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The interdependence between structural mechanics and microstructure
solidification is an inherently three-dimensional phenomenon, where the
complex physical processes and mechanical interactions can lead to dendrites
growing at orientations influenced by twisting and out of plane bending. These
effects can have a significant impact on the formation of defects and the
overall macroscopic material properties of the structure. However, all at-
tempts to numerically model this process so far have been limited to two-
dimensional representations of the problem, which necessitates ignoring any
potential behaviour that may arise from these more complex deformation
events. For this reason, the two-dimensional numerical methods presented in
previous papers, which couple a Finite Volume Structural Mechanics Solver to
a Cellular Automata solidification solver, have been expanded so that prob-
lems may now be simulated in three dimensions. Results are presented which
do not aim to predict any specific mechanism but rather highlight the new
capabilities of this improved three-dimensional modelling framework.

INTRODUCTION

The impact of structural mechanics upon the
microstructural development of solidifying metal
alloys is currently an under-explored field of
research, particularly given the changes these
effects have been observed to have on dendrite
development and composition, dictating the macro-
scopic material properties of the ultimate solidified
structure. The interdependent nature of concurrent
structural mechanics and microstructure solidifica-
tion can lead to complex interactions, where any
forces which may cause mechanical deformation
will necessarily alter subsequent solidification. In
extreme cases large deformations can lead to den-
drite fragmentation1 and act as a contributing
factor in the formation of structural inhomo-
geneities.2 In more extreme cases other casting
defects such as stray grains3,4 and slivers5–7 may
arise, which necessitate parts being discarded as
unfit for purpose.

A key factor in the interaction between structural
mechanics and microstructure solidification is the
crystallographic orientation of the dendrite, which
dictates how it will preferentially grow. As a
dendrite deforms the local orientation throughout
the dendrite will correspondingly change, influenc-
ing the continuous development of the microstruc-
ture. Changes to dendrite orientation can be
gradual, with successive small misorientations
accumulating along a dendrite arm until a signifi-
cant overall change to the orientation is achieved.8,9

However there are also cases of large localized
orientation changes, where dendrite growth will
continue at the new orientation with no further
observable orientation changes.10,11

Due to the complex nature of these interactions, it
can simplify matters for both modelling and prac-
tical experiments to treat systems as being func-
tionally two dimensional. For practical experiments,
due to limitations in obtaining in situ visuals of the
microstructure as it develops, thin samples can be
utilized where one of the dimensions takes a
negligible size to allow for a complete observation
of the experiment.10,12,13 In cases where larger
samples are used, analysis is generally relegated(Received December 3, 2021; accepted February 18, 2022)
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to post processing the final solidified structure to
examine any potential regions of interest, with the
available methods generally necessitating that any
appraisal of the microstructure is performed on two-
dimensional images describing slices of the
microstructure,1,3,5,11 which can complicate both
identifying and visualizing more complex mechan-
ical behaviours such as torsion and out-of-plane
bending.10,14

Numerically modelling concurrent structural
mechanics and microstructure solidification could
provide a greater understanding of how these
interactions change the transient development, not
being bound by the same constraints as practical
experiments when it comes to obtaining in situ
visuals. Furthermore, with a fully simulated den-
dritic structure there is potential for the various
material properties of the fully solidified
macrostructure to be predicted. However, numerical
modelling of these effects remains at a nascent stage
with structural mechanics generally only being
applied to post process macroscopic structures,15–18

overlooking any impact structural mechanics will
have on further solidification.

Numerical modelling has been undertaken which
considers the impact of structural mechanics on the
microstructure, in the context of both post process-
ing19,20 and fully coupled simulations.21 However,
all existing modelling considers the dendrites only
in two dimensions where a single columnar dendrite
is examined and assumed to behave in a manner
analogous to a cantilever beam. This two-dimen-
sional approach was also adopted in previous work
published by the authors, with Soar et al.22 inves-
tigating the influence to the growth behaviour from
applying forces which complement and oppose the
growth direction. This was extended in Soar et al.23

to model larger dendritic systems compared to
experimental results obtained using a Ga-In alloy,
where forces perpendicular to the growth orienta-
tion of the primary dendrite arm were considered as
a source of dendrite misorientation which may
influence grain competition.

However, while a two-dimensional model may act
as a fair representation for thin sample cases for
many scenarios, even within this framework the
process is intrinsically three-dimensional in nature,
where the microstructure may develop in ways two-
dimensional simulations could not capture. Conse-
quently, modelling behaviour such as dendrites
bending out of plane, twisting, or overlapping in
the sample is rendered impossible by remaining in
two dimensions.

The modelling presented by Soar et al.23 has been
expanded so that the microstructural evolution is
modelled in three dimensions, with the intimately
coupled structural mechanical behaviour and locally
defined crystallographic orientation likewise
expanded to function in three dimensions. This
expansion of coupled structural mechanics and
microstructure solidification to 3D allows the

examination of geometric changes which cannot be
represented using any other currently existing
numerical models which are limited by working in
two dimensions. The modelling is currently limited
to examinations of columnar dendrites growing
under directional solidification conditions typical
for casting. While this approach can model an
equiaxed dendrite bound by contact with other
grains, if the dendrite is free floating it will be
unbound from a structural mechanical perspective,
requiring a further solid body model to describe
their movement through the domain. Results have
been generated which examine idealized cases
which highlight the capabilities of this unique
modelling framework.

MATHEMATICAL FORMULATION

The system being solved using the numerical
method presented in Soar et al.23 has been
expanded to represent a three-dimensional system
of concurrent microstructure solidification and
structural mechanics.

The microstructure evolution is unchanged from
prior work by being represented in three dimen-
sions, with the governing equations for phase
change and partitioning being given by

Cl 1 � kð Þ @/s

@t
¼ �r � DerClð Þ þ 1 � 1 � kð Þ/s½ � @Cl

@t

ð1Þ

where Cl and Cs are respectively the liquid and solid
concentration, k ¼ Cl=Cs is the partition coefficient,
0 � /s � 1 is the solid fraction, De is the mass
diffusivity, and t is time. Diffusive transport is
dictated by the relationship

@Ce

@t
¼ r � DerClð Þ ð2Þ

with the equivalent concentration defined as
Ce ¼ 1 � /sð ÞCl þ /sCs, The equilibrium tempera-
ture Ti is given by

Ti ¼ T0 þml Cl � C0ð Þ ð3Þ

where ml is the liquid slope, C0 is the initial
concentration, and T0 is the liquidus temperature
at C0.

The structural mechanical behaviour is repre-
sented by a linear elastic material model, with the
corresponding assumptions of ‘small’ deformations,
no plastic deformation and a linear relationship
between the stress and strain. In modelling the
third dimension, the assumption of plane strain
used in earlier work can now be discarded. In three
dimensions, to obtain the stationary solution for the
displacements of a structure experiencing external
forces, the following partial differential equations
need to be simultaneously solved:
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where u, v and w are the displacements in the x, y
and z direction, Fx, Fy and Fz are the corresponding
body forces, and l and k are the Lamé constants:

k ¼ gE
1 þ gð Þ 1 � 2gð Þ ð7Þ

l ¼ E

2 1 þ gð Þ ð8Þ

where E and g are respectively the Young’s modulus
and Poisson’s ratio of the material. Variable mate-
rial properties are accounted for by defining the
Young’s modulus as a parameter which varies
locally according to the following linear relationship
with the solid fraction and the maximum Young’s
modulus ðEMÞ of the fully solidified material:

E ¼ /sEM ð9Þ

In the cases presented, a fixed body force,
F ¼ ðqs � qlÞg, based the density difference between
the solid (qsÞ and liquid (qlÞ, is applied to the
solidifying structure. F can be defined as acting in
any combination of the x, y and z directions as the
problem necessitates and g acts as a gravitational
constant which takes multiple sizes along with both
positive and negative signs depending on the case
being examined, as will be explicitly stated in the
problem descriptions.

NUMERICAL METHOD

The elastic deformation of dendrite arms is com-
puted using a locally defined variable, Young’s
modulus, as a parameter, changing crystallographic
orientation of the growing dendrites. In the absence
of experimental data, this was proposed as an

approximate model of the observed complex elasto-
visco-plastic phenomena occurring at the microscale
during alloy solidification under external forces or
geometrical constraints.

The microstructure evolution is modelled using a
finite-difference decentred octahedral Cellular
Automata (CA) method. This method is based on
the lMatIC code24–27 to resolve the evolution of the
alloy microstructure, which has been further devel-
oped by the authors to be able to solve complex
multi-physics phenomena in parallel within the
modelling framework TESA28,29 where it has been
extensively verified and validated. This code was
already capable of solving both two- and three-
dimensional problems prior to the development of
the Structural Mechanics Solver (SMS), so no
further development relating to the microstructure
solidification process was required.

The structural mechanics is solved using a
bespoke Finite Volume Structural Mechanics Solver
which has been developed to solve the linear
elasticity equations in displacement formulation,
allowing for easy coupling with the CA method used
by TESA. While applying a finite volume approach
to structural mechanics is somewhat unusual, a
significant body of work exists which has rigorously
verified and validated this approach, finding it to be
comparable with solutions obtained using the finite
element method.30–32 Other than requiring a new
discretisation to solve these updated equations in
three dimensions, the implementation of the SMS
remains the same as was described in Soar et al.,23

remaining capable of obtaining the displacements
for structures with variable material properties.
This is treated as a quasi-stationary process where
only new displacements arising since the prior call
of the solver are calculated, requiring the body
forces to act transiently such that they only apply
the change in force since the prior timestep, rather
than the force in total.

The same process of coupling structural mechan-
ics to microstructure solidification is employed by
means of locally changing the crystallographic
orientation of a dendrite based upon the deforma-
tion it has experienced. The primary way this
process is changed by working in three dimensions
is that while the dendrite orientation could be
described by a single angle in two dimensions, in
three-dimensional space it is now required to cal-
culate three extrinsic rotations around the axes to
describe all possible orientations a dendrite may
take. In practice, obtaining these rotations leads in
effect to separate 2D problems where the rotation
about each axis can be calculated by using the
obtained displacements to form an arc as described
in Soar et al.23 and visualised in Fig. 1. This
approach allows the three extrinsic rotations
around the x, y and z to be calculated as follows:
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where the subscripts e, w, n, s, h and l indicate that
the displacements being used are spatially located
respectively at the East, West, North, South, High
and Low faces of the volume whose orientation is
being calculated. Once obtained, these orientation
changes can be combined with any existing orien-
tation information at that point to obtain new
values of hx; hy and hz which can be used to generate
a rotation matrix R ¼ Rz hzð ÞRy hy

� �
Rx hxð Þ for each

volume which the CA method interprets to describe
the local orientations dictating how dendrites pref-
erentially grow in a three-dimensional space.

In summary, for a single transient solution step
using these methods, the CA method will provide
the evolution of the microstructure that will dictate
changes to the material properties and body force
being applied. This information is then passed to
the SMS which solves the linear elasticity equations
in three dimensions to obtain displacement values
which are used to alter the local crystallographic
orientation of each volume comprising the struc-
ture. The CA method will then be called again,
considering the updated three-dimensional orienta-
tion of the structure as the solution progresses.

RESULTS

The results presented have been chosen to high-
light the capabilities of the updated numerical
model, rather than necessarily predict any specific
mechanism. The first case chosen is a thin sample
case analogous to a two-dimensional problem in
expected behaviour, because one of the dimensions
of the sample goes into the plane of view is

significantly smaller than the other dimensions of
the sample domain. For the purposes of modelling
thin sample experiments using the now 3D SMS, a
sample width of 200lm was used, meaning that the
behaviour observed should be comparable to those
seen in a two-dimensional case being modelled
using plane stress. The relevant material properties
for the majority of the cases presented are given in
Table I, being analogous to those of a semi-solid Ga-
25 wt%. In alloy, chosen for easier comparison with
the prior work published by Soar et al.23 (with a
lower value taken for the maximum Young’s mod-
ulus to highlight the bending behaviour in the
smaller simulation domains) which modelled a
system using this same alloy to allow for comparison
with experimental results. All cases presented use a
cell size of Dx ¼ 10lm, a timestep Dt ¼ 5ms, a
thermal gradient of rT ¼ 1K=mm and a cooling
rate Q ¼ 0:01K=s. This leads to characteristic solid-
ification rates of 10lm=s, which correspond to
typical conditions for casting. External body forces
have been applied in all cases to cause observable
deformation, which highlights the capabilities of the
SMS, which may come from a wide range of sources
depending on the manufacturing process. This could
include pressures from fluid flow, thermal contrac-
tion/shrinkage, electromagnetic forces or density
variations. For the cases being presented, forces
have been selected that are simple to define, being
based on a constant gravitational acceleration act-
ing on the inherent density variations caused by
partitioning, or a fixed rotational force to demon-
strate the three-dimensional behaviours of the

Fig. 1. Displacement based arc constructions used to calculate (a) Dhx , (b) Dhy and (c) Dhz .

Table I. Structural material property values used
for cases 1, 3, 4 and 5

Property Variable Value Unit

Density solid qs 6673 kgm�3

Density liquid ql 6326 kgm�3

Maximum Young’s modulus EM 10,000 Pa
Poisson’s ratio g 0.3 �
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coupled system. In principle, the model can account
for any external body force, but the application of
many of these would require additional processes to
be modelled to obtain the requisite source values.

The first case presented in Fig. 2 takes a solidi-
fying single columnar dendrite while the structure
is subjected to a transient body force based on the
density difference of the growing structure and
surrounding solute. The setup for this case takes a
single seed placed on the west wall of a 400 9 160 9
20-cell domain with an initial orientation of 5�,
taking just under 10 h to run on a 16-core cluster
node. In Fig. 2(a-c) the transient evolution of the
dendrite can be observed as it grows across the
domain, where in (a) only a slight deformation is
beginning to be visible; by (b) the orientation has
changed to the degree that the starting orientation
of 5� has almost been entirely counteracted while by
(c) the dendrite now clearly has an orientation
heading in the opposite direction to the angle the
dendrite was initially seeded with. These orienta-
tion changes are highlighted further in (d), which
shows the change in orientation growing along the
length of the dendrite, with the largest orientation
change being observed at the tip. Some small
positive changes in orientation can be observed in
the secondary arms growing from the wall, being
caused by the elastic nature of the material which is
causing this region to bend upwards to respond to
the deformation in the main arm. Part (e) shows the
von Mises stress within the dendrite, highlighting
that the highest regions of stress are generally
where secondary arms attach to the main arm or
where they interact with each other. Finally, (f)

shows the state of a dendrite grown under the same
conditions without a force being applied for the sake
of comparison. The results in (c) and (f) have been
presented as a 3D structure rather than slices
through it to demonstrate the true three-dimen-
sional morphology of the structures being modelled.

This test was then expanded to model a second
case of a larger thin sample, comparable to the 2D
simulation presented in Soar et al.23 This took a
6400 9 1600 9 20-cell domain where two dendrites
were seeded on the west wall with an initial 20�
orientation, where the North and South boundaries
are periodic such that this system could be consid-
ered as representative of a section of a larger
sample. This case was run on the Greenwich
University HPC, taking approximately 16 h to
complete utilising 400 cores. Contrary to the other
results presented in this paper, this case was
modelled subject to the material properties outlined
in the original 2D simulation23 rather than using
the values given in Table I. Consequently, the
results shown in Fig. 3 were obtained by modelling
conditions taking EM = 30 MPa and the body force
being equivalent to three times the terrestrial
gravity. These results demonstrate similar beha-
viour overall to that observed in the earlier 2D
simulation, but this scenario has also captured a
new behaviour not observed in earlier modelling.
This can be observed in (a) where some of the
primary arms are bending away from each other
due to secondary arm interaction, which if contin-
ued could lead to a new primary arm forming in the
space growing between them and the competition of
the converging arm tips leading to other dendrites

Fig. 2. Numerical results (a-e) with an applied force and (f) without a force. (a-b) Transient concentration evolution of a mis-orientating dendrites;
(c) 3D visualization of the dendrite at the end of the simulation; (d) local orientation change around z axis. (e) Von Mises stress; (f) 3D
visualization of case with no applied force.
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becoming trapped. Part (b) shows the same beha-
viour with accumulated deformation as was
observed in the 2D simulation is in evidence here,
having a maximum in the centre of the dendrite
with the values fading towards the root and tip of
the dendrites. Only the v deformations in y have
been presented, as the dominant deformation values
driving orientation change in this simulation. The
orientations around the z axis shown in (c) serve to
better highlight the beginning divergence of the
dendrite arms. For this case orientation changes
around the x and y axes have also been calculated,
but the values were found to be insignificant in
affecting the overall solution. The von Mises stress
in (d) shows stress accumulating throughout the
dendritic structure except for the tips, which are
still relatively free to move, with there being a high
region of stress that quickly diminishes at the point
where the arms start to noticeably diverge. It can
also be observed that the deformations and corre-
sponding orientation changes are significantly
lower than those found in the 2D simulations,
despite using the same modelling conditions. The
reason for this inconsistency is that two- and three-
dimensional solidification are inherently different,
with an extra degree of freedom for partitioning and
mass transport in 3D causing dendrites to essen-
tially become thicker, as can be seen in analytic
solutions.33 These thicker dendrites will be corre-
spondingly harder to bend, making direct compar-
isons between 2D and 3D an involved process as it is
not just boundary condition changes that need to be
considered, but the entire system as phase change
and transport play a role. Consequently, the main
conclusion to be drawn from this comparison is that
within a thin sample context this approach can
obtain fully 3D results for domain sizes comparable
to those used in practical experiments which were

previously modelled only in 2D, where this added
dimension can significantly alter the observed
behaviour.

Better examples to demonstrate behaviour in
three dimensions are cases where the loading
causes a dendrite to bend out of plane. While this
can certainly occur in a thin sample case, it is more
common and obvious in fully 3D cases where all
dimensions of the domain have a significant size.
Consequently, for the next case a 120 9 120 9 480-
cell domain with periodic conditions on the East,
West, North and South boundaries was modelled,
with the simulation taking approximately 11 h
using a four-core machine. Here a single seed with
no pre-defined orientation was placed on the Low
boundary and allowed to develop under negative
body forces acting in the x and y directions, both
taking a g value five times larger than terrestrial
gravity. This caused the columnar dendrite to bend
into one of the corners of the domain as can be
observed in Fig. 4. A view of the dendrite has been
provided from multiple angles while displaying the
total local orientation of the dendrite around the x
and y axes. The local orientation changes around
the z axis were also calculated during the simula-
tion, but these values are insignificant in magnitude
compared to the other orientations.

With the capability of the SMS to capture more
complex three-dimensional bending demonstrated
by the previous case, a natural extension would be
to examine how these structural effects can change
the development of fully three-dimensional samples
featuring multiple dendrites. This has been realized
in the case presented in Fig. 5, where 50 dendrites
were seeded at a random location with a random
starting orientation on the low face of a 120 9 120 9
480-cell domain with periodic conditions on the
East, West, North and South boundaries, with the

Fig. 3. Numerical results of a simulated dendritic system. (a) Equivalent solute concentration of final microstructure, highlighting convergent and
divergent pairs of dendrite arms. (b) Cumulative deformation in v. (c) Orientation change around z axis. (d) Von Mises stress.
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simulation taking approximately 8 h using a four-
core machine. Thus, this case can be considered
representative of a sub-sample of a larger three-
dimensional domain. This system was then

modelled under conditions with no force and under
a constant negative body force applied in the z
direction taking a g value equivalent to five times
terrestrial gravity. This highlights the fact that

Fig. 4. Three-dimensional columnar dendrite bending out of plane. (a) and (c) Total orientation (�) around x axis. (b) and (d) Total orientation (�)
around y axis.

Fig. 5. Forest of simulated randomly oriented columnar dendrites. (a), (c) and (e) No force applied. (b), (d) and (f) Grown under body force. (a-b)
Total orientation around x. (c-d) Total orientation around y. (e-f) Total orientation around z.
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within the complex framework of competing den-
drites in three dimensions, the SMS can correctly
identify and obtain displacements for the individual
structures, while also keeping track of the distinct
local orientations occurring within these dendrites.
While the same two dendrites ultimately outcom-
pete the others to become the primary arms in both
cases, clear differences in the dendrite orientation
can be observed throughout the sample. For larger
samples or different initial conditions based on the
random seed used, it would not be unreasonable to
expect the impact from these structural mechanical
changes to influence which dendrites successfully
manage to outcompete their neighbours.

The final case being examined in this paper
studies the application of a rotational force to a
growing dendrite, with twisting dendrites being
another experimentally observed behaviour which
can now be represented using the SMS. For this, a
120 9 120 9 480-cell domain with periodic condi-
tions on the East, West, North and South bound-
aries was again used, with the simulation taking
approximately 10 h using a four-core machine. A
single seed with no pre-defined orientation was
placed on the Low boundary so that it can grow
through the rotational force being applied to the
domain. This rotational force was represented by
taking body forces acting in the x and y directions,
which have a value of zero at the centre of the
domain, but which increase radially in magnitude
such that the g reaches positive or negative values
of five times terrestrial gravity at the domain
boundaries. This imparts a counterclockwise force
upon the structure, causing it to develop into a clear
spiral as observed in Fig. 6. In 6(a-c), this shows the
time evolution of the structure, which demonstrates
that not only do the secondary arms twist such that
they preferentially grow counterclockwise, but the

central arm itself twists as it grows, shifting the
location along the arm where secondary arms begin
their growth. Part (d) shows how this rotation
around the z axis varies along the length of the
dendrite such that the tip has rotated a full 360�
during the simulation. Notwithstanding the linear
elasticity assumption, this demonstrates that even
under quite extreme loading conditions, the SMS
can track orientation change imparted by torque,
allowing for the modelling of scenarios where struc-
tures twist as they grow.

CONCLUSION

The two-dimensional structural mechanics code
presented in an earlier work has been extended to
solve the linear elasticity equations for a three-
dimensional evolving structure. This necessitated a
corresponding expansion of the local orientation
calculations, such that rotations around all axes
could be obtained from the deformations, which
could then be used to describe the orientation
changes in three-dimensional space. The updated
structural mechanics code was coupled to a CA
method solidification code using deformations to
update crystallographic orientations. This SMS-CA
code was then applied to a selection of cases that
highlights the unique capabilities of this modelling
framework. Initially, thin sample cases analogous to
the two-dimensional solutions previously examined
were simulated to verify the code was still capable of
resolving this style of domain which is commonly
used in practical experiments where three-dimen-
sional behaviour is generally limited. The remain-
ing cases examined behaviours which can only exist
in three-dimensions, such as out-of-plane bending
and twisting. The cases presented in this paper are
idealized to demonstrate the new capabilities of the

Fig. 6. Twisting columnar dendrite. (a-c) Transient evolution of dendrite. (d) Local orientations around z along dendrite length.
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three-dimensional code which cannot be accounted
for by using any other currently existing numerical
models. This serves to highlight the potential of this
framework to capture complex behaviour observed
in experiments which are often associated with
defects.

FUTURE WORK

With the three-dimensional implementation com-
plete, the next stage of development would be the
integration of the other physics, for example allow-
ing structural mechanics to be solved concurrently
with fluid flow. This would alter the solute distri-
bution to change the microstructure development as
well as potentially directly impart additional forces
upon the structure. Other avenues of further devel-
opment would be the implementation of a material
model capable of resolving non-linear structural
mechanics and thermal effects. These developments
would allow for the numerical modelling of more
realistic cases which can better capture the beha-
viour observed in practical experiments.
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N. Mangelinck-Noël, A. Tandjaoui, J. R. Davenport, N.
Warnken, F. di Gioacchino, T. A. Lafford, N. D’Souza, B.
Billia, and H. J. Stone, Metall. Mater. Trans. A Phys. Metall.
Mater. Sci. 50, 5234 (2019).

11. P. Hallensleben, F. Scholz, P. Thome, H. Schaar, I. Stein-
bach, G. Eggeler, and J. Frenzel, Curr. Comput.-Aided Drug
Des. 9, 15 (2019).

12. G. Reinhart, A. Buffet, H. Nguyen-Thi, B. Billia, H. Jung, N.
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