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Abstract

A multiphase lattice Boltzmann model is constructed to numerically solve
the one-fluid flow equations for immiscible fluids. The method features one
solver for the macroscopic pressure and momentum and another for a scalar
field that captures and sharpens the interface. The surface tension is set a
priori and independently of other parameters. The interface capillary tensor
is embedded within the moments of the lattice Boltzmann equation so that
its divergence is captured locally. The algorithm is simple and can compute
flows with large density and viscosity ratios while maintaining distributed
but narrow interfaces. The model is validated against analytical solutions
and benchmark simulations.
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1. Introduction

The lattice Boltzmann method (LBM) for computational fluid dynam-
ics embeds the conservation laws of fluid mechanics into the moments of
a velocity-space truncated Boltzmann equation - a linear, constant coeffi-
cient hyperbolic system with nonlinear algebraic source terms [1, 2]. This
methodology can be extended to multiphase flow, although generally the
purely algebraic form of the source terms is sacrificed. LBMs have received
particular attention for applications of multiphase flow in porous media and
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microchannels, where surface tension often dominates and spatial resolu-
tion may be limited. Indeed, lattice Boltzmann models based on “colour
gradient” approaches have been shown to be highly competitive tools for
simulating multiphase flow at the pore scale [3, 4].

Surface tension has been incorporated into LBMs using different mod-
elling strategies. Pseudo-potential models, originally proposed by Shan and
Chen [5], incorporate surface tension through pair-wise molecular interactions
while free-energy models [6] add terms proportional to the density gradient
to the equilibrium function to ensure the pressure tensor is related to the
multiphase free energy density. A model based on a mean-field approxima-
tion for intermolecular attractions was first proposed by He et al. [7] and,
following important contributions from Wagner [8] on spurious currents in
multiphase LBMs, was developed and discretised consistently by Lee and
Lin [9] and Lee and Fischer [10]. The model of Lee and Lin [9] includes one
discrete velocity Boltzmann equation for pressure (not density) and momen-
tum, and another for the phase field. Slowly varying solutions of the former
yield the macroscopic continuity and momentum conservation equations in
the incompressible limit and for the latter the Cahn-Hilliard equation with
advection. Issues concerning conservation of mass were addressed by Fakhari
et al. [11] who replaced the Cahn-Hilliard solver with a lattice Boltzmann
implementation of the phase field interface tracking equation of Chiu and Lin
[12]. Fakhari et al. [11] used a multiple relaxation time collision operator to
improve numerical stability and adapted a lattice Boltzmann adaptive mesh
refinement routine to their multiphase solver. The final algorithm is able to
compute complicated multiphase phenomena of practical importance and is
more efficient than the previous models of Lee and coworkers that needed to
solve a Cahn-Hillard equation with its higher order derivatives.

The original multiphase lattice Boltzmann models of Gunstensen et al.
[13] and Grunau et al. [14] were direct extensions of the Rothman-Keller
multiphase lattice gas cellular automaton [15]. Here, distribution functions
are labelled with a “colour” to distinguish between fluids and the effect of
surface tension is obtained through a perturbation. The coefficient of the
perturbation - a controllable parameter - is proportional to the coefficient of
surface tension, and a “recolouring” algorithm is applied to maintain narrow
phase boundaries. However, the analysis of Reis and Phillips [16] showed that
early colour gradient LBMs did not furnish the correct governing equations
in the macroscopic limit. In response they redesigned the perturbation to
capture the term responsible for interfacial surface tension in the momentum

2



conservation equation - the interface capillary tensor [17] - and thus showed
that colour gradient LBMs can compute solutions to the multiphase Navier-
Stokes equations. Colour gradient models with the Reis and Phillips correc-
tion have since been extended to three-dimensions and adapted for problems
with higher density and viscosity ratios, including flows in microchannels
and porous media (see, for example [4, 18, 19, 20, 21, 22] and the references
therein). Despite these recent advances and successes, such models are not
without their shortcomings: they introduce a spurious viscosity-dependence
in the surface tension; the interface between fluids is prone to small scale
numerical instabilities and artefacts unless forced to be wider than desired;
and they usually require an LBM solver for each phase, which adds unneces-
sary computational cost and complication. The surface tension defect can be
seen in the Chapman-Enskog analysis, and the expression for the “theoreti-
cal surface tension” derived in [16, 23], but it is rarely acknowledged. Thus,
despite common claims to the contrary, the surface tension cannot be set pre-
cisely or consistently a prior. Furthermore, attempts to minimise the width
of interfaces typically cause them to become fixed to the underlying grid -
a spurious phenomenon called lattice pinning [24, 25]. While unrealistically
wide interfaces and imprecise surface tension has been a cause for concern
for many multiphase LBMs, they are of particular limiting for application
where surface tension dominates and mixtures of immiscible fluids propagate
thorough tight, perhaps complex, geometries.

Similar to the colour gradient approach, the continuum surface tension
chromodynamic model of Lishchuk et al. [26, 25] aims to compute solutions
to the multiphase Navier-Stokes equations at continuum, hydrodynamic,
lengthscales with narrow interfaces. The kinematics of phase separation are
not considered to be important at these scales. The surface tension term,
which is proportional to the curvature of the interface, is added to the LBM
as a direct body force and a recolouring algorithm (usually the one attributed
to D’ortona [27]) is needed to segregate fluids. This model has recently been
validated and analysed in detail by Speedlove et al. [28]. While giving better
control over the surface tension and providing a direct route to the contin-
uum surface tension force (CSF) model of Brackbill et al. [29], the algorithm
needs more finite difference approximations than other colour gradient mod-
els. In particular, approximations to second order derivatives are required for
the curvature, obtained via the divergence of the interface unit normal vector
(other colour models only compute first order gradients). Thus there is an
increased computational cost and complexity and an increased risk of grid-
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scale instabilities, especially near boundaries. Recolouring is still needed and
the challenges of narrowing interfaces and lattice pinning remain. One would
prefer, as much as possible, to retain and use the algorithmic advantages of
the LBM.

Latva-Kokko and Rothman [24] were the first to study and attempt to
quantify lattice pinning in colour gradient models. They identified the re-
colouring routine as the culprit and suggested an alternative procedure. Their
alternative recolouring algorithm, applied to each colour, reduced pinning
but at the price of wider interfacial regions. Reis and Dellar [30] provided
a detailed theoretical study and explanation of lattice pinning in terms of
partial differential equations with stiff source terms for a scalar “phase field”
that distinguished between fluids. Their model, which is a lattice Boltzmann
implementation of the illustrative problem of LeVeque and Yee [31] but with
diffusion, advects the phase field with the flow (which was imposed in this
study) and applies a reaction term that counteracts the diffusion and sharp-
ens the interface. Thus the field varies continuously but rapidly across an
interface. It is noteworthy that this model is similar in form, although not
in formulation, to the sharp phase field tracking equation of Sun and Beck-
ermann [32] for curvature-driven interface motion. Folch et al. [33] added a
term to Sun and Beckermann’s phase field equation to cancel the curvature
driven motion, which later Chui and Liu [12] wrote in conservative form.
Reis and Dellar [30] showed that excessive sharpening, as determined by the
ratio of timescales of the diffusion and reaction terms, causes interfaces to
pin to the underlying lattice. They also offered a volume preserving gener-
alisation of the model with random thresholds, as in Bao and Jin [34], that
was virtually free from pinning even for extremely narrow interfaces. How-
ever, numerical integration was required over to determine global, not local,
volume preserving thresholds, making the method difficult to apply for prob-
lems with multiple interfaces or breakups. Recently, Reis [35] presented a
conservative lattice Boltzmann model for interface advection and sharpening
that allowed narrow interfaces to propagate correctly with minimal lattice
pinning in stringent tests with significant interface deformation1. While it is
not feasible in such a formulation to compute vanishingly sharp phase phase
boundaries, the interfaces in the test cases in Reis [35] often remained only
two or three lattice units wide. The model is based on a single step interpre-

1This was originally presented in [36, 37]
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tation of the artificial compression algorithm for level set methods of Olsson
et al. [38], which itself can be viewed as conservative form of the phase field
equation of Folch et al. [33], as shown by Chui and Liu [12]. Independently,
Geier et al. [39] formulated an interface tracking equation similar to Chui
and Liu [12] as a lattice Boltzmann algorithm which was later used in the
multiphase LBM of Fakhari et al. [11].

This article proposes a one-fluid lattice Boltzmann model for computing
multiphase flow. Like the colour gradient and continuum surface tension
chromodynamic models, this new LBM is designed to compute the multi-
phase Navier-Stokes equations when the lengthscales of phase separation are
negligible in comparison to hydrodynamic lengthscales, but to achieve larger
density contrasts the modelling is influenced and inspired by the advances
of the phase field approaches of Lee and coworkers. One LBM will be used
for the hydrodynamic conservation laws and another for capturing the in-
terface. In this one-fluid approach the capillary tensor is embedded directly
into the moments of the LBM so that its divergence is captured organically,
as inspired by the state-of-the-art in discrete kinetic schemes for magnetohy-
drodynamics [40], and the interface is captured using the advection-diffusion-
sharpening LBM of Reis [35]. However, other interface capturing and sharp-
ening algorithms can could be used in principle. The remainder of the article
is organised as follows. In Section 2 we present the governing equations that
we wish to solve numerically - the one fluid equations for multiphase flow.
In Sections 3 and 4 we present the discrete kinetic formation of the hydro-
dynamic and interface capturing equations, respectively, and the numerical
algorithm is obtained in Section 5. Results are discussed in Section 6 before
making concluding remarks in Section 7.

2. Governing equations

The multiphase Navier-Stokes equations with surface tension can be writ-
ten as [17]

∇ · u = 0, (1)

∂ρu

∂t
+∇ · ρuu = −∇P +∇ ·

(
µ
(
∇u + (∇u)T

))
+∇ · (σ (I− nn) δs) + F. (2)

These equations are solved for the fluid velocity, u, and the hydrodynamic
pressure, P . Here, F is an external body force. The third term on the right
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hand side of equation (2) is the term responsible for multiphase effects and
includes the surface tension, σ, the unit normal to the interface, n, and the
surface delta function, δs. The surface delta function is the Dirac delta func-
tion concentrated on the interface and has the property of converting volume
integrals to surface integrals. In principle it can be expressed as δs(x) = δ(n),
where n is the normal coordinate at the interface and δ is the standard Dirac
function, but it requires special treatment in a distributed surface tension
numerical model. This is discussed in Section 5. The multiphase term is writ-
ten as the divergence of the capillary tensor because, conveniently, divergence
terms can be naturally incorporated into the moments of a lattice Boltzmann
equation without the need for additional finite difference approximations (see
Section 3). Still, we note that ∇ · (σ (I− nn) δs) = −σκnδs −∇sσδs, where
κ = ∇s ·n is the interface curvature and∇s is the gradient operator restricted
to the interface. The interface may be captured using a scalar field, φ, which
is assumed to vary smoothly but rapidly between φ = 0 for one fluid and
φ = 1 for another across phase boundaries according to

∂φ

∂t
+ u · ∇φ = κ∇2φ+ S(φ), (3)

where κ is a diffusion coefficient and S(φ) is a sharpening term that helps
maintain narrow interfaces. The density, ρ, and dynamic viscosity, µ, in
equation (2) may vary between phases and can be computed as functions of
φ:

ρ = φρ1 + (1− φ)ρ2, (4)

µ = φµ1 + (1− φ)µ2, (5)

where ρ1 and ρ2 are the constant densities of the two fluids, and similarly for
µ1 and µ2. The unit normal at the interface, which appears in the capillary
tensor in the momentum equation (2), can be found according to

n =
∇φ
|∇φ|

. (6)

Equations (1,2,3) are the equations solved in the whole-domain, or “one-
fluid” approach to multiphase computational fluid dynamics. In this article
we use for the interface sharpening term [35, 38]

S(φ) = −κ∇ · φ(1− φ)

λ
n, (7)
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where λ is the sharpening parameter. We note that Reis and Dellar used a
purely algebraic sharpening term to capture interfaces, where S(φ) ∝ φ(1−
φ)(φc − φ), φc ∈ R [30].

3. Discrete velocity Boltzmann formulation of the hydrodynamic
equations

We will embed the multiphase Navier-Stokes equations (1,2) into a larger
system of PDEs (the moments of a discrete velocity Boltzmann equation),
but one that is easier to solve numerically. The discrete velocity Boltzmann
equation for fi, i = 0, . . . b, is

∂fi
∂t

+ ci · ∇fi = − 1

τf

(
fi − f (0)

i

)
+Ri + Si, (8)

where the left-hand side describes the advection of each fi with correspond-
ing discrete particle velocity ci and the first term on the right models the
relaxation of fi to their equilibria f

(0)
i over a timescale τf . The additional

source terms Ri will account for any body forces and Si will help us recover
the continuity equation (discussed below). The discrete particle velocity set,
{ci : i = 0, . . . b} form a lattice, such as the D2Q9 lattice shown in Figure
1 which is used exclusively here. For ease of presentation the model is con-
structed using a single relaxation time collision on the right hand side of
equation (8) but it is applicable to other collision operators. In Section 5 the
model is implemented using two relaxation times.

Figure 1: The D2Q9 lattice

Similar to He and Luo [1] and Lee and Lin [9] we define the conserved
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moments for pressure and momentum∑
i

fi =
∑
i

f
(0)
i =

P

c2
s

, (9)∑
i

fici =
∑
i

f
(0)
i ci = ρu, (10)

where cs = 1/
√

3 is the (constant) sound speed. The density of the fluid will
be given according to equation (4) and a discrete Boltzmann equation for
the scalar field φ will be discussed in the Section 4. Since Ri is responsible
for a body force it must satisfy the constraints [41]∑

i

Ri = 0,
∑
i

Rici = F,
∑
i

Ricic1 = Fu + uF, (11)

where F is the force. Thus a suitable Ri is

Ri = Wi

(
ci − u

c2
s

+
ci · u
c4
s

ci

)
· F, (12)

where W0 = 4/9, W1,...,4 = 1/9, and W5,...,8 = 1/36 are the standard D2Q9
weights.

Taking the first discrete velocity moment of equation (8) yields

1

c2
s

∂P

∂t
+∇ · (ρu) =

1

c2
s

∂P

∂t
+ ρ∇ · u + u · ∇ρ =

∑
i

Si. (13)

Following Lee and Lin [9] we remove gradients of density to ensure mass
conservation and reduce compressibility errors by requiring∑

i

Si = u · ∇ρ, (14)

which yields
1

ρc2
s

∂P

∂t
+∇ · u = 0. (15)

Equation (15) resembles an artificial compressibility equation and for low
Mach numbers, Ma = |u|/cs � 1, the velocity is approximately divergence
free.
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Taking the second moment of equation (8) yields the momentum equation

∂ρu

∂t
+∇ ·Π = F +

∑
i

Sici, (16)

where the momentum flux tensor Π =
∑

i ficici. To conserve momentum we
ask

∑
i Sici = 0. The momentum flux tensor evolves according to its own

PDE, found by taking the third moment of equation (8):

∂Π

∂t
+∇ ·Q = − 1

τf

(
Π−Π(0)

)
+ Fu + uF +

∑
i

Sicici, (17)

where Π(0) =
∑

i f
(0)
i cici and Q =

∑
i ficicici.

To find an expression for Π and hence a closed momentum equation we
expand the temporal derivatives and non–conserved moments in the PDE
system (15,16,17) as

∂

∂t
=

∂

∂t0
+τf

∂

∂t1
+ . . . , Π = Π(0) +τfΠ

(1) + . . . , Q = Q(0) +τfQ
(1) + . . . ,

(18)
which at leading order gives the closed PDE system

1

ρc2
s

∂P

∂t0
+∇ · u = 0, (19)

∂ρu

∂t0
+∇ ·Π(0) = F, (20)

∂Π(0)

∂t0
+∇ ·Q(0) = −Π(1) + Fu + uF +

∑
i

Sicici, (21)

where Q(0) =
∑

i f
(0)
i cicici. Once we have specified Π(0), which amounts to

supplying the equilibria f
(0)
i , we can find an expression for the first correction,

Π(1), to the tensor Π. To obtain the one-fluid multiphase Navier-Stokes
equations we impose the equilibrium moment

Π(0) = P I + ρuu− σ (I − nn) δs. (22)

The last term on the right hand side of equation (22) is the capillary ten-
sor responsible for surface tension, as defined in Section 2. An equilibrium

9



function that satisfies the conservation constraints (9,10) and condition (22)
is

f
(0)
i = Wi

(
P

c2
s

+
ρu · ci
c2
s

+
1

2c4
s

(ρuu + T ) :
(
cici − c2

sI
))

, (23)

where T = σ (I − nn) δs is the capillary tensor.
The first term of the left hand side of equation (21) can be written as

∂t0ΠΠΠ
(0) = ∂t0 (P I + ρuu− σ (I− nn) δs) (24)

and we use lower order moment equations to evaluate the temporal deriva-
tives in terms of spatial derivatives. Thus, from equation (19),

∂t0P = −ρc2
s∇ · u, (25)

and using equation (20),

∂t0ρuu = u∂t0ρu + (∂t0ρu) u− uu∂t0ρ,

= −u∇ ·ΠΠΠ(0) + uF−
(
∇ ·ΠΠΠ(0)

)
u + Fu− uu∂t0ρ,

= −u∇P − (∇P )u + uF + Fu

+u∇ · [σ (I− nn) δs] +∇ · [σ (I− nn) δs] u +O(Ma3). (26)

Inserting equations (25) and (26) into equation (24) shows us that the tem-
poral derivative of the equilibrium part of the momentum flux tensor can be
expressed as

∂t0Π
(0) = −ρc2

sI∇ · u− u∇P − (∇P )u

+u∇ · [σ (I− nn) δs] +∇ · [σ (I− nn) δs] u

−∂t0 [σ (I− nn) δs] + uF + Fu +O(Ma3). (27)

With the equilibrium function supplied, the divergence of the third order
tensor in equation (21) is expressed as

∇ ·Q(0) = c2
s∇ · (ρu)I + ρc2

s

(
∇u + (∇u)T

)
+ c2

s (u∇ρ+ (∇ρ)u) . (28)

Now substituting this along with equation (27) into equation (21) gives an
expression for the first order correction in the expansion of the momentum
flux:

Π(1) = ρc2
sI∇ · u + u∇P + (∇P )u− u∇ · [σ (I− nn) δs]

−∇ · [σ (I− nn) δs] u + ∂t0 [σ (I− nn) δs]− c2
sI∇ · (ρu)

−ρc2
s

(
∇u + (∇u)T

)
− c2

s (u∇ρ+ (∇ρ)u)

+
∑
i

Sicici +O(Ma3). (29)
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Noting that ∇· (ρu) = ρ∇·u+u ·∇u, the density gradient terms that are in
(29) but not in the momentum equation (2) can be removed if

∑
i Sicici =

c2
s (u · ∇ρI + u∇ρ+ (∇ρ)u). Following Lee and Lin [9] we define the source

term

Si = (Γi −Wi) (ci − u) · ∇ρ, (30)

Γi = Wi

(
1 +

ci · u
c2
s

+
(cici − c2

sI) : uu

2c4
s

)
.

This satisfies the previous conditions on the first two moments of Si and also∑
i Sicici = c2

s (u · ∇ρI + u∇ρ+ (∇ρ)u) +O(Ma3). Thus the expression for
Π(1) simplifies to

Π(1) = −ρc2
s

(
∇u + (∇u)T

)
+ u∇P + (∇P )u− u∇ · [σ (I− nn) δs]

−∇ · [σ (I− nn) δs] u + ∂t0 [σ (I− nn) δs] +O(Ma3). (31)

Recall from (18) that Π = Π(0) +τfΠ
(1) +O(τ 2

f ) so that from the momentum
conservation equation (16) we have to first order in τf

∂ρu

∂t
+∇ · ρuu = −∇P +∇ ·

(
µ
(
∇u + (∇u)T

))
+∇ · (σ (I− nn) δs)

− ∇ · (τf [u∇P + (∇P )u− u∇ · [σ (I− nn) δs]

− [σ (I− nn) δs] u] + τf∂t0∇ · [σ (I− nn) δs]) + F.(32)

where µ = ρc2
sτf is the (dynamic) viscosity.

In the standard lattice Boltzmann model for the single phase Navier-
Stokes equations, P = ρc2

s, and the u∇P terms in equation (32) cancel with
density gradients that are removed in the current model by the moments of
Si. However, the residual u∇P terms here are of order O(Ma3) and thus
can be neglected. The third term on the right hand side of equation (32) is
the surface tension term, written as the divergence of the capillary tensor.
The other terms involving σ are error surface tension terms that multiply
the divergence of the capillary tensor by a term of the order O(Ma2/Re),
where Re = ρUL/µ is the Reynolds number and the Mach number, Ma,
has already been defined. Thus the error terms are Re/Ma2 times smaller
than the divergence of the capillary tensor and can safely be neglected. It
should also be noted that additional or a change in errors can occur if τf
varies across an interface, as it may when there are large viscosity contrasts,
especially as gradients of the order parameter are approximated numerically
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(see Section 5). We concluded that our discrete Boltzmann equation (8)
with equilibria (23) has embedded within its moment system the multiphase
partial differential equations

1

ρc2
s

∂P

∂t
+∇ · u = 0, (33)

∂ρu

∂t
+∇ · ρuu = −∇P +∇ ·

(
µ
(
∇u + (∇u)T

))
+∇ · (σ (I− nn) δs) + F (34)

4. Discrete velocity Boltzmann formulation of the interface cap-
turing equation

We briefly describe the lattice Boltzmann model of Reis [35, 37] for the
advection and sharpening of the scalar field 0 ≤ φ ≤ 1 for capturing interfaces
and distinguishing between fluids. The target PDE

∂φ

∂t
+ u · ∇φ = κ

(
∇2φ−∇ · φ(1− φ)

λ
n

)
(35)

is embedded into the moments of the discrete Boltzmann equation

∂gi
∂t

+ ci · ∇gi = − 1

τg

(
gi − g(0)

i

)
+Hi, i = 0, . . . , d (36)

by defining the conserved quantity φ to be the first moment of gi,

φ =
∑
i

gi =
∑
i

g
(0)
i , (37)

and the equilibria and lattice sharpening term

g
(0)
i = ωi

(
φ+

ci · φu

c2
s

)
, (38)

Hi =
φ(1− φ)

λ
ci · n. (39)

The Hi defined in equation (39) is the compression term that counteracts
diffusion and helps to maintain narrow phase transition areas by keeping φ
close to 1 or 0. In this work we use the D2Q5 discrete velocity set {ci : i =
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0, . . . , 4} for gi, which can be visualised as the lattice in Figure 1 without the
diagonal velocities. The D2Q5 weights are ω0 = 1/3 and ω1,...,4 = 1/6, and
c2
s = 1/3.

Taking moments of equation (36) yields the PDE system

∂φ

∂t
+∇ ·ψψψ = 0 (40)

∂ψψψ

∂t
+∇ · πππ = − 1

τg

(
ψψψ −ψψψ(0)

)
+ c2

s

φ(1− φ)

λ
n, (41)

where
ψψψ =

∑
i

gici, ψψψ(0) =
∑
i

g
(0)
i ci = φu, πππ =

∑
i

gicici. (42)

Following a Chapman-Enskog expansion similar to that in Section 3 and [35]
that expands the temporal derivatives and non-conserved moments ψψψ and
πππ in the system (40,41) yields to second order in Mach number the target
equation (35) with diffusion coefficient κ = τgc

2
s.

5. Lattice Boltzmann implementation

Now that we have build discrete velocity Boltzmann PDEs that contain
within their moment systems the one-fluid multiphase flow equations (1,2,3),
we seek fully discrete algorithms to solve them numerically. To enhance
numerical performance we take a two-relaxation-time (TRT) approach which
relaxes the symmetric and anti-symmetric moments at different rates [42].
That is, we define

χ±
i =

1

2
(χi ± χj) ,

where j is in the opposite direction of i such that ci = −cj, and χi ∈{
fi, f

(0)
i , Ri, Si, gi, g

(0)
i

}
.

Let’s consider the lattice Boltzmann equation for fi (and thus hydro-
dynamic momentum and pressure) first. For simplicity we define the new
equilibria

f (e+) = f (0+) + τ+
f

(
R+
i + S+

i

)
, (43)

f (e−) = f (0−) + τ−f
(
R−
i + S−

i

)
, (44)

where τ+
f and τ−f are the relaxation times for the symmetric and antisym-

metric parts of fi, respectively, and τ+
f controls the viscosity according to
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µ = ρc2
sτ

+
f . Note that if the relaxation times are equal, τ+

f = τ−f = τ , then
we have the single relaxation time model. Splitting the collision operator
does not effect the model discussed and derived in Section 3.

The TRT discrete velocity Boltzmann equation may now be written as
[43]

∂fi
∂t

+ ci · ∇fi = − 1

τ+
f

(
f+
i − f

(e+)
i

)
− 1

τ−f

(
f−
i − f

(e−)
i

)
(45)

and integrated over a characteristic for time to yield

fi (x + ci∆t, t+ ∆t)−fi (x, t) =
∆t

2
(Ωi (x + ci∆t, t+ ∆t) + Ωi(x, t))+O(∆t3),

(46)
where Ω represents the entire right and side of equation (45). The left hand
side of equation (46) is exactly the integral of the left hand side of (45) over
a timestep ∆t and the trapezium rule has been used to approximate the
integral of the right hand side of equation (46) over a timestep.

Equation (46) defines a second order accurate but implicit system of al-
gebraic equations since the terms on the right evaluated at the new time
t+∆t require hydrodynamic moments of fi at t+∆t. For an explicit in time
algorithm we introduce the change of variables [44, 45]

f i = fi −
∆t

2
Ωi = fi +

∆t

2τ+
f

(
f+
i − f

(e+)
i

)
+

∆t

2τ−f

(
f−
i − f

(e−)
i

)
(47)

which yields the lattice Boltzmanm equation for f i,

f i (x + ci∆t, t+ ∆t)− f i (x, t) = − ∆t

τ+
f + ∆t/2

(
f

+

i (x, t)− f (e+)
i (x, t)

)
− ∆t

τ−f + ∆t/2

(
f
−
i (x, t)− f (e−)

i (x, t)
)
,(48)

where f
(±)

i = 1
2

(
f i ± f j

)
. Again note that if the relaxation times are equal

then the single relaxation time LBE is obtained. The hydrodynamic moments
of the transformed variable f i that are needed for the equilibria are∑

i

f i =
P

c2
s

− ∆t

2
u · ∇ρ, (49)

∑
i

f ici = ρu +
∆t

2
F. (50)
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Similarly, the TRT extension of the discrete velocity Boltzmann PDE for
gi is

∂gi
∂t

+ ci · ∇gi = − 1

τ+
g

(
g+
i − g

(e+)
i

)
− 1

τ−g

(
g−i − g

(e−)
i

)
, (51)

where we have defined

g(e−) = g(0−) + τ−g Hi, (52)

noting that there is no symmetric contribution to Hi. The relaxation time
τ−g sets the diffusion coefficient according to κ = τ−g c

2
s, and τ+

g is chosen on
the basis of numerical stability. Following the same discretisation method of
integrating over a characteristic for time and applying the trapezium rule, as
discussed above, we obtain the lattice Boltzmann equation for gi [35],

gi(x + ci, t+ ∆t)− gi(x, t) = − ∆t

τ+
g + ∆t/2

(
g+
i − g

(e+)
i

)
− ∆t

τ−g + ∆t/2

(
g−i − g

(e−)
i

)
(53)

where

gi = gi +
∆t

2τ+
g

(
g+
i − g

(0+)
i

)
+

∆t

2τ−g

(
g−i − g

(e−)
i

)
(54)

and g
(±)
i = 1

2

(
gi ± gj

)
. Since the scalar field is conserved, φ =

∑
i gi =

∑
i gi.

Clearly, this TRT scheme reduces to the standard single relaxation time
approach when τ+

g = τ−g .
The gradients that appear in the algorithm (specifically, in Si and the

equilibria for fi and gi) are computed using central differencing,

∇Θ =

∑
i ciWi [Θ(x + ci∆t)−Θ(x− ci∆t)]

2∆tc2
s

. (55)

Note that ∇ρ = (ρ1 − ρ2)∇φ. The capillary tensor, T, that appears in the
equilibria (23) needs the surface delta function, δS, which in this work is
approximated by

δS ' |∇φ|. (56)

We note that other approximations are available and the optimal choice is
not clear [46, 47]. The definition above has proved to be suitable but it
may be improved. The capillary tensor and terms involving n are computed
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whenever |∇φ| > 0. The relaxation times τ−f and τ+
g are set by the products

Λf = τ+
f τ

−
f = Λg = τ+

g τ
−
g = 1/4. This choice of so-called “magic parameter”

eliminates the recurrence in non-conserved moments, removes the viscosity
dependence in the errors, and offers optimal stability for single phase flow
[48, 42, 43]. A summary of the model is algorithm is provided in Appendix
A.

6. Results

We run a series of benchmark tests to verify our multiphase model. Unless
otherwise stated we set c = ∆x/∆t = 10, so that a characteristic length L
is broken up into L/∆x segments and a characteristic velocity U is scaled so
that U/c � 1 (noting that in so-called lattice units the scaling is such that
∆x = ∆t = 1 and U � 1). The reference pressure is set to be P0 = 1, and
the reference density ρ0 = 1. Also, analogous to the Péclet and Sharpening
numbers, Pe = UL/κ = 100, and Sh = (Uλ)/κ = (λ/L)Pe = 0.2.

6.1. Static drop and Laplace’s law

We consider a static drop of fluid with density ρ1 in an infinite domain
of fluid with density ρ2 and measure the pressure across the interface. The
pressure distribution should be smooth but oscillations are often observed in
computations, potentially causing numerical instabilities. Figure 2 plots the
pressure distribution for different non-dimensionalised values of λ when the
grid Reynolds (Re∆ = c∆x/ν) and grid capillary (Ca∆ = ρ1cν/σ) numbers
are 1 and 0.1, respectively. The left hand plot uses a resolution of 100× 100
lattice points and a drop radius of R = 25 lattice units. When λ = 0.1 the
sharpening is severe and causes oscillations in the pressure in the vicinity of
the interface. Facetting of the interface was also observed. This behaviour is
corrected as we increase λ: when λ = 0.2 the interface remains narrow with
no oscillations but further increases smears the interface over more nodes.
Doubling the resolution reduces the oscillations in the strict sharpening case
(λ = 0.1) with pressure overshoots less than 5 × 10−5. The source of the
oscillations is suspected to be the on-lattice discretisation of gradient terms.
More accurate representations of these terms is an option that is worthy of
further research.

For illustration, Figure 3 plots the pressure distribution across the in-
terface of a drop when the grid capillary number is increased by an order
of magnitude to Ca∆ = 1. All other parameters are unchanged. With a
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Figure 2: Pressure distribution across the interface of a static drop for different λ when
the grid capillary number is Ca∆ = 0.1 on a 100× 100 grid (left) and a 200× 200 grid.
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Figure 3: Pressure distribution across the interface of a static drop for different λ when
the grid capillary number is Ca∆ = 1 on a 100× 100 grid (left) and a 200× 200 grid.

resolution of 100 × 100 some small overshoot is observed in the pressure in
the vicinity of the interface but the interface is very narrow. These small
oscillations are quashed if we allow the interface to be a little more diffuse.
Doubling the resolution removes all oscillations, even for very sharp interfaces
with λ = 0.1.

Laplace’s law states that

Pin − Pout =
σ

R
, (57)

where Pin and Pout are the pressures inside and outside of a drop, respec-
tively, and R is the radius of the drop. The surface tension, σ, is input
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Ca∆ λ Error100 Error200

0.1 0.2525 0.0090
0.01 0.15 0.2540 0.0090

0.2 0.0315 0.0090
0.1 0.1170 0.0055

0.1 0.15 0.0190 0.0050
0.2 0.0244 0.0090
0.1 0.0097 0.0019

1 0.15 0.0061 0.0053
0.2 0.0097 0.0091

Table 1: Comparison of surface tension measurements for different values of non-
dimensionalised surface tension parameter σ and sharpening parameter λ on two grids.

directly into this one-fluid lattice Boltzmann model and thus the right hand
side of Laplace’s law (57) is known exactly and we measure the pressure
difference. The pressure inside the drop was measured at its centre (centre
of the domain) and the pressure outside was taken (1/8)th along each side.
The error is calculated as the relative error between the exact and computed
surface tension,

Errorn =
|∆Pexact −∆Pcomputed|

∆Pexact

,

where ∆Pexact and ∆Pcomputed and the right and left hand sides of equation
(57), respectively, and the subscript n denotes the number of grid points on
a side. The results are shown in Table 1. Except for the when Ca∆ = 0.1
and λ = 0.1 on the 100 × 100 grid (which is when the largest oscillations
were observed and the drop experienced facetting), the order of the relative
error is never larger than 10−2 on the coarse grid and 10−3 on the finer grid.
The errors are larger for more diffuse and overly sharp interfaces.

6.2. Layered Poiseuille flow

We compute the flow of layers of two fluids in an infinitely long channel
of width 2H. The flow is driven by a constant pressure gradient, imposed
here via the body force F = (0, G). The force is scaled so that the maximum
velocity in the flow is 1. The density of each fluid is constant and the flow is
unidirectional so that u = (ux(y), 0). The no-slip condition is imposed with
the moment-based method and the constraints ux = uy = 0 and Πxx = P on
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the plates [49, 50]. A brief overview of the moment-based method is given in
Appendix B. Note that P on the plate is computed from the velocity con-
ditions and known distributions, and the conditions on the moments have to
be translated into conditions on “barred” functions [43]. A similar approach
is used to impose conditions on the interface capturing equation, i.e φ, on
the plates [51] and we note that the moment-based methodology has previ-
ously been used to compute multiphase flow and contact angles at boundaries
[52]. To account for the rapid change in viscosity across the interface we use
calculate the relaxation time in each phase according to the rule [53].

µ =

{
µ1, φ ≥ 0.5,

µ2, φ < 0.5.

When there are two layers of equal width the analytical solution is

ux(y) =


GH2

2µ1

(
−
(
y
H

)2
+ y

H

(
µ1−µ2
µ1+µ2

)
+
(

2µ1
µ1+µ2

))
−H ≤ y < 0

GH2

2µ2

(
−
(
y
H

)2
+ y

H

(
µ1−µ2
µ1+µ2

)
+
(

2µ2
µ1+µ2

))
0 ≤ y ≤ H

(58)

Figure 4 plots the analytical and computed velocity profiles when the densi-
ties of the fluid are equal but the kinematic viscosity ratio is ν1/ν2 = 10 and
ν1/ν2 = 1000, where νn = µn/ρn = τn/3. The surface tension parameter is
set so that the capillary number is Ca = Uµ1

σ
= 1, where U is the maximum

velocity, but tests with Ca ranging from 0.1 to 1000 showed no discernible
difference, as should be expected. The velocity u is scaled by c = ∆x/∆t so
that umax = 0.1. Results on two grids are shown: 1 × 129 and 1 × 257 grid
points. While there is some numerical error at the interface the results are
generally in excellent agreement, even for a very high viscosity ratio.

Next we consider two layer Poiseuille flow where the fluids have equal
kinematic viscosities but different densities. Figure 5 plots the analytical
and computed velocity profiles when the kinematic viscosities of the fluids
are equal but the density ratios are ρ2/ρ1 = 10 and ρ2/ρ1 = 1000. The results
are generally in excellent agreement, even for a very high density ratios, as
confirmed by Figure 7, which plots the relative L2 error on different grid
sizes. Overall second order convergence is observed.

Figure 7 plots the relative L2 error norm

E2 =

√√√√∑y (ux(y)− uLBM)2∑
y (ux(y))2 ,

19



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

u
x

y/H

LBM
Analytical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

u
x

y/H

LBM
Analytical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

u
x

y/H

LBM
Analytical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

u
x

y/H

LBM
Analytical

Figure 4: LBM computed and analytical velocity profile of two layer Poiseuille flow with
equal densities and kinematic viscosity ratio ν1/ν2 = 10 (top) and ν1/ν2 = 1000 (bottom).
The results on the left used a 1× 129 grid and on the right a a 1× 257 grid.
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where uLBM is the computed solution and u(y) is given by equation (58),
for different viscosity and density ratios on different size grids. The grid
spacing ∆x = 1/(m − 1), where m is the number of grid points in the
channel width. It is seen that second order convergence is achieved when
the kinematic viscosities are equal but the dynamic viscosities are different.
When the kinematic viscosities of the fluids are different, overall second order
convergence is observed for the smaller viscosity ratios, but with the rate
reducing to almost first order for large grid size and ratios. We suspect that
the slower convergence rate with large viscosity ratios is due to τf = τf (φ)
varying considerably across the interface: there will be numerical errors due
to the discretisation of gradients of φ, and τf appears inside divergence terms
on the right hand side of equation (32). The error reduces to the order
O(10−12) when the density and viscosity ratios are unity on a 1 × 3 grid,
and the convergence rate for other parameter regimes is independent of the
capillary number. Thus, and considering also that the flow is incompressible
and unidirectional in each phase, we argue that the source of error is due to
gradients in the material parameters across a transition region of finite width,
noting that the analytical solution assumes an interface of zero thickness. The
errors seen here with very large density and viscosity contrasts are still small
and compare favourable with other schemes [53, 21, 54].

Figure 8 plots the analytical and numerical (LBM) solution of three lay-
ered Poiseuille flow when the dynamic viscosity of one fluid is 1000 times
larger then the other. In the left hand plot the the inner fluid has the larger
dynamic viscosity and in the right the outer fluid has the larger viscosity.
The convergence of result with mesh refinement are shown in Figure 6. As in
the two-layer flow, very good agreement with, and convergence to, analytical
solutions are observed.

6.3. Rayleigh-Taylor instability

A fluid with density ρ1 and dynamic viscosity µ1 sits on top of a fluid with
density ρ2 < ρ1 and viscosity µ2 inside a domain of size [0, L] × [−2L, 2L].
Solid horizontal no-slip boundaries are placed at the top and bottom of a
horizontally periodic domain. Here Ma =

√
3/25. Linear stability theory says

that an interface perturbed to have the form A cos (kx) is unstable when the
wavenumber is less than the critical wavenumber kc = (g(ρ2− ρ1)/σ)1/2 [55].
In this case, gravity will allow the denser fluid to penetrate the other, causing
rapid interfacial deformations known as the Rayleigh-Taylor instability. Here,
and for comparison with benchmark simulations, the interface between the
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Figure 6: Relative L2 errors of computed velocity profiles of three layer Poiseuille flow
when µ2/µ1 = 10 (red) and µ2/µ1 = 1000 (green). The black line has slope 2.
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Poiseuille flow where the inner fluid has dynamic viscosity µ1 and the outer µ2. Left:
µ1/µ2 = 0.001; Right: µ1/µ2 = 1000. The grid size is 1× 257 and ∆t/∆x = 0.1.

two fluids is perturbed and located at y = 0.1L cos (2πx/L). The Reynolds
number is defined to be Re = ρ1UL/µ1 and the characteristic velocity of the
flow is determined by gravity, g, such that U = |

√
gL|. The density ratio

is given by the Atwood number, At = (ρ1 − ρ2)/(ρ1 + ρ2), and the dynamic
viscosities of the fluids are equal. In all simulations we set Re = 2048 and
At = 0.5. We used a computational domain of size 257×1025 so that the grid
spacing was ∆x = 1/256 and we set the timestep according to ∆t/∆x = 0.04
(meaning that U = 0.04 in lattice units). No-slip conditions were applied
using the moment-based approach [50] and no flux conditions on the phase
field [51].

Figure 9 plots on the top row the density at different moments in (non-
dimensional) time, T , when there is no surface tension (σ = 0). The results
are in qualitative agreement with benchmark simulations [7], showing the
spikes of denser fluid and the rise of bubbles of lower density. The interface
remains narrow in this and all simulations, typically containing no more
than three grid points. For quantitative comparisons we plot in Figure 10
the position and speed of the interface and compare them with the data of
Wang et al. [56], He et al. [7], and (where available) Nourgaliev et al. [57].
An excellent agreement is observed.

The middle row of Figure 9 shows the density contours when the capillary
number Ca = 0.1, so that surface tension forces dominate viscous forces. All
other parameters are unchanged. We notice that surface tension has damped
the secondary Kelvin-Helmholtz type instabilities at interfaces. No vortices
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Figure 9: Density contours showing the Rayleigh-Taylor instability at different times when
Re = 2048 and At = 0.5. Top row: No surface tension. Middle row: Ca = 0.1. Bottom
row: Ca = 0.01. From left to right: T = 1, 2, 3, 4.
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are formed or detached from the interface when Ca = 0.1, as anticipated
[58]. If we reduce the capillary number further to Ca = 0.01 then surface
tension is strong enough to stabilise the flow (k > kc). That is, the heavier
fluid does not penetrate into the lighter and the interface oscillates about its
unperturbed state, y = 0, as shown on the bottom row of Figure 9.

6.4. Single bubble rise

A bubble of fluid with density ρ1 and dynamic viscosity µ1 is immersed in
a fluid with density ρ2 and dynamic viscosity µ2, where ρ1 > ρ2. The domain
size is [0, 1]×[0, 2] and the bubble is centred at (0.5,0.5) with radius R = 0.25.
No-slip walls are places at y = 0 and y = 2, and free slip conditions at x = 0
and x = 1 using the moment-based approach [45]. The flow is characterised
by the Reynolds and Bond numbers, which are given in terms of the diameter
of the bubble and gravity:

Re =
ρ1
√
g(2R)3/2

µ1

; Bo =
4ρ1gR

2

σ

and we measure the centre of mass, rise velocity, and circularity of the drop:

Xc =

∫
Ω2

x∫
Ω2

1
; Uc =

∫
Ω21

u∫
Ω2

; ε =
2πR

Pbubble

,

where Ω2 is the region occupied by the bubble and Pbubble is the perimeter
of the bubble.

We first simulate the flow with Re = 35, Bo = 10, and ρ1/ρ2 = µ1/µ2 =
10. This has become known as “case 1” for the well-used benchmark test in
multiphase CFD community [59, 60, 56]. The radius of the bubble has 50 lat-
tice points and Ma =

√
3/1000. The rise of the bubble up to non-dimensional

time T = 3 is shown in Figure 11 and is in excellent qualitative agreement
with benchmark simulations [59]. The centre of mass, rise velocity, and cir-
cularity are plotted in Figure 12 and compared with the benchmark data
of Hysing et al. [59] from the FreeLIFE finite element level set solver. An
excellent quantitative agreement is observed. The largest disagreement is in
the circularity, but we note that this is still small and not unexpected when
comparing a sharp interface level set approach with a method with diffuse
(even if narrow) interfaces [61]. All multiphase LBMs have a distributed
transition region. In addition, we show in Table 2 data for comparison with
an advanced colour gradient LBM of Rothman-Keller type with the Reis and
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Figure 10: Comparison of interface position and velocity in the Rayleigh-Taylor instability
test when Re = 2048 and At = 0.5.
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Figure 11: Density contours showing a single bubble rising in a denser fluid when Re = 35,
Bo = 10, and ρ1/ρ2 = µ1/µ2 = 10. From left to right: T = 0.5, 1, 2, 3.

Phillips modification [16] and additional stability and performance enhance-
ments of Leclaire et al. [62]. The table shows the minimum circularity, the
time the minimum circularity occurred, the maximum rise velocity and the
time of its occurrence, and the vertical coordinate of the centre of mass at
T = 3. Three different meshes are used: with 20, 40, and 80 grid points in
the initial radius. These correspond to the spatial resolution used in Leclaire
et al. [62]. We note that results were also presented for a bubble radius of
10 grid points (∆x = 1/40) in [62]. We could not obtain results on such a
coarse mesh without adjusting the sharpening parameters or the tolerance
for computing |∇φ| in the numerator of n (but could if we allowed for wider
interfaces), so for consistency we do not present those results. Data from the
three finest resolutions used in the FreeLife and the TP2D level set finite
element solvers, and the finite element arbitrary Lagrangian-Eulerian (ALE)
solver MooNMD, found in [59] are also shown and once again we note the
encouraging agreement using our simple model. We remark that we could
obtain results with a Mach number an order of magnitude larger, but with a
slight deterioration in results in comparison with other solvers. Similar data
for diffuse interface models can be found in [61].

Finally, we compute the more challenging “case 2” bubble rise benchmark
test, which sets Re = 35, Bo = 125, ρ1/ρ2 = 1000, and µ1/µ2 = 100. We
could not obtain numerically stable results on very coarse grids so we used a
spatial resolution of 100 grid points in a radius. We also needed to make the
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Figure 12: Plot of centre of mass, rise velocity, and circularity of a bubble in a denser fluid
as a function of time when Re = 35, Bo = 10, and ρ1/ρ2 = µ1/µ2 = 10. Results from the
FreeLIFE finite element software are also shown [59].28



Figure 13: Density contours showing a single bubble rising in a denser fluid when Re = 35,
Bo = 125, ρ1/ρ2 = 1000, and µ1/µ2 = 100. From left to right: T = 0.5, 1, 2, 3.

interface more diffuse than in “case 1” and it what follows we set Pe=10 and
Sh=0.07. This is a famously difficult test and results of different solvers vary
slightly, as shown in Hysing et al. [59], Wang et al. [56], and Aland and Voigt
[61]. We plot in Figure 13 the rise of the bubble up to non-dimensional time
T = 3 and observe a very good qualitative agreement with the literature
[59]. Narrow filaments are predicted at T = 3. Fine grid sharp interface
models suggest that there should not be any filaments [59] while diffuse
interface models compute somewhat wider filaments [61]. Our model appears
to capture the satellite bubbles trailing behind the main bubble - something
computed by fine grid sharp interface models [59] but not classical diffuse
interface models [61]. Figure 14 plots the centre of mass and the rise velocity
as a function of non-dimensional time and compares them with the output
of the FreeLIFE finite element level set software [59]. We do not compute
the circularity because of the known discrepancy due to the filaments and
satellites. An excellent agreement for the centre of mass is observed. There
are some differences in the rise velocity but overall agreement is good (and
we note that sharp interface and diffuse interface models compute different
solutions [59, 61]). Thus we argue that while our results hint at areas for
further development they also confirm the validity and potential of our raw
model for computing multiphase flows in the presence of surface tension.
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Figure 14: Plot of centre of mass (left) and rise velocity of a bubble in a denser fluid as a
function of time when Re = 35, Bo = 125, ρ1/ρ2 = 1000 and µ1/µ2 = 100. Results from
the FreeLIFE finite element software are also shown [59].
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7. Conclusion

We have presented a new lattice Boltzmann method for computing solu-
tions to the Navier-Stokes equations with the conservative form of the surface
tension forces. In this model the surface tension is an independent param-
eter that can be set precisely a priori. High density and viscosity contrasts
are achievable, while maintaining narrow boundaries between fluids. Since
capillary effects are represented as the divergence of a tensor, they are in-
corporated naturally into the LBM momentum flux tensor and computed
efficiently by the algorithm. No additional finite difference approximations
are required for computing the divergence and the only non-local approx-
imations required are for the unit normal to the interface, which are first
order.

This approach involves two lattice Boltzmann equations: one for the hy-
drodynamics and another capturing interfaces. The capturing algorithm ad-
vects and sharpens the scalar field that distinguishes between fluids, allowing
for narrow but finite transition widths. Thus interfaces are diffuse, rather
than completely sharp, but are only distributed over a small number of lat-
tice sites - typically 3 or 4 grid points. Indeed, the model is inspired by
both diffuse interface lattice Boltzmann models for variable density flows in
a “whole domain” formulation and colour gradient/continuous surface force
lattice Boltzmann models for representing interfacial phenomena over hydro-
dynamic lengthscales.

The modelling errors in this LBM are consistent within the order of lattice
Boltzmann and are negligible at small Mach numbers. Different formulations
of the surface tension force may reduce these errors further, but this is a topic
for later research. There are inevitable numerical errors in the approximation
of the normal to the interface. In this work we have used only a very simple
and primitive on-grid differencing scheme and have not considered compact
stencils [10]. Similarly, we have used the simplest stencil for the interface
capturing LBM - a 5 point lattice with a linear equilibrium function. The
interface delta function, δs, has also been approximated quite primitively.
Larger or more sophisticated differencing and lattices, and other forms of
δs, may improve numerical accuracy and stability further, but this has not
been investigated. Furthermore, alternative interface capturing algorithms
could be coupled to the LBM hydrodynamic solver. The algebraic sharpening
model of Reis and Dellar [30] may be advantageous for some problems, or
the hydrodynamic LBM could be coupled to level set or artificial compression
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algorithm, for example.
There is much scope for future research and development. As well as the

suggestions above, the precise or optimal choice of sharpening and diffusion
parameters (λ and κ) should be investigated. We know that the width of
the transition region is a balance between sharpening and diffusion, but also
that over sharpening (λ → 0) and minimising diffusion (κ → 0) can cause
instabilities. An ad-hoc choice, albeit based on experience, of 0.1 ≤ Sh ≤ 0.2
with Pe = 100 has allowed for stable computations with narrow interfaces
in all but the most difficult tests, but a study of the interplay between the
parameters and a theoretical rule would be very beneficial. One may also
consider optimising the collision operator and we note that the basic model
presented here can be used with any collision operator. Similarly, different
forms of the forcing term could also be considered [63, 64]. Sophisticated mul-
tiphase CFD techniques might use flux limiters or mass redistribution steps
to filter undershirts/overshoots and oscillations, or a Helmholtz smoother to
enhance performance [12]. Similar methods could be used to the present lat-
tice Boltzmann scheme to improve the “raw” model. The extension to three
dimensions is natural and practical flows may benefit from non-uniform mesh
refinement techniques or more sophisticated initialisations.

We have validated the model against analytical solutions and benchmark
simulations. Agreement has been excellent over a range of parameter val-
ues, even for flows which are challenging for numerical methods. The lat-
tice Boltzmann model presented here may be an attractive numerical tool
for computing multiphase flow, particularly when surface tension effects are
significant or in complex domains, because it incorporates surface tension
conveniently and retains many of the computational advantages of the LBM
methodology: simplicity, efficiency, and accuracy.
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Appendix A. Summary of the algorithm

The discrete velocity Boltzmann equation (8), and its TRT form (45),
with equilibria (23) and source terms (12,30) has embedded within its mo-
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ments the multiphase Navier-Stokes equations (1,2). Equation (8) is solved
numerically using the second order in time algorithm (48). The one-fluid for-
mation couples the Navier-Stokes equations to an interface capturing equa-
tion, given here by equation (35). Equation (35) is embedded in the moments
of the discrete velocity Boltzmann equation (36) with equilibria (38), which is
solved numerically by (53). The structure of the one-fluid lattice Boltzmann
algorithm that computes solutions to equations (1,2,3) is, after initialisation
of f i and gi and ignoring boundaries:

1. compute φ =
∑

i gi, ρ = ρ1φ+ρ2(1−φ), and approximate δs (equation
(56) used here), n = ∇φ/|∇φ|, and ∇ρ (scheme (55) used here for
simplicity)

2. compute P and u from equations (49) and (50)

3. compute the equilibria for fi (equations (43,44)) and gi (equations
(38,52))

4. collide (relax) and stream f i (equation (48)) and gi (equation (53))

5. repeat

The TRT collision procedure was used for both f i and gi but other col-
lision operators could been used. The collision operator affects the numerics
but does not change the model. For a single relaxation time (BGK) imple-
mentation one would simply set τ+

f = τ−f and τ+
g = τg−. For a more general

multiple relaxation time (MRT) collision operator, one could follow Dellar
[2], for example. Implementation would involve computing moments, relaxing
them to their equilibria (redefined to include any forces, similar to equations
(43,44) here), and reconstructing the post-collisional f i as a function of the
post collisional moments (see [51, 65] for an outline algorithm).

Appendix B. Summary of moment-based boundary conditions

We impose boundary conditions upon moments of the lattice Boltzmann
equations and then translate these into conditions on the unknown (incom-
ing) fi or f i [49]. There are restrictions on the choice of moments: at a
straight boundary aligned with grid points each moment contains one of
three linear combinations of the unknown fi, as shown in Table B.3. In
this table R =

∑
i ficicicici and the subscripts N and T on the moments

refer to the Cartesian coordinates normal and tangential to the boundary, re-
spectively. The notation fn denotes the lattice Boltzmann distribution with
particle velocity in the same direction as the inward pointing unit normal,
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n, to the boundary, fn+t is the function with velocity in the direction of
n+ t, where t is the positive unit tangent to the boundary, and similarly for
fn−t. For example, at a boundary at the north of the computational domain,
n = (0,−1) and t = (1, 0), so fn = f4, fn+t = f8, and fn−t = f7.

Now one imposes a boundary condition on one moment from each row
of Table B.3 and solves for the unknown fi. However, the second order
discretisation discussed in Section 5 is in terms of f i, not fi, so one first
translates the boundary condition on the physical moments into conditions
on “barred” moments using equation (47), and then solve for the incoming
f i.
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Variable Method Mesh 1 Mesh 2 Mesh 3
εmin Present 0.9332 0.9186 0.9023

Leclaire [62] 0.9036 0.9021 0.9016
FreeLife [59] 0.9021 0.9011 N/A
TP2D [59] 0.9014 0.9014 0.9013

MooNMD [59] 0.9018 0.9014 0.9013
t|ε=εmin

Present 1.9430 1.9305 1.8990
Leclaire [62] 1.9170 1.8979 1.9019
FreeLife [59] 1.9125 1.8750 N/A
TP2D [59] 1.8734 1.9070 1.9041

MooNMD [59] 1.883 1.9013 1.9000
Uc,max Present 0.1876 0.2451 0.2476

Leclaire [62] 0.2428 0.2442 0.2429
FreeLife [59] 0.2410 0.2421 N/A
TP2D [59] 0.2418 0.2419 0.2417

MooNMD [59] 0.2417 0.2417 0.2417
t|Uc=Uc,max Present 0.9205 0.9475 0.9495

Leclaire [62] 0.8825 0.9125 0.9117
FreeLife [59] 0.9375 0.9313 N/A
TP2D [59] 0.9375 0.9281 0.9213

MooNMD [59] 0.9236 0.9214 0.9239
yc(T = 3) Present 1.0809 1.0830 1.0827

Leclaire [62] 1.0944 1.0883 1.0850
FreeLife [59] 1.08175 1.0818 N/A
TP2D [59] 1.0810 1.0812 1.0813

MooNMD [59] 1.0823 1.0818 1.0817

Table 2: Measured outputs and comparisons for Case 1

Moments Combination of unknowns

ρ, ρuN , ΠNN fn + fn+t + fn−t
ρuT , ΠTN , QTNN fn+t − fn−t

ΠTT , QTTN , RTTNN fn+t + fn−t

Table B.3: Moment groups at a straight boundary
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