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Impulsive control strategies have been widely used in cancer treatment and linear impulsive 
control has always been considered in previous studies. We propose a novel tumour-immune 
model with nonlinear killing rate as state-dependent feedback control, which can better reflect 
the saturation effects of the tumour and immune cell mortalities due to chemotherapy, and its 
dynamic behaviors are investigated. The paper aims to discuss the transcritical and subcritical 
bifurcations of the model. To begin with, the threshold conditions for tumour eradication and 
tumour persistence in the model without pulse interventions are provided. We define the Poincare 
map of the proposed model and then address the existence and orbital asymptotically stability 

of the model’s tumour-free periodic solution. Furthermore, by using the bifurcation theory of 

the discrete one-parameter family of maps, which is determined by the Poincare mapping, we 
investigate the model’s transcritical and subcritical pitchfork bifurcations with respect to the 
key parameter. 
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1. Introduction 
Cancer is a malignant tumour caused by several gene mutations in normal cells, and it is generally 
thought to be one of the most serious diseases in the world. It kills over 10 million people each year, 
accounting for almost one-sixth of all fatalities worldwide [Wild et al., 2020]. Traditional treatment 
approaches for curing cancer mostly involved surgery, chemotherapy, radiation, and etc. However, 
these treatments usually failed to entirely clear tumour cells and sometimes induced a series of 
negative side e_ects for the patients. Due to this, a novel cancer treatment named immunotherapy 
was developed, which not only strengthened the efficacy of the traditional treatment, but also 
reduced the corresponding side e_ects [Gubin et al., 2014; Powles et al., 2014; Ribas et al., 2003; 
L_opez et al., 2017]. Two immunotherapies were proposed, including adoptive immunotherapy and 
active immunotherapy, where adoptive immunotherapy was carried out by means of injecting the 
cultured e_ector cells directly into patient's cancer regions, and active immunotherapy was 
implemented by infusing tumour vaccines to induce specifc immune responses or 
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injecting immunomodulators to activate non-specific immune function [Couzin Frankel, 2013; Norman,
2004; Shiao et al., 2011].

In order to study the pathogenesis of cancers, many mathematical models have been constructed to
describe the interactions between tumour cells and immune systems [De Angelis et al., 2003; Foryś & Bod-
nar, 2003; Rozova & Bratus, 2016]. In 1994, Kuznetsov initially established a tumour-immune dynamical
model, in which the tumour cells played the role of predator and the immune cells acted as the role of prey
[Kuznetsov et al., 1994]. Magda then simplified the model by using the Lotka-Volterra form to characterize
the interactions between tumour and immune cells instead of the Michaelis-Menten type [Ga lach, 2003],
which can be described by the following two equations:


dE

dt
= s+ αET − dE,

dT

dt
= aT

(
1− T

K

)
− nET,

(1)

where E and T represent effector cells (such as cytotoxic T lymphocytes, natural killer cells, and etc) and
tumour cells, respectively. s denotes the natural constant flowing rate of adult effector cells into tumour
site (non-increased by the existence of tumour cells), the accumulation rate of effector cells caused by
tumours is denoted by α, d denotes the death rate of effector cells. a represents the tumour cell growth
rate, which includes both multiplication and death. K is the tumour cells environment capacity, the rate
at which tumour cells are lethally hit by the existence of effector cells is denoted by n.

In practice, immunotherapy and chemotherapy play a significant role in the treatment of cancer,
which are carried out in the form of impulses, as confirmed by experiments and clinical practice [Yamaguchi
et al., 2006; Hegmans et al., 2005; Samanta et al., 2017]. Then many tumour-immune mathematical models
concerning pulsed treatments have been developed and analysed. In fact, Steve found that when the average
tumour size is around 50mm2, surgical excision followed by adjuvant immunotherapy revealed that this
approach has the potential to cure cancers in the long term [Broomfield et al., 2005]. Driven by this, Tang
et al. used the impulsive semi-dynamic system to describe this treatment which depends on the tumour
size, and established a tumour-immune mathematical model with state dependent feedback control. They
studied the existence and stability of the order-1 and order-2 periodic solutions [Yang et al., 2015, 2019;
Wei & Lin, 2013; Tang et al., 2016]. Yang et al. developed a novel impulsive tumour-immune system
with drug responses, they studied the effects of drug dosages on the evolution of tumours and proposed
a more effective method to maintain a high tumour cell depletion rate [Yang et al., 2020]. Actually, the
methods of state-dependent feedback control have been used in a variety of fields, including integrated
pest management [Tang & Cheke, 2008, 2005], infectious disease control [Cheng et al., 2019; Zhang et al.,
2020], the neurological system [Touboul & Brette, 2009], and etc.

In the above studies, the tumour size was selected as a threshold to implement the treatment strategy
[Tang et al., 2016; Yang et al., 2020]. But the Staccato study has designed a new therapeutic method
to treat tumours, which therapy was initiated guided by CD4+ T cell counts [Anaworanich et al., 2006].
Subsequently, Tang et al. utilized piecewise functions to describe this novel therapy, then proposed a
piecewise mathematical model using effector cell counts as a threshold at which structural therapeutic
interruption (STI) strategies of antiretroviral therapy was applied [Tang et al., 2012]. Tang and co-authors
also developed a piecewise tumour-immune models which based on the effector cell-guided treatments,
complex dynamics were observed including coexistence of multiple attractors and an infinite number of
possible topologies of attractors [Tang et al., 2017]. This suggests that although it is very important to
select effector cells as the threshold to implement therapeutic strategies, there are few theoretical studies
in this field. In this paper, we make use of semi-dynamical system to depict this novel threshold control
strategy instead of piecewise system. Notice that in the presence of toxicological effects of drugs and drug
resistance, the mortality of tumours and immune cells caused by chemotherapy must not be linear, but
a nonlinear function with saturation effects. Driven by these facts, we developed a novel state-dependent
feedback control tumour-immune dynamical model with nonlinear killing rates concerning immunotherapy,
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which can be described by the following equations,

dE

dt
= s+ αET − dE,

dT

dt
= aT

(
1− T

K

)
− nET,

E > EL,

E (t+) =

(
1− δ1E

E + h1

)
E + τ,

T (t+) =

(
1− δ2T

T + h2

)
T,

 E = EL,

(2)

where h1, h2 > 0 denote the half saturation constants of effector cells and tumour cells, respectively. τ > 0
represents the number of injections of effector cells, δ1, δ2 ∈ [0, 1] denote the maximum killing rate of
effector cells and tumour cells. For simplicity, we denote functions A1(E) = −δ1E2/(E + h1), A2(T ) =
−δ2T 2/(T + h2), f(T ) = T + A2(T ) throughout the paper. It is found that a comprehensive therapy is
initiated only if the number of effector cells is reduced to the critical size EL. Although the dynamics of
model (1) without impulsive effects are simple, it depicts the interaction between tumour cells and immune
cells. In order to emphasize the impact of nonlinear feedback control, integrated treatment strategy is
considered in model (1).

This paper is arranged as follows. Some important definitions and lemmas about the impulsive semi-
dynamical systems are introduced in section 2. In section 3, we first define the Poincare map and then
study the existence and stability of tumour-free periodic solution. In section 4, the transcritical bifurcation
and pitchfork bifurcation are investigated. Finally, biological implications are discussed and conclusions
are presented.

2. Preliminaries

The planar impulsive dynamical systems can be defined as follows

dx

dt
= P (x, y)

dy

dt
= Q(x, y)

 (x, y) /∈ D,

x (t+) = x+ α(x, y)

y (t+) = y + β(x, y)

}
(x, y) ∈ D,

(3)

where (x, y) ∈ R2,P ,Q,α,β are continuous maps from R2 to R, D ⊂ R2 is the impulsive set. and set
x+ = x(t+) and y+ = y(t+). For every z(x, y) ∈ D, the map F : R2 → R2 is defined

z+ = F (z) = (x+ α(x, y), y + β(x, y)) = (x+, y+) ∈ R2,

where z+ is the impulsive point of z.
Set P = F (D), for any z ∈ D, oneyieldsF (z) = z+ ∈ P and P ∩ D = ∅. In the following, some

definitions of generalized semi-dynamic systems are introduced.
Let (X,Π, R+) or (X,Π) to be the impulsive dynamical system [Simeonov & Bainov, 1988; Bainov

& Simeonov, 1993], here X is a metric space and R+ is a set of non-negative reals. let Πz(t) = Π(z, t),
the map Πz : R → X is continuous such that Π(z, 0) = z for all z ∈ X, and Π(Π(z, t), s) = Π(x, t + s)
for all z ∈ X and t, s ∈ R+. Assume H+(z) = {Π(z, t)|t ∈ R} to be the non-negative trajectory passing
through z. Let D+(z) = C+(z) ∩ D − {z} and D−(z) = G(z) ∩ D − {z}, where G(z) = ∪{G(z, t)|t ∈ R}
and G(z, t) = {ω ∈ X|Π(ω, t) = z} is the attainable set of z at t ∈ R+. Finally, Let D = D+(z) ∪ D−(z).
We now intruduce the following useful definitions and lemmas [Kaul, 1990; Ciesielski, 2004; Bonotto &
Federson, 2008].

Definition 2.1. An impulsive semi-dynamical system (X,Π;D, F ) contains three parts: a continuous semi-
dynamical system (X,Φ), a nonempty closed subset D of X and a continuous map F : D → X. It also
satisfies: limit point of D(z) is not any z ∈ X; {t|G(z, t) ∩ D 6= ∅} is a closed subset of R.
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Pulsed point of Πz is denoted by {z+n }, then map I is defined from X to the positive reals R ∪ {∞}
as: let z ∈ X, if D+(z) = ∅, then I(z) =∞, othrwise D+(z) 6= ∅ and let I(z) = s, where Π(x, t) /∈ D for
0 < t < s but Π(z, s) ∈ D.

Definition 2.2. A solution Πz of (X,Π;D, F ) is called an order k period solution with period Tk if there
are nonnegative integers m > 0 and k > 1 such that k is the smallest integer for which z+m = z+m+k and

Tk =
∑m+k−1

i=m I(zi) =
∑m+k−1

i=m si.

Lemma 1. ([Simeonov & Bainov, 1988; Bainov & Simeonov, 1993])The T-periodic solution(x, y) =
(ξ(t), η(t)) of the system{

dx(t)

dt
= P (x, y),

dy(t)

dt
= Q(x, y), if ψ(x, y) 6= 0,

∆x = β1(x, y), ∆y = β2(x, y), if ψ(x, y) = 0,

is orbitally asymptotically stable if the Floque multiplier µ2 satisfies the condition |µ2| < 1, where

µ2 =

q∏
k=1

∆k exp

[∫ T

0

(
∂P

∂x
(ξ(t), η(t)) +

∂Q

∂y
(ξ(t), η(t))

)
dt

]
,

with

∆k =

P+

(
∂β2
∂y

∂ψ

∂x
− ∂β2

∂x

∂ψ

∂y
+
∂ψ

∂x

)
+Q+

(
∂β1
∂x

∂ψ

∂y
− ∂β1

∂y

∂ψ

∂x
+
∂ψ

∂y

)
P
∂ψ

∂x
+Q

∂ψ

∂y

,

P , Q, ∂β1/∂x, ∂β1/∂y, ∂β2/∂x, ∂β2/∂y, ∂ψ/∂x, ∂ψ/∂y are calculated at the point (ξ(t), η(t)). P+ =
P (ξ(t+k ), η(t+k )) and Q+ = Q(ξ(t+k ), η(t+k )). Here ψ(x, y) is a sufficiently smooth function such that grad
ψ(x, y) 6= 0 ,and tk is the time of the kth jump.

Lemma 2. (Transcritical bifurcation) Let G : U × I → R, G is Cr with r 6 2, U and I are open intervals
of the real line containing 0. If

(1)G(0, α) = 0 for all α; (2)
∂G

∂x
(0, 0) = 1;

(3)
∂2G

∂x∂α
(0, 0) > 0; (4)

∂2G

∂x2
(0, 0) > 0.

then, there are α1 < 0 < α2 and ε > 0 such that
(i) if α1 < α < 0, then Gα = G(·, α) has two fixed points, 0 and x1α > 0 in (−ε, ε) with the origin being
asymptotically stable and the other fixed point being unstable.
(ii) if 0 < α < α2, then Gα has two fixed points, 0 and x1α < 0 in (−ε, ε) with the origin being unstable
and the other fixed point being asymptotically stable.

It is revealed that case ∂2G/∂x∂α(0, 0) < 0 can be analyzed by changing α→ −α.

Lemma 3. (Supercritical pitchfork bifurcation) Let G : U × I → R, G is Cr with r > 3, U and I are open
intervals of the real line containing 0. If ∂2G/∂x∂α(0, 0) > 0, ∂2G/∂x2(0, 0) = 0 and ∂3G/∂x3(0, 0) < 0,
then there exist with α1 < 0 < α2 and ε > 0 such that
(i) if α1 < α 6 0, then Gα = G(·, α) exists a unique fixed point in (−ε, ε), which is asymptotically stable.
(ii) if 0 < α < α2, then Gα has three fixed points in (−ε, ε) with the origin being unstable and the others
x1α < 0 < x2α being asymptotically stable.

The case ∂2G/∂x∂α(0, 0) < 0 can be discussed by changing α → −α. And if ∂3G/∂x3(0, 0) > 0, it is
undergoes a subcritical pitchfork bifurcation.

Solving s+ αET − dE = 0 and aT (1− T/K)− nET = 0, we have two isolines,

L1 : T =
1

α

(
d− s

E

)
.
= k0(E), L2 : E =

a

n

(
1− T

K

)
,
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Fig. 1. Phase traits of system (1). (a)Ē < A; (b) Ē > A

denote A
.
= s/d and Ē

.
= a/n, we have the following results for model (1) [Ga lach, 2003].

Lemma 4. If Ē < A, then model (1) has a boundary equilibrium P0(A, 0), which is stable; if Ē > A, then
there exists a positive interior equilibrium P ∗(E∗, T ∗), which is asymptotically stable, and the boundary
equilibrium (A, 0) is unstable. Where

E∗ =
a
(
αK − d+

√
∆
)

2nKα
, T ∗ =

αK + d−
√

∆

2α
,∆ = (αk − d)2 + 4

(
αkn

a

)
s.

3. Poincaré Map and Tumour-free Periodic Solution of Model (2)

3.1. The Definition of the Poincaré Map

Define

L3 : E = EP, L4 : E = EL,

and let EP
.
= (1− δ1EL/(EL+ h1))EL + τ . Denoted by EEP = {(E, T )|E = EP, T ≥ 0}; EEL =

{(E, T )|E = EL, T ≥ 0}, the segment EEP is defined as the poincaré section. Point P+
k = (EP, T+

k ) ∈ EEP
will meet section EEL at point Pk+1 = (EL, Tk+1) in a finite time, where Tk+1 is determined by T+

k and
let Tk+1

.
= g(T+

k ). Then a single-pulse is occured at Pk+1 such that it jumps to point P+
k+1 = (EP, T+

k+1)

with T+
k+1 = Tk+1 +A2(Tk+1). Thus, we can define the poincaré map as

P(T+
k )

.
= T+

k+1 = g(T+
k ) +A2(Tk+1),

and the impulsive set M is defined by

M = {(E, T ) ∈ R2
+|E = EL, 0 ≤ T ≤ TM},

where TM = P(TEP ). Set the continuous function F : (EL, T ) → (E+, T+) = (EP, f(T )) ∈ R2
+, where

f(t) ∈ [0, TM ], then the phase set is defined as follows:

N = F (M) = {(E+, T+) ∈ R2
+|T+ = EP, 0 ≤ T+ ≤ f(TM )}.

Scalar differential equation of system (2) in phase space is as follows,
dT

dE
=

T

(
a− aT

K
− nE

)
s+ αET − dE

.
= h(E, T ),

T (EP ) = T+
0 ,

(4)
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set

Ω =
{

(E, T )|E > 0, T > 0, T <
1

α

(
d− s

E

)}
then the function h(E, T ) is continuously differentiable. Denote T+

0 = T0, E0 = EP. Then

T (E) = T (E;EP, T0) = T (E, T0), EP < E < EL,

and

T (E, T0) = T0 +

∫ E

EP
h(E, T (E, T0))dE.

From the above, the expression of the Poincaré Map can be obtained,

P(T+
k ) = T+

k+1 = T (EL, T+
k ) +A2(T (EL, T+

k )),

P(T0) = T (EL, T0) +A2(T (EL, T0)) = f(T (EL, T0)),

For simplicity, by using the methods in [K.Hale, 1969], we have the following results which are very
useful in the rest of the paper.

∂h(E, T )

∂T

∣∣∣∣
T=0

=
a− nE
s− dE

,

∂2h(E, T )

∂T 2

∣∣∣∣
T=0

=
−2a

K
(s− dE)− 2αE(a− nE)

(s− dE)2
.

And

∂T (E, T0)

∂T0
= exp

(∫ E

EP

∂h(E, T (E, T0))

∂T
dE

)
,

∂2T (E, T0)

∂T 2
0

=
∂T (E, T0)

∂T0

∫ E

EP

∂2h(E, T (E, T0))

∂T 2

∂T (E, T0)

∂T0
dE.

It follows from P(T0) = f(T (EL, T0)), T = T (EL, T0) that

∂P(T0)

∂T0
=

(
1− δ2T (EL, T0)(T (EL, T0) + 2h2)

(T (EL, T0) + h2)2

)
∂T (E, T0)

∂T0

=

(
1− δ2T (EL, T0)(T (EL, T0) + 2h2)

(T (EL, T0) + h2)2

)
exp

(∫ EL

EP

∂h(E, T (E, T0))

∂T
dE

)
= f ′(T (EL, T0)) exp

(∫ EL

EP

∂h(E, T (E, T0))

∂T
dE

)
,

(5)

∂2P(T0)

∂T 2
0

=
∂2T (EL, T0)

∂T 2
0

+
∂2T (EL, T0)

∂T 2
0

∂A2(T )

∂T
+
∂T (EL, T0)

∂T0

(
∂∂A2(T )

∂T0 ∂T

)
= (A′2(T (EL, T0)) + 1)

∂2T (EL, T0)

∂T 2
0

+

(
∂T (EL, T0)

∂T0

)2

A′′2(T (EL, T0))

= f ′(T (EL, T0))
∂2T (EL, T0)

∂T 2
0

−
(
∂T (EL, T0)

∂T0

)2 2δ2h
2
2

(T (EL, T0) + h2)3
.

(6)
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3.2. Existence and Stability of Tumour-free Periodic Solution (TFPS)

Let T (t) = 0, system (2) can be reduced as


dE

dt
= s− dE,

E (t+) =

(
1− δ1E

E + h1

)
E + τ.

(7)

Solving system (7) with the initial conditon E(0) = EP yields

ET (t) = A− (A− EP ) exp(−dt)

with period T

T =

∫ EL

EP

1

s− dE
dE = −1

d
ln

(
EL−A
EP −A

)
. (8)

Therefore, system (2) has a TFPS (ET (t), 0) with period T.

Theorem 1. If A < Ē < EL < EP , then the TFPS (ET (t), 0) of system (2) is orbitally asymptotically
stable.

Proof. It follows from Lemma 1,

P (E, T ) = s+ αET − dE, Q(E, T ) = aT

(
1− T

K

)
− nET,

β1(E, T ) = − δ1E
2

E + h1
+ τ, β2(E, T ) = − δ2T

2

T + h2
, ψ(E, T ) = E − EL.

By calculation,

∂P

∂E
= αT − d, ∂Q

∂T
= a− 2a

K
T − nE, ∂β1

∂E
= −δ1E(E + 2h1)

(E + h1)2
,

∂β2
∂T

= −δ2T (T + 2h2)

(T + h2)2
,

∂ψ

∂E
= 1− L, ∂β1

∂T
=
∂β2
∂E

=
∂ψ

∂T
= 0,

and (ξ(T ), η(T )) = (EL, 0), (ξ(T+), η(T+)) = (EP, 0), P+ = s− dEP.

∆1 =

P+

(
∂β2
∂T

∂ψ

∂E
− ∂β2
∂E

∂ψ

∂T
+
∂ψ

∂E

)
+Q+

(
∂β1
∂E

∂ψ

∂T
− ∂β1
∂T

∂ψ

∂E
+
∂ψ

∂T

)
P
∂ψ

∂E
+Q

∂ψ

∂T

=

P+

(
1− δ2T (T + 2h2)

(T + h2)2

)
P

=

(
1− δ2T (T + 2h2)

(T + h2)2

)
EP −A
EL−A

,

(9)
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and

exp

(∫ T

0

(
∂P

∂E
(ξ(t), η(t)) +

∂Q

∂T
(ξ(t), η(t))

)
dt

)
= exp

(∫ T

0
(−d+ a− nE)

)
= exp

(∫ T

0
(−d+ a− n(A− (A− EP ) exp(−dt)))

)
= exp(−dT ) exp (aT ) exp

(∫ T

0
−n(A− (A− EP ) exp(−dt))dt

)
.

(10)

Denote

M1
.
= −dT = ln

(
EL−A
EP −A

)
, M2

.
= aT = −a

d
ln

(
EL−A
EP −A

)
,

M3
.
=

∫ T

0
−n(A− (A− EP ) exp(−dt))dt

=
n

d

[
A ln

(
EL−A
EP −A

)
+ EL− EP

]
.

For the expression of ∆1, there are two cases needed to be considered: h2 = 0 and h2 6= 0. If h2 = 0,
then ∆1 = (1− δ2)(EP −A)/(EL−A); if h2 6= 0, then ∆1 = (EP −A)/(EL−A), thus,

µ2 =

{
exp(M2 +M3), h2 6= 0,

(1− δ2) exp(M2 +M3), h2 = 0.
(11)

In the light of A < EL < EP , it follows from the monotonictiy of k1(x)
.
= ln(1− x) + x that M2 > 0

and M3 < 0, then

M2 +M3 = −a
d

ln

(
EL−A
EP −A

)
+
n

d

[
A ln

(
EL−A
EP −A

)
+ EL− EP

]
=
n

d

[
ln

(
EP −A
EL−A

)(
Ē −A

)
+ EL− EP

]
<
n

d

[(
EP − EL√

(EP −A)(EL−A)

)(
Ē −A

)
+ EL− EP

]

=
n

d
(EP − EL)

((
Ē −A

)
−
√

(EP −A)(EL−A)√
(EP −A)(EL−A)

)

<
n

d
(EP − EL)

(
Ē − EL√

(EP −A)(EL−A)

)
,

which means if EL > Ē, then M2 +M3 < 0, i.e., µ2 < 1. From Lemma 1, the TFPS (ET (t), 0) of system
(2) is orbitally asymptotically stable. This completes the proof. �

4. Bifurcation

It follows from Theorem 1 that the TFPS is orbitally asymptotically stable provided EL > Ē. If EL < Ē,
then the TFPS becomes unstable. Since δ1 and δ2 are important indexes that can reflect the therapeutic
effects, EL is the threshold for treatment implementation and τ denotes the intensity of immunotherapy.
Therefore, in this section, we mainly focus on the bifurcation near the TFPS of model (2) with respect to
these key parameters.



March 9, 2022 18:55 ws-ijbc

Bifurcation analysis of a tumour-immune model with nonlinear killing rate as state-dependent feedback control 9

4.1. Transcritical Bifurcations for δ1

Notice that the expression of ∆1 differs for h2 6= 0 and h2 = 0. When h2 6=0, we choose δ1 as the bifurcation
parameter and consider M2 +M3 as a function of δ1,

M12(δ1)
.
= M2 +M3 =

n

d
(EL− EP ) +

a

d
ln

(
EL−A
EP −A

)(ns
da
− 1
)
,

µ2(δ1) = exp(M12(δ1)),

and EP = EL+A1(EL, δ1) + τ . By calculations,

∂EP

∂δ1
=
∂A1(EL, δ1)

∂δ1
= − EL2

EL+ h1
< 0,

and

dµ2(δ1)

dδ1
= exp(M12)

dM12(δ1)

dδ1

= exp(M12)
∂A1(EL, δ1)

∂δ1

(
nEP − a
s− dEP

)
.

Solving dµ2(δ1)/dδ1 = 0 with respect to δ1 and denoting the unique root as δ1, we get

δ1 =

(
1 +

h1
EL

)(
1− Ē − τ

EL

)
. (12)

To make sure that 0 < δ1 ≤ 1, it needs inequality h1EL/(EL + h1) ≤ Ē − τ < EL holds true. If
δ1 ∈ (0, δ1), then EP > Ē and dµ2(δ1)/dδ1 > 0. If δ1 ∈ (δ1, 1), then EP < Ē and dµ2(δ1))/dδ1 < 0. It
follows from µ2(0) < 1 and dµ2(δ1)/dδ1 > 0, there exists with a unique δ∗1 ∈ (0, δ1) with µ2(δ

∗
1) = 1. That

is, if 0 < δ1 < δ∗1 , then the periodic solution (ET (t), 0) is stable, if δ∗1 < δ1 < δ1, then the periodic solution
(ET (t), 0) is unstable, which means the transcritical bifurcation occurs at δ1 = δ∗1 .

Furthermore, if δ1 = 1, then EP = h1EL/(h1 + EL) + τ . It follows from A < EL < EP that

ln

(
EP −A
EL−A

)
>

2(EP − EL)

EP + EL− 2A
. (13)

Then

M12(1) =
n

d
(EL− EP ) +

n

d
ln

(
EL−A
EP −A

)(
A− Ē

)
=
n

d
(EL− EP ) +

n

d
ln

(
EP −A
EL−A

)(
Ē −A

)
>
n

d
(EP − EL)

[
2(Ē −A)

EP + EL− 2A
− 1

]
,

(14)

according to the monotonicity of EP (δ), δ = 1 implies EP < Ē. Thus, the positive M12(1) reveals
µ2(1) > 1. Therefore, the TFPS is unstable and transcritical bifurcation does not occur due to µ2(1) > 1
and dµ2(δ1))/dδ1 < 0 for δ1 ∈ (δ1, 1). Based on the above discussions, we have the following results.

Theorem 2. If A < EL < Ē < EP , µ2(0) < 1 and W < 2δ2/h2, then the P(T0, δ1) exists with a stable
positive fixed point when δ1 changes through δ∗1 from left to right, which implies that the system(2) exists a
stable positive periodic solution when δ1 ∈ (δ∗1 , δ

∗
1 + ε) with ε > 0 small enough. However, if W > 2δ2/h2,

then the P(T0, δ1) exists with an unstable positive fixed point when δ1 changes through δ∗1 from right to left,
which is just an unstable positive periodic solution of the system(2) for δ1 ∈ (δ∗1 − ε, δ∗1) with ε > 0 small
enough.
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Proof. Theorem 2 can be proved by verifying four conditions of Lemma 2 for the Poincar’e map P. To this
end, denote T (E;EP, T0) = T (E, T0), we have P(0, δ1) = f(T (EL, 0)) = 0 and P(T0, δ1) = f(T (EL, T0)).
It indicates that the first condition of Lemma 2 holds. From equation(5),

∂P (0, δ1)

∂T0
= exp

(∫ EL

EP

a− nE
s− dE

dE

)
= µ2(δ1),

so

∂P (0, δ∗1)

∂T0
= µ2(δ

∗
1) = 1,

which implies the second condition of Lemma 2 holds. Furthere,

∂2P (0, δ1)

∂T∂δ1
=

∂

∂EP

(
∂P (0, δ1)

∂T0

)
· ∂EP
∂δ1

=
∂T (EL, T0)

∂T0
· ∂

∂EP

(∫ EL

EP

∂h(E, T (E, 0))

∂T
dE

)
· ∂EP
∂δ1

=
dµ2(δ1)

dδ1
,

thus,

∂2P (0, δ∗1)

∂T∂δ1
=
dµ2(δ

∗
1)

dδ1
> 0,

and the third condition of Lemma 2 holds.
Finally, according to equation(6),

∂2P (0, δ1)

∂T 2
0

=
∂T (EL, T0)

∂T0
·
∫ EL

EP

∂2h (E, T (E, 0))

∂T 2
0

· ∂T (E, 0)

∂T0
dE

−
(
∂T (EL, 0)

∂T0

)2

· 2δ2
h2

= exp (M12) ·
∫ EL

EP

∂2h (E, T (E, 0))

∂T 2
0

· ∂T (E, 0)

∂T0
dE − 2δ2

h2
exp (2M12) .

Denote

z1(E) =

∫ E

EP

a− nE
s− dE

dE,

r1(E) =
∂T (E, 0)

∂T0
= exp

(∫ E

EP

a− nE
s− dE

dE

)
= exp(z1(E)),

and r1(EP ) = 1, r1(EL) = µ2(δ1). The derivative of z1(E) about E leads to

z′1(E) =
a− nE
s− dE

,

let

z2(E) =
∂2h (E, T (E, 0))

∂T 2
0

=
−2a

K
(s− dE)− 2αE(a− nE)

(s− dE)2
,

r2(E) =
z2(E)

z′1(E)
=
−2a

K
a− nE

− 2αE

s− dE
,

the derivative of r2(E) about E yields

r′2(E) = −
(

1

K
· 2na

(a− nE)2
+

2αE

(s− dE)2

)
,
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then

∂2P (0, δ∗1)

∂T 2
0

=
∂2T (EL, 0)

∂T 2
0

− 2δ2
h2

, (15)

where

W
.
=
∂2T (EL, 0)

∂T 2
0

=

∫ EL

EPδ∗1

∂2h (E, T (E, 0))

∂T 2
0

· ∂T (E, 0)

∂T0
dE

=

∫ EL

EPδ∗1

z2(E)r1(E)dE

=

∫ EL

EPδ∗1

z2(E) exp(z1(E))dE

=

∫ EL

EPδ∗1

z2(E)

z′1(E)
z′1(E) exp(z1(E))dE

=

∫ EL

EPδ∗1

r2(E)d(r1(E)),

on [EL, Ē], the function r1(E) is monotonically increasing. Thus, there exists δ1 = δ∗1 such that r1(EPδ∗1 ) =

µ2(δ
∗
1) = 1 (EPδ∗1 = (1− δ∗1EL/(EL+ h1))EL+ τ). Therefore, r1(Ē) < r1(E) ≤ 1 for E ∈ [EL,EPδ∗1 ].
For any E ∈ [EL,EPδ∗1 ], we get r′2(E) < 0 and r2(E) is a monotonically decreasing function. Then∫ EL

EPδ∗1

r2(E)d(r1(E)) = r1(E)r2(E)|ELEPδ∗1
−
∫ EL

EPδ∗1

r′2(E)r1(E)dE

= r2(EL)− r2(EPδ∗1 )−
∫ EL

EPδ∗1

r′2(E)r1(E)dE

=

∫ EL

EPδ∗1

(1− r1(E))r′2(E)dE,

(16)

thus,

0 < W <
(
1− r1(Ē)

) (
r2(EL)− r2(EPδ∗1 )

)
. (17)

If A < EL < Ē < EP , µ2(0) < 1 and W 6= 2δ2/h2, then the forth condition of Lemma 2 holds, which
means that the transcritical bifurcation occurs at δ1 = δ∗1 . Furtheremore, if W > 2δ2/h2, then the P(T0, δ1)
has an unstable positive fixed point when δ1 changes through δ∗1 from right to left. However, if W < 2δ2/h2,
then the P(T0, δ1) has a stable positive fixed point when δ1 changes through δ∗1 from left to right. This
completes the proof. �

For the case W = 2δ2/h2, we get ∂2G/∂x2(0, 0) = 0 and show that the P(T0, δ1) undergoes pithfork
bifurcation. From equation 6,

∂3P (0, δ∗1)

∂T 3
0

=
∂3T (EL, 0)

∂T 3
0

+ 3A′′2(T (EL, 0)) · ∂T (EL, 0)

∂T0
· ∂

2T (EL, 0)

∂T 2
0

+A′′′2 (T (EL, 0)) ·
(
∂T (EL, 0)

∂T0

)3

=
∂3T (EL, 0)

∂T 3
0

+ 3A′′2(T (EL, 0)) ·W +A′′′2 (T (EL, 0))

=
∂3T (EL, 0)

∂T 3
0

− 12δ22
h22

+
6δ2
h22

,

(18)
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where

∂3T (EL, 0)

∂T03
=
∂2T (EL, 0)

∂T02
·
∫ EL

EPδ∗1

∂2h(E, T (E, 0))

∂T02
· ∂T (E, 0)

∂T0
dE

+
∂T (EL, 0)

∂T0
· ∂

∂T0

(∫ EL

EPδ∗1

∂2h(E, T (E, 0))

∂T02
· ∂T (E, 0)

∂T0
dE

)

= W 2 +
∂

∂T0

(∫ EL

EPδ∗1

∂2h(E, T (E, 0))

∂T02
· ∂T (E, 0)

∂T
dE

)

=
4δ2

2

h22
+

∂

∂T0

(∫ EL

EPδ∗1

∂2h(E, T (E, 0))

∂T02
· ∂T (E, 0)

∂T0
dE

)
,

(19)

and

∂

∂T0

(∫ EL

EPδ∗1

∂2h (E, T (E, 0))

∂T 2
0

· ∂T (E, 0)

∂T0
dE

)

=

∫ EL

EPδ∗1

r1(E)z2(E)

(
3k0(E) · r1(E)− z1(E)

)
dE.

(20)

From Lemma 3, the following results hold true.

Theorem 3. If A < EL < Ē < EP , µ2(0) < 1, W = 2δ2/h2 and ∂3P (0, δ∗1) /∂T 3
0 6= 0, then P(T0, δ1)

undergoes a pitchfork bifurcation at δ∗1. Furthermore, if ∂3P (0, δ∗1) /∂T 3
0 > 0, then the P(T0, δ1) undergoes

a subcritical pithfork bifurcation, which generates an unstable positive fixed point; if ∂3P (0, δ∗1) /∂T 3
0 < 0,

then the P(T0, δ1) also undergoes a supercritical pithfork bifurcation, which generates a stable positive fixed
point.

If h2 = 0, then

µ2 (δ1) = (1− δ2) exp (M2 +M3) .

The monotonicity of M12(δ1) suggests that µ2 is increasing on [0, δ1) and decresing on (δ1, 1]. Because
of µ2(0) < 1 and µ2(δ1) > 1, there is a δ∗1 ∈ [0, δ1) such that µ2(δ

∗
1) = 1. If µ2(1) < 1, then a δ∗∗1 ∈ (δ1, 1]

exists and µ2(δ
∗∗
1 ) = 1 holds. Similarly, we get

∂2P (0, δ∗1)

∂T∂δ1
=
dµ2(δ

∗
1)

dδ1
> 0,

∂2P (0, δ∗1)

∂T 2
0

= W > 0,

∂2P (0, δ∗∗1 )

∂T∂δ1
=
dµ2(δ

∗∗
1 )

dδ1
< 0,

∂2P (0, δ∗∗1 )

∂T 2
0

= W > 0.

Thus, the following results hold.

Corollary 4.1. If h2 = 0, A < EL < Ē < EP , µ2(0) < 1 and µ2(1) < 1, then P(T0, δ1) undergoes
transcritical bifurcation at both δ1 = δ∗1 and δ1 = δ∗∗1 . That is, the P(T0, δ1) exists with a stable positive
fixed point when δ1 changes through δ∗1 from right to left or through δ∗∗1 from left to right, which means that
there is a stable positive periodic solution for system(2) if δ1 ∈ (δ∗1 − ε, δ∗1) or δ1 ∈ (δ∗∗1 , δ

∗∗
1 + ε) with ε > 0

small enough.

The P(T0, δ1) could also undergoes transcritical bifurcation for δ2 when h2 = 0. Similarly,

µ2(δ2) = (1− δ2) exp(M2 +M3).
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Solving µ2(δ2) = 1, there is a δ∗2 = 1−exp(−M2−M3) satisfying µ2(δ
∗
2) = 1. The inequality 0 < δ2 ≤ 1

holds provided M2 +M3 > 0. The inequality (13) leads to

M2 +M3 =
n

d
(EL− EP ) +

n

d
ln

(
EP −A
EL−A

)(
Ē −A

)
>
n

d
(EP − EL)

[
2(Ē −A)

EP + EL− 2A
− 1

]
>
n

d
(EP − EL)

[
2(Ē − EP )

EP + EL− 2A

]
,

if EP < Ē, then M2 +M3 > 0. By using the same methods in Theorem 2, one has

∂P (0, δ2)

∂T0
= µ2(δ2),

∂2P (0, δ∗2)

∂T∂δ2
=
dµ2(δ

∗
2)

dδ2
= − exp(M2 +M3) < 0,

∂2P (0, δ∗2)

∂T 2
0

= W > 0.

By verifying four conditions of Lemma 2, we have the following results.

Corollary 4.2. If h2 = 0 and A < EL < EP < Ē, then P(T0, δ2) undergoes transcritical bifurcation at
δ2 = δ∗2, i.e., the P(T0, δ2) has a stable positive fixed point when δ2 changes through δ∗2 from left to right,
which is just a stable positive periodic solution of system(2) if δ1 ∈ (δ∗2 , δ

∗
2 + ε) with ε > 0 small enough.

4.2. Transcritical Bifurcations for EL

Similarly, when h2 6= 0, parameter EL is chosen as a bifurcation parameter. µ2 is assumed to be a function
of EL,

µ2(EL) = exp (M12(EL)) ,

where

M12(EL) =

∫ EL

EP

a− nE
s− dE

dE =
n

d
ln

(
A− EL
A− EP

)(
A− Ē

)
+
n

d
(EL− EP ),

with EP = EL+A1(EL) + τ . Direct calculations lead to

dµ2(EL)

dEL
= exp (M12(EL)) · dM12(EL)

dEL
,

dM2(EL)

dEL
=

∂

∂EL

(∫ EL

EP

a− nE
s− dE

dE

)
,

and denote k3(x)
.
= (a− nx)/(s− dx), Thus,

dM12(EL)

dEL
= k3(EL)−

(
1 +A′1(EL)

)
k3(EP ).

If A < EL < Ē < EP , then k3(EP ) > 0, k3(EL) < 0. Thereby, dM12(EL)/dEL < 0 and so M12(EL)
is a monotonically decreasing function of EL. Furthermore,

lim
EL→A

M12(EL) = lim
EL→A

n

d
ln

(
A− EL
A− EP

)(
A− Ē

)
+
n

d
(EL− EP ) = +∞,

lim
EL→E

M12(EL) = lim
EL→E

∫ EL

EP

a− nE
s− dE

dE < 0.
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Therefore, there is a unique EL∗ ∈ (A,E) such that M12(EL
∗) = 0, i.e., µ2(EL

∗) = 1. Moreover,

∂P(0, EL)

∂T0
= µ2(EL),

∂2P(0, EL∗)

∂T0∂EL
=
∂T (EL∗, T0)

∂T0
· ∂

∂EL

(∫ EL

EP

∂h (E, T (E, 0))

∂T0
dE

)
=
dµ2(EL

∗)

dEL
< 0.

Similarly, from Theorem 2 we can determine the signs of ∂2P (0, EL∗) /∂T 2
0 and ∂3P (0, EL∗) /∂T 3

0 .

Theorem 4. If A < EL < Ē < EP and W < 2δ2/h2, then P(T0, EL) undergoes transcritical bifurcation
at EL = EL∗. Therefore, the P(T0, EL) has an unstable positive fixed point when EL changes through
EL∗ from left to right, which means that the system(2) exists with an unstable positive periodic solution
if EL ∈ (EL∗, EL∗ + ε) with ε > 0 small enough. However, if W > 2δ2/h2, then P(T0, EL) has a stable
positive fixed point when EL changes through EL∗ from right to left, which indicates that there is a stable
positive periodic solution of the system(2) if EL ∈ (EL∗ − ε, EL∗) with ε > 0 small enough.

Theorem 5. If A < EL < Ē < EP , W = 2δ2/h2 and ∂3P (0, EL∗) /∂T 3
0 6= 0, then P(T0, EL) undergoes

a pitchfork bifurcation at EL∗. Further, if ∂3P (0, EL∗) /∂T 3
0 > 0, then the P(T0, EL) has an unstable

positive fixed point. If ∂3P (0, EL∗) /∂T 3
0 < 0, then P(T0, EL) has a stable positive fixed point.

When h2 = 0, then µ2(EL) = (1− δ2) exp (M12(EL)), the derivative of µ2(EL) about EL yields

dµ2(EL)

dEL
= (1− δ2) exp (M12(EL)) · dM12(EL)

dEL
< 0,

thereby, there is a unique EL∗ that satisfies M12(EL
∗) = ln (1/(1− δ2)), i.e., µ2(EL

∗) = 1. In the light of
∂2P (0, EL∗) /∂T 2

0 = W > 0, from Lemma 2 we have the following results.

Corollary 4.3. If h2 = 0 and A < EL < Ē < EP , then P(T0, EL) undergoes transcritical bifurcation at
EL = EL∗, i.e., there is a stable positive fixed point for P(T0, EL) when EL changes through EL∗ from
right to left, which reveals that there is a stable positive periodic solution of system(2) if EL ∈ (EL∗−ε, EL∗)
with ε > 0 small enough.

4.3. Transcritical Bifurcations for τ

When h2 6= 0, τ is chosen as a bifurcation parameter. To this end, let M2 +M3 be a function of τ ,

µ2(τ) = exp(M12(τ)),

M12(τ) =

∫ EL

EP

a− nE
s− dE

dE =
n

d
ln

(
A− EL
A− EP

)(
A− Ē

)
+
n

d
(EL− EP ),

where EP = EL− δ1EL2/(EL+ h1) + τ . By calculations,

dµ2(τ)

dτ
= exp (M12(τ)) · dM12(τ)

dτ
,

∂EP (τ)

∂τ
= 1,

dM12(τ)

dτ
=

∂

∂τ

(∫ E

EP

a− nE
s− dE

dE

)
=

(
nEP − a
s− dEP

)
,

solving dµ2(τ)/dτ = 0 with respect to τ and Denoting τ the unique root of as EP = Ē, then

τ = Ē − EL+
δ1EL

2

EL+ h1
.

If τ ∈ (0, τ), then EP < Ē and dµ2(τ)/dτ > 0, so µ2(τ) > 1 for all τ ∈ (0, τ). Thereby, the TFPS is
unstable when τ ∈ (0, τ). If τ > τ , then EP > Ē and dµ2(τ)/dτ < 0. It indicates that there is a unique τ∗

that satisfies M12(τ
∗) = 0, i.e., µ2(τ

∗) = 1. By calculations,

∂P(0, τ)

∂T0
= µ2(τ),

∂2P (0, τ∗)

∂T 2
0

= W − 2δ2
h2

,
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∂2P(0, τ)

∂T0∂τ
=
∂T (τ, T0)

∂T0
· ∂
∂τ

(∫ EL

EP

∂h (E, T (E, 0))

∂T0
dE

)
=
dµ2(τ)

dτ
< 0.

Theorem 6. If A < EL < Ē < EP and W < 2δ2/h2, then P(T0, τ) undergoes transcritical bifurcation
at τ = τ∗. Thus, the P(T0, τ) has an unstable positive fixed point when τ changes through τ∗ from left to
right, which means there is an unstable positive periodic solution of the system(2) if EL ∈ (τ∗, τ∗+ ε) with
ε > 0 small enough. However if W > 2δ2/h2, the P(T0, τ) has a stable positive fixed point when τ changes
through τ∗ from right to left, which implies there is a stable positive periodic solution of the system(2) if
τ ∈ (τ∗ − ε, τ∗) with ε > 0 small enough.

If h2 = 0, then µ2(τ) = (1−δ2) exp(M12(τ)). The monotonically of M12 implies that µ2(τ) is decreasing
when τ > τ . i.e., there is a unique τ∗ such that M12(τ

∗) = 0, i.e., µ2(τ
∗) = 1, which reveals that the

bifurcation could occur at τ = τ∗. Moreover, if (1 − δ2) small enough, it is observed that there is a τ̂ so
that µ2(τ̂) < 0. Because on (0, τ), µ2(τ) is monotonic, there exists with a unique τ∗∗ such that µ2(τ

∗∗) = 1.
Similarly,

∂2P(0, τ∗)

∂T0∂τ
=
dµ2(τ

∗)

dτ
< 0,

∂2P (0, τ∗)

∂T 2
0

= W > 0,

∂2P(0, τ∗∗)

∂T0∂τ
=
dµ2(τ

∗∗)

dτ
> 0,

∂2P (0, τ∗∗)

∂T 2
0

= W > 0,

the following results hold.

Corollary 4.4. If h2 = 0, A < EL < Ē < EP , then P(T0, τ) undergoes transcritical bifurcation at τ = τ∗,
i.e., the P(T0, τ) has an unstable positive fixed point when τ changes through τ∗ from left to right, which
means there exists with an unstable positive periodic solution of the system(2) if τ ∈ (τ∗, τ∗ + ε) with
ε > 0 small enough. However, if A < EL < EP < Ē and (1 − δ2) samll enough, then P(T0, τ) undergoes
transcritical bifurcation at τ = τ∗∗. i.e., the P(T0, τ) has an unstable positive fixed point when τ changes
through τ∗∗ from right to left, which indicates that there isan unstable positive periodic solution of the
system(2) if τ ∈ (τ∗∗ − ε, τ∗∗) with ε > 0 small enough.

5. Numerical Experiment

In section 4, bifurcation analysis has been carried out for model (2), this part mainly deals with numerical
studies and adresses biological implications of the results.

In Theorem 2, the bifurcations of the tumour-free periodic solution have been studied when parameter
δ1 changes. For example, fix parameter values as δ2 = 0.3, h2 = 3 6= 0, τ = 9 and EL = 12, we consider
µ2 as a function of δ1 and then change the value of δ1 in the interval (0, 1) (Fig. 2(a)). It is observed that
there is a extreme point δ1 and the function µ2(δ1) is monotonically increasing in the interval [0, δ1] and
decreasing on the interval [δ1, 1] (Fig. 2(a)). Further, it is found that function µ2(δ1) has a value greater
than one on the interval [δ∗1 , 1]. Therefore, µ2(δ1) = 1 has a unique zero point δ∗1 , which means that the
TFPS of model (2) undergoes a transcritical bifurcation at δ1 = δ∗1 = 0.486. In particylarly, if h2 = 0, then
µ2 (δ1) = (1− δ2) exp (M2 +M3). The monotonicity of the function µ2(δ1) is the same as shown in Fig. 2(a)
(Fig. 2(b)). However, as δ1 exceeds the extreme point δ1, then µ2(δ1) will keep decreasing and eventually
be less than one (Fig. 2(b)). Thus, the TFPS of model(2) undergoes transcritical bifurcations at δ∗1 = 0.696
and δ∗∗2 = 0.97, which is consistent with the results of Corollary 4.1. Biologically, it is worth pointing out
that δ1 denotes the maximum killing rate of the effector cells, which can reflect the efficacy of the therapy.
For the case h2 6= 0 (Fig. 2(a)), the TFPS of system (2) is asymptotically stable if δ1 is less than a certain
constant. It means that in the case of saturation effect, the killing rate of effector cells should be controlled
at a low level so that the eventual elimination of the tumours can be reached. However, when h2 = 0, there
is no saturation for the killing rate of tumour cells, even if δ1 reaches a high level, it is still guaranteed the
stablility of the TFPS (Fig. 2(b)). This suggests that two different strategies can be adopted, maintaining
a low level of δ1 or initially treating at a high level of δ1. Therefore, it is noted that µ2 is very sensitive to
the killing rate δ1 and the saturation constant h2. In reality, the saturation effect should not be ignored.
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Fig. 2. The function µ2 with respect to δ1, δ2, EL and τ . (a) δ2 = 0.3, h2 = 3, τ = 9, EL = 12; (b) δ2 = 0.25, h2 = 0, τ =
9, EL = 12; (c) δ1 = 0.4, h2 = 0, τ = 7, EL = 12; (d) δ1 = 0.4, δ2 = 0.3, h2 = 3, τ = 9; (e) δ1 = 0.01, δ2 = 0.3, h2 = 3, EL = 12;
(f) δ1 = 0.01, δ2 = 0.2, h2 = 3, EL = 12. The other parameter values are as follows: s = 5, α = 0.2, d = 0.8, a = 10, n =
0.7,K = 100, h1 = 6

From Corollary 4.2, the P(T0, δ1) could also undergoes transcritical bifurcation for δ2 when h2 = 0.
Considering µ2 as a function of δ2, it is shown that µ2(δ2) is a linear decreasing function about δ2 on the
interval [0, 1] (Fig. 2(c)). It is revealed that the TFPS of model (2) undergoes a transcritical bifurcation at
δ2 = δ∗2 . Note that δ2 represents the maximum killing rate of tumour cells, a large level of δ2 is needed to
maintain the stability of the TFPS (Fig. 2(c)). From Fig. 2(d), we know that the function µ2(EL) is also
monotonically decreasing wih respect to the effector cell threshold EL. Therefore, there is a unique EL∗

such that µ2(EL
∗) = 1. That is, the TFPS of model (2) undergoes a transcritical bifurcation at EL∗. It is

advised that the larger the effector threshold EL, the more benefit to treating cancers.
As shown in Fig. 2(e) and Fig. 2(f), there exists a τ such that the function µ2(τ) is monotonically

increasing on the interval [0, τ ] and decreasing on the interval [τ ,+∞]. If h2 6= 0, according to Theorem 6,
the TFPS of model (2) only undergoes a transcritical bifurcation at τ∗ (Fig. 2(e)). Further, if h2 = 0, then
there exists another τ∗∗ on [0, τ ] such that µ2(τ

∗∗) = 1 (Fig. 2(f)). In this case, the TFPS of model (2)
undergoes transcritical bifurcations at τ∗ and τ∗∗. It is pointed out that the larger the injection numbers
of effector cells τ , the more useful for curing cancers.

Moreover, it follows from the Fig. 2(a) that the transcritical bifurcation occurs at δ∗1 = 0.486. Corre-
spondingly, when we choose δ1 = 0.4 and fix the other parameter values as the same shown in Fig. 2(a),
the TFPS of model(2) is stable with |µ2| < 1 (Fig 3(a)-(c)). If we gradually increase the value of δ1 until
it exceeds δ∗1 , and fix δ1 = 0.52, then the TFPS becomes unstable and there exists with a stable periodic
solution (Fig 3(d)-(f)).

In summary, it is found that µ2 is very sensitive to the bifurcation parameters: the killing rates δ1 and
δ2, the saturation constant h2, the effector cell threshold EL and the injection numbers of effector cells
τ . In order to control tumours, the feasible ways including: (1) for h2 6= 0, decreasing the killing rate of
effector cells δ1 and increasing the injection numbers of effector cells τ (Fig. 2(a) and Fig. 2(e)); (2) for
h2 = 0, maintaining a low level of δ1 or a high level of δ1 (Fig. 2(b)), or keeping a low level of τ or a high
level of τ (Fig. 2(f)); (3) increasing the killing rate of tumour cells δ2 or the effector cell threshold EL (Fig.
2(c) and Fig. 2(d)).
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Fig. 3. the tumour-free periodic solution and it’s stability. δ1 = 0.4 in(a),(b) and (c); δ1 = 0.589 in (d), (e) and (f). The other
parameter values are as follows: s = 5, α = 0.2, d = 0.8, a = 10, n = 0.7,K = 100, δ2 = 0.3, h1 = 6, h2 = 3, τ = 9, EL = 12.

6. Conclusions

Cancer is becoming one of the most serious diseases in humankind. In recent decades, comprehensive
therapy has played an important role in cancer treatment. The mathematical model of tumour immunity
with pulsed control has attracted much attention [Yamaguchi et al., 2006; Hegmans et al., 2005; Samanta
et al., 2017]. However, fixed-time pulsed therapy is usually accompanied by drug resistance. While the
state-dependent pulsed therapy, which is applied depending on the number or size of tumours, will not
only reduce the waste of drugs, but also prevent tumour cells from acquiring drug resistance [Tang et al.,
2016; Wei & Lin, 2013; Yang et al., 2015, 2019, 2020]. In this paper, we proposed a novel pulsed tumour-
immune model with nonlinear killing rates as state-dependent feedback control. On the one hand, we will
focus on the investigations of bifurcations, on the other hand, biological implications are addressed.

For model (1), some basic properties are provided: (a) if A > Ē, then there is a stable boundary
equilibrium (A, 0); (b) if A < Ē, then there exists with a stable interior equilibrium P ∗(E∗, T ∗) and an
unstable boundary equilibrium (A, 0). In this paper, we only focus on the interior equilibrium P ∗. Under
this scenario, we first define a discrete one-parameter Poincaré map, then the existence and stability of
the tumour-free periodic solution of model (2) are addressed. It is founded that if Ē < EL < EP , then
the TFPS (ET (t), 0) of model (2) is orbitally asymptotically stable. If EL < Ē, then by employing the
bifurcation theories of one-parameter discrete maps, the transcritical bifurcations or pitchfork bifurcations
with respect to the maximum kill rate of effector cells δ1, the threshold size EL and the number of injections
of effector cells τ have been investigated. It is concluded that system (2) undergoes a transcritical bifurcation
or pitchfork bifurcation when one of the following conditions hold:

• If A < EL < Ē < EP , µ2(0) < 1 and W 6= 2δ2/h2 holds, for h2 6= 0 then P(T0, δ1) undergoes a
transcritical bifurcation at δ1 = δ∗1 ; for h2 = 0 and µ2(1) < 1, then P(T0, δ1) undergoes transcritical
bifurcation at both δ1 = δ∗1 and δ1 = δ∗∗1 .
• P(T0, δ1) undergoes a transcritical bifurcation at δ1 = δ∗1 , if A < EL < Ē < EP , µ2(0) < 1,h2 6= 0
and W = 2δ2/h2 holds. Further, if ∂3P (0, δ∗1) /∂T 3

0 > 0, then the P(T0, δ1) undergoes a subcritical
pithfork bifurcationif; if ∂3P (0, δ∗1) /∂T 3

0 < 0, then the P(T0, δ1) also undergoes a supercritical pithfork
bifurcation.
• For parameter δ2, if h2 = 0 and A < EL < EP < Ē holds, then P(T0, δ2) undergoes transcritical
bifurcation at δ2 = δ∗2 .
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• If A < EL < Ē < EP holds, for h2 6= 0 and W 6= 2δ2/h2, then P(T0, EL) undergoes transcritical
bifurcation at EL = EL∗; for h2 = 0, then P(T0, EL) also undergoes transcritical bifurcation at
EL = EL∗. Moreover, if W = 2δ2/h2 and ∂3P (0, EL∗) /∂T 3

0 6= 0, then P(T0, EL) undergoes a
pitchfork bifurcation at EL∗.
• If h2 6= 0, A < EL < Ē < EP , and W 6= 2δ2/h2, then P(T0, τ) undergoes transcritical bifurcation
at τ = τ∗. If h2 = 0 holds, for A < EL < Ē < EP , then P(T0, τ) undergoes transcritical bifurcation
at τ = τ∗; for A < EL < EP < Ē and (1 − δ2) samll enough, then P(T0, τ) undergoes transcritical
bifurcation at τ = τ∗∗.

Biologically, the bifurcation parameters of the killing rates δ1 and δ2, the saturation constant h2, the
effector cell threshold EL and the injection numbers of effector cells τ play signicant roles for condition µ2.
The results show that the feasible ways for treating tumours include: (1) for h2 6= 0, decreasing the killing
rate of effector cells δ1 and increasing the injection numbers of effector cells τ (Fig. 2(a) and Fig. 2(e));
(2) for h2 = 0, maintaining a low level of δ1 or a high level of δ1 (Fig. 2(b)), or keeping a low level of τ or
a high level of τ (Fig. 2(f)); (3) increasing the killing rate of tumour cells δ2 or the effector cell threshold
EL (Fig. 2(c) and Fig. 2(d)).

Compared to the previous studies [Tang et al., 2016; Yang et al., 2020], the highlights are listed as
follows: (1) we propose a novel state-dependent tumour-immune model with nonlinear feedback control,
which can better reflect the saturation of the tumour and immune cell mortality due to chemotherapy; (2)
we mainly focus on discussing the transcritical and subcritical bifurcations.

The results enrich and improve the studies of tumour immune models. However, for simplicity, we
consider a simplified model for the convenience of theoretical investigations. In future, we are looking
forward to proposing more general models.
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