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Abstract

This paper is concerned with the problem of modelling the tail of the wealth distribution
with survey data when the data does not adequately cover the tail of the distribution. In order
to deal with the problem post data collection, it is standard practice to either fit a Pareto tail
to the data or to combine wealth survey data with observations from rich lists before fitting
such a Pareto tail. This paper proposes a novel approach (’rank correction’) to address
such cases which does not require additional data-sources. Applying the rank correction
approach to wealth survey data (HFCS, SCF, WAS) yields estimates of top wealth shares,
which are closely in line with estimates from the World Inequality Database and therefore
represent a significant improvement over the raw survey data. While the paper focuses on
the distribution of wealth as a case in point the rank correction approach might generally
prove useful in contexts, where the tail of a Pareto-distributed variable is not adequately
covered by the available data.
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1 Introduction

Much applied work on economic inequality makes use of survey data. And indeed, survey
data comes with a series of advantages for applied researchers: surveys are usually designed to
ensure that the sample adequately represents the underlying population, they can be carried
out repeatedly to trace changes over time and they typically provide a rich set of contextual
variables (e.g. information on age, gender, education and the like). The possibility to include
such contextual variables is a major advantage of survey data as compared to administrative
data from tax returns, which typically only provide limited information about the individual or
household. Additionally, tax data is not available for many countries, which makes survey data
the prime data source for conducting large-scale international comparisons.1

However, survey data on inequality of wealth or income does come with one essential draw-
back: in many cases it does not adequately cover the tail of the distribution, that is, the richest
households or those with the highest incomes. While it might seem negligible at first sight that
some survey does not adequately cover the top 5% or the top 1% as this is only a small share
of the population of interest, it should be emphasized that this lack of coverage represents a
non-random measurement error, that can have a huge impact on final estimates. For instance,
even underestimating the wealth held by the top 1% can strongly bias our estimate of total
wealth or wealth inequality as the top 1% typically hold a substantial fraction of total wealth.

The reasons why surveys do not adequately cover the top tail of the income or wealth dis-
tribution can be grouped into three rough categories: first, there are administrative constraints,
like confidentiality rules, which will often lead to the introduction of an arbitrary cut-off, above
which no income or wealth is reported. For instance, the Survey of Consumer Finances (SCF)
in the US deliberately excludes all people listed on the list of billionaires published by the Forbes
magazine, while the German Einkommens- und Verbrauchsstichprobe does not collect incomes
greater than 216,000 €/year. Technically, we can conceive of this administrative constraints as
a form of binary non-response, where observations with specific properties will be automatically
excluded from the survey.

A second problem of survey-based estimates for highly skewed characteristics such as income
or wealth is that they suffer from non-observation bias. Non-observation bias comes in the form
of a median-bias implying that a given survey will underestimate the true value of total wealth or
income with a probability greater than 50% as the extreme values at the tail will be overlooked
in the majority of draws. Hence, the median estimate of a series of repeated surveys will be
downward biased.2

1While Piketty (2014) frames tax and survey data as rival approaches, which both come with their own limita-
tions, Saez & Zucman (2016, p. 569) point out that survey and administrative data can be used as complements
in order to derive a more detailed and fine-grained assessment of the distribution of wealth and income. Indeed
the fruitful effort of constructing Distributional National Accounts (Piketty et al. 2016) relies on a combination
of survey, tax and national accounts data to arrive at a description of the distribution of wealth that is as ac-
curate as possible. In addition the Survey of Consumer Finances (SCF) in the US is a prime example of using
administrative data to improve the accuracy of surveys.

2Encouragingly Eckerstorfer et al. (2016) show that this bias can be reduced by fitting a Pareto model to the
data.
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A third source of bias is that the probability of participating in such surveys is negatively
correlated with the variable of interest itself, which leads to a differential non-response bias,
because observations are missing not at random (Little & Rubin 2019). The evidence for dif-
ferential non-response is compelling and can be illustrated for the case of wealth with reference
to the SCF, where tax data on capital incomes are used to identify affluent households prior to
data collection. While the response rate in the stratified random sample is about 70%, it sharply
decreases for the so-called list sample of affluent households, which are ex ante identified based
on tax records. Among these affluent households, even the poorest stratum has a response prob-
ability of only 50%, which further decreases to 12% for the stratum of the wealthiest households
(Bricker et al. 2016, p. 282). Similarly, D’Alessio & Faiella (2002) report a response rate of 26%
for the lowest wealth group which declines to 9% in the highest wealth group when in 1998 data
from a commercial bank was used to identify affluent individuals in an oversampling effort for
a wealth survey conducted by the Italian central bank. For the HFCS Osier (2016) emphasizes
that non-response rates are not random and that additional data especially on income or wealth
would be desirable to improve sample designs across countries.3

These problems became more pertaining in recent years as the last decade saw the publica-
tion of several novel data sources suitable for studying the distributions of wealth and income.
Among these are the World Inequality Database (www.wid.world), the Household Finance and
Consumption Survey (HFCS) carried out under the auspices of the ECB, the UK’s Wealth and
Asset Survey (WAS) as well as efforts to exploit insights from data leaks on offshore wealth
holdings (Alstadsæter et al. 2019). For the United States the Survey of Consumer Finances
(SCF) has been conducted regularly and consistently since 1989 and is considered as the most
reliable source for assessing the distribution of private wealth. In Europe, three waves of the
HFCS (2011, 2014, 2017) have been conducted and provide information on the distribution of
wealth for up to 22 EU countries. For many of these countries this data source is a true novelty
as reliable alternative data sources for assessing the distribution of private wealth have not been
available before.4

In practical terms there are three established ways to engage with these problems: The
first is the raw data approach. It implies to do nothing and to use the data as it is. This
amounts to assuming that the efforts made by the administrators of the survey were sufficient
to ensure adequate coverage of the tail of the income or wealth distribution. Most importantly
this would require a strong over-sampling strategy where information, which is available already
prior to data collection, is used to identify households with high wealth or income and include
a disproportionate amount of them in the gross sample to ensure enough responses despite a
lower response probability. However, this is rarely implemented with the necessary diligence: for
instance, in the HFCS, only a handful of countries implement a convincing oversampling strategy
based on high quality data such as income tax records. The second way forward is the Pareto

3By summarizing the inherent biases in survey data in this way, we actually abstract from the possibility of
(differential) underreporting of incomes or assets as another possible source of measurement error.

4In addition, recent works by Piketty et al. (2016) and Saez & Zucman (2016) complement these efforts as
they move towards producing data on wealth that are consistent with micro (Survey of Consumer Finances, SCF)
as well as macro (Financial Accounts) sources.
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correction approach. It involves fitting a Pareto distribution to the tail of the survey data and
to use the estimated distribution to describe the tail instead of the tail observations (Jayadev
2008, Eckerstorfer et al. 2016). This can partly account for binary non-response and is suitable
for dealing with non-observation bias, but does not compensate for differential non-response. As
a consequence researchers developed the rich list correction approach (e.g. Vermeulen (2018)),
which extends the second approach by adding journalists’ rich lists like the Forbes 400 for the
US or the rich list provided by the Manager Magazin for Germany to the original survey data. A
Pareto distribution is then fitted to the combined data-set and the fitted distribution is used to
describe the tail of the wealth distribution (Advani et al. 2020, Bach et al. 2019, Vermeulen 2018).
The success of the rich list correction approach fundamentally depends on the availability, size
and quality of the rich lists used, which comes with some limitations. For example, the Forbes
list of billionaires includes less than 10 entries for 18 of the 22 countries in the HFCS.

Our paper aims to supplement these three methods by a fourth one, the rank correction
approach. The key advantage of this new tool is that it does not require additional external
information while it significantly improves upon the raw data Pareto correction approaches.
This means it can be used even when the rich list correction approach is not feasible, either due
to poor quality (Capehart 2014, Kopczuk 2015) or complete lack of rich list data.

The core idea of the rank correction approach is to correct the ranks of the sample obser-
vations (i.e. the cumulative sum of the survey weights) in order to take into account that the
most affluent households are much less likely to be included in the sample. This correction
aims to preserve the linearity of the relationship between logarithms of household wealth and
rank underlying the Pareto distribution, which is exploited when fitting the distribution to the
data. We demonstrate that this simple adjustment is able to substantially reduce the bias from
differential non-response when fitting a Pareto distribution to the tail of wealth survey data.

Applying the rank correction approach to wealth survey data shows that the average estimate
of the Pareto tail index declines from 2.1 obtained from the Pareto correction approach to 1.8
after implementing the rank correction procedure. In comparison, using rich lists Vermeulen
(2018) reduces the average tail index on a similar set of countries from 2.1 to 1.6. Using these
Pareto tails to replace the tail from the survey indicates that the rank correction approach
significantly improves upon the raw data approach. For example the top 1% wealth shares for
the US, France and Germany based on the WID and on Schröder et al. (2020) are 37%, 23.4%
and 35.3%, respectively. These compare very well with the results obtained from applying the
rank correction approach (36.2%, 23.3% and 32.2%) and represent a clear improvement relative
to the top wealth shares obtained from the raw survey data (35.4%, 18.7% and 23.6%).

The remainder of the paper is organised as follows. Section 2 introduces the rank correction
approach. Section 3 analyses its performance by means of Monte Carlo simulations. In Section
4 contains an application to data from the HFCS, SCF and WAS. Section 5 contains a summary
and concludes.
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2 The Rank Correction Approach

In introducing the rank correction approach we focus mainly on those two sources of bias –
binary non-response and differential non-response – that cannot be remedied by a standard
Pareto correction and, hence, typically require rich lists to arrive at reliable estimates.5 In
doing so we first try to build some intuition for the underlying bias by means of a simplified
example. We then revisit the standard approach of fitting a Pareto distribution to the tail of
survey data. On this basis we explain the idea of the rank correction approach and show how
to implement it by modifying the standard procedure.

2.1 A graphical motivation of the rank correction approach

In this example we focus on binary non-response, which is the simplest form of systematic bias
in observing a given population. This setup yields an intuitive graphical explanation of why
the näıve Pareto model fails under binary or differential non-response. We can model binary
non-response by assigning a zero response probability to the richest households while assigning
a nonzero probability to all other households. For our setup we assume a hypothetical tail
population of 1 million households (NT ) which are described by a Pareto distribution with
minimum level of wealth of € 1 million (xm) and a shape parameter equal to 1.5 (α = 1.5).
For purposes of presentation we make use of a log-log plot in Figure 1, which shows the usual
linear relationship between log(wealth) and log(rank) for the assumed population (black line).
Thereby we normalize the ranks by either the total population (NT ) or the size of the sample
(n) so that these re-scaled ranks represent the survival function, also known as complementary
cumulative distribution function (CCDF).

Figure 1: Motivating the rank correction approach

In Figure 1 the black line indicates the log linear population relationship between relative
5 Vermeulen (2018, p. 377) shows that while the Pareto correction improves the estimate of the tail wealth,

the average Pareto model still underestimates the actual tail wealth between 17% and 4%.
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ranks and wealth (the slope of that line represents the shape parameter α). The blue dots
represent a sample drawn from the population under the assumption that the most affluent
1000 households cannot be sampled due to privacy concerns. As a result the linear relationship
between the log of the CCDF and the log of wealth, breaks down and thus regression based
estimates of the slope parameter will be biased. Conceptually, this problem also persists in the
case of a rich list correction, e.g. when adding the most affluent 100 observations to the random
sample (which appear as an orange cluster towards wealth of 109 in Figure 1), if there remains a
substantial gap between the maximum in the data and the minimum of the rich list as indicated
by the orange dots in Figure 16. In contrast, the purple dots take the fact that the most affluent
1000 observations are not observed into account by correcting the ranks accordingly and, hence,
retain the log-linear relationship between wealth and ranks. Thereby the key strength of the
rank correction approach (purple) is that it requires significantly less information about those
households which are not observed compared to the rich list approach and thus is applicable in
situations where rich lists are not available.

Figure 2: Rank correction applied to the SCF

The example in Figure 1 is a highly stylized illustration of why binary differential nonresponse
leads to the breakdown of the log-linear relationship between household wealth and the empirical
CCDF. In contrast, Figure 2 provides an illustration using data from the Survey of Consumer
Finances (2016 wave). The SCF’s design is tailored to protect the privacy of its participants
and, hence, explicitly excludes individuals from the Forbes 400 List. Plotting the relationship
between household wealth and household ranks for the observations representing the richest
250,000 US households based on the original SCF data reveals the breakdown of the log-linear
relationship due to the exclusion of these richest 400 households. However, after adjusting the
weights for the omission of these top 400 households, the purple dots again conform to a log-
linear relationship. Therefore correcting the survey weights by taking the missing observations
at the very top into account, will lead to improved estimates of the Pareto shape parameter.

This discussion focused on binary differential non-response. In practice, wealth survey data
6Of course if all households with a zero response probability were observed on a rich list, the problem would

be solved. However, in practice this amounts to simply assuming that a perfect alternative data source exists.
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will most likely suffer from more general forms of differential non-response, which, however, will
create a bias with very similar effects to the one shown in Figure 1. Typically, it is observed
that household responsiveness is a decreasing function of household wealth itself (Bricker et al.
2016, p. 282). While conceptually similar, addressing differential non-response bias in these
cases is slightly more intricate, which is why we will rely on Monte Carlo simulations to study
more elaborate forms of differential non-response in section (3). However, before doing so we
will revisit the standard procedure for estimating the Pareto tail in data on household wealth
or income to explain how to implement the rank correction approach in this procedure.

2.2 Fitting Pareto tails to wealth survey data: the standard approach

The standard approach of fitting a Pareto tail to wealth survey data is to fit the complementary
cumulative distribution function (CCDF) of the Pareto distribution to the empirical CCDF
derived from the available sample. This procedure effectively amounts to estimating the linear
log-log relationship highlighted in Figure 1, where the slope of the estimated line corresponds
to the shape parameter of the Pareto distribution. This correspondence becomes evident when
keeping in mind that the CCDF is a natural way to express the ranks of the population as
represented by the available data, especially in the context of survey weights dedicated to map
insights from the data-set to the full population. However, to precisely compare the theoretical
and the empirical CCDF we first need to introduce the respective definitions.

The theoretical CCDFT for a random variable X following a type I Pareto distribution above
xm is defined as7

CCDFT (xi) = Pr(X > xi) =
(
xm
xi

)α
. (1)

Technically, this definition asks for the probability to observe someone with wealth or income
greater than xi, which again indicates that the CCDF is just another way to express the under-
lying ranking of households or individuals. This intuition also guides the standard definition of
the empirical CCDFE : Let’s assume a sample of households with net wealth x = (x1, . . . , xn)
and corresponding survey weights w = (w1, . . . , wn), where the number of households repre-
sented by the available sample is defined as N = ∑n

i=1wi. Arranging the data in descending
order (i.e., from the most to the least affluent observation) yields a data vector denoted as
xd = (x(1), . . . , x(n)) with the corresponding vector of weights wd = (w(1), . . . , w(n)). Then the
empirical CCDFE at some point xi can be defined as the sum of weights assigned to households
with x ≥ xi divided by the full population, which gives the probability of observing someone at
least as rich as xi. Formally this can be stated as 8

CCDFE(x(i)) =
∑i
j=1w(j)
N

. (2)

7Throughout the paper we refer to type I Pareto distributions when we talk about Pareto distributions.
8The precise reader will notice a slight inconsistency between the empirical CCDFE and the theoretical

CCDFT , which the standard approach silently accepts. CCDFE is defined as the probability to observe someone
at least as rich as xi when CCDFT is defined as the probability to observe someone richer than xi. For a detailed
discussion and workarounds see Wildauer & Kapeller (2019); also the derivation described in section 2.3 is suitable
to avoid this inconsistency.
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Setting the theoretical equal to the empirical CCDF leads to the following expression i∑
j=1

w(j)

 = N ·
(
xm
xi

)α
. (3)

Applying the logarithm to equation (3) and rewriting the resulting expression ln(N) +
α ln(xm) as c1 naturally leads to the following regression equation, where the shape param-
eter of the Pareto distribution shows up as a regression slope parameter

ln

 i∑
j=1

w(j)

 = c1 − α ln(x(i)) + εi (4)

where c1 = ln(N)+α ln(xm). Equation (4) is then estimated by OLS. The estimated Pareto
tail index α is used to describe household wealth above xm.

As has long been known in the more specialized literature (Aigner & Goldberger 1970), this
standard approach to fitting Pareto distributions to tails of distributional data comes with a
slight bias in the estimate for the shape parameter. Again this bias relates to how we define
CCDFE (and, hence, our dependent variable) and it can be illustrated with a simple example:
Assume a population of one-thousand people that is represented by two observations with equal
weights of 500. In such a case our definition from equation (2) would assign a rank of 500
and 1000 to these observations, although both represent a certain range of households (one
observation represents households with ranks 1 to 500, the other households with ranks 501 to
1000). Hence, taking the middle of these ranges – that is, 250 and 750 – can be considered as
more apt to precisely describe the population under consideration relative to the naive sum of
weights, and thus the endpoint of these ranges, used in equation (2).

Gabaix & Ibragimov (2011) have been the first to suggest a suitable method to correct for
this bias, which, however, is formally rather intricate, which is why suggest to follow the next
section when applying the standard approach. The formulations there are based on a supposedly
more intuitive definition of the CCDFE , that automatically applies the a bias-correction in the
spirit of Gabaix & Ibragimov (2011) and, at the same time, avoids the complications mentioned
in footnote 8 earlier (see Wildauer & Kapeller (2019) for a detailed discussion of these issues).

2.3 Deriving the rank correction estimator

Applying the rank correction estimator first requires a precise definition of the empirical CCDF,
which we provide in Equation 5 below. As indicated before this definition generalizes the bias cor-
rection proposed by Gabaix & Ibragimov’s (2011) to allow for an application to survey weights.
The basic idea is closely related to our description of the intuition behind this bias and suggests
to define the rank of an household not as the simple sum of weights, but as the sum of weights
associated with more affluent households plus one half of its own weight. In other words, we take
the median household represented by a certain observation as the anchor point for our regression
instead of the household with lowest wealth represented by the same observation (which is what
we arrive at when simply sum up weights). As this median household can be identified by tak-
ing the average between the cumulative weights of two consecutive data points, this argument
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corresponds to computing the empirical CCDF as

CCDF (x(i))AV = 1
N

∑i−1
j=0w

′
(j) +∑i

j=1w
′
(j)

2
(5)

where w′(0) = 0. As Wildauer & Kapeller (2019) observe, this averaging procedure effectively
amounts to defining the CCDF (x(i))AV as the average between the empirical CCDF based on
a data vector in descending order and the empirical CCDF based on a data vector in ascending
order.

Based on this improved and more precise definition of the empirical CCDF, we can now
apply the rank correction approach by increasing the most affluent household’s sample weight
by the rank correction factor (u). This means we shift all ranks up by u in order to account
for super wealthy households which are excluded from the sample due to privacy concerns on
the one hand (binary differential nonresponse), as well as for more general forms of differential
nonresponse on the other. This results in the rank corrected empirical CCDF:

CCDF (x(i))RC = 1
N

[∑i−1
j=0w

′
(j) +∑i

j=1w
′
(j)

]
+ 2u

2 (6)

where w′(j) are the elements from a vector of adjusted weights w′d = (w′(1), . . . , w
′
(n)). The

weight adjustment ensures that the number of households represented by the sample (N =∑n
j=1w(j)) is unchanged after introducing the rank correction factor u. In order to achieve this

the original weights are rescaled proportionally:

w′(i) = w(i)

(
1 − u

N

)
(7)

Finally we can combine equation (6) with the theoretical CCDF (equation 1) and obtain the
rank correction regression equation which can be estimated by OLS:

ln

i−1∑
j=0

w′(j) +
i∑

j=1
w′(j)

+ 2u

 = c2 − α ln(x(i)) + εi (8)

where c2 = α ln(xm) + ln(2N) and w′(0) = 0.

2.4 An algorithm for choosing u

In practice wealth survey data such as the SCF, HFCS or the WAS suffer from two forms of
differential nonresponse. First, binary differential nonresponse in the form of the exclusion of
the richest households from the sampling frame due to privacy concerns and second, general dif-
ferential nonresponse in the form of response rates declining with increasing household wealth.
Interpreting these two problems as deviations from linearity in the log rank, log wealth relation-
ship, opens up a route to choosing an appropriate rank correction factor (u): Choose u such
that the adjusted data is as close to the linear specification of equation (8) as possible. We
use the root mean squared error (RMSE) of a regression based on equation (8) as a measure of
deviation from linearity and choose u such that we minimize the RMSE

min
u

√√√√√ 1
n

n∑
i=1

ln

i−1∑
j=0

w′(j) +
i∑

j=1
w′(j)

+ 2u

− ĉ2 + α̂ ln(x(i))

 (9)
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where ĉ2 and α̂ are the OLS estimates from equation (8). This one-dimensional minimization
problem can be solved numerically.

In the next section we study the ability of the rank correction estimator to correct the bias
when estimating type I Pareto tails under a restricted sample due to privacy concerns as well as
under more general non-response problems. After that we apply it to EU, UK and US wealth
survey data and assess to what extent the rank correction approach can improve the picture of
the wealth distribution which we obtain from the data.

3 A Simulation Study

This section applies the rank correction approach in a Monte-Carlo setting. In doing so we
analyze two main cases relevant for our argument: in the first scenario we apply the rank
correction estimator to simulated data-sets where the richest members of the population were
excluded from the sampling design due to privacy concerns as is the case in SCF data. In other
words, the first scenario focuses on binary differential non-response. In the second scenario,
which is presented in section 3.2, we introduce a more complex non-response mechanism inspired
by non-response patterns observed in US data (Vermeulen 2018).

3.1 Addressing binary differential nonresponse

The simulation study is set up in the following way. We assume that the tail population (N) of
interest consists of 1 million households and follows a Pareto distribution with scale parameter
xmin = 1, 000, 000. This is roughly in line with French and German samples in the second wave
of the HFCS, according to which there are 1.24 million millionaire households in Germany and
930,000 millionaire households in France9. Furthermore, our simulations are based on three
different shape parameters α = (1.25, 1.5, 1.75) and four different net sample sizes (s1, ..., s4) =
(0.3‰, 0.8‰, 2‰, 6‰), which gives twelve different scenarios in total. Each scenario is
analysed based on 1,000 draws from the population.

The exclusion of super rich households due to privacy concerns is modelled by setting the
response probability of these households to zero, while assuming a response probability of 40%
for the remaining population10. Thus we define the response mechanism as:

R1(xi) =

0.4, for xmin ≤ xi < xNO

0, for xNO ≤ xi ≤ xmax
(10)

where R1(xi) is the response probability of household i depending on its wealth (xi). Here
xNO denotes the level of wealth of the poorest non-observed (NO) household that is excluded
from the sampling frame due to privacy concerns and xmax is the richest of these excluded and
non-observed households. For Germany and France the entries on national rich lists represent

9 Vermeulen (2018) uses a similar setting and thus our simulations can be directly compared.
10This is roughly in line with available data. For example Bricker et al. (2016) report response rates for the

richest strata in the SCF between 50% and 12%.
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about 1,600 households and so we assume that the richest 1,600 households in the simulated tail
population have a response probability of zero11.

Table 1: Simulation results for response mechanism R1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

true sample data PC PC RC RC RC SRL SRL LRL LRL
α size (‰) WD α̂ WD α̂ WD u α̂ WD α̂ WD

1.5 0.03 -12.1 1.545 -4.4 1.473 4.3 2800 1.484 2.1 1.495 0.8
0.08 -11.7 1.545 -5.4 1.483 3.0 2100 1.503 -0.5 1.498 0.3
0.20 -11.4 1.547 -5.5 1.493 1.2 1800 1.523 -2.8 1.503 -0.3
0.60 -11.5 1.550 -6.0 1.499 0.1 1600 1.539 -4.9 1.514 -1.8

1.25 0.03 -28.5 1.289 -9.6 1.228 8.9 2850 1.229 7.3 1.245 2.1
0.08 -28.1 1.290 -10.8 1.240 3.3 1900 1.247 0.7 1.247 1.1
0.20 -27.6 1.291 -11.2 1.246 2.1 1800 1.266 -4.8 1.251 -0.4
0.60 -27.5 1.290 -11.1 1.248 0.8 1700 1.280 -8.6 1.260 -3.2

1.75 0.03 -6.8 1.805 -3.6 1.722 2.7 2600 1.739 0.8 1.746 0.5
0.08 -6.2 1.806 -3.6 1.734 1.5 2000 1.759 -0.6 1.749 0.2
0.20 -6.4 1.810 -4.2 1.748 0.3 1700 1.782 -2.4 1.755 -0.4
0.60 -6.2 1.808 -4.1 1.748 0.1 1700 1.797 -3.3 1.767 -1.3

Simulation results based on different population alphas (column 1) and net sample sizes in ‰(column 2) for
the Pareto correction (PC), rank correction (RC), a rich list correction with a short rich list (SRL) of 5
entries and a rich list correction approach with a long rich list (LRL) of 100 entries. For each approach the
average estimated α is reported (α̂) as well as the median percent deviation from true tail wealth (WD).
Results are based on 1,000 draws per sample size. For the RC approach the median of the chosen u’s is
reported in column 8. Tail population N = 106 and xmin = 106.

Table 1 presents the simulation results based on 1,000 draws for each sample size using the
binary non-response mechanism R1(xi) as specified above. Results are presented for different
population shape parameters (true alphas, column 1) and net sample sizes (column 2). We
compare the performance of the rank correction approach (columns 6 to 8) against the raw
data approach (column 3), the Pareto correction approach (columns 4 and 5), and two different
versions of a rich list correction approach (columns 9 to 12), which assume rich lists of different
quality. The performance of the different strategies is evaluated with respect to two criteria:
first, we compare the median deviation from true wealth in percent of the true population total
(WD) occurring in the respective estimation for all available approaches. Second, we also present
the shape parameter α of the estimated Pareto distribution, which is shown for all approaches
except the raw data approach, where no such estimate is calculated.12

Since the numerical minimization problem of finding an optimal correction factor u for the
rank correction approach is one dimensional we solve it computationally over the parameter

11Rich list entries often represent entire family clans and thus one entry often represents more than one house-
hold.

12Estimating a Pareto Distribution on the raw data, will lead to the estimates associated with the Pareto
correction shown in columns 4 & 5.
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range u = [100; 10, 000]. The median of chosen u’s across the 1000 draws is also reported
in column (8). As indicated above, we analyzed two different scenarios to cover the rich list
correction approach. One in which the researcher only has a very short rich list of the most
affluent 5 observations (columns 9 and 10) and one in which the researcher observes the most
affluent 100 missing households (columns 11 and 12). These two scenarios are motivated to span
the range of situations researchers face in practice: On the one hand individual country rich lists
can be rather exhaustive such as the Manager Magazin’s list for Germany. On the other end of
the spectrum, however, are those cases where the analysis requires rich lists based on a consistent
methodology across several countries. In that case the only option left is the Forbes global list.
However, for many European countries the latter only includes 5 or less observations.13

For example in row 1 of Table 1 we see the results based on simulations with a shape
parameter of α = 1.5 and a sample size of 0.03‰ with the following results: Only using the
raw sample data underestimates total wealth in the tail by 12.1%, using the PC approach yields
an average alpha estimate of α̂ = 1.545 and an underestimation of the tail of 4.4%, using
the RC approach yields an average alpha estimate of α̂ = 1.473 based on median correction
factor u = 2800 and an overestimation of tail wealth of 4.3%, using the SRL approach yields
an average estimate of α̂ = 1.484 and an overestimation of tail wealth by 2.1% and using the
LRL approach yields an average estimate of α̂ = 1.495 and an overestimation of tail wealth
by 0.8%. The following three rows show simulation results which are based on the same shape
parameter (α = 1.5) but increasing sample sizes, from 0.08‰to 0.6‰. The following rows
provide simulation results for the same sample sizes but with different shape parameters α = 1.25
and α = 1.75.

The first main result from Table 1 is that the rank correction (RC) approach consistently
outperforms the raw data approach. In column (3) we report the percent deviation of estimated
aggregate wealth based on the raw sample from the true aggregate. The raw sample data
underestimates the population wealth substantially whereas the RC approach (column 7) slightly
overestimates aggregate wealth but yields a smaller absolute deviation from the true aggregate.
This pattern holds for populations with different shape parameters and different sample sizes.
Most importantly for large sample sizes the RC deviation converges towards zero while the raw
data approach underestimates aggregate wealth even in the largest samples. The second main
result from Table 1 is that the RC approach also consistently outperforms the Pareto correction
(PC) approach across all shape parameters and population sizes. The absolute deviation from the
true wealth aggregate for the PC approach, reported in column 4, is consistently larger than the
RC deviation in column 7. Thirdly, the RC approach outperforms the rich list approach based on
short rich lists (SRL), reported in column 10 for the two larger sample sizes of 0.2‰ and 0.6‰.
Even when the researcher has access to a long rich list (LRL) of 100 observations (column 12),
the rank correction approach still dominates for the largest sample size. The good performance
of the long rich list approach is expected as it amounts to a situation where an alternative data
source partially resolves the differential non-response problem at hand. However as the sample

13We also assume that rich lists are completely accurate and do not suffer from measurement error, which
abstracts from the usual reliability problems that come with such lists.
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size increases, the lack of information beyond the top 100 households becomes apparent and the
RC approach starts to dominate.

The mean shape parameters based on which the wealth deviation calculations are based
are reported in columns 4, 6, 9 and 11. Negative wealth deviations are due to an overestimated
shape parameter and positive deviations correspond to an underestimated shape parameter. For
the RC approach column 8 also reports the median value of the chosen correction factor u which
approaches the true value of 1600 excluded households as the sample size increases.

Overall Table 1 shows that not taking the exclusion of super rich households due to pri-
vacy concerns into account induces a significant bias in the estimation of tail wealth even if no
other differential non-response problem plagues the data. In this setting the rank correction
approach unconditionally outperforms the raw data and the Pareto correction approach. Even
for large sample sizes the RC approach performs similarly well or better than the rich list cor-
rection approach, however with the crucial advantage of not depending on additional exogenous
information in the form of rich lists.

3.2 Addressing general forms of differential non-response

In practice wealth survey data is likely to suffer from more general forms of differential non-
response. While the phenomenon is well documented for wealth surveys, only few countries
implement convincing oversampling strategies in order to deal with it14. To illustrate how
the rank correction approach can provide more reliable estimates of the top tail of the wealth
distribution in the context of general forms of differential non-response, we conduct a Monte
Carlo simulation which makes use of a response mechanism which expresses the probability of
a household to respond (R) as a function of its wealth (x). Our starting point is the mechanism

R(xi) = 0.903 − 0.036594 ln(xi) (11)

, which is based on data from Kennickell & Woodburn (1997), who exploited the fact that the
SCF uses high quality tax data to design the sample which allows for a comparison of ex ante
information on wealth with ex post data on response behaviour. As such, this mechanism has
a solid empirical basis15. We go one step further and combine this mechanism with the binary
differential non-response mechanism R1(xi) from the previous section. Thus for our Monte Carlo
simulation we use the following non-response mechanisms:

R2(xi) =

0.903 − 0.036594 ln(xi), for xmin ≤ xi < xNO

0, for xNO ≤ xi ≤ xmax
(12)

where R2 is the response probability of household i and xi is that household’s net wealth. As
before, xNO denotes the level of wealth of the poorest non-observed (NO) household that it is
excluded from the sampling frame due to privacy concerns and xmax is the richest household in

14Good practice examples include the US (SCF), France (HFCS), Spain (HFCS) and recently Germany (SOEP).
15See also (Vermeulen 2018). However, concerns regarding the extent to which this mechanism applies univer-

sally across countries and time remain. This is an important area for further research and depends crucially on
access to tax data to allow for high quality oversampling strategies.
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the population. This response mechanism R2(xi) represents a situation where the sampling pro-
cedure suffers from differential non-response and the richest 1,600 households in the population
are excluded due to privacy concerns as in the previous section. The main feature of response
mechanism R2 is that since the response probability is a logarithmic function of household net
wealth, it falls off rather slowly. For example the maximum response probability of 40% (which
corresponds to the poorest household in the population) is very close to the average of 37%
across the entire population. However, for a very small number of households at the very top
response rates are substantially lower. It is exactly this pattern, where response rates fall off
very sharply in the tail that is also observed in practice.

Table (2) presents simulation results when using response mechanism R2. We performed
Monte Carlo simulations for different shape parameters (Pareto alphas, column 1) and net sample
sizes (column 2) for the raw data approach (column 3), the Pareto correction approach (columns
4 and 5), the rank correction approach (columns 6 to 8) and the rich list correction approach
(columns 9 to 12). Columns 4, 6, 9 and 12 contain the mean of the estimated shape parameter,
calculated over 1,000 draws from the population. Columns 3, 5, 7, 10 and 12 contain the median
percent deviation of estimated aggregate wealth from the true aggregate. Estimated aggregate
wealth is either based on the raw data (column 3) or the estimated shape parameters. As in
the previous section we analysed two rich list scenarios. The first is one in which the researcher
observes a short rich list (SRL) containing only the most affluent 5 households (columns 9 and
10). For the second rich list correction approach scenario we assume the researcher observes a
long rich list (LRL) with the most affluent 100 households (columns 11 and 12).

For example in row 1 of Table 2 we see the results based on simulations with a shape
parameter of α = 1.5 and a sample size of 0.03‰ with the following results: Only using the
raw sample data underestimates total wealth in the tail by 18.8%, using the PC approach yields
an average alpha estimate of α̂ = 1.642 and an underestimation of the tail of 14.0%, using
the RC approach yields an average alpha estimate of α̂ = 1.572 based on median correction
factor u = 2200 and an underestimation of tail wealth of 7.7%, using the SRL approach yields
an average estimate of α̂ = 1.499 and an overestimation of tail wealth by 0.1% and using the
LRL approach yields an average estimate of α̂ = 1.489 and an overestimation of tail wealth
by 1.6%. The following three rows show simulation results which are based on the same shape
parameter (α = 1.5) but increasing sample sizes, from 0.08‰to 0.6‰. The following rows
provide simulation results for the same sample sizes but with different shape parameters α = 1.25
and α = 1.75.

While Table (2) reveals that the rank correction approach is not able to fully correct the
bias induced by the combined response mechanism R2, it still consistently outperforms the raw
data (column 3) and the Pareto correction (PC) approach (column 5). For example, for a
population shape parameter of α = 1.25 and a net sample size of 0.2‰, the raw data approach
underestimates aggregate wealth by 36.4%, and the PC approach yields a mean alpha estimate
of 1.392 and thus underestimates total wealth by 28.7%. In comparison the RC approach yields
an average alpha estimate of 1.354 and underestimates the tail by 23.4%. This pattern holds
across all sample sizes and shape parameters. When the researcher has access to short rich
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Table 2: Simulation results for response mechanism R2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

true sample data PC PC RC RC RC SRL SRL LRL LRL
alpha size WD α̂ WD α̂ WD u α̂ WD α̂ WD
1.5 0.03 -18.8 1.642 -14.0 1.572 -7.7 2200 1.499 0.1 1.489 1.6

0.08 -18.4 1.642 -14.5 1.587 -9.6 1500 1.538 -4.7 1.496 0.7
0.20 -18.2 1.643 -14.6 1.597 -10.6 1300 1.58 -9.1 1.508 -1.1
0.60 -18.2 1.648 -15.2 1.607 -11.6 1100 1.62 -12.9 1.539 -4.9

1.25 0.03 -37.4 1.393 -28.3 1.334 -19.5 2200 1.243 2.30 1.238 4.2
0.08 -37.0 1.391 -28.5 1.346 -21.8 1400 1.281 -8.9 1.244 2.0
0.20 -36.4 1.392 -28.7 1.354 -23.4 1200 1.325 -18.2 1.257 -2.1
0.60 -36.4 1.392 -28.9 1.359 -24.2 1000 1.363 -24.7 1.286 -10.

1.75 0.03 -11.4 1.899 -9.0 1.820 -4.8 2100 1.754 -0.3 1.740 1.0
0.08 -10.9 1.899 -9.1 1.835 -5.7 1500 1.794 -3.1 1.746 0.4
0.20 -11.1 1.905 -9.7 1.851 -6.7 1300 1.840 -6.1 1.760 -0.8
0.60 -11.0 1.903 -9.6 1.854 -6.9 1200 1.876 -8.2 1.792 -3.0

Simulation results based on different population alphas (column 1) and sample sizes (column 2) for the raw
data, Pareto correction (PC), rank correction (RC) and rich list correction (SRL and LRL) approaches. For
all approaches we report the median percent deviation from true tail wealth (WD); for the latter three
approaches we also show the average estimate for α (α̂). Results are based on 1,000 draws per sample size.
Sample sizes are net sample sizes. For the RC approach the median of the chosen u’s is reported in column
8. Tail population N = 106 and xmin = 106.

lists (SRL) with 5 entries (columns 9 and 10), the rich list correction approach dominates the
RC approach except for the largest sample size. This is due to the fact that as the sample
size increases the rich list becomes less important relative to the number of observations in the
sample and thus helps less to correct the differential non-response bias. Thus for large sample
sizes, the RC approach produces aggregate wealth estimates which are closer or similarly close
to the true aggregate compared to the SRL approach. When the researcher has access to a
long rich list (LRL) of 100 observations, very precise estimates of the shape parameter (column
11) and the tail aggregate (column 12) are obtained, especially for the two smaller sample sizes.
Similar to the SRL approach, the performance of the LRL approach declines with larger samples
because the amount of additional exogenous information in the form of the rich list declines in
relation to the number of observations in the sample.

Taken together the rank correction approach is not a deus ex machina which is able to
resolve all forms of non-response problems. Nevertheless, it represents a robust improvement
over the raw data and standard Pareto correction approach and is equivalent or even superior
to the rich list approach in certain contexts (e.g. when richlists are short and/or erroneous as
well as in the context of large samples). Crucially, this improvement comes at little additional
cost, as the implementation of the rank correction approach is quite simple and does not rely on
additional information such as journalists’ rich lists. This lower information requirement makes
the rank correction approach feasible in situations where the rich list approach would struggle
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for example due to limited rich list data availability or situations where rich list data is not
available at all as is the case for the distribution of income.

4 Application to Wealth Survey Data

In this section the rank correction approach as laid out in sections 2.3 and 2.4 is applied to
empirical survey data and compared to other approaches towards assessing the tail of the data.
In terms of data, we focus on the second wave of the Household Finance and Consumption
Survey (HFCS), the 2013 wave of the Survey of Consumer Finances (SCF) and the fourth wave
(2012-2014) of the UK’s Wealth and Asset Survey (WAS). We use the aggregate measures of net
wealth from the HFCS (variable DN3001), the SCF (variable networth; SCF summary dataset)
and the WAS16.

4.1 Estimation results

To apply the different correction methods to survey data we first have to choose some scale
parameter xmin, above which wealth is assumed to follow a Pareto distribution. For the majority
of countries we choose xmin so that the most affluent 3% of all households in the samples are
subjected to this assumption. Exceptions are given by the US, France and Spain, which all have
extraordinarily high oversampling rates. In these cases we only analyze households within the
richest percentile. After estimating the respective shape parameter α, the data in the chosen
upper segment of the data greater than xmin can be replaced by an estimate derived from the
fitted Pareto distribution.

Table 3 compares the estimates that emerge from different correction approaches: columns
(1) to (3) report the estimated shape parameter α̂ for the three different approaches that rely
on such an estimate. Similarly, columns (5) to (7) contain the ratio of total net wealth after
correcting the data relative to the total emerging from the raw survey data, which is shown in
absolute terms in column (4). The correction factors u obtained when applying the algorithm
described in section 2.4 are reported in column (8), while column (9) reports the number of
entries on the Forbes billionaire list, which is the rich list we used for estimating columns (3)
and (7). Finally column (10) reports he number of observations with net wealth beyond 10
million in the sample. We report plots of the fitted Pareto tails in the Appendix.

By comparing columns (5)-(7) we can infer some structural features of the approaches under
study: first, all correction methods suggest that estimated net wealth based on the corrected
data is greater than or equal to the corresponding estimate from the raw survey data. Only a

16The WAS exhibits two important differences compared to the HFCS and the SCF: First, it does not provide
information on the value of privately held businesses due to a high number of missing answers. This is a serious
shortcoming which limits its ability to provide comprehensive information about the tail of the wealth distribution.
Second, it also includes model based estimates of future pension claims. The amount of wealth the WAS adds in
the form of claims on future pensions is substantial. For example the number of millionaires in wave 4 based on
TotWlthW4 amounts to 2.75 million while there are 887,209 millionaires based on the net wealth variable which
excludes pension wealth. To make our wealth measure comparable across surveys, we exclude pension wealth in
the WAS and define netwealth as (TotWlthW4 − TOTPENw4 aggr).
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Table 3: Pareto tails for SCF, WAS and HFCS survey data
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Country α PC α RC α RL raw PC/raw RC/raw RL/raw U RL 107

US2013* 1.789 1.671 1.496 66.8 0.98 1.02 1.10 360 442 598
UK2012-14 1.958 1.949 1.547 6.59 1.00 1.00 1.10 100 37 11
Austria 1.404 1.390 1.342 1.00 1.10 1.11 1.13 100 10 4
Belgium 2.348 1.403 1.687 1.58 0.99 1.22 1.08 11,780 3 0
Cyprus 1.644 1.427 1.211 0.12 1.09 1.58 1.61 322 4 3
Germany 1.597 1.397 1.340 8.50 1.00 1.13 1.19 10,760 85 10
Spain* 1.724 1.334 1.582 4.77 1.00 1.12 1.02 1,560 16 153
Finland 2.140 2.012 1.731 0.51 1.00 1.02 1.07 100 4 4
France* 1.525 1.423 1.351 7.03 1.03 1.06 1.10 1,200 43 90
Greece 3.382 2.146 1.401 0.44 0.98 1.05 1.27 10,300 3 0
Italy 2.417 2.288 1.372 5.59 1.00 1.01 1.26 1,300 35 2
Luxem. 1.578 1.306 0.16 1.04 1.22 100 12
Malta 1.291 1.168 0.06 1.32 1.52 64 2
Nether. 3.082 1.867 1.419 1.15 0.99 1.08 1.24 22,800 6 0
Portugal 2.259 2.183 1.669 0.63 1.02 1.03 1.13 100 3 4
Slovenia 1.267 1.126 0.11 1.41 1.71 300 2
Slovakia 1.959 1.836 0.12 1.03 1.05 100 0
Estonia 1.727 1.607 0.06 1.01 1.05 100 1
Hungary 1.719 1.552 0.21 1.02 1.07 900 0
Ireland 2.396 2.304 1.403 0.37 1.00 1.01 1.29 100 5 1
Latvia 1.806 1.106 0.03 0.98 2.38 1,604 0
Poland 2.193 2.027 1.463 1.31 1.00 1.02 1.16 1,920 5 0

Columns 1 to 3 report the estimated shape parameters based on the Pareto Correction (PC), Rank Correction
(RC) and Rich List (RL) approach. Column 4 contains aggregate net wealth in trillion USD¡ GPB and EUR for
the US, UK and EU countries. Column 8 contains the chosen correction factor u for the RC apparoch and
column 9 contains the number of entries on the 2014 Forbes global list of billionaires used for the RL approach.
Columns 5 to 7 contain the ratio of aggregate wealth after adding the estimated tail to aggregate wealth based
on raw survey data. Column 10 reports he number of observations with net wealth beyond 10 million in the
sample. *For the US, Spain and France xmin is defined as the 99th percentile due to their high oversampling
rates. For the remaining countries xmin is defined as the 97th percentile.

few applications of the weakest correction – the simple Pareto correction (PC) – actually would
suggest that true wealth is below the value implied by the raw survey data. In a similar vein,
the simple PC correction typically suggests rather modest corrections of the underlying data.
Second, the rich list approach can only be applied in cases, where a rich list exists, which is
why columns (3) and (7) show missing values for those countries, which are not represented
in the Forbes billionaires list. Third, the rank correction approach quite consistently suggests
corrections that lie between the simple Pareto correction and the richlist approach. Hence, it
occupies some middle ground in empirical terms that might lead to significantly higher estimates
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of total wealth, but typically not as high as a richlist approach towards correcting the data
would suggest. Hence, these findings are qualitatively well in line with the results obtained in
section 3 and confirm the impression that the rank correction approach might offer a significant
improvement over both, an approach based on raw data only as well as a simple Pareto correction
approach.

More generally we observe that the results in Table 3 show a large amount of heterogeneity.
This reflects, among other things, significant differences in sample sizes, country wealth and
the extent to which survey administrators were able to observe the right tail of the wealth
distribution. The latter factor is especially pronounced in countries where ˆαPC is greater than
or close to 2, such as UK, Belgium, Germany, Finland, Italy, Greece, Netherlands and Poland.
Closer inspection shows that in these countries the upper tail is not well represented by the data
as evidenced by, e.g., the small number of observations with net wealth in excess of 10 million
(column 10). Given that the standard Pareto correction approach (column 5) often leads to no
correction at all (ratio of 1), or even implies a thinner tail than the raw data (ratios of less than
1) in those cases, we interpret this as an indication that the Pareto correction approach requires
a minimum amount of observations in the tail to work well. Put differently, if the differential
non-response problem is too extreme, not enough observations are left to trace out the tail of the
Pareto distribution. Third, in line with the previous point, the rank correction approach has a
tendency to correct the survey data especially in those countries where the PC approach yielded
an upwards correction already. Examples include Austria, France, Luxembourg, Slovakia or
Hungary. Since the RC approach does not add additional data to the sample it faces the same
shortcomings as the PC approach in cases where very few tail observations are available.

The US result is particularly noteworthy with respect to the rank correction approach,
because we know that the SCF data excludes the richest 400 Americans. In line with this, the
RC approach selects a correction factor of u = 360 which is very close to the expected result as
we would not expect substantially higher correction factors for the US sample due to its high
quality oversampling.

Table 4 reports top wealth shares based on the raw survey data and after the tail had been
replaced by an estimated Pareto distribution using all three correction approaches. Corrected
top wealth shares increase substantially for countries like Belgium, Austria and Germany, which
are those countries for which in Table 3 the aggregate estimates were corrected substantially.
These results are a reminder of how sensitive distributional measures such as top wealth shares
are to differential non-response problems. The rank correction approach represents a simple but
still highly useful tool to (partially) correct it post data collection. The fact that some countries
exhibit unrealistically low top wealth shares based on raw survey data and rank corrected data
such as Greece or the Netherlands, indicates that the practice of fitting Pareto tails to survey
data is still fundamentally dependent on the quality of the underlying data. The more of the
tail is already missing, the more difficult it becomes to fit a meaningful Pareto tail to the data.
The rank correction approach is not able to resolve this fundamental problem. It is in these
situations of very limited tail data where the rich list approach is most useful as it aims to
directly compensate for missing data at the top of the distribution.
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Table 4: Household top 1% wealth shares

Country raw PC RC RL
US2013 35.4% 34.1% 36.2% 40.6%
UK2012-2014 15.1% 14.8% 14.9% 21.6%
Austria 25.4% 29.9% 30.6% 31.8%
Belgium 12.0% 11.6% 26.0% 17.9%
Cyprus 20.3% 25.5% 36.5% 43.7%
Germany 23.6% 25.3% 32.6% 35.6%
Spain 16.3% 16.1% 24.2% 17.9%
Finland 13.3% 13.4% 14.5% 17.9%
France 18.7% 20.7% 23.1% 25.4%
Greece 9.2% 9.1% 14.0% 26.9%
Italy 11.7% 11.6% 12.3% 27.8%
Luxembourg 18.8% 20.7% 30.1%
Malta 19.9% 30.9% 36.8%
Netherlands 9.8% 9.6% 16.1% 25.8%
Portugal 14.4% 15.4% 16.0% 22.8%
Slovenia 22.9% 33.3% 42.5%
Slovakia 9.3% 11.2% 12.3%
Estonia 21.2% 22.3% 24.9%
Hungary 17.2% 18.6% 22.2%
Ireland 14.2% 14.9% 15.5% 31.7%
Latvia 21.4% 23.3% 56.5%
Poland 11.7% 12.1% 13.3% 22.7%

Household net wealth shares based on raw survey data
and Pareto correction methods, expressed in % of total
aggregate household wealth.

4.2 Reconciliation with other data sources

While the results in the previous subsection suggest that the rank correction approach delivers
empirically plausible results that represent an improvement over raw survey data as well as a
simple Pareto correction, a firmer conclusion about the quality of the rank correction approach
in particular can be drawn when comparing our results with other exogenous data sources. The
two crucial sources of exogenous information against which we compare our results are first, the
World Inequality Database (WID) as well as a new dataset for Germany (Schröder et al. 2020)
and second, journalists’ rich lists for individual countries.

The methods used to construct the WID series for the US are discussed in Piketty et al.
(2016) and the accompanying data appendix (Tables II-E1 to E13 contain the wealth share
estimates). The country specific details for applying this methodology to France are discussed
in Garbinti et al. (2016) and in the accompanying appendices. The methods used for the UK
series are discussed in Alvaredo et al. (2018), its working paper version and the online appendix.
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The most important difference between the WID concentration measures and the survey based
concentration measures is that the former are based on net personal wealth, which means that
the unit of analysis is the individual instead of the household. One of the first steps of the WID
methodology is to split married couples in survey or tax data into two observations with equal
net wealth shares. This means some differences in the results stem from these methodological
differences.

Against this background, Table 5 compares wealth concentration ratios from the WID (rows
1, 4 and 7) with the results from the rank correction approach (rows 2, 5 and 8) and raw survey
based measures (rows 3, 6 and 9). The rank correction results for France, the US and Germany
clearly represent an improvement over the raw survey data and are closer to the WID measures
than the raw counterparts. In the case of France the RC measures are very well in line with
WID values except for the top 0.1% share. For the US case, the rank correction based top
shares are also very close to WID results except for the top 0.1%. For the UK, the WID does
not provide an entry for the top 0.1% share in 2012. The comparison of the UK data to the
WID emphasizes the underestimation of the tail of the wealth distribution in the raw survey.
The shortcoming of the WAS to adequately capture privately held business wealth seems to be
a fundamental problem which RC cannot do anything about. For Germany the estimated top
1% share is firmly in line with the measure provided by Schröder et al. (2020). The advantage
of the latter datasource is that it employs a highly promising oversampling strategy based on
share holdings. Overall the RC based measures help to close the gap between the WID and the
raw survey measures which we interpret as support for the rank correction approach.

Table 5: Top wealth shares: WID vs rank correction
(1) (2) (3)

country data and method top 0.1% top 1% top 10%

(1) France World Inequality Database 8.2 23.4 55.3
(2) France rank correction estimator 11.6 23.1 53.4
(3) France uncorrected survey data (HFCS) 7.3 18.7 50.8
(4) USA World Inequality Database 20.3 37.0 73.2
(5) USA rank correction estimator 14.4 36.2 75.3
(6) USA uncorrected survey data (SCF) 13.1 35.4 75.0
(7) UK World Inequality Database 19.9 51.9
(8) UK rank correction estimator 4.8 14.9 45.7
(9) UK uncorrected survey data (WAS) 5.6 15.1 45.7
(10) DE Schröder et al. (2020) 35.3 67.3
(11) DE rank correction estimator 16.8 32.6 64.0
(12) DE uncorrected survey data (HFCS) 6.3 23.6 59.8

Source: Authors’ computations based on data from the Household Finance and Consumption
Survey (HFCS), Survey of Consumer Finances (SCF), Wealth and Asset Survey (WAS) and the
World Inequality Database (WID). Comparison of French, US and UK wealth shares for the years
2014 and 2013 and 2012-2014 respectively.
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As has been emphasized, another alternative source of information about the top tail of the
wealth distribution are journalists’ rich lists. Table 6 column (1) lists the number of billionaires in
the population according to the raw survey data (i.e. billionaire observations times their weight)
which indicates that no country except the US has an oversampling strategy in place which is
suitable to capture billionaires17. Column (5) reports the number of billionaire entries on Forbes
global rich list from 2014. Columns (2( to (4) report the number of billionaires according to
the estimated Pareto tail using the three correction approaches under investigation. The Pareto
correction approach in column (2) almost always yields a number of billionaires which is far
below the number of entries on the Forbes rich list. This is in line with the results from the
Monte Carlo simulations, that the PC approach underestimates the tail of the distribution in a
situation of differential non-response. For most countries the rank correction approach implies
fewer billionaires than are reported on rich lists (exceptions are Austria, Belgium and Spain as
well as a few very small countries). We interpret this result as general support for the claim
that the rank correction approach is a rather conservative tool for addressing the non-response
bias in survey data as the results it provides probably still underestimate the actual degree
of concentration. The probable underestimation of the RC approach becomes apparent for
countries like Italy, the Netherlands and the UK, all three of which do not have an oversampling
strategy in place. The RL approach improves upon some of these results with two caveats. First,
the RL approach might overestimate total wealth in cases, where a high-quality oversampling
strategy is already in place. The US is an example for such a case: here the RL approach implies
almost twice as many billionaires as on the Forbes list. Second, the RL approach is not feasible
for many countries for which no rich list data is available.

5 Summary and Conclusion

For many countries, household surveys are the only available source of data on the distribution
of wealth. Against this background, this paper presents a new approach, which we labelled the
rank correction approach, for tackling the problem that surveys tend to underestimate household
wealth due to differential non-response. The key advantage of the rank correction approach over
similar existing methods such as the use of rich lists, is that it requires no additional information
beyond the survey data. This is especially important since rich lists are not necessarily accurate
(Capehart 2014, Kopczuk 2015) and often not available. Hence, the rank correction approach
serves not only as a substitute for the richlist approach, but also as a complement in the form
of a robustness check applicable in cases where rich list data is available.

Applying the rank correction approach to data from the SCF and the HFCS results in
significant corrections of top wealth shares. Our results are more closely aligned with other
existing top wealth share estimates than the raw survey estimates. For example the WID which
relies on tax data and is thus less prone to differential non-response, provides top 1% wealth
shares for the US and France of 37% and 23.4%, respectively. The rank correction approach by
comparison yields 36.2% and 23.1%, representing a clear improvement over raw survey estimates

17Another factor is the larger size of the US.
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Table 6: Number of billionaire households

(1) (2) (3) (4) (5)
Country raw PC RC RL Forbes
US2013 43 220 391 904 492
UK2012-2014 0 1 1 19 47
Austria 0 11 12 12 10
Belgium 0 0 16 2 3
Cyprus 0 0 4 5 4
Germany 0 20 80 117 85
Spain 0 4 44 8 26
Finland 0 0 0 0 4
France 0 19 36 56 43
Greece 0 0 0 3 3
Italy 0 0 0 55 35
Luxembourg 0 1 3 NA 0
Malta 0 1 2 NA 0
Netherlands 0 0 0 7 7
Portugal 0 0 0 1 3
Slovenia 0 3 4 NA 0
Slovakia 0 0 0 NA 0
Estonia 0 0 0 NA 0
Hungary 0 0 0 NA 0
Ireland 0 0 0 4 5
Latvia 0 0 2 NA 0
Poland 0 0 0 4 5

Forbes refers to the Forbes list of billionaires from 2014.

of 35.4% and 18.7%. The rank correction approach also allows us to reproduce recent estimates
of the top 1% wealth share for Germany by Schröder et al. (2020) who implement a highly
promising oversampling strategy based on share holdings. The latter estimate a top 1% share
of 35.3% compared to our 32.6% based on the rank correction approach.

Another important question is for what kind of applications the rank correction approach
might be used other than wealth surveys. In this context we have noted that differential non-
response also occurs in the context of surveys aimed at measuring the distribution of income
or wages. However, income-based equivalents to rich lists are hard to come by, which means
the rank correction approach can be a valuable tool for analyzing tails in income survey data.
Obvious examples for the potential merit of such an approach include empirical tax simulation
models such as EUROMOD 18 or TAXBEN (Giles & McCrae 1995) for which a fitted Pareto
tail can improve the tail coverage of the wage, income or wealth data used. Another potential
application is the growing literature on distributional national accounts (DINA) which aims

18See https://euromod-web.jrc.ec.europa.eu/.
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to produce aggregate macro time series which are consistent with distributional micro data
(Piketty et al. 2016, Saez & Zucman 2016). Moreover, the example of the US – in which the
rank correction approach closely estimates the number of missing households excluded from the
survey – shows that the rank correction approach might also be useful in cases, where data on
income or wages is capped at a certain level. The latter is often the case for administrative
data (e.g. social security records) or survey data. Moreover, the rank correction approach could
be of help to infer information about the tail in cases where income is collected by assigning
households to specific income brackets.

While we think this shows that the rank correction approach is an important improvement
over simply ignoring differential non-response problems, it is of the utmost importance to address
the root cause of the problem as part of the data collection by improving oversampling strategies
in existing wealth surveys. From a European perspective, the introduction of the HFCS (2011)
and WAS (2006) were massive steps forward, but political reluctance to provide the national
central banks with tax information to implement effective oversampling strategies unnecessarily
undermines data quality19. While granting access to tax information is a sensitive issue, the
success of the SCF demonstrates that it is feasible. Until these improvements are made, the
rank correction approach provides a simple way to address the persisting problem of under-
representation of highly affluent households in survey data.
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Appendix

Table A1: Regression results UK and US

Results for the UK in the left panel and for the US in the right panel. Results from fitting pareto tails to the
top 3% of households (US top 1%) using the RC, RL and baseline approaches. US results are based on the first
implicate. Results in the paper are always based on all implicates.

Table A2: Regression results HFCS part I

Results from fitting pareto tails to the top 3% of households (Spain top 1%) using the RC, RL and baseline
approaches based on the first implicate. Results in the paper are always based on all implicates.
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Table A3: Regression results HFCS part II

Results from fitting pareto tails to the top 3% of households (France top 1%) using the RC, RL and baseline
approaches based on the first implicate. Results in the paper are always based on all implicates.
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Table A4: Regression results HFCS part III

Results from fitting pareto tails to the top 3% of households using the RC, RL and baseline approaches based on
the first implicate. Results in the paper are always based on all implicates.
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Table A4: Regression results HFCS part IV

Results from fitting pareto tails to the top 3% of households using the RC, RL and baseline approaches based on
the first implicate. Richlist data only available for Ireland. Results in the paper are always based on all
implicates.
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