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Abstract
Botanical insecticides offer an environmentally benign insect pest management op-
tion for field crops with reduced impacts on natural enemies of pests and pollinators 
while botanically rich field margins can augment their abundance. Here, we evaluated 
the non-target effects on natural enemies and pest control efficacy on bean aphids 
in Lablab of three neem- and pyrethrum-based botanical insecticides (Pyerin75EC®, 
Nimbecidine® and Pyeneem 20EC®) and determine the influence of florally rich field 
margin vegetation on the recovery of beneficial insects after treatment. The botani-
cal insecticides were applied at the early and late vegetative growth stages. Data 
were collected on aphids (abundance, damage severity and percent incidence) and 
natural enemy (abundance) both at pre-spraying and post-spraying alongside Lablab 
bean yield. The efficacy of botanical insecticides was similar to a synthetic pesticide 
control and reduced aphid abundance by 88% compared with the untreated control. 
However, the number of natural enemies was 34% higher in botanical insecticide-
treated plots than in plots treated with synthetic insecticide indicating that plant-
based treatments were less harmful to beneficial insects. The presence of field margin 
vegetation increased further the number of parasitic wasps and tachinid flies by 16% 
and 20%, respectively. This indicated that non-crop habitats can enhance recovery in 
beneficial insect populations and that botanical insecticides integrate effectively with 
conservation biological control strategies. Higher grain yields of 2.55–3.04 and 2.95–
3.23 t/ha were recorded for both botanical insecticide and synthetic insecticide in the 
presence of florally enhanced field margins in consecutive cropping seasons. Overall, 
these data demonstrated that commercial botanical insecticides together with florally 
rich field margins offer an integrated, environmentally benign and sustainable alterna-
tive to synthetic insecticides for insect pest management and increased productivity 
of the orphan crop legume, Lablab.
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1  |  INTRODUC TION

Natural or engineered field margins in and around crops provide 
shelter and floral resources for natural enemies and can augment 
their abundance and pest regulating services (Knapp & Řezáč, 2015; 
Rowe et al.,  2021; Skirvin et al.,  2011) even at low prey density 
(Amaral et al., 2016; Ben-Issa et al., 2017). Natural enemies can be 
further supported and conserved through more sustainable agri-
cultural practices including the use of selective and lower doses of 
insecticides (Roubos et al.,  2014;) and using botanical insecticides 
(Stevenson et al.,  2017). Synthetic insecticides are reported to be 
acutely toxic to insect pests and natural enemies (Suma et al., 2009). 
Botanical insecticides, on the other hand, include a range of active 
ingredients extracted from plants that exhibit insecticidal or less 
toxic repellent and antifeedant effects, and growth and reproduc-
tive inhibitory effects (Braimah et al., 2014). In contrast to persistent 
synthetic insecticides, the active components in botanical insecti-
cides degrade rapidly in nature often owing to their instability es-
pecially in UV light, and consequently, they have lower impacts on 
predators and parasitoids of pests (Stevenson et al., 2017). However, 
combining field margins and botanical insecticides requires careful 
assessment of their individual and combined effects on pests and 
natural enemies, and the overall impact on crop yield (Amoabeng 
et al., 2020).

Lablab (Lablab purpureus L.) is a versatile multipurpose food le-
gume that could be used as a model crop to test the integration of 
such strategies on orphan crops, which often lack good phytosan-
itary support to manage pest insects (Venzon et al., 2020). Lablab 
green pods and leaves are used as fresh vegetables, dry seeds pro-
vide dietary proteins and the crop is also important animal fodder 
(Maass et al., 2010; Mondal et al., 2017) and can be used as green 
manure or as a cover crop (Carsky et al., 2001; Cheruiyot et al., 2011; 
Northup & Rao,  2015). Lablab is a drought-tolerant crop legume 
(Maass et al., 2010) that is suited to cropping systems affected by 
increasing temperatures and drying climate and representative of a 
number of underutilised or orphan crops that may help mitigate the 
challenges of climate change. However, sustainable pest manage-
ment options have not been widely studied on Lablab nor how field 
margin vegetation mitigates negative impacts of pesticide use or fa-
cilitates benefits towards conservation biological control. The pro-
duction of Lablab is constrained by numerous insect pests including 
the black bean aphid (Aphis fabae) (Boit et al., 2018; Cork et al., 2009; 
Tembo et al., 2018). The black bean aphid damage causes yellowing 
of leaves, desiccation, stunting in older plants and sometimes death 
of affected plants (Mwangi et al., 2008). However, rigorous data on 
yield losses are not available for Lablab.

Current control strategies for aphids are dependent on the use 
of broad-spectrum synthetic insecticides (Stevenson et al.,  2017). 

Although synthetic insecticides play an important role in aphid man-
agement, their negative effects on non-target organisms, the envi-
ronment and the health of farmers and consumers continue to be a 
problem (Mkenda et al., 2015, 2019). Aphids have numerous natural 
enemies that could be conserved to replace (or minimize) the use of 
broad-spectrum insecticides (Kindlmann & Dixon, 2010). Pyrethrum 
and neem products are well-established commercial pesticides 
based on known active ingredients (pyrethrins and tetranortriter-
penoids) (Chaudhary et al., 2017). The adoption of botanical insec-
ticides is limited due to costs and variable efficacy against target 
pests, which can be attributed to the rapid breakdown of bio-active 
compounds (Sola et al., 2014). However, with the increasing inter-
est in sustainable pest control and reducing persistent agricultural 
products, there is a need to evaluate the field performance of these 
botanical insecticides on insect pests and to understand their impact 
on natural enemies on orphan crop legumes (Venzon et al., 2020). 
Here we have focused on the African legume Lablab (Lablab purpu-
reus (L.) Sweet).

Integrated Pest Management (IPM) draws on the combination 
of different pest control methods to maintain pest populations 
below economically important thresholds and minimise non-
target effects (Amoabeng et al.,  2020). Bean aphids can be con-
trolled using natural enemies at levels that mitigate against severe 
losses without reliance on chemical pesticides (Bianchi et al., 2006; 
Bianchi & Wäckers,  2008; Rand et al.,  2006). The provision of 
suitable refuge and additional non-crop habitat can serve to aug-
ment natural enemy populations in small-holder farming systems 
and reduce pest build-up in the crop (Nyaanga, 2008; Ndakidemi 
et al., 2021; Arnold et al., 2021). The floral diversity can support 
higher longevity, fecundity and predation rates of natural enemies 
promoting higher abundance and which translate to additive lev-
els of biological control (Charles & Paine, 2016; Pan et al., 2020). 
Increasing natural enemy species richness has been attributed 
to strengthening biological control through multiple mechanisms 
(Jonsson et al., 2017). In contrast, Straub et al. (2007) argued that 
the conservation of natural enemy species can reduce or has no 
effect on biological control. High natural enemy abundance fa-
voured by increased plant diversity in and around field crops pro-
vides the predators and parasitoids with a wide array of alternative 
prey (nectar and pollen), which can take natural enemies away from 
crops and negatively affect biological control (Jonsson et al., 2017; 
Venzon et al., 2019)

The use of botanical insecticides alongside natural enemy con-
servation potentially offers an integrated and effective alternative 
to synthetic insecticides for pest control. Low concentrations of 
botanical insecticides such as neem-based products have low neg-
ative impacts on natural enemies, which is important for the con-
servation of biological control (Venzon et al.,  2020). Furthermore, 

K E Y W O R D S
botanical insecticides, conservation biological control, field margin, integrated pest 
management, legume cropping systems



840  |    OCHIENG et al.

the conservation of natural enemies can complement insecticide use 
by preying on or parasitizing insect pests that survive or recolonize 
crops after insecticide application (Snyder, 2019). Here we hypoth-
esised that by acting as a reservoir for natural enemies, field margin 
vegetation could reduce pest incidence in crop fields and support 
a more rapid recovery of natural enemy populations after selective 
application of botanical insecticides compared with synthetic prod-
ucts. To test this hypothesis we evaluated the impacts of botanical 
insecticides on aphid pests and their natural enemies used in combi-
nation with florally enriched margins around Lablab.

2  |  MATERIAL AND METHODS

2.1  |  Study site

Field trials were located at the agronomy teaching and research field, 
Egerton University, Nakuru County Kenya (0° 20' S, 35° 56' E) with 
an altitude of 2238 m above sea level, annual precipitation of about 
1200 mm and a mean annual temperature range of 17°C–22°C. Soils 
are well-drained dark reddish clays, classified as Mollic Andosols, 
within an agriculturally high potential agro-ecological zone, lower 
highland 3 (LH3) in the Kenya Highlands (Jaetzold et al., 2012). The 
land area was 8 Ha predominantly inhabited by weed species as it 
had remained uncultivated from the previous season. The field was 
typically used for research and the crops grown on the site varied 
from one season to another. The region is categorized as a high agri-
cultural zone, hence the soils are considered to be nutrient-rich and 
to support high plant species richness.

2.2  |  Experimental design and treatment 
applications

Field trials were carried out during May to December 2019 and March 
to November 2020 cropping seasons. The experimental field was disc 
ploughed and harrowed before plots measuring 10 m × 10 m and 10 m 
apart were demarcated for use during planting. The plot dimensions 
used were smaller than a typical field but were considered appropriate 
as related studies had been conducted using similar plot sizes (Hatt 
et al., 2017). The first treatment level was for experimental blocks to 
be planted in the presence of field margin vegetation or for margin 
vegetation to be absent (Appendix S1). Thus, 2 weeks before the bean 
crop was planted, field margin vegetation was sown with plant plugs 
to give the field margin plants time to establish. The plot margins 
were created with four common flowering weed species (Bidens Pilosa 
L., Tagetes minuta L., Ageratum conyzoides L. and Galinsoga parviflora 
Cav.). These species were chosen because they are annuals and occur 
in abundance around the farms in the region. The selection was also 
guided by previous studies, which indicated that these species had 
an effect on arthropod populations (Amoabeng et al., 2020; Quispe 
et al., 2017; Souza et al., 2019; Zhang et al., 2021). The seeds of each 
species were mixed in equal proportions (by weight) and sown around 

each plot, which had plant margin treatments. The margin species 
were planted 0.5 m from the outer row of the Lablab crop and 0.5 m 
width. To ensure uniform emergence of the plant species the planting 
area was prepared to fine tilth. After the establishment of plot mar-
gins, lablab bean variety DL-1002 was planted at a spacing of 60 cm by 
30 cm, two seeds per hill, with an equivalent of 1112 plants per plot. 
At planting, NPK (23:23:0) fertilizer was applied at the rate of 60 Kg N 
ha-1 and 60 Kg P2O5 ha-1.

The second treatment level involved treatments consisting of 
three commercially available botanical insecticides: Pyerin 75EC®, 
Pyeneem 20EC® (Manufacturer: Twiga Chemical Industries Limited) 
and Nimbecidine® (Manufacturer: T. Stanes and Company Limited) 
and a synthetic insecticide Duduthrin 1.75EC® (Manufacturer: Twiga 
Chemical Industries Limited) as a positive control and an untreated 
negative control. The pyrethrum- and neem-based botanical insec-
ticides were selected since they were well-established and available 
in the market (Campos et al., 2019; Sola et al., 2014). The insecticides 
are also registered to control a wide range of insect pests includ-
ing, spider mites (Tetranycus urticae) whiteflies (Bemisia tabacci) and 
Tomato leafminer (Tuta absoluta) (Stevenson et al., 2017). However, 
there is surprisingly little field evidence of their effects on benefi-
cial insects and no report of their use on natural enemies of bean 
aphids in Lablab. The 5 insecticide treatment levels and 2 field margin 
treatment levels were laid out in a randomized complete block design 
(RCBD) with four replications per treatment combination. Many ar-
thropods are known to be highly mobile (Sorribas et al., 2016) there-
fore, to minimize the movement of insects within the experimental 
plots, all surrounding vegetation was cleared throughout the growing 
season except for the border margins. Active ingredients and applied 
doses are described in Table 1. The application rates were followed 
as per the manufacturer's recommendation. The insecticides were 
applied twice, with the first spraying done at 42 days after planting 
(DAP) when the crop entered the second trifoliate and the second 
spraying at 70 DAP during the sixth trifoliate. These two growth 
stages were selected since aphids inflict severe damage at the vege-
tative growth stage, attacking auxiliary buds and growing points.

2.3  |  Aphid pests

Data on aphid abundance, damage severity and percent incidence were 
collected 1 day before spraying and 7, 14 and 21 days after spraying for 
the two applications across all treatments and controls. Aphid abun-
dance measurements were obtained by visual observation and scoring 
numbers using an index. Due to the high reproductive rate of aphids a 
categorical scale was used to assess aphid abundance, 1= no aphids; 2 
= a few scattered aphids (1–100); 3 = a few small colonies (101–300); 
4 = several small colonies (301–600); 5 = large isolated colonies (601–
1000); and 6 = large continuous colonies (>1000) (Aken et al., 2013; 
Mkenda et al., 2015). The data were collected from ten randomly se-
lected plants from the inner five rows falling within the sampling area 
in each treatment. The severity of damage caused by aphids on Lablab 
was determined by visually observing and scoring the level of damage 
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over the same assessment times and selected plants. The severity of 
damage was assessed using a 1–5 scale widely adopted in the literature, 
where; 1= no infestation or damage, 2 = light damage and infestation, 
<25% plant parts damaged or infested, 3 = average damage and infes-
tation, 26%–50% plant parts damaged, 4 = high infestation and dam-
age, 51%–75% plants parts damaged showing yellowing of lower leaves 
and 5 = severe infestation, >75% damage resulting to plants with high 
infestation levels with yellow and severely curled leaves or dead plant 
(Mkenda et al., 2015). The incidence of aphids was determined by visu-
ally examining and counting the number of aphids damaged/infested 
plants by randomly sampling 30 plants from the inner five rows in each 
replicate. Assessments were made over the same sampling times and 
expressed as percentage incidence.

2.4  |  Natural enemies

Yellow pan traps were deployed to collect NEs as these were shown to 
be effective at catching a range of species in Kenyan legume agricultural 
systems in previous work by Mwani et al. (2021). Additionally, the use 
of pan traps to assess populations of natural enemies has recently been 
undertaken effectively (Shweta & Rajmohana, 2018; Thant et al., 2016). 
Furthermore, pan traps can be deployed easily in the crop, catching 
insects throughout the deployment period whereas other approaches 
such as sweep netting may be biased towards daytime-active insects 
and may miss small insects like parasitoid wasps and can also damage 
the crop. The traps were set up at the centre and the edge of each repli-
cated plot to sample natural enemies. The traps were set at ground level 
and spaced at 20 m from one experimental plot to another. The pan 
traps were made using 20 cm diameter yellow plastic plates filled three-
quarters with water with two drops of liquid soap mixed in to help break 
the surface tension. Sampling was carried out twice, 1 day before and 
7 days after spraying, with traps collected after 48 h. The traps were set 
up concurrently with the assessment of aphids. All arthropods captured 

in each trap were transferred into 50-ml falcon tubes containing 75% 
ethanol. Arthropod samples were sorted to identify key selected fami-
lies of natural enemies associated with aphids (parasitic wasps, tachinid 
flies, ladybird beetles), recording the number per trap.

2.5  |  Bean harvest and yield

Yield data are presented here to show the influence of field margins 
and the impact of botanical insecticides as compared to conventional 
synthetic insecticides. Grain yield and related agronomic data were col-
lected at physiological maturity when pods turned brown. Plant height 
was measured from the ground level to the tip of the main stem. Above-
ground biomass from each treatment was taken from 10 plants ran-
domly selected from the middle five rows, using destructive sampling 
where the selected plants were uprooted at pod set when the plants 
were expected to be close to the peak of dry matter accumulation. The 
plants were dried at 65°C in an oven for 24 h and dry weight was re-
corded. The number of pods per plant was counted in each plant from 
10 plants randomly selected from the inner middle rows categorised as 
either clean or damaged. Similarly, the number of seeds per pod was 
determined by threshing each pod and counting the seeds. The weight 
of a hundred seeds was determined using an electronic digital weighing 
balance (maximum weighing 3 kg; Manufacturer: Comglobal Solutions). 
For grain yield, pods were harvested separately within the sampling 
area for each treatment. Pods were sun-dried for 2 days and threshed 
with the moisture content recorded using a digital moisture meter 
(Manufacturer: Dramiński S.A.). After attaining 13% moisture content, 
grains from each treatment were weighed separately using a port-
able digital scale (maximum weighing 40 kg; Manufacturer: Comglobal 
Solutions) and converted to tons ha-1 using the following formula:

Grain yield
(

tons ha−1
)

=
Grain weight per plot x 10

Harvest area
(

m2
)

Trade name

Rate of 
application 
(L/Ha) Active ingredients (a.i., %)

% a.i. 
composition

a.i. dose 
(L/Ha)

Pyeneem 2.5 Natural pyrethrins 1% w/v 1.00 0.025

Neem oil 1% w/v 1.00 0.025

Inert ingredients 98% w/v 98.00 2.450

Pyerin 2.5 Natural pyrethrins 1% w/v 1.00 0.025

Neem oil 1% w/v 1.00 0.025

Garlic extract 25% w/v 25.00 0.625

Inert ingredients 73% w/v 73.00 1.825

Nimbecidine 3.0 Azadirachtin 0.03% w/v 0.03 0.0009

Neem oil 90.57% 90.57 2.7171

Inert ingredients 9.4% w/v 9.40 0.282

Duduthrin (+ve 
control)

2.0 Lambda cyhalothrin 1.75% 
w/v

1.75 0.035

Inert ingredients 98.25% w/v 98.25 0.197

w/v = Weight by volume.

TA B L E  1  Active ingredients and 
dose rates of botanical insecticides and 
synthetic insecticide (Duduthrin) used in 
the study
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2.6  |  Data analysis

The data used for analysis were the mean values from each replicate. 
Data on percent incidence and natural enemy counts were subjected 
to arcsine and square root (

√

x + 1)transformation, respectively, to 
correct for heterogeneity of treatment variances. Effects of crop-
ping seasons, botanical insecticides, field margin vegetation and 
their interactions were subjected to Analysis of Variance (ANOVA) 
for aphids’ abundance, damage, severity, percent incidence, natural 
enemy abundance and grain yield. The sampling time and cropping 
seasons were regarded as repeated measures and the means com-
parisons were done for field margins, botanical insecticides and their 
interaction effect. Pearson correlation matrix was used to test the 
association between the response variables. The association was to 
test how aphid abundance influenced damage severity, incidence 
and natural enemies. The means of treatments and interactions were 
compared using the least significant difference (LSD) test at a sig-
nificant level of p ≤ 0.05. All analyses were done using XLSTAT ver-
sion 2019.2.2.59614 (Addinsoft, 2019). XLSTAT statistical and data 
analysis solution (Boston, MA, USA. https://www.xlstat.com).

3  |  RESULTS

3.1  |  Aphid abundance, severity and incidence

The Analysis of Variance indicated interactive effects between all 
three parameters of season, field margin and pesticide treatment for 
aphid abundance, damage severity and percent incidence (Table 2). 
Cropping season showed some minor differences in aphid param-
eters but generally followed the same trends, permitting the data 
to be combined for the two cropping seasons (Figures 1 and 2). The 
botanical insecticides were able to reduce aphid numbers and dam-
age in comparison to the untreated control and were often as good 
as the synthetic pesticide, Duduthrin (Figure 1). The botanical insec-
ticides in the presence of field margin vegetation provided lower re-
ductions in aphid abundance, severity and incidence as compared to 
the absence of field margins (Figures 1 and 2). The Pearson correla-
tion analysis showed a significant (r = 0.994*** and r = 0.910***) posi-
tive association between aphid abundance and damage severity and 
percent incidence, respectively. A positive significant (r = 0.913***) 
correlation was also observed between damage severity and percent 
incidence.

3.2  |  Natural enemy abundance

Arthropods captured in the pan traps were first grouped into the 
general category of aphid natural enemies comprising mainly preda-
tors and parasitoids. From the initial sorting, a total of 6808 insect 
natural enemies were collected during the two cropping seasons. 
The major groups identified were parasitic wasps (Braconidae and 
Ichneumonidae) 40%, tachinid flies (Tachinidae) 43% and ladybird 

beetles (Coccinellidae) 17%. The Analysis of Variance indicated 
there was only an interactive effect between season and field mar-
gin vegetation, with no significant interactions between all other pa-
rameters (Table 3). Generally, in plots with field margin vegetation, 
more natural enemies were collected as compared to plots with no 
field margin vegetation (Figure 3) The presence of field margin vege-
tation was particularly beneficial to parasitic wasps and tachinid flies 
where their numbers were nearly doubled in comparison to plots 
with no field margins (Figure 3). Ladybird beetle numbers were gen-
erally less affected by the presence or absence of field margin veg-
etation (Table 3). The botanical insecticide treatments reduced the 
number of natural enemies in comparison to the untreated controls; 
however, the reductions with the botanical insecticides were overall 
less detrimental compared with the synthetic pesticide Duduthrin 
(Figure  3). Correlation analysis revealed that there was a positive 
significant (r=0.638**) association between aphid abundance and 
natural enemy population.

3.3  |  Lablab harvest yield

The presence of field margin vegetation enhanced the yield for each 
crop protection method employed (Figure 4). The lowest yield was 
observed in the untreated control. The highest yields were achieved 

TA B L E  2  Analysis of variance for the aphid abundance, 
damage severity and percent incidence on Lablab bean for two 
cropping seasons (May-December 2019 and March-November 
2020), botanical insecticides (Nimbecidine, Pyeneem and Pyerin), 
Duduthrin and untreated control, in the presence or absence of 
field margin vegetation (FMV)

Source of variation df Abundance Severity Incidence

Season 1 407.129 263.076 51.826

<0.0001 <0.0001 <0.0001

Margin vegetation 1 30.814 24.681 32.770

<0.0001 <0.0001 <0.0001

Treatment 4 34.842 25.901 24.037

<0.0001 <0.0001 <0.0001

Replicate 3 4.039 4.748 4.809

0.007 0.003 0.003

Season X Margin 
vegetation

1 18.824 22.904 25.639

<0.0001 <0.0001 <0.0001

Season X 
Treatment

4 20.370 14.548 14.983

<0.0001 <0.0001 <0.0001

Margin vegetation 
X Treatment

4 23.470 17.387 8.467

<0.0001 <0.0001 <0.0001

Season X Margin 
vegetation X 
Treatment

4 21.784 17.234 8.433

<0.0001 <0.0001 <0.0001

R2 0.585 0.503 0.361

F 39.579 28.418 15.834

Pr > F <0.0001 <0.0001 <0.0001

https://www.xlstat.com
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when treating the crop with the botanical insecticide Pyeneem and 
the synthetic Duduthrin in the presence of field margin vegeta-
tion. The next best treatment was Pyerin with field margin present, 
thereafter, followed by the treatments without field margins and 
Nimbecidine. Nimbecidine and the untreated control were observed 
to have relatively high variability in yields compared with the other 
treatments. An Analysis of Variance on all the yield parameters col-
lected at the time of harvest (plant height, undamaged pods, dam-
aged pods, seeds per pod, 100 seed weight, grain yield, crop plant 
biomass) showed consistent effects of the treatments on crop pro-
duction (Appendix S2).

4  |  DISCUSSION

This study demonstrated the potential of integrating biorational 
pest management options by combining botanical insecticides and 
field margin vegetation to support agroecological intensification 
and sustainable management of aphid pests in the orphan crop 
legume Lablab. Our data showed that the use of botanical insecti-
cides can deliver similar Lablab bean yields as those achieved with 
synthetic pesticides but with reduced impact on natural enemies of 
pests. This is consistent with other related studies undertaken by 
Tembo et al.  (2018), Campos et al.  (2019) and Soares et al.  (2019). 

F I G U R E  1  Mean (±SE) of aphid abundance and damage severity as influenced by botanical insecticides and field margin vegetation. 
Columns bearing the same letters are not significantly different using Fisher’s Least Significant Difference at (P 〈 0.05)

F I G U R E  2  Mean (±SE) of aphid percent incidence as influenced by botanical insecticides and field margin vegetation. Columns bearing 
the same letters are not significantly different using Fisher’s Least Significant Difference at (P 〈 0.05)
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Furthermore, the abundance of natural enemies that contribute to 
biorational pest management can be enhanced by florally rich mar-
gins around the crop that provide food and refuge for natural en-
emies that later move into crop fields for biological control and a 
potential buffer against migrating pests (Bianchi & Wäckers, 2008; 
Knapp & Řezáč, 2015; Quispe et al., 2017; Skirvin et al., 2011).

Generally, lower aphid abundance, damage severity and percent 
incidence were observed in plots with florally rich margins. The 

combination of botanical insecticides and field margins resulted in 
significantly reduced bean aphid infestation compared with applying 
the insecticides in plots without field margins demonstrating that 
co-opting multiple agroecological approaches can deliver pest man-
agement outcomes that are as effective or even more so than relying 
on synthetic insecticides. Our data are consistent with Amoabeng 
et al. (2020) who reported high insect pest suppression when botan-
ical insecticides and habitat manipulation were integrated. Non-host 

Source of variation df
Parasitic 
wasps

Tachinid 
flies

Ladybird 
beetles

Overall 
abundance

Season 1 339.436 380.136 42.145 269.531

<0.0001 <0.0001 <0.0001 <0.0001

Margin vegetation 1 30.852 52.186 5.233 40.620

<0.0001 <0.0001 0.022 <0.0001

Treatment 4 7.099 10.701 15.030 12.122

<0.0001 <0.0001 <0.0001 <0.0001

Replicate 3 0.074 0.194 0.247 0.013

0.974 0.901 0.863 0.998

Season X Margin 
vegetation

1 12.928 23.695 20.933 9.344

0.000 <0.0001 <0.0001 0.002

Season X Treatment 4 0.780 1.623 1.981 0.510

0.538 0.167 0.096 0.729

Margin vegetation X 
Treatment

4 0.227 0.382 0.773 0.405

0.923 0.822 0.543 0.805

Season XMargin 
vegetation X 
Treatment

4 0.161 0.063 1.148 0.049

0.958 0.993 0.333 0.995

R2 0.403 0.451 0.190 0.376

F 18.932 23.076 6.581 16.904

Pr > F <0.0001 <0.0001 <0.0001 <0.0001

TA B L E  3  Analysis of variance for 
the abundance of key natural enemy 
species found on Lablab bean for two 
cropping seasons (May-December 2019 
and March-November 2020), botanical 
insecticides (Nimbecidine, Pyeneem and 
Pyerin), Duduthrin and untreated control, 
in the presence or absence of field margin 
vegetation (FMV)

F I G U R E  3  Mean abundance (±SE) of parasitic wasps, tachinid flies and ladybird beetles as influenced by botanical insecticides and field 
margin vegetation. Columns bearing the same letters are not significantly different using Fisher’s Least Significant Difference at (P 〈 0.05)
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plants can, however, reduce an insect herbivores’ capacity to locate 
and colonize host plants through chemical and physical interference 
(Mansion-Vaquié et al., 2020) and this may also have contributed to 
the outcomes recorded here.

The application of the synthetic insecticide, Duduthrin 
(Lambdacyhalothrin 17.5 g/l), was the most effective treatment 
for reducing aphid infestation. This was expected considering that 
it is a broad-spectrum insecticide that is used widely in managing 
insect pests and registered for use on a range of crops (Belmain 
et al.,  2013). The botanical insecticides evaluated here have also 
been demonstrated to be effective in the management of insect 
pests though not previously evaluated alongside crop margin 
flowers (Saleem et al., 2019). The active ingredients; pyrethrins in 
pyrethrum and terpenoids such as azadirachtin in neem-based in-
secticides, are known to be effective against aphids with repellent 
and antifeedant activity, and growth and reproduction inhibition 
against a range of other pests arthropods (Pezzini & Koch, 2015; 
Ulrichs et al., 2001) and notably against aphids and other hemipter-
ans on other legume crops (Fite et al., 2020; Nahashon et al., 2016; 
Pezzini & Koch,  2015). However, variable efficacy of botanical 
insecticides on insect pests has been reported. This loss of ef-
ficacy is partly attributed to differences in their mode of action 
and the capacity of pests to detoxify the active ingredients (Sisay 
et al., 2019). In addition, the active ingredients of pyrethrum and 
neem are labile in ultraviolet light. However, this also means they 
are non-persistent and thus more compatible with conservation bi-
ological control as the compounds are less likely to harm beneficial 

insects (Soares et al., 2019). This loss of efficacy presents a chal-
lenge to the adoption of botanical insecticides. This may be over-
come by combining their use with enriched agricultural landscapes 
as demonstrated here with our data, which shows that enriched 
margins around crops can enhance populations of natural enemies 
even in combination with botanical insecticide applications.

Nimbecidine was generally the least effective botanical insec-
ticide in reducing aphid infestation but had comparable effects on 
natural enemy insect numbers to Pyerin and Pyeneem. Although 
Pyerin and Pyeneem were generally as effective in reducing aphid 
infestations as the synthetic Duduthrin, these plots showed a 
higher abundance of natural enemies post-spray. Duduthrin-
treated plots had the lowest natural enemy abundance, and this 
was especially severe in plots not surrounded by non-crop margin 
flowers. The low abundance of natural enemies was likely due to 
the high entomotoxicity of lambda-cyhalothrin, the active ingre-
dient in Duduthrin, which suppresses populations of both insect 
pests and their natural enemies (Mkenda et al.,  2015; Mkindi 
et al., 2017).

The compatibility of botanical insecticides with other IPM ap-
proaches is not in itself new and has been proposed and reported 
previously; for example, with entomopathogenic fungi and natural 
enemies of pests (Fernandez-Grandon et al., 2020). Field margin veg-
etation has also recently been demonstrated to be complimentary to 
conservation biological control as the margin plants offer alternative 
food resources (Mkenda et al.,  2019) and illustrates the potential 
synergies and compatibilities of integrating botanical insecticides 

F I G U R E  4  Lablab bean yield from botanical insecticides (Nimbecidine, Pyeneem and Pyerin), Duduthrin (Lambdacyhalothrin) and 
untreated as positive and negative controls, respectively, in the presence or absence of field margin (FMV). Letters above each box plot are 
from a post-hoc Least Significant Difference test showing differences in mean values at the 95% confidence interval [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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and enhanced non-crop habitats for improved insect pest suppres-
sion (Arnold et al., 2021; El-Wakeil, 2014). Such compatibility was 
demonstrated by Amoabeng et al.  (2020) who evaluated the dual 
pest management services of botanical insecticides and conserva-
tion biological control for managing brassicas pests and along with 
our data further support the scope for combining direct pest man-
agement interventions with enhanced landscapes that support nat-
ural pest regulating processes. In particular, this may enhance the 
recovery of natural enemy populations after exposure to synthetic 
and botanical insecticide applications.

The mortality and recovery of insects after exposure to bo-
tanical insecticide active ingredients have been shown to vary 
across insect families. Khan et al.  (2015) reported low adult 
mortality of six-spotted ladybird beetles (Menochilus sexmacu-
latus Fab.) (Coccinellidae) when exposed to neem oil. Similarly, 
lacewings (Chrysopidae) have been shown to have a high toler-
ance to pyrethrins due to increased levels of pyrethroid esterase 
(Amarasekare & Shearer, 2013). El-Wakeil et al. (2006) reported no 
mortality of lacewings due to neem-based pesticides like NSE 5%, 
Neemark, Achook and Nimbecidine each at 0.003%. Studies on 
Hymenoptera parasitoids have shown variable outcomes after ex-
posure to botanical insecticides. High mortality on adult parasit-
oids, decreased parasitism and reduced parasitoid emergence after 
exposure to neem-based insecticides have been demonstrated 
(Monsreal-Ceballos et al.,  2018). However, the egg parasitoid 
Trichogramma pretiosum showed low mortality when treated with 
azadirachtin (Almeida et al., 2010). The difference in parasitoid re-
sponses to botanical insecticides has been attributed to factors 
such as active ingredients, type of exposure, parasitoid species 
and stage of development (Monsreal-Ceballos et al.,  2018). The 
application of botanical insecticides may enhance the conserva-
tion of natural enemies owing to the reduced mortality compared 
with those exposed to synthetic applications and therefore, may 
contribute to the success of integrated pest management (IPM) 
programs (Mkenda et al.,  2015). In particular, the integration of 
botanical insecticides with flower-rich field margin provided addi-
tional benefits in the conservation of natural enemies and insect 
pest suppression complimenting other recent studies (Amoabeng 
et al., 2020). However, precautions should be taken to ensure that 
the botanical insecticides are applied at the recommended rates 
since high rates have been reported to cause higher mortality 
rates of beneficial insects (Pezzini & Koch, 2015).

Bean aphids have been shown to have a significant effect on the 
grain yield as they directly affect the photosynthetic ability of the 
leaves. A related study by Mwangi et al. (2008) reported significant 
grain yield reduction in susceptible common bean (Phaseolus vulgaris) 
varieties to Aphis fabae. The results from this study indicated that 
flower-rich field margins could increase grain yield. In addition, the 
combination of field margins and botanical insecticides resulted in 
higher grain yield compared with the use of botanical insecticides 
in absence of plot margin flowers. The impact of the three botani-
cal insecticides on natural enemy populations was generally similar, 
but the lower yield achieved with Nimbecidine in comparison with 

Pyerin or Pyeneem suggests the latter are more suitable for IPM on 
Lablab.

This study demonstrates that commercial botanical insec-
ticides have reduced impacts on key natural enemies of aphids 
compared with synthetics, in combination with florally enhanced 
landscapes and illustrate the compatibility of approaches, sup-
porting the concepts of IPM in sustainable cropping systems 
and conservation biological control. Using botanical insecticides 
alongside field margin management for flowering plants provides 
a sustainable pest management approach that is environmentally 
benign compared with synthetic insecticides along with corre-
sponding higher grain yield.
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