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A B S T R A C T   

The use of a top-mounted electromagnetic induction coil has been demonstrated as a contactless alternative to 
traditional ultrasonic treatment (UST) techniques that use an immersed mechanical sonotrode for the treatment 
of metals in the liquid state. This method offers similar benefits to existing UST approaches, including degassing, 
grain refinement, and dispersion of nanoparticles, while also preventing contact contamination due to erosion of 
the sonotrode. Contactless treatment potentially extends UST to high temperature or reactive melts. Generally, 
the method relies on acoustic resonance to reach pressure levels suitable for inertial cavitation and as a result the 
active cavitation volume tends to lie deep in the melt rather than in the small volume surrounding the immersed 
sonotrode probe. Consequently, (i) with suitable tuning of the coil supply frequency for resonance, the treatment 
volume can be made arbitrarily large, (ii) the problem of shielding and pressure wave attenuation suffered by the 
immersed sonotrode is avoided. However, relying on acoustic resonance presents problems: (i) the emergence of 
bubbles alters the speed of sound, resonance is momentarily lost, and cavitation becomes intermittent, (ii) as 
sound waves travel through and reflect on all the materials surrounding the melt, the sound characteristics of the 
crucible and supporting structures need to be carefully considered. The physics of cavitation coupled with this 
intermittent behaviour poses a challenge to sonotrode modelling orthodoxy, a problem we are trying to address 
in this publication. Two alternative approaches will be discussed, one of which is in the time domain and one in 
the frequency domain, which couple the solution of a bubble dynamics solver with that of an acoustics solver, to 
give an accurate prediction of the acoustic pressure generated by the induction coil. The time domain solver uses 
a novel algorithm to improve simulation time, by detecting an imminent bubble collapse and prescribing its 
subsequent behaviour, rather than directly solving a region that would normally require extremely small time 
steps. This way, it is shown to predict intermittent cavitation. The frequency domain solver for the first time 
couples the nonlinear Helmholtz model used for studying cavitation, with a background source term for the 
contribution of Lorentz forces. It predicts comparable RMS pressures to the time domain solver, but not the 
intermittent behaviour due to the underlying harmonic assumption. As further validation, the frequency domain 
method is also used to compare the generated acoustic pressure with that of traditional UST using a mechanical 
sonotrode.   

1. Introduction 

Ultrasonic treatment (UST) of metals in the liquid state prior to 
casting has been shown to improve the mechanical properties of the 
resulting solidified metal. In the case of aluminium alloys, beneficial 
effects from UST include the reduction of trapped hydrogen (degassing), 
grain refinement, or the dispersion of particle clusters in metal matrix 
composites [1]. These benefits are often attributed to the formation and 
explosive collapse of bubbles in the melt (cavitation) due to large 

pressure oscillations [2]. At the point of collapse, extreme temperatures 
[3] and pressures [4] occur. Traditionally, UST experiments induce 
sound waves using an immersed mechanical sonotrode operating at low 
ultrasonic frequencies (17–20 kHz). This technique induces strong 
pressure waves, which are nevertheless attenuated rapidly away from 
the sonotrode tip due to intense inertial cavitation and gas shielding. The 
main sources of attenuation arise from thermal losses, viscous friction, 
and losses due to acoustic radiation [5]. This small, localized region of 
intense cavitation is then extended in practice via the use of mechanical 
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stirring, or through the design of specialized container vessels that allow 
for the melt to make multiple passes through it, so treating a larger melt 
volume [6]. 

A contactless method has been suggested which addresses some of 
these problems [7]. This process should improve cast cleanness, as it 
eliminates the contamination that occurs with the traditional method 
due to sonotrode erosion via the use of an induction coil that does not 
contact the melt. This should also reduce cost as the traditional method 
requires frequent and expensive sonotrode tip replacements. Addition
ally, high temperature (Ni, Fe, Cu) or reactive (Ti, Zr) melts which are 
not suitable for traditional UST can be similarly processed with the 
contactless method. However, a significant issue that the contactless 
method must overcome, is that the sinusoidal component of the Lorentz 
Force, which is the main source of acoustic waves in the melt, is 
significantly weaker than the mechanical force generated by the 
vibrating sonotrode. 1D simulations of the pressure induced by a coil 
carrying 2 kA at 10 kHz result in 20 kHz vibrations with an initial 
amplitude of 2814 Pa [8], while the immersed sonotrode can reach 
initial pressures of over 1 MPa, depending on the peak to peak 
displacement. The pressure required for consistent cavitation occurs at 
the Blake Threshold, given by Equation (1), where S = 2σ

p0R0 
is the Laplace 

tension, p0 represents atmospheric pressure, R0 the equilibrium bubble 
radius, and σ the surface tension. 

Pblake = p0

⎡

⎣1+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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27
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√ ⎤
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As an example, for a hydrogen bubble with an ambient radius of 10 
µm in liquid aluminium, with σ = 0.87 N/m and p0 = 101325 Pa, the 
Blake Threshold occurs at approximately 153 kPa. Since this is over 75 
times the pressure contribution from the induction coil, acoustic reso
nance is required to approach the pressures needed for processing to 
take place. Acoustic waves are therefore initiated at low pressure and 
rapidly reach resonance as a function of crucible geometry, melt volume 
and supply frequency due to the linear behaviour of acoustic propaga
tion, whilst hydrogen remains dissolved in the melt. As bubbles emerge 
and grow due to rectified diffusion at higher acoustic pressures [9] and 
then begin rapid expansion at the Blake threshold, the acoustic propa
gation gradually becomes highly nonlinear and maintaining resonance 
becomes problematic. As pressures diminish as a result, the remaining 
gas dissolves back into solution and the cycle repeats. An important 
characteristic of the process is therefore intermittent cavitation. 

To address this complex problem, this work presents a novel Fre
quency Domain model of the coupled nonlinear acoustic field and the 
Lorentz force induced by the induction coil. Frequency domain models 

have become an increasingly common method of solving sound propa
gation problems in bubbly liquids, due to their relative computational 
efficiency over time domain methods and for this reason a brief histor
ical review of its development follows. An early model [10] incorpo
rated the effect of bubbles on the acoustic field by including a complex 
valued wavenumber in the Helmholtz equation, but that was only suit
able for low pressure, linear oscillations. Louisnard [11] then extended 
this approach with a semi-nonlinear model, reformulating the complex 
part of the wavenumber by taking into account the energy dissipation of 
large amplitude bubble oscillations, but still using the linear approxi
mation for the real part. The effect of compressibility was then included 
by [5], who used the Keller-Miksis equation and found that the atten
uation to acoustic radiation is comparable to that due to thermal dissi
pation, and the Keller-Miksis equation was again used by [12], who 
derived a fully nonlinear expression for the wavenumber from the 
Caflisch equations [13], and showed that the attenuation and sound 
speed depend strongly on frequency and pressure. A similar approach 
was then used by Trujillo [14] but initially only validated against the 
linear model at low acoustic pressures. This was then extended to higher 
pressure amplitudes and the model validated for cavitating liquids [15]. 
This model has also been used by [16,17] for large acoustic pressure 
amplitudes and the simulation of acoustic streaming, and coupled to a 
solver for the fluid flow and solidification of liquid aluminium alloys. Jin 
et al. [18] compared Finite Element simulations of the linear and 
nonlinear Helmholtz models in modelling sonoreactors, and concluded 
that the linear model significantly overpredicts the acoustic pressure 
magnitude, so the use of nonlinear models is needed for accurate 
simulations. 

On the other hand, time-dependent methods also have distinct ad
vantages. Unlike frequency domain methods, they are not restricted to 
just one harmonic frequency, and can also address transient effects that 
harmonic solutions neglect [11]. A significant amount of existing liter
ature here uses the full Caflisch equations [13] to model the sound 
propagation in bubbly liquids, including cavitating air bubbles in water, 
and hydrogen bubbles in liquid aluminium [19]. Many of these previous 
simulations have been restricted to two dimensions due to the compu
tational requirements of resolving bubble collapses in each computa
tional cell. Work by Vanhille et al. [20,21] provides an alternative 
approach based on a damped oscillator equation, which has been used 
for the simulation of three dimensional acoustic fields [22]. However, 
this might not be valid for very high driving pressure amplitudes which 
result in significant increases in bubble volume fraction [23]. This work 
presents a new model featuring an algorithm which aims to improve the 
stability and efficiency of running the full Caflisch equations, and the 
results are compared to frequency domain simulations. In addition, 

Fig. 1. (a) The patented contactless sonotrode concept [24], (b) a schematic for the current experiments in a clay graphite cylindrical crucible.  
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simulations of the contactless method are then compared to results ob
tained using a traditional mechanical sonotrode. 

2. Sound generation from the contactless sonotrode 

In theory, any induction coil, including the one used for melting the 
metal charge can be used to generate vibrations in the melt. However, 
(a) the wave frequency needs to be around 20 kHz in agreement with 
current sonotrode practice, (b) to achieve maximum electromagnetic 
coupling between coil and melt, the distance between them must be 
minimised. Bearing in mind that opposite currents repel, this led to the 
idea of mounting the AC induction coil close to the melt free surface, as 
shown in the concept simulation in Fig. 1a [8]. The coil operates at a 
frequency between 6 and 10 kHz and with AC current up to 2000 A. 
During operation opposite currents are induced in the melt that result in 
a repulsive Lorentz force, which depresses the free surface of the melt 
preventing direct contact. A typical simulation reflecting the current 
experiments and the basis for the experimental data and numerical 
validation in this paper is presented in Fig. 1b, which shows the flow and 
temperature fields generated by the induction coil, as well as the 
resulting free surface depression. 

The induced Lorentz force can be represented by F = J × B, where J 
and B are the current density and the magnetic flux density, respec
tively. With the AC coil assumed to operate at an angular frequency ω, 
the Lorentz force can then be represented by a time-averaged part F, 
responsible for bulk mixing, and a time-dependent part F̃ which is the 
primary source of vibration. Considering the 1D case for clarity, this can 
be expressed analytically by Equations (2) and (3) [25]. 
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2
μωσ

√
is the skin depth, while the r and i subscripts indicate 

real and imaginary parts. Equation (3) demonstrates some important 
behaviour. First, the oscillation of the induced force operates at a fre
quency of 2ω, twice that of the AC frequency. Second, the force decays 
rapidly within the skin layer δ under the free surface. For liquid 
aluminium at an electrical frequency of 10 kHz, surface magnetic field 
amplitude of 0.1 T, electrical conductivity 2e6 S/m and magnetic 
permeability 4πx10-7H/m, this results in a skin depth of around 3.35 
mm. With these parameters, the time-dependent part of the Lorentz 
force generates acoustic waves in the liquid metal with a typical 
amplitude of 2–3 kPa which is insufficient for the onset of cavitation and 
therefore acoustic resonance conditions must be established. In this 

initial low pressure phase, dissolved hydrogen in the liquid remains in 
solution and does not influence the acoustic wave propagation. As 
pressure oscillations begin to grow due to resonance, eventually a 
threshold is reached where hydrogen bubbles begin to grow due to 
rectified diffusion [26]. These bubbles attenuate the sound field and 
change the effective speed of sound in the liquid, which in turn changes 
the resonant frequency of the system preventing the pressure from 
building further. 

Physical experiments using the immersed top coil clearly show evi
dence of this intermittent cavitation behaviour, indicated by the pres
ence of broadband noise recorded sound spectra. Typical emitted sound 
spectrograms obtained in crucible experiments have been given in pre
vious work [7,28,29], with example spectrograms presented in Fig. 2 for 
completeness. For the crucible described in Fig. 1b, spectrograms show 
the strongest response around 18.86 kHz and 18.42 kHz [28]. Other 
details of the experimental setup have also been given in previous 
publications, e.g. [6]. These spectrograms show the existence of 
broadband emissions that cannot be resolved by the high frequency 
microphone used and correspond to cavitation signals emitted by cavi
tating bubbles. The intermittent behaviour of these signals is apparent, 
and their density is a good indicator of the strength of cavitation. As 
shown further in Fig. 2, temperature affects cavitation intensity in 
aluminium, since it is easier to release hydrogen from solution close to 
liquidus, so activity decays as melt temperature increases from 670 ◦C to 
720 ◦C. Changing the melt volume by taking a 300 g sample from the 
crucible eliminates cavitation, again showing sensitivity to overall melt 
dimensions to resonance. Further evidence of cavitation can be deduced 
post solidification from test samples cast from treated metal showing 
grain refinement [17,28,30] as well as degassing. 

3. Modelling approach 

Time domain models based on the solution of Caflisch equations 
have previously been used to model the ultrasonic treatment of liquid 
metal alloys [8,19,31] with acoustic pressure predictions that match 
well with experimental data. The present model accounts for all acoustic 
frequencies which can be resolved effectively by the choice of the nu
merical scheme and grid size, including the sound emitted from higher 
frequency bubble oscillations. However, the solution of the full time- 
dependent system, becomes computationally expensive and imprac
tical to use as very small timesteps - several orders smaller than the 
acoustic timestep, are needed to fully capture the behaviour of the 
bubble at collapse. On the other hand, frequency domain models based 
on a harmonic solution to the Caflisch equations have been used as a 
more efficient, but single frequency alternative [11,14,17,32]. The 
nonlinear Helmholtz equation which results is then useful for running 
multiple simulations and performing a parameter estimation study or 

Fig. 2. Spectrograms show the appearance of wideband noise bursts (vertical lines) [27] indicating the onset of cavitation. The horizontal lines, correspond to 
resonant peaks caused by the driving frequency in the top coil (~20 kHz) and the melting coil (~5 kHz). (a)Varying temperature between 670 ◦C and 720 ◦C shows 
maximum cavitation activity at 690 ◦C; by 720 ◦C most cavitation activity disappears. (b) Reducing the volume of metal from 10.5 Kg to 10.2 Kg, has a drastic effect 
on cavitation, with cavitation disappearing. Figures Dybalska et al.. 
reproduced from [28] 
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optimising model parameters including the sonotrode input power, 
temperature [32] operating frequency, or geometry [33] to maximize 
the intensity of cavitation. 

A frequency domain study coupling a computational acoustics model 
with Maxwell’s equations to estimate the Lorentz forces acting on a skin 
layer under the melt free surface has previously been used by Tonry et al. 
[29] but was based on a linear Helmholtz model. This leads to a useful 
model describing the acoustic field within the melt and can be used to 
scan frequencies quickly to see which ones may result in resonance. 
However, a simple linear approach cannot predict the effect that inertial 
cavitation has on the sound field. This can lead to two main concerns. 
First, the amplitudes obtained by a linear acoustic model approach in
finity as the driving frequency approaches the resonating frequency, 
which cannot happen due to inertial cavitation damping the acoustic 
waves. Secondly, variations in the speed of sound due to gas 
compressibility are not taken into consideration, which could lead to 
incorrect prediction of cavitating zone positions. However, since the 
initial pressure contribution due to the coil is approximately 2–3 kPa, 
and the effect of bubbles is negligible below the rectified diffusion 
threshold (approximately 83 kPa in the case presented here), the linear 
solution can be used to predict the resonant frequency of the system as 
resonance must exist to reach the threshold pressure at all. 

Recognising the limitations of the frequency domain approach, in the 
following section we discuss improvements to the time domain method 
which aim to improve its computational efficiency by introducing a new 
algorithm, named “flipRdot”, for bubble behaviour near collapse. 
Similarly, improvements to the frequency domain method are then 
presented which enable the coupling to an electromagnetics study for 
the contribution of Lorentz forces. 

3.1. Time domain model 

A novel, computationally efficient method is proposed for solving the 
tightly coupled equations of acoustic cavitation in the time domain. As 
the oscillations of the cavitating gas bubbles significantly alter the 
acoustic field in the liquid volume, the nonlinearity of this phenomenon 
must be taken into account to determine accurately the resonant fre
quencies that can lead to the strongest pressure amplitudes, beneficial 
for the liquid metal treatment via cavitation. 

As the Mach number in liquids is always negligibly small, the 
equations describing the acoustic motion in primitive variables reduce 

to. 

1
ρc2

∂p
∂t

+∇⋅u = F+
∂β
∂t
;
∂β
∂t

=
∂
∂t

(
4
3

πR3N
)

(4)  

ρ ∂u
∂t

+∇p = 0 (5) 

with p – the local acoustic time-dependent pressure, ρand c – the 
density and speed of sound in the liquid, u – the acoustic velocity vector, 
t – time, F – a source of sound resulting from the Lorentz force, β– bubble 
volume fraction, R – the instantaneous radius of the local bubbles 
(assumed spherical) and N [m− 3] – the local concentration of bubbles. 
The rate of change of β which represents the effect of the oscillating 
bubbles on the sound waves is the main feature of the Caflisch model 
[13]. The bubble spherical oscillation, described by Ṙ, depends on the 
variable local sound pressure p. This mutual dependence of p and R 
makes the model tightly coupled. A number of ordinary differential 
equations (ODE) have been proposed and used to model this motion; one 
providing a good balance between accuracy and complexity is the 
Keller-Miksis equation (8). It accounts partially (to 1st order) for the 
liquid compressibility in its rapid radial motion in the vicinity of the 
bubble. In the fully incompressible limit (c→∞), the Keller-Miksis 
equation [34] reduces to the original Rayleigh-Plesset equation [35]. 

As shown previously, [19] the time domain acoustic cavitation 
method involves the direct numerical solution of the Caflisch equations 
(4, 5, 8–10) where the acoustic partial differential equations (PDE) are 
tightly coupled with the highly nonlinear bubble dynamics ODE and the 
equation of state for the bubble gas. Extremely high gradients of the 
bubble variables develop at bubble collapse. The adaptive time step 
methods within the ODE solvers attempt to reduce the time step [19] at 
collapse to values which are so tiny that (a) are impractical for 3-dimen
sional simulations in realistic geometries, and (b) cast doubt over the 
arithmetic accuracy of the computed results due to roundoff even with 
enhanced computer precision. 

Fig. 3 shows the typical bubble behaviour for one acoustic cycle 
compared to experimental data [36]. The driving acoustic pressure p has 
sufficiently high amplitude (above the Blake threshold for a given R0), so 
that explosive expansion of the gas bubble occurs, followed by rapid 
contraction, collapse, rebound on a time scale of a few nanoseconds and, 
possibly, several decaying secondary collapses (“after bounces”) [11]. 
The typical acoustic time step size for liquid metal in a laboratory-scale 

Fig. 3. Response of air bubble with R0 = 4.5 μm in water to sinusoidal acoustic pressure with amplitude 135 kPa, p0 = 100 kPa, σ = 0.03 N/m, μ = 0.001 Pa.s, c =
1481 m/s [36]. 
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container would be between 50 and 100 ns (bearing in mind that the 
explicit time-stepping of the acoustic algorithm [19] must obey the CFL 
limit). The proposed new algorithm aims to avoid reducing this time- 
step beyond practical limits. To resolve the rebound, the ODE time 
step goes down to less than 0.005 ns which is prohibitively small when 
thousands of bubbles are simulated for hundreds of cycles.). 

To address this problem, we consider an approximation to the bubble 
dynamics that provides stability gains while retaining an accurate rep
resentation of the physics and the effect of expanding and contracting 
bubbles on the ultrasound field. The proposed coupled algorithm 
‘flipRdot’ for the Caflisch model proceeds as follows:  

1. Solve the acoustic PDEs, mass continuity (4) and momentum (5) 
time-dependently, with time steps and mesh size appropriate for 
resolving the highest frequency in the desired range in the modelled 
geometry.  

2. At each acoustic step, make a single, fully explicit ODE step with the 
Keller-Miksis equation (8) for all representative bubbles (located at 
the centres of the acoustic computational cells) calculating the β 
source term in (4).  

3. Where, at the ODE step, an imminent bubble collapse is detected, 
invert the bubble motion by assigning a rebound bubble wall velocity 
and temporarily, for the current acoustic step, hold the bubble radius 
at a prescribed minimum value. 

4. Repeat steps 1 to 3 until the end of the desired simulated time in
terval. (Usually, after the simulation, an FFT is carried out of acoustic 
pressure signals recorded at designated points in the solution 
domain. To achieve 10 Hz FFT resolution, the minimum simulated 
time interval is then 0.1 s.) 

The parameters needed to control the proposed algorithm and their 
values used in the simulations for Fig. 3 are listed in Table 1. 

These parameters are used as follows: Where the descending time- 

varying bubble radius R is less than 0.8 R0 and the bubble wall veloc
ity Ṙ is less than − 1 m/s, then bubble collapse is assumed imminent and 
the Ṙ reversal is done with the chosen coefficient in the current time 
step, while holding R = 0.8 R0. One can see in Fig. 3 that the value of the 
inversion coefficient only affects the ‘after bounces’. In the author’s 
experience, a value of − 0.5 for this coefficient can be recommended; it 
means ¼ of the kinetic energy of the liquid associated with the bubble 
radial motion rebounds and ¾ is dissipated (into heat, light, sound and 
chemical energy). 

This algorithm bypasses the singular collapse which occurs over 
several picoseconds, but might not fully capture the radiation and 
viscous losses which dominate during the collapse at very high pressures 
[5]. While this is a limitation of the model, this restriction can be 
overcome by fitting parameters in Table 1 to reproduce comparable 
rebound behaviour to the full ODE solution. In addition, since the top 
coil barely reaches Blake pressures, the error introduced in the acoustic 
pressure range of interest is small, and as the time dependent Caflisch 
solver is often implemented with the acoustics and bubble dynamics 
operating at different time scales [19] this region isn’t fully resolved by 
the acoustics code to begin with. The validation of this algorithm for the 
pressure range of interest then relies on its ability to correctly predict the 
bubble radii after collapse, and the ability to predict attenuation well 
enough to identify resonant frequencies comparable to that with more 
well established methods. 

A validation example for a stronger bubble collapse [37] can be seen 
in Fig. 4. The yellow line (iodeKM) is the full numerical solution of the 
Keller-Miksis equation (8) with the Intel ODE solver. The ‘pause’ 
parameter is the minimum bubble radius relative to its equilibrium 
value. The ‘flip’ parameter is the negative bubble wall velocity inversion 
coefficient. Decreasing its value results in a weaker rebound, i.e. more 
energy is assumed to be dissipated by the collapse of the bubble. The 
bubble wall velocity is assumed asṘ = 0 at the beginning of the simu
lation; a threshold bubble radius (‘pause’) coefficient of 0.7 is seen to be 
more appropriate in this case. Away from the collapse and rebound re
gion, the excellent agreement between model and experiment seen in 
Fig. 3 can be obtained with time steps up to 5 times higher than the value 
from Table 1; this means, especially for cases with liquid metal where c 
> 2000 m/s and with a required spatial resolution of 1 mm, the limiting 
factor is the acoustic CFL condition rather than the resolution of the 
bubble collapse which would be the case without the ‘flipRdot’ 
algorithm. 

Table 1 
Parameters controlling the flipRdot algorithm.  

Parameter Value 

Time step (for ODE and PDE, following CFL limit) 0.05 μs 
Threshold minimum bubble radius coefficient 0.8 
Threshold bubble wall velocity − 1 m/s 
Bubble wall velocity inversion coefficient (variable parameter) − 0.9 to − 0.4  

Fig. 4. Collapse of a laser-induced bubble, initial R = 365 μm, in deionised water [37].  
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Overall, the parameters from Table 1 are subject to optimisation for 
classes of cases defined by the type of liquid and ranges of bubble size 
and driving ultrasound amplitude. 

3.2. Frequency domain model 

Starting from Equations (4) and (5), and instead using the Lorentz 
force F in its volumetric form F⋆ (units N/m3) and treating it as a source 
of momentum rather than mass: 

1
ρc2

∂p
∂t

+∇⋅u =
∂β
∂t
;
∂β
∂t

=
∂
∂t

(
4
3

πR3N
)

(6)  

ρ ∂u
∂t

+∇p+F⋆ = 0 (7) 

Following the derivation procedure used by [14] in which the 
divergence of Equation (7) is subtracted from the first time derivative of 
Equation (6), it is possible to derive a nonlinear wave equation for the 
behaviour of the acoustic field including a background volumetric force. 
This is given in Equation (8). 

ρ ∂2p
∂t2 − ∇2p − ∇F⋆ = ρ ∂2β

∂t2 (8) 

By dividing through by ρ and time averaging, following the standard 
derivation procedure of the nonlinear Helmholtz equation for cavitation 
problems [14] but now including this new source term, Equation (9) is 
obtained. 

∇(
1
ρ∇P −

F⋆

ρ )+
k2

m

ρ P = 0 (9) 

The model in Equation (9) shares similarities to previous studies 
involving excitation from a sonotrode [11,14,16] but with an additional 
source term F⋆. In addition, unlike existing approaches, the nonlinear 
Helmholtz equation used in this work differs by including terms which 
allow for variation in density. Density variations caused by the increase 
in bubble fraction are assumed to be small enough to be neglected, so the 
only density variations occur at material boundaries. The additional 
source term F⋆ in this case is the harmonic amplitude of the volumetric 
Lorentz force, but in theory could be any volumetric force due to some 
background field. P represents the complex acoustic pressure field, and 
k2

m is a modified wave number given by Equation (10). The use of such a 
method does assume that the acoustic field can be approximated by only 
considering the main driving frequency, and it has been suggested that 
the pressure magnitude of other harmonics should be at least an order of 
magnitude lower than that of the main driving frequency [11]. 

k2
m =

(ω
c

)2
−

A (P)
|P|

− i
B (P)
|P|

(10) 

The dissipation functions A and B in Equation (10) take the same 
form as [14] and describe the change in speed of sound and attenuation 
due to the existence of inertially cavitating bubbles. To calculate these, 
the Keller-Miksis Equation (KME) [34] given in Equation (11) is used for 
the bubble dynamics simulation, as it accounts for the inclusion of liquid 
compressibility up to first order and contains additional acoustic radi
ation terms. Due to the Keller-Miksis equation only having compress
ibility terms accurate to first order, this model is only valid for Mach 
numbers Ṙ/c≪1. In this work, this should be adequate as the acoustic 
pressures barely exceed the Blake threshold, but if compressibility is 
important, the KME should be replaced by a model with higher order 
terms, for example [38]. Temporal integration is calculated using the 
Tsitouras 5/4 Runge-Kutta algorithm (Tsit5) provided by the Differ
entialEquations.jl library [39]. The flipRdot algorithm is not used this 
time, with the full solution including collapse modelled instead. 
(

1 −
Ṙ
C

)

RR̈+
3
2
Ṙ2
(

1 −
Ṙ
3c

)

=
1
ρl

(

1+
Ṙ
c
+

R
c

d
dt

)

[pl − p(t)] (11) 

Then pl represents the liquid pressure at the liquid gas interface and 
is defined by Equation (12). 

pl = pg −
2σe

R
−

4μṘ
R

(12)  

Where σe is the surface tension, μ is the liquid viscosity, and pg is the 
pressure in the gas at the interface, which can be assumed to follow 
Equation (13), the adiabatic equation of state [40]. 

pg = pg0

(
R0

R

)3γ

(13)  

Where γ = 1.4 is the polytropic exponent, and pg0 the initial gas pressure 
in the bubble. The background pressure p(t) = p0(1 − Asin(ωt) ) ac
counts for the atmospheric pressure, and the sinusoidal acoustic pres
sure with dimensionless amplitude A, which is chosen to be 2.4, 
matching that of pressure readings from experiments in liquid 
Aluminium [41]. It should be noted that this equation of state assumes 
adiabatic conditions, and as a result, neglects the effect of thermal 
dissipation. Several authors have discussed how various physical effects 
contribute to dissipation, for example [11,14,42] and at higher acoustic 
pressures, acoustic radiation and viscous damping account for the vast 
majority of attenuation with values orders of magnitude higher than that 
of the attenuation due to thermal dissipation. However this is not true at 
low acoustic pressures where thermal dissipation can be significant, so 
this should be considered a limitation of the current model, with the 
potential to replace the equation of state with one that includes heat 
transfer, such as in Sojahrood et al. [42]. The variation of the nonlinear 
coefficients as the dimensionless amplitude increases is given in Fig. 5. 

As the frequency domain solution assumes that the bubble oscillation 
has a harmonic component, it is important to run the single bubble 
model for more than one acoustic period so that simulation can converge 
to a harmonic solution. The number of cycles needed to reach a har
monic solution increases with frequency and driving amplitude [14], 
but at high pressure amplitudes a stationary solution cannot be ach
ieved. In this case, the attenuation coefficients need to be interpolated. 
In the simulations in this paper, 500 cycles are chosen as the cut-off 
point at which if a harmonic solution has not been obtained, interpo
lation is used instead. The dispersion coefficients A and B can then be 
calculated using Equation (14) [14], which considers only the change in 
void faction over the last acoustic period. 

A = −
ρlω2

π

∫ 2π

0

∂β
∂τ sinτdτ,B = −

ρlω2

π

∫ 2π

0

∂β
∂τ cosτdτ (14) 

Fig. 5. Change in nonlinear coefficients A and B with different driving 
acoustic pressure amplitudes. Large changes in the nonlinearity begin just 
before the Blake Threshold of 153370Pa for a 10 µm bubble. p0 = 1e5 Pa, N =
1e8, and a frequency of 8.4kHz.

C. Beckwith et al.                                                                                                                                                                                                                               



Ultrasonics Sonochemistry 89 (2022) 106138

7

Where β = 4/3πr3N is the void fraction and N is the number of bubbles. 
In previous work [43], N was assumed to follow a smoothed stepwise 
function W(|P| ) centered on the Blake pressure, with an arbitrary 

smoothing distance in the range of 0.1 to 0.2 Pblake. A downside to this 
approach is that it underestimates the effect of bubbles oscillating below 
this threshold, and as one of the main challenges to the top coil is the 
reliance on acoustic resonance to obtain cavitation this can lead to 
higher than realistic pressures, and an incorrect prediction of cavitation. 
In this work, we propose that a better approach is to choose this distance 
using the knowledge that bubbles will begin to grow once P = Prd, the 
rectified diffusion threshold, and as such the smoothing distance should 
be equal to Pblake − Prd. A number of authors have investigated the pro
cess of rectified diffusion and have proposed equations for calculating 
Prd. In this work we will be following the work of Crum [9], and 
assuming that the driving frequency is far from the bubble resonant 
frequency, which is generally the case in metal processing. The resulting 
threshold is given by Equation (15), where Ci is the concentration of 

Table 2 
Material properties for all materials used in the simulation.  

Property Aluminium Clay 
Graphite 

Air Copper 

Density ρ(kg/m3) 2375 1844 – – 
Speed of Sound c (m/s) 4560 1400 – – 
Relative permeability μr 0.8 – 1 1 
Electrical conductivity σ (S/ 

m) 
2× 106 – 0 5.99× 107 

Relative permittivity ∊r 1 – 1 1  

Fig. 6. Eigenfrequency solutions for 3 chosen frequencies, demonstrates 2 modes which primarily act in the crucible wall, while the mode at 18484 Hz primarily acts 
on the liquid aluminium. 

Fig. 7. (a) RMS pressure distribution taken at T = 100.8 s with N = 1e8, (b) the frequency spectrum obtained by taking the FFT of the time series data at 3 node 
locations (r = 0, y = 21.5 cm), (r = 6 cm, y = 14.5 cm) and (r = 4 cm, y = 1 cm). 
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hydrogen in the bulk fluid, C0 is the saturation concentration, η is the 
polytropic coefficient. 

P2
rd=

(
ρR2

0ω2
0

)2
[(

1− ω2/ω2
0

)2
+b2(ω2/ω2

0)
]
(1+2σ/R0P∞ − Ci/C0)

(3+4K)(Ci/C0)−
{[

3
4(η− 1)(3η− 4)

]
+(4− 3η)K

}
(1+2σ/R0P∞)

(15) 

Another benefit to applying this smoothing is to improve the 
convergence of the method. While existing simulations using similar 
Non-Linear Helmholtz (NLH) based methods are concerned with the 
acoustic field generated by a sonotrode and are not concerned with 
resonance as the initial pressure amplitudes are high enough to trigger 
instantaneous cavitation, the contactless sonotrode relies on resonance 
to build up the pressure and then relies on intermittent cavitation to 
process the liquid. At near resonant frequencies, the NLH model suffers 
from bistability which prevents convergence, with the solution oscil
lating between the linear regime solution and the nonlinear solution. 

The modified Helmholtz equation given in Equation (9), used for 
studying cavitation results in a system of heavily nonlinear equations, 
can take longer to converge when compared to the linear formulation 
[29], making full 3D frequency sweeps highly impractical. However, the 
linear model cannot be used to predict what pressures might be obtained 
in the presence of bubbles, or the size of the resulting active processing 

region which exists above the Blake threshold. This paper suggests an 
efficient method which provides the best of both approaches. The so
lution procedure follows 3 steps:  

1. Perform an eigenfrequency study with a linear Helmholtz equation 
obtained by setting the number of bubbles N = 0, neglecting the 
effect of bubbles in the liquid. An assumption which should hold for 
the initial pressure build up before resonance.  

2. Compute the induced harmonic Lorentz Force amplitude, by running 
a frequency domain Electromagnetics AC study at half the chosen 
eigenfrequency.  

3. Once target resonant frequencies have been obtained, solve the 
nonlinear Helmholtz type model, given in Equation (9), which in
cludes the effect of cavitating bubbles on the resulting field. As the 
resonant mode slightly shifts when including bubbles, it’s often 
required to perform a parametric study of frequencies close to the 
linear prediction to obtain resonance in the nonlinear model. The 
source term F⋆ is set to the computed Lorentz Force amplitude 
computed in step 2, to get finite pressure amplitudes and the correct 
acoustic field. 

4. Results 

Both the time domain and frequency domain numerical models 
described in the previous chapter have been used to model the sound 
propagation in liquid aluminium with the geometry described in Section 
2. The material properties used throughout both simulations are given in 
Table 2. In the time domain simulations, the Lorentz force was calcu
lated from the 1D theory F̃ in Equation (3), while the frequency domain 
solution used the full Electromagnetics simulation, including the sur
rounding air and the copper coil. The effect of the clay graphite crucible 
was not considered in the Electromagnetics study as it is not electrically 
conducting but was considered in the acoustic study. 

Three chosen eigenfrequencies for the cylindrical crucible obtained 
by using linear theory are shown in Fig. 6. These frequencies were 
chosen as they are close to the first peak recorded in the experimental 
data [28] and represent the closest frequencies obtainable by the coil. Of 
the chosen frequencies, only the 18484 Hz mode resonates the liquid 
aluminium, while the other modes primarily act on the crucible walls. 
To maximize cavitation in the liquid, the 18484 Hz mode will be the 
target mode in the following simulations. 

The time domain model uses a fixed driving frequency of 18.49 kHz 
and N = 1e8. The choice of N is chosen such that the volume fraction of 
bubbles at the Blake threshold is comparable to previous simulations in 

Fig. 8. FFT spectrum from the time dependent study (a) shows the dominance of the driving, with a smaller contribution from higher frequency harmonics. Time 
series data (b) shows the initial linear pressure growth due to resonance, which then transitions into a region of intermittent cavitation. 

Fig. 9. Maximum acoustic pressure obtained in the liquid aluminium for two 
bubble concentrations using the frequency domain method, with N = 5e7 and 
N = 1e8. 
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liquid aluminium which used smaller bubbles [16]. The RMS pressure 
distribution is presented in Fig. 7a, and reaches a peak value of 
approximately 110 kPa, corresponding to a harmonic amplitude of 
approximately 155 kPa, just above the Blake threshold of 153.37 kPa. 
Taking the FFT at 3 locations in the domain shows the excitation of 2 
main frequencies, at 18480 Hz and 18420 Hz, with an FFT resolution of 
10 Hz. The FFT spectrum is provided in Fig. 8b. The pressure distribu
tion closely matches the Eigenfrequency result in Fig. 6b, with the mode 
shifting 4 Hz due to the presence of bubbles. 

The full FFT spectrum for the case is provided in Fig. 8a and shows 
the dominance of the driving frequency and its harmonics. Fig. 8b shows 
the time evolution of the acoustic pressure field, showing the initial 
linear growth due to resonance, with a transition to a nonlinear acoustic 
field around the rectified diffusion threshold of 83 kPa. The intermittent 
behaviour of the inertial cavitation can also be seen. As the pressure 
builds, more acoustic energy is lost due to attenuation, and the larger 
bubble oscillations also cause a shift in the speed of sound which results 
in the loss of resonance. 

For the frequency domain study, the solution procedure described in 
Section 4 was carried out for frequencies close to the 18478 Hz predicted 
by the Eigenfrequency study. The peak pressures obtained in the liquid 
for frequencies ranging between 18450 Hz and 18510 Hz are given in 
Fig. 9. The highest acoustic pressure was achieved at 18479 Hz, close to 
the 18480 Hz predicted by the time dependent study and within the 10 
Hz resolution provided by the FFT. Unlike the time domain model, the 
pressure required to obtain inertial cavitation could not be obtained 
with N = 1e8, but was obtained with N = 5e7, suggesting that the 
attenuation due to bubbles is strong enough just before the Blake 
threshold to prevent the transition from stable bubble oscillations to 
inertial cavitation. Another potential explanation for the slightly lower 
pressure could be that the higher frequency harmonics, which are 
neglected in the frequency domain study, contribute enough to make 
cavitation slightly easier to achieve numerically. 

Fig. 10 shows the Magnetic flux density, Current density, and the 
time dependent component of the induced Lorentz Force for the 18479 
Hz acoustic case where the strongest resonance was achieved, corre
sponding to 9240 Hz AC. The Magnetic Fields module in Comsol was 
used to solve for the induced Lorentz Force from the induction coil, and 
the amplitude of the induced Lorentz force is used by the acoustic solver 
as the source term F⋆. The Magnetic flux density reached a peak 
magnitude of 0.11 T in the liquid aluminium skin layer, compared to the 

0.1 T approximated by the 1D theory in Equation (3). 
The acoustic field calculated by the nonlinear Helmholtz solver is 

given in Fig. 11. The pressure distribution largely matches that of the 
linear acoustic theory, as seen in the Eigenfrequency results given in 
Fig. 6b and 6c. However, the pressure generated by the induction coil is 
not strong enough to overcome the rate of attenuation close to the Blake 
threshold, approximately 153.3 kPa for a bubble with an equilibrium 
radius of 10 µm in liquid aluminium. This agrees with the results ob
tained from the time dependent study, which showed the presence of 
intermittent cavitation. This contrasts with using a traditional vibrating 
sonotrode, which has an initial excitation several orders of magnitude 
greater, resulting in the nonlinear field differing from the linear theory 
significantly due to the constant cavitation under the sonotrode. This is 
shown in Fig. 11c, which presents the pressure distribution obtained by 
numerical simulation of a sonotrode with an 11 mm radius, operating at 
20 kHz, and a peak-to-peak displacement amplitude of 24 µm. The 
pressure directly under sonotrode exceeds 250 kPa, with much stronger 
cavitation than what is obtained by the sonotrode, also causing higher 
bubble volume fractions and a greater shift in the speed of sound, down 
to a minimum of 280 m/s as can be seen in Fig. 11f. 

5. Conclusions 

A newly modified nonlinear Helmholtz model for cavitation has been 
demonstrated which accounts for variations in material properties and 
has been compared with a novel time dependent model using the 
Caflisch equations. Both models have accounted for the interaction of 
the sound wave with the clay graphite crucible, and the change in 
bubble density at low acoustic pressures. In addition, the new frequency 
domain model can easily be coupled with background sources of 
acoustic waves, such as Electromagnetically induced waves induced by 
Lorentz forces in the melt. The effect of heat transfer at the bubble 
interface was not included, as an adiabatic equation of state was used for 
simplicity, and both the time dependent and frequency domain models 
are limited only to low Mach numbers due to the use of the Keller Miksis 
equation. 

Both models were applied to the case of a top-mounted induction coil 
as well as the more common immersed sonotrode technique, and the 
results show that while the induced pressure by the immersed sonotrode 
is much higher than that of the induction coil, altering the acoustic field 
significantly from the linear theory, it is still possible to get cavitation 

Fig. 10. Magnetic flux density (a), Current density (b), and the Lorenz Force amplitude (c) in liquid Aluminium induced by the 3-turn copper induction coil operating 
with a current of 2000A, at 9240 Hz AC. The white region in (b) and (c) represents the 3 turn induction coil. 
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from the top coil as long as the bubble density is small enough for 
acoustic pressures below the Blake threshold, as the attenuation caused 
by oscillating bubbles can prevent resonance if the bubble volume 
fraction is sufficiently high. The number of bubbles is likely to depend on 
melt temperature in aluminium [32], but can also be influenced by 
degassing of hydrogen due to ultrasonic treatment [44], which has 
already been observed in experiments with the induction coil [28]. 

The results from both models showed very close agreement on the 
frequencies at which cavitation is likely to be found and matched well 
with the 18.42 kHz acoustic frequency at which cavitation was observed 
in experiments. However, the two methods differed slightly in the 
pressure magnitudes obtained, with the frequency domain study pre
dicting slightly lower pressures. This is likely due to the contribution of 
higher frequency harmonics, which exist in the time domain study but 
are neglected in the frequency domain study. An advantage of using the 
frequency domain model is that it is possible to run simulations at 
multiple driving frequencies very efficiently, allowing for the much 
quicker discovery of optimum conditions for processing. 

While sustained cavitation is unlikely when using the top coil due to 
the strong damping above the Blake threshold and the initial pressure 

contribution from the coil being significantly lower, intermittent cavi
tation is likely if resonance is reached, and this intermittency is shown 
with the time domain method. The resulting pressure field distribution 
from the top coil is then close to that predicted by the linear theory, but 
with peak pressures close to the Blake threshold. One significant dif
ference between the two processing techniques is that while the 
immersed sonotrode focuses cavitation in a small region directly under 
the sonotrode, the top coil instead focuses cavitation at the antinode of a 
resonant mode, which can be deeper into the melt and more extensive. 
This coupled with electromagnetic stirring should enable the treatment 
of larger melt volumes. 
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