
2018 19th International Conference on Electronic Packaging Technology 
978-1-5386-6386-8/18/$31.00 ©2018 IEEE

A Numerical Procedure for the Optimization of IGBT 
Module Packaging  

Hua Lu†, Pushparajah Rajaguru and Chris Bailey  
Department of Mathematical Sciences, University of Greenwich, 

London, UK 
†Email: H.Lu@gre,ac.uk 

Abstract—A numerical solution procedure for optimizing the 
thermal-mechanical reliability of an IGBT module has been 
described in this paper. The procedure is robust and it can handle 
both discrete and continuous decision variables in the design of 
IGBT packaging. An example has been given to demonstrate its 
application. The objective functions in this example are the 
accumulated plastic work density in solder joints of a simplified 
IGBT module that is subject to cyclic temperature cycling and the 
maximum junction temperature when the model is subject to a 
constant thermal loading. The thickness of the chip mount-down 
solder, thickness of the substrate solder joint, and the location of 
the chip are used as continuous decision variables. The material 
selection for the baseplate is treated as a discrete variable. The 
objective function values are calculated using Finite Element 
Analysis method. 
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I.  INTRODUCTION 

Power electronics systems are found in numerous industrial 
and domestic applications and their design and manufacturing 
are key to the success of energy generation, conversion, 
distribution. At the heart of power electronics systems are 
semiconductor devices such IGBT modules which are crucial in 
defining the performance and reliability of power electronics 
systems [1].  

Fig. 1 shows that the structure of an IGBT module which 
consists of silicon chip, chip solder, DBC copper, ceramic 
substrate, DBC copper, substrate solder, baseplate, wirebonds 
and busbars. This highly inhomogeneous structure is susceptible 
to thermal mechanical failures that are caused by thermal 
mechanical fatigue near material interfaces. One of the 
important issue for packaging designers and manufacturers to 
minimize the risk of these failures.  

As a potentially cost-effective design method, virtual 
prototyping has been widely used in the industry. It can speed 
up the design and testing process and to achieve designs with 
optimal functional performance and reliability. The software 
tools that are used for virtual prototyping can be general software 
packages but they could also be specialized software tools such 
as the one that has been proposed by Evan et al [2]. The 
advantages of the latter over general purpose software tools for 
design optimization are that it can be simpler to develop, quicker 
to learn and more efficient.  

Fig. 1. The structure of an IGBT module which contains 4 IGBT-diode pairs. 
The wirebonds are not shown in the drawing.  

In any virtual design tool, one of the important part is a 
numerical optimization algorithm that can be used to find the 
optimal design automatically. Typical engineering designs are 
affected by many parameters and there could also be more than 
one objective function. This means that design engineers must 
deal with multi-objective-optimization (MOO) problems in 
multi-dimensional design spaces. Furthermore, the decision 
variables can be continuous discrete. In this work, the aim is to 
develop a robust MOO procedure that is capable of solving 
IGBT design problems that are multi-objective and have both 
continuous and discrete variables. The method is based on 
particle-swarm optimization (PSO) and therefore it will be 
called a multi-objective particle swarm optimization (MOPSO) 
method.  

II. METHODOLOGY

For a problem with l continuous decision variables (DVs), m 
discrete DVs, n objective functions (OBJs), p inequality 
constraints and q equality constraints, the optimization problem 
can be expressed as following. 

min ሼ𝐹ଵሺ𝑋ሻ, 𝐹ଶሺ𝑋ሻ, … 𝐹௡ሺ𝑋ሻሽ (1) 

where 𝑋 ൌ ሺ𝑥ଵ, … 𝑥௟, 𝑥௟ାଵ, 𝑥௟ା௠ሻ. 

𝑥௜
௠௜௡ ൑ 𝑥௜ ൑ 𝑥௜

௠௔௫ , 1 ൑ 𝑖 ൑ 𝑙 ൅ 𝑚 (2) 

pjXGj  1,0)( (3) 

𝐻௞ ൌ 0,   1 ൑ 𝑘 ൑ 𝑞, (4) 
where xi are decision variables, X is the DV variable vector, 
Fi(X) are objective functions, Gj and Hk are state variables for 
constraints, 𝑥௜

௠௜௡ and 𝑥௜
௠௔௫ are the lower and higher bounds of 

the i-th DV.  
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A. PSO and MOPSO 

PSO is a metaheuristic method for solving optimization 
problems [3,4]. It doesn’t use OBJ functions’ gradient which 
may make it slower to converge than gradient based methods but 
it is simple to implement and suitable for problems in which 
gradients are difficult or impossible to come by. For one 
objective optimization, PSO can be described as follows. 

Randomly select N initial candidate solutions in the design 
space. These solutions are called “particles”, and then these 
solutions evolve for required number of iterations and the 
optimal solution is obtained at the end of the process.  

The position of the i-th particle in the design space is 
represented by a vector  
𝑋௜ ൌ ሺ𝑥ଵ, 𝑥ଶ … 𝑥௟ሻ where l is the dimension of the design space 
(i.e. the number of DVs). At the t-th iteration, this vector is 
written as 𝑋௜ሺ𝑡ሻ. Assuming that the i-th particle’s best (local) 
solution so far at the t-th iteration is Pi, and the best (global)  
solution of  all particles is G, a velocity vector for the i-th particle 
can be calculated using Eq. 5. 

𝑣௜ሺ𝑡 ൅ 1ሻ ൌ 𝑣௜ሺ𝑡ሻ ൅ 𝐶ଵ𝑟ଵ൫𝑃௜ െ 𝑋௜ሺ𝑡ሻ൯ ൅ 𝐶ଵ𝑟ଶ൫𝐺 െ 𝑋௜ሺ𝑡ሻ൯ (5) 

where C1 and C2 are constant parameters and 𝑟ଵ and 𝑟ଶ  are 
random numbers with values between 0 and 1. As it is suggested 
in [3], it is assumed that C1 = C2 =2 in this work. At the next 
iteration, the particle’s location is updated using Eq. 7 for both 
the continuous and discrete DVs but for the latter, the values are 
rounded to the nearest integers. 

𝑋௜ሺ𝑡 ൅ 1ሻ ൌ 𝑋௜ሺ𝑡ሻ ൅ 𝑣௜ሺ𝑡 ൅ 1ሻ    (6) 

In MOMOO problems, there is no single ‘best solution’, 
global or local and the algorithm needs modification. A local set 
Li is used to store NL (which is a predefined size of the set) 
solutions that are selected from the i-th particle’s past solutions. 
A solution in Li is not dominated by any others in the set which 
means that other solutions are not better for all the OBJs. From 
the solutions in local sets of all the particles, a global set G with 
Ng solutions are created by using a Pareto filter [5] and Ng is a 
predefined global set size.  Li and G are updated at each iteration 
and new members may be added and the sizes of the Li and G 
are controlled using crowding distance [6]. If the number of 
solutions in a set exceeds the size of the set, only the members 
with the longest crowding distances are kept.  

To update the i-th particle’s velocity, a local leader is selected 
randomly from Li, and a global leader is selected from solutions 
in G and the selected global leader has either the longest or the 
shortest Euclean distance to particle i [7]. In this work, the 
velocity also includes a diversity preservation term for both 
continuous and discrete DVs [7]. For continuous and discrete 
DVs the terms are described in [7,8]. At the end of the iterative 
process, G contains the final solutions that form the Pareto front. 

B. Finite Element Analysis, DOE and Surrogate Models 

In solving an optimization problem, OBJ functions can be 
simple analytical expressions but for engineering design 
problems their evaluation has to rely on experiments or 
computer simulation. In this work, FEA is used to evaluate OBJs 
in the design optimization of IGBTs. Optimization may need 
large number of OBJ and other function evaluations and FEA 

simulation itself is often time consuming. This makes 
optimization computationally expensive.  In this work, design of 
experiment (DOE) and FEA are used to produce simple 
surrogate models, which are then used for OBJ function 
evaluation. 

III. IGBT DESIGN OPTIMIZATION 

One of the major IGBT failure mechanisms is the (substrate 
or chip) solder joint fatigue that is caused by temperature 
fluctuation in operation or during qualification tests. When the 
temperature change is relatively slow, as in temperature cycling 
tests, the reliability of the solder joints can be predicted using 
plastic strain or plastic work density 𝑊௣ in the solder layers for 
each loading cycle. When an IGBT is in operation or in some 
power cycling tests, the chips may experience rapid and often 
random changes in loading and in this situation, there isn’t 
enough time for heat energy to disperse and the raised junction 
temperature could affect the reliability of IGBTs. The junction 
temperature in this situation is to a great extent depend on the 
thermal resistance. Therefore both the thermal resistance and the 
maximum junction temperature Tmax are good reliability metrics 
for predicting the reliability of IGBT packages in operation or in 
power cycling tests [9]. In this work, Wp and Tmax are assumed 
to be the OBJs that will be minimized for optimal IGBT designs 
using MOO methods. 

A. FEA model 

Fig. 2 shows the structure of the IGBT that is studied.  In 
Table I, the nominal dimensions of the structure are listed.  

 
Fig. 2. IGBT structure. dc is a parameter to describe the location of the IGBT 
die relative to the substrate.  

TABLE I.  TYPICAL DIMENSIONS OF THE IGBT STACK. THE UNITS ARE IN 
mm.  

Chip 5x5x0.3 
chip solder 5x5x0.1 
DBC Cu 30x30x0.3 
Ceramic 32x32x1.0 

Substrate solder 30x30x0.3 
Baseplate 40x40x3 

 

To save computational time, 2D FEA is used to evaluate 
OBJs for given designs and loading conditions. Fig. 3 shows the 
model and part of the FEA mesh.  

Apart from the solder alloy, the materials in the model are 
linear-elastic. For the solder alloy, Eq. 8, which is a creep strain 
rate model, is used to represent its nonlinear property. The 
property values are listed in Table II.  The unit for the Young’s 
modulus E, coefficient of thermal expansion α and the thermal 
conductivity k are GPa, 1/K and W/(mK) respectively. In the 
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table, ν  is the Poisson’s ratio which is dimensionless. In Table II, 
A=54.05-0.193(T-273.15) and B=21.85+0.02039(T-273). The 
baseplate is assumed to be Cu, AlSic and a fictitious baseplate 
material (FBM) whose properties are the average of Cu and 
AlSiC.  

 

 
Fig. 3. 2D FEA model of the IGBT. Top: CAD drawing showing the ½ 2D 
model. Bottom: close up of the mesh around the edge of the substrate. 

Eq. 7 shows the strain rate for the solder alloy. 

𝜀ሶ௖௥ ൌ 𝐴 ∙ 𝑠𝑖𝑛ℎ௡ሺ𝜂𝜎௘ሻexp ሺെ𝑄/𝑅𝑇ሻ   (7) 

where 𝜀ሶ௖௥ is the creep strain rate, 𝜎௘ is the effective stress, R is 
the universal gas constant, T is temperature in K, A, η and Q are 
material constants that are listed in Table III. 

TABLE II.  THERMAL AND MECHANICAL MATERIAL PROPERTIES.  

 E ν α (10-6) k 
Cu (DBC and baseplate) 103 0.3 17 385 

AlN 330 0.24 5.6 150 
AlSiC (baseplate) 255 0.24 6.3 180 

Si(chip) 131 0.3 2.8 150 

Sn3.5Ag (solder) A 0.4 B 60 
FBM 179 0.27 11.7 283 

TABLE III.  VISCO-PLASTIC MODEL PARAMETERS FOR SN3.5AG SOLDER 
[10] 

A (s-1) n η (1/MPa) Q/R(K) 

9x105 5.5 0.06527 8690 

 

In the stress analysis, a cyclic temperature loading is applied. 
The maximum and  minimum temperatures are -40 ºC and 125 ºC 
respectively, and the dwell times and ramp times are all 900 s. 
Fig. 4 shows a typical plastic work density distribution. The OBJ 
Wp is the mean of the element values at the edge of solder layers 
over a cycle.   
 

In the thermal analysis, steady state temperature distribution 
is predicted and 100W of power is applied to the top of the chip,  
a convective boundary condition is applied at the bottom of the 
baseplate. The heat transfer coefficient  and the fluid temperature 

are assumed to be 30000 W/(m2•K) and 293K respectively. Fig. 5 
shows a typical temperature distribution. The OBJ Tmax is simply 
the maximum junction temperature.  ANSYS® Academic 
Research Mechanical, Release 17.2 has bee used for FEA 
analysis in this work. 

 

 
Fig. 4. Plastic work density distribution at t=3600s. The unit is J/m3. The chip 
solder thickness, substrate solder thickness, and dc are 0.11 mm,  0.14 mm and 
3.25 mm respectively. and 3 respectively. The baseplate material is AlSiC.  

 
 

Fig. 5. Temperature distribution. The chip solder thickness, substrate solder 
thickness, and dc are 0.11 mm,  0.14 mm and 3.25 mm respectively. and 3 
respectively. The baseplate material is AlSiC. 

B. DOE and Surrogate Models 

The chip solder thickness tc, the substrate solder thickness ts, 
chip location dc and the baseplate material type Mb  are chosen as 
the DVs and the design space is defined in Table IV. The discrete 
parameter Mb has integer values of 1, 2 and 3 and it represents 
Cu, FBM and AlSiC baseplate materials. 

A full factorial composite DOE method has been used to 
select designs to represent the whole design space. The number 
of designs is 2n+2n+1 where n is the number of DVs. For n=4, 
the 25 designs are listed in Table V for scaled DVs. 

TABLE IV.  DECISION VARIABLES.  

 tc(mm) ts(mm) dc(mm) Mb 

min 0.06 0.08 1 1 
max 0.16 0.2 7 3 

TABLE V.  FULL FACTORIAL COMPOSITE DESIGNS FOR FOUR DVS. 

 
 

Two case studies have been carried out, both are two-
objective problems. In case 1, the two OBJs are the plastic work 
density in the chip solder Wc and the junction temperature Tmax, 
and in case 2 they are the substrate solder plastic work density Ws 

and Tmax. The values of these OBJs are obtained using FEA for 
all the designs in Table V. Second order polynomials are then 
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fitted to the OBJ values using stepwise regression method 
[visualdoc] to produce surrogate models of the OBJs. This 
method may not results in full quadratic models because the 
parameters for some terms are negligible. In Table VI, the  
polynomial cofficients for OBJ surrogate models are listed.  

TABLE VI.  COEFFICIENTS OF THE SECOND ORDER POLYNONIAL 
RESPONSE SURFACE FOR NON-SCALED DECISION VARIABLES. 

 
Tmax 

terms coefficients 
Constant 116.5 

tc 3.2 
ts 2.0 
dc -0.9 

tsdc -0.375 
dc

2 4.194 
 

Ws 
terms coefficients 

Constant 2.0 0.0881 
ts -7.41 1.54 

Mb -0.967 0.081 
tsMb 1.37 0.145 
ts

2 9.58 5.39 
Mb

2 0.156 0.0194 
 

Wc 
terms coefficients 

Constant 0.286 0.00862 
tc -1.789 0.143 
dc -0.00440 0.0009 
Mb 0.0953 0.00237 
tcdc 0.0158 0.00577 
tcMb -0.46 0.0173 
dcMb 0.000625 0.000289 

tc
2 7.737 0.617 

 

C. Results and discussions 

In MOO, the optimal solutions are described by the Pareto 
Front which consists of a number of non-dominated solutions. 
Any solution on the Pareto Front can’t be improved in one OBJ 
without causing deterioration in another OBJ.  

Fig. 6 shows the distribution of 2000 random feasible 
solutions for the case 2 where Ws and Tmax are the OBJs. It 
shows the feasible solutions form clusters that correspond to the 
discrete variable Mb. In this simple two-objective problem, the 
Pareto Fronts can be identified as part of the outlines of the 
solutions. It can be seen in the figure that none of the solutions 
for Mb=3 could be on the Pareto optimal solution because both 
OBJ values for Mb=3 are worse than some of the solutions in 
for Mb=2, i.e. all solutions for Mb=3 are dominated.  

To obtain the optimal solution, a population size of 50, local 
and global set size of 10 and 30 respectively. Fig. 7 shows the 
Pareto front at iterations 1, 4 and 40. Fig. 8 shows the Pareto 

front for cases 1&2 after 100 iterations. The results show that 
the convergence to the final solution is rapid and the designs are 
distributed evenly.  

 

 
 

Fig. 6. Distribution of 2000 random solutions in the Ws-Tmax case.  

 

Fig. 7. Pareto front at iterations 1, 4 and 40 for the case 1. 
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Fig. 8. Pareto front for case 1 (top) and 2 (bottom). 

IV. CONCLUSIONS 

A MOPSO algorithm has been described in the paper. It has 
been demonstrated that it can be used for the MOO of IGBT in 
packaging design for optimal reliability. The algorithm is 
simple to implement and robust. Further work will be carried 
out to compare its efficiency with other optimization methods, 
to investigate the stopping criteria and the optimal population,  
local and global set sizes. 
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