s)(r2−
δ22
2
+δ2

B2(t,ω)−B2(s,ω)
t−s

)ds, (4.16)

and it satisfies the following equation

dϕ = (r2ϕ+ S1ε)dt+ δ2ϕdB2(t). (4.17)

According to Lemma 2.3, for any ϵ ∈ (0, 1), there exists a state with a large T3 such that∣∣∣∣B2(t, ω)−B2(s, ω)

t− s

∣∣∣∣ < ϵ for all t− s > T3 (4.18)

almost surely. Without loss of generality, for any ω ∈ Ω̄ we assume (4.18) is true. Choosing ϵ
such that 2(r2 + δ2ϵ)− δ22 < 0. For t ≥ T3,

ϕ(t, ω) ≤ ϕ(0, ω)et(r2−
δ22
2
+δ2ϵ) + ε

(
S1D1 +

∫ t

T3

S1e
v(r2−

δ22
2
+δ2ϵ)dv

)
, (4.19)

where

D1 =

∫ T3

0

ev(r2−
δ22
2
)+δ2(B2(t,ω)−B2(t−v,ω))dv.

It follows from the Kolmogrov Theorem [47] that there is a positive constant M4 such that

D1 ≤M4, for all t ≥ T3.

Because of (4.19),

lim sup
t→+∞

ϕ(t, ω) ≤ S1ε(M4 −
eL1T3

L1

),

where

L1 = r2 −
δ22
2

+ δ2ϵ < 0.

As a result of the arbitrariness of ε,

lim sup
t→+∞

ϕ(t, ω) = 0.

If ϕ(0) = X2(0), then according to the comparison principle we have

lim sup
t→+∞

X2(t, ω) = 0, for all ω ∈ Ω̄.

While P (Ω̄) = 1, so
lim

t→+∞
X2(t) = 0 a.s.
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(i)(c) Now let us prove the persistence in mean of X2 under (4.11) and (4.13). By (4.15) and
Theorem 3.2, we obtain

Y (t, ω) = Y (0, ω) exp[(C − µ− δ23
2
)t+ δ3B3(t)]

+

∫ t

0

S2 exp[(C − µ− δ23
2
)(t− s) + δ3(B3(t)−B3(s))]ds

for all t ≥ 0, and ω ∈ Ω̄. According to Lemma 2.3, for any ϵ1 ∈ (0, 1), there exists a state
with a large T4 such that∣∣∣∣B3(t, ω)−B3(s, ω)

t− s

∣∣∣∣ < ϵ1 for all t− s > T4 (4.20)

almost surely. Similarly, for any ω ∈ Ω̄ we assume (4.20) is true. Choosing ϵ1 such that
2(C − µ+ δ3ϵ1)− δ23 < 0. For t ≥ T4,

Y (t, ω) = Y (0, ω) exp(C − µ− δ23
2
+ δ3ϵ1)t

+

(
E1S2 +

∫ t

T4
S2e

u(C−µ− δ23
2
+δ3ϵ1)du

)
,

(4.21)

where

E1 =

∫ T4

0

eu(C−µ− δ23
2
)+δ3(B3(t,ω)−B3(t−u,ω))du.

By the Kolmogrov Theorem [47], there is a positive constant M5 such that

E1 ≤M5, for all t ≥ T4.

Because of (4.21), for any ω ∈ Ω̄, there exist two constants ε1 > 0 and T4(ω, ε1) > 0 such that

lim sup
t→+∞

Y (t, ω) ≤ S2(M5 −
eL2T4

L2

) < ε1,

where

L2 = C − µ− δ23
2

+ δ3ϵ1 < 0.

Thus,
Y (ω, t) < ε1 for t ≥ T4. (4.22)

Assume that (4.11) and (4.13) are satisfied. Because of (4.11), the (4.22) are satisfied for
0 < ε1 < g2(r2 − r2β − δ22/2)/a2. Hence, for t ≥ T4 and ω ∈ Ω̄, we have

dX2(ω, t) ≥ r2

(
1− β − X2(ω, t)

K
− a2ε1
r2g2

)
X2(ω, t)dt+ δ2X2(ω, t)dB2(ω, t).

Let φ be the solution of

dφ(t) = r2(1− β − φ

K
− a2ε1
r2g2

)φdt+ δ2φdB2(t), φ(0) = X2(0).
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Then

lim
t→+∞

1

t

∫ t

0

φ(s)ds =
K

r2
(r2(1− β − a2ε1

r2g2
)− 1

2
δ22) > 0.

By the comparison principle, we obtain

lim sup
t→+∞

1

t

∫ t

0

X2(s, ω1)ds ≥
K

r2

(
r2(1− β − a2ε1

r2g2
)− 1

2
δ22

)
> 0 for all ω ∈ Ω̄.

In view of P (Ω̄) = 1, thus

lim sup
t→+∞

1

t

∫ t

0

X2(s)ds ≥
K

r2

(
r2(1− β − a2ε1

r2g2
)− 1

2
δ22

)
> 0 a.s.

(ii) Similarly, consider the inequality (4.22) conforms to 0 < ε1 < g1(W1−H1−W1α−δ21/2)/a1
under (4.14). For t ≥ T4 and ω ∈ Ω̄, we get

dX1(ω, t) ≥ [W1 −H1 −W1α− a1ε1
g1

− W1

K
X1]X1(ω, t)dt+ δ1X1(ω, t)dB1(ω, t).

Let φ be the solution of

dφ(t) = [W1 −H1 −W1α− a1ε1
g1

− W1

K
φ]φdt+ δ1φdB1(ω, t), φ(0) = X(0).

Hence,

lim
t→+∞

1

t

∫ t

0

φ(s)ds =
K

W1

(W1 −H1 −W1α− a1ε1
g1

− δ21
2
) > 0.

Applying the comparison principle,

lim sup
t→+∞

1

t

∫ t

0

X1(s, ω)ds ≥
K

W1

(W1 −H1 −W1α− a1ε1
g1

− δ21
2
) > 0 for all ω ∈ Ω̄.

Notice that P (Ω̄) = 1, then

lim sup
t→+∞

1

t

∫ t

0

X1(s)ds ≥
K

W1

(W1 −H1 −W1α− a1ε1
g1

− δ21
2
) > 0 a.s.

This completes the proof.
Assumption 1. Theorem 4.2 reveals that X1, X2 and Y are always bounded, existing with
three positive constants J1, J2 and J3 such that 0 ≤ X1 ≤ J1, 0 ≤ X2 ≤ J2 and 0 ≤ Y ≤ J3.
Moreover, 0 ≤ a1Y

g1+X1+X2
≤ a1K

g1+2K

.
= G1 and 0 ≤ a2Y

g1+X1+X2
≤ a2K

g2+2K

.
= G2.

Theorem 4.6. Under assumption 1, if κ1 = mint≥0[W1 −H1 −W1α − 1
2
δ21 − a1G1] > 0 and

κ2 = mint≥0[r2−r2β− 1
2
δ22−a2G2] > 0, then the AD and AI cells are stochastically permanent,

respectively.

Proof. We only need to prove that there are four constants βi > 0 and ϱi > 0 such that
lim inft→+∞ P{Xi(t) ≥ βi} ≥ 1 − ε and lim inft→+∞ P{Xi(t) ≤ ϱi} ≥ 1 − ε for any ε ∈ (0, 1),
where i = 1, 2.
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For the first inequality, defining Lyapunov function V 1(Xi) = 1/Xi (i = 1, 2, Xi > 0) and
applying Itô’s formula to the first two equations of system (3.7), we have

dV 1(X1) = −dX1

X2
1
+ dX1

2

X3
1

= − 1
X1

{[W1(1− X1+αX2

K
)−H1 − a1Y

g1+X1+X2
]

+δ1dB1(t)}+ 1
X1
δ21dt

= −V 1(X1)(W1 −H1 − W1X1

K
− W1αX2

K
− a1Y

g1+X1+X2
)dt+ V 1(X1)δ

2
1dt

−V 1(X1)δ1dB1(t),

and

dV 1(X2) = −dX2

X2
2
+ dX2

2

X3
2

= − 1
X2

{[r2(1− βX1+X2

K
) + S1X1X2 − a2Y

g2+X1+X2
]

+δ2dB2(t)}+ 1
X2
δ22dt

= −V 1(X2)(r2 − r2X2

K
− r2βX1

K
+ S1X1X2 − a2Y

g2+X1+X2
)dt+ V 1(X2)δ

2
2dt

−V 1(X2)δ2dB2(t).

Selecting two positive constants ϑ1 and ϑ2 such that κi > 0.5ϑiδ
2
i (i = 1, 2), then we define

another Lyapunov function V 2(Xi) = (1 + V 1(Xi))
ϑi(i = 1, 2), by using Itô’s formula gives

dV 2(X1) = ϑ1(1 + V 1(X1))
ϑ1−1dV 1(X1) + 0.5ϑ1(ϑ1 − 1)(1 + V 1(X1))

ϑ1−2(dV 1(X1))
2

= ϑ1(1 + V 1(X1))
ϑ1−2{(−V 1(X1)− (V 1(X1))

2)[W1 −H1 − W1X1

K
− W1αX2

K

− a1Y
g1+X1+X2

] + (V 1(X1) + (V 1(X1))
2)δ21 + 0.5(ϑ1 − 1)(V 1(X1))

2δ21}dt

−ϑ1(1 + V 1(X1))
ϑ1−1V 1(X1)δ1dB1(t)

= ϑ1(1 + V 1(X1))
ϑ1−2{−(V 1(X1))

2[W1 −H1 − W1αX2

K
− a1Y

g1+X1+X2
− 0.5δ21

−0.5ϑ1δ
2
1] + V 1(X1){[−(W1 −H1 − W1X1

K
− a1Y

g1+X1+X2
) + δ21] +

W1X1

K
}dt

−ϑ1(1 + V 1(X1))
ϑ1−1V 1(X1)δ1dB1(t)

≤ ϑ1(1 + V 1(X1))
ϑ1−2{−(V 1(X1))

2[κ1 − 0.5ϑ1δ
2
1]

+V 1(X1)[H1 +
W1J1
K

+ a1G1 + δ21] +
W1G1

K
}dt

−ϑ1(1 + V 1(X1)
ϑ1−1V 1(X1)δ1dB1(t),
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and

dV 2(X2) = ϑ2(1 + V 1(X2))
ϑ2−1dV 1(X2) + 0.5ϑ2(ϑ2 − 1)(1 + V 1(X1))

ϑ2−2(dV 1(X1))
2

= ϑ2(1 + V 1(X2))
ϑ2−2{(−V 1(X2)− (V 1(X2))

2)[r2 − r2X2

K
− r2βX1

K
+ S1X1X2

− a2Y
g2+X1+X2

] + (V 1(X2) + (V 1(X2))
2)δ22 + 0.5(ϑ2 − 1)(V 1(X2))

2δ22}dt

−ϑ2(1 + V 1(X2))
ϑ2−1V 1(X2)δ2dB2(t)

= ϑ2(1 + V 1(X2))
ϑ2−2{−(V 1(X2))

2[r2 − r2βX1

K
+ S1X1X2 − a2Y

g2+X1+X2
− 0.5δ22

−0.5ϑ2δ
2
2] + V 1(X2){[−(r2 − r2βX2

K
+ S1X1X2 − a2Y

g2+X1+X2
) + δ22] +

r2X2

K
}dt

−ϑ2(1 + V 1(X2))
ϑ2−1V 1(X2)δ2dB2(t)

≤ ϑ2(1 + V 1(X2))
ϑ2−2{−(V 1(X2))

2[κ2 − 0.5ϑ2δ
2
2]

+V 1(X2)[
r2J2
K

+ a2G2 + δ22] +
r2G2

K
}dt

−ϑ2(1 + V 1(X2)
ϑ2−1V 1(X2)δ2dB2(t).

Choosing sufficiently small ξi(i = 1, 2), then

κi − 0.5ϑiδ
2
i >

ξi
ϑi
> 0. (4.23)

Defining another two Lyapunov functions V 3(Xi) = exp(ξit)V
2(Xi))(i = 1, 2), an application

of Itô’s formula leads to

dV 3(X1) = ξ1 exp(ξ1t)V
2(X1)dt+ exp(ξ1t)dV

2(X1)

≤ ϑ1 exp(ξ1t)(1 + V 1(X1))
ϑ1−2{ ξ1(1+V 1(X1))2

ϑ1
− (V 1(X1))

2[κ1 − 0.5ϑ1δ
2
1]

+V 1(X1)[H1 +
W1J1
K

+ a1G1 + δ21] +
W1G1

K
}dt

−ϑ1 exp(ξ1t)(1 + V 1(X1))
ϑ1−1V 1(X1)δ1dB1(t)

.
= exp(ξ1t)h(X1)dt− ϑ1 exp(ξ1t)(1 + V 1(X1))

ϑ1−1V 1(X1)δ1dB1(t),

and

dV 3(X2) = ξ2 exp(ξ2t)V
2(X2)dt+ exp(ξ2t)dV

2(X2)

≤ ϑ2 exp(ξ2t)(1 + V 1(X2))
ϑ2−2{ ξ2(1+V 1(X2))2

ϑ2
− (V 1(X2))

2[κ2 − 0.5ϑ2δ
2
2]

+V 1(X2)[
r2J2
K

+ a2G2 + δ22] +
r2G2

K
}dt

−ϑ2 exp(ξ2t)(1 + V 1(X2))
ϑ2−1V 1(X2)δ2dB2(t)

.
= exp(ξ2t)h(X2)dt− ϑ2 exp(ξ2t)(1 + V 1(X2))

ϑ2−1V 1(X2)δ2dB2(t),

where
h(X1) = ϑ1(1 + V 1(X1))

ϑ1−2{−[κ1 − 0.5ϑ1δ
2
1 −

ξ1
ϑ1
](V 1(X1))

2

+[H1 +
W1J1
K

+ a1G1 + δ21 +
2ξ1
ϑ1
]V 1(X1) +

W1J1
K

+ ξ1
ϑ1
},

and
h(X2) = ϑ2(1 + V 1(X2))

ϑ2−2{−[κ2 − 0.5ϑ2δ
2
2 −

ξ2
ϑ2
](V 1(X2))

2

+[ r2J2
K

+ a2G2 + δ22 +
2ξ2
ϑ2
]V 1(X2) +

r2J2
K

+ ξ2
ϑ2
}.

21



Let B1 = κ1 − 0.5ϑ1δ
2
1 −

ξ1
ϑ1
, B2 = H1 +W1J1/K + a1G1 + δ21 +2ξ1/ϑ1, B3 = W1J1/K + ξ1/ϑ1,

C1 = κ2 − 0.5ϑ2δ
2
2 −

ξ2
ϑ2
, C2 = r2J2/K + a2G2 + δ22 + 2ξ2/ϑ2 and C3 = r2J2/K + ξ2/ϑ2. It is

found that Bj > 0 and Cj > 0(j = 1, 2, 3) and (4.23) holds true. Therefore, we can define
h(X1) and h(X2) as

h(X1) = ϑ1(1 +
1

X1

)ϑ1−2

{
− B1

X2
1

+
B2

X1

+B3

}
,

and

h(X2) = ϑ2(1 +
1

X2

)ϑ2−2

{
− C1

X2
2

+
C2

X2

+ C3

}
.

Obviously, h(X1) is upper bounded when X1 > 0. If 1/X1 ≥ {B2+
√
B2

2 + 4B1B3}/2B1
.
= ∆1,

then h(X1) ≤ 0. If 0 < 1/X1 ≤ ∆1, then h(X1) ≤ {4B1B3+B
2
2}/4B1. Furthermore, if ϑ1 ≥ 2,

then ϑ1(1+1/X1)
ϑ1−2 ≤ ϑ1(1+∆1)

ϑ1−2; if ϑ1 < 2, then ϑ1(1+
1
X1

)ϑ1−2 ≤ ϑ1. Thus, for X1 > 0

we always have h(X1) ≤ h0 = ∆2(4B1B3 +B2
2)/(4B1), where ∆2 = max{ϑ1, ϑ1(1 + ∆1)

ϑ1−2}.
In short, h(X1) is always upper bounded. Similarly, h(X2) is also upper bounded.

From dV 3(X1) and dV
3(X2) we have

dV 3(Xi) ≤ exp(ξit)h(Xi)dt− ϑi exp(ξit)(1 + V 1(Xi))
ϑi−1V 1(Xi)δidBi(t)

≤ h0 exp(ξit)dt− ϑi exp(ξit)(1 + V 1(Xi))
ϑi−1V 1(Xi)δidBi(t).

Integrating the above equation from 0 to t and taking the expectation,

E[V 3(Xi(t))] ≤ V 3(Xi(0)) +
h0i
ξi

exp(ξit),

notice that V 3(Xi(t)) = exp(ξit)(1 + V 1(Xi(t)))
ϑi ,

E[V 3(Xi(t))] = E[exp(ξit)(1 + V 1Xi(t)))
ϑ1 ]

≤ V 3(Xi(0)) +
h0
i

ξ1
exp(ξit)

= (1 + V 1(Xi(0)))
ϑi +

h0
i

ξi
exp(ξit).

Taking the upper limit of both sides yields

lim supt→+∞E[ 1
Xi(t)ϑi

] = lim supt→+∞E[(V 1(Xi(t)))
ϑi ]

≤ lim supt→+∞E[(1 + V 1(Xi(t)))
ϑi ] ≤ h0

i

ξi
= hiNi

.

For arbitrary εi > 0, let βi = ε
1
ϑi
i /hi

1
ϑi
Ni
, by Chebyshev’s inequality

lim supt→+∞ P{Xi(t) < βi} = lim supt→+∞ P{ 1

X
ϑi
i (t)

> 1

β
ϑi
i

}

≤ lim supt→+∞

E[ 1

X
ϑi
i

(t)
]

β
−ϑi
i

= lim supt→+∞ βϑi
i E[

1

X
ϑi
i (t)

] = εi.
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Thus, lim inft→+∞ P{Xi(t) ≥ βi} ≥ 1− εi.
Now, defining another Lyapunov function V1(Xi(t)) = Xp

i (t)(Xi > 0, i = 1, 2), and apply-
ing Itô’s formula to the equations of system (3.7) yields

dV1(X1(t)) = pXp−1
1 (t)dX1(t) +

p(p−1)
2

Xp−2
1 (t)(dX1(t))

2

= pXp−1
1 (t)[(W1 −H1 − W1X1

K
− W1αX2

K
− a1Y

g1+X1+X2
)X1dt+ δ21X1dB1(t)]

+0.5p(p− 1)Xp−2
1 (t)δ21X

2
1dt

= pV1(X1(t))[W1 −H1 − W1X1

K
− W1αX2

K
− a1Y

g1+X1+X2
+ 0.5(p− 1)δ21]dt

+pδ21V1(X1(t))dB1(t)

≤ pV1(X1(t))[W1 − W1X1

K
+ 0.5(p− 1)δ21]dt

+pδ21V1(X1(t))dB1(t),

and

dV1(X2(t)) = pXp−1
2 (t)dX2(t) +

p(p−1)
2

Xp−2
2 (t)(dX2(t))

2

= pXp−1
2 (t)[(r2 − r2X2

K
− r2βX1

K
+ S1

X1

X2
− a2Y

g2+X1+X2
)X2dt+ δ22X2dB2(t)]

+0.5p(p− 1)Xp−2
2 (t)δ22X

2
2dt

= pV1(X2(t))[r2 − r2X2

K
− r2βX1

K
+ S1

X1

X2
− a2Y

g2+X1+X2
+ 0.5(p− 1)δ21]dt

+pδ22V1(X2(t))dB1(t)

≤ pV1(X2(t))[r2 − r2X2

K
+ S1J1 + 0.5(p− 1)δ22]dt

+pδ22V2(X2(t))dB1(t).

For dV1(X1(t)), let us integrate both sides of the above inequality from 0 to t and then
taking the expectation yields

E[V1(X1(t))]− E[V1(X1(0))] ≤ p

∫ t

0

E

{
V1(X1(s))[W1 −

W1X1(s)

K
+ 0.5(p− 1)δ21]

}
ds,

Taking the derivative of both sides of this inequality, then

dE[V1(X1(t))]

dt
≤ pE[V1(X1(t))][W1 + 0.5(p− 1)δ21]−

pP1

K
E[Xp+1

1 (t)].

In the light of Hölder’s inequality,

dE[V1(X1(t))]

dt
≤ pE[V1(X1(t))][W1 + 0.5(p− 1)δ21]−

pP1

K
E[Xp

1 (t)]
p+1
p .

Let n(t) = E[V1(X1(t))], we get

dn(t)

dt
≤ pn(t)[W1 + 0.5(p− 1)δ21 − W1

K
m

1
p (t)]

≤ pn(t)[W1 + 0.5pδ21 − W1

K
m

1
p (t)].
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An application of the standard comparison theorem yields

lim supt→+∞E[Xp
1 (t)] = lim supt→+∞E[V1(X1(t))]

= lim supt→+∞ n(t)

≤
(

(W1+0.5pδ21)K

W1

)p

.

Similarly, the Chebyshev’s inequality results in

lim inf
t→+∞

P{X1(t) ≤ ϱ1} ≥ 1− ε1.

For dV2(X1(t)), by using the same methods as dV1(X1(t)),

lim supt→+∞E[Xp
2 (t)] = lim supt→+∞E[V1(X2(t))]

= lim supt→+∞ n(t)

≤
(

(r2+S1J1+0.5pδ21)K

r2

)p

,

we also have
lim inf
t→+∞

P{X2(t) ≤ ϱ2} ≥ 1− ε2.

Therefore, the AD and AI cells are stochastically persistent, respectively. This completes the
proof.

5. Stationary distribution and ergodicity of the system

In this section, by using the same methods as shown in [1, 4, 32, 34, 48, 49], we will explore
the existence of a unique ergodic steady state distribution of the system (3.7).
Lemma 5.1 ([48]) If there is a bounded domain U ∈ IntR3

+ with regular boundary Γ and

(i) there exists a state with a positive ζ such that
∑3

i,j=1 bij(Z)ξiξj > ζ∥ξ∥2, Z ∈ Ū , ξ ∈ R3.

˙(ii) there exists a state with a non-negative C2− function V such that LV is negative for any
IntR3

+ \ U . Then

Pz{ lim
T→∞

1

T

∫ T

0

g(Z(t))dt =

∫
g(z)µ(dz)} = 1,

for all z ∈ Ū , where g(·) is a function integrable with respect to the measure µ, then the
Markov process Z(t) has a unique ergodic stationary distribution µ(·).
Theorem 5.2. If 

Z1 : = W1 −H1 −
1

2
δ21 > 0,

Z2 : = µ− C − 2a1
g1

− a2
g2
> 0,

Z3 : = r2 −
1

2
δ22 > 0,

Z4 : =| W1 −H1 −
1

2
δ21 | − | C − µ− δ23

2
|> 0,

∆1 : = S2
2 − 4(µ− C − 2a1

g1
− a2

g2
)S2 ≤ 0,

(5.1)
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then system (3.7) has a unique ergodic stationary distribution.
Proof. For simplicity, denote X1(t), X2(t) and Y (t) as X1, X2 and Y . The diffusion matrix
for system (3.7) is given by

b(Z) =

δ
2
1X

2
1 0 0

0 δ22X
2
2 0

0 0 δ23Y
2

 .

Selecting ξ = min(X1,X2,Y )∈Ūδ⊂R3
+
{δ21X2

1 , δ
2
2X

2
2 , δ

2
3Y

2}, then

3∑
i,j=1

bij(Z)ξiξj =
3∑

i,j=1

bij(X1, X2, Y )ξiξj = δ21X
2
1ξ

2
1 + δ22X

2
2ξ

2
2 + δ23Y

2ξ23

≥ min
(X1,X2,Y )∈Ū

{δ21X2
1 , δ

2
2X

2
2 , δ

2
3Y

2}∥ξ∥2

for all Z = (X1, X2, Y ) ∈ Ū , ξ = (ξ1, ξ2, ξ3) ∈ R3. This indicates that condition (i) in Lemma
5.1 holds.

Let

V (X1, X2, X3) = X1 − lnX1 +
1

X1

+X2 − lnX2 + Y − lnY.

Making use of Itô’s formula yields

dV = LV dt+ δ1(X1 − 1− 1

X1

)dB1(t) + δ2(X2 − 1)dB2(t) + δ3(Y − 1)dB3(t),

where

LV (X1, X2, Y ) = X1(W1 −H1 − W1X1

K
− W1αX2

K
− a1Y

g1+X1+X2
)− (W1 −H1 − δ21

2
)

− 1
X1

(W1 −H1 − W1X1

K
− W1αX2

K
− a1Y

g1+X1+X2
) +

δ21
X1

+W1X1

K
+ W1α

K
X2 +

a1Y
g1+X1+X2

+X2(r2 − r2βX1

K
− r2

K
X2

+S1
X1

X2
− a2Y

g2+X1+X2
)− (r2 − δ22

2
) + r2βX1

K
+ r2

K
X2 − S1

X1

X2

+ a2Y
g2+X1+X2

− (C − µ− δ23
2
) + −(µ−C)Y 2+S2Y−S2

Y
.

Then

LV (X1, X2, Y ) ≤ ψ(X1) + ψ(X2) + ψ(Y )− S1
X1

X2

,

where

ψ(X1) = −W1

K
X2

1 + (W1 −H1 +
W1

K
+ S1 +

r2β

K
)X1 +

H1 −W1

X1

+
W1α

X1

+
δ21
X1

+
W1

K
,

ψ(X2) = − r2
K
X2

2 + (r2 +
r2
K

+
W1α

K
)X2 − (W1 −H1 −

δ21
2
)− (r2 −

δ22
2
)− (C − µ− δ23

2
),

ψ(Y ) =
−(µ− C − 2a1

g1
− a2

g2
)Y 2 + S2Y − S2

Y
.
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Notice that ψ(Y ) has a negative upper bound. Now we construct subset U such that the
condition (ii) in Lemma 5.1 holds. To this end, defining the following bounded domain

U = [ϵ, 1/ϵ]× [ϵ, 1/ϵ]× [ϵ, 1/ϵ] ⊂ IntR3
+,

implies that LV (X1, X2, Y ) is negative for all (X1, X2, Y ) ∈ IntR3
+ \ U. One can choose suffi-

ciently small ϵ which satisfies the following conditions:

(W1 −H1 +
W1

K
+ S1 +

r2β

K
)ϵ+

W1α + δ21 +H1 −W1

ϵ
+
W1

K
+ A1 ≤ −1, (5.2)

(r2 +
r2
K

+
W1α

K
)ϵ− S1

ϵ
+ A2 ≤ −1, (5.3)

− S2

ϵ
+ A3 ≤ −1, (5.4)

− W1

2Kϵ2
+
W1 −H1 +

W1

K
+ S1 +

r2β
K

ϵ
+
W1

K
+ A4 ≤ −1, (5.5)

− r2
2Kϵ2

+
r2 +

r2
K
+ W1α

K

ϵ
+ A5 ≤ −1, (5.6)

−
µ− C − 2a1

g1
− a2

g2

ϵ
+ A6 ≤ −1, (5.7)

where A1, A2, A3, A4, A5 and A6 are positive constants which are defined in the following
inequalities (5.8)-(5.13). It is clear that IntR3

+ \ U = U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 ∪ U6, where

U1 = {0 < X1 < ϵ}, U2 = {X1 ≥ ϵ, 0 < X2 < ϵ, Y ≥ ϵ},

U3 = {0 < Y < ϵ}, U4 = {X1 >
1

ϵ
},

U5 = {X2 >
1

ϵ
}, U6 = {Y >

1

ϵ
}.

Next we will show that LV (X1, X2, Y ) ≤ −1 on UC = U1 ∪ . . . ∪ U6.
Case 1, if (X1, X2, Y ) ∈ U1, then

LV ≤ −W1

K
X2

1 + (W1 −H1 +
W1

K
+ S1 +

r2β
K
)X1 +

H1−W1

X1
+ W1α

X1
+

δ21
X1

+W1

K
+ ψ(X2) + ψ(Y )

≤ (W1 −H1 +
W1

K
+ S1 +

r2β
K
)ϵ+

W1α+δ21+H1−W1

ϵ
+ W1

K
+ A1,

(5.8)

where
A1 = sup

(X1,X2,Y )∈R3
+

{ψ(X2) + ψ(Y )}.

According to (5.2), we know that LV ≤ −1 on U1.
Case 2, if (X1, X2, Y ) ∈ U2, we have

LV ≤ (r2 +
r2
K
+ W1α

K
)X2 + ψ(X1) + ψ(Y )− S1X1

X2

≤ (r2 +
r2
K
+ W1α

K
)ϵ− S1

ϵ
+ A2,

(5.9)
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where
A2 = sup

(X1,X2,Y )∈R3
+

{ψ(X1) + ψ(Y )}.

In terms of (5.3), on can get that LV ≤ −1 on U2.
Case 3, if (X1, X2, Y ) ∈ U3, then

LV ≤ S2 − S2

Y
+ ψ(X1) + ψ(X2)− S1X1

X2

≤ −S2

ϵ
+ A3,

(5.10)

where
A3 = sup

(X1,X2,Y )∈R3
+

{S2 + ψ(X1) + ψ(X2)}.

In the light of (5.4) that LV ≤ −1 on U3.
Case 4, if (X1, X2, Y ) ∈ U4, we obtain

LV ≤ −W1

2K
X2

1 + (W1 −H1 +
W1

K
+ S1 +

r2β
K
)X1 +

W1

K
+ ψ(X2) + ψ(Y )

≤ − W1

2Kϵ2
+

W1−H1+
W1
K

+S1+
r2β
K

ϵ
+ W1

K
+ A4,

(5.11)

where

A4 = sup
(X1,X2,Y )∈R3

+

{−W1

2K
X2

1 + ψ(X2) + ψ(Y )}.

By (5.5), we have LV ≤ −1 on U4.
Case 5, if (X1, X2, Y ) ∈ U5, we can get that

LV ≤ − r2
2K
X2

2 + (r2 +
r2
K
+ W1α

K
)X2 + ψ(X1) + ψ(Y )

≤ − r2
2Kϵ2

+
r2+

r2
K

+
W1α
K

ϵ
+ A5,

(5.12)

where
A5 = sup

(X1,X2,Y )∈R3
+

{− r2
2K

X2
2 + ψ(X1) + ψ(Y )}.

From (5.6), we can conclude that LV ≤ −1 on U5.
Case 6, if (X1, X2, Y ) ∈ U6, we have

LV ≤ −(µ− C − 2a1
g1

− a2
g2
)Y + ψ(X1) + ψ(X2)− S1X1

X2

≤ −
µ−C− 2a1

g1
−a2

g2

ϵ
+ A6,

(5.13)

where
A6 = sup

(X1,X2,Y )∈R3
+

{ψ(X1) + ψ(X2)}.

It follows from (5.7) that LV ≤ −1 on U6.
Obviously, it follows from (5.8)-(5.13) that for a sufficient small ϵ,

LV ≤ −1 for all (X1, X2, Y ) ∈ R3
+ \ U.

It means that condition (ii) of Lemma 5.1 holds true. Therefore, system (5.1) is ergodic and
has a unique stationary distribution. This completes the proof.
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6. Numerical simulations

In what follows, we carry out numerical simulations by adopting the Milsteins higher order
method [50] to get the approximate solution system (2.2) with initial conditions. System (2.2)
of the discretization equations are as shown in the following,

Ak+1 = Ak − γ(Ak − a0)∆t,

Dk+1 = Dk − cDk∆t,

X1k+1 = X1k + [r1Ak(1−
X1k + αX2k

K
)− (d1 +m1)(1−

Ak

a0
)

− a1Yk
g1 +X1k +X2k

]X1k∆t+ δ1X1k

√
∆tξk +

δ21
2
X1k(ξ

2
k − 1)∆t,

X2k+1 = X2k + [r2(1−
βX1k +X2k

K
)X2k +m1(1−

Ak

a0
)X1k

− a2X2kYk
g2 +X1k +X2k

]∆t+ δ2X2k

√
∆tζk +

δ22
2
X2k(ζ

2
k − 1)∆t,

Yk+1 = Yk + [(C − µ)Yk +
eDk

g3 +Dk

]∆t

+δ3Yk
√
∆tηk +

δ23
2
Yk(η

2
k − 1)∆t,

(6.1)

when t = nT , the system (2.2) executed pulsed therapies, i.e., there is a time step h, if
mod(hk, T )=0, then {

Ak+1 = (1− δ)Ak,
Dk+1 = Dk + τ,

(6.2)

where ξk, ζk and ηk(k = 1, 2, 3, · · · ) represent independent Gaussian random variables with a
distribution N(0, 1), and let the time increment ∆t = h = 0.01.

6.1. Effects of random perturbations on the evolution of AD and AI cells

The baseline parameter values of system (2.2) were fixed as shown in references [3, 4, 21,
25, 28, 51]. Since tumour growth is sensitive to environmental variables such as temperature,
radiation, nutrients and oxygen supply [4, 30, 52–54], we will show how the changes of δ1 and
δ2 affect the evolution of AD and AI cells, respectively.

We fixed the parameter values as shown in Fig.1. Simple calculations indicate that W1 −
H1 − 1

2
δ21 ≈ −0.751 < 0, from Theorem 4.5 the AD cells become extinct (Fig.1(a)). If we set

δ1 = 0.5, C = 0.47, then we have C−µ− δ23
2
= −0.33 < 0 andW1−H1−W1α− 1

2
δ21 ≈ 0.222 > 0,

the results of Theorem 4.5 imply that the AD cells become persistent in the mean (Fig.1(b)).

If we set C = 0.81 and fix others as shown in (Fig.1(c)), thus C − µ − δ23
2
= 0.01 > 0, it is

found that AD cells eventually become extinct (Fig.1(c)).
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Figure 1: Extinction and persistence in mean of AD cells. (a) C = 0.47, δ1 = 3; (b) C = 0.47, δ1 = 0.5; (c)
C = 0.81, δ1 = 0.5. The initial values of the solution illustrated in black were fixed as (X1(0), X2(0), Y (0)) =
(10, 10, 0.5), and all other parameters were fixed as: r1 = 1.2, r2 = 0.4, d1 = 0.3, m1 = 0.01, K = 1000,
a0 = 3.5, γ = 0.08, a1 = 0.2, a2 = 0.2, T = 100, g1 = 10, g2 = 10, g3 = 10, µ = 0.3, e = 10, c = 0.00311,
d = 0.3, δ2 = 1, δ3 = 1, τ = 0.1, δ = 0.1, α = 0.9 and β = 0.8.

By keeping all other parameters as shown in Fig.2, from the results in Fig.2(a), it is found
that W1 − H1 − 1

2
δ21 ≈ −0.751 < 0 and r2 − 1

2
δ22 ≈ −0.1 < 0, so from Theorem 4.5 the AI

cells become extinct (Fig.2(a)). If we set δ2 = 0.1, then W1 −H1 −W1α− 1
2
δ21 ≈ −0.751 < 0,

C−µ− δ23
2
= −0.33 < 0 and r2−r2β− 1

2
δ22 = 0.075 > 0, Theorem 4.5 suggests that the AI cells

become persistent in the mean (Fig.1(b)). If we set C = 0.81, then C − µ− δ23
2
= 0.01 > 0, it

is observed that AI cells become extinct (Fig.2(c)).
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Figure 2: Extinction and persistence in mean of AI cells. (a) C = 0.47, δ2 = 1; (b) C = 0.47, δ2 = 0.1; (c)
C = 0.81, δ2 = 0.1. The initial values of solution with black were fixed as (X1(0), X2(0), Y (0)) = (10, 10, 0.5),
and all other parameters were fixed as: r1 = 1.2, r2 = 0.4, d1 = 0.3, m1 = 0.01, K = 1000, a0 = 3.5, γ = 0.08,
a1 = 0.2, a2 = 0.2, T = 100, g1 = 10, g2 = 10, g3 = 10, µ = 0.3, e = 10, c = 0.00311, d = 0.3, δ1 = 3, δ3 = 1,
τ = 0.1, δ = 0.1, α = 0.9 and β = 0.8.

From Fig.1(a) to Fig.2(a)) or from Fig.1(b) to Fig.2(b), with the decrease of white noise, the
dynamic behaviour of the two types of prostate cancer cells gradually changed from the state
of extinction to persistence in the mean. This reveals that random interference has a relatively
important impact on both AD and AI cells. From Fig.1(b) to Fig.1(c), the antigenicity of the
tumours also affects the dynamics of both AD and AI cells.

With the other parameter values as shown in Fig.3, in Fig.3(a), we set δ1 = 0.5 and
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δ2 = 0.3, then

κ1 = min
t≥0

[W1 −H1 −W1α− 1

2
δ21 − a1G1] ≈ 0.1225 > 0.

It follows from Theorem 4.6 that the AD cells become stochastically permanent (Fig.3(a)).
Similarly, in Fig.4(a), we set r2 = 0.8, δ1 = 0.3 and δ2 = 0.3, then

κ2 = min
t≥0

[r2 − r2β − 1

2
δ22 − a2G2] ≈ 0.0155 > 0.

From Theorem 4.6, the AI cells become stochastically permanent (Fig.4(a)). Increasing the
white noise will lead both AD and AI cells to extinction (Fig.5 and Fig.6), showing that white
noise can determine the dynamic behaviour of AD and AI cells.
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Figure 3: Stochastic permanence of AD cells. (a) δ1 = 0.5; (b) δ1 = 0. The initial values of the solution
illustrated in black were fixed as (X1(0), X2(0), Y (0)) = (10, 10, 0.5), and all other parameters were fixed as:
r1 = 1.2, r2 = 0.4, d1 = 0.3, m1 = 0.01, K = 1000, a0 = 3.5, γ = 0.08, C = 0.47, a1 = 0.2, a2 = 0.2, T = 100,
g1 = 10, g2 = 10, g3 = 10, µ = 0.3, e = 10, c = 0.00311, d = 0.3, δ2 = 0.3, δ3 = 1, τ = 0.1, δ = 0.1, α = 0.9
and β = 0.8.
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Figure 4: Stochastic permanence of AI cells. (a) δ2 = 0.3; (b) δ2 = 0. The initial values of the solution
illustrated in black were fixed as (X1(0), X2(0), Y (0)) = (10, 10, 0.5), and all other parameters were fixed as:
r1 = 1.2, r2 = 0.8, d1 = 0.3, m1 = 0.01, K = 1000, a0 = 3.5, γ = 0.08, C = 0.47, a1 = 0.2, a2 = 0.2, T = 100,
g1 = 10, g2 = 10, g3 = 10, µ = 0.3, e = 10, c = 0.00311, d = 0.3, δ1 = 0.3, δ3 = 1, τ = 0.1, δ = 0.1, α = 0.9
and β = 0.8.
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Figure 5: The effects of noise on the evolution of AD cells. (a) δ1 = 0.4; (b) δ1 = 0.8; (c) δ1 = 1.2; (d) δ1 = 1.6.
The initial values of the solution illustrated in black were fixed as (X1(0), X2(0), Y (0)) = (10, 10, 0.5), and
all other parameters were fixed as: r1 = 1.2, r2 = 0.8, d1 = 0.3, m1 = 0.01, K = 1000, a0 = 3.5, γ = 0.08,
C = 0.47, a1 = 0.2, a2 = 0.2, T = 100, g1 = 10, g2 = 10, g3 = 10, µ = 0.3, e = 10, c = 0.00311, d = 0.3,
δ2 = 1, δ3 = 1, τ = 0.1, δ = 0.1, α = 0.9 and β = 0.8.
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Figure 6: The effects of noise on the evolution of AI cells. (a) δ2 = 0.5; (b) δ2 = 1; (c) δ2 = 1.5; (d) δ2 = 2.
The initial values of the solution illustrated in black were fixed as (X1(0), X2(0), Y (0)) = (10, 10, 0.5), and
all other parameters were fixed as: r1 = 1.2, r2 = 0.8, d1 = 0.3, m1 = 0.01, K = 1000, a0 = 3.5, γ = 0.08,
C = 0.47, a1 = 0.2, a2 = 0.2, T = 100, g1 = 10, g2 = 10, g3 = 10, µ = 0.3, e = 10, c = 0.00311, d = 0.3,
δ1 = 3, δ3 = 1, τ = 0.1, δ = 0.1, α = 0.9 and β = 0.8.

6.2. Monotherapy and comprehensive therapy

Theoretically, environmental noise can determine all the kinetic behaviour of tumour cells,
but environmental interference is limited in practice and not strong enough to control the
progression of cancer cells. The experiment verified that AI cells show stronger drug resistance
than AD cells at low dosages, but large dosages of drugs are likely to cause harm and side
effects (Fig.7) [3, 29, 55–62]. Therefore, we need an additional treatment to assist IAD, namely
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immunotherapy. Next, we will show how combination therapy of immunotherapy together with
IAD affects the evolution of AD and AI cells.

Figure 7: The effects of IAD alone on the evolution of AD and AI cells, where black is for AD cells (δ1 = 1),
and red is for AI cells (δ1 = 3). (a) δ = 0.2, T = 50; (b) δ = 0.9, T = 50; (c) δ = 0.2, T = 20; (d) δ = 0.2,
T = 80. The initial values were fixed as (X1(0), X2(0), Y (0)) = (10, 10, 0.5), and all other parameters were
fixed as: r1 = 1.2, r2 = 0.8, d1 = 0.3, m1 = 0.01, K = 1000, a0 = 3.5, γ = 0.08, C = 0.47, a1 = 0.2, a2 = 0.2,
, g1 = 10, g2 = 10, g3 = 10, µ = 0.3, e = 10, c = 0.00311, d = 0.3, δ2 = 1, δ3 = 1, τ = 0, α = 0.9 and β = 0.8.

Compared to treatments with IAD alone, comprehensive therapy has greater advantages
than application of IAD alone. It is revealed that both AD and AI cells can be removed in
a shorter time under combined treatment (Fig.8). If we increase the dosages of immunother-
apy and IAD therapy (Fig.8(a)), or increase the frequencies of the comprehensive treatment
(Fig.8(b)), or increase the frequencies and increase the dosages of comprehensive treatment
(Fig.8(c)), it can be seen that AD and AI cells go extinct very quickly compared to IAD alone.
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Figure 8: The effects of comprehensive therapy on the evolution of AD (δ1 = 1), and red for AI cells (δ1 = 3).
(a) δ = 0.9, τ = 0.9, T = 50; (b) δ = 0.2, τ = 0.2, T = 20; (c) δ = 0.9, τ = 0.9, T = 40. The initial values
were fixed as (X1(0), X2(0), Y (0)) = (10, 10, 0.5), and all other parameters were fixed as: r1 = 1.2, r2 = 0.8,
d1 = 0.3, m1 = 0.01, K = 1000, a0 = 3.5, γ = 0.08, C = 0.47, a1 = 0.2, a2 = 0.2, g1 = 10, g2 = 10, g3 = 10,
µ = 0.3, e = 10, c = 0.00311, d = 0.3, δ2 = 1, δ3 = 1, α = 0.9 and β = 0.8.
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6.3. Stationary distribution of the system

With the parameter values fixed as shown in Fig.9, it is found that all conditions of Theorem
5.2 are satisfied, i.e.,

W1 −H1 −
1

2
δ21 ≈ 3.749 > 0, µ− C − 2a1

g1
− a2
g2

= 0.04 > 0, r2 −
1

2
δ22 ≈ 0.8 > 0,

Z4 =| W1 −H1 −
1

2
δ21 | − | C − µ− δ23

2
|≈ 3.649 > 0,

and

S2
2 − 4(µ− C − 2a1

g1
− a2
g2
)S2 ≈ −0.191 ≤ 0,

it follows from Theorem 5.2 that system (3.7) exists with a unique stationary distribution.

Figure 9: Stationary distribution of AD and AI cells in deterministic and stochastic models. (a) and (b)
The initial values were fixed as (X1(0), X2(0), Y (0)) = (10, 10, 0.5). (c) and (d) The initial values were fixed
as (X1(0), X2(0), Y (0)) = (100, 100, 5). All other parameters were fixed as: r1 = 1.2, r2 = 0.8, d1 = 0.3,
m1 = 0.01, K = 1000, a0 = 3.5, γ = 0.08, C = 0.2, a1 = 0.2, a2 = 0.2, g1 = 10, g2 = 10, g3 = 10, µ = 0.3,
e = 10, c = 0.00311, d = 0.3, τ = 0.1, δ = 0.1, α = 0.9 and β = 0.8.

7. Discussion

In recent years, IAD therapy has been much discussed by the medical community and has
also been studied by many scholars [3, 21, 25, 30, 63]. It has been shown that IAD ther-
apy can improve the quality of life of patients and delay the development of drug resistance.
To prevent the production of new AI cells and treat the existing AI cells, immunotherapy is
considered to stop AI cells by enhancing the immunity of patients to cancer cells, thereby
improving the survival rate of patients with advanced prostate cancer [14–16]. Besides, the
evolution of tumours is inevitably affected by environmental disturbances such as temper-
ature, oxygen supply, nutrition, etc [4, 28–30]. The competition between the two types of
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tumour cells will affect their evolution, so it is necessary to consider white noise and different
competition coefficients. Based on these considerations, we extended the previous stochastic
models of prostate cancer by introducing combinations of tumour antigenicity and impulsive
immunotherapy with different competition coefficients.

We first examined the pharmacokinetics of immunotherapy and provided the expression
of the tumour-free periodic solution, indicating that there is a unique global positive solution
for the system. Then Itô’s formula, Lyapunov functions, the law of strong numbers, the
comparison theorem and relevant theorems of stochastic differential equations were used to
show that the solutions of the system are stochastically ultimately bounded and stochastic
persistent. The global attractivity of the solutions of the system was also proved. Furthermore,
we derived the threshold conditions for the extinction and persistence of tumours, and the
sufficient conditions for stochastic permanence of tumours and the stationary distribution and
ergodicity of the stochastic system were also obtained.

Numerical simulations were also carried out to support our theoretical results. The results
showed that both white noise and the antigenicity of the tumours have marked influences
on the survival of tumours. It was observed that AI cells are more resistant than AD cells,
requiring larger perturbations to make AI cells extinct. The results also indicate that the
combined therapy is more effective than IAD alone, which can not only completely eliminate
the two kinds of prostate cancer cells in a shorter time, but can also make up for the deficiency
of the single therapy (Fig.7 and Fig.8). Moreover, it was also verified that white noise can
affect the stationary distribution of prostate cancer cells (Fig.9).

Biologically, the results revealed that white noise can determine the dynamics of prostate
cancer cells. Specifically, we observed that low amounts of white noise can make tumour cells
present stochastic persistence, while large quantities of white noise lead to the extinction of
tumour cells, that is, white noise had a negative effect on the survival of prostate cancer cells.
However, environmental interference alone is not enough to control the progression of prostate
cancer cells, thus we must introduce a combination of IAD therapy and immunotherapy to con-
trol the development of prostate cancer cells. The results showed that increasing the dosages
of immunotherapy (or IAD therapy) or shortening the treatment period of immunotherapy
(or IAD therapy) is a feasible treatment for prostate cancer.

Compare with reference [36], the differences are listed as follows: (1) It is critical for
ADT to control androgen concentration, then we consider not only the dendritic cell vaccine,
but also the pulse effect of periodic injection of androgen. Since the antigenicity of tumours
always exists in the whole process of invasion, the antigenicity of prostate cancer cells is also
considered. (2) In addition to calculating the extinction and persistence of tumour cells, we
also explore the sufficient conditions for the existence of stationary distribution of the system.
(3) The experiments have confirmed that AI cells show stronger drug resistance than AD cells
at low dosages of androgen, but high dosages of drugs may cause side effects, and the periodic
injection of androgen can better control the growth of tumour cells [1, 32–34, 61, 62]. Besides,
the tumour antigenicity also affects the evolution of prostate cancer cells.

åThere are still many meaningful studies deserving future investigation. On the one hand,
bifurcation analysis of the model in this paper is an interesting research topic. On the other
hand, since cytokines have a good promoting effect on dendritic cells, the effects of pulse
injections of cytokines on the dynamic behaviour of prostate cancer cells is worth exploring.
We leave these questions for future work.
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