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Abstract

Purpose: Dose-response curves, which fit a multitude of experimental data derived from toxicology, are widely used in
physics, chemistry, biology, and other fields. Although there are many dose-response models for fitting dose-response curves,
the application of these models is limited by many restrictions and lacks universality, so there is a need for a novel, universal
dynamical model that can improve fits to various types of dose-response curves.

Methods: We expand the hormetic Ricker model, taking the delay inherent in the dose-response into account, and develop a
novel and dynamic delayed Ricker difference model (DRDM) to fit various types of dose-response curves. Furthermore, we
compare the DRDM with other dose-response models to confirm that it can mimic different types of dose-response curves.

Data analysis: By fitting various types of dose-response data sets derived from drug applications, disease treatment, pest
control, and plant management, and comparing the imitative effect of the DRDM with other models, we find that the DRDM fits
monotonic dose-response data well and, in most circumstances, the DRDM has a better imitative effect to non-monotonic
dose-response data with hormesis than other models do.

Results: The MSE of fits of the DRDM to S-shaped dose-response data (DS2-G) is not lower than those for four other models,
but the MSE of fits to U-shaped (DS7) and inverted U-shaped dose-response data (DS10) were lower than for two other
models. This means that the imitative effect of the DRDM is comparable to other models of monotonic dose-response data, but
is a significant improvement compared to traditional models of non-monotonic dose-response data with hormesis.

Conclusion: We propose a novel dynamic model (DRDM) for fitting to various types of dose-response curves, which can
reflect the dynamic trend of the population growth compared with traditional static dose-response models. By analyzing data,
we have confirmed that the DRDM provides an ideal description of various dose-response observations and it can be used to fit
a wide range of dose-response data sets, especially for hormetic data sets. Therefore, we conclude that the DRDM has a good
universality for dose-response curve fitting.
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usually depends on the time and route of exposure to the
agents, involving many fields such as biology, medicine,
pharmacology, and chemistry, with the dose being an im-
portant factor in determining the damage response to foreign
compounds or physical stimulation. The concept of dose is
relatively broad, it can refer to the amount given to the or-
ganisms, the amount of foreign compounds in contact with the
organisms, the amount of foreign compounds absorbed into
the organisms, or the concentration or content of foreign
compounds in the target organs or organism fluids. Examples
include the concentration of drugs or hormones, the intensity
of radiation, the concentration of fertilizers and pesticides, and
the amount of pesticides sprayed.' The response refers to the
biological changes caused by a certain dose of foreign
compounds or physical stimulation in contact with the or-
ganisms. The response can be almost anything such as the
number of individuals, enzyme activity, the number of col-
onies, changes in organ noise, cell survival rate, accumulation
of secondary messengers in cells, membrane potential, heart
rate or muscle contraction accumulation, root length or dry
weight of plants, and the death or reproduction rates of pests.’

Dose-response curves have the dose as the x-axis and the
response as the y-axis to establish a plane rectangular coor-
dinate system, with dose-response toxicological experiment
data included on the coordinate system to which dose-
response models are fitted.> Due to the complexity of bio-
logical systems, there are diverse relationships between the

toxicant dose and the toxic response, but they are usually
complicated non-linear relationships. Different foreign com-
pounds and types of physical stimulation can result in different
types of response under different conditions, and dose-response
relationships can show different types of curves. Therefore,
nonlinear dose-response curves are usually divided into three
categories: S-shaped, inverted U-shaped, and U-shaped
(Figure 1). The S-shaped dose-response curve increases or
decreases monotonically as the dose increases. The inverted U-
shaped and U-shaped dose-response curves are non-monotonic
curves. The inverted U-shaped dose-response curve first in-
creases and then decreases as the dose increases, which is re-
ferred to as “low promotion and high inhibition.” The U-shaped
dose-response curve first decreases and then increases as the dose
increases, referred to as “low inhibition and high promotion.”

The inverted U-shaped and U-shaped dose-response curves
reflect the phenomenon of a “biphasic dose effect” caused by
different doses of exogenous compounds and physical
stressors acting on the organisms, known as a “toxicological
effect” (hormesis).® The phenomenon of hormesis can occur in
biological, chemical, physical, and toxicological studies. For
example, modern western medicine,” traditional Chinese
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medicine,*® antibiotics,”” bacteria,'° organic pollutants,
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insecticides,'?'® herbicides, %!’ phenolic compounds,
23-25 26,27

wastewater,”'*? heavy metals, and ionic liquids.
In the past few decades, much attention has been paid to
finding suitable dose-response models to fit to dose-response
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Figure 1. Types of classic nonlinear dose-response curves: (a) Monotonically increasing S-shaped, non-hormetic data. The increasing trend of
the curve shows the positive effect which increases gradually as the dose of agonists applied to the organisms increases. (b) Monotonically
decreasing S-shaped, non-hormetic data. The decreasing trend of the curve shows that the positive effect decreases gradually as the dose of
agonists applied to the organisms increases. (c) Inverted U-shaped, hormetic data. This curve first increases and then decreases depicting how
low-dose agonists promote the organisms, and high-dose agonists inhibit the organisms. (d) U-shaped, hormetic data. This curve first
decreases and then increases, depicting how low-dose agonists inhibit the organisms, and high-dose agonists promote them.
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curves. S-shaped dose-response curves can be fitted by many
monotonic dose-response models, such as the log-logistic
model, 2830 Logit model, Probit model, Weibull model,
Box-Cox Logit, and other nonlinear regression models in
statistics,?'* the Hill-slope equation of receptor dynamics,**
and the Gompertz model,' which characterizes the growth of
biological populations. Inverted U-shaped and U-shaped
dose-response curves can be described by many non-
monotonic hormetic dose-response models such as the
Brain—Cousens model,** based on expansion of the Log-
logistic model, an adjusted version, the Cedergreen—Ritz—
Streibig model®® and multiplicative and additive Bi-logistic
models.*® Although there are many types of traditional dose-
response models, their application is subject to their own
particular limitations. For example, the Log-logistic model is
symmetric about the inflection point, and it is necessary to
assume that the data approximately obey a normal
distribution.***” When the Brain—Cousens model describes a
dose-response relationship with hormesis, the parameters’
ranges are conditional. In addition, the model fits the dose-
response data with a steep slope, and there may be problems
when the hormetic area is large and the effect increases rapidly
at lower doses in the early stages.>>~® The Cedergreen—Ritz—
Streibig model has uncertain parameters in parameter esti-
mation, which cannot fully describe steep hormetic data in the
hormetic zone,*® and the goodness of the fit is poor in
comparison with several other different models.*

Traditional dose-response models have the following
disadvantages. On the one hand, as the amount of experi-
mental data increases, the traditional dose-response models
are very varied and have become more and more complex.
Specific dose-response models need to be used to fit different
types of dose-response curves, but all of these model types
lack universality. On the other hand, the above dose-response
models are static models, which are nonlinear regression
models based on the simple shape characteristics of the dose-
response curves. The parameters of such models lack specific
biological significance and cannot describe the internal dy-
namic growth and changes of the research subjects. Thus, given
these disadvantages, there is, so far, no uniform and repre-
sentative dose-response model suitable for fitting to various
nonlinear dose-response curves. To deal with these problems,
the purpose of the research presented here is to develop a highly
flexible and universal dynamic model that can not only reflect
the internal dynamic trend of the research subjects affected by
exogenous compounds or physical stressors, but is also suitable
for describing various types of dose-response curves.

The research builds on the article of Tang et al.*’ regarding
models of living organisms responses to applications of ex-
ogenous compounds or physical stimulation. First, we derive a
simple discrete intergenerational single-population model
with three parameters. Second, considering the practical ap-
plication, the adjustment factor of the intrinsic growth rate of
the population is dependent on the instantaneous density of the
population, and this adjustment response will have a delayed

effect. For example, when drugs, pesticides, or other com-
pounds act on a living body, they need to be metabolized and
absorbed for a certain period before they can take effect.
Therefore, we introduce a delayed effect parameter of the dose
into the model. Next, we derive a novel, universal, and dy-
namic discrete delayed Ricker difference model (DRDM) that
is suitable for modeling various types of dose-response curves,
especially hormetic dose-response curves. Finally, we perform
numerical simulation, parameter estimation and statistical
analysis on multiple dose-response experimental data sets that
involve the fields of drug application (including modern
Western medicine and traditional Chinese medicine),* dis-
ease treatment (including tumor, cancer, and other dis-
eases),’' ™ pest control,'*"> plant management'®'” etc., to
verify the applicability and universality of the proposed DRDM
for fitting different types of dose-response curves, especially
those with hormesis. The DRDM not only has biological
significance in its parameters and can dynamically monitor the
internal dynamic development process of experimental subjects
at the corresponding dose, but it also has universal applicability
for fitting dose-response curves. The DRDM is convenient for
modeling many different types of dose-response relationships
in toxicology and biomedicine and is thus a ground-breaking
addition to the dose-response model family.

Delayed Ricker Difference Model

For convenience, we collectively refer to exogenous chemical
agents and physical stressors as agonists. Taking agonist-
acting organisms as the research subject (i.e., a biological
population), a single population biological model is estab-
lished. Assuming that agonists act instantaneously on living
organisms, consider discrete generations of a single species
population, modeled by the following formula®®

X1 = f(Xi7, p, 0) (M)
Where X+ is the population size at the (# + 1)-th generation,
which is determined by the population size X, at the #-th
generation and three parameters r, p, and 6. The parameter
r€[0,00) is the intrinsic growth rate of the population, de-
scribing the speed of the change of the population to which the
agonist is applied and reflects the internal dynamic trend of the
population. The parameter p € (0, 1] is the survival rate of
the population, which is characterized by the applied dosage of
the agonist and its timing # + 6, 8 € [0, 1], and reflects the
biological effectiveness and efficacy of the agonist. Note that
the parameter g = 1 — p € [0, 1), ¢ represents the killing rate of
the population which is, obviously, also closely related to the
dosage of the applied dosage of the agonists at time ¢t + 6, 8 €
[0, 1]. For convenience, Tang et al.*’ called the parameter ¢ the
dose-response, and the parameter ¢ the dose timing response.
From equation (1), we can see that the time factor plays an
important role in designing appropriate experiments and
understanding hormetic effects.
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The piecewise constant method*” is employed in this
subsection to derive the discrete Ricker model with instan-
taneous perturbations within each generation. We consider the
following piecewise single species logistic model

d);s) — X (s) {1 —% s€(t, 140,
(2)
d)szS) — X (s) {1 —%"] sE(+0,t+1]

with
X =X({t+6%) =pX(t+6).
Let X(s) = X, be the population size at time s, henceforth X
is the population size at time s and X is the population size at
time s + 60, 8 € [0, 1]. K € (0, o) represents the carrying

capacity of the environment.
Solving equation (2) yields

X(s) Z)(,exp{r(l —j?)(s—t)], se(t, t+0),

X(s):X(jexp[r(l—%)(S—t—@)}, ®)
se(t+6,t+1]
with
X, =X(t+6")=pX(t+06)
“4)

X,
= pX, exp {r(l — Et) 19]

Substituting equation (4) into equation (3), we obtain

X1 = pX;
erlo (- D)o ot 2)o)]0 o)
- o101~ apes(r(1- 1))

©)

where the two special cases are § = 0 and 6 = 1, which indicate
that the agonists act at the beginning and end of the generation.
When 6 = 0 or § = 1, equation (5) has the same dynamic
characteristics as the classic Ricker model,*’ but it cannot
reflect the dynamic changes of population size between two
generations. In practice, the application of agonists is usually
between two generations. Therefore, the existences of a dose
timing response 0 and a dose-response ¢ must be considered at
the same time to reveal the important factors affecting the
response to the agonists.

In equation (5), the regulatory factor of the intrinsic growth
rate  of the population is the function 1 — 42, which depends
on the instantaneous density of the population. Most of the
regulatory response exists with a delayed effect. The dose-
response ¢ cannot take effect instantancously, that is, the
population regulation factor at the (# + 1)-th generation is
related to the population number or density before v gener-
ations. Henceforth, we introduce the delayed effect v of the
agonists into equation (5), and the following equation is
obtained

X
X1 pXtexp{r[l — ;{ (9

+(1 - 0)pexp<”(1 XIQI)Q»} }

(6)

We designate equation (6) as the discrete-time delayed
Ricker difference model (DRDM) for instantaneous distur-
bance control between generations. DRDM is a further ex-
pansion of the classic single-species Ricker model. It clearly
reflects the intraspecific competition that restricts population
growth after the agonists are applied at time ¢ + 6. From the
expression of the DRDM, it can be seen that it is a nonlinear
combination of the growth function of the organism before the
agonist action and the growth function after the agonist action.

Under usual circumstances, the greater the dose of the
agonists, the higher the killing rate g and the lower the survival
rate p of the population. At the same time, combined with the
phenomenon of resistance of living organisms to acting ag-
onists, as the dose increases, the decrease in survival rate p
slows down. When the applied dosage of the agonists is large
enough, the survival rate of the population tends to a stable
value. In general, the survival rate p can be modified by in-
corporating the decay effect of the agonists as a negative
exponential function about the agonists’ dose.*> Specifically,
the survival function p is given as equation (7)

p= (1 —p,,,)exp(—vXDs) +Pms (7

thus
g=1- (1 —p,,,)exp(—vXDs) —Pm>

where Ds is the dose of the acting agonists. The constant
Pm €[0,1) is the survival rate at infinite dose. v is the slope
parameter and v > 0, whose value determines how quickly the
survival rate p transitions from 1 to p,,. Under the premise that
Pm 1s stable, the larger the v is, the faster the p decreases. The
parameter ¢, as the dose-response parameter of the agonists,
can describe the dose effect of the agonists on the subject, such
as the effects of drugs, insecticides, and herbicides applied as
part of tumor treatment, pest management, or weed removal.
Specifically, 1 and p,, correspond to the upper and lower
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bounds of p with respect to dose Ds, respectively, which are
shown in Figure 2.

The DRDM defines the response in terms of six critical
parameters: the intrinsic growth rate » of the biological
population acted on by exogenous chemical agents or a
physical stressor, the dose timing response 6 (from the time
when the organism receives the exogenous stimulation to the
time when the experimental response data are recorded), the
carrying capacity of the environment K, the lower bound p,,, of
the survival rate function p, the slope parameter v (which
determines how steep the survival rate curve is), and the
delayed effect v of the agonists. Among them, the six pa-
rameters mainly represent four meanings: intrinsic growth
rate, dose response, dose timing response of an intervention,
and the delayed effect.

Compared with the traditional static dose-response
models,'**® the DRDM is a universal and dynamic time-
delayed difference model taking biological significance, dose-
response, and a delayed effect into account, which reflects the
internal dynamic trend of the population and the biological
effectiveness of the agonists. The main purpose of this is to
show that the DRDM is suitable for fitting all kinds of non-
linear (S-shaped, inverted U-shaped, and U-shaped) dose-
response curves. In general, the DRDM is also helpful to
further analyze the dynamic properties of living organisms
after being acted on by agonists and thus represents a sig-
nificant breakthrough in toxicology research.

Universal Curve Fitting

In this section, we apply the DRDM to fit 15 dose-response
data sets to verify the universality of the DRDM. The 15 data
sets embody different types of nonlinear dose-response curves
and involve drug applications (including Chinese medicine),
disease treatment (including tumor and cancer treatment), pest
control, plant management, and other fields.

Data and Fitting Methods

In order to verify the imitative effect and universality of the
DRDM, we refer to a group of 15 dose-response experimental
data sets to simulate with the DRDM, which consists of 3 S-
shaped data sets, 6 inverted U-shaped data sets, and 6 U-
shaped curves data sets. The specific information (systems,
agonists, response variables, and references) of all data sets are
summarized in Table 1.

DS1-DS3 are three representative data sets of S-shaped
dose-response relationships obtained by a variety of toxi-
cology experiments,>*****” which are all suitable for fitting S-
shaped dose-response models. Among them, DS2 is about the
application of herbicides. DS3 concerns toxicological effects
of selenium. DS1 and DS3 are data suitable for monotonically
increasing S-shaped dose-response curve fitting, and DS2 can
be described by a monotonically decreasing S-shaped dose-
response curve.

2 J
- ) — p,=02,v=06
H === p.=02,v=135
\
o | 3
o
a
z
[
= ©
£ o
c
e |
w
=
o
o
< T T T T T T T
0 1 2 3 4 5 6
Dose(Ds)

Figure 2. The relationship between the survival rate p and the dose Ds
generated from equation (7). The solid line has parameter values of
pm = .2, v = .6, the dashed line has parameter values of p,,, = .2, v=|.5.

DS4-DS9 are six inverted U-shaped dose-response data
sets displayed by plenty of experimental models and chemical
agents.”>*!? The dose-response data sets we fitted the DRDM
to are from traditional Chinese medicine (DS4 and DSS5),
Western medicine (DS6), chemical agents (DS7), plant cul-
tivation (DSS8), and pest control (DS9).

DS10-DS15 are six U-shaped dose-response data sets
displayed by a variety of experimental models and chemical
agents, which all involve hormesis®®'® and are from tradi-
tional Chinese medicine (DS10 and DS11), tumor therapy
(DS12), disease induction (DS13), Western medicine (DS14),
and toxicological effects of chemical reagents (DS15).

The specific fitting methods used in this study are as
follows:

Initial Values: Initially, the 6 parameters r, 6, K, p,,,, v, and t
are given arbitrary values, and the initial iteration function is
defined as a constant X at interval [— 7, 0] of the DRDM. The
corresponding upper and lower bounds are adjusted within the
specific ranges according to the parameters’ meanings;

. . ~1\2 .
Target Function:  min _ >" (v, — »;])",where n is the
0K pmvt,Xo
number of samples. y{(i =1, 2, ..., n) are real response values

(sample values) corresponding to the i-th(i=1, 2, ..., n) dose
value in the experimental data, and y;(i = 1,2,...,n) are es-
timated response values of the DRDM model being fitted.

Central Methods: We carry out 500 iterations of the DRDM
at each fixed dose value and regard the final stable function
value Xsq0 as the estimated response value y;(i = 1,2,...,n).
The estimation of the r, 8, K, p,,,, v, t, and X can be obtained
by means of the nonlinear least square estimate algorithm
(LSE).”!

Algorithm Description: The data fitting part of the research
is implemented in MATLAB. The key point is to solve values
of parameters minimizing target function in a predefined range
with the fimincon in MATLAB. The target function is the sum
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Table I. Interpretations of the Data Sets.

Data
set System Agonist (units) Response variable (units) Reference
DSl An example of a prototypical  Dose Response dry matter weight of white 33
sigmoid response mustard foliage (g pot')
DS2 Effect of herbicides on plants  Concentrations of herbicides (g AE ha™") 46
DS3 Effect of nutrients on organisms Concentrations of selenium (um) Death rate of fruit flies (%) 47
Ds4 Effect of Chinese drugs on Concentrations of Z-LIG (um) Survival rate of the AML cells (%) 5
cancer cells
DS5 Effect of Chinese drugs on Concentrations of DT-13 (um) Survival rate of the AML cells (%) 6
cancer cells
DSé Effect of toxicant on organisms Concentrations of sodium hypochlorite  Percentage of fibroblasts’ protein content 2
Concentrations of (%) (%)
DS7 Effect of Western drugs on Concentrations of penicillin (units/ml) Turbidity percentage of a bacterial culture 2
bacteria solution (%)
Ds8 Effect of toxicant on organisms Concentrations of mercury (mol/L) Percentage of duckweed’s catalase 2
activity(%)
DS9 Effect of insecticides on pests  Concentrations of deltamethrin (ppm) Net reproduction rate of the corn weevil 13
(%)
DSI0  Effect of Chinese drugs on Concentrations of DT-13 (um) Death rate of the HL-60 (%) 6
cancer cells
DSII  Effect of Chinese drugs on Concentrations of DT-13 (um) Death rate of the U937 (%) 6
cancer cells
DSI2  Tumors treatment Dose of y-ray (Gy) Malignant tumor incidence (%) 2
DSI13  Disease treatment Dose of X-ray (Gy) Percentage of pneumonia colonies in lungs 2
(%)
DS14  Effect of Western drugs on Dose of phenobarbital (ppm) Percentage of altered hepatic foci (%) 2
cancer cells
DSI5  Effect of toxicant on organisms Concentrations of [epy]Cl (mol/L) Luminescence inhibition of sp.-Q67 (%) 10

of squares of the difference between the estimation and the real
value. The fimincon can give a local optimum value after
multiple iterations of selections on initial values of parame-
ters.’’ When the value of target function locates within the
acceptable range, the corresponding values give the estimation
result. Due to the randomness of the selection of initial values
of parameters, the estimation result is not unique. The specific
algorithm is explained in the program.

S-shaped Dose-response Curves

S-shaped dose-response relationships exist widely in toxi-
cology research. Here, we select dose-response experimental
data that are appropriate for the two types of S-shaped dose-
response curves and fit them with the DRDM for obtaining
specific parameter estimates.

DS]I: The static model used by Beam et al. to fit DS1 is the
classic Hill equation™

Em X Emin
V= Epy —— ®)

1+ ( . )Hillslope

EDs

where x is the dose and y is the response. The E ., and E;, are
the upper and lower asymptotes of a response and represent

the saturation and minimum response, respectively. The EDsy
is the effective concentration required for 50% of maximal
induction (£,,,,c) and represents the response’s inflection point.
The parameter Hillslope dictates how quickly the response
transitions from Eyngy t0 Emin.-

DS2: These data are from dose-response bioassays of two
herbicides, glyphosate and bentazone, applied to white
mustard (Sinapis alba).*® The experimenters selected different
concentrations of glyphosate and bentazone, respectively, to
treat a fixed area of white mustard and measured the dry matter
weight of the foliage after 7 days. The experiment for each
concentration was repeated and the average of the results of
these multiple experiments was taken as the final result for
each concentration. The experimental data are shown in
Table 2, including 8 groups of dose-response data for
glyphosate and 8 groups for bentazone. Christian et al. fitted

the DS2 data with a 4-parameter static log-logistic model*’
L d—c
y=c
I+ exp(b(log(x) — log(e))) 9)

=g(x;b,c,d,e)

In the log-logistic model, x is the dose, y is the response, ¢ is
the response at infinite dose, d represents the response of the
untreated control (y at x = 0), e is the effective dose at which
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the value of d — ¢ is reduced by 50% (EDs), and b is the
relative slope around EDsy.>?

DS3: These data are from experiments to compare the
toxicity to fruit flies of four different forms of selenium
(selenate, selenite, selenomethionine, and selenocysteine).*’
Selenium is a metalloid with several valence states, each of
which occurs in the environment at a significant concentration.
Selenium is a non-metallic element, which can be used as a
photosensitive material, a catalyst in the electrolytic manga-
nese industry, an essential nutrient for animals, and a bene-
ficial nutrient for plants. Christian et al. fitted the DS3 data
with a 2-parameter static log-logistic model, with ¢ =0, d =1
in equation (9).*

Historically, toxicological data have been collected only for
total selenium levels, as it was impossible to detect the dif-
ferent forms of selenium in organisms or the environment.
With the emergence of new techniques, detection is now
possible; therefore, the important problem of characterizing
the toxicological characteristics of the most important form of
selenium can be addressed. The data in Table 3 resulted from
toxicology experiments with four different forms of sele-
nium.*” We refer to the four forms of selenium as types 1—4,
whose corresponding experiments involved 6, 6, 8, and 5
groups, respectively.

For a particular type of selenium, when the concentration of
selenium is x;, the corresponding response y; can be deter-
mined as follows

_ Death;
~ Sample;

Vi (10)
where Death; is the number of dead fruit flies (Death) corre-
sponding to the concentration x;, and Sample; is the total number
of samples (Sample) of fruit flies sampled corresponding to the
concentration x;. y; is the death rate of fruit flies, which can be
regarded as the response variables of the experiment.

We used the DRDM derived in this paper to re-describe data
sets DS1-DS3, respectively, as shown in Figures 3 and 4. The
parameter estimation results for them are shown in Table 4.

Inverted U-shaped Dose-response Curves

Similar to the use of DRDM to fit the S-shaped dose-response
curves, this section also selects multiple dose-response data
sets from toxicology experiments, some with hormesis effects,
suitable for fitting to inverted U-shaped curves.

DS4: Z-Ligustilide (Z-LIG) inhibits the survival rate of
Acute Myeloid Leukemia cells (AML cells).” Specific AML
cells include three types: HL-60 (human promyelocytic leu-
kemia cells), KASUMI-1 (human acute myeloid leukemia
cells), and U937 (human histiocytic lymphoma cells). Ligu-
stilide is the main active ingredient of the volatile oil of
Angelica sinensis (Umbelliferae), a traditional Chinese herbal
medicine. It has a strong anti-spasmodic, anti-asthmatic, and
sedative effect, and improves microcirculation, inhibits

Table 2. Dose-response Data from Applications of Two
Herbicides, Glyphosate and Bentazone, to White Mustard (Sinapis
alba).*

Glyphosate Dry matter Bentazone Dry matter

(g AE ha') (g pot ") (gAlha ') (g pot ")

0 3.8035 0 3.8035

10 2.458 10 3.7272
22.7027 2.2082 36.7805 3431
45.9459 1.5033 64 1.1415
69.1892 1.2018 91.2195 7617
92.4324 1.0631 280 .692

235.1558 973 552.1951 6715

425.6281 1.005 824.3902 .7075

Table 3. Datafrom Toxicology Experiments with Selenium on Fruit
Flies.*”

Type Conc Samples Deaths Type Conc Samples Deaths
I 0 151 32 0 141 2
I 100 146 40 2 100 153 30
| 200 16 31 2 200 142 59
I 300 159 85 2 300 139 82
I 400 150 102 2 400 154 62
I 500 140 12 2 500 155 85
3 0 137 4 4 0 152 3
3 5 106 0 4 5 152 7
3 25 63 I 4 25 150 |
3 50 145 22 4 50 153 45
3 100 127 31 4 100 125 74
3 200 140 105

3 400 172 166

3 800 188 188

bacteria, relaxes smooth muscle, and improves the body’s
immune regulation function. AML (acute myelocytic leukemia)
is a general term for a type of leukemia. The cell survival rate is
determined by the sulforhodamine B (SRB) colorimetric
method, which is mainly used to detect cell proliferation.

DS5: This data set comprises experimental data on
Ophiopogon japonicus saponin C (DT-13) inhibiting the
survival rate of the same three types of AML cells (HL-60,
KASUMI-1, and U937) as in DS4.® Ophiopogon japonicus
saponins C is an extraction of the dried roots of Ophiopogon
Japonicus, a traditional Chinese medicine, which has anti-
tumor effects. The survival rate of AML cells is also measured
by SRB. Specifically, the dose for this data set is the con-
centration of DT-13, and the response is the survival rate of the
three types of AML cells.

DRDM models were used to fit the three AML dose-
response data in DS4 and DSS5, and the fitting results are
shown in Figures SA-F, respectively. The parameter esti-
mators are shown in Table 5.



Dose-Response: An International Journal

140 FT T
—e—DS1

-
N
o

T

— & — Simulation

=y
o
o

T

60 -

40

Response (Rs %)

2+

0.01 0.1

—&— DS2 (Glyphosate)

— ® — Simulation

Dry matter (g ;:no!"I )

-

0.5

0 10 22,7027 45,9459 69.1892 92.4324 235.1558425.6281

Glyphosate (g AE ha™')

Dose (Ds)

1000

—e— DS2 (Bentazone)

3.5 — & — Simulation

Dry matter (g pot"’)

<&

bt
3]

0 10 367805 64 91,2195 280 552.1951824,3902

Bentazone (g Al ha'1)

Figure 3. S-shaped dose-response data and DRDM model fits. Black dots and lines are original data; red squares and lines are the fitted
DRDMs. (a) Monotonically increasing S-shaped dose-response data (DS|1). (b) and (c) are monotonically decreasing S-shaped dose-response

data and model for (b) DS2 (Glyphosate) and (c) DS2 (Bentazone).

DS6: These data come from a toxicological experiment on
effects of sodium hypochlorite solution on human fibroblast
protein.” Sodium hypochlorite solution is used for disinfec-
tion, sterilization, and water treatment. It is highly corrosive.

DS7: This data set comprises toxicological data on effects
of penicillin on bacteria.” Penicillin, an antibiotic extracted
from the fungus Penicillium, is anti-bacterial and commonly
used in Western medicine.

DS8: This data set comes from an experiment on the effect of
mercury on duckweed (subfamily Lemnoideae).” Mercury is the
most toxic heavy metal element. After ingestion by a vertebrate
animal, mercury goes directly to the liver, causing major damage
to the brain, nerves, and vision. The mercury in natural rivers
mainly comes from pollution originating from the chlor-alkali
industry. The purpose of the experiment was to explore the effect
of mercury in the water on the growth of duckweed plants.

DS9: This data set comes from a toxicology experiment that
studied the effect of the insecticide deltamethrin against corn
weevil pests Sitophilus zeamais."> The corn weevil is a pest of

stored grains including corn (maize) Zea mays. Delta-
methrin is the most toxic of the pyrethroid insecticides. It
has swift contact killing and stomach poisoning effects.
Guedes et al. fitted the DS9 data to simple static regression
models (linear and quadratic), based on simplicity, high F-
values, and steep increases of adjusted-R2 values with
model complexity.'?

We fitted the DRDMs to the DS6-DS9 data sets, as shown
in Figures 6A—D. The parameter estimation results are shown
in Table 5. By observing the imitative effect of DRDM on data
set DS6-DS9, it can be found that the imitative effect of DS6
is significantly worse than that of DS7-DS9. The difference is
mainly due to two reasons. On the one hand, the fitting dif-
ficulty increases with volatile and large amount of data, in
which more than one hormesis exists. On the other hand, the
LSE method is sensitive to the initial value of parameters.*®
Only with good initial value can the imitative effect becomes
better. Therefore, it infers that the selection of the initial value
of parameters needs improvement for DS6.
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Table 4. The Parameter Values Estimated with the DRDM
Corresponding to DSI, Glyphosate Data (DS2-G), Bentazone Data
(DS2-B), and Four Types of DS3 (S-shaped).

Data set r 0 K Pm v T Xo

DSl 1.3087 4293 6.1045 5066 6.7808 4 1.1143
DS2-G .7856 .8979 1.4314 7694 .0147 2 1.2835
DS2-B .5668 4851 9.8723 .5844 .0429 4 1.1474
DS3(type I) 2.6099 .1114 2233 4603 .0113 | 1.4595
DS3(type 2) 1.4837 .1461 9863 .4665 .0065 2 1.0308
DS3(type 3) 1.249 .5886 .5039 .5462 .0257 3 1.6235
DS3(type 4) 2.0237 .5617 2.1821 .2578 .1352 3 1.0676

U-shaped Dose-response Curves

Figure 1D is the U-shaped dose-response curve, in which as
the dose increases, the positive response first decreases and
then increases. Both the U-shaped dose-response curves and
the inverted U-shaped dose-response curves are data with

hormetic responses, which are suitable for describing toxi-
cological relationships with biphasic dose responses at dif-
ferent doses.

It is obvious that the U-shaped dose-response curve and the
inverted U-shaped dose-response curve can be converted into
each other by regarding the positive response of the U-shaped
curve as the negative response of the inverted U-shaped curve.
For example, the positive response corresponding to the in-
verted U-shaped data is the survival rate of the cells, and the
positive response corresponding to the U-shaped data is the
mortality of the cells. Similar to the use of the DRDM to fit
the S-shaped and inverted U-shaped dose-response curves, in
this section, we also select multiple dose-response data sets
suitable for U-shaped curve fitting in toxicology experiments
and use the DRDM to fit them and to estimate the corre-
sponding parameter values.

DSI10 and DSII: This data set is experimental data of
Ophiopogon japonicus saponin C (DT-13) affecting the death
rate of AML cells.® DS10 corresponds to the HL-60 (human
primary myeloid leukemia cells) of the AML cells. DS11
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data set DS5, respectively.®

Table 5. The Parameter Values Estimated with DRDMs
Corresponding to DS4-DS9 (Inverted U-shaped).

Data set r 0 K Pm v 7 Xo
DS4(HL-60) 5226 2649 I.1191 636 .06 3 I.15
DS4(Kasumi-1) .6604 .6895 1.0723 5783 .0451 2 .6834
DS4(U937) 3013 .0003 1.0788 .7807 .0329 5 1.1259
DS5(HL-60) 2928 .0007 1.1984 .7609 .0775 5 .3106
DS5(Kasumi-1) 4577 .0003 .9778 .668  .0785 3 .5568
DS5(U937) 3241 6309 1.0923 6376 .018 5 1.0892
DSé6 .6027 4634 6093 .0029 4.868 3 .6439
DS7 1.0906 .5868 .0123 .5625 4046 5 1.721
DSs8 3514 .0787 1.2653 .7631 .0012 5 1.2794
DS9 7478 3355 .0701 .8427 56706 5 8167

refers to the U937 (human tissue cell lymphoma cells) of the
AML cells. Ophiopogon japonicus saponins C is an extract of
the dried roots of Ophiopogon japonicus, a traditional Chinese

medicine, which has anti-tumor effects. The death rate of
AML cells is also measured by SRB.

DS12: This data set comprises experimental data on the
toxicological effects of y rays (Gamma rays) inducing ma-
lignant tumors.” Gamma rays are electromagnetic waves with
a wavelength shorter than .01 A. They have strong penetrating
power and can be used for flaw detection or automatic control
of assembly lines in industry. They are also harmful to cells
and are used medically to treat tumors.

DS13: Biological cells within a body will be inhibited,
destroyed, or become necrotic when irradiated with X-rays,
resulting in different degrees of physiological, pathological,
and biochemical changes such as hair loss, skin burns, visual
impairment, pneumonia, and leukemia. X-rays can also be
used to treat some human diseases, especially tumors. The
purpose of the experiment from which the data were derived
was to explore the effect of X-rays on the probability of
pneumonia in organisms. The amount of X-ray exposure to a
whole mouse body was converted into the numerical range
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Figure 6. Inverted U-shaped dose-response data fitting with the DRDM. Black dots are experimental data, and the red squares are results of
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[0,1] (0 means no irradiation and 1 means the whole body is
irradiated).

DS14: Phenobarbital is a barbiturate sedative and sleeping
pill. It can be used for sedation, hypnosis, anticonvulsive
therapy, anti-epileptic therapy, pre-anesthetic administration,
treatment of neonatal hyperbilirubinemia, and is compatible
with antipyretic analgesics. In the experiment, male rats were
given different doses of phenobarbital to study its effects on
sedation and anesthesia, measured by altered hepatic foci
relative to a control group.

DS15: This data set comprises acute toxicity test data of 1-
ethylpyridinium chloride ([epy]Cl) on Vibrio ginghaiensis sp.-
Q67 (Q67),"° involving exposure at 12 different concentration
levels for 12h. [epy]CI is a toxic pyridine compound, which
can irritate the eyes, respiratory system, and skin of living
organisms. Q67 is a freshwater luminous bacterium, which
emits light. The luminescence of Q67 is constant in clean
water, but is inhibited when affected by pollution, with the
degree of inhibition related to the concentration of poisons in
the water. Therefore, the toxicity of water samples can be
evaluated by photometric measurements of the Q67

luminescence to provide a Q67 luminescence suppression
ratio in relation to values for clean water.

We fitted the DRDM to the data sets DS10-DS15, re-
spectively. The fitting results are shown in Figure 7, and the
parameter estimation results are shown in Table 6.

Results

A variety of commercial statistical software packages that can
be used to analyze dose-response data are already available
such as the expansion package drc, DoseFinding, drfit, grofit,
MCPMod, and nstools provided in the statistical software R.*’
In this section, we compare the performance, in terms of the
mean-square error (MSE) of the predicted models, of the
DRDM model results with results from several well-
recognized models. In this way, we verified the universality
of our DRDM model for fitting dose-response data and the
goodness of the various fits.

First of all, we choose to use the drc package in the R
software to fit and analyze dose-response data using other
models. Many more or less well-known model functions are
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Table 6. The Parameter Values Estimated with DRDM for the
DS10-DSI5 Data Sets (U-shaped).

Data set r 6 K Pm v T Xo
DSI10 .6437 2497 68.793 9599 2135 5 1.5238
DSI | 3675 4673 6094 96 0143 5 19989
DSI2 7643 1022  9.1777 9554 514 5 5932
DSI3 .5385 .8384 1.5282 .6047 273 3 1.5045
DSI14 1.8465 .2003 3.68 6784 0402 | 1.0697
DSI5 .8876 .2789 9769 0701 92363 2 983

built into the drc package. Specifically, we make use of four S-
shaped dose-response models: generalized log-logistic model,
log-logistic model, Weibull I model, and Weibull II model,
and two hormetic dose-response models (Inverted U-shaped
and U-shaped): the Brain-Cousens model and the Cedergreen—
Ritz—Streibig model.

The log-logistic function, currently the most popular dose-
response model, expresses dose-response as a monotonically

increasing or decreasing sigmoidal curve that is symmetric
about its point of inflection and assuming approximately
normally distributed data.?**°*> The model function of the 4-
parameter log-logistic model is given by equation (9).

The generalized log-logistic model is similar to the log-logistic
model, but has five parameters and its function is as follows

d—rc
"0+ expl(bllog(x) — log(e))))
=g(x;b,¢c,d,e.f)

y=c
(11)

where the definitions of parameters b, ¢, d, e are the same as
those in the log-logistic model (9). But parameter f has no
direct biological significance and only represents the degree of
the denominator.** For equation (11), the special case /= 1
means that the generalized log-logistic model degenerates into
the 4-parameter log-logistic model.

The Weibull I and Weibull II models are also suitable for
describing monotonic dose-response data.** The model
functions are
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y = ¢+ (d — c)exp(—exp(b(log(x) — log(e)))

=g(x;b,¢,d,e) (12)
and
y=c+ (d - c)exp(l - exp((b(log(x) - log(e)))) (13)
=g(x;b,¢,d,e)

respectively, where the parameters b, ¢, d, e have the same
definitions as those for the log-logistic model.

Figure 8 summarizes the parameters involved in simula-
tions of these monotonic dose-response relationships in
schematic diagrams which reflect the biological significance
of the model parameters.

Another model was first proposed by Brain and Cousens
in 1989." The Brain—Cousens model extended the original 4-
parameter logistic model (9) by introducing the term fx to
allow for hormesis. The model function is shown as equation

(14).

- d—c+fx
YT T T ¥ exp(b(log(x) — log(e))) (14)
=g(x;b,¢c,d,e.f)

In equation (14), the parameters ¢ and d are as defined in
equation (9). However, the parameters e and b lost their in-
terpretations as the EDsq and relative slope at EDs, respec-
tively, and thus have no straightforward biological meanings.>>>’
The parameter f'denotes the rate of stimulation of the response at
low doses. If f= 0, equation (14) reduces to the 4-parameter
logistic model equation (9). Thus, f# 0 is a necessary condition
for the presence of hormesis. The model can be used to describe
typical inverted U-shaped (f > 0) and U-shaped (f' < 0) curves
describing actions of pharmaceuticals.’

Consequent upon the inadequacies of the Brain—Cousens
model as observed by Cedergreen and her co-workers, they
modified the model by replacing the term fx in equation (14)
with exp(—1/x*) to introduce a six-parameter version of a
modified Brain-Cousens model.>> The model function for the
inverted U-shaped hormetic pattern is equation (15).

d —c—|—fexp<—%)
=T T Texp(bliog(x) — log(e)))
=g(x;b,c,d,e,f)

The U-shaped hormetic pattern of the Cedergreen—Ritz—
Streibig model is shown in equation (16).>°

y (15)

d— c+fexp<—la>
_ X
1 +exp(b(log(x) — log(e)))
=g(x;b,c,d,e,f)

where f is the hormesis parameter (f # 0 as a necessary
condition for hormesis), parameters ¢ and d are defined as in
equation (9), while parameters a, b, e have no straightforward
biological interpretation.

In summary, the schematic diagrams of the parameters in
dose-response relationships simulated from these non-
monotonic models are shown in Figure 9, which reflect the
biological significance of their parameters.

Next, we applied the DRDM, generalized log-logistic
model, log-logistic model, Weibull I model, and Weibull II
model, respectively, to simulate the DS2-G (S-shaped) data
set. The DRDM, Brain—Cousens and Cedergreen—Ritz—
Streibig models were used to simulate the DS7 (inverted
U-shaped) and DS10 (U-shaped) data sets, respectively.

MSE is a measure that reflects the degree of difference
between the estimated values and the true values. This statistic
is the mean value of the sum of squares of the errors of the
predicted data and the corresponding points of the original
data. MSE can evaluate the degree of data change. The smaller
the value of MSE, the better the accuracy of the predictive
model to describe the experimental data.”’ The calculation of
the MSE is shown in equation (17).

MSE:SS—E=%ZLI<% —ﬁ)z

n

y=c+d (16)

)
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where the meaning of n, y;, and y; are the same as given in the
fitting methods section.

The MSE values of fits to the DS2-G (S-shaped), DS7
(inverted U-shaped), and DS10 (U-shaped) corresponding to
different dose-response models are shown in Table 7.

From Table 7, it is clear that although the MSE of data set
DS2-G fitted to the DRDM is low, it is not as low as those for
the other four static models. Hence for DS2-G, the fitting
result of the DRDM is not as good as that of the generalized
log-logistic model, the log-logistic model, the Weibull I
model, and Weibull II model. For data sets DS7 and DS10, it
can be seen that the DRDM fits have the lowest MSE
compared to the other three static hormetic dose-response
models. Compared with each of the other traditional static
models that are suitable for modeling dose-response rela-
tionships, the DRDM has significant advantages. To sum up,
for simple dose-response curves, we can use relatively simple
traditional static models. For dose-response curves with complex
structure (i.e., strong non-linearity), especially those with
hormesis, the dynamic DRDM model has significant fitting
advantages and universality.

To further illustrate the imitative effect of the parameters
in DRDM, we select the data set DS2-B and plot the 95%
confidence intervals of 7 parameters (7, 6, K, p,,., v, 7, Xp), as
shown in Figure 10, and the interval estimates are shown in
Table 8.

Discussion

Research on dose-response models has paid attention to their
application, adjustment, re-parameterization, and to statistical
tests of their performance for several decades.' Authors of
many review articles on dose-response models suggest that
new dose-response models should be developed in the light of
new toxicology experiments, especially for modeling dose-
response curves with hormesis, which is challenging.'~*

The main purpose of this paper is to develop a novel and
universal dose-response dynamic model that can better fit the
various types of dose-response curves. At the same time, the
model needs to conform to the population dynamics of in-
dividual organisms, and the parameters of the new model need
to have biological significance. Therefore, in this study, we
extend the classic single-population Ricker model from the
perspective of the population dynamics of the affected or-
ganisms. In addition, the delayed factor of dose-response is
added, and a new 6-parameter discrete Ricker difference
model (DRDM) is established. The six parameters are (1) the
intrinsic growth rate of the population » of the biological
population acted on by exogenous chemical agents or physical
stressors, (2) the dose timing response 6 (the time from when
an organism receives the exogenous stimulation to the time
when data on an experimental response is obtained), (3) the
carrying capacity of the environment K, (4) the lower bound
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Figure 9. Schematic diagrams of curves and their parameters corresponding to non-monotonic dose-response models. (a) Non-monotonic
inverted U-shaped dose-response curve. (b) Non-monotonic U-shaped dose-response curve.

Table 7. MSE Values for DS2-G(S-shaped), DS7(Inverted U-shaped), and DS10(U-Shaped) Fitted by the DRDM and Other Models.

Models MSE (DS2-G) MSE (DS7) MSE (DS10)
DRDM .000855 .004129 .007212
Log-logistic .000156 - -
Generalized log-logistic .000153 - -
Weibull | .000820 - -
Weibull 11 .000539 - -
Brain—Cousens - .005350 .990952
Cedergreen—Ritz-—Streibig - .012610 .990138
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Table 8. The Parameters’ 95% Confidence Intervals of Data Set DS2-B.

Parameter r 0 K bPm v T Xo
Confidence lower limit .3044 0 3.5333 4137 .0041| 2.6434 1729
Confidence upper limit 7297 .8282 10.797 .947 .0385 4.5738 2.0461

pm of the survival rate, (5) the slope parameter v (which
determines how steep the survival rate curve is), and (6) the
delayed effect 7 of the response.

We fitted the DRDM that we derived to 15 toxicological
data sets by estimating the appropriate parameters. These data
sets included three suitable for S-shaped dose-response
curves, six for inverted U-shaped dose-response curves, and
six for U-shaped dose-response curves. From the graphical
results of these data simulations, the DRDM fitted well to
different types of dose-response data, and so it has a certain
degree of universality. Furthermore, from the 15 data sets, we
selected one from each of three types of dose-response curves
for statistical analysis. By calculating the MSEs, the DRDM
was compared to several other traditional dose-response
models, and the results showed that the imitative effect of
the DRDM for an S-shaped dose-response curve is not as good
as fits of the log-logistic model, the generalized log-logistic
model, the Weibull I model, and the Weibull II model, which
may be because of the strong non-linearity between dose and
response in this case. However, the imitative effects of the
DRDM for modeling inverted U-shaped and U-shaped dose-

response curves were significantly better than those of the
Brain—Cousens model and the Cedergreen—Ritz—Streibig
model, so the DRDM is more effective for fitting hormetic
dose-response curves. Therefore, we conclude that the DRDM
proposed in this study is a novel and universal dose-response
model as our data simulation and comparative analysis
showed the DRDM to be more convincing in fitting different
types of dose-response curves.

For toxicology applications, on the one hand, the DRDM
can help scholars to fit dose-response curves, predict the re-
sponse values of different doses, and determine the hormetic
area of the dose-response curve. On the other hand, parameter
estimates of the DRDM can help in the analysis of charac-
teristics of the population dynamics of organisms after being
subjected to exogenous compounds or physical pressure. For
example, the parameter » € [0,00) is the intrinsic growth rate of
the population, which describes the speed of the change of the
population affected by the agonist and reflects the internal
dynamic trend of the population, K describes the saturation
effect of the population under specific dose stimulation, ¢
reflects the dose-response of external stimulation at different
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doses on organisms, and 7 reflects the delayed degree of the
dose-response. Compared with the traditional dose-response
model and the DRDM, the ultimate purposes of all dose-
response models are to obtain better fits to dose-response
curves. However, there are still many differences between
them. First and foremost, the traditional dose-response models
are nonlinear regression functions of the response with respect
to dose, and the corresponding dose-response curves are
smooth curves. Therefore, the models are static and so cannot
depict an organisms dynamic changes.' Nonetheless, the
DRDM is a discrete difference model of the response with
respect to time, and the corresponding dose-response curve is
a non-smooth scatter diagram. For a given dose, the DRDM
needs to be iterated multiple times to stabilize before it can
predict the corresponding response value. To be precise, the
DRDM model is a dynamic delayed difference model that
depicts the intrinsic dynamic change of organisms when
exposed to external chemical agents or physical pressures.
Second, the traditional dose-response model parameters are
mostly describing the shape of the curve, such as the response
of the untreated control (y at x = 0), the response at infinite
dose, the maximum response Max and the minimum response
Min, and the effective dose EDs,.! These parameters can
vividly describe the shape characteristics of the dose-response
curves, but they lack specific biological significance. In
contrast, there is biological significance attributable to the
parameters of the DRDM, which are convenient for research
on the internal developmental mechanisms of the toxicolog-
ical response. Third, not only do the parameters g and 6 of the
DRDM model depict the dose-response and dose timing re-
sponse, respectively, but the DRDM also takes into account
the delayed factor in the occurrence of effects in a dose-
response model for the first time, which is also one of the key
innovations and breakthroughs of this research. Due to the
introduction of the delayed parameter z, the model is more in
line with the actual occurrence of hormesis and helps the
DRDM to improve its imitative effect.

Although we have revealed results of importance, our
research also has some limitations. First, according to the
simulation results of multiple sets of toxicological experiment
data and the comparative analysis based on MSE values, the
DRDM is more applicable for fitting to dose-response data sets
with hormesis than to those without hormesis, although it does
fit monotonic dose-response curves too. Second, the DRDM
has no explicit formula for the EDs, and other effective doses
ED,, where x is the percentage decrease. It is necessary to
estimate these parameters through re-parameterization or other
mathematical methods and perform statistical tests on them.
Third, the LSE method used for parameter estimation is sen-
sitive to initial values.*®

In summary, our research has developed a novel and
universal dose-response dynamic model that can be used for
fitting non-linear dose-response curves. It provides a theo-
retical basis for research in toxicology, biology, chemistry, and
other fields, and provides a universal dynamical model to

address related dose-response curves issues. We also note that
in toxicology experiments there are dose-response relationships
affected by randomness due to environmental factors (tem-
perature, humidity, soil, ultraviolet light, etc.), diet, resistance to
pesticides, or drugs, and such random perturbations play sig-
nificant roles in inducing toxicological effects (hormesis),
which are challenging to characterize. Therefore, our next goal
is to take random factors into account, develop a more general
mathematical model with randomness to describe dose-
response relationships and toxicological effects, and carry
out further in-depth research on toxicological effects and dose-
response models for expanding future research directions.
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