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Abstract— Digital twin and artificial intelligence technologies 
have proliferated as crucial enablers for Industry 4.0. With a 
digital twin, companies can digitally test and validate a product 
before it exists in the real world. By digitally recreating the 
planned production process for real-world use, engineers can 
identify any potential process changes before they happen. This 
brief survey summarizes their general developments and the 
current state of AI integration in smart manufacturing and 
advanced robotics. This survey also covers industrial 
automation and emerging techniques, such as 3D printing. 
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I. INTRODUCTION  
Environmental issues such as carbon emission and pollution 
have required industries to shift from conventional economic 
growth to sustainable development. Achieving holistic 
sustainability will ordinarily require balancing financial, 
environmental, social & governance factors [3]. Balancing 
these factors will increase manufacturing costs and 
simultaneously raise severe challenges for their organizations 
& processes. 
Smart manufacturing and Industry 4.0 aim to construct a 
universal networked architecture that addresses the 
interoperability and compatibility issues within and across all 
automation systems and factories, thus improving the 
flexibility and agility of conventional manufacturing [1]. 
With the profound research and development of Industry 4.0, 
artificial intelligence (AI) and digital twin have drawn 
growing research attention [2].  
  
Digital twin technology facilitates us to build a virtual design 
of any object or system and enables us to view the insights of 
the real-world behavior of that object or system under any 
circumstances. Combining Al that uses the data gathered 
from sensors or measurements and digital twin will alter and 
enhance the behavior of the digital twin. AI-powered digital 
twin technology is expected to adopt the traditional model-
based approaches to the evolving boundary conditions. 
Further, this technology efficiently provides a demand-
oriented, real-time evaluation basis to support decision-
making in multi-objective problems [4]. 
 
So far, much research has discussed and characterized the 
digital twin from the viewpoint of general concepts. 
However, there is a need for more specific studies that focus 
on AI to provide an accurate account between it and other 
technologies like modeling or simulation methods that can be 

used across various fields. This would also allow us to 
understand how these two factors come together when 
applied using product design approaches such as fault 
diagnostics and prognosis technologies [5]. 

II. MANUFACTURING 

In recent years, research in the field of Industry 4.0 has been 
ongoing for some time now, with an increased focus put on 
cyber-physical production systems and integrative techniques 
[6]. This involves using simulation models to provide the 
basis for creating digital twins throughout the product 
lifecycle. This is regarded as an essential enabler for the 
future of manufacturing industries.  

 In this age of big data, data analysis can provide digital 
twinning throughout all stages of a product's life cycle. This 
enables efficiency in manufacturing industries throughout all 
stages of the product's life cycle. From the completed product 
to its end life, thus ensuring resources can be reused [7]. 

 

 

Fig 1. A holistic assessment of sustainable productivity, 
adapted from [7]. 
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Financial, environmental, social, and governance factors are 
important indicators that can be used in understanding 
productivity in manufacturing [7], Figure 1. These indicators 
can provide a way of assessing how many products are being 
made and their environmental impact. This includes factors 
such as water use and waste generation in production 
processes, along with company policies that affect 
employees' quality of life. The research shows that embracing 
the trilemma of productivity, availability, and quality 
(proclaimed as financial) toward sustainable, resilient 
manufacturing companies can improve their environmental 
footprint. 

III. GENERAL DEVELOPMENTS 

Individual customer demand for products at a premium poses 
a new challenge to production systems in the current market 
environment. This includes volatile markets demanding more 
flexibility in using resources like capital expenditure or labor 
hours. Manufacturers may have to consider automation as an 
option [8]. This could be done through mixed reality 
assistance, allowing industrial enterprises to see what they 
need before making any decisions. This would also provide 
them opportunities within automated systems, such as 3D 
printing toolsets. Where necessary, data files will 
automatically download onto designated devices during 
processing time, so there is no human involvement [9]. With 
the help of AI and sensors enhanced by cloud computing and 
edge computing [10], the initiative of the digital twin 
becomes a distributed control system capable of handling 
increasingly complex operational problems. Such as 
production planning or scheduling, detailed environments 
can be generated in 3D point clouds [11]. Given these 
technologies, the digital twin has shown that it can deal with 
complex production and operational problems [12]. The era 
of Industry 4.0 has led to a paradigm shift in the 
manufacturing process, which is creating new challenges for 
industrial enterprises. This would include production systems 
and management, automated productions methods (such as 
robots), and cloud and edge computing. 

IV. INTEGRATING AI 

The availability of data from industrial production processes 
in a networked system landscape acts as a technical enabler 
for increasing the relevance and potential application areas 
such as AI-driven approaches. Utilizing AI at this level 
improves the adaptability of digital twins, which can 
dynamically change the boundary conditions at the factory 
floor level. This further opens up new possibilities to 
optimize manufacturing systems. Table 1 lists the different 
AI algorithms that have been used in digital twins. An 
example of this is the line-less mobile assembly which allows 
agile building and maintenance of large-scale components. 
This can be enabled by modeling and scheduling software 
with access to dynamic conditions that change quickly at 
small scales within individual facilities [13]. 

Table 1. AI algorithms used in digital twins 

Algorithm 
Type 

Algorithm Use Case 

 
 
 
 
 
 
 
 
 
 
 
 

Supervised 
Learning 

 

AdaBoost, 
XGBoost, 

Decision Tree 
Support 
Vector 

Machine, 
Decision tree 

 
Artificial 
Neural 

Network 
 

Convolutional 
Neural 

Network 
Monte Carlo 

method 
 

Recurrent 
Neural 

Network 
 
 

Optimum yield of 
the light oil [21] 

 
Anomaly detection 

of surface deviations 
[27] 

 
 

Welding quality 
prediction of 

deformation [27] 
 

Feature recognition 
of parts [44] 

 
Simulating the 

workspace of the 
mechanisms [45] 

Prediction of 
dynamic states in 
metal cutting [39] 

 

 
 
 
 
 
 

Unsupervised 
Learning 

Principle 
component 

analysis  
 

K-means 
clustering 

 
 

Autoencoder 
 
 

Generative 
Adversarial 

Network 
 

 

Object recognition 
of a smart gripper 

[41] 
 

Anomaly detection 
of surface deviations 

of a truck 
component [38] 

Fringe projection 
profilometry for 3D 

[46] 
Prediction of 

machining vibration 
signals [47] 

 

Reinforcement 
Learning 

Deep Q-Network Optimization of conveyor 
systems [20] 

The parallel computing power of GPUs is a considerable 
advantage when it comes to simulating manufacturing 
processes. To make use of this, engineers often compensate 
for offline simulations with more detailed preprocessed 
models that can be trained using machine learning and deep-
learning methods. This not only updates time-consuming 
numerical calculations. But also capture critical insights 
about how materials interact within their system without 
needing high precision at all levels.  

Inline sensors that use machine learning and deep-learning 
methods to monitor production will provide companies with 
more information about their processes. This means they can 
optimize the space-time yield, accelerating innovation in 
areas such as new products or services for customers. A 
lightweight model equipped with these types of software 
could be used during rapid scaling up periods. This way, fast 
insights can be gained without sacrificing accuracy. 

There are many approaches to condition monitoring and 
predictive maintenance. The most common one is using 
process indicators that can be recorded from sensors directly 
or determined indirectly by them. Nevertheless, this increases 
the installation cost because there must be an external source 
for each type of sensor attached on top of the machinery. 



Most supervised learning algorithms require large amounts of 
labeled training data to obtain models with high accuracy in 
predicting future behaviors or trends from historical records. 
Labeling data is often an expensive and time-consuming task. 
The complexity and the size of the data set determine how 
much work goes into labeling. The accuracy of the labeling 
and the feature selection affect the outcome of the learning 
algorithm. The algorithms that are generally found in digital 
twins include support vector machines [37], decision trees 
[18], k-nearest neighbors [38], convolutional neural networks 
and recurrent neural networks [39]. 

Unsupervised learning is a method that does not require any 
labeling of data. The model infers patterns from the unlabeled 
input clustering algorithms such as principal component 
analysis [41] and k-means clustering [40]. These two 
methods have different goals. Principal component analysis 
helps to reduce the number of features while preserving 
variation, whereas clustering reduces data points by 
summarizing several points into their expected or mean 
values (in the case of k-means). Additionally, generative 
adversarial networks [44] variational autoencoders [44] also 
use unlabeled data. 

A significant challenge in applying clustering algorithms is 
that the number of clusters is unknown and must be 
determined a priori. The similarity between two items is 
determined by the Gaussian, Euclidean, or cosine distance for 
clustering algorithms. These can be acceptable for specific 
tasks, but none defines what should happen if there is no exact 
match between them. Nevertheless, something needs to occur 
with these situations where intelligent agents have goals and 
behaviors defined against environments that may contain 
unknown obstacles.  

Reinforcement learning algorithms do not merely look at one 
agent interacting within its world; instead, they consider all 
possible interactions between multiple bots. Then use a 
reward function to maximize cumulative rewards while 
accounting for both successfully executed actions. 
Researchers have used reinforcement learning algorithms to 
optimize decision-making processes in inbox sorting, 
conveyor systems, and other digital twin scenarios. These 
include deep deterministic policy gradient, Q learning [23], 
and deep reinforcement learning [24] models. Reinforcement 
learning algorithms are dependent on reward structures that 
need accurate data, or they will break down during training 
due to sometimes incorrectly logged references. 

V. PRODUCTION PLANNING AND CONTROL 

Production planners need to use artificial intelligence and 
digital twin to produce more efficiently. Figure 2 shows the 
connection between multiphsics modeling and digital twin 
and how they are connected using a data-driven approach. 
The maturity model of this approach [14] would allow for 
digitally connected intelligent systems that are adaptive in 
nature. They can adjust on-the-fly when faced with different 
circumstances or conditions during planning stages before 
implementing any optimizations at the green design and 
production planning phase. Ordinarily, decision trees [15] 

can be used in the digital twin to create rules that are enabled 
in intelligent systems. This will enable them to optimize key 
performance indicators better than before. Additionally, 
genetic algorithms [16] have been used to solve scheduling 
problems in production lines. Others [18] have used a deep 
Q-network with graph convolution networks to solve the 
dynamic scheduling problems. 

The digital twins at the production control stage can be 
equipped with decision trees [19] and tree-based ensemble 
models such as AdaBoost [20] or XGBoost [21] and Deep 
Neural Networks [22]. These methods optimize resource 
allocation for manufacturing performance indicators on time. 
However, multi-objective problems are usually interpreted as 
non-deterministic polynomial-time hard. Because this is due 
to the complexity and dynamics within factory production 
environments and can be ameliorated using reinforcement 
learning algorithms, have been used [23]. In particular, deep 
Q network and deep reinforcement learning for heuristic 
optimization or supervised approaches have successfully 
achieved global optimal economic and logistic KPIs [24]. 

 

Fig. 2. Diagram showing the connection between a 
multiphysics model and a digital twin. 

Humans in the manufacturing equation are unpredictable and 
vary significantly from one another in terms of moods. 
Researchers [25] have sought to incorporate humans as a 
component of smart manufacturing. The solution they came 
up with is called situational selection. This allows decisions 
based on how an agent will behave when given specific 
incentives (rewards). This concept uses machine learning 
algorithms (reinforcement learning) trained using data 
gathered from human behavior patterns monitored over time. 
These models allow forecasting what someone might do 
based solely on their current state/mood without any input 
about personal preferences.  



VI. QUALITY CONTROL 

Machine learning has helped identify potential quality issues 
that would otherwise go unnoticed by less sophisticated 
methods. Various computer vision models have been used 
[26] to address quality issues and efficiency in the assembly 
of products. Decision trees, support vector machines, or 
artificial neural networks have been used to predict or detect 
deformations in production [27]. These algorithms [28] have 
also been used to support decision-making in the production 
planning stage using historical production data. Digital twins 
of production systems, in combination with model-based 
system engineering, can be modeled and adapted modularly 
as a virtual testbed, which provides optimization 
opportunities for the runtime environment [29]. 

VII. ROBOTICS 

Robotic systems are becoming popular in industry due to 
their ability for multi-robot coordination or collaboration 
[30]. With a digital twin of these robots, human safety is often 
considered when interacting with them, which creates an 
environment that is sustainable working alongside robotics 
technology without risks associated with traditional work. 
Many different methods can be used to implement robots in 
the real world. Examples include kinematics and 
communication control planning energy modeling for 
industrial robot tasks like welding or cleaning products [31]. 

Recently, new concepts and use cases utilizing artificial 
intelligence for semi and fully autonomous robotic systems 
have been reported [32]. These include transfer learning and 
imitation learning, also known as apprenticeship learning or 
learning from demonstration. Imitation Learning, featured in 
digital twins, generates high accuracy output. Many times, it 
is not possible to build high-fidelity dynamic models. This 
can lead engineers in the field to have difficulty making 
decisions about how an object would behave if made with 
certain materials used during its construction process. With 
digital data-driven twins that are AI-ready, complex robotic 
systems can be built [33].   

VIII. CONCLUSION 

The industrial and systems engineering field has been using 
artificial intelligence to enhance productivity. This 
technology increases efficiency and provides a holistic view 
of sustainability. That can be used by businesses everywhere 
to make better decisions on where they invest money, what 
programs need to be implemented next. From such a 
perspective, digital twins are AI-enabled and are considered 
service agents [34]. Digital twins provide innovative, 
intelligent services via a network of machines that can be 
accessed as needed. This allows for the delivery and 
sustainability of manufacturing solutions, helping 
manufacturers accomplish a vital shift to ongoing service 
offerings [35]. 

The mainstay of the manufacturing industry has long been a 
focus of research. Nevertheless, complex, and varying 

working conditions make it challenging to transfer findings 
from these studies into real-world settings that often require 
more elaborate analytical models or empirical measurements 
on an individual level than what can be found in practice with 
just sparse datasets alone. The data-driven approach to 
manufacturing can provide an additional unique opportunity 
for improvement by using each system as a "tuning fork". 
This would further enhance the database, which houses all 
measured information about production indicators and 
labeled training samples used during model development.  

The availability of datasets is improving, which extends the 
boundaries for machine learning and deep-learning systems 
in fault diagnosis. This allows manufacturers to use these 
technologies with greater success. It also opens new 
prospects when using AI-driven digital twins like prognostics 
or system health management. 

AI-driven digital process twins are envisioned to learn and 
interpret the implicit correlation between manufacturing 
processes. Material and process parameters from an 
aggregate of (heterogeneous) data used in machine learning 
can ramp up production and quality assurance. 

The development and deployment of algorithms in practice 
can be improved by considering new sensor technologies 
[36]. Despite being significant to the engineering process, 
sensor technologies are often overlooked when constructing 
models, which are essential in deploying them successfully 
on real-world problems. 

The development of new manufacturing techniques, such as 
3D printing and lightweight production for metals or 
composites, lead to innovative concepts. Such techniques will 
also save resources during the design and manufacturing 
phases. These new manufacturing techniques also provide an 
essential basis for future products to operate without 
consuming too much energy sustainably. These 
advancements are, therefore, all-encompassing in their 
sustainability upgrades. 

Digital twins are a new way to bring digital data and physical 
reality together. These artificial intelligence techniques 
involve several methods, including supervised learning, 
unsupervised learning, reinforcement algorithms, or other 
intelligent computational models that can be used for 
machine-type thinking. 

The potential for digital twins to contribute toward industrial 
economic growth and continuously upgrade sustainable 
aspects is remarkable. AI techniques allow these virtual 
creations to arm themselves with tools that help them make 
models based on observed behavior and historical data. This 
improves efficiency when analyzing large amounts of less 
compatible information sets. This increased prediction 
accuracy can be valuable across many fields, including 
resource management. 

 

REFERENCES 



 
[1] Lokuwaduge, CSDS; Heenetigala, K. Integrating Environmental, 

Social and Governance (ESG) Disclosure for a Sustainable 
Development: An Australian Study. Bus. Strategy Environ. 2017, 26, 
438–450. 

[2] Scharl, S.; Praktiknjo, A. The Role of a Digital Industry 4.0 in a 
Renewable Energy System. Int. J. Energy Res. 2019, 43, 3891–3904 

[3] Lokuwaduge, CSDS; Heenetigala, K. Integrating Environmental, 
Social and Governance (ESG) Disclosure for a Sustainable 
Development: An Australian Study. Bus. Strategy Environ. 2017, 26, 
438–450. 

[4] Lim, K.Y.H.; Zheng, P.; Chen, C.H. A state-of-the-art survey of Digital 
Twin: Techniques, engineering product lifecycle management and 
business innovation perspectives. J. Intell. Manuf. 2020, 31, 1313–
1337. 

[5] Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y. Digital twin driven prognostics 
and health management for complex equipment. CIRP Ann. 2018, 67, 
169–172. 

[6] Monostori, L.; Kádár, B.; Bauernhansl, T.; Kondoh, S.; Kumara, S.; 
Reinhart, G.; Sauer, O.; Schuh, G.; Sihn, W.; Ueda, K. Cyber-physical 
systems in manufacturing. CIRP Ann. 2016, 65, 621–641. 

[7] Boos, W. Die Produktionswende—Turning Data into Sustainability. 
White Paper. 2021. Available online: https://www.rwth-
campus.com/wp-content/uploads/2015/01/White-
Paper_Produktionswende-Cluster-Produktionstechnik-1.pdf (accessed 
on 20 January 2022) 

[8] Ding, K.; Chan, F.T.; Zhang, X.; Zhou, G.; Zhang, F. Defining a Digital 
Twin-based Cyber-Physical Production System for autonomous 
manufacturing in smart shop floors. Int. J. Prod. Res. 2019, 57, 6315–
6334. 

[9] Feng, X.; Zhao, Z.; Zhang, C. Simulation optimization framework for 
online deployment and adjustment of reconfigurable machines in job 
shops. In Proceedings of the 2020 IEEE International Conference on 
Industrial Engineering and Engineering Management (IEEM), 
Singapore, 14–17 December 2020; pp. 731–735. 

[10] Cai, Y.; Starly, B.; Cohen, P.; Lee, Y.S. Sensor Data and Information 
Fusion to Construct Digital-twins Virtual Machine Tools for Cyber-
physical Manufacturing. Procedia Manuf. 2017, 10, 1031–1042. 

[11] Minos-Stensrud, M.; Haakstad, O.H.; Sakseid, O.; Westby, B.; 
Alcocer, A. Towards automated 3D reconstruction in SME factories 
and digital twin model generation. In Proceedings of the International 
Conference on Control, Automation and Systems, PyeongChang, 
Korea, 17–20 October 2018; pp. 1777–1781. 

[12] Schuh, G.; Blum, M.; Reschke, J.; Birkmeier, M. Der digitale schatten 
in der auftragsabwicklung. ZWF Z. Fuer Wirtsch. Fabr. 2016, 111, 48-
51 

[13] Wagner, R.; Haefner, B.; Lanza, G. Function-oriented quality control 
strategies for high precision products. Procedia CIRP 2018. 

[14] Busch, M.; Schuh, G.; Kelzenberg, C.; De Lange, J. Development of 
production planning and control through the empowerment of artificial 
intelligence. In Proceedings of the 2019 2nd International Conference 
on Artificial Intelligence for Industries, AI4I 2019, Laguna Hills, CA, 
USA, 25–27 September 2019; pp. 115–118. 

[15] Rojek, I.; Mikołajewski, D.; Dostatni, E. Digital twins in product 
lifecycle for sustainability in manufacturing and maintenance. Appl. 
Sci. 2021, 11, 31. 

[16] Negri, E.; Pandhare, V.; Cattaneo, L.; Singh, J.; Macchi, M.; Lee, J. 
Field-synchronized Digital Twin framework for production scheduling 
with uncertainty. J. Intell. Manuf. 2020, 32, 1207–1228. 

[17] Hu, L.; Liu, Z.; Hu, W.; Wang, Y.; Tan, J.; Wu, F. Petri-net-based 
dynamic scheduling of flexible manufacturing system via deep 
reinforcement learning with graph convolutional network. J. Manuf. 
Syst. 2020, 55, 1–14. 

[18] Min, Q.; Lu, Y.; Liu, Z.; Su, C.; Wang, B. Machine Learning based 
Digital Twin Framework for Production Optimization in Petrochemical 
Industry. Int. J. Inf. Manag. 2019, 49, 502–519. 

[19] Singgih, I.K. Production Flow Analysis in a Semiconductor Fab Using 
Machine Learning Techniques. Processes 2021, 9, 407. 

[20] Jaensch, F.; Csiszar, A.; Kienzlen, A.; Verl, A. Reinforcement learning 
of material flow control logic using hardware-in-the-loop simulation. 
In Proceedings of the 2018 1st IEEE International Conference on 
Artificial Intelligence for Industries, AI4I 2018, Laguna Hills, CA, 
USA, 26–28 September 2019; pp. 77–80. 

[21] Waschneck, B.; Reichstaller, A.; Belzner, L.; Altenmüller, T.; 
Bauernhansl, T.; Knapp, A.; Kyek, A. Optimization of global 
production scheduling with deep reinforcement learning. Procedia 
CIRP 2018, 72, 1264–1269. 

[22] May, M.C.; Overbeck, L.; Wurster, M.; Kuhnle, A.; Lanza, G. 
Foresighted digital twin for situational agent selection in production 
control. Procedia CIRP 2021, 99, 27–32. 

[23] Zhou, G.; Zhang, C.; Li, Z.; Ding, K.; Wang, C. Knowledge-driven 
digital twin manufacturing cell towards intelligent manufactur- ing. Int. 
J. Prod. Res. 2020, 58, 1034–1051. 

[24] Li, L.; Liu, D.; Liu, J.; Zhou, H.G.; Zhou, J. Quality prediction and 
control of assembly and welding process for ship group product based 
on digital twin. Scanning 2020, 2020, 3758730. 

[25] Zhang, C.; Zhou, G.; Hu, J.; Li, J. Deep learning-enabled intelligent 
process planning for digital twin manufacturing cell. Knowl.-Based 
Syst. 2020, 191, 105247. 

[26] Delbrügger, T.; Rossmann, J. Representing adaptation options in 
experimentable digital twins of production systems. Int. J. Comput. 
Integr. Manuf. 2019, 32, 352–365. 

[27] Li, L.; Liu, D.; Liu, J.; Zhou, H.G.; Zhou, J. Quality prediction and 
control of assembly and welding process for ship group product based 
on digital twin. Scanning 2020, 2020, 3758730. 

[28] Zhang, C.; Zhou, G.; Hu, J.; Li, J. Deep learning-enabled intelligent 
process planning for digital twin manufacturing cell. Knowl.-Based 
Syst. 2020, 191, 105247. 

[29] Delbrügger, T.; Rossmann, J. Representing adaptation options in 
experimentable digital twins of production systems. Int. J. Comput. 
Integr. Manuf. 2019, 32, 352–365. 

[30] Shen, Y.; Guo, D.; Long, F.; Mateos, L.A.; Ding, H.; Xiu, Z.; Hellman, 
R.B.; King, A.; Chen, S.; Zhang, C.; et al. Robots Under COVID-19 
Pandemic: A Comprehensive Survey. IEEE Access 2020, 9, 1590–
1615. 

[31] Liang, C.J.; McGee, W.; Menassa, C.; Kamat, V. Bi-Directional 
Communication Bridge for State Synchronization between Digital 
Twin Simulations and Physical Construction Robots. In Proceedings of 
the 37th International Symposium on Automation and Robotics in 
Construction (ISARC), Kitakyushu, Japan, 26–30 October 2020. 

[32] Maschler, B.; Braun, D.; Jazdi, N.; Weyrich, M. Transfer Learning as 
an Enabler of the Intelligent Digital Twin. Procedia CIRP 2020, 100, 
2-7 

[33] Yu, J.; Yuan, J.; Wu, Z.; Tan, M. Data-Driven Dynamic Modeling for 
a Swimming Robotic Fish. IEEE Trans. Ind. Electron. 2016, 63, 5632–
5640. 

[34] Meierhofer, J.; West, S.; Rapaccini, M.; Barbieri, C. The Digital Twin 
as a Service Enabler: From the Service Ecosystem to the Simulation 
Model. In Lecture Notes in Business Information Processing; Springer 
International Publishing: Porto, Portugal, 2020; Volume 377 LNBIP, 
pp. 347–359._25. 

[35] Kampker, A.; Stich, V.; Jussen, P.; Moser, B.; Kuntz, J. Business 
models for industrial smart services—the example of a digital twin for 
a product-service-system for potato harvesting. Procedia CIRP 2019, 
83, 534–540. 

[36] Brecher, C.; Eckel, H.M.; Motschke, T.; Fey, M.; Epple, A. Estimation 
of the virtual workpiece quality by the use of a spindle- integrated 
process force measurement. CIRP Ann. 2019, 68, 381–384. 

[37] Zhao, Z.; Wang, S.; Wang, Z.; Wang, S.; Ma, C.; Yang, B. Surface 
roughness stabilization method based on digital twin-driven machining 
parameters self-adaption adjustment: A case study in five-axis 
machining. J. Intell. Manuf. 2020, 1–10. 

[38] Yacob, F.; Semere, D.; Nordgren, E. Anomaly detection in Skin Model 
Shapes using machine learning classifiers. Int. J. Adv. Manuf. Technol. 
2019, 105, 3677–3689. 

[39] Kabaldin, Y.G.; Shatagin, D.A.; Anosov, M.S.; Kolchin, P.V.; 
Kuz’mishina, A.M. CNC Machine Tools and Digital Twins. Russ. Eng. 
Res. 2019, 39, 637–644. 

[40] Yacob, F.; Semere, D.; Nordgren, E. Anomaly detection in Skin Model 
Shapes using machine learning classifiers. Int. J. Adv. Manuf. Technol. 
2019, 105, 3677–3689. 

[41] Jin, T.; Sun, Z.; Li, L.; Zhang, Q.; Zhu, M.; Zhang, Z.; Yuan, G.; Chen, 
T.; Tian, Y.; Hou, X.; et al. Triboelectric nanogenerator sensors for soft 
robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 
1–12. 



[42] Kabaldin, Y.G.; Shatagin, D.A.; Anosov, M.S.; Kolchin, P.V.; 
Kuz’mishina, A.M. CNC Machine Tools and Digital Twins. Russ. Eng. 
Res. 2019, 39, 637–644. 

[43] Jin, T.; Sun, Z.; Li, L.; Zhang, Q.; Zhu, M.; Zhang, Z.; Yuan, G.; Chen, 
T.; Tian, Y.; Hou, X.; et al. Triboelectric nanogenerator sensors for soft 
robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 
1–12. 

[44] Booyse, W.; Wilke, D.N.; Heyns, S. Deep digital twins for detection, 
diagnostics and prognostics. Mech. Syst. Signal Process. 2020, 140, 
106612. 

[45] Alexopoulos, K.; Nikolakis, N.; Chryssolouris, G. Digital twin-driven 
supervised machine learning for the development of artificial 
intelligence applications in manufacturing. Int. J. Comput. Integr. 
Manuf. 2020, 33, 429–439. 

[46] He, B.; Zhu, X.; Zhang, D. Boundary encryption-based Monte Carlo 
learning method for workspace modeling. J. Comput. Inf. Sci. Eng. 
2020, 20, 1–6. 

[47] Zheng, Y.; Wang, S.; Li, Q.; Li, B. Fringe projection profilometry by 
conducting deep learning from its digital twin. Opt. Express 2020, 28, 
36568. 

[48] Zotov, E.; Tiwari, A.; Kadirkamanathan, V. Towards a Digital Twin 
with Generative Adversarial Network Modelling of Machining 
Vibration. In International Conference on Engineering Applications of 
Neural Networks; Springer International Publishing: Cham, 
Switzerland, 2020; pp. 190–201._14. 

 

 


	I. Introduction
	II. Manufacturing
	III. General Developments
	IV. Integrating AI
	V. Production Planning and Control
	VI. Quality Control
	VII. Robotics
	VIII. conclusion
	References


