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Purpose: Microcephaly is a sign of many genetic conditions but
has been rarely systematically evaluated. We therefore comprehen-
sively studied the clinical and genetic landscape of an unselected
cohort of patients with microcephaly.

Methods: We performed clinical assessment, high-resolution
chromosomal microarray analysis, exome sequencing, and functional
studies in 62 patients (58% with primary microcephaly [PM], 27%
with secondary microcephaly [SM], and 15% of unknown onset).

Results: We found severity of developmental delay/intellectual
disability correlating with severity of microcephaly in PM, but not
SM. We detected causative variants in 48.4% of patients and found
divergent inheritance and variant pattern for PM (mainly recessive
and likely gene-disrupting [LGD]) versus SM (all dominant de
novo and evenly LGD or missense). While centrosome-related
pathways were solely identified in PM, transcriptional regulation
was the most frequently affected pathway in both SM and PM.

INTRODUCTION

Microcephaly is a clinical finding defined as an occipitofrontal
head circumference (OFC) of >2 SDs below the mean for age,
sex, and ethnicity, which affects approximately 2-3% of the
population worldwide." Individuals with microcephaly, espe-
cially those with an OFC <-3 SD, can manifest neurological
features that require medical attention and a search for the
underlying etiology among environmental or, more com-
monly, genetic factors.”

Unexpectedly, we found causative variants in different
mitochondria-related genes accounting for ~5% of patients, which
emphasizes their role even in syndromic PM. Additionally, we
delineated novel candidate genes involved in centrosome-related
pathway (SPAG5, TEDCI), Wnt signaling (VPS26A, ZNRF3), and
RNA trafficking (DDX1I).

Conclusion: Our findings enable improved evaluation and genetic
counseling of PM and SM patients and further elucidate
microcephaly pathways.

Genetics in Medicine (2019) 21:2043-2058; https://doi.org/10.1038/s41436-
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Microcephaly is classified into primary (PM) if present at
birth, and secondary (SM) if developing thereafter.> Accord-
ingly, PM has been shown frequently to result from early
defects in neurogenesis due to abnormal regulation of mitotic
division, while SM has been often linked to disruptions of
later developmental processes such as myelination and
synapse formation owing to abnormal endosome regulation,
vesicle membrane transport, or synaptic structural support.*”
However, neuronal migration, DNA repair, and transcription

'nstitute of Medical Genetics, University of Zurich, Schlieren, Zurich, Switzerland; *FRIGE’s Institute of Human Genetics, FRIGE House, Satellite, Ahmedabad, India; *Sahyadri
Medical Genetics and Tissue Engineering Facility, Kothrud, Pune and Bharati Hospital and Research Center Dhankawadi, Pune, India; “Institute of Medical Genetics & Genomics,
Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India; Unita Operativa Complessa di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Istituto di
Medicina Genomica, Universita Cattolica del Sacro Cuore, Rome, Italy; *Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA,
USA; 7Department of Neurology, Boston Children’s Hospital, Boston, MA, USA; 8Service de Neuropédiatrie, Hopital Universitaire Robert Debré, APHP, Paris, France;
5'Département de Génétique, Hopital Universitaire Robert Debré, APHP, Paris, France; Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universitit
Erlangen-Niirnberg, Erlangen, Germany; "Division of Pediatric Neurology, University Children’s Hospital Zurich, Zurich, Switzerland; 12Department of Pediatrics and Adolescent
Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria; '*Child Development Center, University Children’s Hospital Zurich, Zurich, Switzerland;
4Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; 157urich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
Correspondence: Anita Rauch (anita.rauch@medgen.uzh.ch)

These authors contributed equally: Reza Asadollahi and Anita Rauch

Submitted 27 November 2018; accepted: 11 February 2019
Published online: 7 March 2019

GENETICS in MEDICINE | Volume 21 | Number 9 | September 2019 2043


Correction: Corrected
Correction: Corrected
Correction: Corrected
https://doi.org/10.1038/s41436-019-0464-7
https://doi.org/10.1038/s41436-019-0464-7
mailto:anita.rauch@medgen.uzh.ch

ARTICLE

regulation-related pathways are among those affected in both
PM and SM.*’

Microcephaly can be nonsyndromic or present as an
associated feature in a variety of genetic syndromes.**
Currently, there are over 900 OMIM phenotype entries and
almost 800 genes linked to microcephaly with variable
expressivity. Particularly, 18 of these genes constitute a
distinct PM subclass, termed autosomal recessive primary
microcephaly or microcephaly primary hereditary (MCPH), a
form of microcephaly that is relatively consistent and thus far
better characterized.”*” On the other hand, SM and non-
MCPH PM show considerable heterogeneity; this has not
been properly studied so far and hence remained largely
elusive.

Previous studies on patients with microcephaly using
clinical and radiological information as well as metabolic
and targeted genetic testing were able to identify causes in
a small fraction of the patients (<20%) (refs. >*). Since the
advent of next-generation sequencing (NGS), mainly mixed
cohorts of neurodevelopmental disorders (NDDs) have
been assessed where microcephalic patients accounted for
~15-41% of the cases and on average ~47% of them were
identified with a definite cause using exome (ES) or genome
sequencing (GS).””'* Until now, there are only two studies
that used Mendeliome sequencing or ES to evaluate known
disease-causing or candidate genes in exclusive microce-
phaly cohorts. The first study determined a molecular
diagnosis for ~29% of the cases (11/38), but did not
differentiate between PM and SM."” The other study was
focused on PM and MCPH from mainly consanguineous
families showing the difficulties in their clinical definitions
and common overlap with microcephalic primordial
dwarfism, and proposed reconsideration of phenotypic
boundaries.”

Here, we performed a comprehensive genetic study on a
cohort of 62 unselected clinically well-characterized patients
with syndromic or nonsyndromic microcephaly of different
onset using combined high-resolution chromosomal micro-
array analysis (CMA) and ES. Our approach sheds light on
the genetic landscape of PM and SM and delineates their
respective clinical and molecular characteristics. In addition
to novel clinical and molecular findings in known disease
genes, we identified several novel NDD/microcephaly candi-
date genes.

MATERIALS AND METHODS

Patient recruitment

Sixty-two unrelated patients, including both syndromic and
nonsyndromic, were recruited from 2015 to 2017, clinically
assessed in detail, and subjected to defined genetic
evaluations (Figure S1). Inclusion criteria consisted of (1)
an OFC >2 SDs below the mean at birth or later, based on
World Health Organization (WHO) and established
growth charts; (2) no clear evidence for an acquired etiology
or history of perinatal infection; and (3) without an
unequivocal etiological diagnosis after clinical assessment by
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pediatricians and clinical geneticists (Figure S1). We
performed CMA and ES for all patients, and conventional
karyotyping for 45 patients including all those who remained
undiagnosed after CMA and ES analysis. Genetic testing
was performed as part of a research study approved by
the ethics commission of the Canton of Zurich or referral
centers. Written informed consent for genetic testing,
publication of clinical information, and/or photographs were
obtained.

CMA

CMA for evaluation of rare coding copy-number variants
(CNVs) was performed on DNA extracted from peripheral
blood using Affymetrix Cytoscan HD or cytogenetic 2.7 M
arrays as previously described.'®

ES and Sanger sequencing

ES was performed on DNA extracted from peripheral blood
using Agilent SureSelect XT Clinical Research Exome Kit
(V5) or Human All Exon (V6) on a HiSeq 2500 System
(Illumina, CA, USA) with 125-bp paired-end reads as
described elsewhere.'” ES was done as trios (index patient
and parents) in 58 families and duos (index patient and
mother due to the lack of paternal DNA) in 4 families. ES
coverage for targeted bases and off-target mitochondrial
bases, and their distribution among diagnosed and undiag-
nosed patients, are shown in Fig. 1a. Coding plus flanking
intronic (+6 bp) regions as well as 666 previously reported
mitochondrial DNA variants in 37 mitochondrial genes
from the MITOMAP database were analyzed using the
NextGENe Software (SoftGenetics, PA, USA) (Figure S1). A
second allele search for all de novo variants in recessive
OMIM morbid genes or in high-level candidate genes was
performed (Supplementary Materials and Methods). Selected
variants from ES were confirmed by Sanger sequencing using
an AB3730 capillary sequencer (Applied Biosystems, CA,
USA).

Variant classification

Rare coding CNVs were classified according to Miller et al.'®
Rare (minor allele frequency [MAF] <2%) sequence variants
(SVs) affecting genes known to cause Mendelian disorders
were classified according to the American College of
Medical Genetics and Genomics (ACMG) guidelines.19 De
novo, X-linked maternal, or biallelic variants affecting other
genes were classified as suspected candidates, candidates, or
high-level candidates according to our defined criteria
(Figure S1).

Functional evaluations of selected variants

Structural modeling, cell culture, reverse transcriptase poly-
merase chain reaction (RT-PCR) and quantitative RT-
PCR (qRT-PCR), immunoblotting, immunofluorescence,
and imaging were performed to evaluate functional con-
sequences of selected variants (Supplementary Materials and
Methods).
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RESULTS

Cohort characteristics

We enrolled 62 unrelated patients (29 females, 33 males) with
microcephaly of unknown etiology from 62 families
(Table S1). PM and SM were determined in 36 (58.1%) and
17 (27.4%) patients, respectively (Table 1 and Fig. 1b). In the
other 9 (14.5%) patients, the onset of microcephaly could not
be determined. The median age at last investigation was 5.4
years (mean: 6.5 years, 0.8-18), for PM 4.5 years (mean: 5.3
years), and for SM 4.3 years (mean: 5.7 years). The majority
were of European descent (77.4%) and the remaining were of
Middle Eastern/North African (12.9%) or Indian (9.7%)
ancestry. Nine (14.5%) patients were born to consanguineous
parents. Seven patients had one or more affected siblings.
Notably, follow-up OFC measurements showed a pattern of
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progressive microcephaly in both PM and SM with a
statistically significantly higher OFC reduction in PM than
in SM patients (p < 0.001, Wilcoxon rank-sum test) (Fig. 1b).
However, 61.3% of PM and 70.6% of SM patients did not
show a decline in length or height similar to that in OFC,
indicating a disproportionate microcephaly in the majority of
our patients (Fig. 1b). Apart from microcephaly, varying
degrees of different neurological signs were reported, among
which abnormal developmental milestones (developmental
delay [DD] or ID) and abnormal cerebral magnetic resonance
image (MRI) represented the most common associated
features (Table 1). Importantly, we observed that the severity
of DD/ID was significantly correlated with the severity of
microcephaly among our PM patients (Figure S2A, r = -0.43,
p=0.01, Spearman rank correlation with Bonferroni
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Fig. 1 Exome sequencing (ES) coverage, growth parameters, and genetic evaluations of 62 patients with microcephaly. (a) Average coverages of
targeted regions (left) and 20-fold average coverages (right) of ES data for all or mitochondrial genes. On average, ES yielded an average coverage of 222-
fold (range: 92-419 fold) and covered about 96% of the targeted bases with >20 sequence reads and achieved an average off-target mitochondrial read
depth of 43.6-fold (range: 3.9-163.9 fold) with a 20x average coverage of 64.4% (range: 1.9-99.4%). Distribution of average sequencing depth and 20x
coverage of the targeted region was indistinguishable among patients with P/LP variants (red dots), high-level candidate variants (yellow dots), or others
(VUS, [suspected] candidate, no candidate) (black dots). Mitochondrial genes exhibited significantly lower average coverages and 20-fold average coverages
(Welch t test) with a higher variability in the 20-fold average coverages. P/LP pathogenic or likely pathogenic, VUS variant of uncertain significance. (b) SD
distributions of growth parameters measured at birth and at the time of last investigation (variable ages). Connected lines represent individual cases. SDs
below -2 (dotted line) were considered microcephaly. Dark green dots: primary microcephaly (PM, 36 [58.1%] patients); light green dots: secondary
microcephaly (SM, 17 [27.4%] patients); gray dots: unknown onset (9 [14.5%] patients). Note that the distributions for OFC consistently show SD reductions
at the last follow-up, suggesting progressiveness of microcephaly with a statistically significantly higher OFC reduction in PM compared with that in SM
patients (p <0.001, Wilcoxon rank-sum test). However, 61.3% of PM and 70.6% of SM patients did not show a decline in length or height similar to that in
OFC, indicating a disproportionate microcephaly in the majority of our patients. OFC occipitofrontal head circumference, SD standard deviation (given as
standard deviation score). (c) Distribution of (potentially) relevant genetic findings in the total cohort. Inner circle shows percentages of diagnostic and
uncertain findings in established disease genes, as well as likely deleterious findings in candidate genes. Middle and outer circles show the distribution of
CNVs and SVs, and the inheritance pattern in the respective categories of the inner circle, respectively. P/LP variants were identified in almost 50% of the
patients. Most of these variants are SVs with comparable amounts of de novo (DN) occurrence and recessive inheritance. CNV copy-number variant, SV
sequence variant. (d) Genetic findings in PM and SM. Diagnostic yields between PM (n = 36) and SM (n = 17) were comparable (left panel). Predominantly
recessive inheritance was identified in diagnosed PM patients (~69%) and dominant de novo variants in all diagnosed SM patients (middle panel). Likely
gene-disrupting (LGD) variants represented the most common disease alleles (~80%) among the diagnosed PM patients, while LGD and missense variants
were equally observed among the diagnosed SM patients (right panel). CH compound heterozygous. Numbers on graphs were given as percentage.

<

correction) but not among SM patients or the total cohort
(Figure S2B-D). In addition, we found a significant correla-
tion between the severity of DD/ID and abnormal cerebral
MRI among the total cohort (Figure S2E, F, p <0.01, Fisher’s

Table 1 Summary of main clinical features in our cohort of
62 patients

Main clinical features Number of cases

Microcephaly

62/62 (100%)

exact test with Bonferroni correction).

Primary 36/62 (58.1%)
Secondary 17/62 (27.4%) Genetic findings
Unknown onset 9/62 (14.5%) We identified pathogenic or likely pathogenic (P/LP) causative
DD? 58/61° (90.3%) variants in 48.4% of the patients (Table 2), and variants of
Mild 13/61 (21.3%) uncertain significance (VUS) in another 4.8% of the patients
Mild to moderate 8/61 (13.1%) (Fig. 1c and Table SI1). Furthermore, we found likely
Moderate 12/61 (19.7%) deleterious variants affecting our novel high-level candidate
Moderate to severe 7/61 (11.5%) genes in another 8.1%, affecting our novel (suspected)
Severe 15/61 (24.6%) candidate genes in another 17.7%, and we found no
Severity not determined 3/61 (4.9%) (candidate) causative variant in 21% of the patients (Fig. 1c).
ID? 24/28° (85.7%) We did not find a second disease allele for any patient with
Mild 7128 (25%) inherited heterozygous likely gene-disrupting (LGD) variants

Mild to moderate 1/28 (3.6%)

Moderate 8/28 (28.6%)
Moderate to severe 5/28 (17.9%)
Severe 3/28 (10.7%)
Abnormal cerebral MRI® 27/43 (62.8%)
Epilepsy/seizures 16/61 (26.2%)
Ataxia or movement disorder 15/61 (24.6%)

Behavioral problems 14/61 (23%)

Strabismus 6/61 (9.8%)
Hearing problems 6/61 (9.8%)
Short stature 20/61 (32.8%)
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(
(
(
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(
(
(
(
(
(
(
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©
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Complex congenital heart defect 4/61 (6.6%)

“Developmental delay (DD) and intellectual disability (ID) were classified based on
the Diagnostic and Statistical Manual of Mental Disorders (DSM-5).”

P1/62 cases was a fetus.

32/61 patients were above the age of 5 years at last investigation and 28/32
were evaluated for severity of ID. 3/28 patients had learning disability and 1/28
had normal intelligence.

dCerebral magnetic resonance image (MRI) was done for 43 patients.
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in established genes known to cause recessive disorders by our
alternative methods (Supplementary Materials and Methods).
In six (9.7%) patients, we found P/LP inherited heterozygous
variants as secondary findings (Supplementary Results).

P/LP variants

We identified pathogenic CNVs in six (9.7%) patients (4
deletions, 2 duplications; 5 [assumed] de novo, 1 X-linked
recessive inheritance) (Fig. 1c¢ and Table 2). In one of these
patients (ID74601) who had a de novo pathogenic ~1.5-Mb
duplication, we identified an additional pathogenic de novo
sequence variant (SV) ¢.3555_3556insA, p.(Alal186Serfs*5)
in KAT6A (NM_001099412.1), which likely contributes to the
severity of his NDD phenotype (Table 2 and S1). Further-
more, we identified possible additional hits which may
contribute to the expressivity of microcephaly in another
patient (ID70688) who was identified with a pathogenic
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Xpl11.22 microduplication affecting HUWEIL, PHFS8, and
FAMI120C, a CNV known to cause X-linked ID (MIM
300705) without microcephaly (Table 2 and S1). These hits
include an additional microcephaly-related 16p11.2 micro-
duplication (MIM 614671) and a hemizygous nonsense
unreported variant ¢.901C>T, p.(Arg301*) in the last exon
of ASB11 (NM_080873.2), which has not been yet linked to
any disorder, but encodes an E3 ubiquitin protein ligase with
an established role in canonical Notch signaling to regulate
proper neurogenesis.”’ Therefore, it is possible that these two
additional variants may contribute to the manifestation of
microcephaly in this patient.

Among the other 56 patients, we identified P/LP SVs
affecting 22 different genes in 24 patients (CDK5RAP2 and
PLK4 each in two patients), adding up to a total diagnostic
yield of 48.4% (Fig. 1c). Among the diagnosed patients (n =
30), only one (~3%) PM patient was born to consanguineous
parents. Considering the two microcephaly subclasses, we
found comparable diagnostic yields of 44.5% in PM and
47.1% in SM (Fig. 1d). Notably, we observed recessive
inheritance in 68.8% and dominant de novo variants in 31.2%
of the diagnosed PM patients (n = 16), but dominant de novo
variants in all of the diagnosed SM patients (n = 8). In PM, we
observed mainly LGD disease alleles (~80%), while in SM,
LGD and missense disease alleles were equally detected
(Fig. 1d and Table 2). The affected genes in our PM subgroup
belong to a variety of pathways including centrosome-
associated pathways, regulation of mitotic division, transcrip-
tional regulation, mitochondria-related function, NF-kappa-B
signaling, endosome regulation, and DNA repair, whereas the
affected genes in the SM subgroup encode proteins playing
roles in transcriptional regulation, cell growth and differentia-
tion, protein ubiquitination, mitotic progression, and DNA
repair (Table 2).

Of the P/LP SVs, seven (25%) were recurrent variants
previously reported, and 21 (75%) were novel. Among the
novel variants, we found a de novo noncanonical splice-site
variant ¢.665-4del in DYRKIA (NM_001396.3, NG_009366.1),
which was not predicted to have a splice effect, but was
demonstrated by us to cause an aberrant splicing at messenger
RNA (mRNA) level (exon 6 deletion, r.665_951del, p.
[lle222Aspfs*22]) (Figure S3). We also found in an aborted
fetus (ID74812, Fig. 2e, f) a pathogenic nonsense PLK4
variant c.1111C>T, p.(Arg371%*) in trans with a likely
pathogenic serine substitution c.881T>G, p.(Ile294Ser). The
latter variant, which was absent in an unaffected sibling, is the
first to be located in the phosphodegron element of PLK4 and
predicted to create an additional phosphorylation site likely
leading to a reduced protein level via accelerated autodestruc-
tion (Table 2 and S2, Figure S4). Phenotypically, this patient
presented with previously unreported organ anomalies found
in autopsy (ID74812, Table 2 and S2). In an unrelated child
(ID77804) with different PLK4 causative variants, we found a
novel MRI finding of a large cerebellum and brain stem
relative to the supratentorial region (Table 2 and S2). Other
novel clinical findings in our study include uvula bifida in a
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patient (ID53792) with TRMTIOA-related microcephaly,
short stature, and impaired glucose metabolism 1 (MIM
616033), and a forgotten concept of smaller pituitary glands in
Rett syndrome patients by our similar observation of
pituitary hypoplasia in one patient (ID65891) with MECP2-
related X-linked mental retardation 13 (MIM 300055) (Table 2
and S1). Additionally, one patient (ID73824) was identified
with a recurrent pathogenic missense variant ¢.923A>G, p.
(Asn308Ser) in PTPN11 (NM_002834.3)—known for Noonan
syndrome—and a history of perinatal asphyxia, which may
contribute as an environmental factor to her microcephaly as
an unusual presentation of Noonan syndrome (Table S1).

Importantly, in 1 of the 62 patients we identified a likely
pathogenic variant m.9185T>C, p.(Leu220Pro) in the mito-
chondrial gene MT-ATP6 (NC_012920.1) from ES data
(ID32410, Table 2 and SI1, Fig. 2a, b). This variant was
observed in 59% of the reads (Figure S5A), which was also
detected by a targeted panel of mitochondrial disease genes in
82% of urothelial cells (data not shown). In a phenotypically
similar patient (ID76870, Table 2 and S1, Fig. 2¢, d), we found
a homozygous deleterious missense variant c.1772A>T, p.
(Asn591Ile) in a nuclear gene KARS (NM_001130089.1)
which encodes a mitochondria-related protein. Our structural
modeling revealed that the isoleucine substitution likely
affects the protein structure and/or stability (Figure S5B).
We also identified a likely pathogenic variant in another
nuclear gene DHTKD]I that encodes a mitochondrial protein
(Table 2 and S1). Altogether, we identified three patients with
likely pathogenic variants in mitochondria-related genes,
accounting for 4.8% of the total cohort.

High-level candidate genes
We identified likely deleterious variants affecting five different
high-level candidate genes in five (8.1%) patients without P/
LP variants or VUS in established disease genes (Table 2).
Four of them (SPAG5, TEDCI, VPS26A, DDX1) were affected
by biallelic variants, and one (ZNFR3) by a de novo variant.
SPAGS5 (sperm associated antigen 5) encodes a mitotic
spindle-associated protein and has been shown to be required
for regulation of mitotic spindles and recruitment of the
known microcephaly gene CDK5RAP2 to the centrosome
during mitosis.”* In a patient (ID81652) with PM, mild speech
delay, and short stature, we found an unreported de novo
frameshift variant ¢.1223_1224insAC, p.(Lys409Profs*19) in
SPAG5 (NM_006461.3) and, by a second allele search, a
maternally inherited synonymous variant c¢.3189C>T, p.
(Gly1063Gly) with extremely low MAF (Fig. 3a and Table S1).
Sequencing of mRNA from the patient’s fibroblast showed a
deletion of 11 exonic bp resulting in a predicted premature
stop codon (r.3189_3198del, p.[Glyl064Glu*3]) (Fig. 3b).
Cycloheximide (CHX) rescue treatment showed that both
aberrant alleles were subjected to nonsense-mediated mRNA
decay (NMD) with some leakiness of the splicing effect
(Fig. 3b). Consistently, qRT-PCR (~75 +22%) and immuno-
blotting (~80 + 26%) revealed a significantly reduced amount
of the wild-type SPAG5 at both mRNA and protein levels

Volume 21 | Number 9 | September 2019 | GENETICS in MEDICINE
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Fig. 2 Facial photographs of selected patients with expanding clinical features or harboring high-level candidate genes. (a-d) Two phenoty-
pically similar patients (ID32410 and 76870) with likely pathogenic variants in mitochondria-related genes MT-ATP6 and KARS at 15 years 3 months and 16
years 2 months, respectively. Note apparently closely spaced eyes, long nose with bulbous tip, apparently narrow mouth with crowded teeth, and large chin.
(e—f) Patient 74812 with P/LP biallelic variants in PLK4, aborted at gestational week 23. Note sloping forehead, upslanting palpebral fissures, retrognathia,
and apparently large ears with increased posterior angulation. (g-h) Patient 68629 with biallelic variants in a high-level candidate gene TEDCT at 5 months
(g) and 5 years 8 months (h). Note apparently broad forehead at young age, facial scoliosis (asymmetry with curvatures in relation to the vertical axis of the
face), mild ptosis, beaked nose, apparently short ears, and micrognathia. (i-j) Patient 60361 with a de novo variant in a high-level candidate gene ZNRF3 at 4
years 9 months. Note sparse hair, left-sided microphthalmia with the secretions around both eyes due to lacrimal duct obstruction, narrow nose and nares,
apparently large protruding ears, deep philtrum, thin lip vermilion (i), and oligodontia with conically shaped teeth (j). (k-I) Patient 74091 with homozygous
variants in a high-level candidate gene DDX1 at 6 months. Note round face with mildly upslanting palpebral fissures, retrognathia, and apparently large ears

with increased posterior angulation. P/LP pathogenic or likely pathogenic.

(Fig. 3¢, d). We also observed a reduced SPAGS5 intensity
mainly in the centrosomal regions where it normally appears
more condensed during prophase to telophase (Fig. 3e).
However, morphology of the patient’s fibroblasts during
different cell cycle phases appeared with no obvious
abnormality in the majority of cells (>95%) (Fig. 3e), with
apparently unaffected localization of the SPAGS5 interacting
partner CDK5RAP2 (Figure S6). Nonetheless, since we
observed higher mRNA expression levels of SPAG5 in normal
human induced pluripotent stem cell-derived neural pro-
genitor cells (NPCs) compared with fibroblasts and other cell
types (Fig. 3f), SPAG5 reduction may only pose deleterious

GENETICS in MEDICINE | Volume 21 | Number 9 | September 2019

effects on highly proliferative NPCs during embryonic
development, which could lead to the clinical manifestations
in the patient.

TEDCI (tubulin epsilon and delta complex 1), previously
known as CI4ORF80, has been shown to be required for
centriole stability.23 In a patient (ID68629, Fig. 2g, h and
Table 2) with PM, primordial dwarfism, and moderate global
DD, we identified a noncanonical splice variant ¢.227-5C>G
(intron 2) in trans with a frameshift variant c.1111del, p.
(Ala371GInfs*12) (last exon) in TEDCI (NM_001134875.1)
(Table 2 and Fig. 3g). Sequencing of mRNA from the patient’s
fibroblasts showed a deletion of the first 41 bp of exon 3
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Fig. 3 Functional evaluations of high-level candidate variants in SPAG5 and TEDC1. (a) Determination of the allelic location of the de novo
frameshift SPAG5 variant c.1223_1224insAC. A portion of SPAG5 sequence containing the frameshift variant and a nearby single-nucleotide polymorphism
(SNP, rs113667723) was analyzed by Sanger sequencing of the patient’s blood DNA, which confirmed that the frameshift SPAG5 variant was located in the
paternal allele by a distinct frameshift pattern of three bases around the SNP position. Blue sequence, paternal; pink sequence, maternal; black and
underlined, variants. (b) Sanger sequencing of messenger RNA (mRNA) from the patient’s fibroblast (ID81652) showed a reduced amount of an aberrantly
spliced transcript (due to the synonymous SPAGS5 variant ¢.3189C>T with splice effect), which lacks the last 11 bp of exon 20, resulting in an out-of-frame
mutation and a premature stop codon p.(Gly1064Glufs*3). In the magnified electropherogram of CHX, asterisk indicates rescued frameshift allele
(nucleotide C in blue), leaky splice-site variant allele (nucleotide T in red), and rescued aberrantly spliced allele (nucleotide G in black). This means that the
frameshift allele and the aberrantly spliced allele were rescued upon CHX treatment. CHX cycloheximide, DMSO dimethyl sulfoxide, WT wild type. (c)
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed significantly reduced SPAG5 mRNA levels (~75%) in the patient’s fibroblasts
(untreated and vehicle DMSO, p <0.05, Welch t test), which were rescued upon treatment with CHX. Experiment was done in a triplicate. (d) Immuno-
blotting against the C-terminal terminal of SPAG5, detecting the two SPAGS5 isoforms (full-length and short) and p-actin on protein extracts showed a
significant reduction (~80%) of SPAGS5 protein in the patient’s fibroblasts (ID81652) (p < 0.05, Welch t test). Note that the short isoform lacks a small portion
of N-terminal of which the function has not yet been characterized. Experiment was done in a triplicate. (e) Immunostaining against SPAG5, PCNT, and a-
Tubulin shows a reduced SPAG5 intensity mainly in the centrosomal regions where it is more condensed in the control during prophase to telophase.
However, morphology of the patient’s fibroblasts appears with no obvious abnormality in the majority of cells (>95%). The nuclei were visualized by DAPI
staining (in blue). The scale bar represents 10 um. (f) RT-PCR showed higher expression levels of SPAG5 in normal human induced pluripotent stem
cell-derived neural progenitor cells (NPCs) compared with fibroblasts and other cell types including testis (positive control), heart (negative control), Hela cell
line (highly proliferative control), and NPC-derived neuronal culture at 3 (NC3wks) or 5 (NC5wks) weeks. (g) Sanger sequencing of mRNA from the patient’s
fibroblast (ID68629) showed a reduced amount of an aberrantly spliced transcript (due to the noncanonical splice-site TEDCT variant c.227-5C>G that
increases the activity of the cryptic splice acceptor), which lacks the first 40 bp of exon 3, resulting in an out-of-frame mutation and a premature stop codon
p.(Glu76Glyfs*11). The levels of the aberrant transcript were rescued upon CHX treatment, indicating that the aberrant transcript was subjected to
nonsense-mediated decay (NMD) (see also Figure S7). On the other hand, the sequencing of the other TEDCT variant c.1111del, which is located in the last
exon, did not show a reduced amount of the aberrant transcript. Nevertheless, this variant leads to a frameshift and premature stop codon p.
(Ala371GInfs*12) that removes the last 50 amino acids, likely leading to a deleterious effect on the function of the TEDC1 protein, which remains to be

characterized. Bar graphs show the mean + SEM.

<

(r.227_267del) predicted to result in a truncated protein (p.
[Glu76Glyfs*11]) and CHX rescue treatment confirmed NMD
of the aberrantly spliced transcript (Fig. 3g and S7). The other
variant was not affected by NMD, but likely results in a C-
terminally truncated protein (Fig. 3g and S7).

Our other high-level candidate variants, which were
identified in three patients with PM and mild to severe DD,
affected ZNRF3 (patient 60361, Fig. 2i, j), a negative regulator
of the Wnt signaling; VPS26A, a mediator of Wnt
transport;”> and DDX1 (patient 74091, Fig. 2k, 1), a DEAD
box RNA helicase, respectively (Table 2). Structural modeling
for these missense variants predicts a variety of adverse
consequences, including loss of binding affinity to the
interacting protein R-spondin for ZNRF3, loss of the ability
to form a water-mediated interaction to neighboring residues
for VPS26A, and steric clashes with adjacent residues for
DDX1, all likely affecting the protein domain stability and
therefore probably contributing to the patients’ clinical
presentation (Table 2 and Figure S8). Notably, via Gene-
Matcher,”® we found an additional patient with unreported
biallelic  variants (c.133-8T>C, p.[?]; ¢839C>T, p.
[Thr280Arg]) affecting DDX1. The effects of the splice-site
variant remain unknown because of no access to any other
sample from this patient. However, our predictions based on
the UniProt and PhosphoSitePlus databases suggest that the
Thr280Arg change may cause the loss of a phosphorylation
site and also interfere with posttranslational modifications of
the adjacent residue Lys281, which likely affects the regulation
of DDXI interaction and/or degradation. Moreover, both
patients with the recessive DDX1 variants presented with
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comparable neurological features including severe global DD,
spastic quadriparesis, abnormal sleeping pattern, and abnor-
mal movements/seizures, providing additional support for
their pathogenicity. Nonetheless, severe microcephaly was
only present in the first patient (ID74091), probably due to
the contribution of possible other recessive variants in his
multiple large runs of homozygosity (Table S1).

Candidate and suspected candidate genes

We found a total of 22 candidate and 26 suspected candidate
genes in our cohort. Of these genes, 9 candidate (RNFI113A,
CEP350, SIK2, RFX7, C2CD5, KIF23, IRS2, UNC13A, PRTG)
and 5 suspected candidate (NMI, LARP4B, SECI4L5, PHB2,
RAB40AL) genes were identified in 11 (17.7%) patients
without P/LP, VUS, or high-level candidate variants.

DISCUSSION
We have elucidated the phenotypic spectrum and genetic
landscape including novel findings in PM and SM by detailed
clinical assessment and combined CMA and ES of 62
unselected microcephalic patients.

In our cohort, we confirm previous findings>” of commonly
microcephaly-associated features including DD/ID, abnormal
cerebral MRI, seizures, and short stature, but in addition also
frequently found movement disorders and behavioral pro-
blems. With reference to our total cohort, we corroborate
previous studies showing no correlation between the degree of
microcephaly and developmental performance,””*® however,
when stratifying patients for PM and SM, we unprecedentedly
show here such a correlation among patients with PM. This
implies that prenatal onset of OFC deceleration may pose
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stronger adverse effect on the developmental outcome.
Nevertheless, our evidence of the correlation between
abnormal cerebral MRI and the severity of DD/ID sub-
stantiates a previous observation of abnormal brain scans as a
better reflection of developmental performance in micro-
cephalic patients.” Interestingly, Shaheen et al.” observed two
patterns of head growth in congenital microcephaly with
severe and progressive microcephaly (pattern A) in the
majority of their patients, and largely stable microcephaly
(pattern B) in some patients. However, we observed pattern
A, only, in PM, which might be explained by different sets of
genes identified or different time points of OFC measurement.
This may implicate postnatal functions of the affected genes
other than only prenatal roles in proliferation of neural
progenitor cells.

Etiologically, we identified P/LP variants in almost half
of the cohort (~48%), accounting for a diagnostic yield that
is within the higher range achieved by NGS studies on
NDDs,” " but is more than three times that of the previous
study evaluating 680 microcephalic children (15%) using non-
NGS methods,” further supporting the effectiveness of ES for
routine diagnostic testing. In addition, we have identified
VUS and candidate variants in ~31% of the patients.
Therefore, our diagnostic yield will likely increase over time
as further supporting evidence for the affected genes becomes
available.

We also highlighted the importance of evaluating relevant
noncanonical splice-site variants through our examples of a
synonymous exonic variant in SPAGS5, and a -4 intronic
variant in DYRKIA, both of which caused aberrant splicing
and subsequent NMD. Therefore, it is crucial to investigate
such variants, and to validate those with benign in silico
predictions that might be false negative due to the complexity
of splicing control.

Previously, inborn errors of metabolism including mito-
chondriopathies have been identified in 3% of microcephalic
patients.” However, the specific percentage of molecularly
diagnosed mitochondrial disorders in microcephalic patients
has not been reported so far. Our identification of LP variants
in mitochondrial and mitochondria-related nuclear genes in
~5% of the patients highlights the significance of mitochon-
drial disorders even in PM where mitochondriopathies may
have been underdiagnosed. Notwithstanding, due to the
mitochondrial heteroplasmy and highly variable coverage of
mitochondrial genes in ES data (Fig. 1a),”’ a targeted
assessment of the mitochondrial DNA should be considered.

Despite the comparable diagnostic yields between PM
(~44%) and SM (~47%) in our cohort, we illustrate different
predominant modes of inheritance and types of causative
variants between them. Our observation of predominantly
recessive inheritance and biallelic LGD variants in PM
patients suggests that complete protein absence may represent
the most common cause of PM, which is in line with the
findings in MCPH genes.® On the other hand, dominant de
novo LGD or assumed loss-of-function (LoF) missense
variants, which we frequently observed in SM patients,
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suggest haploinsufficiency as a frequent pathomechanism in
SM. This difference in inheritance pattern is not explained by
a consanguinity bias in diagnosed PM patients, since only 1 of
16 diagnosed PM patients is an offspring of consanguineous
parents. Consistent with previous studies,”” disease-causing
genes identified in our cohort also encode proteins of various
pathways, among which transcriptional regulation and DNA
damage response are the most frequent in both PM and SM.
However, centrosome-associated pathways are exclusively
implicated in PM with autosomal recessive inheritance, which
highlights their crucial function in cell division during
neurogenesis.”” Notably, we observed the progressiveness of
microcephaly not only in SM patients, but also in all our PM
patients, which implicates postnatal defects in neural main-
tenance and synaptogenesis in both microcephaly subgroups.

Within the undiagnosed patients, we were able to identify
five high-level candidate genes, all in patients with PM. Of
these five genes, two (SPAG5 and TEDCI) encode centroso-
mal proteins, two (ZNRF3 and VPS26A) Wnt signaling-
related proteins,”**”> and one (DDXI) an RNA trafficking
protein.” In addition to the known centrosomal functions in
regulating neuronal progenitor proliferation,’> Wnt signaling
has been shown to be essential for transition between
symmetrical and nonsymmetrical cell division in human
neural stem cells,”” and RNA trafficking to be involved in
mRNA translation control of proteins that regulate the
balance between maintenance and differentiation of radial
glial progenitors and thereby development of the embryonic
cortex.”’ Therefore, compromise in the function of these
proteins may in fact lead to defects in neurogenesis and hence
primary microcephaly. However, we suggest considering all
our candidate genes for NDD in general, due to the variable
presentation of microcephaly in non-MCPH patients.”*?”
This variability has been recently demonstrated for FBXO11-
related NDD, in which fewer than 25% of the patients
presented with microcephaly.”

Clinical variability is often observed in NDDs, even in those
with established causative genes, which has been, in some
instances, attributed to additional genetic factors.”® In our
cohort, we were able to identify additional genetic hits or a
perinatal event likely contributing to the severity of ID or the
presence of microcephaly in three patients. However,
individualized explanation for all variable NDD presentations
will require a comprehensive understanding of an individual’s
genetic as well as epigenetic status.

In conclusion, we showed that microcephaly is highly
heterogeneous both phenotypically and genetically. By using
a combined high-resolution CNV and ES analyses, we
achieved an effective diagnostic yield of ~48% and in
addition proposed five novel NDD/microcephaly candidate
genes with supporting evidence. We also shed some light
on distinct as well as common characteristics of the two
microcephaly subclasses PM and SM, which helps with
better management of the patients and understanding of
the underlying pathways involved in human brain
development.
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