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ABSTRACT

Crowd formations are inevitable in many environments, and hence planning for, and managing
crowds are integral parts of city and event planning. Effective analysis of crowd behaviour and
anomaly detection has the potential for more efficient management and is a building block
for smart environments. Closed-Circuit Televisions (CCTVs) capture vast footage and are
an important information source, some of which contain images of crowds of high density.
However, relying on the typical manual surveillance systems for detecting anomalies (any
behaviour outlying from established normalcy) in crowds presents complications concerning
accuracy and computation power. This research intends to advance the automation of anomaly
detection within medium and high-density crowds. Using crowd behaviour analysis methods,
anomaly detection is applied to recognise occurrences of anomalous behaviour within crowds.
An anomaly within the behaviour of the crowd is detected by analysing crowd footage with
the use of deep vision algorithms. Results obtained from the processing of video data can be
used to understand the overall scene and discriminate between normal and abnormal behaviour

within a crowd.

Application of crowd anomaly detection has improved recently, however, the algorithms
currently being used are usually time-consuming, computationally heavy, or require high power
consumption. Amongst the work reviewed, both handcrafted approaches, as well as a variety
of neural network approaches suffer from a lack of a definition of what “abnormal” behaviour
is. Benchmark datasets used to train/test these methods lack sufficiently rich enough data
to define anomalous behaviour. Therefore, abnormal events are considered as any events that
deviate from the defined normal. Furthermore, state-of-the-art methods also present limitations
of applicability to high-density crowds. High-density crowds are not targeted as much due to
their difficulty in application. A key contribution of this research addresses this issue with
the creation of a public anomalous high-density crowd dataset. The high-density dataset
named Abnormal High-Density Crowd (AHDCrowd) has been utilised in training and testing
the state-of-the-art crowd anomaly detection methods to evaluate their anomaly detection

performance on high-density crowds.

Another key contribution of this research is a novel approach to crowd behaviour anomaly
detection. Various dynamic image representations are used as an alternative to optical flow
extractions for temporal development features extraction. The features are used in conjunction
with image-to-image translation using CGANs (Conditional generative adversarial nets) for
anomaly detection within crowds, and the proposed framework is evaluated on benchmark
datasets as well as the AHDCrowd dataset. The applied experiments evaluate the effectiveness
of utilising various types of dynamic image representation for crowd anomaly detection. The
experimental results obtained have demonstrated the efficacy of this approach compared to the

state-of-the-art crowd anomaly detection methods.
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1 INTRODUCTION

1 Introduction

This chapter aims to provide a higher understanding of this research topic and detail the
motivation, focus, and contributions of this research. The first section details the main
motivations behind this research. The next section is a detailed overview of crowd behaviour
analysis within computer vision, including the various subfields it contains. The third section
includes real-world applications of crowd analysis. Following this, the core research focus and
proposed contributions are detailed as well as the methodology of this research. Lastly, the

publications of this research and outline of this thesis are detailed.

1.1 Motivation

Surveillance systems have been utilised to ensure public safety, fight and prevent crimes, and
prevent antisocial behaviour and nuisances. These systems help monitor crowded venues such as
malls, airport terminals, sporting arenas, and concert halls. Surveillance of behavioural changes
within crowds in these venues can prevent undesired or even dangerous incidents from occurring.
It can also help with the planning and management of crowds in the aforementioned venues.
Chaotic activities are usually triggered by abnormal events such as fires, dangerously loud noises,
gas escapes, etc. The resulting chaotic behaviour can lead to actions that are just as threatening
as the incident itself (Grant and Flynn, 2017). To manually identify/interpret irregular or
dangerous incidents is practically impossible (Cao et al.| [2009; Joshi et al.| |2019). This is
because the number of surveillance cameras tremendously exceeds the number of personnel and
viewing monitors. Since potential mistakes such as personnel overlooking important incidents
may arise from this, surveillance systems must detect noteworthy events on and off screens in

an automated manner.

With the use of computer vision systems, crowded scenes can be analysed and studied to
interpret a crowd's behaviour and aid in the management of crowded venues. However,
analysing crowd behaviour presents difficulties that have prompted further research within
the field. Such problems related to recognition, tracking, and motion estimation of crowded
scenes. Computer vision techniques brings additional problems such as occlusion handling,
self-occlusions, irregular motion direction, and ambiguities (Dee and Caplier} |2010; |Li et al.,
2015). Furthermore, a crowd of people is often goal-focused and demonstrates both dynamic
and psychological characteristics and finding a fitting level of granularity to model the changing
aspects of a crowd is complex. Additionally, to construe what is considered abnormal behaviour
in a crowd is a computer vision problem. However, with the use of deep vision algorithms,
results obtained from the processing of video data can be used to understand the overall scene

as well as discriminate between normal and abnormal behaviour (any behaviour outlying from
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established normalcy) within a crowd.

1.2 Overview: crowd behaviour analysis in computer vision

Automatic analysis of crowd (a large number of people that have gathered in the same
location) behaviour is increasingly becoming an important domain in computer vision due
to its wide implications on crowd safety and security. Crowds can have different densities
(number of people per square meter) such as low, medium and high-density. In images,
low-density crowds shows coarse textures, whereas high-density crowds show fine textures.
Crowd formations are present in streets, public events, concerts, airports, religious pilgrimages,
marathons etc. These venues are vulnerable to many harmful incidents including crowd
disasters. Video surveillance has been increasing in many environments to enhance security
and prevent disastrous situations. Consequently, vast amounts of data are generated from
multiple sources and are increasingly overwhelming surveillance operators. The automation of
crowd behaviour understanding requiring limited human supervision/intervention is essential
to enable smarter and safer environments. To achieve this, data is extracted from surveillance
footage using computer vision methods and technologies to understand a crowd'’s behaviour

automatically.

Computer vision methods are applied to many fields such as autonomous vehicles, healthcare
and facial recognition, among others. The fundamental aim of computer vision is to extract
high-level information from images and videos. Computer vision tasks such as object detection,
classification and localisation, and instance and semantic segmentation are required to extract
this information. The general focus of this research is the evolution of computer vision methods
that can be applied in crowd analysis. To analyse a crowd, global scene features are extracted
from images or videos. Examples of these features include, among others, the number of people
in a crowd, trajectories of a crowd and behaviour classification. Computer vision methods in

crowd analysis and crowd behaviour analysis are generally categorised into:

e Crowd Counting: An approximation, extracted from an image, of the true count of
people in a crowded environment. The approximation is represented as an integer value
(Rodriguez et al.| 2011aj Gao et al.}2020).

e Crowd Density Estimation: Similar to crowd counting, crowd density estimation is an
estimation of the crowding level in an image represented by a discrete value (0-N)
(Rodriguez et al.| 2011a; Gao et al.}{2020).

e Crowd Tracking: The process of tracking an object or person in a crowd throughout

multiple video frame sequences (Salim et al.||2019| |Shehzed et al.| 2019).

e Person Re-identification: Recognising the same object or person across multiple disjoint
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cameras throughout different times (Mazzon et al.| 2012; |Ye et al.,|2020).

e Crowd Behaviour Recognition: Analysing a crowd to recognise and classify the collective
behaviour of the crowd (Bertini et al.; [2012; Matkovic et al.| 2019).

e Crowd Behaviour Anomaly Detection: Detecting the collective behaviour of a crowd to
determine the level of abnormality presented. Abnormal behaviour of a crowd is defined
as any behaviour outlying from established normalcy (Popoola and Wang, 2012} Tripathi
et al.| 2018).

This research investigates the aforementioned computer vision tasks applied in computer vision
for the analysis of crowd behaviour. However, the main aims and contributions of this research

are focused on crowd behaviour anomaly detection.

1.3 Applications of Crowd Analysis

Behaviour analysis of crowds can be beneficial but challenging in many fields of application
(Li et al., |2015; [Zhan et al.| |2008). The impact of the research in this thesis would mainly
benefit the surveillance and crowd management disciplines, but the methods and algorithms
to be discussed are implementable in other applications. Other crowd analysis applications

include:

e Crowd Management: Public safety is always a challenge in any mass gatherings and
to avoid potential catastrophic events, such as overcrowding or bottlenecks, crowd
behaviour analysis can be used to determine and apply the best crowd management
strategies (Zhan et al.| |2008; Lamba and Nain, |2017] Joshi et al.,|2019).

e Public Space Design: Public spaces such as train stations, buildings, and
universities/schools (Li et al.| 2015) require specific guidelines on how to be built
safely while maintaining the building space efficiently. Crowd analysis can help plan
the structural layout for maximal optimisation (Lamba and Nain| 2017} [Joshi et al.,
2019).

e Virtual Environments: Organising and planning events can be enhanced by the use of
virtual crowd phenomena in an environment. Crowd analysis can also improve virtual
modelling of dangerous conditions and predict how the crowd would react (Grant and
Flynn, 2017). This can help prevent the occurrences of potentially dangerous situations
(Joshi et al.| [2019).

e Security and surveillance: Video surveillance is used in many public spaces, some of
which with highly crowded scenes. In these situations, relying on typical surveillance
systems presents complications concerning accuracy and computation (Li et al.}|2015).

For real-time detection of a specific event within a crowd, surveillance operators will be
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constantly required to observe the scene. Additionally, the number of operators will have
to increase to keep up with the number of situated cameras. As for the detection of past
events, the footage will have to be stored with acceptable quality (quality that is suitable
for the extraction of chosen features based on the models requirements), requiring footage
compression and decompression. This is an avoidable computational increase. Operators
will still have to go through the footage to detect targeted events manually. With the
use of an automated system combined with crowd analysis, extraction of specific actions
can be used to alert if an anomaly or irregular action has transpired (Sjarif et al.| 2012;
Lamba and Nain, 2017; Joshi et al.| |2019).

e Intelligent Environment: Crowd analysis is a great benefit to creating an adaptive
intelligent environment. When a large crowd is gathered in a venue similar to a museum
or an art gallery, smart decisions are made to determine where to direct a crowd or if
they should be dispersed. These smart decisions can be assisted using crowd analysis
based on how the crowd behaves (Junior et al.,|2010| Joshi et al.,|2019).

e [Entertainment: The entertainment industry can benefit from crowd analysis by using
crowd simulation in divisions such as television, movies, and games. To advance these
fields, realistic simulations can be created by understanding how a crowd behaves (Li
et al.| [2015; |Lamba and Nain| 2017).

1.4 Focus of Research

The aim of this research is to improve the performance of current crowd anomaly detection
models used in crowd analysis. The advancement of Generative Adversarial Networks GANs
has demonstrated its ability to model complex distributions of real-world data. The accurate
detection of anomalous behaviour is a challenging task, and a network with a capability of
complex modelling can assist in the advancement of this task. Currently, the applications
of Conditional GANs (a variant of GANs) for crowd behaviour analysis, particularly anomaly
detection, has not been thoroughly investigated. Additionally, dynamic image representations
have outperformed optical flow extraction, in the field of action recognition. Optical flow is the
typically used motion representation in crowd anomaly detection methods using CGANs and
dynamic image representation are an amalgamation of multiple sequential optical flow frames.
Therefore, a novel method combining the use of Dynamic Images as motion representations
and image-to-image translation using CGANs (Conditional Generative Adversarial Networks) is

proposed.

This research also aims to evaluate the performance of state-of-the-art crowd anomaly detection
methods in a high-density environment in comparison to low and medium-density crowds.

State-of-the-art crowd anomaly detection methods are consistently evaluated on benchmark
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datasets that only include low and medium-density crowds. High-density crowds are not
examined due to the lack of anomalous high-density crowd datasets. To further clarify the
focus of this research, the research questions, hypotheses and contributions are described

below:

1.4.1 Research Questions

e How can Generative Adversarial Networks for image processing enhance crowd behaviour

anomaly detection within medium to high-density crowds?

e What are the associated benefits and trade-offs of utilising the proposed Dynamic Image
and CGANs (Conditional Generative Adversarial Networks) method in comparison to the

existing state-of-the-art techniques?

To address the aforementioned research questions the hypotheses of this research will be
examined in Chapters and @

1.4.2 Hypotheses

e As CGANs integrated with optical flow extraction can detect anomalies within
medium-density crowds, their application to high-density crowds is expected to be

effective.

e The use of dynamic images as an alternative to optical flow will better train CGANs
to detect anomalies within medium to high-density crowds concerning accuracy and

performance.

1.5 Contributions

This thesis presents a novel approach for crowd anomaly detection by applying Dynamic Images
as motion representations and image-to-image translation using CGANs. Additionally, a novel
anomalous high-density crowd dataset is created for crowd anomaly detection with highly dense

crowds. The main scientific contributions of this research are threefold:

e Generative modelling for anomaly detection in high-density crowds.  Conditional
Generative Adversarial Networks (CGANs) produces data to a discriminative function
to distinguish between normal and abnormal behaviour within medium to high-density

crowds.

e The development of a CGAN architecture combined with Dynamic Images (Bilen et al.,

2016) provides a novel approach for crowd behaviour anomaly detection.

e A labelled high-density crowd dataset containing normal and abnormal (footage with
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anomalous behaviour) has been created. The dataset has been applied to anomaly

detection algorithms and has been made public to other researchers.

1.6 Research Methodology

This research’'s methodological approach is an applied one; it requires both qualitative and
quantitative methods. An extensive survey on crowd analysis, behaviour analysis, and
anomaly detection has been undertaken to answer the research questions previously mentioned.
Quantitative methods were used for data collection. The data is collected from peer-reviewed
publications regarding crowds, anomaly detection, crowd behaviour analysis, and generative
adversarial networks. Subcategories of each topic are also examined. Data collection is based on
novelty, publication-quality, and correlation to the aim of this research. The initial investigation
began with crowd analysis, leading to categories such as density estimation and crowd counting,
tracking and person re-identification, crowd motion detection and crowd behaviour analysis
(Figure . Prominent algorithms in each category are explored to further the understanding of
each field as well as their influences on each other. The main methods applied as state-of-art

were machine learning methods instead of hand-crafted methods.

Crowd Crowd
Behaviour Density
Estimation

Crowd
Analysis

Crowd
Motion
Detection

Crowd
Tracking

Figure 1: Crowd Analysis categories. Adapted from (Sjarif et al.| 2012)

Experimentation with some of the algorithms learnt is documented in Chapter [6] Crowd
behaviour analysis, more specifically, detection of anomalies is a well-researched area. However,
there are gaps in the application of these methods. Real-world application has not yet been
reached due to low performance. Additionally, high-density crowds have not been targeted.
This is mainly due to the unavailability of datasets to train and test methods. Continuing
this research has led to the novel use of Generative Adversarial Networks (GANs) for anomaly

detection within crowds. As an alternative to typical machine learning methods, described
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in Section [3.3.3] GANs have been explored to utilise their novelty as well as extend the
existing work concerning GANs and anomaly detection. The previous work, applied by previous
researchers, has demonstrated the ability of GANs to detect anomalies within medium-density

crowds with higher performance compared to other state-of-the-art methods.

Appropriate datasets must be determined to evaluate methods and algorithms of crowd
behaviour analysis and anomaly detection. Multiple benchmark datasets were found through
research, detailed in Section but most did not combine features such as high-density crowds,
annotations, and the occurrences of anomalous behaviour. To solve this problem, simulation
has been taken into consideration. However, crowd simulation was found to be inadequate due
to the software’s inability to mimic a high-density crowd's behaviour. The complexity of human
behaviour, particularly crowd behaviour, surpasses that of simulated behaviour. This has led

to footage collection and application of data labelling software shown in Chapter [5]

Experimentation is applied in several fields for this research’s objectives, details of the setup,
datasets used, algorithms, and results are noted in Chapter[6] Evaluation of the experimental
results is noted using both quantitative and/or qualitative evaluation metrics. Some methods
utilise various quantitative measures, whereas others lack a solid comparative evaluation metric.
This complication has led to the utilisation of qualitative measures to compare the strengths
and weaknesses among different methods. The combination of quantitative and qualitative

methods for evaluation is the most suitable approach to this applied research.

1.6.1 SEMMA

This research applies the SEMMA methodology to collect data related to crowd behaviour
analysis. SEMMA is a data mining methodology consisting of multiple processes, which can
also be applied to different aspects of data gathering in different disciplines. The SEMMA
process is introduced by the SAS Institute (Goodnight,|2018) and is divided into the following
tasks: Sample, Explore, Modify, Model, and Assess. These tasks are usually applied to guide
data mining methods. In this research, the methodology supports the data collection process

concerning crowd behaviour analysis. The tasks are applied in the following manner:

1. Sample: collecting sample data relevant to crowd behaviour analysis.  Collective
behaviour, crowd counting, density estimation, tracking, person re-identification, motion
representation and anomaly detection are considered in the data collecting process. The

research collected regarding each of these aspects is documented in Chapter |2| and
Chapter[3]

2. Explore: exploring the sample data is required to gain the required knowledge to
successfully complete the contributions this research. Crowd counting and density

estimation are an elementary form of crowd analysis, and they define the size of a crowd.
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Tracking and re-identification are also forms of crowd analysis that track individuals
or small groups from single or multiple fields of view(s).Motion representation of a
crowd observes aspects such as the identification of crowd flow, trajectory analysis and
dominant motion detection. Lastly, anomaly detection is explored to determine anomaly
occurrences within a crowd such as stampedes, persons falling over, unexpected obstacles

and surges in the flow change.

3. Modify: the modifying process is applied to narrow down the explored data to find the aim
and successively the contribution of this research. The psychological aspects, benchmark
methods, handcrafted methods and novel methods are all considered while modifying the
data. While many crowd behaviour analysis methods had been subjected to long-term
investigations, other aspects are novel and still require further advances. Research gaps
are also considered within the modification process; crowd behaviour analysis applied to

high-density crowds was identified as a crucial gap by many researchers.

4. Model: modelling the modified data around the aim of the research. Currently, the
scope of the modified data has been narrowed down further to find the contribution of
this research. Prominent research is used and simulated to further the understanding
of the state-of-the-art methods concerning crowd behaviour analysis. The data directed
the aim of research to anomaly detection within crowds. Focus is given to this aim,
and further investigating led to the identification of research gaps such as targeting
high-density crowds. The contribution of this research has been established throughout
this task and documented in Section [L.5]

5. Assess: the assessment of the collected, explored, modified, and modelled data is in
an operational state. Experimentation, evaluation, modification, and repetition have
been an ongoing process to complete this research’s contributions. Assessment is based
on a comparison, using evaluation metrics, between the collected data and the results

produced by this research.

1.7 Publications

A conference paper titled “Abnormal High-Density Crowd Dataset” was submitted and
published by “The Fourth International Conference on Multimedia Computing, Networking and
Applications (MCNA2020)". The paper focuses on the novel dataset created as a contribution
to this research. The details of the dataset and the application of state-of-the-art crowd

anomaly detection methods to this dataset were documented.

The details of the novel approach to crowd abnormality detection using Dynamic Images and
CGANs, and the experimentation results are currently being submitted to the IEEE Transactions

on Pattern Analysis and Machine Intelligence journal.
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1.8 Thesis Structure
The remainder of the research presented in this thesis is organised as follows:

Chapter[2]discusses approaches on how to analyse a crowd stating the most important attributes
of a crowd. Notable methods for crowd counting and density estimation are introduced, and a
comprehensive discussion of approaches on how to track and re-identify an individual within a

crowd.

Chapter [3] discusses noteworthy approaches to crowd behaviour analysis such as recognising
and understanding individual /crowd behaviour and detecting anomalies within a crowd. Action
recognition methods that are utilised within this research, as well as previous research, are
explained. Finally, prominent benchmark datasets and evaluation metrics in the field of crowd

anomaly detection are surveyed.

Chapter reviews generative adversarial networks for anomaly detection within a crowd. The
applications, types and the basic architecture of GANs are investigated. Focus is given to
image-to-image translation using Conditional GANs and the utilisation of this for anomaly
detection. Finally, the proposed framework’s details combining Dynamic Images and CGANs

for crowd anomaly detection are noted.

Chapter [5| describes the high-density crowd dataset created for this research. The data
collection process, including resolving privacy issues, pre-processing, and annotating, is
described. A description of the dataset is included, and the usage and evaluation methods

applicable to this dataset are addressed.

Chapter @ documents the experimentation and the results achieved by this research.
State-of-the-art anomaly detection methods are applied to the high-density dataset created
to determine the applicability of these methods on high-density crowds. Dynamic Images
merged with CGANs for crowd anomaly detection is applied to benchmark datasets, and the

performance results are presented.

Finally, Chapterincludes a comprehensive discussion of the results produced and the position
of this research in the wider scientific field. Future work and publication of this research are

also presented.
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2 Background Research

2.1 Introduction

This chapter provides an overview of the significant concepts relevant to the use of computer
vision for collective behaviour, and crowd analysis. Collective behaviour is explored to help
understand the psychological factors that influence crowds. How and why crowds act in
the manner they do has a significant influence on the anylsis of crowds. Subsequently,
crowd analysis methods are investigated to determine the conventional aspects considered

for analysing a crowd.

2.2 Collective Behaviour

A crowd’s hierarchical presentation allows a "crowd" to be ranked at the top level with a
collection of multiple groups beneath it (Li et al., [2015). Situated under each group is a
collection of individuals; individuals are considered as the bottom level. Mainly a crowded
scene can be categorised as either structured or unstructured (Rodriguez et al., [2009). In a
structured crowd, the motion of the crowd is usually in a shared direction. The variance in
motion direction does not commonly change. Moreover, the crowd exhibits a singular overall
behaviour over time. An example of this is footage of an audience in a rock concert; the
audience is facing the stage and is most probably swaying together or jumping up and down
in unison. As for unstructured crowds (Sjarif et al., 2011), the scene is very hectic (filled
with activity, excitement, or confusion); the crowd's motion is random, and the individuals in
the crowd move in diverse directions in any given moment. Furthermore, the scene presents
numerous crowd behaviours. An example of this is a crowd of commuters in a train station.
Individuals in the crowd will exhibit different behaviours such as running to platforms, waiting

in line to buy tickets, sitting down on benches, or standing around looking at a screen.

2.3 Crowd Analysis

In this section, multiple factors on how crowd analysis is implemented are investigated.
Firstly, techniques on how to recognise a crowd from visual scenes are explored. Secondly,
crowd counting/density estimation state-of-the-art algorithms are reviewed. Lastly, current

approaches on how to track a person in a crowd throughout multiple images are reviewed.

One definition of a crowd is a collection of individuals in the same physical location, typically
with a similar goal shared (Musse and Thalmann, [1997)). Crowd analysis is not the same as
individual analysis; understanding the crowd'’s behaviour or an individual in a crowd requires

specific approaches specifically adapted for this purpose. An example of an automated crowd
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analysis framework is shown in Figure .

Data (images, video, |::>
CCTV footage, etc.)

Inference (Crowd behaviour understanding,
Abnormal Behaviour Detection, Dominant
Motion Extraction, etc.)

i

Knowledge (Annotations,
Algorithms, Models)

Features (Optical flow,
tracklet descriptor, etc.) |:|'>

Figure 2: Automated crowd scene analysis framework. Adapted from (Li et al.}|2015)

An explanation of some of

the terms used in crowd analysis (Sjarif et al.,|2012} Hasan et al.,

2016) is noted in Tablebelow.

Table 1: Terminologies used in crowd analysis.

Crowd Counting /
Density Estimation

Measuring a crowd’s density status to find the congestion level in
an environment or recognise overcrowding.

Crowd Motion
Detection

Classifying characteristic of a crowd and extracting crowd
behaviour patterns.

Crowd Tracking/
Re-identification

Following a specific person from an image using their trajectories
of movement.

Crowd Behavior
Recognition

Analysing crowd behaviour to extract temporal information and
recognise their behaviour.

Structured
Crowded Scene

The crowd’s motion is usually in a shared direction. The variance
in motion direction does not commonly change. An example of this
is footage of an audience in a rock concert; the audience will be
facing the stage and sway or jump together.

Unstructured
Crowded Scene

The scene is very hectic; the crowd’s motion is random, and the
individuals in the crowd move in diverse directions at any given
moment. The scene presents numerous crowd behaviours; an
example of this is a crowd of commuters in a train station.

Pre-Processing

The pre-processing stage includes feature extraction (foreground
detection, optical flow), object detection, classification (colour,
edge, shape, head, body).

Microscopic Crowd movement is described as the temporal evolution of each
pedestrians’ location.

Macroscopic Crowd movement is described as an averaged spatial representation
of individual distribution.

Mesoscopic Crowd movement is described as a hybrid of Microscopic and

Macroscopic

Optical Flow

Displacement or velocity representation of the difference of pixel
interval between two consecutive frames.

Tracklet

A tracklet is a fragment of a constructed track following a specific
object throughout its movement.
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2.3.1 Crowd counting/ Density estimation

Crowd counting and crowd density estimation are central factors in crowd analysis (Sindagi
and Patel||2018). Crowd counting relies on approaches that extract the number of people in a
specific scene. In contrast, crowd density estimation is used for more dense crowds to extract
the estimated number of people in a scene. This can help solve many issues such as event
organisation, public space design, and overcrowding that may lead to stampeding and asphyxia
(Grant and Flynn| |2017; Kok et al., 2016). Traditional approaches for crowd counting and
density estimation are presented in Appendix . In this section, however, the state-of-the-art
approaches for crowd counting and crowd density estimation are reviewed. A summary of these

methods has also been documented in Table[3]

2.3.1.1 State-of-the-art Methods

Liu et al. (2018c) utilise a self-supervised learning approach to crowd counting. This method
uses a large number of unlabelled crowd images to enhance accuracy. The idea behind
the approach is based on the observation that patches extracted from a high-density crowd
(“sub-image” ) contain a count number equal to or smaller than the “super-image” as shown in
Figure The method uses ranked sub-images based on a series of decreasing sized patches to
learn the representation of an image. The method achieves an efficient multi-task network that
utilises both unlabelled data and the available labelled data to rank the image and estimate
the crowd'’s density maps. Crowd density maps include the spatial distribution information of
crowd distribution. Experiments were applied by the authors to two benchmark datasets: UCF
Crowd Counting dataset (ldrees et al.| |2013) and the ShanghaiTech dataset (Zhang et al|
2016b). The best-achieved results were Mean absolute error (MAE) of 13.7 and Mean squared
error (MSE) of 21.4 tested on part B of the ShanghaiTech dataset. The remaining results are
documented in Table[2]and compared to other state-of-the-art methods.
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Figure 3: Self-supervised training using sub-image ranking; C(A1l) > C(A2) > C(A3).
Adapted from (]Liu et al.l, |2018c[)

DecideNet is an end-to-end network presented by |Liu et al.| (2018a) to estimate a crowd’s

count. The method extracts two density maps: detection-based map to detect individuals
and a regression-based map to extract pixel-wise densities. The maps' variation is based on
the motivation that detection-based method estimates more accurately within a low-density
crowd but underestimates within a high-density crowd. Furthermore, the regression-based
maps overestimate in low-density environments but are more accurate within high-density
environments. The authors employ both maps to utilise this fact, and an attention module
is used to guide the more fitting estimation based on the crowd's density. However, they
found training a fully supervised network is computationally expensive. Testing was applied
to three benchmark datasets; their best-compared results were achieved on the Mall dataset
(Chen et al.||2012) with 1.52 MAE and 1.90 MSE. The remaining results obtained are noted
in Table 2l

The authors of Shen et al.[(2018) utilised Generative Adversarial Networks (GANs) to estimate

a crowd's count. This research’s objectives were twofold. The first is using the GANs for
image/patch to generate map translation. A U-net architecture is used to generate the
density estimation map from the input patches to achieve this. Meanwhile, adversarial loss is
used to weaken the blurriness of the generated density map (shown in Figure E[) Secondly,
an adversarial cross-scale consistency pursuit network (ACSCP) was created to conserve the
relationship between the whole image input and its patches to ensure the patch crowd count
is consistent with the image's overall count. Experiments were applied by the authors to
four benchmark datasets. The best results noted were based on testing on the ShanghaiTech
dataset part B (Zhang et al.,|2016b). The results documented were MAE of 17.2 and MSE of
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27.4; other results are shown in Table 2]

Input image U-net Generator

High quality
and resolution

L Generated map
No tolerance to blurriness
> B » Real or Fake

Figure 4: Adversarial loss network for high resolution density map generation. Adapted
from (Shen et al.}|2018)

Ranjan et al.|(2018)) presented a multi-branch iterative counting Convolutional Neural Network
(ic-CNN). The network was based on two branches and used to generate density maps to
estimate a crowd’s count from an input image. The first branch of the network was used
to produce a low-resolution density map, the produced map and feature maps from this
branch are given to the second branch of the network. The second branch of the network
utilised the density and feature maps given to estimate the crowd’s high-resolution density
map. The network architecture is depicted in Figure |5 illustrating the flow of the CNN
branches. Experiments were applied by the authors on three benchmark datasets: UCF Crowd
counting, ShanghaiTech (Part A and B), and WorldExpo. Their research includes qualitative
and quantitative results. The qualitative results are presented in Table[2]to compare with other

state-of-the-art methods.

Low
] > B > B ™ > ) ) Resolution

High
> Resolution

Figure 5: Two-branch iterative counting Convolutional Neural Network. Adapted from
(Ranjan et al.| [2018)

Jiang et al.| (2019) propose a crowd counting and density estimation approach based on a
trellis encoder-decoder network named TEDnet. The method uses full images as input and

generates density estimation maps of high-quality as output. The network contains several

28



2.3 Crowd Analysis 2 BACKGROUND RESEARCH

encoder-decoder paths structured hierarchically. The multi-scale encoder can encode the
localisation precision to feature maps, which are then used by the multi-path decoder to
aggregate and fuse the multi-scale features. The research also better advances the process
of backpropagation and the gradient vanishing problem by utilising a blended loss function
proposed by the authors. The loss function utilises both spatial abstraction and spatial
correlation loss. Testing was applied on four datasets, the best-attained results compared to
other methods were achieved using part B of the ShanghaiTech dataset (Zhang et al.||2016b).
The results of the MAE were 8.2 and MSE of 12.8; the remaining results are documented in
Table Quality of the density maps was also compared to other methods, and this method
obtained better results.

Table 2: State-of-the-art Crowd counting/ Density estimation experimental results on
various benchmark datasets.

Dataset UCT CC 50 dataset ShanghaiTech dataset | ShanghaiTech dataset
Part A Part B
Method MAE MSE MAE MSE MAE MSE
Liu et al.| (2018c) 279.6 388.9 73.6 112.0 13.7 214
Liu et al.| (2018al) - - - - 21.53 31.98
| [Shen et al. (2018) 291.0 404.6 75.7 102.7 17.2 27.4
Ranjan et al.|(2018]) | 260.9 320.9 69.8 117.3 10.4 16.7
| Jiang et al. (2019) 249.4 354.5 64.2 109.1 8.2 12.8

2.3.1.2 Summary

Crowd counting and density estimation are significant to crowd analysis. The methods discussed
have shown variable results when applied. In comparison to other state-of-the-art methods
reviewed, the best Mean absolute error (MAE) and Mean squared error (MSE) achieved on
various datasets are found in (Jiang et al.| [2019). However, there remains a number of major
issues that have not been solved as a whole when writing this thesis. The combination of severe
occlusion handling, adaptability of static/dynamic movement of people/objects, environmental
changes control (weather, background changes, and illumination inconsistency), and real- time
implementation, applied efficiently, have not been satisfactorily addressed by the current work.
Table [3| summarises the traditional crowd counting and density estimation methods reviewed.
The next section discusses another field that is significant to crowd analysis: tracking and

person re-identification.
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2.3.2 Tracking / Person Re-Identification

The definition of person re-identification is the following of a specific person from an image
taken from one camera and re-identifying them in an image from a different camera (Lavi
et al., |2018). This is a challenging field compared to normal tracking algorithms; there are
many more issues to consider. Some of the problems that are associated with tracking/person
re-identification are the ambiguity in visuals and the uncertainty of the spatial and temporal
human appearance across various cameras (Kasturi and Ekambaram| 2014). Contextual and
non-contextual methods for tracking and person re-identification are discussed in Appendix
and the state-of-the-art methods are reviewed below. A summary of these methods has also
been documented in Table[4]

2.3.2.1 State-of-the-art Methods

The authors of |Ristani et al.|(2016) apply a multi-target and multi-camera (MTMC) tracking
system originally applied for multi-target single-camera tracking. The method combines target
detections received from a detection system into tracklets. An easy motion model is utilised
in this method as the aggregated tracklets are short enough to model. The method generates
identities; which are single-camera trajectories (combined tracklets) connected to multi-camera
trajectories. The authors also propose evaluation metrics to identify how frequently a target
identified accurately: Identification Precision (IDP), Identification Recall (IDR), and F1 score
(IDF1). These evaluation metrics were used to test their method on a benchmark dataset and
their own dataset (DukeMTMC). The Upper bound results achieved on various cameras from
the DukeMTMC dataset were 72.25 IDP, 50.96 IDR and 59.77 IDF1.

An open-world person re-identification system applied to dense crowds is presented in |Assari
et al.| (2016). The method combines several Personal, Social and Environmental (PSE)
restraints to model human motion throughout cameras with high-density crowds. The PSE
restraints are preferred speed, destination, spatial grouping and social grouping. The preferred
speed is an assumption of the walking speed of the persons in a crowd. The destination restraint
is the destination probability of an individual calculated by observing recurring motion patterns.
Finally, the spatial and social grouping is calculated based on the span persons have travelled
from one point to another and a reward system of persons that travel together in groups.
Unlike the previous state-of-the-art methods documented, this method applies experimentation
on Grand Central Station dataset (Zhou et al., 2012), with 97.31% Area Under Curve (AUC),
and 84.19% F-score. It is one of the first methods to combine all three PSE constraints in

modelling human motion.

Spindle Net, (Zhao et al., |2017), is a Convolutional Neural Network (CNN) built on human
body structure data for representation learning. The network extracts semantic body features

from several regions of the body to be matched throughout images. During the stages of
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feature extraction some of the features are maintained, they are then mingled in a fusion
network. The network helps extract discriminative features of persons and match regions of
the body across images. This network is one of the first to utilise body structure information
for re-identification across different cameras (images). Experimentation was applied on seven
datasets for re-identification (RelD). However, these datasets do not intersect with the research
reviewed in this research to compare. Compared to other methods mentioned by the authors,

their method outperforms them regarding Top-1 accuracy.

A pose normalised generative adversarial network (PN-GAN) designed by Qian et al.| (2018)

is used to re-identify individuals throughout multiple cameras. The deep model is used to
reduce the impact of large pose variations. As shown in Figure [6] the framework begins by
using an input image with an individual with an initial pose and generates a synthesised image
of the individual with an intended pose (pose-normalised image). Two sets of features are
extracted from the RelD model after it is trained on the original image and the synthesised
image. The features are combined to create an output descriptor. The model is adaptable to
new re-id datasets without fine-tuning the model to the new training data. The evaluation
metrics used in this research are rank-1 (R-1), rank-5 (R-5), rank-10 (R-10) accuracy, and
mean average precision (mAP). The model has been tested on multiple datasets, and results
of R-1, R-10 and mAP on the DukeMTMC (Ristani et al., 2016) dataset are 73.58, 88.75 and
53.20 respectively.

Original Target

Image Pose Network A

_

J Reid feature

Figure 6: Pose-Normalised Generative Adversarial Network (PN-GAN) framework.
Adapted from (Qian et al.,|2018)

Ristani and Tomasi| (2018) design a convolutional neural network (CNN) that utilises both
Multi-Target Multi-Camera Tracking (MTMCT) and Person Re-ldentification (Re-ID) features
for MTMCT purposes. MTMCT is used to track multiple people through multiple cameras,

whereas Re-ID can identify a targeted person in multiple images. The framework shown
in Figure starts with extracting bounding boxes of detected individuals, then motion and
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appearance features are extracted to infer trajectories. Correlation clustering optimisation is
then used to deduce and label correlations based on the extracted trajectories. Lastly, missed
detections are introduced, and low confidence trajectories are removed. Testing was applied to
multiple benchmark datasets, and evaluation metrics used were IDP, IDR, IDF1 and multiple
Object Tracking Accuracy (MOTA). The results noted on the DukeMTMC dataset with the
best detector and feature configurations were 83.50 IDP, 77.25 IDR and 80.26 IDF1.

Feature Extraction  Correlation Clustering ~ Post-Processing

Video Person Tracklets Single-Camera Multi-Camera
streams detection Trajectories Trajectories

Figure 7: Multi-Target Multi-Camera Tracking (MTMCT) and Person Re-Identification
(Re-ID) framework. Adapted from (Ristani and Tomasi, [2018)

2.3.2.2 Summary

Table summarises the tracking/person re-identification methods reviewed. The previously
noted work is noticeably applicable to specific real-world problems and progressions of
other fields can help improve methods in this area. For instance, there have been great
advancements in biometric data extraction from lower quality footage. This biometric data
can be incorporated into person re-identification algorithms (Tavares et al.,|2019). Moreover,
integrating representational models of the associations between low-level features and high-level
semantics could improve the scalability and computational complexity issues presented within
this field.
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2.4 Conclusion

As the focus of this research is crowd anomaly detection using computer vision techniques, a
comprehensive overview of collective behaviour and crowd analysis have been presented. The
fundamental psychological factors behind collective behaviour assisted in the understanding of
crowd influences. The detection and recognition of collective acts has a significant impact
on crowd analysis. More specific fields such as crowd counting/density estimation and
tracking/person re-identification have been covered to further understand the standard and
state-of-the-art methods used to analyse a crowd. The next chapter (Chapter (3), continuing
the literature review, investigates a more specific field “Crowd Behaviour Analysis” including

the main focus of this research: crowd anomaly detection.
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3 Crowd Behaviour Analysis

3.1 Introduction

This chapter provides a comprehensive review of the field of crowd behaviour analysis. This
field is explored to help understand anomaly detection requirements within crowds, which is
one of the main focuses of this research. Initially, strong handcrafted techniques for motion
representation and detection of anomalous behaviour are discussed. Afterwards, state-of-the-art
neural networks methods are explored for the same purposes. Finally, the most recent and
novel approaches to crowd behaviour analysis using generative adversarial networks (GANs) are
examined. For the purposes of this research, the methods and technologies that are examined
are directly related to crowds. Notable reviews and surveys, published by various researchers,
in crowd analysis and crowd behaviour analysis, were reviewed and documented in Appendix [A]
These reviews helped provide a view of the existing work in crowd analysis in an organised and

comprehensive way.

3.2 Motion Representation

Crowd motion representations are specific crowd features extracted for the purpose of
analysing crowd behaviour. Crowd behaviour analysis methods extract various types of motion
representations for the detection and/or identification of crowd behaviour. Noteworthy and

novel methods in this field are investigated below.

A notable framework proposed by |Ali and Shah (2007) is applied to high-density crowds
for segmentation and flow instability detection purposes. The Lagrangian Particle Dynamics
structure is used for particle advection based on the flow fields generated by the moving crowd.
The authors handled moving crowds as an aperiodic dynamical system. Advection is the process
of matter moving along or becoming advected by a flow. These flows can be modelled using a
velocity field; specifying the velocity at a specific position and time. 'Flow segments’ were used
as an indication of the emerging motion patterns. The authors presented a flow segmentation
structure based on non-linear dynamical systems, fluid dynamics, and turbulence theory to
find these flow segments. The trajectories extracted from the particle advection would shine a
light on essential flow features, which have a direct correlation with physical objects within a
scene. As for flow instability detection, the authors consider any change of flow segments to
be abnormal. A connection between flow segments over time is created, and the occurrence
of a new flow segment indicates normal flow abnormality. Testing the approach was applied
on high-density crowd/traffic scene videos taken from the stock footage web sites such as

Getty-Images, Photo-Search and Video Google. Additionally, video footage from a National
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Geographic documentary named 'Inside Mecca' is used to experiment further. Although
quantitative results are not documented, qualitative results for both flow segmentation and

detection of flow instability are noted when tested using the footage mentioned above.

Alternatively, (Wang et al.| [2007) propose an unsupervised learning framework that uses
data extractions from visual material to understand actions within crowded scenes. Their
Bayesian model is used to link low-level visual data, “atomic” simple actions, and multi-agent
connections. The atomic actions are modelled using the extracted low-level visual data;
furthermore, the multi-agent connections are modelled using the atomic actions. This
framework does not track humans but instead uses local motion for features. System
performance deteriorates due to the partitioning of extended footage to shorter, and more
manageable clips. The authors do not note any quantitative evaluation metrics, but testing was

applied to a 1.5 hour-long traffic scene dataset, and the results are documented as figures.

Cheriyadat and Radke| (2008) describe a method for the identification of dominant motions
within a crowd. They use an optical flow (further explained in Section algorithm to
track low-level object features. More specifically, they use the Shi-Tomasi-Kanade (Shi and
Tomasi, 1994) and the Rosten-Drummond (Tomasi and Detection}, | 1991) detectors to extract
the low-level features. Then, an upgraded implementation of the Kanade-Lucas-Tomasi optical
flow algorithm (Lucas and Kanade, |1981)) was used to track these features. As a result, feature
point tracks are extracted, but they were long and considered undependable leading to the
need for a clustering method. The longest common subsequence was used as a distance metric
to compare feature point tracks. The tracks that were alike in direction and considered as
spatially nearby were clustered together having an outcome of smooth dominant motions.
Quantitative metrics were not applied, but experiments were applied on four different video
footage sequences: Platform sequence, Campus sequence, Escalator sequence, and Airport
sequence taken from the PETS 2007 benchmark dataset (Ferryman and Tweed, 2007). In
video format, the authors’ document, the feature points, the point tracks, and the dominant

motions for each video sequence in their research (Cheriyadat and Radke| 2008).

Curl, and Divergence of motion Trajectories descriptor (CDT) for behaviour analysis is presented
by Wu et al.|(2017)). The descriptors are found using curl and divergence along tangential and
radial paths that denote trajectory motions and their respective conjugate fields. In addition
to using the CDT to describe the collective motion sequence, the method considers both local
characteristics and global structure of a motion vector field. Finally, to classify the crowds’
behaviour, the authors initially extract sub-motion fields from the motion vector fields using
particle advection. The method is robust to overlapping motion patterns and can discriminate
amongst them. The authors then employ max-min pooling and dense motion to excerpt a
cohesive feature vector of rich motion data. For experimentation, the CDT descriptors are

limited to five identifying behaviours; lane, clockwise arch, counter-clockwise arch, bottleneck
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and fountain-head. The proposed method is compared to four other methods and tested on
the UCF (ldrees et al.||2013) and CUHK (Shao et al.| 2014} |2017) datasets. Thoroughly
presented are the results of various testing setups. Moreover, the quantitative results such as
ROC, true-positive and false-positive rates, and experimental graphs show favourable results

from this technique.

3.3 Crowd Anomaly detection

Generally defined, anomalies within a crowd are atypical patterns that do not conform with the
learnt normality (Singh et al., [2020). Anomaly detection is also typically considered an outlier
detection problem where an abnormality would be a low-probability event regarding a learnt
normal behaviour model (Mahadevan et al., 2010). Crowd anomaly detection is applied to
detect anomalous or non-typical scenes within footage of a crowd. This application is essential
in the prevention of crowd disasters in fields such as video surveillance. There are two main
methods predominantly used in crowd anomaly detection: hand-crafted methods and machine

learning methods:

¢ Handcrafted methods:
These methods require the extraction of motion and/or appearance features such as
optical flow and tracklets. Traditionally, to reconstruct normal scenes with small
reconstruction errors, a taught dictionary is used. On the other hand, the features
that match to anomalous scenes would have large reconstruction errors. The problem
with this method is that it requires incorporating some priori knowledge during training.

This incorporation can be complicated in cases of complex video surveillance scenes.

e Machine Learning;:
Some of the supervised and unsupervised methods are convolutional neural networks
(Sabokrou et al.,|2018), convolutional auto-encoders (Fan et al.,|2020), stacked denoising
auto-encoders (Vu et al.| [2019), spatio-temporal auto-encoders (Fradi et al., |2017),
and long-short term memory (Majumder et al., [2018). They tend to do better with
unsupervised methods than supervised ones due to the scarcity of annotations and small
training data size. These methods usually incorporate low-level features such as lines,
curves and edges, or high-level features such as object and shapes. The problems with

using just low level-feature detection are:
— It usually causes fragmented and interrupted regions; and
— It is sensitive to noise and is significantly affected by environmental changes.

e Deep machine learning methods that incorporate Generative Adversarial Networks

(GANSs) in their framework have presented accuracy results that surpass other deep
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learning models. The conditional GANs (CGANSs) are trained to translate between a pair
of frames and their corresponding optical flow features using image-to-image translation
(Isola et al.; |2017). The CGANs are then used to generate either frames or optical flow
based on the input. CGANs have previously been incorporated with CNNs, autoencoders

and denoising autoencoders for crowd anomaly detection.

An overall summary of the general computer vision methods of crowd behaviour analysis and

crowd anomaly detection in video monitoring is illustrated in Figure .
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3.3 Crowd Anomaly detection
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3.3.1 Criteria for anomaly detection in images

There are two standard criteria used to consider an anomaly (any behaviour outlying from
established normalcy) within an image: frame-level and pixel-level abnormality detection (Li
et al.||2014). The third criteria is a dual pixel-level (Sabokrou et al., 2015), which considers
the pixel-level constraint as well. These constraints are used to calculate the true-positive rate
(TPR) and the false-positive rate (FPR) (further explained in Section[3.5). Explained below

are each of the constraints:

e Frame-level detection: This criterion of detection does not consider the localisation of
anomalies within a frame. Instead, if any pixel within the frame is detected as abnormal,
the whole frame is considered abnormal. If the ground truth data coincides with the
frame detection, a true-positive is tallied up into the TPR. To compute the ROC curve
(Section this detection method is applied several times using different thresholds.
(Mahadevan et al.| [2010; |Li et al., |2014; |Ravanbakhsh et al.| 2017)

e Pixel-level detection: This criterion of detection considers the importance of
abnormality localisation within a frame. The requirement is; at least 40% of the anomaly
ground truth pixels are covered by the detected pixels. This detection's weakness is
“Lucky Guess”; if a part of the detected region overlaps with the ground-truth data, the
false detected regions are not taken into consideration. An additional criterion (Dual
pixel-level), is used to solve this. (Mahadevan et al,2010; |Li et al.,|2014; |[Ravanbakhsh
et al.| 2017)

e Dual pixel-level detection: This novel criterion of detection applies the pixel-level
detection constraint and requires that at least 5% of the detected pixels are covered by
the anomaly ground truth pixels. (Sabokrou et al., [2015; Vu et al.;|2019)

3.3.2 Anomaly detection using Handcrafted methods

This section presents a comprehensive investigation of handcrafted, neural network and

generative adversarial network methods for crowd anomaly detection.

Andrade et al.|(2006) model the normal behaviour of a crowd using an unsupervised feature
extraction method. The extraction method fits an HMM (Hidden Markov Model) for all
the footage fragments; afterwards, spectral clustering is applied using a calculated similarity
matrix. Using the clustered fragments, the authors discover the appropriate number of models
to characterise normal motion patterns by training a new set of HMMs. New footage is
compared to the normal behaviour models using a detection threshold to detect anomalous
crowd behaviour. Two simulated datasets are used by the authors for experimentation, one with
normal crowd flow and the other with footage of a congested exit. Quantitative measurements

are not documented, but a visual representation of the likelihood function results demonstrated
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the approach’s effectiveness.

A social force model (SFM) is used by Mehran et al.| (2009) for the detection and localisation
of abnormal crowd behaviour. To achieve this, the authors used particle advection founded
on the space-time average of optical flow (further explained in Section [3.4.1)). The method
considered the moving particles to correspond to the individuals. Moreover, the SFM is used
to estimate the interaction force between them. Bag of words approach uses a vector field,
the mapping of interaction forces to image frames, to model the crowd’s “normal” behaviour.
The UMN dataset (University of Minnesota, [2006) and a web dataset of footage gathered
from Getty Images, and ThoughtEquity.com were used in experimentation. The authors report
results from the UMN dataset (noted in Table testing with 0.96 area under ROC. This is
an enhancement compared to the pure optical flow for detecting abnormal crowd behaviour
method, which demonstrated a result of 0.84 area under ROC. UCSD results are noted in
Table Bl

Using interaction energy potentials, |Cui et al.|(2011) presented an approach linking the existing
state of a subject’s behaviour and its corresponding action. The existing state and the subjects’
actions are represented by the interaction energy potential function and velocity. For crowd
interaction modelling, spatio-temporal points of interest are extracted and tracked, eliminating
the need for humans’ recognition and segmentation. Additionally, this makes the method more
robust to errors that arise with recognition and segmentation techniques. Finally, with the
use of an SVM, an anomaly can be detected when the extracted Energy-Action forms seem
unfamiliar, a representation of the framework is shown in Figure@ Experimentation is applied
to the BEHAVE (Blunsden and Fisher||2010), and the UMN datasets (University of Minnesota,
2006) and results are documented in figure format. The method is valid on reasonably crowded
scenes and shows improved results compared to pure optical flow and SFM (Mehran et al.,

2009) previously mentioned in this section.

Video Normal/
Input Abnormal

A

Detection & Tracking Calcu.latlon ot Feature Support Vector
. Interaction Energy . ]
of KeyPoints Potential Representation Machine

Figure 9: Flow chart of Interaction Energy Potentials framework. Adapted from (Cui
et al., |2011)

Based on the typical social force model, Yang et al. (2012) present a local pressure model

that considers the crowd'’s local characteristics. The method can detect an anomaly within a
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crowd using local velocity and local density characteristics. The method, shown in Figure
starts with the placement of a grid of particles to calculate the local characteristics efficiently.
A pressure model is used to extract local pressure using these characteristics. Consequently,
feature vectors are extracted for the footage frame with the utilisation of Histogram of Oriented
Pressure (HOP). Finally, for abnormality detection, a Support Vector Machine (SVM) is used
for classification, and a median filter is implemented on the classification results for further
improvement. A median filter is a non-linear digital filtering method typically used to remove
noise from a signal or image. The algorithm typically runs through an image and substitutes
each entry with the median of the neighbouring entries. Experimentation is applied on the
UMN dataset (University of Minnesota, 2006)), and an area under curve (AUC) value of 0.9784
is noted as a better value in comparison to the SFM method (Mehran et al.| 2009).

Local Pressure
Model
Pressure
Direction

Figure 10: Structure of Anomaly Detection System. Adapted from (Yang et al.l|2012)

Social Force
Model

Oriented SVM & Median
Pressure Filtering
Local Density
Estimation

Using sparse combination learning and bag-of-words, (Lu et al., |2013) can detect abnormal
events for robust inference. The framework resizes frames into several scales to partition layers
in a uniform manner to create a set of non-overlapping patches. A spatial-temporal cube is
created using this data and used to extract 3D gradient features. Based on spatial matching,
the extracted features are independently processed for training and testing. Fundamentally, the
research assumes the beginning part of the input video contains normal behaviour, so the normal
behaviour dictionary created using it. In testing, reconstructing abnormal behaviour from the
normal behaviour dictionary presents high reconstruction errors; this is how an abnormal event is
detected. Additionally, the method can process an average of 140150 frames per second. This
method presents high false alarm rates due to the variety of environmental changes throughout
a video sequence. Experimentation was applied on their dataset (Avenue dataset), Subway
dataset and UCSD Ped-1 Dataset. The results of UCSD and Avenue are noted in Tables
and [6]

An innovative spatio-temporal method for crowd modelling is presented by Fradi et al.| (2017),
the authors use the model to extract visual descriptors representing the crowd. Initially, for
crowd representation, the method uses a Delaunay graph over time for dynamic emulation.

Moreover, a spatial feature is integrated into the graph for overall completeness to extract the
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interactive descriptors. Using both the spatial and temporal information, the authors claim
to define a novel set of visual descriptors. Consideration is given to interactive and distinct
behaviours within the descriptors, and abundant semantic crowd data is encoded. The use of
the Delaunay graph is the primary provider to this method, and the extracted local entities
data joined with tracklet data is novel in being applied to crowd analysis. Three applications
are considered in experimentation; crowd video classification, crowd anomaly detection and
localisation, and crowd violence detection. The CUHK (Shao et al.| 2017, 2014) for crowd
classification dataset was used in the first experiment. The accuracy results equate to 85.25%
while noting comparisons to other techniques this method presents better accuracy results.
The second experiment for crowd anomaly detection and localisation used the UMN dataset
(University of Minnesota| |2006) and presented an average result (over three scenes) of 98.61
area under the curve (AUC). Also, documented were comparison results with six other methods,
four of them that proved better results. Lastly, an experiment for crowd violence detection on
the violent-flows dataset (Hassner et al.,|2012)) was applied, this exhibited much better results
compared to other methods with 84.44% accuracy and 88.00 AUC.

El-Etriby et al.|(2017) examine an innovative framework utilising discriminative models such as
Conditional Random Field (CRFs), Hidden Conditional Random Field (HCRFs) and latent
dynamic Conditional Random Fields (LDCRFs) to detect crowd behaviour. The authors
initialise their method by applying frame segmentation to extract a region of interest (ROI).
Moreover, to extract flow fields, optical flow pruning is applied based on a predetermined
threshold of a Euclidean length of their vectors. A combination of Moving Difference Image
(MDI), Gaussian Mixture Model (GMM), K-means clustering, and Adaptive Median is used
to achieve this. Figure is a PETS2009 (Ferryman and Shahrokni, |2009) sample frame
that is used as an input in the framework of this method. Lastly, the authors use a gradient
ascent on the discriminative models previously noted with window sizes varying from 0-8 to
model the flow-blocks pattern sequence. An anomaly is detected from the statistical ratio of
anomalous flow-blocks and total flow-blocks. Experimentation of the method is applied on the
PETS2009 (Ferryman and Shahrokni, 2009) dataset, and results of the recognition ratio are
96.2%, 97.1%, 98.1% for CRFs, HCRFs, and LDCRFs (on window size 3).

Source Image

Segmenting Block Point of . ; Behaviour
Video Formation Interest pticaltion P IEEll | g Analysis

Figure 11: Crowd Behavior Analysis Using Discriminative Models Framework. Adapted
from(El-Etriby et al.l 2017)

Zhang et al.|(2018a)) propose an approach to detect anomalous behaviour within a crowd by
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extracting feature points, constructing a motion field, and applying an anomaly decider. By
integrating the merits of SIFT features (Lowe, 2004) and Harris corner point, the authors have
devised a multi-scale method to extract feature points. Using the successfully tracked feature
points produced by the Lucas-Kanade algorithm, the crowd’s motion field is constructed. The
movement of well-tracked feature points is determined using speed and direction, quantified
by the difference in spatial positioning between neighbouring frames. Using a predetermined
threshold, a comparison to the motion field statistical information distribution is made to
determine abnormality. Three scenes from the UMN dataset (University of Minnesota, 2006)
were used to assess the algorithm's accuracy level. The abnormality threshold for both motion
speed and motion direction was 40% and 0.7, respectively, and the decision threshold was
50%. The resulting anomaly detection rates were compared to results from social force
model detection (Chen and Huang, 2013) and spatial-temporal motion statistical model (Li
et al} [2014). The average anomaly detection rate from the three scenes was 98.33%, the
spatial-temporal motion statistical model average detection rate was 97.1% and the lowest,

social force model, averaged only 96.2%.

Real-time detection of anomalous actions within a low-medium density crowd is shown in
(Bera and Manocha||2018). To create a state representation of the crowd, the authors initially
extract pedestrians’ motion trajectories in the crowd using the Reciprocal Velocity Obstacles
(RVO) approach (van den Berg et al.||2011). Current position, average velocity, cluster flow,
and intermediate goal position of pedestrian or cluster of pedestrians are the trajectory-level
features computed to analyse the crowd’s behaviour. Bayesian inference algorithm is applied to
estimate pedestrian states, resulting in an overall crowd state. An anomaly is detected when the
Euclidean distance between the pedestrian’s local features and their global features increases
above a predetermined value. Area Under Curve (AUC) and Accuracy results are documented
for testing on 879-44 (Rodriguez et al.|[2011b) and ARENA (Patino and Ferryman| 2014) and
UCSD (Chan et al.,2008) datasets: 0.97, 80%, 0.91, 76% and 0.873, 85% respectively.

3.3.3 Anomaly detection using Neural Networks

Mahadevan et al.| (2010) utilise local video feature extraction to detect anomalies within a
crowd. Instead of using global feature extraction such as Markov Random Field (MRF)
or Latent Dirichlet Allocation (LDA), this research uses three local properties for video
representation. The first is dynamic and appearance of crowd patterns using mixtures of
dynamic textures (DTs), the second is temporal abnormalities extracted using Gaussian Mixture
Model (GMM). The last is spatial abnormalities extracted using a saliency detection method.
These representations are used to model a crowd’s normal behaviour, detected outliers under
this model are considered abnormalities. The research has shown that dynamic textures are

more fitting than optical flow in the process of crowd anomaly detection. However, this method
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is computationally heavy; a frame of 240x160 requires 25 seconds of computation to test.
Experimentation was applied on the UCSD dataset, and results are noted in Table

Hasan et al.| (2016) present a fully connected convolutional feed-forward deep auto-encoder
network that learns regular motion patterns (regularity) from input videos. The idea of the
method is; after training the network to reconstruct regularity, the network will not be able to
reproduce irregular motion patterns accurately. Initially, the framework utilises Histograms of
Oriented Gradients (HOG) (Dalal and Triggs, |2005) and Histograms of Optical Flows (HOF)
(Dalal et al.}|2006) to extract improved trajectory motion features. The regular motion patterns
are used to learn an auto-encoder based on an end-to-end neural network. Then a fully
convolutional auto-encoder is used to learn local features and the classifiers. This method’s
drawback is that reconstruction tends to give high anomaly detection scores for new normal
patterns. An illustration of the given framework is shown in Figure Experiments are
applied for multiple applications such as learning temporal regularity, future frame prediction,
and abnormal behaviour detection. Results for abnormal behaviour detection on Avenue and
UCSD datasets are noted in Tables[6] and
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Forward Forward
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Figure 12: Learning Temporal Regularity in Video Sequences framework. Adapted from
(Hasan et al., [2016)

Ravanbakhsh et al.|(2016) capture abnormality in frame sequences by tracking alterations of
CNN features throughout time. More accurately, a Fully Convolutional Network (FCN) is
given frame sequences. A binary quantisation layer is then used to restrict the quantity of
the high-dimensional feature maps (quantise) into compressed binary patterns. This binary
quantisation layer is attached to the top of the FCN to generate binary maps. Spatial
relationships of the input frame are protected throughout this process. Subsequently, a
histogram is generated from a spatio-temporal block of the accumulated binary patterns.
Finally, the output Temporal CNN Pattern (TCP) of the histograms merged with the extracted
optical flow is used to detect abnormal regions. The complete framework is illustrated in
Figure [13] Experiments were applied to UMN and UCSD datasets and noted in Tables
and However, this network does not apply end-to-end training and requires a complex

post-processing step.
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Anomaly
Detection

Figure 13: Plug-and-Play CNN for Crowd Motion Analysis framework. Adapted from
(Ravanbakhsh et al.| |2016)

Xu et al| (2017) present an Appearance and Motion Deep Network named AMDN. The
network adopts multiple stacked denoising autoencoders (SDAEs) for feature representations.
The feature representations are extracted by utilising a double fusion (early and late fusion)
architecture that joins low-level motion and appearance features. More accurately, two SDAEs
receive calculated optical flow and image patches as input to generate motion and appearance
feature, respectively. Subsequently, an early fusion stage is used to merge frame pixels and
the conforming optical flow to teach a third SDAE the joint representation of motion and
appearance features. Several one-class support vector machine (SVM) models are trained on
the extracted feature representations to calculate a set of anomaly scores. Finally, the late
fusion stage is used to merge these anomaly scores to detect abnormalities. Experiments were
applied to three datasets: UCSD, Subway and Train, results of USCD are noted in Table[5]
The network is prone to over-fitting due to small abnormal training data and the small frame
patches’ restriction. Additionally, the network is not trained end-to-end, considered relatively

shallow, and it requires that several multiple SVMs be trained externally.

Inspired by the work presented in |Hasan et al.| (2016) (documented above), the authors of
Chong and Tay|(2017) generate a video representation from a set of extracted general features.
The method is semi-supervised and utilises a stack of convolutional autoencoders (AEs). The
stack of convolutional AEs is used to process input video frames and extract spatial features.
These features are then used as input into another stack of convolutional AEs for temporal
feature extraction. As shown in Figure [14] the deep end-to-end network is trained on normal
video frames. An anomaly is detected based on the reconstruction error between the input
video frames and the reconstructed video frames. Low reconstruction error from the network
indicates normal scenes, whereas a high reconstruction error indicates abnormal scenes. A
threshold would determine the occurrences of abnormality within the footage. More specifically,
the network has three main stages to detect anomalies; the first stage is a pre-processing stage

to resize and scale the input video frames and divide the input frames into video volumes
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(10 frames each). The second stage, feature learning, utilises a spatial encoder/decoder
with a two-layer convolution and deconvolution to learn spatial features. Additionally, the
temporal encoder is based on a three-layer convolutional long short term memory (LSTM)
to learn temporal patterns of the spatial features. The third and final stage calculates the
regularity scores based on all input video frames’ reconstruction error to determine abnormality
occurrences. The method results are documented in Tablesand@ although the AUC and

EER results surpass other methods, the network produces more false alarms than others.

| Reconstruction of input video sequence | 10x277x277

Spatial Deconvolution: 11x11, 1 filter, stride 4 | 10x 1x227x277
Decoder L)
| Deconvolution: 5x5, 128 filters, stride 2 | 10x 128 x 55 x 55

L
| Temporal Decoder | 10x 64 x26x 26
)
| Temporal Encoder | 10x 64 x26x26
X
Spatial Convolution: 5x5, 64 filters, stride 2 | 10x 64 x26x 26
Encoder L)
Convolution: 11x11, 128 filters, stride 4 | 10x 128 x 55x 55
)
| Input video sequence | 10 x 277 x 277
Figure 14: Stacked convolutional autoencoders with spatial and temporal

encoder/decoder. Adapted from (Chong and Tayl|2017)

A fully convolutional neural network (FCN) is applied in |Sabokrou et al.| (2018), for the
detection of anomalies in a crowd. Temporal data is extracted, and a pre-trained supervised
FCN is fed to an unsupervised FCN to detect global anomalies within a crowd. A normal
reference model is created using a fitted Gaussian distribution classifier, as shown in Figure[15]
Additionally, to better represent abnormal regions, generated by the AlexNet (Krizhevsky et al.|
2012), an auto-encoder is applied to the suspicious regions. Abnormal regions are established if
they are not similar to the normal reference model. The FCN consists of two initial convolution
layers using an adjusted version of AlexNet. The first layer is used to differentiate between
normal and abnormal regions; this layer's output result contains many false positives. The
second layer is a deeper discriminative layer, achieving better results. A final layer is used to
attain better and deeper features, but the layer is likely to over-fit. Experimentation is applied
on the UCSD (Chan et al.; 2008) and Subway (Adam et al.| [2008) benchmark datasets,
the results are compared to other methods using the Area Under Curve (AUC), Receiver
Operating Characteristics (ROC) curve and Equal Error Rate (EER). The proposed method
outperforms the examined state-of-the-art methods with regards to quantitative measures and

faster run-times. Details of the quantitative results are documented in TabIe
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Figure 15: The FCN structure is applied for regional feature extraction. Two Gaussian
classifiers are integrated in later stages to label abnormal regions. Adapted from (Sabokrou|

'Majumder et al.|(2018) use recurrent neural networks (RNN) to extract anomaly from motion.

The framework uses two stacked LSTMs (Long short-term memory) as an encoder-decoder
to define normal behaviour. The authors describe an anomaly as any motion that does not
follow the normal pattern. Peculiarly, sudden movements and motions that are slower, faster,
or in a different direction to the observed scene. |Farneback (2003) algorithm is applied to
extract the dense optical flow (further explained in Section magnitudes for each scene.
In the training process, three LSTM networks are trained on different scales. Sequences are
formed from optical flow stacking and fed to the stacked RNNs to predict the future flow.
Multiple datasets are used for testing, and the qualitative results are compared to other anomaly
detection algorithms. Quantitative results are documented from testing on the UMN
'of Minnesota) |2006) dataset and produced an AUC value of 99%.

Similar to/Majumder et al.|(2018) the method applied by Qiu et al.|(2018) use a Convolutional
Neural Network followed by an LSTM (Graves et al.,2013) to detect anomalous objects. The
framework combines the trajectory and motion-based techniques by extracting objects using
CNN and feeding said data to the LSTM. The CNN applied is based on the you-only-look-once
(YOLO) (Redmon and Farhadi,|2018) detector, which outputs a bounding box of the detected

objects. Because object representation is simple, the method is computationally cheap and fast.

The LSTM model applied considers not only spatial and/or temporal data of each object, but
also includes correlation data about the objects’ neighbours. Position, velocity, acceleration,
and direction are all the characteristics used to interpret normalcy using a threshold. The
CNN object extraction method is trained on ImageNet (Deng et al., [2009), and the LSTM
uses the OTB-30 (Wu et al., |2013) dataset for training/testing. Comparative success plots
indicate better performance than standard tracking techniques. Experimentation results are
documented as one pass evaluation (OPE) of 0.467, temporal robustness evaluation (TRE) of
0.559 and spatial robustness evaluations (SRE) of 0.544.
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Fan et al.| (2020) use a partially supervised deep learning method to detect anomalies using
normal samples. Dynamic flows, an amalgamation of multiple sequential optical flow frames,
are produced using a Ranking SVM to consider long-term temporal data. The generated
dynamic flows are fed into a two-stream Gaussian Mixture Fully Convolutional Variational
Auto-encoder (GMFC-VAE). RGB images from the normal sample data are also fed into the
GMFC-VAE. The GMFC-VAE utilises the feature representations: RGB images (appearance
cues) and dynamic flows (motion cue) to detect anomalies. The encoder-decoder is based on a
Fully Convolutional Network (FCN) which does not include a fully-connected layer. Respective
spatial locations of the input image and output feature map are saved. Anomaly scores are
given based on a sample energy method to test samples. The UCSD (Chan et al., 2008)) and
Avenue (Lu et al.| [2013) (results noted in Table@ datasets are used for experimentation, and
evaluations are based on both frame-level and pixel-level criterion. Area Under Curve (AUC),
Equal Error Rate (EER), True Positive Rate (TPR), and False Positive Rate (FPR) are all used
to evaluate the system. Regarding frame-level detection, the proposed system outperforms
systems such as (Mehran et al.| [2009; |Sabokrou et al.,|2018), as shown in TabIe

3.3.4 Crowd anomaly detection using Generative Adversarial Networks

GANSs are typically used to generate fake data that can be construed as real data, the framework
has been utilised in applications such as image classification, images generation, and image

classification. Only recently has the framework been utilised for crowd anomaly detection.

Ravanbakhsh et al.|(2017) have utilised the framework for that purpose, the generative network
is used to model normal data. With the lack of availability of abnormal datasets, the generator
has the benefit of being trained on only normal data. Abnormal data is then detected by
measuring the distance between the generated and the learned data. More specifically, the
authors used the framework presented by |Isola et al.| (2017) to learn the translation between
optical flow (further explained in Section , computed using (Brox et al.; 2004), and the
corresponding input frames. The framework of the method is illustrated in Figure when
testing the network would not be able to generate abnormal scenes because it is trained on
normal footage and local difference is used to detect anomalies. In the experimental setup,
testing was applied to both UCSD (Tableand UMN datasets (Table . Quantitative results
are documented with respect to frame-level and pixel-level abnormality detection/localisation.
In comparison to methods proposed by Ravanbakhsh et al.|(2016) and Xu et al.| (2017, this
method has shown better AUC and EER values. The disadvantage of this architecture is the
dependency on a CNN, pre-trained on ImageNet, to collect an adequate amount of semantic
data. The AUC and EER results from testing on both datasets are documented in TabIe
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Figure 16: Adversarial discriminators for crowd abnormal event detection. Adapted from

|Ravanbakhsh et al.| (]2019[)

'Ravanbakhsh et al.| (2019) present a continuation of the previously discussed work. Unlike

'Ravanbakhsh et al.| (2017), the discriminative network is used to detect anomalies during

testing, whereas their previous work used the generative networks' reconstruction errors for
anomaly detection. The same testing setup is applied, using the same datasets. The AUC
result produced when testing this architecture on the UMN dataset is 0.99 (Table . This
result is very similar to the result of 0.99 from their previous work on the same dataset. While
the authors’ preceding work depends on a pre-trained CNN for semantic data and a fusion
strategy to consider both pixel-level and semantic-based reconstructions errors, their latter
work does not appear to be quicker with regards to training time. However, the authors claim
that testing time is reduced due to the use of the adversarial discriminator for detection. The
results of testing on UCSD datasets are presented in Table[5]

A novel approach to anomaly detection was presented by Liu et al./(2018b) where the authors

use future frame prediction for the purpose of detecting anomalous behaviour. The fundamental
idea of this approach is to utilise the deviation between ground truth video frames and their
corresponding predicted future frames to find irregular scenes. The network, as shown in
Figure[17] generates a prediction frame from a U-Net and utilise different constraints to achieve
higher quality frame prediction. Some of the constraints used are adversarial training loss
(Isola et al.| 2017) (further described in Section to better train the model in generating

better quality images. The second constraint used is a spatial constraint based on intensity

and gradient loss. Lastly, an optical flow loss calculated using a pre-trained network Flownet

(Dosovitskiy et al.||[2015) is used as the motion constraint. The complications of this method

are that Flownet is considered costly for optical flow extraction and the network produces high
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false-positive rates. The network is trained and tested on multiple datasets: Avenue, UCSD
and ShanghaiTech. The results of UCSD and Avenue are presented in Tablesand @

Flownet - Optical g
Flow Loss
»| Discriminator
Real or Fake
Generator Intensity Loss and
(U-Net) Gradient Loss

Figure 17: Future frame prediction for anomaly detection framework. Adapted from (Liu
et al., |2018Db)

The authors of Vu et al.| (2019) present MLAD (MultiLevel Anomaly Detector), a network
based on the anomaly detection system by Ravanbakhsh et al.|(2017) with additional denoising
autoencoders (DAEs). A DAE is a neural network trained to reconstruct data from input data
which is intentionally corrupted (noise is introduced). The multilevel representation system
utilises low-level and abstract-level features to detect anomalies. Initially, the network is trained
by calculating the optical flow frames corresponding to the input frames. Two DEAs are
separately trained on both the input video frames and the matching calculated optical flow.
The trained DEAs then extract high-level features for the input and optical flow frames. The
generated features (high-level and motion) are fed into a conditional generative adversarial
network (CGAN) (lsola et al., 2017) to train the network. For testing, the optical flow is
calculated, the high-level features are generated using the pre-trained DAEs and the trained
CGANSs generate various error maps. Lastly, binary detection maps are deduced from the error
maps and collated to produce a detection outcome. Experiments are applied to the USCD and
Avenue datasets and the results are presented in Tables[5|and|6]

More recent research conducted by |Pourreza et al.| (2021a) consider the irregularity detection
problem as a binary classification method. With the use of Wasserstein GANs, the authors train
the generative network in the typical manner where the generator is trained on normal samples
(normal behaviour). However, while training the generator on normal data, any failed normal
data produced by the generator is considered as abnormal data. The produced abnormal data
and normal data are then used to train a binary classifier for the detection of irregular samples.
The authors used this method for both video anomaly and image outlier detection. They test

this framework on UCSD Ped-2 for frame-level video anomaly detection and produce an EER
result of 11% (Table [5)).

Yu et al.|(2021) create a novel abnormal event detection model named Adversarial Event
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Prediction (AEP). The model is used for the detection and localisation of anomalies within
crowds based on event prediction. Similar to other abnormal detection models based on GANSs,
the AEP model is trained on normal samples. However, the AEP contains the generator
and three discriminators: latent feature, future, and past discriminator. The latent feature
discriminator is used to derive the distribution of latent features to normal distribution. Whereas
the future and past discriminators are used to differentiate between future and past events.
Moreover, unalike the typical optical flow methods used for temporal development extraction,
the authors build the generator, future discriminator, and past discriminator using 3-D CNNs
(Ji et al.,2012) and fully connected neural networks. These neural networks are used for spatial
and temporal extraction as well as abstracting the learned extractions. However, these 3-D
CNNs require high computational cost. The AUC and EER results from testing on both the
UCSD and Avenue datasets are documented in Tables[5] and [6]
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Table 6: Experimental results of the state-of-the-art on Avenue dataset, ERR and AUC

for frame level detection are documented.

Frame Level
Method AUC (1) | EER ({)
3. Detection at 150fps 80.5 -
5. ConvAE 70.2 25.1
8. ConvLSTM 80.3 20.7
9. AnoPred 84.9 -
11. MLAD 71.54 36.38
13. Gaussian Mixture 83.4 22.7
15. AEP 90.2 10.07

Table 7: Experimental results of the state-of-the-art on UMN dataset, AUC results are
documented.

Method AUC (1)
1. Social Force 0.96
4. Plug-and-Play 0.988
7. GAN generative 0.99
12. GAN discriminative 0.99

3.3.5 Summary

The previously discussed work on behaviour analysis is continually improving. Significantly
the most recent work shows promise to what can be achieved within this discipline. Further
improvements are still required as the experimental results are not satisfactory enough to be
applied to the real-world environment. Additionally, the limitations of the crowd density are
very clear in the discussed work; high-density crowds are not targeted as much due to its
difficulty in application. Amongst the work presented, there is also a noticeable gap regarding
the use of multiple views for behaviour analysis. Both the handcrafted approaches as well as the
neural network approaches suffer from a lack of applicable “abnormal” behaviour datasets to
train/test. Generative Adversarial Networks offer a promising solution as they can be trained on
just “normal” behaviour datasets and as shown in Tables@and GANs (Ravanbakhsh et al.
(2017)), Ravanbakhsh et al.|(2019), Liu et al. (2018b)), |Vu et al.|(2019)), (Pourreza et al.|[2021a),
and (Yu et al.|[2021))) have proven to outperform other state-of-the-art methods. Detection and
localisation results (EER and AUC) in\Vu et al.|(2019) and Yu et al.|(2021) have demonstrated
leading performance. Furthermore, most methods tend to utilise high accuracy optical flow
estimation (Brox et al.| [2004) for temporal feature extraction. Contemporary methods for
optical flow estimation (Sun et al.}[2017) or dynamic image extraction (Bilen et al., |2016)
(detailed in Section should be utilised for temporal feature extraction. The aforementioned
temporal feature extraction methods have excelled in the field of action recognition. Section [3.4]
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investigates the different action recognition methods (temporal feature extraction) that can be

integrated with CGANs as a novel approach for crowd anomaly detection.

3.4 Action Recognition

Action recognition is a method that extracts video frame features to enable the classification of
actions according to class labels. Human action recognition is an important topic within fields
such as robotics, surveillance and human-computer interaction. The standard framework flow
for action recognition usually includes feature extraction, action learning, action segmentation,
action classification and action model database (Herath et al., [2017). Moreover, two main
representations of action recognition utilise holistic and/or local representations. For the
purposes of this research, the main focus is feature extraction for action recognition. The
feature extraction block extracts Holistic and Local representation and can be further used for
crowd anomaly detection. Optical flow estimation methods (Brox et al.}|2004/| Sun et al., 2017)

and dynamic image extraction methods (Bilen et al.,|2016} 2017) are investigated below.

3.4.1 Optical Flow

Optical flow is defined as the estimation of the temporal (motion) development of every
pixel from several consecutive input frames. The extracted motion patterns are based on
the movement of objects, surfaces and edges. The estimated flow for two consecutive frames
is usually represented by a vector field where each pixel of the first frame is associated with a
displacement vector to determine its location in the second frame (Horn and Schunck, |1981).
Conducted experimentation and graphical representations of optical flow estimation methods
on two consecutive frames are shown in Section[6.2] Both a standard optical flow method
(Brox et al., 2004) and a more novel state-of-the-art method for optical flow estimation (Sun

et al., 2017) are presented hereafter.

3.4.1.1 Standard Optical Flow

Brox et al.| (2004) utilise an energy-based optical flow estimation method built around three
constraints. The method assumes a brightness consistency, a gradient consistency and a
discontinuity-preserving displacement smoothness assumption. Input frames are given to the
model and the method assumes that the grey value of each pixel does not change after it has
been displaced. However, due to brightness variability from one frame to the next the grey value
is susceptible to minimal disparities. The gradient consistency constraint is introduced because
it does not change if the grey value changes. The gradient constraint also assumes that the
pixel gradient does not change after displacement. Lastly, due to the previous constraints being
applicable in a local fashion, without consideration to the relationships of the neighbouring

pixels, the smoothness constraint is introduced. The constraint can overcome some of the
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outlier estimates by assuring continuity in the flow field. By considering all three constraints, the

method can estimate the optical flow field between consecutive frames more accurately.

3.4.1.2 Novel Optical Flow

The optical flow model presented by Sun et al.| (2017) has established performance results
(increased accuracy, reduced model size, reduced training and running time) that outperform
other optical flow algorithms. The authors use a CNN model that is based on pyramidal
processing, warping, and the use of cost volume. The network, shown in Figure begins
by extracting raw images and casting learnable feature pyramids as an alternative to the fixed
image pyramid, this is done because consecutive images can be different due to light and shadow
modifications. The second task is to apply a conventional warping method for significant
motion estimation as a layer in the network. The third step is a network layer that builds a
cost volume to be processed and utilised in flow estimation. Cost volume is the processes of
storing data matching costs of pixels and their equivalent pixels in the following image frame.
Lastly, contextual data is extracted and used to further enhance the produced optical flow.
The conducted practical application of this method is documented in Section

Unsampled Flow
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Figure 18: Overview of the PWC-Net optical flow framework. Adapted from (Sun et al.,
2017)

3.4.2 Dynamic Images

Dynamic Images is a method proposed by Bilen et al.| (2016) that represents a group of
consecutive frames (videos) as a single RGB image. With the use of CNNs, the algorithm uses
rank pooling and the dynamic image is produced through the ranking machine's parameters.
The ranking machine encodes the temporal development data extracted from the image frames.
While computing the dynamic image the applied ranking classifier replaces the usage of
feature representation data and instead uses frame pixels. To increase efficiency, simple linear

operations are applied to the images in the rank pooling process. The result of this algorithm

61



3.4 Action Recognition 3 CROWD BEHAVIOUR ANALYSIS

is a single RGB image that represents the entirety of the inputted frames (input video). The
conducted practical application of this method is documented in Section and an example

shown in Figure

A continuation of Bilen et al.|(2016)'s work is presented in|Bilen et al.|(2017) where the network
architecture is extended to use two additional streams yeilding a four-steam framework for
action recognition. A representation of the four-stream architecture is illustrated in Figure

The streams include a single image, dynamic image, optical flow and dynamic optical flow

to predict the action presented in video frames. Another extension includes fine-tuning the
network to increase accuracy with regards to recognising actions. Table notes the accuracy
results of optical flow and dynamic images for the purposes of action recognition on the UCF101
(Soomro et al., 2012) and HMDB51 (Kuehne et al.| [2011) datasets.

Figure 19: Sample Dynamic Image (left) and Dynamic Optical Flow Image (right) results
on UCSD dataset.

SI — RGB Stream
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= Stream 5 E
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DOF — Dynamic Optical Flow
Stream
(. J

Figure 20: Four-stream architecture for action recognition. Adapted from (Bilen et al.|

2017
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There are various action recognition methods that utilise temporal features such as histograms
of optical flow (HOF) in addition to other features to estimate an action. For the purposes of
this research, focus is given to methods that use only optical flow for action recognition. As
shown in Table the method presented by [Simonyan and Zisserman| (2014) use a temporal
stream (optical flow features) when evaluating their method, it is evaluated in comparison to
Dynamic Images (Bilen et al.||2016,|2017). Dynamic image for action recognition have proven
to achieve higher mean class accuracy (the evaluation metric used in action recognition to

determine accuracy level) than optical flow.

Table 8: Mean Class Accuracy results on UCF101 and HMDB51 datasets for action
recognition.

Dataset
Method HMDB-51 | UCF-101
Temporal stream ConvNet (Simonyan and Zisserman) 2014) 54.60 83.70
Dynamic Image (Bilen et al.,|2016) 57.3 86.6
Dynamic Optical Flow (Bilen et al.||2017) 58.9 86.6

The sections below provide more details of the evaluation metrics and datasets referred to in

the above discussions of previous work. These will also be used in subsequent chapters.

3.5 Evaluation metrics

Evaluation metrics can either be qualitative or quantitative; qualitative is merely based on
an examination of visual results while quantitative metrics are tangible measurements. The
following metrics are used to distinguish the performance between the different algorithms used
in crowd analysis. It is vital for researchers to be able to evaluate techniques in a quantitative
manner. Some of the most commonly used performance quantitative metrics used are ROC
curves, Accuracy, Recall, Precision, and Error rates. Metrics used for evaluation are presented

below:

e Accuracy is used to evaluate the correctness of an algorithm and is calculated using the

equation below:

TP+TN (1)
P+N
True Positives (TP), True Negatives (TN), Total of positives (P), and Total of Negatives (N).

Accuracy =

e Recall metric r equates to the ratio of the number of positive samples that are
appropriately classified and the total quantity of samples that are truly positive (true

positives and false negatives). Recall is stated as:
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TP

R@CCL”(T') = m—m

(2)
True Positives (TP), and False Negatives (FN).

e Precision metric p equates to the ratio of the number of positive samples that are
appropriately classified and the total quantity of positives samples. Precision is stated

as:

TP

Precisi = 3

recision(p) TP FP (3)
True Positives (TP), and False Positives (FP).

e F1 Score is a combination of both the Recall (r) and the Precision (p) and is denoted

as
2pr

ptr

F1=

(4)
Precision (p), and Recall (r).

e Mean Square Error and Mean Absolute Error: are both evaluation metrics used
to assess the quality of estimators; for the purposes of this research, they are used to

evaluate crowd counting techniques.

— Mean Square Error

=1
1 .
€sqr = N Z(yz - yz)2 (5)
N

Number of test frames (N), the ground truth number (y;), and the number projected from the
ith frame (9;).

— Mean Absolute Error

=1
1 .
€abs = %j v = 4 (6)

Number of test frames (N), the ground truth number (y;), and the number projected from the
ith frame (9;).

e ROC Curves, Receiver Operating Characteristic curve, is illustrated as a graphical plot
of the values of True Positive Rate (TPR) alongside the values of False Positive
Rate (FPR) at variable thresholds, the equations being denoted as:

TP
Pk = TP+ FN (7)
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FP
FPR= ——
R=Fpr7n (®)

True Positive Rate (TPR), False Positive Rate (FPR), True Positives (TP), False Negatives (FN), False
Positives (FP), and True Negatives (TN).

e Equal Error Rate
The Equal Error Rate (EER) is the point on the ROC curve where False Positive Rate
(FPR) is equal to (1 — True Positive Rate (TPR)), or where their curves intersect. The

lower the EER value is the higher the performance.

e Area Under the ROC Curve
Area under the ROC Curve (AUC) measures the entire two-dimensional area under the
entire ROC curve. As shown in Figure[21]AUC is the area under the ROC curve and the
EER is the specific point in the ROC curve.

R
N
N

09 *.. EER Point
08
07

0.6

True Positive Rate
o

B Auc S
0.2 — — - EER line So
ROC curve ~

0 01 0.2 03 04 0.5 0.6 07 08 0.9 1
False Positive Rate

Figure 21: Illustration of AUC, ROC and EER evaluation metrics.

These basic evaluation metrics are utilised through the various fields of crowd analysis
(crowd counting, crowd tracking, motion representation and crowd anomaly detection). The
quantitative evaluation metrics should be used throughout experimentation to allow consistent
performance assessment between the variety of algorithms presented by researchers. More
specifically, for abnormal behaviour detection within a crowd ROC, EER and AUC are

consistently utilised in experimentation.

3.6 Datasets

Datasets are very important to the analysis of crowd behaviour. More specifically, benchmark
datasets are a necessity; researchers can apply, compare and evaluate their framework against
others when the datasets are consistent in experimentation. For the purposes of this

research, datasets related to behaviour understanding, crowd counting, crowd recognition,
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crowd segmentation, crowd tracking, event detection, behaviour understanding, and abnormal

behaviour detection are explored.

3.6.1 Crowd Anomaly Datasets

The definition of an “Anomaly” within a crowd is difficult to explain in a definitive way. The
typically used general definition of a crowd anomaly is similar to the outlier detection problem
(Mahadevan et al.| |2010). Basically, an anomaly is any event that does not conform to the
defined normalcy, when an anomaly occurs the corresponding video frames will be significantly
different in relation to the older video frames (Chong and Tay| |2017). The defined normalcy
is usually based on a learnt model established from “Normal” videos in anomaly detection
datasets. Examples of “Abnormal” behaviour in benchmark datasets include behaviours such

as:

e Throwing objects (papers or bags), unusual direction movement, presence of unusual
objects (bikes or bags) (Avenue dataset (Lu et al.| [2013)).

e Pedestrians moving in the opposite direction of the majority of people, loitering and

irregular interactions (Subway dataset (Adam et al.| 2008)).

e Presence of objects such as bikers, wheelchairs and small carts within a usually
pedestrian-filled environment (UCSD dataset (Chan et al., [2008)).

e Quick dispersion of people in different directions (UMN dataset (University of Minnesota,
2006)).

3.6.2 Benchmark Datasets

Table[9]presents the details of all relevant datasets reviewed in this research. The datasets used
frequently by the majority of crowd analysis methods in their experimentation and comparisons
are discussed below. The datasets used specifically for crowd anomaly detection are highlighted
in bold.

e Avenue (Lu et al.;|2013): the Avenue dataset contains 16 training videos and 21
testing videos captured in CUHK campus. Some of the abnormalities defined
in this dataset are Strange action, Wrong direction and Abnormal objects. The
resolution of the footage is 640x360 and ground-truth data is saved in Matlab
format.

e CUHK dataset (Chinese University of Hong Kong) (Shao et al., 2014} 2017): the CUHK
dataset comprises of 474 videos of indoor and outdoor scenes, the variety of footage it

what made this dataset popular. The resolutions of the footage vary from 240x352 to
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1080x1,920 and the videos show different illuminations, occlusions, numerous densities

and perspective scales.

e BEHAVE (Blunsden and Fisher, [2010): contains two views of 10 acted-out
scenes of low-density crowds. The acted-out scenes are categorised into Group,
Approach, Walk Together, Split, Follow, Chase, Fight, Run Together, and
Meet.

e PETS 2009 (Ferryman and Shahrokni, [2009)): another acted-out dataset is the PETS
2009, this is one of the rare datasets that capture footage from multiple angles while
noting the camera calibration data. Additionally, the footage is divided for multiple

purposes; training data, count and density estimation, tracking, and event recognition.

e Subway (Adam et al., |2008): contains two captured surveillance events: exit
gate and entrance gate. The captured videos are grey scale with a resolution
of 512x384. The videos contain 209,150 frames and some of the anomalous
behaviours include moving in the wrong direction, no payment, loitering and

irregular interactions.

e UCF datasets (Idrees et al., 2013} Ali and Shah} 2007, |2008): UCF has many public
datasets; three of them are of use to the analysis of crowd behaviour. All three datasets
are high in crowd density and are collected from online sources. The crowd counting
dataset is only 50 images but has 64k manual annotations, the segmentation dataset is

38 videos, and the tracking dataset consists of 1289 images.

e UMN dataset (University of Minnesota, 2006): eleven videos are captured from
three different locations. The footage starts with a medium-density crowd of
people acting out “normal” movement. After some time the crowd members

suddenly disperse in different directions as if panicked.

e UCSD (Chan et al., [2008): An elevated stationary camera was used to collect
footage of a medium-density pedestrian walkway. The dataset has 50 training
and 48 testing videos in total. Ground truth annotation is included in every

frame and binary value is used to indicate if an anomaly is present.

e Violent-flows (Hassner et al., [2012): includes footage of both crowd violence and
non-violence; the real-world videos were extracted from YouTube. This dataset is a
benchmark to test violent/ non-violent crowd behaviour classification and recognition of

violent occurrences.

e WWW Crowd Attribute dataset (Shao et al., 2015)): this is one of the largest public
datasets; it consists of 10,000 videos from 8,257 environments. The footage is annotated
with 94 different attributes.
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Sample images from the aforementioned datasets are displayed in Figure

Figure 22: Sample images from the most prominent crowd datasets (from top left to
bottom right): UCSD, CUHK, UMN, Violent-Flows, PETS 2009, UCF Dense-Tracking,
and WWW Crowd Attribute (middle).

3.6.2.1 Summary

The survey of datasets highlights a substantial gap regarding datasets with combined features
of high-density crowds, annotations and occurrences of anomalous behaviour. To overcome this
lack of availability, a new annotated, high-density crowd dataset has been created and contains
both normal and abnormal footage (anomalous behaviour). Collection and labelling of footage
for this dataset is described in Chapter 5| the collected data adheres to the aforementioned

features.
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3.7 Conclusion

A comprehensive overview of crowd behaviour analysis has been presented in this chapter.
Crowd behaviour analysis is explored to specifically focus on understanding the behaviour
of a crowd, extracting motion representations and determining occurrences of anomalous
behaviour. State-of-the-art crowd anomaly detection methods have been investigated and
generative adversarial networks (GANs) have been chosen as the base architecture for the
framework of this research. The results achieved by different researchers utilising GANs in
their framework have proven to surpass the state-of-the-art (Tables @ and .

The investigation into the methods for crowd anomaly detection revealed that optical flow
has been used in numerous methods for temporal feature extraction. Other temporal feature
extraction methods such as dynamic images have not been thoroughly considered for crowd
anomaly detection despite the fact that dynamic images, in the field of action recognition, have
proven to achieve better accuracy results than optical flow (Table . This research aims to
merge dynamic images with CGANSs for improved crowd anomaly detection as one of the main

and novel contributions of the work.

During the experimentation stage of this research, more recent research was developed and
published. The field of crowd anomaly detection is a rapidly developing field, some of the more
novel work include a temporal enhanced appearance to motion generative network to model the
evolution of motion and appearance of normal behaviour (Ji et al.}|2020). Another noteworthy
method detects anomalies based on self-supervised and multi-task learning (Georgescu et al.,
2020). |Ouyang and Sanchez| (2020) use a deep probabilistic model that detects abnormal
patterns by relying on PSNR values from their data reconstruction. Lastly, (Pourreza et al.|
2021b), learn and model the interaction of normal objects using a spatio-Temporal Graph for

anomaly detection.

Lastly, in this chapter the datasets used for anomaly detection were investigated and a key
limitation found within these benchmark datasets is that the crowd size captured in the footage
is between low to medium-density crowds. Datasets that include high-density crowds including
some type of anomalous behaviour are not publicly available. Therefore, another contribution
to this research is the creation and publication of a new dataset that includes both high-density

crowds and anomalous behaviour (further discussed in Chapter [5)).
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4 Deep Generative Crowd Anomaly Detection

4.1 Introduction

The basic structure of Generative Adversarial Networks (GANs) (Goodfellow et al.}[2014]) is two
neural networks opposing each other (adversarial). The network architecture gained popularity
because of its ability to imitate data distribution. Usually, the typical neural network models are
given features and a label is expected as output. The GAN model has the opposite goal; given
a label the network predicts associated features. GANs generally contain two neural networks,
the Generator and the Discriminator. Both networks are used to play against each other, each
trying to reach its own goal. The Generator's goal is to learn to generate data instances
that the opposing neural network, the Discriminator, would think is real. On the other hand,
the Discriminator is used to learn to distinguish whether the data instances are real (from
the original data/domain) or fake (generated). Other networks, discussed in Section [3.3.3]
such as FCNs, SDAEs, LSTMs, and RNNs have shown successful experimental results within
the crowd anomaly detection field. Moreover, GANs have been used in many fields, further
discussed in Section but more recently, GANs have been used for the detection of
anomalies within crowds. The generative network has proved better success in the detection of

anomalies than other neural networks. A simple visualisation of the GAN architecture is shown

in Figure

Classification

Discriminator O O O

Real Data

O O O

Random Noise

Generator

Figure 23: Simple GAN architecture. Adapted from (Hergott, 2019)

4.1.1 GAN architecture

The architecture is analogous to a two-player minimax game (Goodfellow et al.| [2014).
The process continues until the discriminator is more often than not fooled that the
instances/samples generated by the generator are real. The discriminative model D, illustrated
in Figure |23[above, tries to map given features to specific labels. While the generative model

G produces new data instances to give to the discriminator to try to fool it that the generated
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instances are real. The models pass this data back and forth in order to strengthen their
own models. In more detail, Gs' training process aims to maximise Ds' probability of making
an inaccurate decision. In turn, D tries to distinguish if the data given is from the model
distribution or the data distribution. Training the adversarial model step-by-step is outlined

below:

1. A random distribution function is used to produce noise to be fed to the Generator G as
the fake data.

2. The Discriminator D is fed both the fake data (Step 1.) and real data (training data).
3. D calculates Adversarial loss by combining the loss of real data and loss of fake data.
4. G imitates Step 3. by calculating its own loss of the noise data.

5. The loss variables return to their corresponding models, and the network parameters are

fine-tuned with respect to the loss.

6. An optimisation method is utilised and the steps are repeated again. The number of

repetitions is determined by the user.

4.1.1.1 GAN value function
The following equation is the value function of a typical GAN:

minmgz V(D, G) = By, log D(@)] + Bevyollog1 — DG (9)

z — Noise Vector

x — Training sample — T,¢q

G/(z) — Generator output — Z fqe

D(x) — Discriminator output for ,cq; — P(y | Zreat) — [0, 1]
D(G(z))— Discriminator output for = foe — P(y | Zfake) — [0, 1]

The goal of the Discriminator D is to maximise D(x) and minimise D(G(z)), meaning the
real data is maximised and the fake data is minimised. Meanwhile, the goal of the Generator

G is to maximise D(G(z)), meaning the fake data is maximised.
To calculate the loss for each network the following equations are used:
Discriminator network:

Dl08Syeqr = log(D(x))
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Dlossfqre = log(1 — D(G(2)))

Dloss = DIl0ss,cq + Dlossgare = log((D(z)) + log(1 — D(G(2))))
Generator network:

Gloss = log(1 — D(G(2)))

Noticeably, the discriminator model is applied two times, once for the real data and the other
for the fake data and the generator is applied once. A thorough description of the algorithm
as detailed by |Goodfellow et al.|(2014) is shown below (Algorithm 1).

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets.
The number of steps to apply to the discriminator is k. Adopted from |Goodfellow et al.
(2014)

for number of iterations do

for k steps do
e Sample minibatch of m noise samples {z(), ..., 2™} from noise prior p,()

e Sample minibatch of m examples {z", ..., (™} from data generating distribution
Pdata(x)-

e Update the discriminator by ascending its stochastic gradient:

m

Vo, > llog D) + log(1 — D(G(=?)))] (10)

=1

end for
e Sample minibatch of m noise samples {1, ..., 2(™1 from noise prior p,(2)

e Update the generator by descending its stochastic gradient:
1« .
Vou leog(l — D(G(z"))) (11)

end for

The gradient-based updates can use any standard gradient-based learning rule.

4.1.1.2 Problems in GAN

One of the major advantages of GANs is that they are very good classifiers. In comparison to
CNN, they have achieved better results regarding data synthesising, and image segmentation.
GANSs can also handle a shortage of real data while other networks are usually data-hungry.
The biggest problems in GANs are fourfold (Goodfellow| 2016; |Salimans et al.| 2016; Arjovsky
and Bottou, [2017):
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1. First, the model can go into complete or partial mode collapse. This collapse occurs
when the Generator G generates a set of samples that are not diverse enough (partial)

or G generates only one sample (complete).

2. The second complication that could happen is a “vanishing gradient”. If the
Discriminator D is trained too strongly or too weakly, the feedback given to G is not

reliable, this can cause the learning process to stop.

3. Thirdly, it can be problematic finding the ideal state in which G and D are both satisfied
(Nash equilibrium). Both networks feed off each other and get stronger in doing so, in

this case reaching the state of Nash equilibrium is very difficult.

4. Lastly, defining the moment to stop training is hard, this is due to the lack of a true
evaluation metric (Goodfellow,|2016; Salimans et al., [2016; |Arjovsky and Bottou||2017).

The enhancement of GAN training is quickly progressing and these problems have been
addressed in current research producing different types of GAN architectures as discussed

below.

4.1.2 Types of GAN

There are various types of generative adversarial networks (GANs) emerging. Some of the most
prominent architectures are detailed below. Additionally, to illustrate the qualitative results
generated from the presented methods as well as other GAN types, Appendix@ includes the
application of the various GANs types on the handwritten digit database (MNIST)(LeCun et al
1998).

4.1.2.1 Deep Convolutional GAN

Deep Convolutional GANs (DCGANSs) (Radford et al.| [2015), is based on the standard GAN
architecture. This network includes defined CNN constraints to stabilise the training process
of GANs and avoid the aforementioned typical problems in GANs. Both the Generator G and
the Discriminator D utilise convolutional neural networks to their own advantage. D uses a
set of convolutional layers to downsample the input data with each layer. The model learns
a deeper representation of the data with each layer. On the contrary, G upsamples the input
data by adding noise to enlarge the input data to its original size, where downsampling reduces
the sampling rate and upsampling increases the sampling rate. The training process of typical
GANs usually has stability problems, and frequently the generator produces meaningless results.
However, DCGANSs with appropriate constraints applied to the architecture show more stability
when training in diverse settings. |[Radford et al.| (2015) applied CNN adjustments to their
architecture to allow high-resolution training, as well as deeper generative models. The three

adjustments applied are as follows. Convolutional net pooling functions like “max-pooling”
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and “average pooling” are not used, instead, strided convolutions are utilised by the generator
to learn its spatial upsampling. The second adjustment applied is removing fully connected
layers by using global average pooling. The last adjustment made is “Batch Normalisation”
(loffe and Szegedy| |2015), this normalises the input to each unit in order for it to have zero

mean and unit variance, achieving better stability in the learning process.

128

1024

—
m ‘g

4

Stride 2

Project and

Reshape 6

G(2)

Figure 24: Deep Convolutional GAN generator. Adapted from (Radford et al.,|2015)

As shown in Figure[24] the generator has four series of “four fractionally-strided convolutions”
utilising batch normalisation, with the exception of the input layer. ReLU activation (Nair and
Hinton, [2010) is applied in all layers, only the last output layer uses a Hyperbolic Tangent
(Tanh) function. The discriminator contains four strided convolutions, similar to the generator
batch normalisation is utilised for all layers with the exception of the first input layer. Unlike the
generator, the discriminator works better with leaky rectified activation (Leaky ReLU) (Maas
et al.}|2013). The main difference between RelLU and Leaky RelLU is the former activation
function takes the maximum value between the input and zero, whereas the latter activation
function will allow negative values. This prevents the “dying state”, where the output results
given by the network are all zeros. The model is still unstable in some configurations, longer

training can occasionally result in a crumble of filters subset into one oscillating mode.

4.1.2.2 Conditional Generative Adversarial Nets

Conditional Generative Adversarial Nets (CGANs) (Mirza and Osindero, | 2014), are also based
on the original GAN architecture. Both the G and the D are given conditional data y as an
additional input, it can be any type of auxiliary data. The additional input produces higher
quality data, in the application of image generation the method can control how the generated

image will look. The loss function after the conditional modification is shown below:

minmg V(D, G) = By, )08 Dlaly)] + Eavpo o loa(1 = DG (12)
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CGANs can be useful for multiple purposes such as text-to-image synthesis, image and video
generation, convolutional face generation and image-to-image translation (further detailed in
Section . CGANs follow the same model as DCGANs but the main difference is the
conditioning vector that can control the model output. The vector should include a set of
specifications as indicators of what the output should be. This data is incorporated into
the learnt images as well as the input noise vector Z (Mirza and Osindero, 2014). The
discriminator now evaluates both the similarities between the generated data and input data
and the similarities between the generated data and the input label. The drawback of this
model is the model is not purely an unsupervised method since the model requires input labels.
The basic CGAN architecture is illustrated in Figure [25] As one of the main contributions
of this thesis is to include image-to-image translation using CGANs (lIsola et al.}|2017), more

details of the image-to-image translation model are documented in Section

Random Noise Labels

WA

Labels Generator| | Input Data

b

Discriminator

Figure 25: Basic InfoGAN architecture.

4.1.2.3 Info Generative Adversarial Nets

Info Generative Adversarial Nets (InfoGAN) (Chen et al., 2016) uses information theory in
the transformation of noise into latent codes which have meaningful and systematic effects
on the output of the model. The basic idea of InfoGAN is to split the input given to the
generator into the standard noise and “latent code” vectors. The Mutual Information (the
mutual dependence measurement between two random variables) between latent code and
the generator's output is maximised to make the codes meaningful. The original GAN value

function is used (Equation @ with an additional regularisation term as shown below:

mén mazx Vi(D,G) =V (D,G) — M (c;G(z,¢)) (13)

In this case, A is used as a regularisation constant set to one and A (c; G(z,¢)) is the mutual
information between the two variables: latent code (¢) and the output from the generator
(G(z,c¢)). An illustration of the architecture is shown in Figure where the () neural
network attempts to predict the latent code. Since the mutual information cannot be explicitly
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calculated, standard variational arguments are utilised to approximate a lower bound. To
achieve this, an “auxiliary” distribution (Q(c|z)) is used to estimate the real P(c|x). Q(c|x) is
modelled by a parameterised neural network and P(c|x) given the generated input x indicates
the likelihood of code ¢. The regularisation term is computed based on P(c|z) not an estimate
of the code ¢, this indicates that () does not generate the value of code c. () generates
the statistics of the distribution and then the likelihood can be computed. The additional
regularisation term can disentangle important data attributes to be allocated to the structure

of the latent code.

| Random Noise, z | Latent Code, ¢

\4 / Probability input
is Real,
Generator D(x) or D(G(2))

Discriminator Q Neural
¢ ™ Network
Input Data Fake Data,
G(z, ¢)
‘ Estimation of ¢

Figure 26: Basic CGAN architecture.

4.1.3 Applications of GAN

GANs have been used in many applications since they were first introduced by (Goodfellow
et al.[ (2014). For example, |Radford et al.| (2015) introduced deep convolutional generative
adversarial networks (DCGANSs) for image classification, with high accuracy results. |Reed et al.
(2016)) also use deep convolutional GANs to synthesis images from detailed text, and |Zhang
et al.| (2017) target the same problem using Stacked GANs. Image generation has also been
implemented using GANs (Nguyen et al.;,|2017), the system generates high-quality images using
Plug and Play Generative Networks. (Karras et al.,[2017) achieved better results with image

generation while decreasing the training time of the network.

GANs have also been used for image segmentation and classification. |Zhu et al.| (2017)
employ adversarial networks to train a fully convolutional network (FCN) to detect mass
in mammograms. |Luc et al.| (2016) combine trained convolutional semantic segmentation
network with the adversarial network to segment objects from the background. On the other
hand, |Li et al.| (2017) present a “Perceptual” GAN model to detect small objects within
images. |Wang et al.| (2017) go in another direction with object detection, and propose a
GAN network that generates “hard” samples which are images with difficult occlusions and
deformations. This generated data is used to train a Fast-RCNN (FRCN) detect objects in
a more robust manner. The focus of the research in this thesis is the application of GANs
for crowd anomaly detection. As reviewed in Section the application of GANs for this
purpose has not been thoroughly investigated. Preliminary research by |Ravanbakhsh et al.
(2017); |Liu et al.| (2018b)); |Ravanbakhsh et al.| (2019) and Vu et al.[ (2019) has investigated

30



4.2 Pix2Pix 4 DEEP GENERATIVE CROWD ANOMALY DETECTION

the use of GANs in crowd anomaly detection, and the resulting Equal Error Rate (EER) and
Area Under Curve (AUC) produced from their frameworks have surpassed the state-of-the-art
deep learning methods. This research capitalises on the aforementioned success and proposes to
enhance crowd anomaly detection by extracting dynamic image representations as the temporal

development features given to an image-to-image translation CGAN model.

4.2 Image-to-Image translation via CGANs

Isola et al.|(2017) investigate CGANs to enhance the typical complications of image-to-image
translation. Their solution named “pix2pix" can learn the input to output image mappings and
a loss function to train the extracted mappings. The pix2pix method enables the utilisation
of this generic method to other problems that would need a separate loss formulation. The
method demonstrates its reconstruction capabilities in examples such as translation of edge
maps to objects and image colourisation. The details of the pix2pix architecture based on
CGANSs is presented below.

Isola et al.| (2017) utilise CGANSs in their methods. Similar to the standard GAN, CGANs
use two models to work against one another; the generator and discriminator. As noted in
Section CGANSs differ from the typical GAN by using additional conditional data to
guide the network into generating a specific type of image. The loss function used is the same

as the standard CGAN loss function and is depicted as:

Logan = Eyyllog D(z,y)] + E, y[log(1 — D(x, G(z, 2)))] (14)

The generator G has the objective of minimising the loss function whereas the objective
of the discriminator D is to maximise the loss function. To avoid unstable optimisations [Isola
et al.|(2017) use an L1 loss function (Equation as an alternative to the L2 loss function

which also reduces blurring in image generation.

L11(G) = Eay.el||y — Gz, 2)]| ] (15)

The final objective function is noted as:

G* =arg mGin max Loaan(G, D) + AL (G) (16)

As noted in|lsola et al.|(2017), the standard encoder-decoder network presents a problem where
low-level information is not shared across the network but instead the network progressively

downsample the input until the bottleneck layer after which the process is reversed. To solve this

81



4.2 Pix2Pix 4 DEEP GENERATIVE CROWD ANOMALY DETECTION

issue, a “U-Net" architecture is implemented for the generator, both architectures are illustrated
in Figure to show their differences. The U-Net architecture includes skip connections

between each encoding layer and is mirrored in the decoding layer.

Encoder-Decoder U-Net

Figure 27: Left: Encoder-decoder architecture. Right: U-Net architecture. Adapted from
(Isola et al.| |2017).

In addition to the U-Net architecture used in the generator, |Isola et al.|(2017) use a Markovian
discriminator named a PatchGAN. The discriminator is needed to model high-frequency
structure and therefore attention is given to the structure in local image patches. PatchGAN
exclusively penalises the structure at the scale of the patches, where the discriminator classifies
patches as real or fake. The final output from the discriminator is based on averaging all
the patch outputs of an image. For network optimisation, the network is trained to maximise
log D(z,G(z,2)). The architecture uses a minibatch Stochastic Gradient Descent and an
Adam optimiser, the learning rate is set to 0.0002, A = 100, 5, = 0.5 and By = 0.999. In
the testing phase, the generator is run in the same way it was trained and batch normalisation
utilising test batch statistics is applied. The batch size is determined based on the type of

experiment.

This image-to-image translation method, pix2pix, using CGANs is been the basis of all the
crowd anomaly detection methods presented in Section below. Given its merits and
success, pix2pix is also used as the basis of the crowd anomaly detection framework presented
in this thesis as detailed in Section

4.2.1 Anomaly detection

The application of GANSs for the purpose of anomaly detection within crowds is a relatively novel
approach. Although research in this area is limited, the results produced so far suggest high
prospects in comparison to other deep learning models. Results from experiments conducted by
the state-of-the-art GAN models used for crowd anomaly detection are presented in Table [10]
the best results are indicated in bold lettering. Performance is better when Area Under Curve
(AUC) increases and Equal Error Rate (EER) decreases. The methods documented in the
comparison Tableare from research by 1. |Ravanbakhsh et al.|(2017), 2. |Liu et al.| (2018b),
3. Vu et al.|(2019) and 4. |Ravanbakhsh et al. (2019).
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Table 10: Experimental results of CGANs for anomaly detection on UCSD

Dataset
Ped-1 Ped-2
Method Frame Level Pixel Level Frame Level Pixel Level
AUC(T) | EER(I) | AUC(1) | EER(}) | AUC(]) | EER(}) | AUC(T) | EER(})
L GAN 97.4 8 70.3 35 93.5 14 - -
generative
2. AnoPred 83.1 - - - 95.4 - - -
3. MLAD 82.34 23.5 66.6 22.65 97.52 4.68 94.45 4.58
. 4'. G.AN. 96.8 7 70.8 34 95.5 11 - -
discriminative

Ravanbakhsh et al.|(2017) and|Ravanbakhsh et al.|(2019) employed a conditional GAN (CGAN)
model (Isola et al., |2017) to locate anomalous behaviour within crowd videos. The CGAN
model generates optical flow maps after it is trained on frame pairs and the features of their
corresponding optical flow (Brox et al.| [2004). Anomalous behaviour is localised using two
scenarios: when the error value of the generative network is high (Ravanbakhsh et al.,|2017),
or when the discriminator value of the CGAN model is low (Ravanbakhsh et al., 2019). The
method by |Liu et al.|(2018b) also uses CGANSs for future frame prediction to detect anomalous
behaviour within a crowd. The network generates a prediction frame from a U-Net and utilises
different constraints to achieve higher quality frame prediction. Some of the constraints used
are adversarial training loss (lsola et al.}|2017]), spatial constraint based on intensity and gradient
loss and an optical flow loss calculated using a pre-trained network Flownet (Dosovitskiy et al.,
2015). Similar to (Ravanbakhsh et al., 2019), the research presented by |Vu et al. (2019)
is also based on the work of |Ravanbakhsh et al.| (2017). The method begins by training
Denoising Autoencoders (DAEs) for each type of data: frame data and the calculated optical
flow data (Brox et al.} |2004). High-level features are extracted by feeding the data types
to their corresponding DAE. Two CGANSs are trained on a pair consisting of a frame and
its corresponding optical flow high-level features previously extracted. To detect anomalous
behaviour the high-level features of the testing frames and the calculated optical flow are
extracted using the DAEs. Errors maps are calculated from the CGANs and a thresholding
function is used to produce binary detection maps. The union of these maps is used to

determine if there is an anomalous behaviour present.

The previously noted research demonstrates the capabilities of the application of CGANs to
crowd behaviour anomaly detection, CGANSs are also utilised in this thesis for the purposes of
anomaly detection within crowds. The various applications of CGANs for anomaly detection

applied in this thesis are as follows:

e The framework presented in |Chong and Tay| (2017), |Liu et al.| (2018b) and |Vu

et al.| (2019) will be used to analyse high-density crowds as an alternative to
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medium-density crowd datasets commonly used. Benchmark crowd anomaly datasets
currently available are limited to low and /or medium-density crowds and therefore the use
of a high-density crowd dataset will exemplify the detection performance (AUC and EER)
of state-of-the-art methods. Previous methods have not demonstrated the performance
of their models when trained and tested on a high-density crowded environment. The
state-of-the-art crowd anomaly detection methods mentioned above have been tested
with the the Abnormal High-Density Crowd dataset produced in this thesis |Mahmoud
and Arafa|(2020) and their detection performance are noted in Section

e As an alternative to the optical flow extraction method (Brox et al., [2004) used in the
research by (Ravanbakhsh et al.| [2017; [Ravanbakhsh et al.| |2019; |Vu et al.| 2019), a
higher performance optical flow algorithm FlowNet (Sun et al.|[2017) will be applied. The
framework proposed by Vu et al.|(2019) is applied in conjunction with FlowNet (detailed
in Section to determine the effects of the advanced optical flow method to the
overall detection performance (experiments are noted in Section . Additionally,
FlowNet is applied to benchmark crowd anomaly detection datasets and the Abnormal
High-Density Crowd dataset. Sample optical flow representations of these experiments
are shown in Section

e Finally, a novel approach to crowd anomaly detection is the application of Dynamic
Images (Bilen et al.| [2016) (detailed in Section combined with image-to-image
translation using CGANSs (lsola et al.,|2017) as an alternative to optical flow extraction.
The method is tested with benchmark medium-density datasets as well as the Abnormal
High-Density Crowd dataset |[Mahmoud and Arafa| (2020). The proposed framework is
detailed below and the experimental results utilising this framework on benchmark crowd
datasets are presented in Section Additionally, dynamic image extraction is applied
to benchmark crowd anomaly detection datasets and the Abnormal High-Density Crowd

dataset. Sample dynamic image representations of these experiments are illustrated in

Section

4.3 Proposed Framework

This research presents a novel approach to crowd anomaly detection which combines Dynamic
Images (Bilen et al.| [2016) and image-to-image translation using CGANs (Isola et al.,|2017).
As demonstrated in Table[10] most of the best-achieved anomaly detection results (indicated in
bold) on benchmark datasets are produced using the framework proposed by Vu et al.| (2019).
Similar to |Ravanbakhsh et al.| (2017) and |Vu et al.| (2019), the anomaly detection method
presented in this research utilises the image-to-image translation CGANSs (Isola et al.| [2017)
to learn the transformation between frames and their corresponding image representations and

vice versa based on generation loss, as noted in Section [4.2] The proposed framework builds
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on Vu et al.{(2019)'s work and introduces dynamic images as image representations to improve

crowd anomaly detection accuracy. An illustration of the proposed framework is shown below

in Figure

Training Stage

Input frames Dynamic Images

> Input
I:> Output

Extract

Dynamic |::>

Images

Train Denoising High-level feature .
AE ':> representations '::> Train CGANs

Final detection
result

i}

Input frames Dynamic Images

Extract

Dynamic |::>

Images MU
i | detection maps
Y. .
Extract high- ::>High-level feature o EXtra:_t .
§ generation
representations
level features p error maps maps
Testing Stage

Figure 28: Illustration of the proposed crowd anomaly detection framework.

The architecture defined is divided into two main stages: training the network and testing the

network (anomaly detection).

Stage 1: The training stage follows the steps below:
1. Extraction of dynamic image representations for each input frame (normal behaviour).
2. Training two different DAEs, one for the input frames and the other for dynamic images.

3. Extraction of high-level features from the input frames and dynamic images from the

previously trained DAEs corresponding to its data type.

4. Training of two CGANs on the extracted high-level features of the input frames and

dynamic images.
Stage 2: The testing stage follows the steps below:

1. Extraction of dynamic image representations for each input testing frame.
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2. Computation of high-level features for the input frames and their corresponding dynamic

image representation.

3. Computation of generation error maps using pre-trained CGANs to calculate binary

detection maps for each representational level.

4. The final detection result is determined based on a merging the extracted detection maps.

4.3.1 Dynamic Image Extraction

As previously discussed in Section a dynamic image is a representation of an
amalgamation of input frame sequences. FollowingBilen et al. (2016) and Bilen et al.[(2017),
a set of consecutive images (video) is represented as a ranking function I, ...., Iy. For each
frame, I, a feature vector representation, 1/(I;) € RY, is computed. The time average of the
computed feature vectors is noted as V; = %Zizl (1) through time t. Time ¢ is linked to a
score S(t|d) = (d, V;) using a ranking function, in this case, d € R? is a vector of parameters.
The parameters d are learned in a manner where the scores indicate the rank of the input
frames so a later time correlates to a higher score. To learn d the RankSVM equation (Smola
and Scholkopf} [2004) is used as follows.

d"=p(ly,.....Ir;¢0) = arg;mjn E(d) (17)
E(d) = %|]d||2 gy % o marl0.1 = S(ald) + S(11d)} (18)

Equation is an SVM quadratic regulariser and equation is a hinge-loss function that
soft-counts the number of incorrectly ranked pairs ¢ > t by the scoring function. A pair is
correctly ranked if there is at least a one unit margin difference between the scores meaning
S(g|d) > S(t|d)+1. The process named rank pooling is based on optimisation Equation(|17),
where a set of frames T' are mapped to a single vector d*. Rank pooling is applied to RGB
input frame pixels. RGB components of the frame pixels are stacked on a large vector by the
operator function ¥(7}). At this stage, d” is a descriptor vector containing the same number of
elements as one input frame. Due to d* being calculated by rank pooling it holds amalgamated

information for the set of input frames and is presented as a single RGB image.

4.3.2 Training Denoising Autoencoders

Following |Vu et al.| (2019), Denoising Autoencoders (DAEs) are utilised to learn multilevel
representations of input data. A DAE (Vincent et al.| |2008) is a neural network designed
to reconstruct sample data v € D from the corresponding corrupted version U~ Gypise(0 V)

(Gnoise is any type of noise distribution). DAE contains two stages, an encoder and a decoder
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where the encoder f(0) receives an input v to be mapped into code h in a hidden space. The
decoder g, receives h and projects it back to the input space. The following objective function

is used to train the network to reconstruct the original input data.

Ne Nd
. o1 ~ 2 2
min Joaz =min — > llo = gs(fo@)IE + (Y WO+ S [wWP|)  (9)
=1

0.0 0,6 |D|

9 and g, are deep convolutional networks of weight and bias parameters where 6 =
¢
(WO b0} and ¢ = {W b}
=1 9

e »Ye =1

respectively corresponding to the encoder and decoder.

N, and Ny are the numbers of hidden layers

4.3.3 Conditional GANs

Similar to|Ravanbakhsh et al.|(2017); Ravanbakhsh et al.|(2019); Vu et al.|(2019), the proposed
framework utilises image-to-image translation using CGANs (lIsola et al.| |2017) (detailed in
Section . The generative model is used to generate an output image G(z,z) from an
input image x based on the learnt transformation between the two image representations. The

objective function used to achieve this is as follows:

Logan = Eyyllog D(x,y)] + E, y[log(1 — D(x, G(x, 2)))] + AL (x,y) (20)

As previously noted, the generator tries to minimise the objective function and the discriminator

tries to maximise it.

4.3.4 Anomaly Detection Using the Proposed Framework

To detect anomalies using the proposed framework (Figure, the method is divided into two

stages, training and a testing stage.

4.3.4.1 Training

Initially, the training stage begins with computing the dynamic image representations of the
input video (normal behaviour). Following the approach detailed in Section dynamic
images d; are extracted for every 10 consecutive frames ([, ..., Fi119) of the set of input
frames. The dynamic image for each frame is a summarisation of the motion data for the
next 10 frames. Then two DAEs; DAEr and DAEq4+, are trained on the input frames and
their corresponding dynamic image respectively. The same number of layers are used for both
DAEs, following Vu et al.|(2019) the encoder contains convolutional layers with stride = 2 and
kernel size = 5 x 5. This is followed with batch normalisation layers as well as leaky RelLU

activation functions. Similar to the encoder, the decoder follows the same architecture but
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the convolutional layers are replaced by deconvolutional layers. Both DAEs are trained using
Adagrad optimisation function, v = 1, learning rate = 0.1 and the networks are trained for 500
epochs. Each frame F}; and dynamic image d; is fed into its corresponding pre-trained DAE to
achieve the activations of each at every encoding layer. The activations are then normalised to
zero-mean and unit-variance and clipped to [-1,1] to compute F ) and d, “*) 25 the abstract
representation in the k' level of the input frame data and dynamic image data respectively.
k denotes a number between 0 < k& < N, (the number of hidden layers in the DAEs). For
a set of input frames, the abstract representation is noted as Dy = {Ft}i\gl where Ny is the
number of frames in the input set. Therefore, the previous step has calculated Dk = {Ft(k)}
and fof) = {d:(k)} for the frame data and dynamic image data respectively to be given to the
CGAN:Ss.

Similar to (Ravanbakhsh et al.| 2017) and (Vu et al.}|2019) two CGANs are trained on all levels
of representation k. The generator Gd* 7 is trained to generate the frame image F ) from the
dynamic image representation dt( and the corresponding discriminator is trained with input
Dc(,]f) and label Dgf). The second generator G&fld* is trained to generate the dynamic image

representation d:(k) from the frame image representation input Ft(k)

and its corresponding
discriminator is trained with input Dg‘;) and label Dgff). The training settings are the learning
rate = 0.0002, A = 100 and batch size = 1. After the CGANs have been trained the output is
N, number of Gd*  and G .4+ at all abstract level representations k that are used to detect

anomalies (test).

4.3.4.2 Testing

The testing stage of the method takes an input of image frames F; and calculate their
corresponding dynamic image representations d;.  The pre- trained DAEs; DAEF and
DAEq4+ are utilised to extract the high-level feature representations F ) and d ) from the
corresponding inputs F; and d;. The pre-trained CGANs take the previously computed
high-level representation as input for each representation level k to generate a frame image

(k)’ )

k) _ ng)—m (d:(k), z) and dynamic image representation a:( = g% 2). The value

F—>d* (
(k) (k) gx(k) ~x(k) .

of F/, F/, d,"” and d, " are set to O at locations where the dynamic image presents no

motion. This is based on the premise that an anomaly occurs in regions that contain motion,

this also helps with the anomaly detection speed.

Generation error maps are then calculated based on the difference between the generated

~ % ~*(k
features and the original features denoted as e% = Ft(k) — Ft(k) and eq+ ¢ = dt(k — dt( ). The
generation error maps extracted are normalised into [0, 1] for every channel as follows:
" N
eFt = [eth/ Fu] i1 (21)
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® [ Nge!
Cart — [ed*,t,j/md*d} i1 (22)

Ngﬂ) and Nélf) are the numbers of channels of the generation error maps and mp; =
maxt,nyegij (z,y) and mg-; = maxm,yefﬁ)’m (z,y) are the maximum errors in all locations
of the set of input frames for the j channel. A summation of the normalised generation
error maps is computed as follows, éik) = é(}fi + aé&@}t. Following (Ravanbakhsh et al.| [2017;
Ravanbakhsh et al.,|2019), we set a = 2 to control the effect of each type of feature. The
combined generation error maps for the set of input frames are noted as E®*) = {égk)} and
then consecutive frames are using a sliding frame window = 5 to smooth the generation error
maps. Determining an anomaly is based on a comparison between E*) and a predetermined
threshold 3, where if éﬁk)(my) > B3, (z,y) being the pixel location on the k' frames, then
the binary detection map Dt(k)(x,y) =1. If égk)(x,y) < [ then the binary detection map
ng)(x,y) = 0, with value of 1 indicating an anomalous pixel and value of 0 indicating a

normal pixel.

Finally, to apply multilevel anomaly detection the extracted detection maps are combined using
the algorithm by |Vu et al.| (2019). Combining detection maps from different levels supports and
enhances incorrect detections. The detection maps are combined to consolidate the detected

anomalous objects over different levels.

4.4 Conclusion

Generative Adversarial Networks (GANs) have shown strong promise in the field of crowd
behaviour anomaly detection. In comparison to other deep models, Conditional GANs (CGANs)
particularly have demonstrated effective capabilities detecting anomalies in crowd behaviour.
The image-to-image translation research by |Isola et al.| (2017) has been the base of multiple
architectures (Ravanbakhsh et al.| 2017), (Liu et al., |2018b), (Ravanbakhsh et al.| 2019)
and(Vu et al.} |2019) for crowd anomaly detection.

These methods have shown promising anomaly detection results compared to other
state-of-the-art crowd anomaly detection methods. Consequently, the basis of the proposed
crowd anomaly detection framework uses image-to-image translation using CGANs. The
novelty of the proposed framework is combing image-to-image translation using CGANs and
Dynamic Images as motion representation. The novel framework is introduced as one of the
main contributions of this thesis. As previously documented in Section dynamic image
representations have been used in the action recognition field and the experimental results
exhibit the benefits of their application. Therefore, the proposed method is expected to enhance

performance results (AUC and EER) compared to state-of-the-art methods for the detection
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and localisation of anomalies within crowds. The details of the training and testing process of
the proposed framework were documented in this chapter and the experimental results produced
from these applications are presented in Chapter@ The details of the high-density created,
Abnormal High-Density Crowd dataset Mahmoud and Arafal (2020)), are documented in the

next chapter.
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5 Abnormal High-Density Crowd Dataset

The availability of a benchmark datasets containing high-density crowd footage is very limited.
Datasets such as the Avenue (Lu et al.; 2013), UCSD (Chan et al.|2008) and UMN (University
of Minnesota) 2006) datasets are examples of this. Furthermore, a dataset of high-density crowd
footage that includes anomalous behaviours such as stampedes, overcrowding, violence or panic
is not available. Since available datasets are inadequate to provide these features, a new dataset
containing scenes which adheres to these constraints was created and published on Kaggle
(Mahmoud| |2019). This dataset is a compilation of public footage collected from various
online resources containing scenes of anomalous crowd behaviour. To practically evaluate
state-of-the-art crowd anomaly detection methods in a high-density crowd environment, the
methods discussed in Sectionwere tested on this new dataset and the results are presented
in Chapter|[6]

Prior to the creation of this dataset, simulation software/methods of high-density crowds were
used investigated (multiple software were used to simulate human shaped models as a part of
a crowd) to generate the dataset. State-of-the-art crowd and pedestrian simulation software
were chosen based on the quality of a sample simulation, user friendliness and pricing. Initial
investigation of the state-of-the-art software/methods to simulate highly dense crowds showed
promise, the human models were created and placed in an area as part of a crowd. The software
was used to simulate a high-density crowd exiting a room. The majority of the methods utilise
agent-based modelling techniques that produce videos of crowds walking, running, looking,
stopping, changing direction and avoiding collisions. However, these modelling techniques are
based on prior knowledge and do not incorporate crowd emotion features (Zhao et al.,|[2018).
Anomalies such as fights, violence, stampedes, riots and panicking behaviours require the
extraction and simulation of emotional features to be incorporated within the crowd modelling
techniques. These psychological features enable the crowd to perform reactive behaviour such
as frantic dispersion, pushing, hiding, fighting, etc (Dickinson et al.,|2019) and (Dupre and
Argyriou| [2019). For these reasons, the use of software to create and label an abnormal

high-density crowd dataset was ceased.

Due to the limitations of the state-of-the-art methods in crowd modelling for simulation, the
collection of real-world crowd footage containing anomalous events was favoured. The new
dataset is named “Abnormal High-Density Crowd Dataset” (AHDCrowd) (Mahmoud)|2019).
Details of the data collection process, privacy issues, pre-processing and annotations for this
dataset are documented below. A detailed description of the dataset including the current
dataset statistics are also presented. Lastly, the usage, evaluation protocols, challenges and

limitations are discussed.
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5.1 Data Collection

The collection process involved an internet search of keywords such as: “crowd fight”, “crowd
violence”, “crowd stampede”, “riots”, and “violent mobs”. For the purpose of this research,
these keywords were used to find footage of abnormal behaviour within high-density crowds.
More specifically, the focus of this research is the prompt detection of crowd abnormal
behaviour to avoid chaotic and possibly hazardous events. These keywords were used to find
events that have demonstrated crowd abnormalities which have led to disorderly behaviours.
A total of 13 video sequences from 4 events were collected based on the challenges and
limitations experienced while collecting these data. Some of these challenges are the scarcity of
high-density crowd footage and privacy issues, more challenges and limitations are described in
Section The videos vary in resolution, view angle and length, each of which is documented
below. All videos were downloaded from YouTube, privacy issues are discussed below, and the
veracity of the annotations has been established. All scenes contain high-density crowds in a
public outdoor environment. Sample images of each scene are illustrated for each event, the

anomalies are not acted out they are based on actual occurrences.

5.1.1 Privacy

The privacy of the individuals captured in the collected footage is addressed using the YouTube
privacy policy for identity protection (YouTube, 2020). Individual privacy is violated when
specific guidelines set by YouTube are breached. If an individual can be uniquely identified
from the footage through any of the below factors, then privacy has been violated (YouTube,
2020):

e Image or voice

Full name

Financial information

Contact information

e Other personally identifiable information

The collected footage adheres to these guidelines, moreover, the collected footage remains
available online indicating the footage has not been flagged or removed due to privacy
violations.

5.1.2 Pre-processing

After collecting the footage from YouTube some pre-processing was applied to structure the

videos in a suitable and user-friendly dataset. All footage is pre-processed using lossless
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techniques following the 4 steps below:

1. The exact moments of anomaly occurrences are determined (based on personal

observation) based on segment and frame levels.

2. Video footage is trimmed to focus on the occurrences of normal behaviour and anomalous

behaviour identified in the previous step.

3. Frames are extracted from the trimmed footage and divided into training (normal

behaviour) and testing (abnormal behaviour) sets.

4. Where necessary, the extracted frames from the footage are cropped to place focus on

the crowded scenes and less focus on the background.

(a) Frames extracted from some videos have been cropped to remove some of the

background scenes. A sample of this cropping is illustrated in Figure

(b) This is done to reduce excess or indirect computation time when utilised in the

application of processing methods.

(c) Cropping has been sufficiently applied to prevent bias training and reduce overhead.

5. Extracted footage frames are compressed to reduce storage.

AMER
IERICAN

Figure 29: Example of cropping applied to frames of specific videos (]MahmoudL |2019[).
Left: sample original frame, Right: sample cropped frame (zoomed in).

5.1.3 Annotation

While there are various automated dataset annotation tools for a computer vision task such as

object recognition, automated annotation tools for anomaly detection are not available. The
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annotations tools for object recognition have been trained with pre-defined feature detection
algorithms to identify, categorise, and annotate these objects. However, as previously discussed,
anomalies are not conformed to a set of features. They are more diverse and cannot be
easily defined. Hence, personal-observation (the author of this research) was used instead
to precisely detect and annotate the occurrences of an anomalous event down to the second
the event occurred. Two types of annotations are identified: Segment-level and Frame-level

annotations.

1. Segment-level annotations:
Annotations of the specific timing of when an anomalous event has occurred to when
it ended have been documented for each collected video. Annotations of this kind are
named segment-level annotations, where segments of the video (containing anomalies)
are annotated as anomalous, this has been the type of annotating applied to three of the
four anomalous events collected for this dataset. The fourth scene is annotated using

Frame-level annotations detailed below.

2. Frame-level annotations:
The second type of annotating has been applied to the Love Parade incident footage
(in Section below), this is a frame-level annotating method. The start and end of
the abnormal behaviour segments in the video are determined and annotated as such.
Specific frames that contain anomalous the events “Crowd Surge” or “Fight” are labelled,

and the specific location (within each frame) of these anomalies are also annotated.

The Labellmg (Tzutalin, [2017)) software was used to manually label objects (anomalies for the
purposes of this research) with a bounding box for each frame within a video. The Frame-level
annotations are saved as an XML or text files indicating the location and label for each event
which is either a “Crowd Surge” or a “Fight”. The file name of the produced annotation file
is identical to the file name of the corresponding frame. The XML file contains a set of details
about the labelled frames, as shown in Figure some of the prominent details include the
folder name, filename and path of the input frame, additionally, the width, height and depth
of the frame are also included. Finally, the name of the label (“Fight” or “Crowd Surge"),
and the location of the bounding box (x, y, height, width) surrounding the anomaly for the

corresponding frame are documented.

94



5.1 Data Collection 5 ABNORMAL HIGH-DENSITY CROWD DATASET

input
scene-00084.png
C:\OpenLabeling\main\input\scene-00084.png

Unknown

1280
720

0

Fight
Unspecified
0
0

999
571
1099
642

Figure 30: Sample XML labelling file of the 84" video frame of the Pride parade test
footage

The TXT format of the labelled files is designed to contain only the essential data about the
frames. Five values are documented for each frame, as shown in Figure[31] as follows.

e The first value is an integer representation of the label ( “Fight” = 0 and “Crowd Surge”
=1).

e The second and third value are the x and y locations of the anomalous bounding box

relative to the size of the frame.

e Finally, the fourth and fifth values are the height and width of the anomalous bounding

box relative to the size of the frame.
0 0.813671875 0.8395833333333333 0.06796875 0.09583333333333334

Figure 31: Sample TXT labelling file of the 90 video frame of the Pride parade test
footage

The annotations were determined and annotated using personal observation of when and where
an anomalous event has happened. The videos were methodically viewed to find the specific
timestamps at which an anomaly has started and ended. After the timestamps have been
determined, a specific start and end frame within that time-frame are selected as the start/end
of an anomaly on the frame-level. The extracted frames between the start and end of an

anomaly are placed in their corresponding folders (train or test).
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5.1.3.1 Veracity of annotations

To further confirm the veracity of the annotations noted for each video of the dataset, other
computing researchers were asked to determine and annotate the videos. Only two researchers
were available and they were recruited to confirm the occurrences (and in some cases the
location) of anomalies. The researchers were asked to specify a time (minute and second) for
when an anomaly (and in some cases the type) has occurred based on their personal observation.
This was done to prevent possible inaccuracies or biased annotations of the footage. Below is

a description of the tasks they were given.

e Document the specific start and end time for any anomalous occurrences in each video

of the four scenes in the dataset.

e Additionally, document the specific start and end time as well as the type of anomaly

(“Crowd Surge” or “Fight") for the third scene specifically (Love Parade).

To verify the consistency of the results produced by the researchers against the original
annotations, Start and End timestamps were compared and the annotations were validated
as true if both timestamps were similar for all researchers allowing an error margin of +/-
one second. After applying these constraints to the results from both researchers it has
been confirmed the originally extracted anomalous segments for each video from each scene is
correct. A confirmation of the locations and types of anomalous incidents in the third scene
were also validated to be in alignment with the suggested locations and types by the researchers.
This was validated by comparing the distance between the researchers suggested locations to
the originally noted locations; if the suggested locations were in the same region (with a margin
of error equivalent to +/- 1 cm within the localised frame) as the original location then it is

considered as true localisation.

5.1.4 Summary Description

The dataset consists of 4 scene incidents named: 1) Times Square, 2) Las Vegas, 3) Love
Parade and 4) Italy. These were the only anomalous videos available based on the data
collection process described in Section Each incident is detailed below.

1. Times Square: Times Square frantic dispersion from Three Angles were available, so
they were used as different scene The footage of the three angles is concatenated into
one video showing a quick dispersion of a highly dense crowd instigated by a motorcycle
backfire. The crowd thought they heard gunshots and started to panic. The footage is
divided into three viewpoints, where each viewpoint is divided into training (normal) and
testing (abnormal) frames. Video is 29.97 FPS.

Thttps:/ /www.youtube.com/watch?v=5g3XOuzFCSM
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()

View 1: Footage is shot from an angled view. Normal behaviour is shown at
00:00:00-00:00:12, while abnormal behaviour is shown at 00:00:12-00:00:47 of the
video. Abnormality begins at the top-right corner of the image. The dimensions
of the frames are 1280x720. Segment-level labelling: Train folder contains 379
“normal” frames and Test folder contains 1026 frames in total, where frames O -

100 are “normal” frames and frames 101 - 1026 are “abnormal” frames.

View 2: Footage is shot from a closeup almost eye-level shot. Normal behaviour is
shown at 00:00:48-00:00:52 and abnormal behaviour is shown at 00:00:53-00:01:32
of the video. Abnormality begins at the right side of the image. The dimensions
of the frames are 1280x720. Segment-level labelling: Train folder contains 150
“normal” frames and Test folder contains 1173 frames in total, where frames O -

30 are “normal” frames and frames 31 - 1173 are “abnormal” frames.

View 3: Footage is shot from another angled shot. Normal behaviour is shown at
00:01:33-00:01:39, and abnormal behaviour is shown at 00:01:39-00:02:18 of the
video. Abnormality begins at the mid-region (closer to the right side) of the image.
The dimensions of the frames cropped down to 580x720 to place more focus on
the crowd. Segment-level labelling: Train folder contains 184 “normal” frames and
Test folder contains 1151 frames in total, where frames 0 - 30 are “normal” frames

and frames 31 - 1151 are “abnormal” frames.

Sample frames are shown in Figure
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Train (Normal)

=

Test (Abnormal)
T TRE

View 1

View 2

View 3

Figure 32: Sample images from each view angle of the Times Square incident 1
2019).

2. Las Vegas: Las Vegas Mass Shooting CCTV Video from Mandalay Bay Hotel Rooﬂ The
footage shows rapid scattering within the crowd, people hiding, and people falling down.
The footage is divided into training (normal) and testing (abnormal) frames. Video is
15.17 FPS. Segment-level labelling: Train folder contains 4347 “normal” frames and
Test folders contain a total of 7244 frames in total, where frames 0 - 30 are “normal”

frames and frames 31 - 7244 are “abnormal” frames.

Zhttps://www.youtube.com/watch?v=9LHdda45k18
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(a) Train: Footage is shot from a wide-angled shot. Normal behaviour is present
between 00:11:17-00:16:05 in the original video. Dimensions are cropped to

992x468 to place more focus on the crowd.

(b) Test 1: Footage taken at the same angle as the training footage. Abnormal
behaviour is present between 00:16:06-00:17:17 in the original video. Dimensions

are cropped to 992x468 to place more focus on the crowd.

(c) Test 2. Footage taken at a closer angle. Abnormal behaviour is present between
00:17:23-00:18:23 in the original video. Dimensions of frames are 1280x720.

(d) Test 3: Footage taken at a very close angle and in greyscale format. Abnormal
behaviour is present between 00:19:08-00:21:12 in the original video. Dimensions
of frames are 1280x720.

(e) Test 4: Footage taken at a very close angle and in greyscale format. Abnormal
behaviour is present between 00:21:15-00:25:01 in the original video. Dimensions
of frames are 1280x720.

Sample frames are shown in Figure

Train

Test 2

Test 4

Figure 33: Sample images from each angle of the Las Vegas shooting incident (Mahmoud

B}
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3. Love Parade: Love Parade disaste The footage shows occurrences of over-crowding,
crowd surges and a fight in the footage of the 2010 Love Parade. The footage is divided
into training (normal) and testing (abnormal) frames. Video is 25 FPS. Dimensions of

frames are all 1280x720. All footage is shot at an angled viewpoint.

(a) Train 1: Normal behaviour is present between 00:10:43-00:10:47 in the original

video.

(b) Train 2: Normal behaviour is present between 00:11:04-00:11:07 in the original

video.

(c) Test: Abnormal behaviour is present between 00:10:48-00:11:03 in the original
video. Frame-level labelling for anomalies is available and saved in XML format.

The anomalies in this scene are annotated as either “Crowd Surge" of “Fight”.

Sample frames are shown in Figure

Train 1 Train 2

Test

Figure 34: Sample images from the Love Parade incident, the anomaly is located using a
red bounding box (Mahmoud, 2019).

4. Italy: Juventus fans panic and rapidly disperse after bomb a scareﬁﬂ The footage
only captures when the crowd has started to quickly disperse, and hence prevented the

extraction of training or “normal” data. The footage is divided into two viewpoints, each

“https://www.youtube.com/watch?v=QpzISdBE3dA&t=1s
“https://www.youtube.com/watch?v=IP9wACjt8MU
https://www.youtube.com/watch?v=yuqcNgcgzI A
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viewpoint contains only testing (abnormal) frames. Video is 25 FPS.

(a) View 1: footage is shot from a wide, close and eye-level angle. Abnormal behaviour
is present between 00:00:00-00:00:28 of the video. Abnormality begins at the right
side of the image. Dimensions of the frames are 1280x720. The test folder contains

702 frames in total, where frames 0 - 702 are “abnormal”.

(b) View 2: footage is shot from a wide-angle. Abnormal behaviour is present between
00:00:00-00:00:28 of the video. Abnormality begins at the mid-left side of the
image. Dimensions of the frames are 880x720. The test folder contains 702 frames

in total, where frames 0 - 702 are “abnormal”.

Sample frames are shown in Figure [35]

. . e . '
view 1 | Wiy bt R TR RS

View 2

Figure 35: Sample images from the two angles of the Italy bomb scare incident 1
2019).
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5.2 Dataset Description

An illustration of the Abnormal High-Density Crowd dataset structure is shown in Figure
The dataset is divided into several folders and files each of which is also divided into more

folders and files. A detailed description of the folders and files are noted below:

1. File: “Dataset Image.png”: a combination of sample images for each scene, this helps

clarify what the dataset footage contains without the need to download.

2. Folder: “Times Square”: this folder contains the Times Square incident footage divided

into three different views.

(a) File: "Footage.avi”: this video file is the captured footage of the entire incident

from the three angles consecutively.

(b) Folder: “View_1:" this folder includes the training and testing frames of the first

view, it is captured from a high angle view of the street.

i. Folder “Train": this folder contains 379 extracted frames of the captured

crowd. At this point, the crowd is in a “normal” state.

ii. Folder “Test”: this folder contains the remaining 1026 extracted frames for
this view of the incident. At this point, the crowd starts in a “normal” state
then (at frame ~= 100) beings dispersing erratically for the remaining frames,

which is considered as “abnormal’.

(c) Folder “View_2:" this folder includes the training and testing frames of the second

view of the incident, it is captured from a close eye-level angle view of the street.

i. Folder “Train": this folder contains 150 extracted frames of the captured

crowd. At this point, the crowd is in a “normal” state.

ii. Folder “Test”: this folder contains the remaining 1173 extracted frames for
this view of the incident. At this point, the crowd starts in a “normal” state
then (at frame ~= 30) beings dispersing erratically for the remaining frames,

which is considered as “abnormal”.

(d) Folder “View_3:" this folder includes the training and testing frames of the third
view of the incident, it is captured from a remote and high straight angle view of

the street.

i. Folder “Train”: this folder contains 184 extracted frames of the captured

crowd. At this point, the crowd is in a “normal” state.

ii. Folder “Test”: this folder contains the remaining 1151 extracted frames for

this view of the incident. At this point, the crowd starts in a “normal” state
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then (at frame ~= 30) beings dispersing erratically for the remaining frames,

which is considered as “abnormal”.

3. Folder “Las Vegas": this folder contains the Las Vegas incident footage divided into
a train folder and four test folders. When the incident occurred, CCTV operators
progressed to zoom in into the crowd, leading to four views that differ in the closeness

of the shot but captured from the same camera.

(a) Folder “Train": This folder contains the training footage of the incident in two

formats; video format and the corresponding extracted frames.

i. File “Footage.mp4”: this video file is the captured footage of the “normal”
incident and the extracted frames are below. The footage is captured from a

high angled view.

ii. Files: the remaining files are the 4347 extracted frames; the crowds are enjoying

the concert in a “normal” state.

(b) Folder “Test_1": This folder contains the first testing footage of the incident in two

formats; video format and the corresponding extracted frames.

i. File “Footage.mp4": this video file is the captured footage of the incident, the
video begins with the audience in “normal” state similar to the training data,
then when the gunshots were noticed the audience started to disperse quickly

towards the exits. This is considered as the “abnormal’ state.

ii. Files: the remaining files are the 1063 extracted frames, the crowds are enjoying
the concert until the “abnormal” state begins (at frame ~= 30). The view

angle of this test data is the same as the training data.

(c) Folder “Test 2": This folder contains the second testing footage of the incident in

two formats; video format and the corresponding extracted frames.

i. File "Footage.mp4”: this video is a continuation of the previous video after

the CCTV operator has zoomed in into the crowd.

ii. Files: the remaining files are the 920 extracted frames; all these frames are

“abnormal”.

(d) Folder “Test_3": This folder contains the third testing footage of the incident in

two formats; video format and the corresponding extracted frames.

i. File “Footage.mp4”: this video is a continuation of the previous video after the
CCTV operator has zoomed in further into the crowd and switched to grayscale

capturing.
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ii. Files: the remaining files are the 1854 extracted frames, all these frames are

“abnormal”.

(e) Folder “Test_4": This folder contains the fourth testing footage of the incident in

two formats; video format and the corresponding extracted frames.

i. File "Footage.mp4”: this video is a continuation of the previous video after
the CCTV operator has zoomed out from the crowd but continued to with

grayscale capturing.

ii. Files: the remaining files are the 3407 extracted frames; all these frames are

“abnormal”.

4. Folder “Love Parade”: this folder contains footage of the love parade incident where
instances of “Fight” and “Crowd Surge” occur. The footage is divided into two training
folders and one test folder. The training footage is captured before and after the

anomalous incidences.

(a) File “Footage.mp4”: this video file is the captured footage of the entire scene from
the beginning where the crowd was in a “normal” state then the “abnormal” state

occurs then the scene goes back to a “normal” state.

(b) Folder “Train_1": this folder contains 131 frames of a highly dense crowd gathered

in a public area; this is considered as the “normal” state of the crowd.

(c) Folder “Train_2": this folder contains 119 frames of the same crowd after the two

anomalous incidents have occurred and the crowd has returned to a “normal” state.

(d) Folder “Test”: this folder contains the “abnormal” state frames and their
corresponding frame-level labels, the labels are saved using two formats for user

convenience.
i. Folder “Labels”: this folder contains the labelling files for each extracted frame.

A. Files “XML labels”: the XML version of the labels contain a set of details
about the frames including the name of the label, the location of the

incident (bounding box) and more. A sample label of the XML format is
shown in Figure

B. Files “TXT labels”: the TXT version of the labels contain minimal details
about the frames, a numeric representation of the label, an (x, y) location
relative to the size of the frame and the height and width of the bounding
box (relative to the frame size). A sample label of TXT format is shown
in Figure
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ii. The remaining files are 361 extracted frames which contain anomalous events
such as “Fight” and “Crowd Surge”. The frames are labelled in the formats

previously discussed.

5. Folder “ltaly”: this folder contains footage of the ltaly incident where an audience crowd
heard a loud bang and dispersed hectically in one direction. There are two captured
views of the incident. The footage publicly available only captures when the crowd has
started to quickly disperse, and hence prevented the extraction of training or “normal”
data. However, the footage is usable on non-specific scene modelling methods that do

not require the training scene to conform to the testing scene.

(a) Folder “View_1": this folder contains the footage of the incident shot by a reporter
from an eye-level view of the crowd. The footage is also extracted into frames for
convenience. As previously mentioned, there is no training ( “normal”) data for this

SCene.

i. Folder “Test": this folder contains the video format of the incident where the

crowd disperses to the west side of the video and the extracted video frames.

A. File "Footage.mp4”: this video file is the captured footage of the entire

SCene.

B. Files: the remaining files are the 702 extracted frames; all these frames are

“"abnormal”.

(b) Folder “View_2": this folder contains the footage of the incident captured by
a CCTV camera from a high angled view of the crowd. The footage is also
extracted into frames for convenience. As previously mentioned, there is no training

(“normal™) data for this scene.

i. Folder “Test": this folder contains the video format of the incident where the

crowd disperses to the east side of the video and the extracted video frames.

A. File “Footage.mp4”: this video file is the captured footage of the entire

SCene.

B. Files: the remaining files are the 702 extracted frames; all these frames are

“abnormal”.

6. File “Read Me.txt": this file contains a summarised version of the aforementioned details
of the dataset. The content of this file is included in the next section (Section|5.1.4) as

well as more details and sample images for each scene.
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5.2.1 Dataset View/Usage Statistics

The following statistics present the activity of the dataset after it was created and published
on https://www.kaggle.com/ in December 2019. These statistics demonstrate the current
activity state of the dataset as of May 2021:

e Number of views: 3515
e Number of downloads: 166

Moreover, contact has been established with a computer vision researcher who has utilised
this dataset for object detection and tracking (pedestrians, cars, motorcycles, bicycles, etc.)
within multiple views of the same environment. The research utilising this dataset has yet to
be published.

5.3 Usage and Evaluation Protocols

There are a variety of applications in which this dataset can be utilised. The specific usage

and evaluation methods applicable to this dataset are documented below.

5.3.1 Usage

The uses of this novel high-density crowd dataset are mainly for research in the computer vision
field. The main use of this dataset is the detection of anomalous behaviour within a highly
crowded environment. Details of several fields that can utilise this dataset in experimentation

are noted below:

e Crowd density estimation: this dataset can be utilised to estimate the density of a
crowd, more high-density datasets are required in the crowd density estimation field.
The normal footage includes highly dense crowd walking around (at a normal pace), this
footage can be utilised in crowd density estimation architectures. However, additional
ground-truth data (estimated number of people in each frame of the crowd video) will
need to be generated to be able to evaluate crowd counting and density estimation

methods.

e Tracking and re-identification: as previously noted this dataset has been utilised
in tracking and re-identification of specific objects. There is a gap in the availability
of multi-view high-density crowd footage. This dataset adheres to both constraints,
qualifying it to be utilised in the tracking and re-identification field.  However,
ground-truth data of the trajectories of specific objects (individuals, cars, etc.) needs to

be generated to allow tracking and re-identification methods to be evaluated accurately.

e Crowd anomaly detection: as one of the main contributions of this research, the
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gap regarding datasets with combined features of high-density crowds, annotations and
occurrences of anomalous behaviour has been addressed. This dataset, at the time of
writing this thesis, is the only high-density crowd dataset containing annotated anomalous
behaviour. The field of crowd behaviour analysis and anomaly detection can utilise this
dataset as a benchmark dataset for the evaluation of their methods in a high-density

crowd environment.

5.3.2 Evaluation Protocols

The annotations documented for the anomalous occurrences in each video of this dataset
(details of the annotation process in documented Section enables researchers to evaluate
their methods using various evaluation metrics such as Accuracy, Recall, Precision, F1 Score,
Mean Square Error, ROC Curves, Equal Error Rate and Area under the ROC Curve (described

in Section .

As a preliminary evaluation of this dataset, the amount of training/testing frames in each
scene of the benchmark datasets in the crowd behaviour anomaly detection methods are
compared to the amount of training/testing frames for each scene in the dataset produced
by this research and the amounts are similar in range. Additionally, practical usage of this
dataset is documented in Chapter [6] to demonstrate the dataset is used to train and test
state-of-the-art low to medium-density crowd anomaly detection methods and evaluate their

performance on high-density crowds.

5.4 Challenges and Limitations

The challenges and limitation experienced throughout the creation of this abnormal high-density
crowd dataset are detailed below.

5.4.1 Challenges

Multiple challenges were faced when collecting footage to create the proposed dataset. Some

of these challenges are:
e Scarcity of highly dense crowd footage.

e Due to the sensitive nature of anomalous incidents (fights, stampedes, etc.) footage of

such incidents are not always publicly available.

e Captured footage is usually unstable (e.g. captured on a camera phone), generating

videos that are inadequate for training a model for anomaly detection.

e The above challenges also contributed to the limited variety of anomalous behaviour

types (panicked dispersion, fight and crowd surge) in the footage found.
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5.4.2 Limitations
There are four major limitations in this dataset that could be addressed in future research:

e There are unlimited types of anomalous behaviour in a crowd. However, footage
capturing these anomalies is either not public or non-existent. Limiting the diversification

of anomaly types.

e Due to the previous limitation, anomalous behaviour in this dataset, as well as other
benchmark datasets does not allow crowd behaviour anomaly detection methods to
definitively claim their method can detect any/all anomalous behaviour presented to

the model.

e The ground-truth data for crowd counting needs to be generated to allow the ideal testing

of crowd counting and density estimation methods.

e Generation of the ground-truth data for tracking throughout different views is required.

This will allow accurate testing by tracking and re-identification methods.

5.5 Conclusion

While reviewing methods for crowd analysis, the necessity for benchmark datasets became
apparent. Fields such as crowd counting, density estimation, tracking, person re-identification
and crowd anomaly detection all require benchmark datasets for their experimentation to
achieve consistency. Benchmark datasets such as UMN, Avenue and UCSD are consistently
used for anomaly detection within low to medium density crowds. Existing methods have not
been analysed through application to a high-density crowd due to the lack of availability of
an anomalous high-density crowd dataset until now. The AHDCrowd dataset produced in
this research fills this gap. This dataset was produced by collecting, processing and labelling
footage of environments containing highly dense crowds and occurrences of anomalies. The
veracity of the annotation processes was validated by several researchers in the computing
research field. The challenges and limitation of the dataset have also been noted to be
addressed in future research. Preliminary evaluation of the dataset through a comparison
of the amount of training/testing data against benchmark datasets suggests that the produced
dataset (Abnormal High-Density Crowd) can be used to test state-of-the-art crowd anomaly
detection methods, as well as the novel anomaly detection method proposed in this research.

The evaluation of this is discussed in Chapter@
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6 Experiments and Results

We carried out the following experiments to evaluate the contributions achieved in this
research. The first experiment includes the application and evaluation of state-of-the-art
crowd anomaly detection methods applied to the Abnormal High-Density crowd dataset -
AHDCrowd (Mahmoud and Arafa, [2020). Standard evaluation methods have been applied
to determine the performance of anomalous behaviour detection methods in a high-density
environment. The second crucial experiment is the application of the proposed novel crowd
anomaly detection method incorporating several motion representations such as Dynamic
Images with conditional generative adversarial networks (GANs). Extensive experiments were
applied on three benchmark datasets to validate the effectiveness and efficiency of the proposed
method in comparison to the state-of-the-art in anomaly detection. The last experiment
includes the performance evaluation of the proposed crowd anomaly detection method on

several scenes from the Abnormal High-Density Crowd - AHDCrowd dataset.

6.1 Abnormal High-Density Crowd Dataset

In this section, details and results of applying several abnormal crowd behaviour detection
methods to high-density crowd are documented. All experiments applied in this section were
implemented on Google Colab (Mahmoud, 2020).

6.1.1 Crowd anomaly detection methods

Current methods for crowd anomaly detection architectures have been chosen to train and test
using the AHDCrowd dataset. The methods documented below have all been trained and tested
on low to medium density crowd footage by their authors. However, as a contribution of this
research the AHDCrowd (Mahmoud and Arafa} |2020), containing occurrences of anomalous
behaviour within high-density crowd footage, is used to evaluate the performance of the
selected methods on high-density crowds. The methods being evaluated are Spatiotemporal
Autoencoder (Chong and Tay, 2017)), Future Frame Prediction (Liu et al.}|2018b), and Anomaly
Detection Using Multilevel Representations (Vu et al., 2019) the details are documented

below.

6.1.1.1 Abnormal Event Detection in Videos using Spatiotemporal
Autoencoder

Following the work presented by (Chong and Tay, 2017), detection of anomalies within a
crowd is achieved using Spatiotemporal Autoencoders. To test the AHDCrowd dataset,

the Spatiotemporal Autoencoders are applied using the settings and parameters provided
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in(Chong and Tay, [2017). These setting are applied to evaluate the performance of
Spatiotemporal Autoencoders on high-density crowds as opposed to low and medium-density
crowds. Initially, the input data (crowded scene) is pre-processed to be ready for the training

stage. Pre-processing has three stages:
e Resize extracted frames to a resolution of 227 x 227 for consistency.
e Frame pixels are all scaled between 0-1.

e Extracted frames are converted to greyscale and normalised to have mean and unit

variance values of zero.

e Extracted frames are split into temporal sequences of 10 frames using a sliding window

method with several skip strides.

e The size of the training data is increased in the temporal dimension by applying data

augmentation (Concatenating frames with stride-1, stride-2 and stride-3).

To build and train the convolutional long short term memory (LSTM) autoencoder network
Keras is used, Figure is an illustration of the architecture built. There are two parts
to the network, a spatial auto-encoder and a temporal encoder/decoder. They are used
to encode the spatial features of the input frames then it is fed as input to the temporal
encoder/decoder to encode the temporal features extracted. The temporal encoder/decoder
consists of a three-layer convolutional LSTM and the spatial encoder/decoder contain two

convolution and deconvolution layers successively.

Reconstruction of input video sequence | 10 x 277 x 277

f

Spatial { Deconvolution: 11x11, 1 filter, stride 4 | 10x1x227 x 277

Decoder L
Deconvolution: 5x5, 128 filters, stride 2 | 10 x 128 x 55 x 55

f

Temporal Decoder 10x 64 x26x26
Temporal Encoder 10x 64 x26x 26
Spatial Convolution: 5x5, 64 filters, stride 2 10x64x26x26
Encoder L)
Convolution: 11x11, 128 filters, stride 4 | 10 x 128 x 55 x 55
Input video sequence 10 x 277 x 277
Figure 37: Stacked convolutional autoencoders with spatial and temporal

encoder/decoder. Adapted from (Chong and Tay}|2017)
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An Adam optimiser is utilised and the learning rate for the network is set to 0.0001. The
batch size = 8 and the network was trained for 50 epochs. To test and evaluate the network,
a regularity score was calculated according to the equations noted in (Chong and Tay,|2017).
The reconstruction error of a pixel's intensity value | is calculated using L2 norm (square root
of the sum of squared vector values) for its corresponding x,y location in frame t as shown

below:

e(z,y,t) = [[I(z,y,t) — fu(l(z,y,1))]|2 (23)

fw is an annotation for the previously trained model. The reconstruction error value of the

whole frame is calculated by summing the reconstruction error of each pixel (e(x,y,t)):

e(t) = Y ela,y,1) (24)

(z,y)

Then the sequence reconstruction cost (annotated as src(t)) for 10 frames is calculated

using:

t+10
sre(t) =Y e(t') (25)
t'=t
Finally, the abnormality score, sa(t), is scaled between 0-1 using Equation [26] This is followed
by calculating the regularity score, sr(t), by subtracting the abnormality score from 1 and it is
calculated using Equation

sre(t) — sre(t)min

src(t) mag

Sa(t) = (26)

5:(8) = 1= sa(t) (27)

6.1.1.1.1 Evaluation/Results:

The Spatiotemporal Autoencoder model by |Chong and Tay| (2017) is used to evaluate the
AHDCrowd dataset produced in this research. The model was trained and tested on four
incidents. The first incident is modelled using the UCSD Ped-1 dataset (to demonstrate the
efficacy of this model), and the remaining three incidents are modelled using three scenes
from the AHDCrowd dataset. The details and results of each experiment are documented

below:
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1. UCSD Ped-1:
To demonstrate the ability of this method to detect an anomalous event in a low to
medium density crowd the model was trained on all the UCSD Ped-1 training sets and
tested on the 32" scene of the dataset. As illustrated in Figure the regularity scores
calculated on all testing frames are graphically plotted with the frame number plotted
against the X-axis and the regularity score plotted against the Y-axis. The decline in
regularity scores (Chong and Tay, [2017) indicates the occurrence of an anomaly, the red
circles bring attention to the abnormalities detected by the model. These detected
abnormalities are consistent with the ground-truth data where two anomalies occur
between frames 1-52 and 65-115, also shown in Figure Both frames in Figure
show different instances of bicycles entering the scene which is considered as an anomaly
in this dataset. Based on the plotting of the regularity scores a normality threshold of

0.875 can be suggested for this specific dataset to indicate the occurrence of an anomaly.

1.000 -
0.975
0.950 -
0.925
0.900 -

0.875 -

regularity score Sr(t)

0.850 -

0.825 1

0.800

T T T T

0 25 50 75 100 125 150 175
frame t

Figure 38: Regularity score (Sr(t)) and frame number (t) plotting results for the 32m
testing set in the UCSD Ped-1 dataset.
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Figure 39: The sample images of the ground truth frames where a bicycle is driven through
a walking path (anomaly) (Left: 27" frame, Right: 81° frame).

Train (Normal)

- -

View 1

.......

Figure 40: Sample images from each view angle of the Times Square incident 1
‘and Arafal 2020).

2. Abnormal High-Density Crowd (Times Square: View_1):
To analyse the ability of this method to detect anomalous events in a high-density crowd
the model was trained on AHDCrowd. More specifically, the first view of the Times
Square scene (sample frame shown in Figure, as illustrated in Figurethe regularity
scores are plotted against the frame number. The ground truth data from the dataset
account the start of an abnormality (people dispersing erratically) at frame 100 and the
end at frame 1026. The chosen normality threshold based on when the anomaly begins
(frame 100) is 0.900 (illustrated as a red line to divide normal and abnormal regularity
scores in Figure . The results produced from the trained model suggests that there
are occurrences where the frames return to a “Normal” state (higher than the specified
threshold) illustrated as red circles. However, according to the ground truth data after the
100" frame, the crowd is in a continuous state of “Abnormal”’. As shown in Figure
an approximation of the ground truth regularity score plotting, the frames after the 100"
frame should be plotted under the threshold line. The normality threshold chosen in this
case is 0.919 corresponding to when the ground truth anomaly has started (frame 100).

The results produced by this method when modelled on a highly dense crowd suggests
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that the transition from abnormality detection with low to medium-density crowds into
high-density crowds has weakened the performance. To further confirm if highly dense

crowds decrease performance two more scenes have been utilised for training and testing.

1.000
0.975 A

0.950

0.925 A [‘I\\
0.900
0

0.875

regularity score Sr(t)

0.850 -

0.825

200 400 600 800 1000
frame t

Figure 41: Regularity score plotting results modelled using|Chong and Tay| (]2017[) on the
AHDCrowd (Times Square, View_1) dataset.

1.000

0.975 1 Normal

0.950 A

0.925 A

0.900

0.875 A

regularity score Sr(t)

0.850 -

0.825

0 200 400 600 800 1000
frame t

Figure 42: Estimated ground truth plotting using of the AHDCrowd (Times Square,
View_1) dataset.

115



6.1 Abnormal High-Density Crowd Dataset 6 EXPERIMENTS AND RESULTS

Train (Normal) Test (Abnormal)

View 2

Figure 43: Sample images from each view angle of the Times Square incident 1
|and Arafal |2020[).

3. Abnormal High-Density Crowd (Times Square: View_2):
To continue the analysis of this method against high-density crowds another scene from
the produced dataset was used to train/test model. In this experiment, the second view
of the Times Square scene (sample frame shown in Figure is used for modelling.
The results produced by the method are plotted in Figure the regularity scores are
plotted against the frame number. The ground truth data from the dataset account
the start of an abnormality (people dispersing erratically) at frame 30 and the end at
frame 1173. The normality threshold, equivalent to 0.90, was determined based on the
start of the anomalous behaviour (frame 30) for this scene. The threshold is illustrated
as a red line to divide normal and abnormal regularity scores in Figure[44] The results
generated from the trained model shows occurrences where the regularity scores exceed
the specified threshold in the frame range 700 to 1173. This indicates a return to a
“Normal” state, illustrated as red circles. However, according to the ground truth data,
after the 30" frame, the crowd is in a continuous “Abnormal” state. As shown in
Figure an estimated plotting of the ground truth regularity scores, the frames after
the 30%" frame should be under the threshold line. The normality threshold in the case
of the ground truth data plotting is 0.90, this is computed based on the ground truth
of when an anomaly has begun (frame 30). The results produced by this method when
modelled on this scene demonstrates better results than the previous scene. The previous
experiment showed five peaks of normality that do not conform with the ground truth
data in the frame range of 200 to 1000. Whereas this experiment shows two major
instances of the regularity score increasing above the threshold line, in a frame range
of 700 to 1200, that do not conform with the ground truth data. The next experiment
utilises a scene where a fight takes place within a high-density crowd to evaluate if the

model can detect localised anomalies on a frame-level basis.
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Figure 44: Regularity score plotting results modelled using usinglChong and Tayl (|2017[)
on the AHDCrowd (Times Square, View_2) dataset.
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Figure 45: Estimated ground truth plotting of the AHDCrowd (Times Square, View_2)
dataset.
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Train 1 Train 2

Test

Figure 46: Sample images from the Love Parade incident, the anomaly is located using a
red bounding box (Mahmoud and Arafa} |2020).

4. Abnormal High-Density Crowd (Love Parade):
The last experiment applied using this method was modelled on the Love Parade incident
in the AHDCrowd dataset, the model was trained on Train_1 of the dataset (sample frame
shown in Figure . The plotted regularity score results are illustrated in Figure the
regularity scores are plotted against the frame number. The ground truth data from the
dataset account the start of an abnormality (a small group fighting) at frame 20 and
the end at frame 300, the remaining frames are considered as “Normal” since the fight
has ended. The normality threshold was determined to be 0.985 based on when the
anomalous behaviour has started (frame 20) in this scene. The threshold is illustrated as
a red line to divide normal and abnormal regularity scores in Figure The generated
results from the trained model indicate occurrences of anomalies where the regularity
scores exceed the chosen threshold in the frame range 250 to 300. These occurrences,
illustrated as red circles, do not conform with the ground truth data. The ground truth
data indicates that the anomaly begins at the 20" frame and ends at the 300" frame,
this is considered as the “Abnormal” state. As illustrated in Figure an estimation
of the ground truth regularity scores plotting, the frames after the 20"* frame should be
under the threshold line until the frame 300. The normality threshold, computed based
on the ground truth of when an anomaly has begun, is still 0.985. Results generated from
this method after being modelled on this scene demonstrated better results than both

previous scenes. This experiment demonstrates an improvement where only one major
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instance of the regularity score increasing above the threshold line and not conforming
to the ground truth. The frame range of 250 to 300 do not comply with the ground
truth data that the abnormality continues until the 300 frame.

1.000
0.995 A
0.990 A

0.985 . A

0.980 A

regularity score Sr(t)

0.975

0.970 A

0.965

0 50 100 150 200 250 300 350
frame t

Figure 47: Regularity score plotting results modelled using using|Ch0ng and Tay| (]2017[)
on the AHDCrowd (Love Parade) dataset.

1000
0.335 | Normal Normal
0.990 H
0.985
0.980 -

0.975

regularity score Sr(t)

0.970 A

0.965 A

0 50 100 150 200 250 300 350
frame t

Figure 48: Estimated ground truth plotting of the AHDCrowd (Love Parade) dataset.

To obtain a better understanding of what the previously noted results mean in comparison to
other methods, more experimentation has been applied. Another state-of-the-art method has
been chosen to be trained and tested using the AHDCrowd dataset created in this research.

The details of the method, the experiment and the generated results are discussed below.
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6.1.1.2 Future Frame Prediction for Anomaly Detection — A New Baseline

Documented in Sectionthe research presented by |Liu et al.|(2018b) was reviewed as one
of the state-of-the-art methods in crowd anomaly detection that utilised Generative Adversarial
Networks (GANs) as a part of their architecture. For this experiment, the architecture illustrated
in Figure was modelled on multiple scenes from the AHDCrowd dataset, the details of the

algorithm and produced results of this experiment are detailed below.

| ,| Optical | |
Flow Loss
»| Discriminator
Real or Fake
Generator Intensity Loss and
(U-Net) Gradient Loss

Figure 49: Future frame prediction for anomaly detection framework. Adapted from (Liu
et al., |2018b)

The main idea behind this method, which utilises Generative Adversarial Networks are better
(explained in Chapter , is to detect anomalous behaviour in an image frame of a crowd by
trying to predict said frame, if the frame is equivalent to the ground truth then no anomalies
are detected. Whereas, if the predicted frame is not equivalent (based on a predetermined
threshold) then an anomaly is detected. Following the work by Liu et al.| (2018b) the input
frames are given to a U-Net generator (G) (based on (Isola et al.,[2017)) illustrated in Figure
The input and output frames are the same resolution, and in comparison to autoencoders,
this structure produces images that are clearer. G is trained to produce images that the
discriminator D categorises as genuine, the adversarial training loss function used in training
G is denoted in Equation Mean Square Error loss function (Lyssg) is utilised and denoted
below in Equation Ground truth future frame prediction is denoted as I; 1 and the model

future frame prediction is denoted as ft+1.

A 1 A
LG, (1) =>" 5Lmse(D(1)ij,1) (28)
iJ
i,j represent the extracted spatial patches.

~ ~

Lysp(Y,Y) = (Y —Y) (29)
Y is given values in {0,1} and Y in €[0,1].
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Figure 50: U-Net architecture network for prediction. Adapted from (Liu et al.||2018b)

On the other hand, the discriminator (D) is trained to discriminate if the frame given from
G is fake or genuine. Based on (lsola et al.}|2017) the discriminator is a patch discriminator;
the scalar outputs from D are equivalent to an input frame patch. To compute the adversarial

training MSE loss of the discriminator the following equation is used:

) 1 1 )
Lo, (.1)=)Y" gLase(D()ig, 1) + > 5 Larse(D(1)ig,0) (30)
i,j 1,J

The method utilises four constraints when training: intensity and gradient constraints, motion
constraint and the adversarial training constraint (detailed above). The intensity constraint
assures all frame pixels are similar in the RGB space by minimising the L2 distance between
the predicted and ground truth frames, denoted as Iand I respectively, in the intensity space.

To compute the intensity loss the following equation is used:

2

A

Lig(I,I) = ||I =TI

2

The second constraint, gradient, is calculated using the gradient loss equation from:

Loa(I,T) =) HUm‘ = Lica sl = Ly = Lia ‘1 + H|fw‘ —Lijal = L — fz‘,j—1|H1 (32)
i

1, j represent the spatial index in a given frame.

The last constraint utilised in this method is the motion constraint, it is calculated using the
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temporal loss equation (Equation . The temporal loss is calculated based on the difference
between the calculated optical flow of a predicted frame and the ground truth optical flow. A

pre-trained CNN, Flownet (f), is used to estimate the optical flow of two frames.

Loy = Hf(ftﬂv]t) — f(L41, 1)

(33)

‘ 1

The generators (G) loss is calculated by combining all the constraints detailed above

using:

Le = NintLint (Tt Tivt) + AgaLga(Tist, Trvr) + AopLop + Aado LS5, (141 (34)

And to train the discriminator D, the following equation is used:

Lp = LDy, (Iiy1, Iia) (35)

The AHDCrowd dataset is tested using the Future Frame Prediction method settings and
parameters given in (Liu et al.,[2018b). These setting and parameters are applied to evaluate
the performance of Future Frame Prediction on high-density crowds as opposed to low and

medium-density crowds. The network is trained on the following specifications:
e The pixels of the input frames are normalised to [-1, 1].
e Input frames are resized to 256 x 256.
o Initially, ¢ is set to 4 and 5 random consecutive frames are used.
e Adam optimiser is utilised for parameter optimisation.

e Grayscale input videos use a learning rate of 0.0001 for the generator and 0.00001 for

the discriminator.

e Coloured input videos use a learning rate of 0.0002 for the generator and 0.00002 for the

discriminator.

e The standard values for some hyper-parameters are \;,; = 1.0, \jq = 1.0, \,, = 2.0 and
Aado = 0.05.

Finally, to detect anomalies in new data (testing) Peak Signal to Noise Ratio (PSNR) is

calculated using:

12
PSNR(I, 1) = 10logy, ~ []mef] — (36)
N z‘:o(]i - Ii)
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A high PSNR value for an input frame suggests the frame is normal. A regularity score(S(?))
for each frame can then be calculated by normalising the PSNR values of all the input frames
between [0, 1]. A set threshold for S(¢) determines if an input frame is normal or not. S(t) is

computed using:

S(t) = PSNR(I,, I,) — min,PSNR(I,, 1) (37)
maxz, PSNR(I,, I,) — min,PSNR(I,, I,)

6.1.1.2.1 Evaluation/Results:

Documented below are the results produced by training and testing the previously detailed
Future Frame Prediction method on four different scenes. The first scene used is from the
UCSD dataset (to demonstrate the efficacy of this model) and the remaining scenes are all

from the AHDCrowd dataset produced in this research.

1. UCSD Ped-2:

Initially, this method was trained on all 16 videos from the UCSD Ped-2 dataset to
show the method’s ability in the detection of anomalous events in a low to medium
density crowd. The method was trained and tested based on the previously detailed
configurations. Testing was applied to the 12 test videos of the dataset, the quantitative
evaluation metrics used to measure the performance of the method are Equal Error Rate
(EER), Area Under Curve (AUC) and Receiver Operating Characteristic (ROC) curve.
The values of each are noted below and shown in Figure [51]

e AUC = 0.9539455634972204
e EER = 0.11975308641975309
e ROC:
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Receiver Operating Characteristic (ROC) Curve
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Figure 51: Receiver Operating Characteristic (ROC) curve plotting on UCSD Ped-2
dataset.

2. Abnormal High-Density Crowd (Times Square: View_1):
To determine the abnormality detection performance of this method on a high-density
crowd, the AHDCrowd dataset was used. The training configuration of the model on
the Times Square: View_1 scene were 500 iterations on a batch size of 8. At the end of
training the discriminator model had a global loss = 0.244921 and the generator model
had a global loss = 0.092116766, an intensity loss = 0.0050, a gradient loss = 0.0706, an
adversarial loss = 0.0061, a Flownet loss = 0.0105 and a PSNR error = 29.164692. The
results noted below show a fairly acceptable AUC, EER and ROC (Figure [52), however
in comparison to the achieved results on a low to medium density dataset, UCSD Ped-2
(tested above), these results show a significant decline in the performance of the method.
To further analyse the anomaly detection capabilities of this method in a highly dense

crowd, two more scenes from the AHDCrowd dataset were tested.
e AUC = 0.8564948453608248
e EER = 0.19567567567567568
e ROC:
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Figure 52: Receiver Operating Characteristic (ROC) curve plotting on AHDCrowd (Times
Square: View_1) dataset using|Liu et al.| (2018b).

3. Abnormal High-Density Crowd (Times Square: View_2):

To further analyse the performance of the future frame prediction method in the

detection of anomalies within a high-density crowd this experiment utilises the AHDCrowd

(Times Square: View_2) scene for training and testing. Unlike the previous training

configurations, this experiment was applied for 800 iterations on a batch size of 4.
At the 800" iteration the discriminator model had a global loss = 0.213080 and the
generator model had a global loss = 0.1814959, an intensity loss = 0.0103, a gradient
loss = 0.1017, an adversarial loss = 0.0080, a Flownet loss = 0.0615 and a PSNR error
= 25.90276. The AUC EER and ROC (Figure results of this experimentation show

a significant improvement, to the previously documented results. The last experiment

is applied on a scene where a fight takes place within a high-density crowd, this will

determine if this method is able to detect localised anomalies on a frame-level basis.

e AUC = 0.9856989030217376

e EER = 0.0542432195975503

e ROC:
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Figure 53: Receiver Operating Characteristic (ROC) curve plotting on AHDCrowd(Times
Square: View_2) dataset using|Liu et al.| (2018b).

4. Abnormal High-Density Crowd (Love Parade):
The final experiment is applied to test the ability of this method in detecting localised
anomalous behaviour within a highly dense crowd. In this case, the anomaly is a fight
and the training configuration are the same as the last experiment (800 iterations with
batch size = 4). On the 800" iteration the discriminator model had a global loss or
0.246807and the generator model had a global loss = 0.29538602, an intensity loss =
0.0272, a gradient loss = 0.1825, an adversarial loss = 0.0062, a Flownet loss = 0.0795
and a PSNR error of 22.942118. As demonstrated below and in Figure the results on
this scene have significantly decreased in comparison to all of the previous experiments.
This is very likely due to the fact that the optical flow constraint of the method was
not able to detect a major difference between consecutive frames. The set weight of the
motion constraint (optical flow difference) has a significant impact on the outcome of

the detection.
e AUC = 0.5524118738404452
e EER = 0.4714285714285714

e ROC:
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Figure 54: Receiver Operating Characteristic (ROC) curve plotting on AHDCrowd(Love
Parade) dataset using |Liu et al.| (2018b).

6.1.1.3 Robust Anomaly Detection in Videos Using Multilevel
Representations

Following the Anomaly Detection Using Multilevel Representations method by |Vu et al.
(2019), anomalies within crowds are detected using multilevel representations as previously
reviewed in Sectionand further detailed in Section In this experiment, the method is
trained and tested on multiple scenes from the AHDCrowd dataset as well as the UCSD Ped-2
benchmark dataset. Details of the method, experimental setup and results are documented

below.

The architecture of this method is divided into two phases; training and detecting. The training

phase, following (Vu et al.| 2019) is applied by following these steps:

1. Input videos or data frames, Dy = {E}fvzfl with Ny as the extracted frames, the frames
resized into 256 x 256 and scaled between [ -1, 1J.

2. Optical flow difference, O;, is calculated for every two consecutive frames (F;, Fji1).
Optical flow is originally computed using |Brox et al.| (2004), but in this research is
computed using|Sun et al.|(2017) (further explained in Section|6.2).

3. DAEr and DAE, are denoising autoencoders trained on Dr and Do = {O;} respectively,
this is achieved by minimising the DAE Equation (detailed in Section .

4. Encoding is applied by utilising convolutional layers with stride = 2 and kernel size = 5

x 5 then batch normalisation layers and leaky RelLU activation functions.
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9.

10.

Decoding contains the same components as the encoding path but the convolutional

layers are changed to deconvolutional layers.

Adagrad optimiser is used and v = 1, the learning rate = 0.1. The network is trained

for 500 epochs.

. After DAEFr is trained every frame F; is given to the network to achieve activations at

every encoding layer.

. To compute Ff” (1 is the abstract representation level of the frame data), the activations

are normalised to zero-mean and unit variance and clipped to [-1,1].

The previous step is applied again to compute Ol@.

(2 3

Dg) = {FA(I)} and Dg) = {O(l)} are used to train the CGANs on the [ level.

Two conditional GANs (CGANs) are trained on every level of representations following the
steps by (Vu et al., [2019) and (Isola et al.,[2017):

1.

2.

The CGAN GY%_,, is used to generate the motion Ogl) from the frame Fi(l) while the

CGAN G ., is used to generate the frame from motion.

The network is set on a learning rate = 0.0002, A = 100 and batch size = 1.

Similar to the previous experiments, the Robust Anomaly Detection method is tested using the

AHDCrowd dataset. The same testing settings and parameters as (Vu et al |2019) are used

to evaluate the performance of the Robust Anomaly Detection method on high-density crowds

as opposed to low and medium-density crowds. The testing or detection phase is based on

single-level detection following these specifications:

1.

. A detection is made based on a set threshold 3, when e

The input frames, Fj, is used to compute the motion maps O; the DAEr and DAEy
utilise F; and O; to extract the high-level features Fi(l) and Ogl).

The trained CGANs are given the high-level feature on every representation level
to generate the motion and frame images 02@ = G%LO<FZ-U),Z) and Fi(l) =

c (05”, z)

Fi(l), oY Fi(l) and OAZ@ are set to zero in optical flow locations with a value of zero.

Generation maps are the calculated as e% = Fi(l) - FZ—(Z) and e(ol)’i = OZ@ - OAZ(” following
the calculation described in Section

. The total error maps, E®) = {égl)}, is then smoothed by averaging consecutive frames

on a sliding frame window = 5.

z(l)(l’,y) is bigger than [ the
U]

binary detection map D,”(z,y) = 1 to indicate and anomaly and Dgl)(x,y) =0 to
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indicate normalcy.

6.1.1.3.1 Evaluation/Results:

Similar to the previous experiments this method was tested on four scenes; the benchmark
dataset UCSD Ped-2 and three scenes from the Abnormal High-Density dataset. The scenes
are Times Square: View_1, Times Square: View_2 and Love Parade. Training, using|Vu et al.
(2019)), is based on the 32-16-8 network structure and applied for 500 iterations on each scene
from the dataset. [ is set to 0.8 and the method detects anomalies based on four different
configurations; using features at all levels, using low-level features and top-level features, using
only top-level features and using only low-level features. The configuration producing the
best detection results are noted for each scene from the dataset. The generated frame-level

detection results of training and testing this method on the various scenes are as follows.

1. UCSD Ped-2:
Initially, this method was trained on 100 frames from a training video (normal footage)
from the UCSD Ped-2 dataset to define normalcy. Additionally, this method is tested on
the testing video (abnormal footage) from the UCSD Ped-2 dataset of the same scene
to show the methods ability to detect anomalies in a low to medium density crowd.
The method was trained and tested based on the previously detailed configurations and
testing was applied to one of the test videos of the dataset. The quantitative evaluation
metrics used to measure the performance of the method are Equal Error Rate (EER),
Area Under Curve (AUC) and Receiver Operating Characteristic (ROC) curve. The best
detection results noted were achieved using low-level features only, noted below and in

Figure [55]
e AUC = 0.973125
e EER = 0.030000

e ROC:
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Figure 55: Receiver Operating Characteristic (ROC) curve plotting on UCSD Ped-2
dataset using|Vu et al.| (2019).

2. Abnormal High-Density Crowd (Times Square: View_1):

To establish the performance of this method in the detection of abnormalities in a
high-density crowd, the AHDCrowd dataset Times Square: View_1 was used. In training,
200 frames from the training segment of the dataset were used whereas in testing
150 frames were used. The 150 testing frames start with 50 frames of normal crowd
behaviour and the remaining 100 frames contain anomalous behaviour. In comparison to
the achieved results on a low to medium density dataset, UCSD Ped-2 (tested above),
the testing results on this dataset presents a performance decline. The best-achieved
detection results were produced using features at top-level, and AUC, EER and ROC
(Figure are noted below.

e AUC = 0.574200
e EER = 0.286667
e ROC:
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Figure 56: Receiver Operating Characteristic (ROC) curve plotting on AHDCrowd(Times
Square: View_1) dataset using|Vu et al.|(2019).

To continue the analysis of the capabilities of this method to detect anomalies in a

high-density environment two more scenes from the AHDCrowd dataset were used:

3. Abnormal High-Density Crowd (Times Square: View_2):
As a continuation of the performance analysis of this method in a high-density crowd, this
experiment utilises the AHDCrowd (Times Square: View_2) scene for training and testing.
Unlike the previous experiment, 100 frames from the training and testing segments of
the dataset were used and the abnormalities are present in the testing frames 30 to 100.
The best detection results were produced using features at low-level, AUC, EER and
ROC (Figure results of this experimentation display significant higher AUC and EER
results in comparison to the previous experiment. The last experiment is applied on a
scene where a fight takes place within a high-density crowd, this will determine if this

method is able to detect localised anomalies on a frame-level basis.
e AUC = 0.660281
o EER = 0.345455

e ROC:
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Figure 57: Receiver Operating Characteristic (ROC) curve plotting on AHDCrowd (Times
Square: View_2) dataset using|Vu et al.|(2019).

4. Abnormal High-Density Crowd (Love Parade):

The concluding experiment is applied to test localised anomaly detection capabilities of
this method within a high-density environment. The localised anomaly in this instance
is a fight within the crowd, and the training configurations are the same as the last
experiment with 100 frames for both training and testing. The fight is shown in the
testing frames 20 to 100 and the best results are produced using features at top-level.
As noted below, the AUC, EER and ROC (Figure experimental results on this dataset
have significantly increased in comparison to all of the previous experiments.

e AUC = 0.880856
e EER = 0.163636
¢ ROC:
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Figure 58: Receiver Operating Characteristic (ROC) curve plotting on AHDCrowd (Love
Parade) dataset using |Vu et al.| (2019).

With the exception of the results produced from the (Liu et al.| |2018b) method on the
AHDCrowd (Times Square: View_2), the testing the methods by (Chong and Tay, 2017;|Liu
et al.;|2018b| Vu et al.}|2019) on this dataset produced performance results that are significantly
lower than the results modelled on a low to medium crowd dataset (shown in Table . This
demonstrates the limitations of these methods in transitioning from low to medium-density

crowd anomaly detection into high-density crowd anomaly detection.

6.2 Optical Flow

Two optical flow estimation methods were applied in this research; Brox (Brox et al.||2004) and
FlowNet (Sun et al.}|2017)) optical flow. The former method is the standard approach utilised in
anomaly detection methods incorporating CGANs. The latter is a novel approach to calculate
optical flow difference and is utilised as a substitute for the Brox method for the purpose
of evaluating its effect on the performance of anomaly detection. Both methods have been
applied on multiple crowd anomaly datasets; low to medium density crowds and high-density
crowds. Finally, dynamic scenes are then evaluated. The qualitative results produced from
each method is shown in each section and combined for easier viewing in Figures [67] and
when applied on benchmark and the AHDCrowd datasets respectively.
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6.2.1 Brox Optical Flow

The Brox optical flow method (Brox et al.;|2004) is used to compute the temporal development
between two consecutive frames as previously discussed in Section This method was
applied to sample frames from the benchmark datasets UCSD Ped-1, UCSD Ped-2 and Avenue
to illustrate the generated optical flow difference. Additionally, this method was applied to
three scenes from the AHDCrowd dataset (Mahmoud and Arafa, |2020). Illustrations of the
optical flow difference computed for the scenes in this dataset are shown in Figure and

Figure .

UCSDped1

UCSDped2

Avenue

Figure 59: Three sample images from different benchmark datasets: each sample consists
of two consecutive frames (first and second column). The third column is the result of the
optical flow difference.
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Love
Parade

Figure 60: Three sample images from different scenes in the AHDCrowd dataset. Each
sample consists of two consecutive frames (first and second column) and the third column
is the result of the optical flow difference.

6.2.2 FlowNet Optical Flow

A more novel approach, FlowNet (Sun et al.||2017)), for the calculation of optical flow difference

was investigated. FlowNet is used to evaluate the performance difference between itself and

Brox optical flow in conjunction with the proposed anomaly detection framework.

FlowNet (Sun et al.,[2017), described in Section generates optical flow estimation results

with high accuracy and low running time. However, the method has difficulty predicting

the optical flow difference between two consecutive frames when the magnitude between the
two frames is large. The magnitude grows larger when objects are suddenly much farther
than expected or when objects unexpectedly appear or vanish from frames. This method
was applied to sample frames from the benchmark datasets UCSD Ped-1, UCSD Ped-2 and
Avenue to illustrate the generated optical flow difference. The method was also applied to
three scenes from the AHDCrowd dataset (Mahmoud and Arafa) 2020), the results for are
shown in Figure[6I]and Figure [62]
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UCSDped1

UCSDped2

Avenue

Figure 61: Three sample images from different benchmark datasets: each sample consists
of two consecutive frames (first and second column). The third column is the result of the
optical flow difference.

Love
Parade

Figure 62: Three sample images from different scenes in the AHDCrowd dataset. Each
sample consists of two consecutive frames (first and second column) and the third column
is the result of the optical flow difference.
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A limitation to using optical flow estimation methods is the methods can only extract the
temporal development features between two consecutive frames for a set of frames. Better

performance results can be achieved if temporal information over time (more than two frames)

is extracted. Dynamic Images (Bilen et al., |2016) applies this theory. Better performance

results have been substantiated in the field of action recognition, as previously noted in
Section using Dynamic Images. Implementation of Dynamic Images on different crowd

anomaly detection methods is documented below.

6.2.3 Dynamic Images

The framework proposed in this research incorporates Dynamic Images (Bilen et al., [2016))

instead of the standard optical flow difference. While optical flow difference estimates the
temporal difference between two consecutive frames, dynamic images (previously discussed in
Section incorporate the temporal changes throughout a set of consecutive images of size
t represented as one image. The method was applied to sample frames from the benchmark
datasets UCSD Ped-1, UCSD Ped-2 and Avenue to illustrate the dynamic image representation
output with t = 50. The method was also applied to three scenes from the AHDCrowd dataset
(Mahmoud and Arafa) 2020)), the results for are shown in Figuresand

UCSDped1

UCSDped?2

Avenue

Figure 63: Three sample images from different benchmark datasets: each sample consists
of frames at time ¢ and another frame at time ¢ 4 50 (first and second column). The third
column is the result of the dynamic image representation.
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Times
Square:
View_2

Love
Parade

Figure 64: Three sample images from different scenes in the AHDCrowd dataset. Each
sample consists of frames at time ¢ and another frame at time ¢ + 50 (first and second
column) and the third column is the result of the dynamic image representation.

6.2.4 Dynamic Optical Flow

In addition to the previously suggested temporal development methods utilised as a replacement
to the standard Brox optical flow, dynamic optical flow extraction was also considered. This
method combines the two temporal development approaches; optical flow and dynamic images.
As previously shown in Section dynamic optical flow achieved better performance results
compared to optical flow and dynamic images in the field of action recognition. Similar to the
previous experiments, this method was applied to sample frames from the benchmark datasets
UCSD Ped-1, UCSD Ped-2 and Avenue to illustrate the dynamic optical flow representation
with ¢t = 10. The method was also applied to three scenes from the AHDCrowd dataset
(]Mahmoud and Arafal |2020[), the results for are shown in Figuresand
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UCSDped1

UCSDped?2

Avenue

Figure 65: Three sample images from different benchmark datasets: each sample consists
of frames at time ¢ and another frame at time ¢ + 10 (first and second column). The
third column is the result of the dynamic optical flow (Brox) image representation and the

fourth column is the result of the dynamic optical flow (FlowNet) image representation.

»

Figure 66: Three sample images from different scenes in the AHDCrowd dataset. Each
sample consists of a frame at time ¢ and another frame at time ¢ 4+ 10 (first and second
column) and the third column is the result of the dynamic optical flow (Brox) image
representation. The fourth column is the result of the dynamic optical flow (FlowNet)
image representation.

Love
Parade

The results produced from the application of FlowNet optical flow, dynamic images and dynamic
optical flow on benchmark datasets as well as scenes from the AHDCrowd dataset will be used

for the next set of crowd anomaly detection experiments using the proposed framework in
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Section Below are the combined images of the qualitative results produced from the
experiments applied in the section above for easier viewing. Figures andshow the results
when applied on benchmark and the AHDCrowd datasets respectively.
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6.3 Crowd Anomaly Detection

In this section, the proposed framework for crowd anomaly detection is evaluated and compared
to state-of-the-art methods using benchmark as well as the AHDCrowd datasets. The
benchmark datasets used are UCSD Ped-1 (Chan et al., |2008), UCSD Ped-2 (Chan et al.,
2008) and the Avenue dataset (Lu et al.| [2013). These benchmark datasets are the most
commonly used datasets by researchers in the field of crowd anomaly detection. Training and
testing follow the experimental setup presented in Section and the results are produced
using the anomaly detection criteria: frame-level, pixel-level and dual-pixel level detection
(further explained in Section when feasible. The experimental settings are highlighted

below and the obtained results of each experiment are noted.

6.3.1 Experimental settings

The applied experiments evaluate the effectiveness of utilising dynamic image representation
for anomaly detection. In all the experiments noted below, two separate 3-layer DAEs, with a
number of filters 32, 16 and 8 for each layer, are trained with a stride of 2 and 3 = 0.8 for 500
epochs. Additionally, the CGANs are trained for 10 epochs on a stochastic gradient descent
with momentum 0.5 and the batch size is set to 1. All the training and testing frames are resized
to 256 x 256. Each experiment utilises the input frames as well as their corresponding motion
representation (optical flow or dynamic images). The motion representation used in the first
experiment (Oursp;) is the dynamic image representation of the original frames. The second
experiment (Oursgy,,net) uses Flownet (Sun et al.|[2017) as the motion representation. Finally,
the last two experiments use dynamic optical flow as the motion representation (OursDOF(Bmx)
and Ourspop(Fiowner))- The dynamic image representation is extracted using the pre-computed
optical flow difference (Brox optical flow and Flownet) of the input data. A sample visualisation
of the framework tested on the UCSDped2 dataset is shown in Figure The results are
indicated using the evaluation metrics Area Under Curve (AUC), Equal Error Rate (EER) and
the corresponding Receiver Operating Characteristic (ROC) is illustrated (further details of the
evaluation metrics are noted in Section . The results of the four experiments as well as the
state-of-the-art methods on the UCSD and Avenue datasets are shown in Tables[11] and

respectively.

Motion Final Map (Colour Final Map (Grayscale

. Groundtruth
Representation Image) Image)

Input Frame

Figure 69: Sample visualisations of framework test experiment on UCSDped?2.
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Table 12: Comparison with the state-of-the-art on the Avenue dataset.

Frame Level
Method AUC (1) | EER ({)

3. Detection at 150fps 80.5 -
5. ConvAE 70.2 25.1
8. ConvLSTM 80.3 20.7
9. AnoPred 84.9 -
11. MLAD 71.54 36.38
13. Gaussian Mixture 83.4 22.7
Ourspy 59.00 33.00
OursFlowNet 85.65 13.64
OU.I‘SDOF(B,«OQC) 81.37 7.00
OurSDOF(FlowNet) 87.38 17.00
15. AEP 90.2 10.07

6.3.2 Anomaly detection using Dynamic Images

As previously illustrated in Section this experiment utilises the extraction of dynamic
images from the input data. The extracted dynamic images are used as the motion
representations given to the proposed crowd anomaly detection framework. Figure shows
sample images from the Avenue, UCSD Ped-1 and UCSD Ped-2 dataset produced by the
DAEs. The first column illustrates a sample image corrupted with noise and its corresponding
reconstructed version. The second column illustrates the dynamic image corresponding to the

sample image also corrupted with noise and its reconstructed version.
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Input Frames Dynamic Image Representation

Avenue

UCSDped1

UCSDped?2

Figure 70: DAE reconstruction sample images of input frames (left) and dynamic image
representation (right) from Avenue, UCSD Ped-1 and UCSD Ped-2 datasets.

The results of training and testing the proposed network with dynamic images on the Avenue,
UCSD Ped-1 and UCSD Ped-2 datasets are illustrated in Figures[71}[72]and[73|respectively. The
results are also noted in Tablesandindicated as (Ourspy). In addition to the noted results,
the results of this experiment using dual-pixel detection are AUC results of 1.9% (Avenue),
0% (UCSD Ped-1) and 2.0% (UCSD Ped-2). These results indicate a significant decline in
performance in comparison to the state-of-the-art. The ability to reconstruct images from
their corresponding dynamic image representations does not succeed. The reconstructed data
shows instances of anomalies that do not coincide with the ground-truth data. Additionally,
the locations of the detected anomalies are not accurately detected which corresponds to the

results achieved from pixel-level and dual-pixel level detection.

Image-to-image translation (lsola et al.|[2017) using CGANs demonstrate the ability to translate

edge maps or label maps to synthesised output images and the state-of-the-art crowd anomaly
detection methods using CGANs (Ravanbakhsh et al.| [2017} |[Ravanbakhsh et al.| [2019]
2019) utilise Brox optical flow as the motion representation to be translated into an
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output image.
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Figure 71: Oursp;: frame-level and pixel-level ROC curves on Avenue dataset.
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Figure 72: Oursp;: frame-level and pixel-level ROC curves on UCSD Ped-1 dataset.
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Figure 73: Oursp;: frame-level and pixel-level ROC curves on UCSD Ped-2 dataset.

The next experiment utilises FlowNet, a novel method to compute optical flow difference, as

the motion representation for the proposed framework.

6.3.3 Anomaly detection using FlowNet Optical Flow

State-of-the-art crowd anomaly detection methods using GANs have utilised Brox optical flow
Brox et al. (2004)) to extract motion representations. However, this experiment makes use
of a more novel method for optical flow computation. As illustrated in Section[6.2] FlowNet
optical flow is used to calculate the temporal development between two consecutive frames
for the input data. Similar to the previous experiment, the same benchmark datasets are
used to evaluate the performance of utilising FlowNet in the proposed framework. Figure
shows sample images from the Avenue, UCSD Ped-1 and UCSD Ped-2 dataset produced by
the trained DAEs. The first column illustrates a sample image corrupted with noise and its
corresponding reconstructed version. The second column illustrates the FlowNet optical flow
difference corresponding to the sample image also corrupted with noise and its reconstructed

version.
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Input Frames FlowNet Representation

Avenue

UCSDped1

UCSDped2

Figure 74: DAE reconstruction sample images of input frames (left) and FlowNet
representation (right) from Avenue, UCSD Ped-1 and UCSD Ped-2 datasets.

AUC, EER and ROC results produced by training and testing the proposed framework on the
benchmark datasets Avenue, UCSD Ped-1 and UCSD Ped-2 are shown in Figures
and respectively. The results are also shown in Tables and and indicated as
(Oursgiownet). The dual-pixel detection results of this experiment are as follows 60.61% on
UCSD Ped-1 and 96.37% on UCSD Ped-2. Dual-pixel detection has not been frequently
applied by previous researchers but the research by Vu et al.| (2019) have documented their
results as follows: 60.79% on UCSD Ped-1 and 93.99% on UCSD Ped-2. In comparison to
their method, this experiment has demonstrated a 2.38% improvement on the UCSD Ped-2
dataset and comparable results on UCSD Ped-1. Additionally, as shown in Tablesand

this experiment shows a 0.9% AUC and 1.68% improvement in frame-level detection on the

UCSD Ped-2 dataset in comparison to the best-achieved results by state-of-the-art. In addition
to these improvements, pixel-level detection AUC and EER results show a 1.93% and 1.58%
improvement on the UCSD Ped-2 dataset. However, the frame-level detection results on the

UCSD Ped-1 dataset show lower performance in comparison to the other methods. This is

148



6.3 Crowd Anomaly Detection 6 EXPERIMENTS AND RESULTS

due to the ground-truth data of the UCSD Ped-1 dataset being mislabelled as discovered

by

Vu et al| (2019). The pixel-level detection results from this experiment on the UCSD

Ped-1 dataset are comparable to other methods demonstrating the effectiveness of anomaly

localisation. Frame-level detection on the Avenue dataset has also displayed effective results
with at least 0.75% AUC and 7.06% EER improvement than other methods.
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Figure 75: Oursgjoune: frame-level and pixel-level ROC curves on Avenue dataset.
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Figure 76: Ourspiowner: frame-level and pixel-level ROC curves on UCSD Ped-1 dataset.
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Figure 77: Oursgiownes: frame-level and pixel-level ROC curves on UCSD Ped-2 dataset.

The main contribution of this research is utilising Dynamic Image (Bilen et al.;|2016) to extract
temporal development from a set of input images represented as one motion representative
image. The dynamic image motion representation is used as a substitute for optical flow
difference as motion representation. However, as shown by the results from the first experiment
(Section , the dynamic image representation of the raw input frames do not enhance the
detection results of the framework. Consequently, dynamic optical flow extraction is utilised in

the next experiments.

6.3.4 Anomaly detection using Dynamic Optical Flow

The following experiments use dynamic optical flow as motion representations, dynamic image
extraction is applied to the optical flow representation of the raw input data instead of the raw
data itself. Dynamic optical flow has shown better results than dynamic images in the field of
action recognition as shown in Section Therefore, for the following experiments dynamic
optical flow is utilised as follows. The first experiment (Section extracts dynamic
images from the optical flow difference computed using Brox (Brox et al., [2004) as the motion
representation for the proposed framework. Whereas the second experiment (Section
extracts dynamic images from the optical flow difference computed using FlowNet (Sun et al |

2017) as the motion representation in the anomaly detection method proposed.

6.3.4.1 Dynamic Brox Optical Flow

In this experiment, a dynamic image representation of the optical flow difference computed
using Brox (Brox et al., |2004) is used as the motion representation data for the proposed
crowd anomaly detection method. An illustration of the dynamic optical flow representation of

sample images taken from benchmark datasets is shown in Section[6.2.4] The same benchmark
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datasets used in the previous experiment; UCSD Ped-1, UCSD Ped-2 and Avenue are used to
evaluate the proposed framework. Sample images from these datasets and their corresponding
reconstructed version are illustrated in Figure The first column displays the corrupted
sample image and the reconstructed version produced by the DAE. The second column shows

the corrupted dynamic optical flow (Brox) and the version reconstructed by the DAE.

Input Frames Dynamic Optical FI.ow (Brox)
Representation
Avenue
UCSDped1
UCSDped2

Figure 78: DAE reconstruction sample images of input frames (left) and dynamic optical
flow (Brox) image representation (right) from Avenue, UCSD Ped-1 and UCSD Ped-2

datasets.

The detection results produced by utilising dynamic optical flow (Brox) as the motion
representation for the proposed framework are shown in Figures [79} [80]and [81] for the Avenue,
UCSD Ped-1 and UCSD Ped-2 respectively. Frame-level and pixel-level detection results,
indicated as (Ourspor(sros)), are also documented in Tablesand Although the results do
not show an improvement in performance in comparison to the other anomaly detection method
documented applied to UCSD Ped-1 and UCSD Ped-2, the results are competitive. However,
the application of this method to the Avenue dataset shows a 13.70% EER improvement and

AUC results that are comparable to the other methods. It is noted that the frame-level detection
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results variance between this experiment and other methods is bigger than the variance in
pixel-level detection. This indicates the ability of this experiment to detect anomalies on

pixel-level surpasses its ability to detect anomalies on frame-level.
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Figure 79: Ourspor(sror): frame-level and pixel-level ROC curves on Avenue dataset.
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Figure 80: Ourspor(proz): frame-level and pixel-level ROC curves on UCSD Ped-1 dataset.
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Figure 81: Ourspop(prez): frame-level and pixel-level ROC curves on UCSD Ped-2 dataset.

The last experiment is applied by extracting the dynamic image representations of the optical
flow difference computed using FlowNet. As demonstrated in the second experiment, the use
of FlowNet for optical flow computation has enhanced the ability of the proposed framework
in the detection of anomalies on frame-level, pixel-level and dual-pixel level. Therefore, the
next experiment uses dynamic optical flow (FlowNet) as the motion representation given to

the proposed anomaly detection method.

6.3.4.2 Dynamic FlowNet Optical Flow

In this experiment, a dynamic image representation of the optical flow difference computed
using FlowNet (Sun et al., [2017) is used as the motion representation data given to the
proposed crowd anomaly detection framework. The dynamic optical flow representations of
sample images taken from benchmark datasets are illustrated in Section Similar to the
previous experiments, training and testing were applied on the UCSD Ped-1, UCSD Ped-2
and Avenue datasets. Reconstruction samples produced from the trained DAEs are shown
in Figure the first column displays the sample image (corrupted with noise) and the
corresponding reconstructed version. The second column shows the dynamic optical flow

(FlowNet) corrupted with noise and the reconstructed version.
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ifpUt Framies Dynamic Optical Flow
) (FlowNet) Representation
Avenue
UCSDpedl1
UCSDped2

Figure 82: DAE reconstruction sample images of input frames (left) and dynamic optical
flow (FlowNet) image representation (right) from Avenue, UCSD Ped-1 and UCSD Ped-2
datasets.

Detection results given from combining dynamic optical flow (FlowNet) with the proposed
anomaly detection framework are shown in Figures and [85] for the Avenue, UCSD
Ped-1 and UCSD Ped-2 respectively. The results, indicated as (Ourspop(riowner)), are also
documented in Tablesand In comparison to the state-of-the-art, the frame-level results
on UCSD Ped-1 are lower, however, as previously noted this is likely caused by the mislabelling
of the ground-truth data. Nevertheless, the pixel-level detection results on UCSD Ped-1 are
comparable to the other methods. Additionally, the AUC and EER frame-level detection results
on UCSD Ped-2 shown an improvement of 1.32% and 0.68% in comparison to other methods.
The pixel-level results on UCSD Ped-2 show a decline in performance, this indicates the
ineffectiveness of this experiment to accurately localise anomalies. On the other hand, the
frame-level results on the Avenue dataset show a 2.48% and 3.7% improvement in AUC and

EER respectively.
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Figure 84: Ourspop(riowner): frame-level and pixel-level ROC curves on UCSD Ped-1

dataset.
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Figure 85: Oursporp(riowner): frame-level and pixel-level ROC curves on UCSD Ped-2
dataset.

Below are ROC curves of each motion representation (Ourspys, Ourspiounet, OUrspor(Bros),

OursDOF(FlowNet)) combined in a single image for easier viewing. Figures

are the frame-level and pixel-level ROC curves applied on the Avenue, UCSD Ped-1, and UCSD
Ped-2 datasets respectively.
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6.4 High-Density Crowd Anomaly Detection

In this section, the proposed framework for crowd anomaly detection is evaluated against
the AHDCrowd dataset (described in Chapter . Three scenes from the dataset are used for
experimentation; Times Square: View_1, Times Square: View_2 and Love Parade. Training and
testing follow the experimental setup documented in Section and the results are produced
using the anomaly detection criteria; frame-level (further explained in Section [3.3). The
experimental settings applied are similar to the experimental setting described in Section m
The three experiments described below utilise input frames as well as their corresponding
motion representation (optical flow or dynamic images). Four different motion representation
are utilised for each experiment; dynamic image representation, Flownet optical flow (Sun
et al, 2017), dynamic optical flow representations using Brox optical flow (Brox et al., 2004)
and dynamic optical flow representations (using Flownet optical flow). The four motion
representations are indicated as Oursp;, Ourspipwnetr, Ourspor(Broz) and Ourspor(FiowNet)
respectively. The results are produced using the evaluation metrics Area Under Curve (AUC),
Equal Error Rate (EER) and the corresponding Receiver Operating Characteristic (ROC) is
illustrated (further details of the evaluation metrics are noted in Section [3.5). The results of
the experiments are shown in TabIes the best achieved results are indicated using bold
lettering.

Table 13: Frame-level detection result using the proposed framework on three scenes from
the AHDCrowd dataset.

Times Square: View 1 | Times Square: View 2 Love Parade
Method Frame Level Frame Level Frame Level
AUC() | EER() | AUC() | EER() | AUC(]) | EER()
Oursp; 48.96 47.85 47.36 19.00 36.81 33.00
Ours g Net 65.23 40.00 26.47 65.00 85.16 9.00
Ourspor(Broz) 64.35 20.71 70.37 31.00 96.15 9.00
Ourspor(riowner) | 44.70 46.66 32.20 61.81 73.91 14.54

6.4.1 Times Square: View 1

In this experiment, the proposed framework is applied to the Times Square: View 1 scene from
the AHDCrowd dataset. The scene includes footage of a high-density crowd that thought
they heard gunshots and started to panic and quickly disperse. The footage is shot from
an angled view. The proposed framework is trained and tested on this scene using the
four motion representation previously mentioned. Figure (92|illustrates the input given to the
DAEs and its corresponding output. The first column shows a sample image corrupted with
noise and its corresponding reconstructed version. The second column illustrates the dynamic

image representation, FlowNet representation, dynamic optical flow (Brox) representation and
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dynamic optical flow (FlowNet) representation corresponding to the sample image corrupted

with noise. Additionally, next to each motion representation is the corresponding reconstructed

version.

Figure 92:

Dynamic Image
Representation

FlowNet
Representation

Dynamic
Optical Flow
(Brox)
Representation

Dynamic
Optical Flow
(FlowNet)
Representation

DAE reconstruction images of sample input frames (left) and the four

corresponding motion representations (right) from the Times Square View 1 scene.

The frame-level results AUC, EER and ROC curve results of training and testing the proposed
network on the Times Square View 1 dataset are illustrated in Figures [93] and
These Figures are results produced from utilising the motion representations: dynamic image,

FlowNet, dynamic optical flow (Brox) and dynamic optical flow (FlowNet) respectively as

an input to the proposed crowd anomaly detection framework. As shown in Table the

best achieved AUC result, 65.23, is produced by utilising FlowNet optical flow as the motion
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representation. Similar results are produced using dynamic optical flow (Brox), however,
the AUC results produced from using dynamic image and dynamic optical flow (FlowNet)
demonstrate a significant decline in AUC performance. With respect to the EER values, the
best result, 20.71, is produced using dynamic optical flow (Brox) representation. The remaining
EER values also demonstrate a significant decline in performance. These results indicate that
the most appropriate motion representation to be used with the proposed framework is the

dynamic optical flow (Brox).
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Figure 93: Oursp;: frame-level ROC curve
on Times Square View 1.
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Figure 94: Oursgiouwne: frame-level ROC
curve on Times Square View 1.
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ROC curve on Times Square View 1.

In comparison to the detection results produced by applying the Future Frame Prediction (Liu
et al.| [2018b) (Section |6.1.1.2.1)) and Anomaly Detection Using Multilevel Representations
(Vu et al., 2019) ((Section|6.1.1.3.1))) methods on this scene, the results produced from the
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proposed framework prove to be competitive. Details of training and testing these methods
are detailed in Section The AUC and EER values produced by training and testing Liu
et al.| (2018b)) on this scene are 85.64 and 19.56 respectively. Additionally, the AUC and EER
values produced by training and testing |Vu et al.| (2019) on this scene are 57.42 and 28.66
respectively. While the results produced from |Liu et al.|(2018b) show better performance than
the proposed method, our results show a significant improvement in comparison to|Vu et al.
(2019).

6.4.2 Times Square: View 2

In this experiment, the proposed framework is applied to the Times Square: View 2 scene
from the AHDCrowd dataset. This scene includes footage of a high-density crowd that
thought they heard gunshots and started to panic and quickly disperse, unlike View 1, this
footage is shot from a closeup almost eye-level shot. The crowd anomaly detection framework
proposed is trained and tested on this scene using the same four motion representation as the
previous experiment. Figure illustrates the input given to the DAEs and its corresponding
output. The first column shows a sample image corrupted with noise and its corresponding
reconstructed version. The second column illustrates the dynamic image representation,
FlowNet representation, dynamic optical flow (Brox) representation and dynamic optical flow
(FlowNet) representation corresponding to the sample image corrupted with noise. The

corresponding reconstructed version is illustrated beside each motion representation.
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Dynamic Image
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FlowNet
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Dynamic
Optical Flow
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Dynamic
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Figure 97: DAE reconstruction images of sample input frames (left) and the four
corresponding motion representations (right) from the Times Square View 2 scene.

The frame-level results AUC, EER and ROC curve results of training and testing the proposed
network on the Times Square View 2 dataset are illustrated in Figures [98] 99 [100] and [101]
The figures illustrate the produced results by utilising the motion representations: dynamic
image, FlowNet, dynamic optical flow (Brox) and dynamic optical flow (FlowNet) respectively
as the temporal input given to the proposed crowd anomaly detection framework. As shown
in Table the best achieved AUC result, 70.37, is produced by using dynamic optical flow
(Brox) as the motion representation. The remaining AUC results indicate that the performance
of the other motion representatives are not of the same quality on this scene. With respect

to the EER values, the best result, 19.00, is produced using dynamic image representations,
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close results are produced using dynamic optical flow (Brox) with an EER value of 31.00. The
remaining EER values given from using FlowNet and dynamic optical flow (FlowNet) as motion
representations indicate a significant decline in performance. Altogether, these results indicate
that the most appropriate motion representation to be used with the proposed framework for

this scene is the dynamic optical flow (Brox) representation.
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Figure 98: Oursp;: frame-level ROC curve Figure 99: Ourspjune:: frame-level ROC

on Times Square View 2. curve on Times Square View 2.
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Figure 100: Ourspor(proz): frame-level Figure 101: Ourspop(riowner): frame-level
ROC curve on Times Square View 2. ROC curve on Times Square View 2.

Compared to the detection results produced by applying the|Liu et al.| (2018b) and Vu et al.
(2019) crowd anomaly detection methods on this scene, the results produced from the proposed
framework indicate mediocre results. Section details training and testing of these methods
on the Times Square: View 2 scene. AUC and EER values given by evaluating|Liu et al.| (2018b)
on this scene are 98.56 and 5.42 respectively. However, the AUC and EER values produced
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by training and testing Vu et al.|(2019) on this scene are 66.02 and 34.54 respectively. While
the detection results produced from applying |Liu et al.| (2018b) to this scene show better
performance than the proposed method, our results, AUC of 70.37 and EER of 19.00, show a

significant improvement in comparison to |Vu et al. (2019).

6.4.3 Love Parade

The proposed framework is applied to the Love Parade scene from the AHDCrowd dataset for
this experiment. The footage includes a high-density crowd with occurrences of over-crowding,
crowd surges and a fight, the footage is shot from a wide-view angle. The proposed crowd
anomaly detection method is trained and tested on this scene using the same four motion
representation as the two previous experiments. The input given to the DAEs and its
corresponding output are illustrated in Figure . As illustrated, the first column shows a
sample image corrupted with noise and the corresponding reconstructed version. Additionally,
the second column illustrates the dynamic image representation, FlowNet representation,
dynamic optical flow (Brox) representation and dynamic optical flow (FlowNet) representation
corresponding to the sample image corrupted with noise. Each motion representation has their

corresponding reconstructed version illustrated alongside of it.
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Figure 102: DAE reconstruction images of sample input frames (left) and the four
corresponding motion representations (right) from the Love Parade scene.

The AUC, EER and ROC curve frame-level detection results of training and testing the proposed
network on the Love Parade dataset are illustrated in Figures[103] [105] and These
figures illustrate the results produced by using the motion representations: dynamic image,
FlowNet, dynamic optical flow (Brox) and dynamic optical flow (FlowNet) respectively as
input given to the proposed crowd anomaly detection framework. Table [13|shows the results
produced using these motion representations. The best achieved AUC result is 96.15, this
result is achieved by using dynamic optical flow (Brox) as the motion representation given to
the proposed method. The AUC results produced using FlowNet also demonstrates competitive
performance with an AUC value of 85.16. However, the remaining AUC results indicate that
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the performance of the other motion representatives are not of the same quality on this scene.
Regarding the EER values, the best result, 9.00, is produced using FlowNet and dynamic
optical flow (Brox) as motion representations. The remaining EER values given from using
dynamic images and dynamic optical flow (FlowNet) as motion representations indicate a small
decline in performance in comparison to the aforementioned EER results. Altogether, these
results indicate that the most appropriate motion representation to be used with the proposed

framework for the Love Parade scene is the dynamic optical flow (Brox) representation.
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Figure 103: Oursp;: frame-level ROC curve Figure 104: Oursgoune: frame-level ROC

on Love Parade. curve on Love Parade.
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Figure 105: Ourspor(proz): frame-level Figure 106: Ourspop(riowner): frame-level
ROC curve on Love Parade. ROC curve on Love Parade.

In comparison to the detection results produced by applying the crowd anomaly detection
methods |Liu et al.| (2018b) and |Vu et al.| (2019)) on this scene, the results produced by the

proposed framework demonstrate a significant improvement in performance. Details of the
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training and testing process of these methods on the Love Parade scene are documented
in Section The AUC and EER values produced from the experiment of the |Liu et al.
(2018b) method on this scene are 55.24 and 47.14 respectively. Additionally, the AUC and
EER values produced by evaluating the Vu et al.| (2019) method on this scene are 88.08
and 16.36 respectively. Unlike the previous experiments, our results, AUC of 96.15 and EER
of 9.00, indicate better performance than the detection results produced from applying |Liu
et al.| (2018b) to this scene. Moreover, our results, demonstrate significant improvement in

comparison to the detection results produced from applying Vu et al.|(2019).

Below are ROC curves of each motion representation (Oursp;, Ourspiownet, OUrspor(Brox),

Ourspor(Flownet)) combined in a single image for easier viewing. Figures are
the frame-level ROC curves applied on the AHDCrowd Times Square: View 1, Times Square:

View 2, and Love Parade datasets respectively.
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6.5 Running times

Running times for crowd anomaly detection methods are not typically documented by their
authors. Running times indicate the time taken to detect any anomalous scene withing a
frame. The running times, frames per second (FPS), produced and documented by various
methods have been reported in Table[14] These methods have been reviewed in Chapter[3] The
running time for the crowd behaviour detection framework produced in this research (annotated
as "Ours") is nearly 50 FPS.

Table 14: Running times of reviewed methods.

Name FPS
Mahadevan et al.| (2010) | 0.4
| [Luet al|(2013) 150
Li et al.| (2014) 1.25

| [Sabokrou et al.[(2015) | 200
Chong and Tay| (2017) 143
Sabokrou et al.|(2018) | 370
Liu et al.| (2018b)) 25
Ours 50

Various methods, Mahadevan et al.|(2010), |Li et al.|(2014), and |Liu et al.| (2018b), have been
able to achieve high running times. These methods have achieved running times that can be
applied in the real world. CCTV footage captures 30 frames in a single second of video (30
FPS). In principle, any methods that can detect anomalous footage with running times less
than 30 FPS can be applied in the real world. All experiments in this thesis are carried out
on Google Colab in 2019. The running times documented in Tableare collected from the
authors papers as well as|Ramachandra et al.| (2020) and Xu et al.| (2019). These running
times are a rough indicators of the performance of these methods, some methods prioritise
higher performance evaluation metrics such as AUC, EER and ROC curves as opposed to the
running times. Moreover, the running times collected are not up to date because these results
are based on the publication dates of these methods and the authors carry out their experiments

on different machines.

6.6 Conclusion

This chapter has described the experiments that were carried out to evaluate the contributions
proposed in this research. A novel high-density crowd dataset containing normal and abnormal
crowd behaviour was created as one of these contributions. This dataset, to the best of this
researcher’s knowledge, is the only dataset with footage of typical behaviour high-density crowds

and also includes annotated occurrences of anomalous behaviour. The dataset was used to train
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and test state-of-the-art crowd anomaly detection methods. The experimentation presented
in this chapter has tested three crowd abnormality detection methods: Spatiotemporal
Autoencoder (Chong and Tay| 2017), Future Frame Prediction (Liu et al., 2018b)), and
Anomaly Detection Using Multilevel Representations (Vu et al., 2019). They were tested
to evaluate their performance (Regularity score, AUC, and EER) with this dataset. The results
produced by these methods when modelled on a highly dense crowd suggest that the transition
from low-medium density crowd abnormality detection into high-density crowd abnormality
detection has weakened their performance. Moreover, these results have demonstrated the
necessity for crowd anomaly detection methods to take into consideration high-density crowds

in training/testing.

The remaining contributions are the development of a CGAN architecture combined with
Dynamic Images (Bilen et al.,|2016) for crowd behaviour anomaly detection, and using CGANs
to distinguish between normal and abnormal behaviour within high-density crowds. These
contributions have been evaluated by testing the proposed crowd anomaly detection framework
proposed in this research. The framework combines Dynamic Images and image-to-image
translation using CGANs as a novel approach for the detection of anomalous behaviour within
a crowd. The framework was evaluated using four different motion representations; dynamic
image representation, FlowNet representation, dynamic optical flow representation (computed
using Brox) and dynamic optical flow representation (computed using FlowNet). The achieved
results have demonstrated the merits and faults of utilising each motion representation into
the proposed framework. The overall results have shown the advantages of utilising dynamic
image representations to calculate the temporal development of a video as an alternative to
optical flow. Particularly when tested on high-density crowds. Moreover, the detection results
using FlowNet instead of Brox, as the motion representation, have shown the merits of FlowNet
integrated into the proposed framework. Specifically when tested on low to medium-density

crowds.

Finally, additional experimentation of the proposed crowd anomaly detection method was
applied by utilising the AHDCrowd dataset. Due to the scarcity of public high-density
anomalous crowd datasets, three scenes from the AHDCrowd dataset were used to train and
test the proposed architecture. The framework was evaluated using four different motion
representations: dynamic image representation, FlowNet representation, dynamic optical flow
representation (computed using Brox) and dynamic optical flow representation (computed
using FlowNet). The results indicated that the use of dynamic images and dynamic optical
flow (FlowNet) as motion representations given to the proposed method do not perform well
when applied on high-density crowds. However, the use of FlowNet optical flow has achieved
better results and dynamic optical flow (Brox) has outperformed (AUC and EER) all the other

motion representations.
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7 Discussions and Conclusions

7.1 Discussion

Crowd behaviour analysis and anomaly detection are key to effective intelligent vision systems.
Anomaly detection can be achieved by the detecting atypical patterns or detecting sudden
changes in crowd flow/behaviour. This thesis focuses on anomaly detection in high-density
crowds and has proposed a novel crowd anomaly detection framework " Dynamic Image Crowd
Representations for Improved Anomaly Detection using Generative Adversarial Networks”. The
proposed framework combines Dynamic Images and image-to-image translation using CGANs
as a novel approach for the detection of anomalous crowd behaviour. As an alternative to
optical flow extraction using |Brox et al.| (2004), commonly used in state-of-the-art methods,
this proposed framework utilises dynamic optical flow representations to extract the temporal
development for a set of images. The extracted temporal features are used as the motion

representation incorporated into the proposed anomaly detection framework.

The experiments that have been carried out in this research were used to evaluate the efficiency
of the proposed framework for detecting anomalies in high-density crowds. A new high-density
crowd dataset containing crowd behaviour anomalies (AHDCrowd) was created as no such
datasets currently exist. Initially, the dataset was used to train and test state-of-the-art
crowd anomaly detection methods which included Spatiotemporal Autoencoder|Chong and Tay
(2017)), Future Frame Prediction Liu et al.|(2018b), and Anomaly Detection Using Multilevel
Representations Vu et al.| (2019). The experiments used three scenes from the AHDCrowd
dataset: Times Square View 1, Times Square View 2 and Love Parade scenes. These scenes
included footage of anomalous crowd behaviours where crowds disperse quickly and frantically
or where fights occur. The evaluation results produced by applying the method proposed by
Chong and Tay| (2017) indicate that the transition from low-medium density crowd anomaly
detection into high-density crowd abnormality detection has weakened its performance. The
plotted regularity scores demonstrate normal behaviour occurrences that do not conform with
the dataset's ground-truth data. The results generated from the application of |Liu et al.
(2018b)) and |Vu et al.| (2019) on the AHDCrowd dataset have demonstrated better detection
results. However, compared to their results on the benchmark low to medium-density data
sets, the detection performance has weakened. These results established the necessity for
crowd anomaly detection methods to consider high-density crowds in the training and testing

processes.

The novel crowd anomaly detection framework was evaluated by training and testing it on
benchmark datasets, the results were compared to state-of-the-art crowd anomaly detection

methods. The framework is evaluated using four different motion representations: dynamic
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image representation, FlowNet representation, dynamic optical flow representation (computed
using Brox) and dynamic optical flow representation (computed using FlowNet). Dynamic
image representations demonstrated low performance compared to state-of-the-art; using
dynamic image extraction on the raw input data reduced image quality generated by the
CGAN. FlowNet, a more novel approach for optical flow computation, is used as the motion
representation incorporated into the subsequent experiment’s framework. The detection
results produced from this experiment has outperformed the existing state-of-the-art on UCSD
Ped-2 and Avenue datasets and produced comparable results on the UCSD Ped-1 dataset.
Pixel-level detection particularly achieved excellent results, demonstrating the capabilities of

this experiment in localising the detected anomalies.

As previously surveyed, dynamic optical flow outperforms optical flow and dynamic image
representations in the field of action recognition. Consequently, dynamic optical flow
representations are incorporated into the proposed framework for the next experiment. The
dynamic images are extracted from pre-computed optical flow maps using Brox optical flow
method. Although pixel-level detection results on UCSD Ped-1 show a decline in performance,
the results on the UCSD Ped-2 have demonstrated results on par with other methods. Results
on frame-level detection have shown similar performance results on the UCSD Ped-1 dataset,
but the UCSD Ped-2 and Avenue dataset results are either on par or higher than the other
methods. Finally, dynamic optical flow representations using FlowNet for optical flow extraction
were incorporated into the last experiment. Similar to the previous experiment, pixel and
frame-level detection results on the UCSD Ped-1 dataset demonstrate comparable performance.
Moreover, frame-level detection on the UCSD Ped-2 and Avenue datasets has outperformed
the state-of-the-art regarding AUC and EER values. These results demonstrate the advantages
and disadvantages of incorporating each motion representation into the proposed framework.
Overall the results have shown the advantages of utilising dynamic image representations to
calculate the temporal development of a video as an alternative to optical flow. Incorporating
dynamic optical flow (FlowNet) representations have improved detection results on frame-level
while incorporating just optical flow extracted from FlowNet has improved pixel-level detection

results.

The final experiments evaluate the proposed framework’'s performance when applied to a
high-density crowd. Three scenes from the AHDCrowd dataset are used to train and test the
proposed architecture. Similar to the previous experiments, the method was evaluated using
four different motion representations to calculate an input video's temporal development. The
motion representation used is dynamic image representation, FlowNet representation, dynamic
optical flow representation (computed using Brox) and dynamic optical flow representation
(computed using FlowNet). The detection results produced by applying the proposed crowd

anomaly detection method on the Times Square: View 1 scene show that using dynamic optical
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flow (Brox) as the motion representation outperforms the remaining motion representations.
Similar performance results were achieved using the two remaining scenes; Times Square:
View 1 and Love Parade. Utilising dynamic optical flow (Brox) as the motion representation
input to the proposed method achieves the best detection performance on a high-density
crowd. Moreover, compared to the detection results produced from the application of several
state-of-the-art crowd anomaly detection methods on these scenes from the dataset, the

proposed framework is more competitive and has outperformed the other methods.

The novel crowd anomaly detection method proposed in this research has not been trained
and tested on a more general-purpose setting. Similar to this research, state-of-the-art crowd
anomaly detection methods have used benchmark datasets to train and test their methods.
Our research and the SOA in crowd anomaly detection have not focused on a general-purpose
setting to be able to compare results with other methods. Some of the general purpose setting
applications can be training a method on different scenes from different cameras. Alternately,
the training process remains the same but the testing process could be applied on a new location
different to the training data. Training and testing the method proposed in this research on a

more general-purpose setting is part of the future work proposed in Section[7.3]

7.2 Conclusion

As this research's focus is to detect anomalous behaviour within a crowd utilising computer
vision and machine learning methods, a comprehensive overview of crowd analysis and
crowd behaviour analysis was applied. Fields such as crowd counting, density estimation,
crowd tracking, person re-identification, motion representation and anomaly detection were
investigated. Improvements can be applied to algorithms regarding crowd counting and density
estimation. Some of the major issues found were severe occlusion handling, adaptability towards
static and dynamic movements of people or objects, environmental changes such as weather
and illumination variations. Moreover, progress is still to be achieved regarding tracking
and re-identification; biometric data has not been effectively incorporated to tracking and
re-identification algorithms. Representational models of the links between low-level features
and high-level features have not been sufficiently integrated with these algorithms. Additionally,
the limitations in crowd anomaly detection methods became apparent; the accuracy results
presented by previous work were not satisfactory enough to be applied to the real-world
environment. The contributions of this research indicated using bold lettering, have been

met as follows.

The development of a CGAN architecture combined with Dynamic Images (Bilen

et al., 2016) provides a novel approach for crowd behaviour anomaly detection.

State-of-the-art methods are investigated, and generative adversarial networks (GANs),
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more specifically, image-to-image translation using Conditional GANs for anomaly detection,
displayed their potential and could benefit from a more thorough investigation. The application
of GANs in crowd anomaly detection has proved to achieve higher performance than earlier
methods. Consequently, this architecture was chosen as the base of the framework proposed
in this research. A novel approach to crowd anomaly detection utilising Dynamic Images
was investigated. Dynamic optical flow representations were used as motion representations
and incorporated to the proposed framework. The framework was applied and evaluated
on benchmark crowd anomaly detection datasets to evaluate its performance compared to
state-of-the-art methods in this field. The evaluation results produced are marginally higher

than those produced by the state-of-the-art.

This research also addresses a substantial gap concerning the evaluation of crowd anomaly
detection methods with highly dense crowds. Benchmark datasets include footage of low to
medium-density crowds, but datasets including high-density crowds with anomalous behaviour
are not published. Therefore, as another contribution to this research, A labelled high-density
crowd dataset containing normal and abnormal (footage with anomalous behaviour)
was created for this purpose. The dataset has been applied to anomaly detection

algorithms and has been made public to other researchers.

This dataset was created by collecting, processing, and labelling footage of environments
containing highly dense crowds and occurrences of anomalies. State-of-the-art crowd anomaly
detection methods were trained and tested on this dataset to evaluate the difference
in performance when transitioning from low to medium-density crowds into high-density

crowds.

Generative modelling for anomaly detection in high-density crowds. Conditional
Generative Adversarial Networks (CGANs) produces data to a discriminative
function to distinguish between normal and abnormal behaviour within medium to

high-density crowds.

Additional experiments were applied using the proposed crowd anomaly detection method on
the Abnormal High-Density Crowd dataset to evaluate the method’s performance in anomaly
detection. The crowd detection results demonstrate that applying the proposed method

performs well when applied on high-density crowds.

The contributions of this research have been achieved and the applied experiments evaluate
the effectiveness of utilising dynamic image representations for anomaly detection within
low-medium and high-density crowds. Currently, this research can detect and localise anomalies
in footage allowing the recognition of when and where an anomaly occurs. This is beneficial to
understand the start, end, and location of anomalies for further investigation. As the processing

power increases and running times decrease, this research can be applied in the real-world to

174



7.3 Future Work 7 DISCUSSIONS AND CONCLUSIONS

help in the prevention of chaotic events (abnormal behaviour).

7.3 Future Work

Further advancement in the area of crowd anomaly detection must consider high-density crowds
in training and testing crowd anomaly detection models to detect anomalous behaviour in
highly dense environments effectively. At the time of writing this thesis, high-density crowds
have not been given adequate attention. Benchmark datasets used to train and test novel
crowd anomaly detection methods consider low and medium density crowds. The Abnormal
High-Density Crowd dataset (AHDCrowd) created in this research will help future researchers
create anomaly detection methods applicable to high-density crowds. Another limitation in
crowd anomaly detection is that benchmark datasets do not include different anomalous
behaviour types and the scenes are enacted, limiting accurate evaluation of crowd anomaly
detection methods. Future researchers can increase the types of anomalies used to train and
test crowd anomaly detection methods by collecting footage of various real-world anomaly
occurrences. The footage can be structured and labelled using the same approach used to

create the Abnormal High-Density Crowd dataset in this research.

Other advancements to this thesis are the continuation of training and testing through an
ablation study of the proposed framework. The ablation study would be applied to asses
the performance of the method when certain components of the framework are removed.
This would help in the understanding of the contribution of the removed component on the
framework. Moreover, due to COVID-19, access to a High Performance Computing (HPC)
system was not feasible while conducting the experiments documented in this research. So
to conduct an ablation study swiftly and effectively the use of an HPC system would be
recommended. Also, with the use of an HPC system a more general-purpose application
of this framework could be established. The proposed method could be trained on scenes
from different cameras and find how it will effect the anomaly detection results. Alternately,
another experiment could be applied where the training process remains the same but the
testing process could be applied on a location different to the training data. These are some
experiments that could be conducted to understand the behaviour of the proposed method on

a more general-purpose setting.

Additionally, running times should be decreased to pursue real-time crowd anomaly detection
with comparable AUC and EER results as state-of-the-art. Currently, running times of novel
anomaly detection methods do not meet the real-time application requirements. Furthermore,
dynamic image representations should be used for temporal development extraction in other
anomaly crowd detection methods instead of optical flow difference. In the field of action
recognition, the use of dynamic image representations have outperformed the use of optical

flow extractions. Additionally, this research demonstrates the effectiveness of replacing optical
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flow extractions, the conventional temporal development extraction method, with the more

novel dynamic image representations in the field of crowd anomaly detection.
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A PREVIOUS REVIEWS

A Previous Reviews

The most notable survey/review papers in crowd analysis are investigated (Table . The
selected surveys are amongst the papers published within the last ten years. One of the
most cited surveys is written by |Zhan et al.| (2008); this is one of the first surveys about
crowd analysis. This survey mainly reviews crowd analysis techniques based on computer
vision approaches, but, other crowd analysis perspectives like sociology, psychology, and
computer graphics are also explored. The main topics focused on are crowd density estimation,

recognition, tracking, crowd modelling, and event interpretation.

Ko|(2008)) introduced a survey where the focus was on hardware and software combinations that
can help solve surveillance challenges. The advances and strategies used in video surveillance
are reviewed in addition to motion analysis, behaviour analysis, biometrics, anomaly detection,
and behaviour understanding. Computer vision techniques for crowd analysis are covered by
Junior et al.| (2010); more specifically, issues such as tracking, crowd density measurement,
event inference, validation, and simulation. The main difficulties explored in the survey were
density estimation/crowd counting, tracking within a crowd, and higher-level analysis for the

understanding of crowd behaviour.

A detailed survey, presented by (Candamo et al.| (2010), on human behaviour recognition
approaches for transportation surveillance had four main focuses. The focuses were categorised
into recognition of a single person, multiple persons, person and vehicle interaction, and person
and location interaction. Some of the interactions recognised were loitering, fights or attacks,
vehicle damage, and deserting personal belongings. State-of-the-art advancements in motion
detection, moving objects classification, and tracking is also presented. The review paper Sjarif
et al.|(2012), investigated state-of-the-art techniques in analysing crowd behaviour between the
years of 2000 to 2010. Crowd density measurement, crowd motion recognition, tracking, and
crowd behaviour detection are explored in relation to abnormal event recognition. Approaches

in pre-processing, object tracking, and event/behaviours detection is evaluated in detail.

Similarly, IPopoola and Wang| (2012) proposed a review paper that presents the most recent
developments in abnormal human behaviour detection from video footage. Past reviews are
explored and mentioned while maintaining a focus on the recognition of abnormal behaviour,
particularly in video surveillance. Detailed highlights of current methods were presented in a

manner such that the main challenges in behaviour analysis are brought to notice.

An attempt is made by |Chaquet et al.| (2013) to cover the absence of information on the
most significant and public video-based datasets for human action and movement recognition.
The survey is of great help to researchers who required selection of the most appropriate

benchmark datasets for their algorithms. An assessment of the current datasets is provided
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with the emphasis on ground truth data, scene varieties, actions/human count, and references
to published papers utilising these datasets.

Another notable survey is |Vishwakarma and Agrawal| (2013) where the main focus is the
detection in video surveillance. The authors detail pre-processing techniques, object tracking
approaches, and activity recognition methods. Recent research relating to activity detection,
benchmark datasets, and applications was also been documented. As well as the various

methods for action recognition of a single human or a crowd as a whole.

Cristani et al.|(2013) aim to review the more noteworthy human behaviour analysis work that
combines both video surveillance and Social Signal Processing (SSP) . An investigation on
where surveillance and social signalling intersect is documented, as well as how social signalling
may aid in the progression of the analysis of human behaviour. Similar to the survey undertaken
by |Zhan et al.| (2008) a more updated survey by |Li et al. (2015) explores state-of-the-art
techniques in crowd motion pattern learning, crowd behaviour and activity analysis, and
crowd anomaly recognition. The paper explores many aspects of crowd analysis such as
current models, widespread algorithms, protocols for evaluation, and system performance. Also
documented, are the available evaluation datasets, research problems, and promising future

work.

A literature review compiled by |Afsar et al.| (2015) investigates 193 papers from the years
of 2000 to 2014 about visual detection of human behaviour. The review categorised these
papers into three topics: techniques for detection, datasets, and applications. The review
further sub-categorised each topic into a deeper classification where detection techniques were
divided into initialisation, tracking, pose estimation, and recognition. Applications such as
human detection, abnormal behaviour detection, activity recognition, modelling, and pedestrian
detection were investigated. Additionally, eight datasets were listed that can assist future

researchers in their human behaviour detection systems.

Zitouni et al. (2016) study a more specific topic; the past seven years of research on crowd
modelling techniques are explored. The target of the paper is to make recommendations
based on the general features of the techniques instead of explicit algorithms. The survey also
presents a comparison of current methods using public crowd datasets based on quantitative
and qualitative features. |Kok et al.|(2016) take in a non-typical approach where an investigation
is applied to crowd behaviour analysis based on a physics and biology perspective. The authors
examine these two sciences taking into consideration previously ignored areas, as well as the
explored areas for analysing crowd behaviour. Additionally, the authors discuss the essentiality

of merging both biology and physics sciences in computer vision.

In 2017 four prominent surveys have been published each of which has an explicit focus. Firstly,

Convolutional Neural Network (CNN) approaches for crowd counting and density estimation
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are surveyed by |Sindagi and Patel|(2018). Furthermore, an evaluation and comparison between
these CNN approaches and earlier hand-crafted methods are noted, as well as newly published
datasets. Secondly, [Yogameena and Nagananthini| (2017) have aimed their survey at the
investigation of current developments and approaches in crowd disaster analysis that can create
a stable Computer Vision-Crowd Disaster Avoidance System (CV-CDAS). One of the significant
influences is behaviour analysis, which is explored in detail, also noted is an evaluation of the
benchmark datasets. The third published survey has two main focuses: crowd statistics and
behaviour understanding (Grant and Flynn| 2017). Crowd counting and density estimation
methods are first investigated, then research related to crowd behaviour understanding is
presented. Tracking approaches are also surveyed, as well as crowd behaviour video datasets.
Lastly, Swathi et al.| (2017) present a less extensive review on crowd behaviour analysis, but it
is a good guide to new researchers. The review includes basic framework architectures of video
surveillance and crowd analysis. Basic terminology used in crowd analysis are also described

based on a accumulation of different definitions given by various authors.

Newer reviews such as|Haghani and Sarvi (2018), [Zhang et al. (2018b), and [Tripathi et al.
(2018]) address more novel approaches for crowd behaviour analysis. |Haghani and Sarvi|(2018)
have evaluated almost 150 studies in relation to minimisation of crowd disaster and evacuation
planning. It is a very extensive review including keywords such as “crowd motion”, “emergency
evacuation”, “animals”, and “walking behaviour”. The review is very diverse regarding
collection of data related to crowd analysis such as: animal experimentation, human controlled
experimentation, virtual reality experimentation, evacuation experimentation, and natural
disaster evaluation. One of the authors’ most interesting findings is crowd behaviour analysis
studies often have conflicting definitions of basic terminology. Authors have contradicting
evidence about their data, and the evaluation metrics applied are biased towards the research.
Zhang et al.| (2018b) surveys physics inspired methods for crowd analysis and surveillance.
Due to the fact that crowds exhibit features like velocity, direction, energy and force all being
based on physics. The methods examined by the authors are divided into three classifications:
fluid dynamics, interaction force, and complex crowd motion systems. Similar to other review
papers, benchmark datasets and unresolved areas are deliberated. Lastly, Tripathi et al.|(2018)
provide a more distinct review on crowd behaviour analysis methods based on convolutional
neural networks (CNN). Reviewed are topics such as the evolution of CCN in the field of
crowds behaviour, challenges in this field, CNN methods previously applied by researchers, and
applicable datasets. A significant finding of this review is high-density level crowds are still
difficult to analyse in regards to detecting and tracking objects, crowd counting, and detecting

anomaly.
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Table 15: Notable previous surveys in chronological order

Survey Title

Author and Year

A survey on behaviour analysis in video surveillance for homeland

security applications

M 2008

Crowd analysis: a survey

Zhan et al.| [2008

Crowd analysis using computer vision techniques

Junior et al.} 12010

Understanding  transit  scenes: A survey on  human

behaviour-recognition algorithms

Candamo et al.|
2010

Detection of abnormal behaviours in crowd scene: a review

2012

Sjarif et al.

Video-based abnormal human behaviour recognition-A review

Popoola and|

Wang 2012

A survey of video datasets for human action and activity recognition

(]Chaquet et a|.|
)

A survey on activity recognition and behaviour understanding in video

(]Vishwakarma and|

surveillance IW‘ lm
Human behaviour analysis in video surveillance: A social signal (]Cristani et aI.|
processing perspective lm[)

Crowded scene analysis: A survey Li et al., 2015
Automatic visual detection of human behaviour: a review from 2000 | (Afsar et al.} ({2015
to 2014

Advances and trends in visual crowd analysis: A systematic survey and (IZitouni et al.l
evaluation of crowd modelling techniques lm

Crowd behaviour analysis: A review where physics meets biology Kok et al.; 2016

A Survey of Recent Advances in CNN-based Single Image Crowd

Counting and Density Estimation

Sindagi and Patel|
018

E

Computer Vision based Crowd Disaster Avoidance System: A Survey

Yogameena and|

agananthini
017

L

Crowd Scene Understanding from Video: A Survey

y

Grant and FIynnI
017

E

Crowd behavior analysis: a survey

Swathi et al.|[2017

Crowd behaviour and motion: Empirical methods

Haghani and Sarvil
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E
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e
N
>
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Physics inspired methods for crowd video surveillance and analysis: a
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Convolutional neural networks for crowd behaviour analysis: a survey (]Tripathi et a|.|
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B Crowd Counting / Density Estimation

Traditional approaches for crowd counting and density estimation are reviewed below.

B.1 Direct Approach

A direct approach for crowd counting tries to identify every single person within a scene along
with their corresponding position. As long as the segmentation process is correctly applied,
the number of people is easy to obtain. The segmentation process can differ for each of
the methods; some methods segment the whole contour of the body (head, shoulders, arms,
and legs), while others efficiently segment the Q-form of the human (head and shoulders).
The problems that arise with the application of this method are occlusion handling and
handling high-density crowds. Some of the sub-areas to be considered when using the direct
approach include model-based methods and trajectory-based clustering methods (Saleh et al.,
2015).

B.1.1 Model-based Approach

Viola et al.|(2003) present a pedestrian detection system; their system takes advantage of both
image appearance data and motion data by combining them to detect a person who is walking.
The image appearance data used is based on feature extraction using an integral image. The
authors utilise two consecutive video frames using a detection-based algorithm, which is fast
and efficient. A detector is then trained using AdaBoost (Schapire and Singer| |1999). This
approach is applicable to many difficult scenarios such as low-resolution images, and crowds in
bad weather conditions like rain and snow which cause low visibility. The system is trained and
tested on a dataset of scenes from the street created by the authors. The pedestrians were
highlighted with a box in each frame. The dataset had eight sequences, with an approximation
of 2000 frames for each sequence. Six of the sequences were used for training the detection
of both dynamic and static pedestrians, while the other two sequences were used for testing.
When the algorithm was tested on the two sequences it achieved very low false-positive rates;
the best result being 1 in 400,000 false positives. In addition, a good detection rate was
attained by the algorithm with the highest result of 80%.

Research by |Lin et al.| (2001) developed a system that can use a single image to make an
approximation of the number of people in a crowd, even if the background of the scene is of
complex nature. The system approaches this by identifying the contour of people’s heads. To
extract the features of any head-shaped contour, the authors propose using the Haar Wavelet
Transform (HWT) function (Chapelle et al.;|1999). Additionally, the system will determine the

input features as either head or not using a support vector machine (SVM) with three stages:
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pre-processing the image, extracting features, and support vector classifying. To precisely
estimate the size of the crowd, a technique using perspective transformation (also known
as imaging transformation) is utilised. For system testing, the authors developed a crowd
simulation model world with 125 human-shaped puppets. All the ground truth data about the
model world is noted taking into consideration the crowd size and angle view. In this model
world, the system showed an overall accuracy level of 90% - 95% with a reduction in accuracy

as the size of the crowd grows.

Research presented by |Zhao et al.| (2008) present an approach within a Bayesian framework
that can model multiple partially occluded humans. This model-based stochastic approach has
the advantage of not needing a person to be un-occluded when entering the scene, but only
requires the visibility of the head and shoulder region. The overview of the approach is shown
in Figure [II0] The method basically starts with blob boundaries detection, then the canny
edge detection algorithm is applied to extract the edges of the subjects, the head and shoulder
model is applied afterwards. Lastly, using edge intensity, humans can be reliably detected.
With the use of a sampling method, data-driven Markov chain Monte Carlo (DDMCMC), a
configuration that can adequately clarify the foreground mask is estimated. The approach
is tested on outdoor and indoor footage each including occlusion events. In the outdoor
testing, the dataset comprises of 33 people going in opposite directions with 20 occlusions,
9 of them considered as heavy occlusion. The results of the outdoor testing were 98.13%
detection rate and false detection rate of 0.27%. The detection and false-alarm rate for the
indoor dataset, Context-Aware Vision using Image-based Active Recognition (CAVIAR, 2003)
were not detailed, but the paper signifies the approach can show promise if integrated with an
improved background and shadow model. The work proposed by |Ge and Collins| (2009) is an
extension of the approach, presenting an improved technique with the use of shaping models

that are more practical and flexible.
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Figure 110: Overview of approach. Adapted from (Zhao et al.||2008])
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B.1.2 Trajectory-based clustering Approach

Brostow and Cipolla| (2006) investigate an approach to distinguish separate movement in a
crowd by using an unsupervised Bayesian clustering algorithm. The simple idea of the approach
assumes that a pair of points that are parallel in movement probably belong to the same object.
The authors characterise a moving object by extracting low-level features of an image, which
are clustered using probabilistic behaviour. An advantage of this approach is that there is
no requirement for training to achieve its goal. The paper considers tracing two features:
both |Rosten and Drummond| (2006) features and [Tomasi and Detection| (1991) features.
Additionally, to track the features in two frames hierarchical optical flow (further explained
in Section is applied. To test the approach, 10 sequences were used each of which is
between three seconds to one hour long. A comparison between the authors’ results and the
previously discussed approach by [Zhao et al. (2008) shows that the detection rate is lower
with a result of 94%, and the false detection rate was significantly higher rising up to 22.9%.
Moreover, failure indication and false detection were noticed if the system is presented with

VigOI’OUS arm movement.

Rabaud and Belongie|(2006) presented an approach to segment an individual within a crowded
scene by the use of the individual’'s motion within multiple occurrences. Similarly to |Sidla
et al. (2006)), the authors approached this by using a Kanade-Lucas-Tomasi (KLT) (Tomasi and
Detection, |1991) tracker with a more parallelised manner. The KLT tracker is an algorithm used
to extract features for multiple purposes such as camera motion estimation, video stabilisation,
or object tracking. Using this algorithm for object tracking works best with objects that do
not change shape or formation. The tracker uses spatial intensity data to aim the search in
the direction of finding the best match. With the use of this tracker, a large set of low-level
features were extracted in an enhanced mean. Additionally, with the use of spatial and temporal
conditioning, the trajectories are filtered to recognise the number of moving objects within a
scene. The authors tested their approach on three datasets of real-world imagery: a USC
dataset (Zhao and Nevatia, |2003), the author’s dataset: LIBRARY, and CELLS dataset with
footage of red blood cells movement. The approach shows reasonable occlusion handling, but
when demonstrated with shared motion between interacting objects it caused the trajectories
to be merged inaccurately. Detailed results of the testing on the datasets are noted in the
paper, with an average error rate of 10%, 6.3% and 22% for the USC, LIBRARY, and CELLS

datasets respectively.

B.2 Indirect Approach

Compared to the direct method, the more efficient approach is the indirect one. The approach
does not try and detect a person directly, but to represent a crowd, it typically extracts multiple

local and holistic features from foreground images. The extraction of these features has
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proven to be more proficient than person detection. There are multiple variants to the indirect
approach including pixel-based, texture-based, and corner point-based approaches (Saleh et al.,
2015).

A pedestrian detection and tracking system featured by Sidla et al. (2006) calculate points of
interest and applies motion prediction. Furthermore, the system finds specific shape information
for human detection and implements texture feature extraction for human recognition. The
shape chosen to represent humans is a (2-like shape. The authors detect this shape with
a masking filter over the region of interest. A description of each person is deduced from
the use of a co-occurrence matrix feature vector by using the Kalman filter (Kalman)|1960).
Additionally, KLT tracking points (Tomasi and Detection, |1991) are used. In comparison
to more traditional algorithms, the KLT tracker examines far less probable matches between
images. While the Kalman filter is used to make an educated guess about the next step the
system will make. The linear-quadratic estimation (LQE) algorithm observes a collection of
measurements that are presented with noise and other inaccuracies. Over time, the algorithm
finds current estimates of variables by approximating the joint probability distribution over
the unknown variables for every time-frame. The pedestrian detection approach is tested
on two scenarios indoor and outdoor; the indoor scenario makes use of video footage from an
underground platform. The results start off with an absolute mean error of 10% over a built-up
time of 240 seconds, but as the time interval increases the results decrease reaching a result
of 2% over one hour. Although not detailed, the authors claim that similar results were shown

when tested in the outdoor scenario.

B.2.1 Pixel-based Approach

A neural-based system that can identify overcrowding in a specific setting is investigated by
Cho and Chow| (1999); [Cho et al.| (1999). More specifically the authors targeted platforms
in underground stations, and the targeted platforms of their research were the Mass Transit
Railway (MTR) stations located in Hong Kong. The system used CCTV imagery which is
passed through pre-processing techniques that map the visual data to a two-dimensional feature
space by using the extracted features. A visual representation of an overview of the system
is shown in Figure[111] The feature extraction targets low-level features with an assumption
that a correlation exists between the crowd level and the segmented regions where there is a
considerable amount of movement. For each image given, three features are extracted: length
of crowd edges, the density of crowd objects and the density of the background. The neural
network takes the extracted feature coefficients as its input. A hybridising of the Least Squares
(LS) algorithm and a global optimisation method is used as the system's learning algorithm
to classify the crowd. The authors test their system using two-hybrid algorithms that combine

the LS algorithm with both random search algorithm and Simulated Annealing (SA) algorithm.
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The best Sum Squared Error (SSE) for learning is the result of using the LS and SA algorithm
with a value of 1.189 and an estimation accuracy result of 94.36%, but with a substantially
longer CPU running time than the LS and random search algorithm (Cho and Chow| [1999;
Cho et al.| [1999).
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Figure 111: Overview of neural based crowd monitoring system. Adapted from (Cho et al.|
1999)

Additionally, |Cho et al.| (1999) enhance their system with another neural-based crowd
estimation hybrid algorithm. The method is a cross-over between the LS algorithm and Genetic
Algorithm (GA). The same neural network topology is used, which consists of three inputs, 15
hidden neurons, and one output neuron. So far, the fastest algorithm remains the hybrid of
LS and random SA. The given hybrid algorithm has very close results to the initial algorithm
using LS and SA with an estimation accuracy result of 93.8% and 94.36% respectively, but
with a CPU running time decreased to less than half the running time of LS/SA.

Tang et al.|(2015) presented a system to count the number of people in a crowd using a two-pass
regression framework; several cameras are used to bring diverse views of the same crowd.
With the use of different views, the system can gather corresponding data to enhance the
performance and crowd counting process. The authors first tackle the problems of estimating
the crowd count and normalising the visual feature perspective, considering them to be one
learning problem. Subsequently, the paper presents an algorithm that receives multiple views of
a crowd and matches the groups from each view. Lastly, the authors detail the regressors used
in the system: where one of the regressors uses the extracted features from the intra-camera
images given to count the crowd, and the other regressor determines the remaining count
with respect to the inter-camera predictions conflict. The results were presented using mean
absolute error (MAE) with an overall result of 3.26 using the first-pass regression approach
(FPR), and 2.52 using the two-pass regression framework (TPR). The data was trained and
tested on four levels of crowd density using the PETS 2009 benchmark dataset (Ferryman

and Shahrokni, [2009). The data was annotated as: sparse (few people, minimum occlusions),
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medium (more than a few people, medium occlusions), heavy (dense crowd, full occlusions),
and mixed (a combination of the three). The paper also noted comparisons with other baseline

approaches in which the authors’ suggested approach outperforms them.

B.2.2 Texture-based Approach

Chan et al.|(2008) present an approach for unstructured crowd estimation without the use of
tracking approaches or explicit object segmentation. Their contributions are threefold: crowd
counting while preserving the privacy of people in the crowd, validating the approach by using
a dataset comprising of 49,885 pedestrian instances, and finally, the robustness of the approach
is shown by testing on an hour-long video. Initially, the system used a combination of dynamic
textures to segment the crowd into multiple motion features. The system used a Gaussian
process for counting the number of people. It was trained on 800 frames and tested on
1200 frames. The best results presented for both directions (away and towards) were MSE
(Mean-Squared-Error) values of 4.181 (away) and 1.29 (towards). This result was achieved

when using all the extracted features (segmentation, internal edge, and texture features).

Subsequently, |Chan and Vasconcelos| (2009) took another route and investigated a standard
Poisson regression model in a Bayesian setting. The authors initially developed a closed-form
approximation to the predictive distribution of the Bayesian Poisson regression (BPR) model.
The predictive distribution was then kernelised and through kernel functions the representation
of non-linear log-mean functions was admissible. To enhance the hyper-parameter of the kernel
function an estimated marginal likelihood function was developed and used to show its relation
to a Gaussian process with a special non-i.i.d. (non-independent and identically distributed)
noise term. The authors experimented using the crowd video database (Chan et al., |2008),
1200 frames were used for training and 2600 frames for testing. The best results were obtained
where the trends in the log-mean function were modelled using a kernel consisting of two radial
basis functions (RBF) (Prentice||1974). The results documented were MSE of 2.4675 (“Away")
and 2.0246 (“Towards").

A crowd counting approach that uses local features instead of holistic features is proposed in
(Ryan et al.,2009). The authors use a foreground subtraction technique, and the local features
are extracted with respect to blob segments. The number of people in each blob segment is
estimated so that the accumulation of all the segments in the scene is the scene estimation.
The authors tested their approach on two classifiers: a neural network classifier and a linear
model classifier. The training set, which consisted of 160 frames, used for the classifier was
manually annotated with ground truth data (number of segmented blobs). Additionally, the
neural network was trained consecutively five times and the median MSE was noted. The
lowest MSE result occurred using the linear model classifier with a result of 3.065, this was

tested on 1200 frames. The authors claim the neural network would have presented better
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results if the training data were larger.

B.2.3 Corner point-based Approach

Kong et al.| (2006)) use a feed-forward neural network in a viewpoint invariant learning-based
method to map the connection between the number of pedestrians and the feature histogram
extracted from low-level features. Instead of simple features, the authors use feature histograms
because they consider it to be more accurate in terms of pedestrian counting and better with
noise handling. The system extracts background and edge features, fuses them together, and
then normalises them with respect to perspective projection and camera orientation. These
features are then used to train a supervised feed-forward neural network. The authors test their
suggested method using footage from multiple venues that include different camera positioning.
They present their result in a graphical format to display the performance and prospect of the

algorithm but error evaluation measurements were not provided.

A multi-output regression model is presented in |Chen et al.| (2012) where the model was
automated to learn the functional mapping between multi-dimensional structured output and
interdependent low-level features. Even with diverse environments, the model was capable of
counting people by finding the intrinsic importance of multiple features. The outline of the
model is described in four steps: initially, a perspective normalisation map is deduced by using
the|Chan et al.|(2008) technique. Subsequently, for each cell region, low-level features such as
foreground, edge, and texture are extracted from the training set. Next, the extracted features
of each cell are used to create intermediate feature vectors, which are connected together to
form a single feature vector. Lastly, the resulting single feature vector and the intermediate
feature vectors are paired for the training of a multi-output regression model based on multiple
variants of ridge regression. The authors tested their approach on two datasets: the UCSD
dataset (Chan et all}|2008) and their own Mall dataset. The authors followed the standard
Train/Test partitioning of the UCSD dataset but for the Mall dataset the authors chose 800
frames for training and 1200 frames for testing; the experiment showed an MSE result of 8.08

and 15.7 for each dataset respectively.

An enhanced crowd counting method proposed by |Liang et al.| (2014) mainly uses feature
points. The goal of the approach was to extract crowd characteristics such as orientation and
count. The authors present a three-frame difference algorithm, shown in Figure [112] to find
the foreground of only entities that present movement. The extracted foreground was then
used for the detection of feature points. The method makes use of the SURF (Speeded Up
Robust Feature) algorithm with additional adjustments applied to make the algorithm more
robust. Furthermore, after the removal of non-motion feature points, an enhanced clustering
algorithm DBSCAN (Density-Based Spatial clustering of Application with Noise) (Ester et al.,
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1996) was used to cluster the remaining feature points. The feature points are tracked using the
combination of local optical flow (Lucas and Kanade||1981) (further explained in Section
and Hessian matrix algorithm to determine the crowd flow orientation. Additionally, a support
vector regression machine is trained with extracted eigenvectors for crowd counting. The
testing of this algorithm displays improved results when compared to other approaches. The
authors noted evaluation metrics when testing on the PETS dataset with respect to both
crowd flow orientation and crowd counting results. As for crowd counting, four different video
sequences with different densities (low, medium, high, combination) are documented with a
mean absolute error (MAE) of 1.01%, 1.17%, 4.33%, and 1.39% respectively.
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Figure 112: The three-frame difference algorithm. Adapted from (Liang et al.,|2014)
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C Tracking / Person Re-Identification

C.1 Contextual Approach

An early paper written by|Javed et al.|(2008) argues that pedestrians often use similar pathways
when walking; the authors use this phenomenon to form a connection between the travelled
paths. The suggested algorithm learns the space-time cues and therefore learns the inter-camera
connection; these are used to constrain a relationship between cameras. Moreover, with the use
of kernel density estimation, the relationships are modelled as probability density functions of
space-time variables such as entrance/exit locations, velocity, and transition times. Javed et al.
(2008)) suggest that objects moving from one camera into another often present appearance
alterations. This can be managed with the use of a brightness transfer function between camera
pairs that lie in a low dimensional subspace. The probabilistic principal component analysis is
used to train the algorithm to learn this subspace. With the use of cues such as location and
appearance, a maximum likelihood (ML) estimation framework is implemented for tracking.
The algorithm is tested on real-world footage to validate near real-time implementation of the

proposed algorithm. However, quantitative results are not documented.

For re-identification using multiple cameras, |Gandhi and Trivedi| (2007) use a Panoramic
Appearance Map (PAM). The approach extracts features from all the footage, taken from
multiple cameras, which can view the targeted object. These features are combined to create
a single signature. To find the position of the intended object multiple-camera triangulation is
used to place a cylinder-shaped model around the location of the object. The panoramic map
is created with the horizontal axis representing the azimuth angle, taking into consideration
real-world coordinates. Meanwhile, the vertical axis denotes the height of the object with
respect to the ground plane. With the use of extracted colour information from different maps,
a comparison can be made to determine probable object matches. |Gandhi and Trivedi (2007)
proposed to do this comparison with the use of weights to the sum of squared differences. For
the approach to work properly, there is a requirement that three or more cameras simultaneously
view the object. Furthermore, 3D positioning and calibration of the cameras is a must to ensure

re-identification.

3D information extracted from footage by various cameras is used for a surveillance system
developed by (Baltieri et al.| (2011) that can detect, track, and re-identify individuals. The
approach is built on three key modules: detection of an object, short-term tracking, and
long-term tracking. The detection module merges information extracted from all camera views
to detect an object and find its location on the ground plane. 3D Marked Point Process
model takes two pixel-level features as its input and can then approximate the location and

height of the object with the use of a stochastic optimisation framework. For short-term
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tracking, the authors use a Kalman filter to track individuals taking into use the detection
results achieved. Local matching is achieved with the use of geometrical and spatial data.
Lastly, long-term tracking finds the trajectories corresponding to the same object and then
matches and combines them together for re-identification. The authors evaluate their detection
results using two datasets: PETS (Ferryman and Shahrokni} 2009) and EPFL Terrace indoor
(Berclaz et al.,|2011), with a total error rate (TER) of 10% and 7% respectively. The TER is
the summation of the rates of missed detection, false detection, and multiple instances. The
long-term tracking was evaluated using precision and recall values with results of 72.73% and

88.8% respectively.

C.2 Non-Contextual Approach

A more novel method, by Bazzani et al.| (2010), presented an identification signature named
Histogram Plus Epitome (HPE). The method extracts features from multiple images of a
human then the features are concentrated to develop the signature. It begins by processing
multiple images, preferably from a single-camera, to obtain silhouettes of the body. Images
that are considered redundant or outliers are removed using unsupervised Gaussian clustering
technique (Figueiredo and Jain, |2002). The human appearance is then described using two
complementary features: global and local. The global appearance features are represented
using an HSV (hue, saturation and value) histogram, while the local features are encoded
through epitomic analysis, which uses recurring local patches. Finally, appearance matching is
implemented through a weighted sum of feature similarities. Although quantitative results are
not noted, experiments are applied to two datasets: i-LIDS (Advanced Video and Signal based
Surveillance, 2007)) and ETHZ (Ess et al.;2007). The authors claim their method has better
results in comparison to the best performing technique at the time. Additionally, occlusions

and crowded scenes are handled well with this method.

Bazzani et al.|(2013) and |Farenzena et al. (2010) applied Symmetry-Driven Accumulation of
Local Features (SDALFs) to distinguish the appearance of an object with the use of visual cues.
The descriptor is constructed with symmetry-driven appearance-based features combined with a
simple distance minimisation technique for object matching. The approach begins by localising
meaningful body parts such as head, upper body, and lower body leading to the removal of
unnecessary background data. The localised parts are used to extract three corresponding
appearance characteristics. The first makes use of a weighted HSV histogram to encode
global chromatic substance. The second uses Maximally Stable Colour Regions (MSCR) to
encode the colour displacement per-region. Finally, a per-patch similarity analysis technique is
employed to approximate the Recurrent Highly Structured Patches (RHSP). The authors apply
the SDALFs method for both re-identification and multiple target tracking. Experimental
results are shown with the use of the benchmark dataset (CAVIAR)|2003) for testing, more
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specifically the shopping centre scene. The authors show comparison against other tracking
descriptors with detailed evaluation metrics such as false positives, false negatives, and average
tracking accuracy with the results of 0.0608, 0.1852, and 0.4567 respectively (Bazzani et al.|
2013). The results note significant enhancements; additionally, the descriptor is able to handle

pose, viewpoint, and illumination changes.
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D GANs Experimentation

The following image is a collection of the results produced by the various types of GANs
implemented on the MNIST dataset. The method type, the results of the first epoch and the

results of the last epoch are displayed in Figures|113|114|and|115] The methods experimented
below are the works of: (Makhzani et al.,2015)!, (Odena et al.|[2017)?, (Hjelm et al., 2017)3,
(Donahue et al.| 2016)*, (Denton et al., |2016)°, (Mirza and Osindero| [2014)°, (Goodfellow
et al.,[2014)7, (Radford et al.,2015)2, (Chen et al.|[2016))°, (Bousmalis et al.| 2017)°, (Odena,
2016)'*, (Martin A. and Bottou| 2017)*2, (Gulrajani et al.| 2017)%.
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Figure 113: Results produced from various type of GANs
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Figure 114: Results produced from various type of GANs
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Figure 115: Results produced from various type of GANs

213





